Science.gov

Sample records for aberrant cyclin-dependent kinase

  1. Cyclin-dependent kinases: engines, clocks, and microprocessors.

    PubMed

    Morgan, D O

    1997-01-01

    Cyclin-dependent kinases (Cdks) play a well-established role in the regulation of the eukaryotic cell division cycle and have also been implicated in the control of gene transcription and other processes. Cdk activity is governed by a complex network of regulatory subunits and phosphorylation events whose precise effects on Cdk conformation have been revealed by recent crystallographic studies. In the cell, these regulatory mechanisms generate an interlinked series of Cdk oscillators that trigger the events of cell division.

  2. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    PubMed Central

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  3. Cyclin-dependent kinase 2 protects podocytes from apoptosis

    PubMed Central

    Saurus, Pauliina; Kuusela, Sara; Dumont, Vincent; Lehtonen, Eero; Fogarty, Christopher L.; Lassenius, Mariann I.; Forsblom, Carol; Lehto, Markku; Saleem, Moin A.; Groop, Per-Henrik; Lehtonen, Sanna

    2016-01-01

    Loss of podocytes is an early feature of diabetic nephropathy (DN) and predicts its progression. We found that treatment of podocytes with sera from normoalbuminuric type 1 diabetes patients with high lipopolysaccharide (LPS) activity, known to predict progression of DN, downregulated CDK2 (cyclin-dependent kinase 2). LPS-treatment of mice also reduced CDK2 expression. LPS-induced downregulation of CDK2 was prevented in vitro and in vivo by inhibiting the Toll-like receptor (TLR) pathway using immunomodulatory agent GIT27. We also observed that CDK2 is downregulated in the glomeruli of obese Zucker rats before the onset of proteinuria. Knockdown of CDK2, or inhibiting its activity with roscovitine in podocytes increased apoptosis. CDK2 knockdown also reduced expression of PDK1, an activator of the cell survival kinase Akt, and reduced Akt phosphorylation. This suggests that CDK2 regulates the activity of the cell survival pathway via PDK1. Furthermore, PDK1 knockdown reduced the expression of CDK2 suggesting a regulatory loop between CDK2 and PDK1. Collectively, our data show that CDK2 protects podocytes from apoptosis and that reduced expression of CDK2 associates with the development of DN. Preventing downregulation of CDK2 by blocking the TLR pathway with GIT27 may provide a means to prevent podocyte apoptosis and progression of DN. PMID:26876672

  4. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics

    PubMed Central

    Corsino, Patrick E.; Narayan, Satya

    2015-01-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non–ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non–ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer. PMID:26018905

  6. Inhibitors of cyclin-dependent kinases as cancer therapeutics.

    PubMed

    Whittaker, Steven R; Mallinger, Aurélie; Workman, Paul; Clarke, Paul A

    2017-05-01

    Over the past two decades there has been a great deal of interest in the development of inhibitors of the cyclin-dependent kinases (CDKs). This attention initially stemmed from observations that different CDK isoforms have key roles in cancer cell proliferation through loss of regulation of the cell cycle, a hallmark feature of cancer. CDKs have now been shown to regulate other processes, particularly various aspects of transcription. The early non-selective CDK inhibitors exhibited considerable toxicity and proved to be insufficiently active in most cancers. The lack of patient selection biomarkers and an absence of understanding of the inhibitory profile required for efficacy hampered the development of these inhibitors. However, the advent of potent isoform-selective inhibitors with accompanying biomarkers has re-ignited interest. Palbociclib, a selective CDK4/6 inhibitor, is now approved for the treatment of ER+/HER2- advanced breast cancer. Current developments in the field include the identification of potent and selective inhibitors of the transcriptional CDKs; these include tool compounds that have allowed exploration of individual CDKs as cancer targets and the determination of their potential therapeutic windows. Biomarkers that allow the selection of patients likely to respond are now being discovered. Drug resistance has emerged as a major hurdle in the clinic for most protein kinase inhibitors and resistance mechanism are beginning to be identified for CDK inhibitors. This suggests that the selective inhibitors may be best used combined with standard of care or other molecularly targeted agents now in development rather than in isolation as monotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    PubMed

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  8. Inhibitors of Leishmania mexicana CRK3 Cyclin-Dependent Kinase: Chemical Library Screen and Antileishmanial Activity

    PubMed Central

    Grant, Karen M.; Dunion, Morag H.; Yardley, Vanessa; Skaltsounis, Alexios-Leandros; Marko, Doris; Eisenbrand, Gerhard; Croft, Simon L.; Meijer, Laurent; Mottram, Jeremy C.

    2004-01-01

    The CRK3 cyclin-dependent kinase of Leishmania has been shown by genetic manipulation of the parasite to be essential for proliferation. We present data which demonstrate that chemical inhibition of CRK3 impairs the parasite's viability within macrophages, thus further validating CRK3 as a potential drug target. A microtiter plate-based histone H1 kinase assay was developed to screen CRK3 against a chemical library enriched for protein kinase inhibitors. Twenty-seven potent CRK3 inhibitors were discovered and screened against Leishmania donovani amastigotes in vitro. Sixteen of the CRK3 inhibitors displayed antileishmanial activity, with a 50% effective dose (ED50) of less than 10 μM. These compounds fell into four chemical classes: the 2,6,9-trisubstituted purines, including the C-2-alkynylated purines; the indirubins; the paullones; and derivatives of the nonspecific kinase inhibitor staurosporine. The paullones and staurosporine derivatives were toxic to macrophages. The 2,6,9-trisubstituted purines inhibited CRK3 in vitro, with 50% inhibitory concentrations ranging from high nanomolar to low micromolar concentrations. The most potent inhibitors of CRK3 (compounds 98/516 and 97/344) belonged to the indirubin class; the 50% inhibitory concentrations for these inhibitors were 16 and 47 nM, respectively, and the ED50s for these inhibitors were 5.8 and 7.6 μM, respectively. In culture, the indirubins caused growth arrest, a change in DNA content, and aberrant cell types, all consistent with the intracellular inhibition of a cyclin-dependent kinase and disruption of cell cycle control. Thus, use of chemical inhibitors supports genetic studies to confirm CRK3 as a validated drug target in Leishmania and provides pharmacophores for further drug development. PMID:15273118

  9. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    PubMed

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  10. Coordinated Expression of Cyclin-dependent Kinase-4 and its Regulators in Human Oral Tumors

    PubMed Central

    POI, MING J.; KNOBLOCH, THOMAS J.; SEARS, MARTA T.; UHRIG, LANA K.; WARNER, BLAKE M.; WEGHORST, CHRISTOPHER M.; LI, JUNAN

    2014-01-01

    Background/Aim While aberrant expression of cyclin-dependent kinase-4 (CDK4) has been found in squamous cell carcinoma of the head and neck (SCCHN), the associations between CDK4 and its regulators, namely, cyclin D1, cyclin E, gankyrin, SEI1, and BMI1 in gene expression remain to be explored. Herein we investigated the mRNA profiles of these oncogenes and their interrelations in different oral lesion tissues. Materials and Methods Thirty SCCHN specimens and patient-matched high at-risk mucosa (HARM) and 16 healthy control specimens were subjected to quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses. Results The mRNA levels of CDK4, cyclin D1, gankyrin, SEI1, BMI1 were significantly elevated in both HARM and SCCHN (in comparison with control specimens), and statistically significant correlations were found among these markers in gene expression. Conclusion Up-regulation of CDK4 and its regulators takes place in oral cancer progression in a coordinate manner, and HARM and SCCHN share a similar molecular signature within the CDK4-pRB pathway. PMID:24982332

  11. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis.

    PubMed

    Gartel, Andrei L; Tyner, Angela L

    2002-06-01

    Cancer develops when the balance between cell proliferation and cell death is disrupted, and the ensuing aberrant proliferation leads to tumor growth. The cyclin-dependent kinase inhibitor p21 is induced by both p53-dependent and -independent mechanisms following stress, and induction of p21 may cause cell cycle arrest. As a proliferation inhibitor, p21 is poised to play an important role in preventing tumor development. This notion is supported by data indicating that p21-null mice are more prone to spontaneous and induced tumorigenesis, and p21 synergizes with other tumor suppressors to protect against tumor progression in mice. However, a number of recent studies have pointed out that in addition to being an inhibitor of cell proliferation, p21 acts as an inhibitor of apoptosis in a number of systems, and this may counteract its tumor-suppressive functions as a growth inhibitor. In the current review, we discuss the role of p21 in regulating cell death and the potential relevance of its expression in cancer.

  12. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    SciTech Connect

    McGrath, Denise A.; Fifield, Bre‐Anne; Marceau, Aimee H.

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changesmore » to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.« less

  13. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases

    PubMed Central

    2010-01-01

    Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation. PMID:24900195

  14. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases.

    PubMed

    Paruch, Kamil; Dwyer, Michael P; Alvarez, Carmen; Brown, Courtney; Chan, Tin-Yau; Doll, Ronald J; Keertikar, Kerry; Knutson, Chad; McKittrick, Brian; Rivera, Jocelyn; Rossman, Randall; Tucker, Greg; Fischmann, Thierry; Hruza, Alan; Madison, Vincent; Nomeir, Amin A; Wang, Yaolin; Kirschmeier, Paul; Lees, Emma; Parry, David; Sgambellone, Nicole; Seghezzi, Wolfgang; Schultz, Lesley; Shanahan, Frances; Wiswell, Derek; Xu, Xiaoying; Zhou, Quiao; James, Ray A; Paradkar, Vidyadhar M; Park, Haengsoon; Rokosz, Laura R; Stauffer, Tara M; Guzi, Timothy J

    2010-08-12

    Inhibition of cyclin-dependent kinases (CDKs) has emerged as an attractive strategy for the development of novel oncology therapeutics. Herein is described the utilization of an in vivo screening approach with integrated efficacy and tolerability parameters to identify candidate CDK inhibitors with a suitable balance of activity and tolerability. This approach has resulted in the identification of SCH 727965, a potent and selective CDK inhibitor that is currently undergoing clinical evaluation.

  15. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    PubMed

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  16. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C.

    PubMed Central

    Tassan, J P; Jaquenoud, M; Léopold, P; Schultz, S J; Nigg, E A

    1995-01-01

    Metazoan cyclin C was originally isolated by virtue of its ability to rescue Saccharomyces cerevisiae cells deficient in G1 cyclin function. This suggested that cyclin C might play a role in cell cycle control, but progress toward understanding the function of this cyclin has been hampered by the lack of information on a potential kinase partner. Here we report the identification of a human protein kinase, K35 [cyclin-dependent kinase 8 (CDK8)], that is likely to be a physiological partner of cyclin C. A specific interaction between K35 and cyclin C could be demonstrated after translation of CDKs and cyclins in vitro. Furthermore, cyclin C could be detected in K35 immunoprecipitates prepared from HeLa cells, indicating that the two proteins form a complex also in vivo. The K35-cyclin C complex is structurally related to SRB10-SRB11, a CDK-cyclin pair recently shown to be part of the RNA polymerase II holoenzyme of S. cerevisiae. Hence, we propose that human K35(CDK8)-cyclin C might be functionally associated with the mammalian transcription apparatus, perhaps involved in relaying growth-regulatory signals. Images Fig. 2 Fig. 3 PMID:7568034

  17. Reversal of collapsing glomerulopathy in mice with the cyclin-dependent kinase inhibitor CYC202.

    PubMed

    Gherardi, Dana; D'Agati, Vivette; Chu, Te-Hua Tearina; Barnett, Anna; Gianella-Borradori, Athos; Gelman, Irwin H; Nelson, Peter J

    2004-05-01

    Collapsing glomerulopathy (CG) has become an important cause of end-stage renal disease. Whether associated with HIV-1 or other potential etiologies, the pathogenesis of CG converges to induce aberrant proliferation of renal epithelium along the entire nephron. This raises the possibility that targeting cell-cycle progression may be an effective therapeutic strategy for CG. Here, we ask whether the cyclin-dependent kinase (CDK) inhibitor, CYC202 (R-roscovitine), could attenuate or reverse existing renal disease in Tg26 mice, a well characterized HIV-1 transgenic mouse model of CG. Tg26 mice were age and disease matched through analysis of urine (protein/creatinine) to generate 12 treatment pairs covering a range of mild to severe CG. One mouse from each pair received either vehicle or 75 mg/kg of CYC202 every 12 h for 20 d, a dose 20% above that needed to prevent the development of CG. After treatment, urinary, serologic, and histopathologic indices of nephrosis showed reversal of CG in 8 of 12 CYC202-treated mice compared with progression of CG in 10 of 12 vehicle-treated mice, demonstrating a significant therapeutic benefit from CYC202 (P < 0.05). Pharmacokinetic profiles showed that concentrations of CYC202 known to inhibit cell-cycle and transcriptional CDK in vitro were achieved in plasma at efficacious doses. However, amelioration of CG by CYC202 did not correlate with decreases in kidney HIV-1 transgene expression, indicating that suppression of HIV-1 transcription was not a prerequisite for the antiproliferative activity of CYC202. These results demonstrate a novel therapeutic strategy for CG.

  18. Synthetic cyclin dependent kinase inhibitors. New generation of potent anti-cancer drugs.

    PubMed

    Hajdúch, M; Havlíèek, L; Veselý, J; Novotný, R; Mihál, V; Strnad, M

    1999-01-01

    The unsatisfactory results of current anti-cancer therapies require the active search for new drugs, new treatment strategies and a deeper understanding of the host-tumour relationship. From this point of view, the drugs with a capacity to substitute the functions of altered tumour suppressor genes are of prominent interest. Since one of the main functions of oncosuppressors is to mediate cell cycle arrest via modification of cyclin dependent kinases (CDKs) activity, the compounds with ability to substitute altered functions of these genes in neoplastic cells are of prominent interest. Synthetic inhibitors of cyclin dependent kinases (CDKIs) are typical representatives of such drugs. Olomoucine (OC), flavopiridol (FP), butyrolactone I (BL) and their derivatives selectively inhibit CDKs and thus constrain tumor cell proliferation under in vitro and/or in vivo conditions. We originally discovered OC and its inhibitory activity toward CDK1 family of CDKs, and recently reported the induction of apoptosis and tumor regression following OC application. Moreover, the OC family of synthetic CDKIs has the capacity of directly inhibit CDK7, the principal enzyme required for activating other CDKs, and thus these compounds are the first known CDK7 inhibitors. Its unique mechanism of action and potent anti-cancer activity under both in vitro and in vivo conditions provide a unique tool to inhibit tumour cell proliferation, and to selectively induce apoptosis in neoplastic tissues. The mechanisms of anti-cancer activities of FP, BL, OC and related synthetic CDKIs are compared and discussed in this paper.

  19. The cyclin-dependent kinase PITSLRE/CDK11 is required for successful autophagy.

    PubMed

    Wilkinson, Simon; Croft, Daniel R; O'Prey, Jim; Meedendorp, Arenda; O'Prey, Margaret; Dufès, Christine; Ryan, Kevin M

    2011-11-01

    (Macro)autophagy is a membrane-trafficking process that serves to sequester cellular constituents in organelles termed autophagosomes, which target their degradation in the lysosome. Autophagy operates at basal levels in all cells where it serves as a homeostatic mechanism to maintain cellular integrity. The levels and cargoes of autophagy can, however, change in response to a variety of stimuli, and perturbations in autophagy are known to be involved in the aetiology of various human diseases. Autophagy must therefore be tightly controlled. We report here that the Drosophila cyclin-dependent kinase PITSLRE is a modulator of autophagy. Loss of the human PITSLRE orthologue, CDK11, initially appears to induce autophagy, but at later time points CDK11 is critically required for autophagic flux and cargo digestion. Since PITSLRE/CDK11 regulates autophagy in both Drosophila and human cells, this kinase represents a novel phylogenetically conserved component of the autophagy machinery.

  20. Bombyx mori cyclin-dependent kinase inhibitor is involved in regulation of the silkworm cell cycle.

    PubMed

    Tang, X-F; Zhou, X-L; Zhang, Q; Chen, P; Lu, C; Pan, M-H

    2018-06-01

    Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of the cell cycle. They can bind to cyclin-dependent kinase (CDK)-cyclin complexes and inhibit CDK activities. We identified a single homologous gene of the CDK interacting protein/kinase inhibitory protein (Cip/Kip) family, BmCKI, in the silkworm, Bombyx mori. The gene transcribes two splice variants: a 654-bp-long BmCKI-L (the longer splice variant) encoding a protein with 217 amino acids and a 579-bp-long BmCKI-S (the shorter splice variant) encoding a protein with 192 amino acids. BmCKI-L and BmCKI-S contain the Cip/Kip family conserved cyclin-binding domain and the CDK-binding domain. They are localized in the nucleus and have an unconventional bipartite nuclear localization signal at amino acid residues 181-210. Overexpression of BmCKI-L or BmCKI-S affected cell cycle progression; the cell cycle was arrested in the first gap phase of cell cycle (G1). RNA interference of BmCKI-L or BmCKI-S led to cells accumulating in the second gap phase and the mitotic phase of cell cycle (G2/M). Both BmCKI-L and BmCKI-S are involved in cell cycle regulation and probably have similar effects. The transgenic silkworm with BmCKI-L overexpression (BmCKI-L-OE), exhibited embryonic lethal, larva developmental retardation and lethal phenotypes. These results suggest that BmCKI-L might regulate the growth and development of silkworm. These findings clarify the function of CKIs and increase our understanding of cell cycle regulation in the silkworm. © 2018 The Royal Entomological Society.

  1. Direct Substrate Identification with an Analog Sensitive (AS) Viral Cyclin-Dependent Kinase (v-Cdk).

    PubMed

    Umaña, Angie C; Iwahori, Satoko; Kalejta, Robert F

    2018-01-19

    Viral cyclin-dependent kinases (v-Cdks) functionally emulate their cellular Cdk counterparts. Such viral mimicry is an established phenomenon that we extend here through chemical genetics. Kinases contain gatekeeper residues that limit the size of molecules that can be accommodated within the enzyme active site. Mutating gatekeeper residues to smaller amino acids allows larger molecules access to the active site. Such mutants can utilize bio-orthoganol ATPs for phosphate transfer and are inhibited by compounds ineffective against the wild type protein, and thus are referred to as analog-sensitive (AS) kinases. We identified the gatekeeper residues of the v-Cdks encoded by Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) and mutated them to generate AS kinases. The AS-v-Cdks are functional and utilize different ATP derivatives with a specificity closely matching their cellular ortholog, AS-Cdk2. The AS derivative of the EBV v-Cdk was used to transfer a thiolated phosphate group to targeted proteins which were then purified through covalent capture and identified by mass spectrometry. Pathway analysis of these newly identified direct substrates of the EBV v-Cdk extends the potential influence of this kinase into all stages of gene expression (transcription, splicing, mRNA export, and translation). Our work demonstrates the biochemical similarity of the cellular and viral Cdks, as well as the utility of AS v-Cdks for substrate identification to increase our understanding of both viral infections and Cdk biology.

  2. Traffic safety for the cell: influence of cyclin-dependent kinase activity on genomic stability.

    PubMed

    Enders, Greg H; Maude, Shannon L

    2006-04-12

    Genomic instability has long been considered a key factor in tumorigenesis. Recent evidence suggests that DNA damage may be widespread in early pre-neoplastic states, with deregulation of cyclin-dependent kinase (Cdk) activity a driving force. Increased Cdk activity may critically reduce licensing of origins of DNA replication, drive re-replication, or mediate overexpression of checkpoint proteins, inducing deleterious cell cycle delay. Conversely, inhibition of Cdk activity may compromise replication efficiency, expression of checkpoint proteins, or activation of DNA repair proteins. These vital functions point to the impact of Cdk activity on the stability of the genome. Insight into these pathways may improve our understanding of tumorigenesis and lead to more rational cancer therapies.

  3. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells.

    PubMed

    Kranenburg, O; Scharnhorst, V; Van der Eb, A J; Zantema, A

    1995-10-01

    Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.

  4. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells

    PubMed Central

    1995-01-01

    Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation. PMID:7559779

  5. Cyclin-Dependent Kinase 11 (CDK11) is Crucial in the Growth of Liposarcoma Cells

    PubMed Central

    Jia, Bin; Choy, Edwin; Cote, Gregory; Harmon, David; Ye, Shunan; Kan, Quancheng; Mankin, Henry; Hornicek, Francis; Duan, Zhenfeng

    2014-01-01

    Liposarcoma is the second most common soft tissue sarcoma in adults, but treatment options have been quite limited thus far. In this study, we investigated the functional and therapeutic relevance of cyclin-dependent kinase 11 (CDK11) as a putative target in liposarcoma. CDK11 knockdown by synthetic siRNA or lentiviral shRNA decreased cell proliferation, and induced apoptosis in liposarcoma cells. Moreover, CDK11 knockdown enhances the cytotoxic effect of doxorubicin to inhibit cell growth in liposarcoma cells. These findings suggest that CDK11 is critical for the growth and proliferation of liposarcoma cells. CDK11 may be a promising therapeutic target for the treatment of liposarcoma patients. PMID:24007862

  6. A Chrysin Derivative Suppresses Skin Cancer Growth by Inhibiting Cyclin-dependent Kinases*

    PubMed Central

    Liu, Haidan; Liu, Kangdong; Huang, Zunnan; Park, Chan-Mi; Thimmegowda, N. R.; Jang, Jae-Hyuk; Ryoo, In-Ja; He, Long; Kim, Sun-Ok; Oi, Naomi; Lee, Ki Won; Soung, Nak-Kyun; Bode, Ann M.; Yang, Yifeng; Zhou, Xinmin; Erikson, Raymond L.; Ahn, Jong-Seog; Hwang, Joonsung; Kim, Kyoon Eon; Dong, Zigang; Kim, Bo-Yeon

    2013-01-01

    Chrysin (5,7-dihydroxyflavone), a natural flavonoid widely distributed in plants, reportedly has chemopreventive properties against various cancers. However, the anticancer activity of chrysin observed in in vivo studies has been disappointing. Here, we report that a chrysin derivative, referred to as compound 69407, more strongly inhibited EGF-induced neoplastic transformation of JB6 P+ cells compared with chrysin. It attenuated cell cycle progression of EGF-stimulated cells at the G1 phase and inhibited the G1/S transition. It caused loss of retinoblastoma phosphorylation at both Ser-795 and Ser-807/811, the preferred sites phosphorylated by Cdk4/6 and Cdk2, respectively. It also suppressed anchorage-dependent and -independent growth of A431 human epidermoid carcinoma cells. Compound 69407 reduced tumor growth in the A431 mouse xenograft model and retinoblastoma phosphorylation at Ser-795 and Ser-807/811. Immunoprecipitation kinase assay results showed that compound 69407 attenuated endogenous Cdk4 and Cdk2 kinase activities in EGF-stimulated JB6 P+ cells. Pulldown and in vitro kinase assay results indicated that compound 69407 directly binds with Cdk2 and Cdk4 in an ATP-independent manner and inhibited their kinase activities. A binding model between compound 69407 and a crystal structure of Cdk2 predicted that compound 69407 was located inside the Cdk2 allosteric binding site. The binding was further verified by a point mutation binding assay. Overall results indicated that compound 69407 is an ATP-noncompetitive cyclin-dependent kinase inhibitor with anti-tumor effects, which acts by binding inside the Cdk2 allosteric pocket. This study provides new insights for creating a general pharmacophore model to design and develop novel ATP-noncompetitive agents with chemopreventive or chemotherapeutic potency. PMID:23888052

  7. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Cyclin-Dependent Kinase Ortholog pUL97 of Human Cytomegalovirus Interacts with Cyclins

    PubMed Central

    Graf, Laura; Webel, Rike; Wagner, Sabrina; Hamilton, Stuart T.; Rawlinson, William D.; Sticht, Heinrich; Marschall, Manfred

    2013-01-01

    The human cytomegalovirus (HCMV)-encoded protein kinase, pUL97, is considered a cyclin-dependent kinase (CDK) ortholog, due to shared structural and functional characteristics. The primary mechanism of CDK activation is binding to corresponding cyclins, including cyclin T1, which is the usual regulatory cofactor of CDK9. This study provides evidence of direct interaction between pUL97 and cyclin T1 using yeast two-hybrid and co-immunoprecipitation analyses. Confocal immunofluorescence revealed partial colocalization of pUL97 with cyclin T1 in subnuclear compartments, most pronounced in viral replication centres. The distribution patterns of pUL97 and cyclin T1 were independent of HCMV strain and host cell type. The sequence domain of pUL97 responsible for the interaction with cyclin T1 was between amino acids 231–280. Additional co-immunoprecipitation analyses showed cyclin B1 and cyclin A as further pUL97 interaction partners. Investigation of the pUL97-cyclin T1 interaction in an ATP consumption assay strongly suggested phosphorylation of pUL97 by the CDK9/cyclin T1 complex in a substrate concentration-dependent manner. This is the first demonstration of interaction between a herpesviral CDK ortholog and cellular cyclins. PMID:24351800

  9. 3D-QSAR and molecular docking study on bisarylmaleimide series as glycogen synthase kinase 3, cyclin dependent kinase 2 and cyclin dependent kinase 4 inhibitors: an insight into the criteria for selectivity.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2007-07-01

    Selective glycogen synthase kinase 3 (GSK3) inhibition over cyclin dependent kinases such as cyclin dependent kinase 2 (CDK2) and cyclin dependent kinase 4 (CDK4) is an important requirement for improved therapeutic profile of GSK3 inhibitors. The concepts of selectivity and additivity fields have been employed in developing selective CoMFA models for these related kinases. Initially, sets of three individual CoMFA models were developed, using 36 compounds of bisarylmaleimide series to correlate with the GSK3, CDK2 and CDK4 inhibitory potencies. These models showed a satisfactory statistical significance: CoMFA-GSK3 (r(2)(con), r(2)(cv): 0.931, 0.519), CoMFA-CDK2 (0.937, 0.563), and CoMFA-CDK4 (0.892, 0.725). Three different selective CoMFA models were then developed using differences in pIC(50) values. These three models showed a superior statistical significance: (i) CoMFA-Selective1 (r(2)(con), r(2)(cv): 0.969, 0.768), (ii) CoMFA-Selective 2 (0.974, 0.835) and (iii) CoMFA-Selective3 (0.963, 0.776). The selective models were found to outperform the individual models in terms of the quality of correlation and were found to be more informative in pinpointing the structural basis for the observed quantitative differences of kinase inhibition. An in-depth comparative investigation was carried out between the individual and selective models to gain an insight into the selectivity criterion. To further validate this approach, a set of new compounds were designed which show selectivity and were docked into the active site of GSK3, using FlexX based incremental construction algorithm.

  10. CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs?

    PubMed

    Lolli, Graziano; Johnson, Louise N

    2005-04-01

    The Cyclin-dependent kinase (CDK) Activating Kinase (CAK) is responsible for the activating phosphorylation of CDK1, CDK2, CDK4 and CDK6 and regulation of the cell cycle. The kinase is composed of three subunits: CDK7, Cyclin H and MAT1 (ménage a trois). Together with six other subunits, CAK is also part of the general transcription factor TFIIH where it is involved in promoter clearance and progression of transcription from the preinitiation to the initiation stage. CAK is required for cell cycle progression, which suggests that CDK7 could be a target for cancer therapy. However its role in transcription and its ubiquitous presence raise sensible concerns about possible toxicity of its inhibitors. The recently determined structure of CDK7 allows the design of inhibitors with differential specificity for the different CDKs. We review the role of CAK in different biological processes and evaluate the biological evidence for CDK7 as a possible pharmacological target.

  11. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation.

    PubMed

    Sansam, Courtney G; Goins, Duane; Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L

    2015-03-01

    S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRR(TESE)) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRR(TESE) does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRR(TESE) does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled. © 2015 Sansam et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Cyclin-Dependent Kinase Inhibitors for the Treatment of Breast Cancer: Past, Present, and Future.

    PubMed

    DiPippo, Adam J; Patel, Neelam K; Barnett, Chad M

    2016-06-01

    Treatment of metastatic breast cancer (MBC) that is resistant to endocrine therapy presents a significant clinical challenge. The well-known role of cell cycle dysregulation in these patients is partly mediated by cyclin-dependent kinase (CDK) activity. Specific cyclin and CDK complexes regulate cell cycle progression by managing the transition through the cell cycle, and inhibition of CDKs represents an important target for novel agents. First-generation CDK inhibitors (e.g., flavopiridol) were relatively nonselective and had an unacceptable toxicity profile in early trials. Second-generation CDK inhibitors were designed to target the CDK4 and CDK6 (CDK4/6) pathway and have shown promising clinical activity with an acceptable toxicity profile in patients with MBC. Palbociclib is a first-in-class CDK4/6 inhibitor that was granted accelerated U.S. Food and Drug Administration approval in combination with letrozole for the treatment of MBC in the first-line setting (February 2015) as well as in combination with fulvestrant for MBC that had progressed on previous endocrine therapy (February 2016). Other CDK4/6 inhibitors, including ribociclib and abemaciclib, are under investigation as monotherapy and in combination with endocrine or anti-human epidermal growth receptor 2 therapy for the treatment of MBC. Ongoing clinical trials should provide additional information to guide the appropriate use of these agents and identify patient populations that could derive the most benefit. © 2016 Pharmacotherapy Publications, Inc.

  13. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro

    PubMed Central

    Gray, Karen-Ann; Gresty, Karryn J.; Chen, Nanhua; Zhang, Veronica; Gutteridge, Clare E.; Peatey, Christopher L.; Chavchich, Marina; Waters, Norman C.; Cheng, Qin

    2016-01-01

    Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment. PMID:27326764

  14. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing

    PubMed Central

    Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-01-01

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261

  15. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-04-23

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.

  16. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors.

    PubMed

    Jhang, Cian-Ling; Huang, Tzyy-Nan; Hsueh, Yi-Ping; Liao, Wenlin

    2017-10-15

    Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Cyclin-dependent Kinase 9 Links RNA Polymerase II Transcription to Processing of Ribosomal RNA*

    PubMed Central

    Burger, Kaspar; Mühl, Bastian; Rohrmoser, Michaela; Coordes, Britta; Heidemann, Martin; Kellner, Markus; Gruber-Eber, Anita; Heissmeyer, Vigo; Strässer, Katja; Eick, Dirk

    2013-01-01

    Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3′ extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3′ processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3′ rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing. PMID:23744076

  18. Regulation of lipogenesis by cyclin-dependent kinase 8–mediated control of SREBP-1

    PubMed Central

    Zhao, Xiaoping; Feng, Daorong; Wang, Qun; Abdulla, Arian; Xie, Xiao-Jun; Zhou, Jie; Sun, Yan; Yang, Ellen S.; Liu, Lu-Ping; Vaitheesvaran, Bhavapriya; Bridges, Lauren; Kurland, Irwin J.; Strich, Randy; Ni, Jian-Quan; Wang, Chenguang; Ericsson, Johan; Pessin, Jeffrey E.; Ji, Jun-Yuan; Yang, Fajun

    2012-01-01

    Altered lipid metabolism underlies several major human diseases, including obesity and type 2 diabetes. However, lipid metabolism pathophysiology remains poorly understood at the molecular level. Insulin is the primary stimulator of hepatic lipogenesis through activation of the SREBP-1c transcription factor. Here we identified cyclin-dependent kinase 8 (CDK8) and its regulatory partner cyclin C (CycC) as negative regulators of the lipogenic pathway in Drosophila, mammalian hepatocytes, and mouse liver. The inhibitory effect of CDK8 and CycC on de novo lipogenesis was mediated through CDK8 phosphorylation of nuclear SREBP-1c at a conserved threonine residue. Phosphorylation by CDK8 enhanced SREBP-1c ubiquitination and protein degradation. Importantly, consistent with the physiologic regulation of lipid biosynthesis, CDK8 and CycC proteins were rapidly downregulated by feeding and insulin, resulting in decreased SREBP-1c phosphorylation. Moreover, overexpression of CycC efficiently suppressed insulin and feeding–induced lipogenic gene expression. Taken together, these results demonstrate that CDK8 and CycC function as evolutionarily conserved components of the insulin signaling pathway in regulating lipid homeostasis. PMID:22684109

  19. Cyclin-dependent Kinase 5: Novel role of gene variants identified in ADHD.

    PubMed

    Maitra, Subhamita; Chatterjee, Mahasweta; Sinha, Swagata; Mukhopadhyay, Kanchan

    2017-07-28

    Cortical neuronal migration and formation of filamentous actin cytoskeleton, needed for development, normal cell growth and differentiation, are regulated by the cyclin-dependent kinase 5 (Cdk5). Attention deficit hyperactivity disorder (ADHD) is associated with delayed maturation of the brain and hence we hypothesized that cdk5 may have a role in ADHD. Eight functional CDK5 gene variants were analyzed in 848 Indo-Caucasoid individuals including 217 families with ADHD probands and 250 healthy volunteers. Only three variants, rs2069454, rs2069456 and rs2069459, predicted to affect transcription, were found to be bimorphic. Significant difference in rs2069456 "AC" genotype frequency was noticed in the probands, more specifically in the males. Family based analysis revealed over transmission of rs2069454 "C" and rs2069456 "A" to the probands. Quantitative trait analysis exhibited association of haplotypes with inattention, domain specific impulsivity, and behavioral problem, though no significant contribution was noticed on the age of onset of ADHD. Gene variants also showed significant association with cognitive function and co-morbidity. Probands having rs2069459 "TT" showed betterment during follow up. It may be inferred from this pilot study that CDK5 may affect ADHD etiology, possibly by attenuating synaptic neurotransmission and could be a useful target for therapeutic intervention.

  20. Intact follicular maturation and defective luteal function in mice deficient for cyclin- dependent kinase-4.

    PubMed

    Moons, David S; Jirawatnotai, Siwanon; Tsutsui, Tateki; Franks, Roberta; Parlow, A F; Hales, Dale B; Gibori, Geula; Fazleabas, Asgerally T; Kiyokawa, Hiroaki

    2002-02-01

    Cell cycle progression of granulosa cells is critical for ovarian function, especially follicular maturation. During follicular maturation, FSH induces cyclin D2, which promotes G1 progression by activating cyclin-dependent kinase-4 (Cdk4). Because cyclin D2-deficient mice exhibit a block in follicular growth, cyclin D2/Cdk4 has been hypothesized to be required for FSH-dependent proliferation of granulosa cells. Here we investigate ovarian function in Cdk4-knockout mice we recently generated. Cdk4(-/-) females were sterile, but the morphology of their ovaries appeared normal before sexual maturation. The number of preovulatory follicles and the ovulation efficiency were modestly reduced in gonadotropin-treated Cdk4(-/-) mice. However, unlike cyclin D2-deficient mice, Cdk4(-/-) mice showed no obvious defect in FSH-induced proliferation of granulosa cells. Cdk4(-/-) ovaries displayed normal preovulatory expression of aromatase, PR, and cyclooxygenase-2. Postovulatory progesterone secretion was markedly impaired in Cdk4(-/-) mice, although granulosa cells initiated luteinization with induction of p450 side-chain cleavage cytochrome and p27(Kip1). Progesterone treatment rescued implantation and restored fertility in Cdk4(-/-) mice. Serum PRL levels after mating were significantly reduced in Cdk4(-/-) mice, suggesting the involvement of perturbed PRL regulation in luteal failure. Thus, Cdk4 is critical for luteal function, and some redundant protein(s) can compensate for the absence of Cdk4 in proliferation of granulosa cells.

  1. Cyclin-Dependent Kinase 5 Links Extracellular Cues to Actin Cytoskeleton During Dendritic Spine Development

    PubMed Central

    Fu, Amy KY

    2007-01-01

    Emerging evidence has indicated a regulatory role of cyclin-dependent kinase 5 (Cdk5) in synaptic plasticity as well as in higher brain functions, such as learning and memory. However, the molecular and cellular mechanisms underlying the actions of Cdk5 at synapses remain unclear. Recent findings demonstrate that Cdk5 regulates dendritic spine morphogenesis through modulating actin dynamics. Ephexin1 and WAVE-1, two important regulators of the actin cytoskeleton, have both been recently identified as substrates for Cdk5. Importantly, phosphorylation of these proteins by Cdk5 leads to dendritic spine loss, revealing a potential mechanism by which Cdk5 regulates synapse remodeling. Furthermore, Cdk5-dependent phosphorylation of ephexin1 is required for the ephrin-A1 mediated spine retraction, pointing to a critical role of Cdk5 in conveying signals from extracellular cues to actin cytoskeleton at synapses. Taken together, understanding the precise regulation of Cdk5 and its downstream targets at synapses would provide important insights into the multi-regulatory roles of Cdk5 in actin remodeling during dendritic spine development. PMID:19270534

  2. Curcumin: Synthesis optimization and in silico interaction with cyclin dependent kinase.

    PubMed

    Ahmed, Mahmood; Abdul Qadir, Muhammad; Imtiaz Shafiq, Muhammad; Muddassar, Muhammad; Hameed, Abdul; Nadeem Arshad, Muhammad; Asiri, Abdullah M

    2017-09-01

    Curcumin is a natural product with enormous biological potential. In this study, curcumin synthesis was revisited using different reaction solvents, a catalyst (n-butylamine) and a water scavenger [(n-BuO)3B], to develop the optimal procedure for its rapid acquisition. During synthesis, solvent choice was found to be an important parameter for better curcumin yield and high purity. In a typical reaction, acetyl acetone was treated with boron trioxide, followed by condensation with vanillin in the presence of tri-n-butyl borate as water scavenger and n-butylamine as catalyst at 80 °C in ethyl acetate to afford curcumin. Moreover, curcumin was also extracted from turmeric powder and spectroscopic properties such as IR, MS, 1H NMR and 13C NMR with synthetic curcumin were established to identify any impurity. The purity of synthetic and extracted curcumin was also checked by TLC and HPLC-DAD. To computationally assess its therapeutic potential against cyclin dependent kinases (CDKs), curcumin was docked in different isoforms of CDKs. It was observed that it did not dock at the active sites of CDK2 and CDK6. However, it could enter into weak interactions with CDK4 protein.

  3. Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5).

    PubMed

    Katayama, Syouichi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2015-05-19

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.

  4. Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens

    PubMed Central

    Singer, Bryan F; Neugebauer, Nichole M; Forneris, Justin; Rodvelt, Kelli R; Li, Dongdong; Bubula, Nancy; Vezina, Paul

    2014-01-01

    Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threoninealanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site. PMID:24939858

  5. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Iwasaki, Jun-ichi; Shiina, Masaaki; Ogata, Kazuhiro; Hunter, Tony; Osada, Hiroyuki

    2005-01-01

    At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is down-regulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCFβ-TrCP. The F-box protein β-TrCP (β-transducin repeat-containing protein), the substrate recognition component of the ubiquitin ligase, binds to its substrates through a conserved binding motif (phosphodegron) containing two phosphoserines, DpSGXXpS. Although Wee1A lacks this motif, phosphorylation of serines 53 and 123 (S53 and S123) of Wee1A by polo-like kinase 1 (Plk1) and CDK, respectively, are required for binding to β-TrCP. The sequence surrounding phosphorylated S53 (DpSAFQE) is similar to the conserved β-TrCP-binding motif; however, the role of S123 phosphorylation (EEGFGSSpSPVK) in β-TrCP binding was not elucidated. In the present study, we show that phosphorylation of S123 (pS123) by CDK promoted the binding of Wee1A to β-TrCP through three independent mechanisms. The pS123 not only directly interacted with basic residues in the WD40 repeat domain of β-TrCP but also primed phosphorylation by two independent protein kinases, Plk1 and CK2 (formerly casein kinase 2), to create two phosphodegrons on Wee1A. In the case of Plk1, S123 phosphorylation created a polo box domain-binding motif (SpSP) on Wee1A to accelerate phosphorylation of S53 by Plk1. CK2 could phosphorylate S121, but only if S123 was phosphorylated first, thereby generating the second β-TrCP-binding site (EEGFGpS121). Using a specific inhibitor of CK2, we showed that the phosphorylation-dependent degradation of Wee1A is important for the proper onset of mitosis. PMID:16085715

  6. Regulation of Neuronal Cav3.1 Channels by Cyclin-Dependent Kinase 5 (Cdk5)

    PubMed Central

    González-Ramírez, Ricardo; González-Billault, Christian; Felix, Ricardo

    2015-01-01

    Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels. PMID:25760945

  7. Regulation of neuronal cav3.1 channels by cyclin-dependent kinase 5 (Cdk5).

    PubMed

    Calderón-Rivera, Aida; Sandoval, Alejandro; González-Ramírez, Ricardo; González-Billault, Christian; Felix, Ricardo

    2015-01-01

    Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.

  8. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    SciTech Connect

    Qiao, Lan; Department of Pharmaceutical Sciences, Jilin University, Changchun 130021; Paul, Pritha

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated thatmore » GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.« less

  9. Cyclin-dependent kinase inhibitor p21 does not impact embryonic endochondral ossification in mice

    PubMed Central

    CHINZEI, NOBUAKI; HAYASHI, SHINYA; HASHIMOTO, SHINGO; KANZAKI, NORIYUKI; IWASA, KENJIRO; SAKATA, SHUHEI; KIHARA, SHINSUKE; FUJISHIRO, TAKAAKI; KURODA, RYOSUKE; KUROSAKA, MASAHIRO

    2015-01-01

    Endochondral ossification at the growth plate is regulated by a number of factors and hormones. The cyclin-dependent kinase inhibitor p21 has been identified as a cell cycle regulator and its expression has been reported to be essential for endochondral ossification in vitro. However, to the best of our knowledge, the function of p21 in endochondral ossification has not been evaluated in vivo. Therefore, the aim of this study was to investigate the function of p21 in embryonic endochondral ossification in vivo. Wild-type (WT) and p21 knockout (KO) pregnant heterozygous mice were sacrificed on embryonic days E13.5, E15.5 and E18.5. Sagittal histological sections of the forearms of the embryos were collected and stained with Safranin O and 5-bromo-2′-deoxyuridine (BrdU). Additionally, the expression levels of cyclin D1, type II collagen, type X collagen, Sox9, and p16 were examined using immunohistochemistry, and the expression levels of p27 were examined using immunofluorescence. Safranin O staining revealed no structural change between the cartilage tissues of the WT and p21KO mice at any time point. Type II collagen was expressed ubiquitously, while type X collagen was only expressed in the hypertrophic zone of the cartilage tissues. No differences in the levels of Sox9 expression were observed between the two groups at any time point. The levels of cyclin D1 expression and BrdU uptake were higher in the E13.5 cartilage tissue compared with those observed in the embryonic cartilage tissue at subsequent time points. Expression of p16 and p27 was ubiquitous throughout the tissue sections. These results indicate that p21 may not be essential for embryonic endochondral ossification in articular cartilage of mice and that other signaling networks may compensate for p21 deletion. PMID:25376471

  10. Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma.

    PubMed

    Dolman, M Emmy M; Poon, Evon; Ebus, Marli E; den Hartog, Ilona J M; van Noesel, Carel J M; Jamin, Yann; Hallsworth, Albert; Robinson, Simon P; Petrie, Kevin; Sparidans, Rolf W; Kok, Robbert J; Versteeg, Rogier; Caron, Huib N; Chesler, Louis; Molenaar, Jan J

    2015-11-15

    MYCN-dependent neuroblastomas have low cure rates with current multimodal treatment regimens and novel therapeutic drugs are therefore urgently needed. In previous preclinical studies, we have shown that targeted inhibition of cyclin-dependent kinase 2 (CDK2) resulted in specific killing of MYCN-amplified neuroblastoma cells. This study describes the in vivo preclinical evaluation of the CDK inhibitor AT7519. Preclinical drug testing was performed using a panel of MYCN-amplified and MYCN single copy neuroblastoma cell lines and different MYCN-dependent mouse models of neuroblastoma. AT7519 killed MYCN-amplified neuroblastoma cell lines more potently than MYCN single copy cell lines with a median LC50 value of 1.7 compared to 8.1 μmol/L (P = 0.0053) and a significantly stronger induction of apoptosis. Preclinical studies in female NMRI homozygous (nu/nu) mice with neuroblastoma patient-derived MYCN-amplified AMC711T xenografts revealed dose-dependent growth inhibition, which correlated with intratumoral AT7519 levels. CDK2 target inhibition by AT7519 was confirmed by significant reductions in levels of phosphorylated retinoblastoma (p-Rb) and nucleophosmin (p-NPM). AT7519 treatment of Th-MYCN transgenic mice resulted in improved survival and clinically significant tumor regression (average tumor size reduction of 86% at day 7 after treatment initiation). The improved efficacy of AT7519 observed in Th-MYCN mice correlated with higher tumor exposure to the drug. This study strongly suggests that AT7519 is a promising drug for the treatment of high-risk neuroblastoma patients with MYCN amplification. ©2015 American Association for Cancer Research.

  11. Adapalene inhibits the activity of cyclin-dependent kinase 2 in colorectal carcinoma.

    PubMed

    Shi, Xi-Nan; Li, Hongjian; Yao, Hong; Liu, Xu; Li, Ling; Leung, Kwong-Sak; Kung, Hsiang-Fu; Lin, Marie Chia-Mi

    2015-11-01

    Cyclin-dependent kinase 2 (CDK2) has been reported to be overexpressed in human colorectal cancer; it is responsible for the G1‑to‑S‑phase transition in the cell cycle and its deregulation is a hallmark of cancer. The present study was the first to use idock, a free and open‑source protein‑ligand docking software developed by our group, to identify potential CDK2 inhibitors from 4,311 US Food and Drug Administration‑approved small molecular drugs with a re‑purposing strategy. Among the top compounds identified by idock score, nine were selected for further study. Among them, adapalene (ADA; CD271,6‑[3‑(1‑adamantyl)‑4‑methoxyphenyl]‑2‑naphtoic acid) exhibited the highest anti‑proliferative effects in LOVO and DLD1 human colon cancer cell lines. Consistent with the expected properties of CDK2 inhibitors, the present study demonstrated that ADA significantly increased the G1‑phase population and decreased the expression of CDK2, cyclin E and retinoblastoma protein (Rb), as well as the phosphorylation of CDK2 (on Thr‑160) and Rb (on Ser‑795). Furthermore, the anti‑cancer effects of ADA were examined in vivo on xenograft tumors derived from DLD1 human colorectal cancer cells subcutaneously inoculated in BALB/C nude mice. ADA (20 mg/kg orally) exhibited marked anti‑tumor activity, comparable to that of oxaliplatin (40 mg/kg), and dose‑dependently inhibited tumor growth (P<0.05), while combined administration of ADA and oxaliplatin produced the highest therapeutic effect. To the best of our knowledge, the present study was the first to indicate that ADA inhibits CDK2 and is a potential candidate drug for the treatment of human colorectal cancer.

  12. Disrupting Cyclin Dependent Kinase 1 in Spermatocytes Causes Late Meiotic Arrest and Infertility in Mice1

    PubMed Central

    Clement, Tracy M.; Inselman, Amy L.; Goulding, Eugenia H.; Willis, William D.; Eddy, Edward M.

    2015-01-01

    While cyclin dependent kinase 1 (CDK1) has a critical role in controlling resumption of meiosis in oocytes, its role has not been investigated directly in spermatocytes. Unique aspects of male meiosis led us to hypothesize that its role is different in male meiosis than in female meiosis. We generated a conditional knockout (cKO) of the Cdk1 gene in mouse spermatocytes to test this hypothesis. We found that CDK1-null spermatocytes undergo synapsis, chiasmata formation, and desynapsis as is seen in oocytes. Additionally, CDK1-null spermatocytes relocalize SYCP3 to centromeric foci, express H3pSer10, and initiate chromosome condensation. However, CDK1-null spermatocytes fail to form condensed bivalent chromosomes in prophase of meiosis I and instead are arrested at prometaphase. Thus, CDK1 has an essential role in male meiosis that is consistent with what is known about the role of CDK1 in female meiosis, where it is required for formation of condensed bivalent metaphase chromosomes and progression to the first meiotic division. We found that cKO spermatocytes formed fully condensed bivalent chromosomes in the presence of okadaic acid, suggesting that cKO chromosomes are competent to condense, although they do not do so in vivo. Additionally, arrested cKO spermatocytes exhibited irregular cell shape, irregular large nuclei, and large distinctive nucleoli. These cells persist in the seminiferous epithelium through the next seminiferous epithelial cycle with a lack of stage XII checkpoint-associated cell death. This indicates that CDK1 is required upstream of a checkpoint-associated cell death as well as meiotic metaphase progression in mouse spermatocytes. PMID:26490841

  13. Meriolins, a new class of cell death inducing kinase inhibitors with enhanced selectivity for cyclin-dependent kinases.

    PubMed

    Bettayeb, Karima; Tirado, Oscar M; Marionneau-Lambot, Séverine; Ferandin, Yoan; Lozach, Olivier; Morris, Jonathan C; Mateo-Lozano, Silvia; Drueckes, Peter; Schächtele, Christoph; Kubbutat, Michael H G; Liger, François; Marquet, Bernard; Joseph, Benoît; Echalier, Aude; Endicott, Jane A; Notario, Vicente; Meijer, Laurent

    2007-09-01

    Protein kinases represent promising anticancer drug targets. We describe here the meriolins, a new family of inhibitors of cyclin-dependent kinases (CDK). Meriolins represent a chemical structural hybrid between meridianins and variolins, two families of kinase inhibitors extracted from various marine invertebrates. Variolin B is currently in preclinical evaluation as an antitumor agent. A selectivity study done on 32 kinases showed that, compared with variolin B, meriolins display enhanced specificity toward CDKs, with marked potency on CDK2 and CDK9. The structures of pCDK2/cyclin A/variolin B and pCDK2/cyclin A/meriolin 3 complexes reveal that the two inhibitors bind within the ATP binding site of the kinase, but in different orientations. Meriolins display better antiproliferative and proapoptotic properties in human tumor cell cultures than their parent molecules, meridianins and variolins. Phosphorylation at CDK1, CDK4, and CDK9 sites on, respectively, protein phosphatase 1alpha, retinoblastoma protein, and RNA polymerase II is inhibited in neuroblastoma SH-SY5Y cells exposed to meriolins. Apoptosis triggered by meriolins is accompanied by rapid Mcl-1 down-regulation, cytochrome c release, and activation of caspases. Meriolin 3 potently inhibits tumor growth in two mouse xenograft cancer models, namely, Ewing's sarcoma and LS174T colorectal carcinoma. Meriolins thus constitute a new CDK inhibitory scaffold, with promising antitumor activity, derived from molecules initially isolated from marine organisms.

  14. Palbociclib: A Novel Cyclin-Dependent Kinase Inhibitor for Hormone Receptor-Positive Advanced Breast Cancer.

    PubMed

    Mangini, Neha S; Wesolowski, Robert; Ramaswamy, Bhuvaneswari; Lustberg, Maryam B; Berger, Michael J

    2015-11-01

    To review palbociclib, a novel small-molecule inhibitor of cyclin-dependent kinases 4 and 6, and its current place in therapy for the treatment of hormone receptor (HMR)-positive, human epidermal growth factor receptor 2 (Her2)-negative advanced breast cancer. Four phase I trials, 2 phase II trials, and 1 phase III trial were identified from May 2004 to May 2015 using PubMed, American Society of Clinical Oncology (ASCO) abstracts, and European Society of Medical Oncology (ESMO) abstracts. In the first-line setting, the phase II PALbociclib: Ongoing trials in the Management of breast cAncer (PALOMA)-1 trial randomized patients to receive letrozole alone or letrozole plus palbociclib 125 mg daily for 3 weeks, followed by 1 week off, as initial therapy for advanced breast cancer. The investigator-assessed median progression-free survival (PFS) was 20. 2 months for the combination versus 10.2 months for letrozole alone (hazard ratio [HR] = 0.488; 95% CI = 0.319-0.748; 1-sided P = 0.0004). The ensuing Food and Drug Administration approval of palbociclib was given a "breakthrough therapy" designation, where preliminary evidence suggests substantial improvement over existing therapies for a serious or life-threatening disease. A confirmatory phase III trial, PALOMA-2, is under way. In patients who were previously treated with endocrine therapy for advanced breast cancer, the phase III PALOMA-3 trial randomized patients to fulvestrant plus palbociclib versus fulvestrant plus placebo. The investigator-assessed median PFS at the time of a preplanned analysis was 9.2 months with palbociclib-fulvestrant compared with 3.8 months with placebo-fulvestrant (HR = 0.42; 95% CI = 0.32-0.56; P < 0.001). Palbociclib, the first-in-class CDK4/6 inhibitor, significantly extended PFS in combination with endocrine therapy in the first and subsequent lines of treatment for HMR-positive, Her2-negative advanced breast cancer. © The Author(s) 2015.

  15. Pharmacokinetics and biodistribution of the cyclin-dependent kinase inhibitor -CR8- in mice

    PubMed Central

    2013-01-01

    Background CR8 is a second generation inhibitor of cyclin-dependent kinases derived from roscovitine. CR8 was shown to be 50–100 fold more potent than roscovitine in inducing apoptosis in different tumor cell lines. In the present investigation, we have established an analytical method for the quantification of CR8 in biological samples and evaluated its bioavailability, biodistribution and pharmacokinetics in mice. Methods A liquid chromatography method utilizing UV-detection was used for the determination of CR8. CR8 was administered either orally (100 mg/kg) or i.v. (50 mg/kg) and the animals were sacrificed at different time points. Blood samples and organs were collected, after which the pharmacokinetic parameters were calculated for plasma and organs. Results CR8 was eluted at 5 minutes in the high performance liquid chromatography system used. The LLOQ detection was 0.10 μg/ml and linearity was observed within the 0.10-10 μg/ml range (r2 > 0.998). The accuracy and precision were >86%, while the recovery from plasma was >95%. CR8 was stable for 2 months at room temperature in both solution and plasma. CR8 pharmacokinetics was fitted to a two-compartment open model after oral administration and to a one compartment model after i.v. injection. The elimination half-life was about 3 hours. Organ exposure to CR8 (expressed as % AUC organ vs. AUC plasma) was highest in liver (205%), adipose tissue (188%) and kidney (150%) and low in bone marrow (30%) and brain (15%) as compared to plasma. The oral bioavailability of CR8 was found to be essentially 100%. Conclusions We have developed a rapid and simple method for the analysis of CR8. CR8 pharmacokinetics pattern showed 100% bioavailability, long half-life and limited distribution to brain and bone marrow, which may allow systemic exposure higher than the IC50 reported for cell death in tumor cell lines. CR8 displays favorable pharmacological properties and is therefore a good candidate for future

  16. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method

    PubMed Central

    2011-01-01

    Background The reliable and robust estimation of ligand binding affinity continues to be a challenge in drug design. Many current methods rely on molecular mechanics (MM) calculations which do not fully explain complex molecular interactions. Full quantum mechanical (QM) computation of the electronic state of protein-ligand complexes has recently become possible by the latest advances in the development of linear-scaling QM methods such as the ab initio fragment molecular orbital (FMO) method. This approximate molecular orbital method is sufficiently fast that it can be incorporated into the development cycle during structure-based drug design for the reliable estimation of ligand binding affinity. Additionally, the FMO method can be combined with approximations for entropy and solvation to make it applicable for binding affinity prediction for a broad range of target and chemotypes. Results We applied this method to examine the binding affinity for a series of published cyclin-dependent kinase 2 (CDK2) inhibitors. We calculated the binding affinity for 28 CDK2 inhibitors using the ab initio FMO method based on a number of X-ray crystal structures. The sum of the pair interaction energies (PIE) was calculated and used to explain the gas-phase enthalpic contribution to binding. The correlation of the ligand potencies to the protein-ligand interaction energies gained from FMO was examined and was seen to give a good correlation which outperformed three MM force field based scoring functions used to appoximate the free energy of binding. Although the FMO calculation allows for the enthalpic component of binding interactions to be understood at the quantum level, as it is an in vacuo single point calculation, the entropic component and solvation terms are neglected. For this reason a more accurate and predictive estimate for binding free energy was desired. Therefore, additional terms used to describe the protein-ligand interactions were then calculated to improve the

  17. Implication of cyclin-dependent kinase 5 in the development of psychological dependence on and behavioral sensitization to morphine.

    PubMed

    Narita, Minoru; Shibasaki, Masahiro; Nagumo, Yasuyuki; Narita, Michiko; Yajima, Yoshinori; Suzuki, Tsutomu

    2005-06-01

    In the present study, we investigated the role of cyclin-dependent kinase 5 (cdk5) in the brain dynamics changed by repeated in vivo treatment with morphine. The level of phosphorylated-cdk5 was significantly increased in the cingulate cortex of mice showing the morphine-induced rewarding effect. Under these conditions, roscovitine, a cdk5 inhibitor, given intracerebroventricularly (i.c.v.) caused a dose-dependent and significant inhibition of the morphine-induced rewarding effect. In addition, the dose-response effect of the morphine-induced rewarding effect was dramatically attenuated in cdk5 heterozygous (+/-) knockout mice. Furthermore, the development of behavioral sensitization by intermittent administration of morphine was virtually abolished in cdk5 (+/-) mice. These findings suggest that the induction and/or activation of cdk5 are implicated in the development of psychological dependence on morphine.

  18. Inducible Knockout of the Cyclin-Dependent Kinase 5 Activator p35 Alters Hippocampal Spatial Coding and Neuronal Excitability

    PubMed Central

    Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.

    2018-01-01

    p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369

  19. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein

    NASA Technical Reports Server (NTRS)

    Ratner, N.; Bloom, G. S.; Brady, S. T.

    1998-01-01

    Proteins that interact with both cytoskeletal and membrane components are candidates to modulate membrane trafficking. The tumor suppressor proteins neurofibromin (NF1) and adenomatous polyposis coli (APC) both bind to microtubules and interact with membrane-associated proteins. The effects of recombinant NF1 and APC fragments on vesicle motility were evaluated by measuring fast axonal transport along microtubules in axoplasm from squid giant axons. APC4 (amino acids 1034-2844) reduced only anterograde movements, whereas APC2 (aa 1034-2130) or APC3 (aa 2130-2844) reduced both anterograde and retrograde transport. NF1 had no effect on organelle movement in either direction. Because APC contains multiple cyclin-dependent kinase (CDK) consensus phosphorylation motifs, the kinase inhibitor olomoucine was examined. At concentrations in which olomoucine is specific for cyclin-dependent kinases (5 microM), it reduced only anterograde transport, whereas anterograde and retrograde movement were both affected at concentrations at which other kinases are inhibited as well (50 microM). Both anterograde and retrograde transport also were inhibited by histone H1 and KSPXK peptides, substrates for proline-directed kinases, including CDKs. Our data suggest that CDK-like axonal kinases modulate fast anterograde transport and that other axonal kinases may be involved in modulating retrograde transport. The specific effect of APC4 on anterograde transport suggests a model in which the binding of APC to microtubules may limit the activity of axonal CDK kinase or kinases in restricted domains, thereby affecting organelle transport.

  20. A current and comprehensive review of cyclin-dependent kinase inhibitors for the treatment of metastatic breast cancer.

    PubMed

    Bilgin, Burak; Sendur, Mehmet A N; Şener Dede, Didem; Akıncı, Muhammed Bülent; Yalçın, Bülent

    2017-09-01

    Resistance to endocrine treatment generally occurs over time, especially in the metastatic stage. In this paper, we aimed to review the mechanisms of cyclin-dependent kinase (CDK) 4/6 inhibition and clinical usage of new agents in the light of recent literature updates. A literature search was carried out using PubMed, Medline and ASCO and ESMO annual-meeting abstracts by using the following search keywords; "palbociclib", "abemaciclib", "ribociclib", "cyclin-dependent kinase inhibitors" and "CDK 4/6" in metastatic breast cancer (MBC). The last search was on 10 June 2017. CDKs and cyclins are two molecules that have a key role in cell cycle progression. Today, there are three highly selective CDK4/6 inhibitors in clinical development - palbociclib, ribociclib and abemaciclib. Palbociclib and ribociclib were recently approved by the US FDA in combination with letrozole for the treatment of MBC in a first-line setting, as well as palbociclib in combination with fulvestrant for hormone-receptor (HR)-positive MBC that had progressed while on previous endocrine therapy according to the PALOMA-1, MONALEESA-2 and PALOMA-3 trials, respectively. In the recently published randomized phase III MONARCH 2 trial, abemaciclib plus letrozole had longer progression-free survival and higher objective response rates with less serious adverse events in advanced HR-positive breast cancer previously treated with hormonal treatment. CDK4/6 inhibition is a new and promising target for patients with hormone-receptor-positive MBC. Both palbociclib and ribociclib showed significant additive benefit for patients receiving first-line treatment for HR-positive, epidermal growth factor receptor-2-negative advanced breast cancer. Palbociclib and abemaciclib also had significant activity in combination with fulvestrant for patients with MBC that progressed on previous endocrine therapy.

  1. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models

    PubMed Central

    Bisht, Savita; Karikari, Collins; Garrido-Laguna, Ignacio; Rasheed, Zeshaan; Ottenhof, Niki A; Dadon, Tikva; Alvarez, Hector; Fendrich, Volker; Rajeshkumar, NV; Matsui, William; Brossart, Peter; Hidalgo, Manuel; Bannerji, Rajat

    2011-01-01

    Pancreatic cancer is one of the most lethal of human malignancies, and potent therapeutic options are lacking. Inhibition of cell cycle progression through pharmacological blockade of cyclin-dependent kinases (CDK) has been suggested as a potential treatment option for human cancers with deregulated cell cycle control. Dinaciclib (SCH727965) is a novel small molecule multi-CDK inhibitor with low nanomolar potency against CDK1, CDK2, CDK5 and CDK9 that has shown favorable toxicity and efficacy in preliminary mouse experiments, and has been well tolerated in Phase I clinical trials. In the current study, the therapeutic efficacy of SCH727965 on human pancreatic cancer cells was tested using in vitro and in vivo model systems. Treatment with SCH727965 significantly reduced in vitro cell growth, motility and colony formation in soft agar of MIAPaCa-2 and Pa20C cells. These phenotypic changes were accompanied by marked reduction of phosphorylation of Retinoblastoma (Rb) and reduced activation of RalA. Single agent therapy with SCH727965 (40 mg/kg i.p. twice weekly) for 4 weeks significantly reduced subcutaneous tumor growth in 10/10 (100%) of tested low-passage human pancreatic cancer xenografts. Treatment of low passage pancreatic cancer xenografts with a combination of SCH727965 and gemcitabine was significantly more effective than either agent alone. Gene Set Enrichment Analysis identified overrepresentation of the Notch and Transforming Growth Factor-β (TGFβ) signaling pathways in the xenografts least responsive to SCH727965 treatment. Treatment with the cyclin-dependent kinase inhibitor SCH727965 alone or in combination is a highly promising novel experimental therapeutic strategy against pancreatic cancer. PMID:21768779

  2. Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress.

    PubMed

    Hamirally, Sofia; Kamil, Jeremy P; Ndassa-Colday, Yasmine M; Lin, Alison J; Jahng, Wan Jin; Baek, Moon-Chang; Noton, Sarah; Silva, Laurie A; Simpson-Holley, Martha; Knipe, David M; Golan, David E; Marto, Jarrod A; Coen, Donald M

    2009-01-01

    The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser(22)). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser(22) is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.

  3. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast.

    PubMed Central

    Kuchin, S; Yeghiayan, P; Carlson, M

    1995-01-01

    The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter. Images Fig. 3 Fig. 4 Fig. 5 PMID:7732022

  4. Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression | Office of Cancer Genomics

    Cancer.gov

    Glioblastoma (GBM) is the most common primary brain tumor and has a dismal prognosis. Amplification of chromosome 12q13-q15 (Cyclin-dependent kinase 4 (CDK4) amplicon) is frequently observed in numerous human cancers including GBM. Phosphoinositide 3-kinase enhancer (PIKE) is a group of GTP-binding proteins that belong to the subgroup of centaurin GTPase family, encoded by CENTG1 located in CDK4 amplicon. However, the pathological significance of CDK4 amplicon in GBM formation remains incompletely understood.

  5. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.

    PubMed

    Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D

    1995-01-01

    Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts

  6. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins

    PubMed Central

    Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred

    2016-01-01

    The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200

  7. Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach.

    PubMed

    Kamal, Ahmed; Mahesh, Rasala; Nayak, V Lakshma; Babu, Korrapati Suresh; Kumar, G Bharath; Shaik, Anver Basha; Kapure, Jeevak Sopanrao; Alarifi, Abdullah

    2016-01-27

    Aiming to develop a new target for the anticancer treatment, a series of 5'H-spiro[indoline-3,4'-pyrrolo [1,2-a]quinoxalin]-2-ones has been synthesized by simple, highly efficient and environmentally friendly method in excellent yields under catalyst-free conditions using ethanol as a green solvent. A simple filtration of the reaction mixture and subsequent drying affords analytically pure products. The synthesized derivatives were evaluated for their antiproliferative activity against five different human cancer cell lines, among the congeners compound 3n showed significant cytotoxicity against the human prostate cancer (DU-145). Flow cytometric analysis revealed that this compound induces cell cycle arrest in the G0/G1 phase and Western blot analysis suggested that reduction in Cdk4 expression level leads to apoptotic cell death. This was further confirmed by mitochondrial membrane potential ((ΔΨm), Annexin V-FITC assay and docking experiments. Furthermore, it was observed that there is an increase in expression levels of cyclin dependent kinase inhibitors like Cip1/p21 and Kip1/p27. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Deficiency of the Cyclin-Dependent Kinase Inhibitor, CDKN1B, Results in Overgrowth and Neurodevelopmental Delay

    PubMed Central

    Grey, William; Izatt, Louise; Sahraoui, Wafa; Ng, Yiu-Ming; Ogilvie, Caroline; Hulse, Anthony; Tse, Eric; Holic, Roman; Yu, Veronica

    2013-01-01

    Germline mutations in the cyclin-dependent kinase inhibitor, CDKN1B, have been described in patients with multiple endocrine neoplasia (MEN), a cancer predisposition syndrome with adult onset neoplasia and no additional phenotypes. Here, we describe the first human case of CDKN1B deficiency, which recapitulates features of the murine CDKN1B knockout mouse model, including gigantism and neurodevelopmental defects. Decreased mRNA and protein expression of CDKN1B were confirmed in the proband's peripheral blood, which is not seen in MEN syndrome patients. We ascribed the decreased protein level to a maternally derived deletion on chromosome 12p13 encompassing the CDKN1B locus (which reduced mRNA expression) and a de novo allelic variant (c.-73G>A) in the CDKN1B promoter (which reduced protein translation). We propose a recessive model where decreased dosage of CDKN1B during development in humans results in a neuronal phenotype akin to that described in mice, placing CDKN1B as a candidate gene involved in developmental delay. PMID:23505216

  9. Dependence of Cisplatin-Induced Cell Death In Vitro and In Vivo on Cyclin-Dependent Kinase 2

    PubMed Central

    Price, Peter M.; Yu, Fang; Kaldis, Philipp; Aleem, Eiman; Nowak, Grażyna; Safirstein, Robert L.; Megyesi, Judit

    2006-01-01

    Cisplatin is one of the most effective chemotherapeutics, but its usefulness is limited by its toxicity to normal tissues, including cells of the kidney proximal tubule. The purpose of these studies was to determine the mechanism of cisplatin cytotoxicity. It was shown in vivo that cisplatin administration induces upregulation of the gene for the p21 cyclin-dependent kinase (cdk) inhibitor in kidney cells. This protein is a positive effector on the fate of cisplatin-exposed renal tubule cells in vivo and in vitro; adenoviral transduction of p21 completely protected proximal tubule cells from cisplatin toxicity. Herein is reported that cdk2 inhibitory drugs protect kidney cells in vivo and in vitro, that transduction of kidney cells in vitro with dominant-negative cdk2 also protected, and that cdk2 knockout cells were resistant to cisplatin. The cdk2 knockout cells regained cisplatin sensitivity after transduction with wild-type cdk2. It is concluded that cisplatin cytotoxicity depends on cdk2 activation and that the mechanism of p21 protection is by direct inhibition of cdk2. This demonstrated the involvement of a protein that previously was associated with cell-cycle progression with pathways of apoptosis. It also was demonstrated that this pathway of cisplatin-induced cell death can be interceded in vivo to prevent nephrotoxicity. PMID:16914540

  10. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    PubMed Central

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  12. Nucleocytoplasmic transfer of cyclin dependent kinase 5 and its binding to puromycin-sensitive aminopeptidase in Dictyostelium discoideum.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2011-08-01

    The Dictyostelium discoideum homolog of mammalian cyclin dependent kinase 5 (Cdk5) has previously been shown to be required for optimal growth and differentiation in this model organism, however, the subcellular localization of the protein has not previously been studied. In this study, immunolocalizations and a GFP fusion construct localized Cdk5 predominantly to the nucleus of vegetative cells. Western blots showed that Cdk5 was present in both nuclear and non-nuclear fractions, suggesting a functional role in both cellular locales. During the early stages of mitosis, Cdk5 gradually moved from a punctate nucleoplasmic distribution to localize adjacent to the inner nuclear envelope. During anaphase and telophase, Cdk5 localized to the cytoplasm and was not detected in the nucleoplasm. Cdk5 returned to the nucleus during cytokinesis. Proteolytic activity has been shown to be a critical regulator of the cell cycle. Immunoprecipitations coupled with immunolocalizations identified puromycin-sensitive aminopeptidase A (PsaA) as a potential Cdk5 binding partner in Dictyostelium. Immunoprecipitations also identified two phosphotyrosine proteins (35 and 18 kDa) that may interact with Cdk5 in vivo. Together, this work provides new insight into the localization of Cdk5, its function during cell division, and its binding to a proteolytic enzyme in Dictyostelium.

  13. [The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu; Padkina, M V; Sambuk, E V

    2009-06-01

    The cyclin-dependent protein kinase Pho85 is involved in the regulation of phosphate metabolism in yeast Saccharomyces cerevisiae. Mutations in the PH085 gene lead to constitutive synthesis of Pho5 acidic phosphatase, a delay in cell growth on media containing nonfermentable carbon sources, and other pleiotropic effects. In this work, it was shown that the accumulation of respiratory incompetent cells occurs with high frequency in strains carrying pho85 mutations as early as during the first cell divisions, and the number of these cells at the early logarithmic growth phase of the culture promptly reaches virtually 100%. Cytological analysis revealed a high accumulation rate of [rho(0)] cells the background of gene pho85 that may be related to disturbances in the distribution of mitochondrial nucleoids rather than to changes in morphology of mitochondria and a delay in their transport into the bud. Genetic analysis revealed that the appearing secondary mutations pho4, pho81, pho84, and pho87 stabilize nucleoids and hamper the loss of mitochondrial DNA caused by pho85. These results provide evidence for the influence of intracellular phosphate concentration on the inheritance of mitochondrial nucleoids, but it is fully probable that the occurrence of mutation pho4 in the background of gene pho85 may change the expression level of other genes required for the stabilization of mitochondrial functions.

  14. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    PubMed

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  15. The effect of desolvation on the binding of inhibitors to HIV-1 protease and cyclin-dependent kinases: Causes of resistance.

    PubMed

    Fong, Clifford W

    2016-08-01

    Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis.

    PubMed

    Jarry, Marie; Lecointre, Céline; Malleval, Céline; Desrues, Laurence; Schouft, Marie-Thérèse; Lejoncour, Vadim; Liger, François; Lyvinec, Gildas; Joseph, Benoît; Loaëc, Nadège; Meijer, Laurent; Honnorat, Jérôme; Gandolfo, Pierrick; Castel, Hélène

    2014-11-01

    Glioblastomas are the most frequent and most aggressive primary brain tumors in adults. The median overall survival is limited to a few months despite surgery, radiotherapy, and chemotherapy. It is now clearly established that hyperactivity of cyclin-dependent kinases (CDKs) is one of the processes underlying hyperproliferation and tumoral growth. The marine natural products meridianins and variolins, characterized as CDK inhibitors, display a kinase-inhibitory activity associated with cytotoxic effects. In order to improve selectivity and efficiency of these CDK inhibitors, a series of hybrid compounds called meriolins have been synthesized. The potential antitumoral activity of meriolins was investigated in vitro on glioma cell lines (SW1088 and U87), native neural cells, and a human endothelial cell line (HUV-EC-C). The impact of intraperitoneal or intratumoral administrations of meriolin 15 was evaluated in vivo on 2 different nude mice-xenografted glioma models. Meriolins 3, 5, and 15 exhibited antiproliferative properties with nanomolar IC50 and induced cell-cycle arrest and CDK inhibition associated with apoptotic events in human glioma cell lines. These meriolins blocked the proliferation rate of HUV-EC-C through cell cycle arrest and apoptosis. In vivo, meriolin 15 provoked a robust reduction in tumor volume in spite of toxicity for highest doses, associated with inhibition of cell division, activation of caspase 3, reduction of CD133 cells, and modifications of the vascular architecture. Meriolins, and meriolin 15 in particular, exhibit antiproliferative and proapoptotic activities on both glioma and intratumoral endothelial cells, constituting key promising therapeutic lead compounds for the treatment of glioblastoma. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Impact of meriolins, a new class of cyclin-dependent kinase inhibitors, on malignant glioma proliferation and neo-angiogenesis

    PubMed Central

    Jarry, Marie; Lecointre, Céline; Malleval, Céline; Desrues, Laurence; Schouft, Marie-Thérèse; Lejoncour, Vadim; Liger, François; Lyvinec, Gildas; Joseph, Benoît; Loaëc, Nadège; Meijer, Laurent; Honnorat, Jérôme; Gandolfo, Pierrick; Castel, Hélène

    2014-01-01

    Background Glioblastomas are the most frequent and most aggressive primary brain tumors in adults. The median overall survival is limited to a few months despite surgery, radiotherapy, and chemotherapy. It is now clearly established that hyperactivity of cyclin-dependent kinases (CDKs) is one of the processes underlying hyperproliferation and tumoral growth. The marine natural products meridianins and variolins, characterized as CDK inhibitors, display a kinase-inhibitory activity associated with cytotoxic effects. In order to improve selectivity and efficiency of these CDK inhibitors, a series of hybrid compounds called meriolins have been synthesized. Methods The potential antitumoral activity of meriolins was investigated in vitro on glioma cell lines (SW1088 and U87), native neural cells, and a human endothelial cell line (HUV-EC-C). The impact of intraperitoneal or intratumoral administrations of meriolin 15 was evaluated in vivo on 2 different nude mice-xenografted glioma models. Results Meriolins 3, 5, and 15 exhibited antiproliferative properties with nanomolar IC50 and induced cell-cycle arrest and CDK inhibition associated with apoptotic events in human glioma cell lines. These meriolins blocked the proliferation rate of HUV-EC-C through cell cycle arrest and apoptosis. In vivo, meriolin 15 provoked a robust reduction in tumor volume in spite of toxicity for highest doses, associated with inhibition of cell division, activation of caspase 3, reduction of CD133 cells, and modifications of the vascular architecture. Conclusion Meriolins, and meriolin 15 in particular, exhibit antiproliferative and proapoptotic activities on both glioma and intratumoral endothelial cells, constituting key promising therapeutic lead compounds for the treatment of glioblastoma. PMID:24891448

  18. The M-phase specific hyperphosphorylation of Staufen2 involved the cyclin-dependent kinase CDK1.

    PubMed

    Beaujois, Rémy; Ottoni, Elizabeth; Zhang, Xin; Gagnon, Christina; HSine, Sami; Mollet, Stéphanie; Viranaicken, Wildriss; DesGroseillers, Luc

    2017-07-14

    Staufen2 (STAU2) is an RNA-binding protein involved in the post-transcriptional regulation of gene expression. This protein was shown to be required for organ formation and cell differentiation. Although STAU2 functions have been reported in neuronal cells, its role in dividing cells remains deeply uncharacterized. Especially, its regulation during the cell cycle is completely unknown. In this study, we showed that STAU2 isoforms display a mitosis-specific slow migration pattern on SDS-gels in all tested transformed and untransformed cell lines. Deeper analyses in hTert-RPE1 and HeLa cells further indicated that the slow migration pattern of STAU2 isoforms is due to phosphorylation. Time course studies showed that STAU2 phosphorylation occurs before prometaphase and terminates as cells exit mitosis. Interestingly, STAU2 isoforms were phosphorylated on several amino acid residues in the C-terminal half via the cyclin-dependent kinase 1 (Cdk1), an enzyme known to play crucial roles during mitosis. Introduction of phospho-mimetic or phospho-null mutations in STAU2 did not impair its RNA-binding capacity, its stability, its interaction with protein co-factors or its sub-cellular localization, suggesting that STAU2 phosphorylation in mitosis does not regulate these functions. Similarly, STAU2 phosphorylation is not likely to be crucial for cell cycle progression since expression of phosphorylation mutants in hTert-RPE1 cells did not impair cell proliferation. Altogether, these results indicate that STAU2 isoforms are phosphorylated during mitosis and that the phosphorylation process involves Cdk1. The meaning of this post-translational modification is still elusive.

  19. Regulation of T Cell Differentiation and Alloimmunity by the Cyclin-Dependent Kinase Inhibitor p18ink4c

    PubMed Central

    Rowell, Emily A.; Wang, Liqing; Chunder, Neelanjana; Hancock, Wayne W.; Wells, Andrew D.

    2014-01-01

    Cellular proliferation in response to mitogenic stimuli is negatively regulated by the Cip/Kip and the Ink4 families of cyclin-dependent kinase (CDK) inhibitors. Several of these proteins are elevated in anergic T cells, suggesting a potential role in the induction or maintenance of tolerance. Our previous studies showed that p27kip1 is required for the induction of T cell anergy and transplantation tolerance by costimulatory blockade, but a role for Ink4 proteins in these processes has not been established. Here we show that CD4+ T cells from mice genetically deficient for p18ink4c divide more rapidly than wild-type cells in response to antigenic, costimulatory and growth factor signals. However, this gain of proliferative function was accompanied by a moderate increase in the rate of cell death, and was accompanied by an overall defect in the generation of alloreactive IFNγ-producing effector cells. Consistent with this, p18ink4c-deficient T cells were unable to induce graft-vs-host disease in vivo, and p18ink4c deficiency cooperated with costimulatory blockade to significantly increase the survival of fully mismatched allografts in a cardiac transplantation model. While both p18ink4c and p27kip1 act to restrict T cell proliferation, p18ink4c exerts an opposite effect from p27kip1 on alloimmunity and organ transplant rejection, most likely by sustaining T cell survival and the development of effector function. Our studies point to additional important links between the cell cycle machinery and the processes of T cell differentiation, survival and tolerance. PMID:24614758

  20. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen

    PubMed Central

    Wang, Jianling; Wang, Gangduo; Ma, Huaxian; Khan, M. Firoze

    2010-01-01

    Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and cyclin E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic

  1. Cyclin-dependent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma.

    PubMed

    Narita, Tomoko; Ishida, Takashi; Ito, Asahi; Masaki, Ayako; Kinoshita, Shiori; Suzuki, Susumu; Takino, Hisashi; Yoshida, Takashi; Ri, Masaki; Kusumoto, Shigeru; Komatsu, Hirokazu; Imada, Kazunori; Tanaka, Yuetsu; Takaori-Kondo, Akifumi; Inagaki, Hiroshi; Scholz, Arne; Lienau, Philip; Kuroda, Taruho; Ueda, Ryuzo; Iida, Shinsuke

    2017-08-31

    Cyclin-dependent kinase 9 (CDK9), a subunit of the positive transcription elongation factor b (P-TEFb) complex, regulates gene transcription elongation by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII). The deregulation of CDK9/P-TEFb has important implications for many cancer types. BAY 1143572 is a novel and highly selective CDK9/P-TEFb inhibitor currently being investigated in phase 1 studies. We evaluated the therapeutic potential of BAY 1143572 in adult T-cell leukemia/lymphoma (ATL). As a result of CDK9 inhibition and subsequent inhibition of phosphorylation at serine 2 of the RNAPII CTD, BAY 1143572 decreased c-Myc and Mcl-1 levels in ATL-derived or human T-cell lymphotropic virus type-1 (HTLV-1)-transformed lines and primary ATL cells tested, leading to their growth inhibition and apoptosis. Median inhibitory concentrations for BAY 1143572 in ATL-derived or HTLV-1-transformed lines (n = 8), primary ATL cells (n = 11), and CD4 + cells from healthy volunteers (n = 5) were 0.535, 0.30, and 0.36 μM, respectively. Next, NOG mice were used as recipients of tumor cells from an ATL patient. BAY 1143572-treated ATL-bearing mice (once daily 12.5 mg/kg oral application) demonstrated significantly decreased ATL cell infiltration of the liver and bone marrow, as well as decreased human soluble interleukin-2 receptor levels in serum (reflecting the ATL tumor burden), compared with untreated mice (n = 8 for both). BAY 1143572-treated ATL-bearing mice demonstrated significantly prolonged survival compared with untreated ATL-bearing mice (n = 7 for both). Collectively, this study indicates that BAY 1143572 showed strong potential as a novel treatment of ATL. © 2017 by The American Society of Hematology.

  2. Palbociclib (PD0332991)-a Selective and Potent Cyclin-Dependent Kinase Inhibitor: A Review of Pharmacodynamics and Clinical Development.

    PubMed

    Clark, Amy S; Karasic, Thomas B; DeMichele, Angela; Vaughn, David J; O'Hara, Mark; Perini, Rodolfo; Zhang, Paul; Lal, Priti; Feldman, Michael; Gallagher, Maryann; O'Dwyer, Peter J

    2016-02-01

    Palbociclib (PD0332991) is a newly developed drug that received breakthrough designation and recent US Food and Drug Administration approval in combination with endocrine therapy in the treatment of hormone receptor positive, ERBB2-negative (formerly HER2 or HER2/neu) breast cancer in the first-line metastatic setting. Herein we describe the preclinical and translational data and early- and late-phase clinical trials in which palbociclib has been investigated in a broad array of tumor types. We discuss the pharmacodynamics, pharmacokinetics, toxic effects, and clinical response rates. On March 1, 2015, we conducted a review of the literature describing the development of palbociclib. We used the PubMed search terms "PD0332991," "palbociclib," and "CDK4/6 inhibitor" to find all published articles of interest, without limitation as to publication date. Palbociclib is a potent and specific oral cyclin-dependent kinase (CDK) 4/6 inhibitor that has strong preclinical data to support its activity in retinoblastoma protein-expressing tumors. Phase 1 trials have demonstrated safety, and phase 2 trials have shown single-agent activity in mantle-cell lymphoma, breast cancer, liposarcoma, and teratoma with reversible neutropenia as the main toxic effect. Addition of palbociclib to endocrine therapy improves progression-free survival in endocrine therapy-naïve and endocrine therapy-resistant metastatic settings. Palbociclib is well tolerated and has therapeutic potential for multiple cancers, including breast cancer, where its efficacy has been demonstrated alone and in combination with endocrine therapy. Additional combinations of palbociclib with endocrine therapy, chemotherapy, and targeted therapy have potential in various tumors, and phase 3 trials are under way.

  3. Dinaciclib Induces Anaphase Catastrophe in Lung Cancer Cells via Inhibition of Cyclin-Dependent Kinases 1 and 2.

    PubMed

    Danilov, Alexey V; Hu, Shanhu; Orr, Bernardo; Godek, Kristina; Mustachio, Lisa Maria; Sekula, David; Liu, Xi; Kawakami, Masanori; Johnson, Faye M; Compton, Duane A; Freemantle, Sarah J; Dmitrovsky, Ethan

    2016-11-01

    Despite advances in targeted therapy, lung cancer remains the most common cause of cancer-related mortality in the United States. Chromosomal instability is a prominent feature in lung cancer and, because it rarely occurs in normal cells, it represents a potential therapeutic target. Our prior work discovered that lung cancer cells undergo anaphase catastrophe in response to inhibition of cyclin-dependent kinase 2 (CDK2), followed by apoptosis and reduced growth. In this study, the effects and mechanisms of the multi-CDK inhibitor dinaciclib on lung cancer cells were investigated. We sought to determine the specificity of CDK-dependent induction of anaphase catastrophe. Live cell imaging provided direct evidence that dinaciclib caused multipolar cell divisions resulting in extensive chromosome missegregation. Genetic knockdown of dinaciclib CDK targets revealed that repression of CDK2 and CDK1, but not CDK5 or CDK9, triggered anaphase catastrophe in lung cancer cells. Overexpression of CP110, which is a mediator of CDK2 inhibitor-induced anaphase catastrophe (and a CDK1 and 2 phosphorylation substrate), antagonized anaphase catastrophe and apoptosis following dinaciclib treatment. Consistent with our previous findings, acquisition of activated KRAS sensitized lung cancer cells to dinaciclib-mediated anaphase catastrophe and cell death. Combining dinaciclib with the mitotic inhibitor taxol augmented anaphase catastrophe induction and reduced cell viability of lung cancer cells. Thus, the multi-CDK inhibitor dinaciclib causes anaphase catastrophe in lung cancer cells and should be investigated as a potential therapeutic for wild-type and KRAS-mutant lung cancer, individually or in combination with taxanes. Mol Cancer Ther; 15(11); 2758-66. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy

    PubMed Central

    Miller, Nimrod; Feng, Zhihua; Edens, Brittany M.; Yang, Ben; Shi, Han; Sze, Christie C.; Hong, Benjamin Taige; Su, Susan C.; Cantu, Jorge A.; Topczewski, Jacek; Crawford, Thomas O.; Ko, Chien-Ping; Sumner, Charlotte J.; Ma, Long

    2015-01-01

    Mechanisms underlying motor neuron degeneration in spinal muscular atrophy (SMA), the leading inherited cause of infant mortality, remain largely unknown. Many studies have established the importance of hyperphosphorylation of the microtubule-associated protein tau in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. However, tau phosphorylation in SMA pathogenesis has yet to be investigated. Here we show that tau phosphorylation on serine 202 (S202) and threonine 205 (T205) is increased significantly in SMA motor neurons using two SMA mouse models and human SMA patient spinal cord samples. Interestingly, phosphorylated tau does not form aggregates in motor neurons or neuromuscular junctions (NMJs), even at late stages of SMA disease, distinguishing it from other tauopathies. Hyperphosphorylation of tau on S202 and T205 is mediated by cyclin-dependent kinase 5 (Cdk5) in SMA disease condition, because tau phosphorylation at these sites is significantly reduced in Cdk5 knock-out mice; genetic knock-out of Cdk5 activating subunit p35 in an SMA mouse model also leads to reduced tau phosphorylation on S202 and T205 in the SMA;p35−/− compound mutant mice. In addition, expression of the phosphorylation-deficient tauS202A,T205A mutant alleviates motor neuron defects in a zebrafish SMA model in vivo and mouse motor neuron degeneration in culture, whereas expression of phosphorylation-mimetic tauS202E,T205E promotes motor neuron defects. More importantly, genetic knock-out of tau in SMA mice rescues synapse stripping on motor neurons, NMJ denervation, and motor neuron degeneration in vivo. Altogether, our findings suggest a novel mechanism for SMA pathogenesis in which hyperphosphorylation of non-aggregating tau by Cdk5 contributes to motor neuron degeneration. PMID:25878277

  5. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    PubMed

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  6. Cyclin B Proteolysis and the Cyclin-dependent Kinase Inhibitor rum1p Are Required for Pheromone-induced G1 Arrest in Fission Yeast

    PubMed Central

    Stern, Bodo; Nurse, Paul

    1998-01-01

    The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1 arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1 arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p. PMID:9614176

  7. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene

    PubMed Central

    Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.

    2006-01-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  8. Glycogen synthase kinase-3beta and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons.

    PubMed

    Morel, M; Authelet, M; Dedecker, R; Brion, J P

    2010-06-02

    The complex bi-directional axoplasmic transport of mitochondria is essential for proper metabolic functioning of neurons and is controlled by phosphorylation. We have investigated by time-lapse imaging the effects of increased expression of glycogen synthase kinase-3beta (GSK-3beta) and of the p25 activator of cyclin dependent kinase 5 on mitochondria movements in mammalian cortical neurons and in PC12 cells. Both GSK-3beta and p25 increased the stationary behaviour of mitochondria in PC12 and in neurons, decreased their anterograde transport but did not affect the intrinsic velocities of mitochondria. The microtubule-associated tau proteins were more phosphorylated in GSK-3beta and p25 transfected neurons, but ultrastructural observation showed that these cells still contained microtubules and nocodazole treatment further reduced residual mitochondria movements in GSK-3beta or p25 transfected neurons, indicating that microtubule disruption was not the primary cause of increased mitochondrial stationary behaviour in GSK-3beta or p25 transfected neurons. Our results suggest that increased expression of GSK-3beta and p25 acted rather by decreasing the frequency of mitochondrial movements driven by molecular motors and that GSK-3beta and p25 might regulate these transports by controlling the time that mitochondria spend pausing, rather than their velocities. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis.

    PubMed

    Zhu, Yingfang; Schluttenhoffer, Craig M; Wang, Pengcheng; Fu, Fuyou; Thimmapuram, Jyothi; Zhu, Jian-Kang; Lee, Sang Yeol; Yun, Dae-Jin; Mengiste, Tesfaye

    2014-10-01

    CYCLIN-DEPENDENT KINASE8 (CDK8) is a widely studied component of eukaryotic Mediator complexes. However, the biological and molecular functions of plant CDK8 are not well understood. Here, we provide evidence for regulatory functions of Arabidopsis thaliana CDK8 in defense and demonstrate its functional and molecular interactions with other Mediator and non-Mediator subunits. The cdk8 mutant exhibits enhanced resistance to Botrytis cinerea but susceptibility to Alternaria brassicicola. The contributions of CDK8 to the transcriptional activation of defensin gene PDF1.2 and its interaction with MEDIATOR COMPLEX SUBUNIT25 (MED25) implicate CDK8 in jasmonate-mediated defense. Moreover, CDK8 associates with the promoter of AGMATINE COUMAROYLTRANSFERASE to promote its transcription and regulate the biosynthesis of the defense-active secondary metabolites hydroxycinnamic acid amides. CDK8 also interacts with the transcription factor WAX INDUCER1, implying its additional role in cuticle development. In addition, overlapping functions of CDK8 with MED12 and MED13 and interactions between CDK8 and C-type cyclins suggest the conserved configuration of the plant Mediator kinase module. In summary, while CDK8's positive transcriptional regulation of target genes and its phosphorylation activities underpin its defense functions, the impaired defense responses in the mutant are masked by its altered cuticle, resulting in specific resistance to B. cinerea. © 2014 American Society of Plant Biologists. All rights reserved.

  10. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

    PubMed

    Hizli, Asli A; Chi, Yong; Swanger, Jherek; Carter, John H; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G; Clurman, Bruce E

    2013-02-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A-cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity.

  11. Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase

    PubMed Central

    Hizli, Asli A.; Chi, Yong; Swanger, Jherek; Carter, John H.; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G.

    2013-01-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A–cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity. PMID:23184662

  12. Hippocampal glycogen synthase kinase 3β is critical for the antidepressant effect of cyclin-dependent kinase 5 inhibitor in rats.

    PubMed

    Li, Gang; Liu, Ting; Kong, Xiangqian; Wang, Lei; Jin, Xing

    2014-09-01

    Cdk5 is a member of cyclin-dependent kinase (Cdk), a proline-directed serine/threonine kinase, and plays a key role in normal neural development and function. Evidence of previous study showed that chronic inhibition of Cdk5 in hippocampal dentate gyrus (DG) blocked the development of depressive-like symptoms, suggesting that Cdk5 plays a role in development of depression. Forced swim test, novelty-suppressed feeding test, and learned helplessness were used to evaluate the cellular and molecular mechanisms underlying the behavioral regulation of Cdk5 inhibitors in rats. Two Cdk5 inhibitors butyrolactone and roscovitine were used to investigate the possible antidepressant-like actions of Cdk5 blockade and the potential mechanisms. Systemic administration of butyrolactone (200 mg/kg, IP) or roscovitine (100 mg/kg, IP) produced effective antidepressant-like actions. Moreover, infusion (5 mM) of GSK3β activator LY294002 into DG abolished the antidepressant-like actions of butyrolactone and roscovitine, suggesting that inhibition of GSK3β might be involved in the antidepressant effect of Cdk5 inhibitors. Moreover, pretreatment of LY294002 (5 mM) blocked the antidepressant-like effect of butyrolactone and roscovitine in learned helplessness. Additionally, inescapable footshock induced a significant increase of GSK3β activity, while butyrolactone and roscovitine decreased GSK3β activity. In contrast, pretreatment of LY294002 prevented the inhibitory effects of butyrolactone and roscovitine on GSK3β activation. Finally, a specific GSK3β inhibitor, SB216763 (1 ng, DG), demonstrated an effective antidepressant-like action. These findings demonstrate that systemic administration of Cdk5 inhibitors produced antidepressant-like actions and that inhibition of GSK3β is involved in behavioral response of Cdk5 inhibitors.

  13. Deep insights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): A molecular dynamics approach.

    PubMed

    Rout, Ajaya Kumar; Dehury, Budheswar; Maharana, Jitendra; Nayak, Chirasmita; Baisvar, Vishwamitra Singh; Behera, Bijay Kumar; Das, Basanta Kumar

    2018-05-01

    In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system. Copyright © 2018. Published by Elsevier Inc.

  14. Structural and dynamic determinants of ligand binding and regulation of cyclin-dependent kinase 5 by pathological activator p25 and inhibitory peptide CIP.

    PubMed

    Cardone, A; Hassan, S A; Albers, R W; Sriram, R D; Pant, H C

    2010-08-20

    The crystal structure of the cdk5/p25 complex has provided information on possible molecular mechanisms of the ligand binding, specificity, and regulation of the kinase. Comparative molecular dynamics simulations are reported here for physiological conditions. This study provides new insight on the mechanisms that modulate such processes, which may be exploited to control pathological activation by p25. The structural changes observed in the kinase are stabilized by a network of interactions involving highly conserved residues within the cyclin-dependent kinase (cdk) family. Collective motions of the proteins (cdk5, p25, and CIP) and their complexes are identified by principal component analysis, revealing two conformational states of the activation loop upon p25 complexation, which are absent in the uncomplexed kinase and not apparent from the crystal. Simulations of the uncomplexed inhibitor CIP show structural rearrangements and increased flexibility of the interfacial loop containing the critical residue E240, which becomes fully hydrated and available for interactions with one of several positively charged residues in the kinase. These changes provide a rationale for the observed high affinity and enhanced inhibitory action of CIP when compared to either p25 or the physiological activators of cdk5. Published by Elsevier Ltd.

  15. Comparative analysis of Homo sapiens and Mus musculus cyclin-dependent kinase (CDK) inhibitor genes p16 (MTS1) and p15 (MTS2).

    PubMed

    Jiang, P; Stone, S; Wagner, R; Wang, S; Dayananth, P; Kozak, C A; Wold, B; Kamb, A

    1995-12-01

    Cyclin-dependent kinase inhibitors are a growing family of molecules that regulate important transitions in the cell cycle. At least one of these molecules, p16, has been implicated in human tumorigenesis while its close homolog, p15, is induced by cell contact and transforming growth factor-beta (TGF-beta). To investigate the evolutionary and functional features of p15 and p16, we have isolated mouse (Mus musculus) homologs of each gene. Comparative analysis of these sequences provides evidence that the genes have similar functions in mouse and human. In addition, the comparison suggests that a gene conversion event is part of the evolution of the human p15 and p16 genes.

  16. Molecular markers in dysplasia of the larynx: expression of cyclin-dependent kinase inhibitors p21, p27 and p53 tumour suppressor gene in predicting cancer risk.

    PubMed

    Jeannon, J-P; Soames, J V; Aston, V; Stafford, F W; Wilson, J A

    2004-12-01

    Premalignant conditions affect the larynx. Dysplasia can progress in severity resulting in cancer depending on many clinical, pathological and molecular factors. The purpose of this study was to examine the expression of the p21 and p27 cyclin-dependent kinase inhibitors and p53 tumour suppressor gene in dysplasia of the larynx. A total of 114 cases of untreated dysplasia were selected from the archives of the University of Newcastle. p21, p27 and p53 immunohistochemistry was performed and the cases followed up. Twenty-eight dysplasias (24%) subsequently developed into cancers. Expression of the molecular factors studied was not associated with cancer progression. p53 expression was associated with smoking (P = 0.005). In contrast, grade of dysplasia was significantly associated with cancer risk (odds ratio 6.7; P = 0.0001). The majority (75%) of cancers were detected within 12 months of dysplasia being diagnosed.

  17. Pyrazolo[1,5-a]-1,3,5-triazine as a purine bioisostere: access to potent cyclin-dependent kinase inhibitor (R)-roscovitine analogue.

    PubMed

    Popowycz, Florence; Fournet, Guy; Schneider, Cédric; Bettayeb, Karima; Ferandin, Yoan; Lamigeon, Cyrile; Tirado, Oscar M; Mateo-Lozano, Silvia; Notario, Vicente; Colas, Pierre; Bernard, Philippe; Meijer, Laurent; Joseph, Benoît

    2009-02-12

    Pharmacological inhibitors of cyclin-dependent kinases (CDKs) have a wide therapeutic potential. Among the CDK inhibitors currently under clinical trials, the 2,6,9-trisubstituted purine (R)-roscovitine displays rather high selectivity, low toxicity, and promising antitumor activity. In an effort to improve this structure, we synthesized several bioisosteres of roscovitine. Surprisingly, one of them, pyrazolo[1,5-a]-1,3,5-triazine 7a (N-&-N1, GP0210), displayed significantly higher potency, compared to (R)-roscovitine and imidazo[2,1-f]-1,2,4-triazine 13 (N-&-N2, GP0212), at inhibiting various CDKs and at inducing cell death in a wide variety of human tumor cell lines. This approach may thus provide second generation analogues with enhanced biomedical potential.

  18. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis

    PubMed Central

    Tamirisa, Srinath; Vudem, Dashavantha R.; Khareedu, Venkateswara R.

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants. PMID:28239388

  19. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis.

    PubMed

    Tamirisa, Srinath; Vudem, Dashavantha R; Khareedu, Venkateswara R

    2017-01-01

    Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene ( CKS ) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS ( CcCKS ) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS -transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that Cc CKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants.

  20. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition.

    PubMed

    Tong, W; Kiyokawa, H; Soos, T J; Park, M S; Soares, V C; Manova, K; Pollard, J W; Koff, A

    1998-09-01

    The involvement of cyclin-dependent kinase inhibitors in differentiation remains unclear: are the roles of cyclin-dependent kinase inhibitors restricted to cell cycle arrest; or also required for completion of the differentiation program; or both? Here, we report that differentiation of luteal cells can be uncoupled from growth arrest in p27-deficient mice. In these mice, female-specific infertility correlates with a failure of embryos to implant at embryonic day 4.5. We show by ovarian transplant and hormone reconstitution experiments that failure to regulate luteal cell estradiol is one physiological mechanism for infertility in these mice. This failure is not due to a failure of p27-deficient granulosa cells to differentiate after hormonal stimulation; P450scc, a marker for luteal progesterone biosynthesis, is expressed and granulosa cell-specific cyclin D2 expression is reduced. However, unlike their wild-type counterparts, p27-deficient luteal cells continue to proliferate for up to 3.5 days after hormonal stimulation. By day 5.5, however, these cells withdraw from the cell cycle, suggesting that p27 plays a role in the early events regulating withdrawal of cells from the cell cycle. We have further shown that in the absence of this timely withdrawal, estradiol regulation is perturbed, explaining in part how fertility is compromised at the level of implantation. These data support the interpretation of our previous observations on oligodendrocyte differentiation about a role for p27 in establishing the nonproliferative state, which in some cases (oligodendrocytes) is required for differentiation, whereas in other cases it is required for the proper functioning of a differentiated cell (luteal cell).

  1. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa.

    PubMed

    Liu, J; Kipreos, E T

    2000-07-01

    Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a

  2. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin-dependent kinase 2 phosphorylation orchestrating 2 oncogenic pathways.

    PubMed

    Li, Hui; Yang, Duxiao; Ning, Shanglei; Xu, Yinghui; Yang, Fan; Yin, Rusha; Feng, Taihu; Han, Shouqing; Guo, Lu; Zhang, Pengju; Qu, Wenjie; Guo, Renbo; Song, Chen; Xiao, Peng; Zhou, Chengjun; Xu, Zhigang; Sun, Jin-Peng; Yu, Xiao

    2018-01-01

    The protein tyrosine phosphatase nonreceptor type 12 (PTPN12) is a multifunctional protein and has elicited much research attention because its decreased protein level has been associated with poor prognosis of several types of cancers. Recently, we have solved the crystal structure of the phosphatase domain of PTPN12, which disclosed a specific PTPN12-insert-loop harboring a cyclin-dependent kinase 2 (CDK2) phosphorylation site. However, the functional significance of this phosphorylation is undefined. In the present study, we found that S19 site phosphorylation of PTPN12 by CDK2 discharged its antitumor activity by down-regulation of its inhibitory role in cell migration, but not affecting its other regulatory functions. Phosphorylation of PTPN12 at the S19 site changed its substrate interface, and by doing so, selectively decreased its activity toward the human epidermal growth factor receptor 2 (HER2)- pY 1196 site, but not other HER2 phosphorylation sites or other known PTPN12 substrates. A further in-depth mechanism study revealed that the phosphorylation of PTPN12 by CDK2 impaired recruitment of the serine/threonine-protein kinase 1 (PAK1) to HER2, resulted in the blockade of the HER2-pY 1196 -PAK1-T 423 signaling pathway, thus increased tumor cell motility. Taken together, our results identified a new phosphorylation-based substrate recognition mechanism of PTPN12 by CDK2, which orchestrated signaling crosstalk between the oncogenic CDK2 and HER2 pathways. The newly identified governing mechanism of the substrate selectivity of a particular phosphatase was previously unappreciated and exemplifies how a phospho-network is precisely controlled in different cellular contexts.-Li, H., Yang, D., Ning, S., Xu, Y., Yang, F., Yin, R., Feng, T., Han, S., Guo, L., Zhang, P., Qu, W., Guo, R., Song, C., Xiao, P., Zhou, C., Xu, Z., Sun, J.-P., Yu, X. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin-dependent kinase 2 phosphorylation

  3. Molecular principle of the cyclin-dependent kinase selectivity of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile derivatives revealed by molecular modeling studies.

    PubMed

    Kong, Xiaotian; Sun, Huiyong; Pan, Peichen; Tian, Sheng; Li, Dan; Li, Youyong; Hou, Tingjun

    2016-01-21

    Due to the high sequence identity of the binding pockets of cyclin-dependent kinases (CDKs), designing highly selective inhibitors towards a specific CDK member remains a big challenge. 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine derivatives are effective inhibitors of CDKs, among which the most promising inhibitor 12u demonstrates high binding affinity to CDK9 and attenuated binding affinity to other homologous kinases, such as CDK2. In this study, in order to rationalize the principle of the binding preference towards CDK9 over CDK2 and to explore crucial information that may aid the design of selective CDK9 inhibitors, MM/GBSA calculations based on conventional molecular dynamics (MD) simulations and enhanced sampling simulations (umbrella sampling and steered MD simulations) were carried out on two representative derivatives (12u and 4). The calculation results show that the binding specificity of 12u to CDK9 is primarily controlled by conformational change of the G-loop and variation of the van der Waals interactions. Furthermore, the enhanced sampling simulations revealed the different reaction coordinates and transient interactions of inhibitors 12u and 4 as they dissociate from the binding pockets of CDK9 and CDK2. The physical principles obtained from this study may facilitate the discovery and rational design of novel and specific inhibitors of CDK9.

  4. A novel transcript of cyclin-dependent kinase-like 5 (CDKL5) has an alternative C-terminus and is the predominant transcript in brain.

    PubMed

    Williamson, Sarah L; Giudici, Laura; Kilstrup-Nielsen, Charlotte; Gold, Wendy; Pelka, Gregory J; Tam, Patrick P L; Grimm, Andrew; Prodi, Dionigio; Landsberger, Nicoletta; Christodoulou, John

    2012-02-01

    The X-linked cyclin-dependent kinase-like 5 (CDKL5) gene is an important molecular determinant of early-onset intractable seizures with infantile spasms and Rett syndrome-like phenotype. The gene encodes a kinase that may influence components of molecular pathways associated with MeCP2. In humans there are two previously reported splice variants that differ in the 5' untranslated exons and produce the same 115 kDa protein. Furthermore, very recently, a novel transcript including a novel exon (16b) has been described. By aligning both the human and mouse CDKL5 proteins to the orthologs of other species, we identified a theoretical 107 kDa isoform with an alternative C-terminus that terminates in intron 18. In human brain and all other tissues investigated except the testis, this novel isoform is the major CDKL5 transcript. The detailed characterisation of this novel isoform of CDKL5 reveals functional and subcellular localisation attributes that overlap greatly, but not completely, with that of the previously studied human CDKL5 protein. Considering its predominant expression in the human and mouse brain, we believe that this novel isoform is likely to be of primary pathogenic importance in human diseases associated with CDKL5 deficiency, and suggest that screening of the related intronic sequence should be included in the molecular genetic analyses of patients with a suggestive clinical phenotype.

  5. CYCLIN-DEPENDENT KINASE G1 Is Associated with the Spliceosome to Regulate CALLOSE SYNTHASE5 Splicing and Pollen Wall Formation in Arabidopsis[C][W][OA

    PubMed Central

    Huang, Xue-Yong; Niu, Jin; Sun, Ming-Xi; Zhu, Jun; Gao, Ju-Fang; Yang, Jun; Zhou, Que; Yang, Zhong-Nan

    2013-01-01

    Arabidopsis thaliana CYCLIN-DEPEDENT KINASE G1 (CDKG1) belongs to the family of cyclin-dependent protein kinases that were originally characterized as cell cycle regulators in eukaryotes. Here, we report that CDKG1 regulates pre-mRNA splicing of CALLOSE SYNTHASE5 (CalS5) and, therefore, pollen wall formation. The knockout mutant cdkg1 exhibits reduced male fertility with impaired callose synthesis and abnormal pollen wall formation. The sixth intron in CalS5 pre-mRNA, a rare type of intron with a GC 5′ splice site, is abnormally spliced in cdkg1. RNA immunoprecipitation analysis suggests that CDKG1 is associated with this intron. CDKG1 contains N-terminal Ser/Arg (RS) motifs and interacts with splicing factor Arginine/Serine-Rich Zinc Knuckle-Containing Protein33 (RSZ33) through its RS region to regulate proper splicing. CDKG1 and RS-containing Zinc Finger Protein22 (SRZ22), a splicing factor interacting with RSZ33 and U1 small nuclear ribonucleoprotein particle (snRNP) component U1-70k, colocalize in nuclear speckles and reside in the same complex. We propose that CDKG1 is recruited to U1 snRNP through RSZ33 to facilitate the splicing of the sixth intron of CalS5. PMID:23404887

  6. Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein.

    PubMed

    Haller, Kerstin; Wu, Yalin; Derow, Elisabeth; Schmitt, Iris; Jeang, Kuan-Teh; Grassmann, Ralph

    2002-05-01

    The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) induces leukemia in transgenic mice and permanent T-cell growth in vitro. In transformed lymphocytes, it acts as an essential growth factor. Tax stimulates the cell cycle in the G(1) phase by activating the cyclin-dependent kinase (CDK) CDK4 and CDK6 holoenzyme complexes. Here we show that Tax directly interacts with CDK4. This binding to CDK4 was specific, since Tax did not bind to either CDK2 or CDK1. The interaction with CDK4/cyclin D complexes was observed in vitro, in transfected fibroblasts, in HTLV-1-infected T cells, and in adult T-cell leukemia-derived cultures. Binding studies with several point and deletion mutants indicated that the N terminus of Tax mediates the interaction with CDK4. The Tax/CDK complex represented an active holoenzyme which capably phosphorylates the Rb protein in vitro and is resistant to repression by the inhibitor p21(CIP). Binding-deficient Tax mutants failed to activate CDK4, indicating that direct association with Tax is required for enhanced kinase activity. Tax also increased the association of CDK4 with its positive cyclin regulatory subunit. Thus, protein-protein contact between Tax and the components of the cyclin D/CDK complexes provides a further mechanistic explanation for the mitogenic and immortalizing effects of this HTLV-1 oncoprotein.

  7. Physical Interaction of Human T-Cell Leukemia Virus Type 1 Tax with Cyclin-Dependent Kinase 4 Stimulates the Phosphorylation of Retinoblastoma Protein

    PubMed Central

    Haller, Kerstin; Wu, Yalin; Derow, Elisabeth; Schmitt, Iris; Jeang, Kuan-Teh; Grassmann, Ralph

    2002-01-01

    The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) induces leukemia in transgenic mice and permanent T-cell growth in vitro. In transformed lymphocytes, it acts as an essential growth factor. Tax stimulates the cell cycle in the G1 phase by activating the cyclin-dependent kinase (CDK) CDK4 and CDK6 holoenzyme complexes. Here we show that Tax directly interacts with CDK4. This binding to CDK4 was specific, since Tax did not bind to either CDK2 or CDK1. The interaction with CDK4/cyclin D complexes was observed in vitro, in transfected fibroblasts, in HTLV-1-infected T cells, and in adult T-cell leukemia-derived cultures. Binding studies with several point and deletion mutants indicated that the N terminus of Tax mediates the interaction with CDK4. The Tax/CDK complex represented an active holoenzyme which capably phosphorylates the Rb protein in vitro and is resistant to repression by the inhibitor p21CIP. Binding-deficient Tax mutants failed to activate CDK4, indicating that direct association with Tax is required for enhanced kinase activity. Tax also increased the association of CDK4 with its positive cyclin regulatory subunit. Thus, protein-protein contact between Tax and the components of the cyclin D/CDK complexes provides a further mechanistic explanation for the mitogenic and immortalizing effects of this HTLV-1 oncoprotein. PMID:11971966

  8. Cyclin-dependent kinase 5-mediated phosphorylation of CHIP promotes the tAIF-dependent death pathway in rotenone-treated cortical neurons.

    PubMed

    Kim, Chiho; Lee, Juhyung; Ko, Yeon Uk; Oh, Young J

    2018-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase. Its dysregulation has been implicated in various neurodegenerative diseases. We previously reported that phosphorylation of the C-terminus of the Hsc70-interacting protein (CHIP) by Cdk5 promotes truncated apoptosis-inducing factor (tAIF)-mediated neuronal death induced by oxidative stress. Here, we determined whether this Cdk5-dependent cell death signaling pathway is present in experimental models of Parkinson's disease. First, we showed that rotenone activates Cdk5 in primary cultures of cortical neurons and causes tAIF-dependent neuronal cell death. This event was attenuated by negative regulation of endogenous Cdk5 activity by the pharmacological Cdk5 inhibitor, roscovitine, or by lentiviral knockdown of Cdk5. Cdk5 phosphorylates CHIP at Ser20 in rotenone-treated neurons. Consequently, overexpression of CHIP S20A , but not CHIP WT , attenuates tAIF-induced cell death in rotenone-treated cortical neurons. Taken together, these results indicate that phosphorylation of CHIP at Ser20 by Cdk5 activation inhibits CHIP-mediated tAIF degradation, thereby contributing to tAIF-induced neuronal cell death following rotenone treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. miR Profiling Identifies Cyclin-Dependent Kinase 6 Downregulation as a Potential Mechanism of Acquired Cisplatin Resistance in Non-Small-Cell Lung Carcinoma.

    PubMed

    Bar, Jair; Gorn-Hondermann, Ivan; Moretto, Patricia; Perkins, Theodore J; Niknejad, Nima; Stewart, David J; Goss, Glenwood D; Dimitroulakos, Jim

    2015-11-01

    To identify the mechanisms of cisplatin resistance, global microRNA (miR) expression was tested. The expression of miR-145 was consistently higher in resistant cells. The expression of cyclin-dependent kinase 6 (CDK6), a potential target of miR-145, was lower in resistant cells, and inhibition of CDK4/6 protected cells from cisplatin. Cell cycle inhibition, currently being tested in clinical trials, might be antagonistic to cisplatin and other cytotoxic drugs. Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death. Platinum-based chemotherapeutic drugs are the most active agents in treating advanced disease. Resistance to these drugs is common and multifactorial; insight into the molecular mechanisms involved will likely enhance efficacy. A set of NSCLC platinum-resistant sublines was created from the Calu6 cell line. Cell viability was quantified using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Differentially expressed microRNAs (miRs) in these lines were identified using Affymetrix miR arrays. The potential genes targeted by these miRs were searched using the TargetScan algorithm. The expression levels of miRs and mRNA were tested using real-time polymerase chain reaction. miR-145 was reproducibly elevated in all the resistant sublines tested; however, modulation of miR-145 levels alone in these cells did not affect their response to cisplatin. A potential target of miR-145 is cyclin-dependent kinase 6 (CDK6), an important regulator of cell proliferation. The mRNA and protein levels of CDK6 were both downregulated in the resistant sublines. An inhibitor of CDK4/6 (PD0332991) protected parental NSCLC cells from cisplatin cytotoxicity. In the present study, we identified miRs differentially expressed in cisplatin-resistant cell lines, including miR-145. A predicted target of miR-145 is CDK6, and its expression was found to be downregulated in the resistant sublines, although not directly by miR-145. Inhibition

  10. Inhibition of cyclin-dependent kinase CDK1 by oxindolimine ligands and corresponding copper and zinc complexes.

    PubMed

    Miguel, Rodrigo Bernardi; Petersen, Philippe Alexandre Divina; Gonzales-Zubiate, Fernando A; Oliveira, Carla Columbano; Kumar, Naresh; do Nascimento, Rafael Rodrigues; Petrilli, Helena Maria; da Costa Ferreira, Ana Maria

    2015-10-01

    Oxindolimine-copper(II) and zinc(II) complexes that previously have shown to induce apoptosis, with DNA and mitochondria as main targets, exhibit here significant inhibition of kinase CDK1/cyclin B protein. Copper species are more active than the corresponding zinc, and the free ligand shows to be less active, indicating a major influence of coordination in the process, and a further modulation by the coordinated ligand. Molecular docking and classical molecular dynamics provide a better understanding of the effectiveness and kinase inhibition mechanism by these compounds, showing that the metal complex provides a stronger interaction than the free ligand with the ATP-binding site. The metal ion introduces charge in the oxindole species, giving it a more rigid conformation that then becomes more effective in its interactions with the protein active site. Analogous experiments resulted in no significant effect regarding phosphatase inhibition. These results can explain the cytotoxicity of these metal complexes towards different tumor cells, in addition to its capability of binding to DNA, and decreasing membrane potential of mitochondria.

  11. Molecular dynamics simulations on the inhibition of cyclin-dependent kinases 2 and 5 in the presence of activators.

    PubMed

    Zhang, Bing; Tan, Vincent B C; Lim, Kian Meng; Tay, Tong Earn

    2006-06-01

    Interests in CDK2 and CDK5 have stemmed mainly from their association with cancer and neuronal migration or differentiation related diseases and the need to design selective inhibitors for these kinases. Molecular dynamics (MD) simulations have not only become a viable approach to drug design because of advances in computer technology but are increasingly an integral part of drug discovery processes. It is common in MD simulations of inhibitor/CDK complexes to exclude the activator of the CDKs in the structural models to keep computational time tractable. In this paper, we present simulation results of CDK2 and CDK5 with roscovitine using models with and without their activators (cyclinA and p25). While p25 was found to induce slight changes in CDK5, the calculations support that cyclinA leads to significant conformational changes near the active site of CDK2. This suggests that detailed and structure-based inhibitor design targeted at these CDKs should employ activator-included models of the kinases. Comparisons between P/CDK2/cyclinA/roscovitine and CDK5/p25/roscovitine complexes reveal differences in the conformations of the glutamine around the active sites, which may be exploited to find highly selective inhibitors with respect to CDK2 and CDK5.

  12. Tax-dependent stimulation of G1 phase-specific cyclin-dependent kinases and increased expression of signal transduction genes characterize HTLV type 1-transformed T cells.

    PubMed

    Haller, K; Ruckes, T; Schmitt, I; Saul, D; Derow, E; Grassmann, R

    2000-11-01

    Human T cell leukemia virus protein induces T cells to permanent IL-2-dependent growth. These cells occasionally convert to factor independence. The viral oncoprotein Tax acts as an essential growth factor of transformed lymphocytes and stimulates the cell cycle in the G(1) phase. In T cells and fibroblasts Tax enhances the activity of the cyclin-dependent kinases (CDK) CDK4 and CDK6. These kinases, which require binding to cyclin D isotypes for their activity, control the G(1) phase. Coimmunoprecipitation from these cells revealed that Tax associates with cyclin D3/CDK6, suggesting a direct activation of this kinase. The CDK stimulation may account in part for the mitogenic Tax effect, which causes IL-2-dependent T cell growth by Tax. To address the conversion to IL-2-independent proliferation and to identify overexpressed genes, which contribute to the transformed growth, the gene expression patterns of HTLV-1-transformed T cells were compared with that of peripheral blood lymphocytes. Potentially overexpressed cDNAs were cloned, sequenced, and used to determine the RNA expression. Genes found to be up-regulated are involved in signal transduction (STAT5a, cyclin G(1), c-fgr, hPGT) and also glycoprotein synthesis (LDLC, ribophorin). Many of these are also activated during T cell activation and implicated in the regulation of growth and apoptosis. The transcription factor STAT5a, which is involved in IL-2 signaling, was strongly up-regulated only in IL-2-independent cells, thus suggesting that it contributes to factor-independent growth. Thus, the differentially expressed genes could cooperate with the Tax-induced cell cycle stimulation in the maintenance of IL-2-dependent and IL-2-independent growth of HTLV-transformed lymphocytes.

  13. Cyclin-dependent Kinases Phosphorylate the Cytomegalovirus RNA Export Protein pUL69 and Modulate Its Nuclear Localization and Activity*S⃞

    PubMed Central

    Rechter, Sabine; Scott, Gillian M.; Eickhoff, Jan; Zielke, Katrin; Auerochs, Sabrina; Müller, Regina; Stamminger, Thomas; Rawlinson, William D.; Marschall, Manfred

    2009-01-01

    Replication of human cytomegalovirus (HCMV) is subject to regulation by cellular protein kinases. Recently, we and others reported that inhibition of cyclin-dependent protein kinases (CDKs) or the viral CDK ortholog pUL97 can induce intranuclear speckled aggregation of the viral mRNA export factor, pUL69. Here we provide the first evidence for a direct regulatory role of CDKs on pUL69 functionality. Although replication of all HCMV strains was dependent on CDK activity, we found strain-specific differences in the amount of CDK inhibitor-induced pUL69 aggregate formation. In all cases analyzed, the inhibitor-induced pUL69 aggregates were clearly localized within viral replication centers but not subnuclear splicing, pore complex, or aggresome structures. The CDK9 and cyclin T1 proteins colocalized with these pUL69 aggregates, whereas other CDKs behaved differently. Phosphorylation analyses in vivo and in vitro demonstrated pUL69 was strongly phosphorylated in HCMV-infected fibroblasts and that CDKs represent a novel class of pUL69-phosphorylating kinases. Moreover, the analysis of CDK inhibitors in a pUL69-dependent nuclear mRNA export assay provided evidence for functional impairment of pUL69 under suppression of CDK activity. Thus, our data underline the crucial importance of CDKs for HCMV replication, and indicate a direct impact of CDK9-cyclin T1 on the nuclear localization and activity of the viral regulator pUL69. PMID:19179338

  14. Sangivamycin-Like Molecule 6 (SLM6) exhibits potent anti-multiple myeloma activity through inhibition of cyclin-dependent kinase-9 (CDK9)

    PubMed Central

    Dolloff, Nathan G.; Allen, Joshua E.; Dicker, David T.; Aqui, Nicole; Vogl, Dan; Malysz, Jozef; Talamo, Giampaolo; El-Deiry, Wafik S.

    2012-01-01

    Despite significant treatment advances over the past decade, multiple myeloma (MM) remains largely incurable. In this study we found that MM cells were remarkably sensitive to the death-inducing effects of a new class of sangivamycin-like molecules (SLMs). A panel of structurally related SLMs selectively induced apoptosis in MM cells but not other tumor or non-malignant cell lines at sub-micromolar concentrations. SLM6 was the most active compound in vivo, where it was well-tolerated and significantly inhibited growth and induced apoptosis of MM tumors. We determined that the anti-MM activity of SLM6 was mediated by direct inhibition of cyclin-dependent kinase 9 (CDK9), which resulted in transcriptional repression of oncogenes that are known to drive MM progression (c-Maf, cyclin D1, and c-Myc). Furthermore, SLM6 demonstrated superior in vivo anti-MM activity over the CDK inhibitor flavopiridol, which is currently in clinical trials for MM. These findings demonstrate that SLM6 is a novel CDK9 inhibitor with promising preclinical activity as an anti-MM agent. PMID:22964485

  15. Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary β-Cell Dysfunction to Progressive Depletion of β-Cell Mass and Diabetes*

    PubMed Central

    Kim, So Yoon; Lee, Ji-Hyeon; Merrins, Matthew J.; Gavrilova, Oksana; Bisteau, Xavier; Kaldis, Philipp; Satin, Leslie S.; Rane, Sushil G.

    2017-01-01

    The failure of pancreatic islet β-cells is a major contributor to the etiology of type 2 diabetes. β-Cell dysfunction and declining β-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary β-cell dysfunction to the progressive deterioration of β-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in β-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in β-cell proliferation, reduced β-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in β-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary β-cell dysfunction to progressive β-cell mass deterioration in diabetes. PMID:28100774

  16. p39, the Primary Activator for Cyclin-dependent Kinase 5 (Cdk5) in Oligodendroglia, Is Essential for Oligodendroglia Differentiation and Myelin Repair*

    PubMed Central

    Bankston, Andrew N.; Li, Wenqi; Zhang, Hui; Ku, Li; Liu, Guanglu; Papa, Filomena; Zhao, Lixia; Bibb, James A.; Cambi, Franca; Tiwari-Woodruff, Seema K.; Feng, Yue

    2013-01-01

    Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether neurons and OLs employ similar or distinct mechanisms to regulate Cdk5 activity remains elusive. We report here that in contrast to neurons that harbor high levels of two Cdk5 activators, p35 and p39, OLs express abundant p39 but negligible p35. In addition, p39 is selectively up-regulated in OLs during differentiation along with elevated Cdk5 activity, whereas p35 expression remains unaltered. Specific knockdown of p39 by siRNA significantly attenuates Cdk5 activity and OL differentiation without affecting p35. Finally, expression of p39, but not p35, is increased during myelin repair, and remyelination is impaired in p39−/− mice. Together, these results reveal that neurons and OLs harbor distinct preference of Cdk5 activators and demonstrate important functions of p39-dependent Cdk5 activation in OL differentiation during de novo myelin development and myelin repair. PMID:23645679

  17. Cyclin-dependent kinase 11p110 (CDK11p110) is crucial for human breast cancer cell proliferation and growth

    PubMed Central

    Zhou, Yubing; Han, Chao; Li, Duolu; Yu, Zujiang; Li, Fengmei; Li, Feng; An, Qi; Bai, Huili; Zhang, Xiaojian; Duan, Zhenfeng; Kan, Quancheng

    2015-01-01

    Cyclin-dependent kinases (CDKs) play important roles in the development of many types of cancers by binding with their paired cyclins. However, the function of CDK11 larger protein isomer, CDK11p110, in the tumorigenesis of human breast cancer remains unclear. In the present study, we explored the effects and molecular mechanisms of CDK11p110 in the proliferation and growth of breast cancer cells by determining the expression of CDK11p110 in breast tumor tissues and examining the phenotypic changes of breast cancer cells after CDK11p110 knockdown. We found that CDK11p110 was highly expressed in breast tumor tissues and cell lines. Tissue microarray analysis showed that elevated CDK11p110 expression in breast cancer tissues significantly correlated with poor differentiation, and was also associated with advanced TNM stage and poor clinical prognosis for breast cancer patients. In vitro knockdown of CDK11p110 by siRNA significantly inhibited cell growth and migration, and dramatically induced apoptosis in breast cancer cells. Flow cytometry demonstrated that cells were markedly arrested in G1 phase of the cell cycle after CDK11p110 downregulation. These findings suggest that CDK11p110 is critical for the proliferation and growth of breast cancer cells, which highlights CDK11p110 may be a promising therapeutic target for the treatment of breast cancer. PMID:25990212

  18. Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells

    PubMed Central

    Lee, Janet; Baek, Jeong-Hwa; Choi, Kyu-Sil; Kim, Hyun-Soo; Park, Hye-Young; Ha, Geun-Hyoung; Park, Ho; Lee, Kyo-Won; Lee, Chang Geun; Yang, Dong-Yun; Moon, Hyo Eun; Paek, Sun Ha; Lee, Chang-Woo

    2013-01-01

    Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs. PMID:23324348

  19. A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27.

    PubMed

    Huang, Ying; Wu, Renyi; Su, Zheng-Yuan; Guo, Yue; Zheng, Xi; Yang, Chung S; Kong, Ah-Ng

    2017-02-01

    Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Specific activity of cyclin-dependent kinase I is a new potential predictor of tumour recurrence in stage II colon cancer.

    PubMed

    Zeestraten, E C M; Maak, M; Shibayama, M; Schuster, T; Nitsche, U; Matsushima, T; Nakayama, S; Gohda, K; Friess, H; van de Velde, C J H; Ishihara, H; Rosenberg, R; Kuppen, P J K; Janssen, K-P

    2012-01-03

    There are no established biomarkers to identify tumour recurrence in stage II colon cancer. As shown previously, the enzymatic activity of the cyclin-dependent kinases 1 and 2 (CDK1 and CDK2) predicts outcome in breast cancer. Therefore, we investigated whether CDK activity identifies tumour recurrence in colon cancer. In all, 254 patients with completely resected (R0) UICC stage II colon cancer were analysed retrospectively from two independent cohorts from Munich (Germany) and Leiden (Netherlands). None of the patients received adjuvant treatment. Development of distant metastasis was observed in 27 patients (median follow-up: 86 months). Protein expression and activity of CDKs were measured on fresh-frozen tumour samples. Specific activity (SA) of CDK1 (CDK1SA), but not CDK2, significantly predicted distant metastasis (concordance index=0.69, 95% confidence interval (CI): 0.55-0.79, P=0.036). Cutoff derivation by maximum log-rank statistics yielded a threshold of CDK1SA at 11 (SA units, P=0.029). Accordingly, 59% of patients were classified as high-risk (CDK1SA ≥11). Cox proportional hazard analysis revealed CDK1SA as independent prognostic variable (hazard ratio=6.2, 95% CI: 1.44-26.9, P=0.012). Moreover, CKD1SA was significantly elevated in microsatellite-stable tumours. Specific activity of CDK1 is a promising biomarker for metastasis risk in stage II colon cancer.

  1. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    SciTech Connect

    Akyuerek, Levent M.; Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goeteborg, SE-405 30; Boehm, Manfred

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/mediamore » area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.« less

  2. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity.

    PubMed

    Moussa, Rayan S; Park, Kyung Chan; Kovacevic, Zaklina; Richardson, Des R

    2018-03-20

    Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A novel mutation in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene associated with a severe Rett phenotype.

    PubMed

    Sprovieri, T; Conforti, F L; Fiumara, A; Mazzei, R; Ungaro, C; Citrigno, L; Muglia, M; Arena, A; Quattrone, A

    2009-02-15

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have recently been reported in patients with severe neurodevelopmental disorder characterized by early-onset seizures, infantile spasms, severe psychomotor impairment and very recently, in patients with Rett syndrome (RTT)-like phenotype. Although the involvement of CDKL5 in specific biological pathways and its neurodevelopmental role have not been completely elucidated, the CDKL5 appears to be physiologically related to the MECP2 gene. Here we report on the clinical and CDKL5 molecular investigation in a very unusual RTT case, with severe, early-neurological involvement in which we have shown in a previous report, a novel P388S MECP2 mutation [Conforti et al. (2003); Am J Med Genet A 117A: 184-187]. The patient has had severe psychomotor delay since the first month of life and infantile spasms since age 5 months. Moreover, at age 5 years the patient suddenly presented with renal failure. The severe pattern of symptoms in our patient, similar to a CDKL5 phenotype, prompted us to perform an analysis of the CDKL5, which revealed a novel missense mutation never previously described. The X-inactivation assay was non-informative. In conclusion, this report reinforces the observation that the CDKL5 phenotype overlaps with RTT and that CDKL5 analysis is recommended in patients with a seizure disorder commencing during the first months of life.

  4. Interaction energies for the purine inhibitor roscovitine with cyclin-dependent kinase 2: correlated ab initio quantum-chemical, DFT and empirical calculations.

    PubMed

    Dobes, Petr; Otyepka, Michal; Strnad, Miroslav; Hobza, Pavel

    2006-05-24

    The interaction between roscovitine and cyclin-dependent kinase 2 (cdk2) was investigated by performing correlated ab initio quantum-chemical calculations. The whole protein was fragmented into smaller systems consisting of one or a few amino acids, and the interaction energies of these fragments with roscovitine were determined by using the MP2 method with the extended aug-cc-pVDZ basis set. For selected complexes, the complete basis set limit MP2 interaction energies, as well as the coupled-cluster corrections with inclusion of single, double and noninteractive triples contributions [CCSD(T)], were also evaluated. The energies of interaction between roscovitine and small fragments and between roscovitine and substantial sections of protein (722 atoms) were also computed by using density-functional tight-binding methods covering dispersion energy (DFTB-D) and the Cornell empirical potential. Total stabilisation energy originates predominantly from dispersion energy and methods that do not account for the dispersion energy cannot, therefore, be recommended for the study of protein-inhibitor interactions. The Cornell empirical potential describes reasonably well the interaction between roscovitine and protein; therefore, this method can be applied in future thermodynamic calculations. A limited number of amino acid residues contribute significantly to the binding of roscovitine and cdk2, whereas a rather large number of amino acids make a negligible contribution.

  5. Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1

    PubMed Central

    Xu, Zhiwei; Potula, Hari-Hara SK; Vallurupalli, Anusha; Perry, Daniel; Baker, Henry; Croker, Byron P.; Dozmorov, Igor; Morel, Laurence

    2013-01-01

    Sle2c1 is an NZM2410 and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18INK4c (p18), as the top candidate gene for inducing the Slec2c1 associated expansion of B1a cells. A novel SNP in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and Pc B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of Pc B1a cells. As cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal, and that its impaired expression leads to an accumulation of these cells with high autoreactive potential. PMID:21543644

  6. Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors.

    PubMed

    Cerqueira, Antonio; Martín, Alberto; Symonds, Catherine E; Odajima, Junko; Dubus, Pierre; Barbacid, Mariano; Santamaría, David

    2014-04-01

    The Cip/Kip family, namely, p21(Cip1), p27(Kip1), and p57(Kip2), are stoichiometric cyclin-dependent kinase inhibitors (CKIs). Paradoxically, they have been proposed to also act as positive regulators of Cdk4/6-cyclin D by stabilizing these heterodimers. Loss of p21(Cip1) and p27(Kip1) reduces Cdk4/6-cyclin D complexes, although with limited phenotypic consequences compared to the embryonic lethality of Cdk4/6 or triple cyclin D deficiency. This milder phenotype was attributed to Cdk2 compensatory mechanisms. To address this controversy using a genetic approach, we generated Cdk2(-/-) p21(-/-) p27(-/-) mice. Triple-knockout mouse embryonic fibroblasts (MEFs) displayed minimal levels of D-type cyclins and Cdk4/6-cyclin D complexes. p57(Kip2) downregulation in the absence of p21(Cip1) and p27(Kip1) aggravated this phenotype, yet MEFs lacking all Cip/Kip proteins exhibited increased retinoblastoma phosphorylation, together with enhanced proliferation and transformation capacity. In vivo, Cdk2 ablation induced partial perinatal lethality in p21(-/-) p27(-/-) mice, suggesting partial Cdk2-dependent compensation. However, Cdk2(-/-) p21(-/-) p27(-/-) survivors displayed all phenotypes described for p27(-/-) mice, including organomegalia and pituitary tumors. Thus, Cip/Kip deficiency does not impair interphasic Cdk activity even in the absence of Cdk2, suggesting that their Cdk-cyclin assembly function is dispensable for homeostatic control in most cell types.

  7. Evaluation of the interaction of cyclin-dependent kinase 5 with activator p25 and with p25-derived inhibitor CIP.

    PubMed

    Cardone, Antonio; Albers, R Wayne; Sriram, Ram D; Pant, Harish C

    2010-05-01

    A high-affinity inhibitor protein called CIP, produced by small truncations of p35, was experimentally identified. P35 is a physiological activator of the cyclin-dependent kinase cdk5. P25 is derived from proteolytic truncation of p35 within "stressed" neurons, and it is associated with the hyperphosphorylation of specific neuronal proteins, typically occurring in neurodegenerative diseases such as Alzheimer's. Here, we report a study of the binding mechanisms of the cdk5-p25 and cdk5-CIP complexes. This provides a better understanding of the source of the inhibitory activity of the protein CIP. We use a geometry-based technique to test the hypothesis that p25's truncation increases the flexibility of CIP and thus prevents cdk5 from reaching its active conformation. Our study is based on a geometry-based alignment algorithm, which aligns two given protein conformations with respect to their interfaces. Our results support the flexibility hypothesis and will be used as a basis for targeted molecular dynamics simulations.

  8. Enterolactone induces G1-phase cell cycle arrest in non-small cell lung cancer cells by down-regulating cyclins and cyclin-dependent kinases

    PubMed Central

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M.

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG) which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anti-cancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study we investigated the anti-cancer effects of EL for several non-small cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The anti-proliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL- decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1-phase. The results suggest that EL inhibits the growth of NSCLC cell lines by down-regulating G1-phase cyclins and CDKs, and up-regulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy. PMID:28323486

  9. Enterolactone Induces G1-phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases.

    PubMed

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG), which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anticancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study, we investigated the anticancer effects of EL for several nonsmall cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The antiproliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G 1 -phase cell cycle arrest. Molecular studies revealed that EL decreased mRNA or protein expression levels of the G 1 -phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21 WAF1/CIP1 , a negative regulator of the G 1 phase. The results suggest that EL inhibits the growth of NSCLC cell lines by downregulating G 1 -phase cyclins and CDKs, and upregulating p21 WAF1/CIP1 , which leads to G 1 -phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy.

  10. Phase 1/2 study of cyclin-dependent kinase (CDK)4/6 inhibitor palbociclib (PD-0332991) with bortezomib and dexamethasone in relapsed/refractory multiple myeloma.

    PubMed

    Niesvizky, Ruben; Badros, Ashraf Z; Costa, Luciano J; Ely, Scott A; Singhal, Seema B; Stadtmauer, Edward A; Haideri, Nisreen A; Yacoub, Abdulraheem; Hess, Georg; Lentzsch, Suzanne; Spicka, Ivan; Chanan-Khan, Asher A; Raab, Marc S; Tarantolo, Stefano; Vij, Ravi; Zonder, Jeffrey A; Huang, Xiangao; Jayabalan, David; Di Liberto, Maurizio; Huang, Xin; Jiang, Yuqiu; Kim, Sindy T; Randolph, Sophia; Chen-Kiang, Selina

    2015-01-01

    This phase 1/2 study was the first to evaluate the safety and efficacy of the cyclin-dependent kinase (CDK) 4/6-specific inhibitor palbociclib (PD-0332991) in sequential combination with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. The recommended phase 2 dose was palbociclib 100 mg orally once daily on days 1-12 of a 21-day cycle with bortezomib 1.0 mg/m2 (intravenous) and dexamethasone 20 mg (orally 30 min pre-bortezomib dosing) on days 8 and 11 (early G1 arrest) and days 15 and 18 (cell cycle resumed). Dose-limiting toxicities were primarily cytopenias; most other treatment-related adverse events were grade≤3. At a bortezomib dose lower than that in other combination therapy studies, antitumor activity was observed (phase 1). In phase 2, objective responses were achieved in 5 (20%) patients; 11 (44%) achieved stable disease. Biomarker and pharmacodynamic assessments demonstrated that palbociclib inhibited CDK4/6 and the cell cycle initially in most patients.

  11. Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila.

    PubMed

    Kuuluvainen, Emilia; Hakala, Heini; Havula, Essi; Sahal Estimé, Michelle; Rämet, Mika; Hietakangas, Ville; Mäkelä, Tomi P

    2014-06-06

    The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Differential p16/INK4A cyclin-dependent kinase inhibitor expression correlates with chemotherapy efficacy in a cohort of 88 malignant pleural mesothelioma patients.

    PubMed

    Jennings, C J; Murer, B; O'Grady, A; Hearn, L M; Harvey, B J; Kay, E W; Thomas, W

    2015-06-30

    Malignant pleural mesothelioma (MPM) is a rare and essentially incurable malignancy most often linked with occupational exposure to asbestos fibres. In common with other malignancies, the development and progression of MPM is associated with extensive dysregulation of cell cycle checkpoint proteins that modulate cell proliferation, apoptosis, DNA repair and senescence. The expression of cyclin-dependent kinase inhibitor p16/INK4A was evaluated by immunohistochemistry using tumour biopsy specimens from 88 MPM cases and a semi-quantitative score for p16/INK4A expression was obtained. Post-diagnosis survival and the survival benefit of chemotherapeutic intervention was correlated with p16/INK4A expression. A low, intermediate and high score for p16/INK4A expression was observed for 45 (51.1%), 28 (31.8%) and 15 (17.1%) of the MPM cases, respectively. Those cases with intermediate or high p16/INK4A tumour expression had a significantly better post-diagnosis survival than those cases whose tumours lost p16 expression (log-rank P<0.001). Those patients with sustained p16/INK4A expression who received chemotherapy also had a better survival than those treated patients whose tumours had lost p16/INK4A expression (log-rank P<0.001). Sustained p16/INK4A expression predicts better post-diagnosis survival in MPM and also better survival following chemotherapeutic intervention.

  13. Differential p16/INK4A cyclin-dependent kinase inhibitor expression correlates with chemotherapy efficacy in a cohort of 88 malignant pleural mesothelioma patients

    PubMed Central

    Jennings, C J; Murer, B; O'Grady, A; Hearn, L M; Harvey, B J; Kay, E W; Thomas, W

    2015-01-01

    Background: Malignant pleural mesothelioma (MPM) is a rare and essentially incurable malignancy most often linked with occupational exposure to asbestos fibres. In common with other malignancies, the development and progression of MPM is associated with extensive dysregulation of cell cycle checkpoint proteins that modulate cell proliferation, apoptosis, DNA repair and senescence. Methods: The expression of cyclin-dependent kinase inhibitor p16/INK4A was evaluated by immunohistochemistry using tumour biopsy specimens from 88 MPM cases and a semi-quantitative score for p16/INK4A expression was obtained. Post-diagnosis survival and the survival benefit of chemotherapeutic intervention was correlated with p16/INK4A expression. Results: A low, intermediate and high score for p16/INK4A expression was observed for 45 (51.1%), 28 (31.8%) and 15 (17.1%) of the MPM cases, respectively. Those cases with intermediate or high p16/INK4A tumour expression had a significantly better post-diagnosis survival than those cases whose tumours lost p16 expression (log-rank P<0.001). Those patients with sustained p16/INK4A expression who received chemotherapy also had a better survival than those treated patients whose tumours had lost p16/INK4A expression (log-rank P<0.001). Conclusions: Sustained p16/INK4A expression predicts better post-diagnosis survival in MPM and also better survival following chemotherapeutic intervention. PMID:26057448

  14. Downregulation of microRNA-33a promotes cyclin-dependent kinase 6, cyclin D1 and PIM1 expression and gastric cancer cell proliferation

    PubMed Central

    WANG, YUDONG; ZHOU, XINLIANG; SHAN, BAOEN; HAN, JING; WANG, FEIFEI; FAN, XIAOJIE; LV, YALEI; CHANG, LIANG; LIU, WEI

    2015-01-01

    Although microRNA-33 (miR-33) family members are known to be involved in the regulation and balancing of cholesterol metabolism, fatty acid oxidation and insulin signaling, their functions in carcinogenesis are controversial and the underlying mechanisms have remained elusive. Gastric cancer is the fourth most common malignancy in the world; however, the dysregulation and function of miR-33 family members in gastric cancer have not been extensively studied. The present study reported that a miR-33 family member, miR-33a, was significantly downregulated in gastric cancer tissues and gastric cancer cell lines. Of note, the expression of miR-33a was inversely correlated with pathological differentiation and metastasis as well as gastric cancer biomarker CA199. A cell-counting kit-8 assay showed that transfection of the SGC-7901 gastric cell line with miR-33a-overexpression plasmid inhibited the capability of the cells to proliferate. Furthermore, overexpression of miR-33a led to cell cycle arrest of SGC-7901 cells in G1 phase. In addition, a luciferase reporter assay showed that miR-33a directly targeted cyclin-dependent kinase 6 (CDK6), cyclin D1 (CCND1) and serine/threonine kinase PIM-1. In gastric cancer specimens, the reduced expression of miR-33a was associated with increased expression of CDK-6, CCND1 and PIM1. However, only PIM1 expression was significantly increased in cancer tissues compared with that in their adjacent tissues. The present study revealed that miR-33a was downregulated in gastric cancer tissues and cell lines, while forced overexpression of miR-33a decreased CDK-6, CCND1 and PIM1 expression to inhibit gastric cancer cell proliferation by causing G1 phase arrest. miR-33a overexpression may therefore resemble an efficient strategy for gastric cancer therapy. PMID:26352175

  15. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d.

    PubMed

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna

    2017-10-02

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  16. Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers

    PubMed Central

    2012-01-01

    Background P276-00 is a novel cyclin-dependent kinase inhibitor currently in Phase II clinical trials. Gemcitabine is a standard of care for the treatment of pancreatic cancer. The present study investigated the effect of the combination of P276-00 and gemcitabine in five pancreatic cancer cell lines. Methods Cytotoxic activity was evaluated by Propidium Iodide assay. Cell cycle and apoptosis was analyzed by flow cytometry. Genes and proteins known to inhibit apoptosis and contribute to chemoresistance were analysed using western blot analysis and RT-PCR. In vivo efficacy was studied in PANC-1 xenograft model. Results The combination of gemcitabine followed by P276-00 was found to be highly to weakly synergistic in various pancreatic cancer cell lines as assessed by the combination index. Enhancement of apoptosis in PANC-1 cells and decrease in the antiapoptotic protein Bcl-2 and survivin was seen. P276-00 potentiated the gemcitabine-induced cytotoxicity by modulation of proteins involved in chemoresistance to gemcitabine and cell cycle viz. antiapoptotic proteins p8 and cox-2, proapoptotic protein BNIP3 and cell cycle related proteins Cdk4 and cyclin D1. The above results could explain the novel mechanisms of action of the combination therapy. We also show here that gemcitabine in combination with P276-00 is much more effective as an antitumor agent compared with either agent alone in the PANC-1 xenograft tumor model in SCID mice. Conclusions The chemosensitzation of pancreatic tumors to gemcitabine would likely be an important and novel strategy for treatment of pancreatic cancer and enable the use of lower and safer concentrations, to pave the way for a more effective treatment in this devastating disease. Phase IIb clinical trials of P276-00 in combination with gemcitabine in pancreatic cancer patients are ongoing. PMID:22873289

  17. Modulated Expression of Genes Encoding Estrogen Metabolizing Enzymes by G1-Phase Cyclin-Dependent Kinases 6 and 4 in Human Breast Cancer Cells

    PubMed Central

    Jia, Yi; Domenico, Joanne; Swasey, Christina; Wang, Meiqin; Gelfand, Erwin W.; Lucas, Joseph J.

    2014-01-01

    G1-phase cell cycle defects, such as alterations in cyclin D1 or cyclin-dependent kinase (cdk) levels, are seen in most tumors. For example, increased cyclin D1 and decreased cdk6 levels are seen in many human breast tumors. Overexpression of cdk6 in breast tumor cells in culture has been shown to suppress proliferation, unlike the growth stimulating effects of its close homolog, cdk4. In addition to directly affecting proliferation, alterations in cdk6 or cdk4 levels in breast tumor cells also differentially influence levels of numerous steroid metabolic enzymes (SMEs), including those involved in estrogen metabolism. Overexpression of cdk6 in tumor cell lines having low cdk6 resulted in decreased levels of mRNAs encoding aldo-keto reductase (AKR)1C1, AKR1C2 and AKR1C3, which are hydroxysteroid dehydrogenases (HSDs) involved in steroid hormone metabolism. In contrast, increasing cdk4 dramatically increased these transcript levels, especially those encoding AKR1C3, an enzyme that converts estrone to 17β-estradiol, a change that could result in a pro-estrogenic state favoring tumor growth. Effects on other estrogen metabolizing enzymes, including cytochrome P450 (CYP) 19 aromatase, 17β-HSD2, and CYP1B1 transcripts, were also observed. Interactions of cdk6 and cdk4, but not cyclin D1, with the promoter region of a cdk-regulated gene, 17β-HSD2, were detected. The results uncover a previously unsuspected link between the cell cycle and hormone metabolism and differential roles for cdk6 and cdk4 in a novel mechanism for pre-receptor control of steroid hormone action, with important implications for the origin and treatment of steroid hormone-dependent cancers. PMID:24848372

  18. Gastrointestinal adverse effects of cyclin-dependent kinase 4 and 6 inhibitors in breast cancer patients: a systematic review and meta-analysis.

    PubMed

    Shohdy, Kyrillus S; Lasheen, Shaimaa; Kassem, Loay; Abdel-Rahman, Omar

    2017-11-01

    Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors show promising results in metastatic breast cancer. However, an increased incidence of adverse events is remarkable. Among others, gastrointestinal (GI) involvement is of momentous impact on patients and their quality of life. Our search included PubMed, ASCO, ESMO and SABCS databases. Randomized phase II/III trials in metastatic breast cancer receiving CDK4/6 inhibitors were identified and considered relevant based on providing a sufficient safety profile on the incidence of adverse GI effects. Of the 999 records initially screened for relevance, 33 articles were found relevant and 4 studies were finally eligible for meta-analysis with a total of 2007 patients. The relative risk (RR) for all-grade nausea was 1.48 [95% confidence interval (CI): 1.12-1.93, p = 0.005], vomiting was 1.74 (95% CI: 1.09-2.76, p = 0.02), decreased appetite was 1.42 (95% CI: 1.07-1.88, p = 0.02), and for diarrhea it was 1.44 (95% CI: 1.19-1.74, p = 0.0002). Meanwhile, the RR for high-grade nausea was 1.10 (95% CI: 0.29-4.13, p = 0.89), vomiting was 1.38 (95% CI: 0.25-7.75, p = 0.72), decreased appetite was 4.00 (95% CI: 0.87-18.37, p = 0.07), and high-grade diarrhea was 1.19 (95% CI: 0.44-3.21, p = 0.73). Selective CDK4/6 inhibitors were not associated with higher-grade GI toxicities reflecting a well-tolerated safety profile. Regarding the increase in all-grade GI toxicities, it needs further caution with addition of cytotoxic chemotherapy.

  19. Fatigue, alopecia and stomatitis among patients with breast cancer receiving cyclin-dependent kinase 4 and 6 inhibitors: a systematic review and meta-analysis.

    PubMed

    Lasheen, Shaimaa; Shohdy, Kyrillus S; Kassem, Loay; Abdel-Rahman, Omar

    2017-09-01

    Cyclin-dependent kinase (CDK) inhibitors emerge as efficacious agents in hormone positive metastatic breast cancer with more acceptable toxicity profiles than cytotoxic chemotherapy. However, some adverse effects such as fatigue, alopecia and stomatitis, vastly concern patients. The search was conducted in PubMed, American Society of Clinical Oncology meeting library, European Society for Medical Oncology meeting abstract, and the San Antonio meeting abstract databases. We identified phase 2 or 3 trials recruiting patients with breast cancer, randomized to receive hormonal treatment plus either CDK4/6 inhibitors or placebo. We considered studies providing incidence of fatigue, alopecia and stomatitis relevant. One thousand records were screened. 34 studies were considered relevant. Four studies were found to be eligible for meta-analysis with a total of 2007 patients. The relative risk for all grade fatigue was 1.34 [95% CI: 1.17-1.54, p < 0.0001], for all grade alopecia was 2.14 [95% CI: 1.23-3.73, p = 0.007], and for all grade stomatitis 4.87 [95% CI: 2.11-11.24, p = 0.0002]. In addition, the relative risk for high grade fatigue was 2.40 [95% CI: 1.10-5.26, p = 0.03]. CDK4/6 inhibitors were associated with an increased risk of fatigue, alopecia and stomatitis. Further studies with self-reported questionnaires may elucidate the impact of the increased risk of these selected adverse effects on the patients' quality of life.

  20. The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors.

    PubMed

    Tury, Anna; Mairet-Coello, Georges; DiCicco-Bloom, Emanuel

    2011-08-01

    Mounting evidence indicates cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family, including p57(Kip2) and p27(Kip1), control not only cell cycle exit but also corticogenesis. Nevertheless, distinct activities of p57(Kip2) remain poorly defined. Using in vivo and culture approaches, we show p57(Kip2) overexpression at E14.5-15.5 elicits precursor cell cycle exit, promotes transition from proliferation to neuronal differentiation, and enhances process outgrowth, while opposite effects occur in p57(Kip2)-deficient precursors. Studies at later ages indicate p57(Kip2) overexpression also induces precocious glial differentiation, suggesting stage-dependent effects. In embryonic cortex, p57(Kip2) overexpression advances cell radial migration and alters postnatal laminar positioning. While both CKIs induce differentiation, p57(Kip2) was twice as effective as p27(Kip1) in inducing neuronal differentiation and was not permissive to astrogliogenic effects of ciliary neurotrophic factor, suggesting that the CKIs differentially modulate cell fate decisions. At molecular levels, although highly conserved N-terminal regions of both CKIs elicit cycle withdrawal and differentiation, the C-terminal region of p57(Kip2) alone inhibits in vivo migration. Furthermore, p57(Kip2) effects on neurogenesis and gliogenesis require the N-terminal cyclin/CDK binding/inhibitory domains, while previous p27(Kip1) studies report cell cycle-independent functions. These observations suggest p57(Kip2) coordinates multiple stages of corticogenesis and exhibits distinct and common activities compared with related family member p27(Kip1).

  1. Parathyroid cell growth in patients with advanced secondary hyperparathyroidism: vitamin D receptor and cyclin-dependent kinase inhibitors, p21 and p27.

    PubMed

    Tokumoto, Masanori; Tsuruya, Kazuhiko; Fukuda, Kyoichi; Kanai, Hidetoshi; Kuroki, Shoji; Hirakata, Hideki; Iida, Mitsuo

    2003-06-01

    Uraemic patients with advanced secondary hyperparathyroidism (2HPT) have nodular hyperplastic glands with a decreased vitamin D receptor (VDR) density. Previous studies have shown that nodular hyperplasia expressed a significantly lower VDR density as compared with diffuse hyperplasia, and the VDR density negatively correlated with both the glandular weight and the marker of cell proliferation. However, the mechanism by which the decreased VDR density leads to parathyroid cell proliferation remains unclear. In the myelomonocytic cell line, active vitamin D(3) is known to activate the transcription of both p21 and p27, cyclin-dependent kinase inhibitors (CDKIs), regulating the transition from the G(1) to the S phase of the cell cycle, in a VDR-dependent manner. Moreover, the overexpression of p21 and p27 inhibits cell proliferation. In order to elucidate the mechanism of parathyroid cell proliferation, the expression of CDKIs, p21 and p27, and the VDR was analysed immunohistochemically, and compared among nodular and diffuse hyperplastic parathyroid glands, and histologically normal parathyroid glands. The VDR expression in nodular hyperplasias was significantly decreased compared with either diffuse hyperplasias or normal parathyroid glands. The expression of both p21 and p27 was also significantly lower in nodular hyperplasias than in diffuse hyperplasias or normal parathyroid glands. Sections of parathyroid glands with a high expression of nuclear VDR highly expressed both p21 and p27. In nodular hyperplasias, the expression of both p21 and p27 correlated either positively with the nuclear VDR expression or inversely with the glandular weight. Therefore, the reduced expression of p21 and p27, being VDR dependent, is a major pathogenic factor for nodular parathyroid gland growth in advanced 2HPT.

  2. Cyclin-dependent kinase 5 mediates adult OPC maturation and myelin repair through modulation of Akt and GsK-3β signaling.

    PubMed

    Luo, FuCheng; Burke, Kathryn; Kantor, Christopher; Miller, Robert H; Yang, Yan

    2014-07-30

    Failure of remyelination in diseases, such as multiple sclerosis (MS), leads to permanent axonal damage and irreversible functional loss. The mechanisms controlling remyelination are currently poorly understood. Recent studies implicate the cyclin-dependent kinase 5 (Cdk5) in regulating oligodendrocyte (OL) development and myelination in CNS. In this study, we show that Cdk5 is also an important regulator of remyelination. Pharmacological inhibition of Cdk5 inhibits repair of lysolecithin lesions. This inhibition is a consequence of Cdk5 disruption in neural cells because remyelination in slice cultures is blocked by Cdk5 inhibitors, whereas specific deletion of Cdk5 in OLs inhibits myelin repair. In CNP-Cre;Cdk5(fl/fl) conditional knock-out mouse (Cdk5 cKO), myelin repair was delayed significantly in response to focal demyelinating lesions compared with wild-type animals. The lack of myelin repair was reflected in decreased expression of MBP and proteolipid protein and a reduction in the total number of myelinated axons in the lesion. The number of CC1(+) cells in the lesion sites was significantly reduced in Cdk5 cKO compared with wild-type animals although the total number of oligodendrocyte lineage cells (Olig2(+) cells) was increased, suggesting that Cdk5 loss perturbs the transition of early OL lineage cell into mature OL and subsequent remyelination. The failure of remyelination in Cdk5 cKO animals was associated with a reduction in signaling through the Akt pathway and an enhancement of Gsk-3β signaling pathways. Together, these data suggest that Cdk5 is critical in regulating the transition of adult oligodendrocyte precursor cells to mature OLs that is essential for myelin repair in adult CNS. Copyright © 2014 the authors 0270-6474/14/3410415-15$15.00/0.

  3. The expression of intermediate filament protein nestin and its association with cyclin-dependent kinase 5 in the glomeruli of rats with diabetic nephropathy.

    PubMed

    Liu, Wei; Zhang, Yue; Liu, Shuxia; Liu, Qingjuan; Hao, Jun; Shi, Yonghong; Zhao, Song; Duan, Huijun

    2013-06-01

    Podocyte injury plays a crucial role in the development of diabetic nephropathy (DN), but its underlying mechanism remains poorly understood. Emerging evidences suggest that the cytoskeleton disruption is related to podocyte injury. The aim of this study was to investigate whether nestin, a cytoskeleton-associated intermediate filament protein, is involved in the development of DN. Rat diabetes was induced by intraperitoneal injection of streptozotocin. The renal histological changes were investigated by light microscopy and transmission electron microscopy. The location of nestin and vimentin in renal tissues was observed by immunohistochemistry. The protein or messenger RNA levels of nestin and cyclin-dependent kinase 5 (Cdk5) were detected by Western blot and real-time polymerase chain reaction. The relationship between nestin and vimentin was detected by co-immunoprecipitation. Compared with controls, diabetic rats showed significant characteristics of renal damage. The expression of nestin and vimentin in the glomeruli was increased at the early stage of diabetes, which then gradually decreased. Co-immunoprecipitation assays demonstrated that nestin disassembled with vimentin in diabetic rats. The expression of Cdk5 was increased in a time-dependent manner in diabetic rats. The degree of albuminuria in diabetic rats was negatively correlated with nestin and positively correlated with Cdk5. Roscovitine, a Cdk5 inhibitor, reduced the degradation of nestin. Moreover, podocyte injuries were significantly ameliorated by treatment with roscovitine. The intermediate filament protein nestin is associated with development of DN. Blockage of Cdk5 increases the level of nestin and attenuates renal damage, which would provide a useful target for DN therapy.

  4. eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and Is Modulated by Phosphorylation1[OPEN

    PubMed Central

    Bush, Maxwell S.; Pierrat, Olivier; Nibau, Candida; Mikitova, Veronika; Zheng, Tao; Corke, Fiona M. K.; Mayberry, Laura K.; Browning, Karen S.

    2016-01-01

    Eukaryotic initiation factor 4A (eIF4A) is a highly conserved RNA-stimulated ATPase and helicase involved in the initiation of messenger RNA translation. Previously, we found that eIF4A interacts with cyclin-dependent kinase A (CDKA), the plant ortholog of mammalian CDK1. Here, we show that this interaction occurs only in proliferating cells where the two proteins coassociate with 5′-cap-binding protein complexes, eIF4F or the plant-specific eIFiso4F. CDKA phosphorylates eIF4A on a conserved threonine residue (threonine-164) within the RNA-binding motif 1b TPGR. In vivo, a phospho-null (APGR) variant of the Arabidopsis (Arabidopsis thaliana) eIF4A1 protein retains the ability to functionally complement a mutant (eif4a1) plant line lacking eIF4A1, whereas a phosphomimetic (EPGR) variant fails to complement. The phospho-null variant (APGR) rescues the slow growth rate of roots and rosettes, together with the ovule-abortion and late-flowering phenotypes. In vitro, wild-type recombinant eIF4A1 and its phospho-null variant both support translation in cell-free wheat germ extracts dependent upon eIF4A, but the phosphomimetic variant does not support translation and also was deficient in ATP hydrolysis and helicase activity. These observations suggest a mechanism whereby CDK phosphorylation has the potential to down-regulate eIF4A activity and thereby affect translation. PMID:27388680

  5. A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas.

    PubMed

    Infante, Jeffrey R; Cassier, Philippe A; Gerecitano, John F; Witteveen, Petronella O; Chugh, Rashmi; Ribrag, Vincent; Chakraborty, Abhijit; Matano, Alessandro; Dobson, Jason R; Crystal, Adam S; Parasuraman, Sudha; Shapiro, Geoffrey I

    2016-12-01

    Ribociclib (an oral, highly specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb + ). This first-in-human study investigated the MTD, recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of ribociclib in patients with Rb + advanced solid tumors or lymphomas. Patients received escalating doses of ribociclib (3-weeks-on/1-week-off or continuous). Dose escalation was guided by a Bayesian Logistic Regression Model with overdose control principle. Among 132 patients, 125 received ribociclib 3-weeks-on/1-week-off and 7 were dosed continuously. Nine dose-limiting toxicities were observed among 70 MTD/RDE evaluable patients during cycle 1, most commonly neutropenia (n = 3) and thrombocytopenia (n = 2). The MTD and RDE were established as 900 and 600 mg/day 3-weeks-on/1-week-off, respectively. Common treatment-related adverse events were (all-grade; grade 3/4) neutropenia (46%; 27%), leukopenia (43%; 17%), fatigue (45%; 2%), and nausea (42%; 2%). Asymptomatic Fridericia's corrected QT prolongation was specific to doses ≥600 mg/day (9% of patients at 600 mg/day; 33% at doses >600 mg/day). Plasma exposure increases were slightly higher than dose proportional; mean half-life at the RDE was 32.6 hours. Reduced Ki67 was observed in paired skin and tumor biopsies, consistent with ribociclib-mediated antiproliferative activity. There were 3 partial responses and 43 patients achieved a best response of stable disease; 8 patients were progression-free for >6 months. Ribociclib demonstrated an acceptable safety profile, dose-dependent plasma exposure, and preliminary signs of clinical activity. Phase I-III studies of ribociclib are under way in various indications. Clin Cancer Res; 22(23); 5696-705. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Apoptosis, cell proliferation and modulation of cyclin-dependent kinase inhibitor p21cip1 in vascular remodelling during vein arterialization in the rat

    PubMed Central

    Borin, Thaiz Ferraz; Miyakawa, Ayumi Aurea; Cardoso, Leandro; de Figueiredo Borges, Luciano; Gonçalves, Giovana Aparecida; Krieger, Jose Eduardo

    2009-01-01

    Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while α-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 and p16INKA remained unchanged, whereas p21Cip1 was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21Cip1 is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts. PMID:19563615

  7. Molecular evidence for increased antitumor activity of gemcitabine in combination with a cyclin-dependent kinase inhibitor, P276-00 in pancreatic cancers.

    PubMed

    Rathos, Maggie J; Joshi, Kavita; Khanwalkar, Harshal; Manohar, Sonal M; Joshi, Kalpana S

    2012-08-08

    P276-00 is a novel cyclin-dependent kinase inhibitor currently in Phase II clinical trials. Gemcitabine is a standard of care for the treatment of pancreatic cancer. The present study investigated the effect of the combination of P276-00 and gemcitabine in five pancreatic cancer cell lines. Cytotoxic activity was evaluated by Propidium Iodide assay. Cell cycle and apoptosis was analyzed by flow cytometry. Genes and proteins known to inhibit apoptosis and contribute to chemoresistance were analysed using western blot analysis and RT-PCR. In vivo efficacy was studied in PANC-1 xenograft model. The combination of gemcitabine followed by P276-00 was found to be highly to weakly synergistic in various pancreatic cancer cell lines as assessed by the combination index. Enhancement of apoptosis in PANC-1 cells and decrease in the antiapoptotic protein Bcl-2 and survivin was seen. P276-00 potentiated the gemcitabine-induced cytotoxicity by modulation of proteins involved in chemoresistance to gemcitabine and cell cycle viz. antiapoptotic proteins p8 and cox-2, proapoptotic protein BNIP3 and cell cycle related proteins Cdk4 and cyclin D1. The above results could explain the novel mechanisms of action of the combination therapy. We also show here that gemcitabine in combination with P276-00 is much more effective as an antitumor agent compared with either agent alone in the PANC-1 xenograft tumor model in SCID mice. The chemosensitzation of pancreatic tumors to gemcitabine would likely be an important and novel strategy for treatment of pancreatic cancer and enable the use of lower and safer concentrations, to pave the way for a more effective treatment in this devastating disease. Phase IIb clinical trials of P276-00 in combination with gemcitabine in pancreatic cancer patients are ongoing.

  8. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    SciTech Connect

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonarymore » hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension.« less

  9. NeoPalAna: Neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor positive breast cancer

    PubMed Central

    Ma, Cynthia X.; Gao, Feng; Luo, Jingqin; Northfelt, Donald W.; Goetz, Matthew; Forero, Andres; Hoog, Jeremy; Naughton, Michael; Ademuyiwa, Foluso; Suresh, Rama; Anderson, Karen S.; Margenthaler, Julie; Aft, Rebecca; Hobday, Timothy; Moynihan, Timothy; Gillanders, William; Cyr, Amy; Eberlein, Timothy J.; Hieken, Tina; Krontiras, Helen; Guo, Zhanfang; Lee, Michelle V.; Spies, Nicholas C.; Skidmore, Zachary L.; Griffith, Obi L.; Griffith, Malachi; Thomas, Shana; Bumb, Caroline; Vij, Kiran; Bartlett, Cynthia Huang; Koehler, Maria; Al-Kateb, Hussam; Sanati, Souzan; Ellis, Matthew J.

    2017-01-01

    Purpose Cyclin-dependent kinase (CDK) 4/6 drives cell proliferation in estrogen receptor positive (ER+) breast cancer. This single-arm phase II neoadjuvant trial (NeoPalAna) assessed the anti-proliferative activity of the CDK4/6 inhibitor palbociclib in primary breast cancer as a prelude to adjuvant studies. Experimental Design Eligible patients with clinical stage II/III ER+/HER2- breast cancer received anastrozole 1mg daily for 4 weeks (cycle 0) (with goserelin if premenopausal), followed by adding palbociclib (125mg daily on days 1-21) on cycle 1 day 1 (C1D1) for four 28-day cycles unless C1D15 Ki67>10%, in which case patients went off study due to inadequately response. Anastrozole was continued until surgery, which occurred 3-5 weeks post palbociclib exposure. Later patients received additional 10-12 days of palbociclib (Cycle 5) immediately before surgery. Serial biopsies at baseline, C1D1, C1D15, and surgery were analyzed for Ki67, gene expression and mutation profiles. The primary endpoint was Complete Cell Cycle Arrest (CCCA: central Ki67<2.7%). Results Fifty patients enrolled. The CCCA rate was significantly higher after adding palbociclib to anastrozole (C1D15 87% vs C1D1 26%, p<0.001). Palbociclib enhanced cell cycle control over anastrozole monotherapy regardless of luminal subtype (A vs B) and PIK3CA status with activity observed across a broad range of clinicopathological and mutation profiles. Ki67 recovery at surgery following palbociclib washout was suppressed by cycle 5 palbociclib. Resistance was associated with non-luminal subtypes and persistent E2F-target gene expression. Conclusions Palbociclib is an active anti-proliferative agent for early-stage breast cancer resistant to anastrozole, however, prolonged administration may be necessary to maintain its effect. PMID:28270497

  10. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.

    PubMed

    Yang, Jun; Zhao, Yingxin; Kalita, Mridul; Li, Xueling; Jamaluddin, Mohammad; Tian, Bing; Edeh, Chukwudi B; Wiktorowicz, John E; Kudlicki, Andrzej; Brasier, Allan R

    2015-10-01

    Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1

  11. Zinc(II) complexes with potent cyclin-dependent kinase inhibitors derived from 6-benzylaminopurine: synthesis, characterization, X-ray structures and biological activity.

    PubMed

    Trávnícek, Zdenek; Krystof, Vladimír; Sipl, Michal

    2006-02-01

    The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is

  12. Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis.

    PubMed

    Grant, Nicola J; Coates, Philip J; Woods, Yvonne L; Bray, Susan E; Morrice, Nicholas A; Hastie, C James; Lamont, Douglas J; Carey, Francis A; Sutherland, Calum

    2015-11-10

    Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls. However the identity of physiological and pathophysiological CDK5 substrates remains the subject of debate, making the choice of CDK5 activity biomarkers difficult. Here we use in vitro and in cell phosphorylation assays to identify novel features of CDK5 target sequence determinants that confer enhanced CDK5 selectivity, providing means to select substrate biomarkers of CDK5 activity with more confidence. We then characterize tools for the best CDK5 substrate we identified to monitor its phosphorylation in human tissue and use these to interrogate human tumour arrays. The close proximity of Arg/Lys amino acids and a proline two residues N-terminal to the phosphorylated residue both improve recognition of the substrate by CDK5. In contrast the presence of a proline two residues C-terminal to the target residue dramatically reduces phosphorylation rate. Serine-522 of Collapsin Response Mediator-2 (CRMP2) is a validated CDK5 substrate with many of these structural criteria. We generate and characterise phosphospecific antibodies to Ser522 and show that phosphorylation appears in human tumours (lung, breast, and lymphoma) in stark contrast to surrounding non-neoplastic tissue. In lung cancer the anti-phospho-Ser522 signal is positive in squamous cell carcinoma more frequently than adenocarcinoma. Finally we demonstrate that it is a specific and unusual splice variant of CRMP2 (CRMP2A) that is phosphorylated in tumour cells. For the first time this data associates altered CDK5 substrate phosphorylation with

  13. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack.

    PubMed

    Hamilton, Duane H; McCampbell, Kristen K; Palena, Claudia

    2018-01-01

    The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8 + T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8 + T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial-mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of

  14. Variability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study.

    PubMed

    Taghizadeh, Mohammad; Goliaei, Bahram; Madadkar-Sobhani, Armin

    2016-06-01

    Protein flexibility, which has been referred as a dynamic behavior has various roles in proteins' functions. Furthermore, for some developed tools in bioinformatics, such as protein-protein docking software, considering the protein flexibility, causes a higher degree of accuracy. Through undertaking the present work, we have accomplished the quantification plus analysis of the variations in the human Cyclin Dependent Kinase 2 (hCDK2) protein flexibility without affecting a significant change in its initial environment or the protein per se. The main goal of the present research was to calculate variations in the flexibility for each residue of the hCDK2, analysis of their flexibility variations through clustering, and to investigate the functional aspects of the residues with high flexibility variations. Using Gromacs package (version 4.5.4), three independent molecular dynamics (MD) simulations of the hCDK2 protein (PDB ID: 1HCL) was accomplished with no significant changes in their initial environments, structures, or conformations, followed by Root Mean Square Fluctuations (RMSF) calculation of these MD trajectories. The amount of variations in these three curves of RMSF was calculated using two formulas. More than 50% of the variation in the flexibility (the distance between the maximum and the minimum amount of the RMSF) was found at the region of Val-154. As well, there are other major flexibility fluctuations in other residues. These residues were mostly positioned in the vicinity of the functional residues. The subsequent works were done, as followed by clustering all hCDK2 residues into four groups considering the amount of their variability with respect to flexibility and their position in the RMSF curves. This work has introduced a new class of flexibility aspect of the proteins' residues. It could also help designing and engineering proteins, with introducing a new dynamic aspect of hCDK2, and accordingly, for the other similar globular proteins. In

  15. P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines

    PubMed Central

    2012-01-01

    Background Mantle cell lymphoma (MCL) is a well-defined aggressive lymphoid neoplasm characterized by proliferation of mature B-lymphocytes that have a remarkable tendency to disseminate. This tumor is considered as one of the most aggressive lymphoid neoplasms with poor responses to conventional chemotherapy and relatively short survival. Since cyclin D1 and cell cycle control appears as a natural target, small-molecule inhibitors of cyclin-dependent kinases (Cdks) and cyclins may play important role in the therapy of this disorder. We explored P276-00, a novel selective potent Cdk4-D1, Cdk1-B and Cdk9-T1 inhibitor discovered by us against MCL and elucidated its potential mechanism of action. Methods The cytotoxic effect of P276-00 in three human MCL cell lines was evaluated in vitro. The effect of P276-00 on the regulation of cell cycle, apoptosis and transcription was assessed, which are implied in the pathogenesis of MCL. Flow cytometry, western blot, immunoflourescence and siRNA studies were performed. The in vivo efficacy and effect on survival of P276-00 was evaluated in a Jeko-1 xenograft model developed in SCID mice. PK/PD analysis of tumors were performed using LC-MS and western blot analysis. Results P276-00 showed a potent cytotoxic effect against MCL cell lines. Mechanistic studies confirmed down regulation of cell cycle regulatory proteins with apoptosis. P276-00 causes time and dose dependent increase in the sub G1 population as early as from 24 h. Reverse transcription PCR studies provide evidence that P276-00 treatment down regulated transcription of antiapoptotic protein Mcl-1 which is a potential pathogenic protein for MCL. Most importantly, in vivo studies have revealed significant efficacy as a single agent with increased survival period compared to vehicle treated. Further, preliminary combination studies of P276-00 with doxorubicin and bortezomib showed in vitro synergism. Conclusion Our studies thus provide evidence and rational that P276

  16. Gastrointestinal adverse effects of cyclin-dependent kinase 4 and 6 inhibitors in breast cancer patients: a systematic review and meta-analysis

    PubMed Central

    Shohdy, Kyrillus S.; Lasheen, Shaimaa; Kassem, Loay; Abdel-Rahman, Omar

    2017-01-01

    Background: Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors show promising results in metastatic breast cancer. However, an increased incidence of adverse events is remarkable. Among others, gastrointestinal (GI) involvement is of momentous impact on patients and their quality of life. Methods: Our search included PubMed, ASCO, ESMO and SABCS databases. Randomized phase II/III trials in metastatic breast cancer receiving CDK4/6 inhibitors were identified and considered relevant based on providing a sufficient safety profile on the incidence of adverse GI effects. Results: Of the 999 records initially screened for relevance, 33 articles were found relevant and 4 studies were finally eligible for meta-analysis with a total of 2007 patients. The relative risk (RR) for all-grade nausea was 1.48 [95% confidence interval (CI): 1.12–1.93, p = 0.005], vomiting was 1.74 (95% CI: 1.09–2.76, p = 0.02), decreased appetite was 1.42 (95% CI: 1.07–1.88, p = 0.02), and for diarrhea it was 1.44 (95% CI: 1.19–1.74, p = 0.0002). Meanwhile, the RR for high-grade nausea was 1.10 (95% CI: 0.29–4.13, p = 0.89), vomiting was 1.38 (95% CI: 0.25–7.75, p = 0.72), decreased appetite was 4.00 (95% CI: 0.87–18.37, p = 0.07), and high-grade diarrhea was 1.19 (95% CI: 0.44–3.21, p = 0.73). Conclusion: Selective CDK4/6 inhibitors were not associated with higher-grade GI toxicities reflecting a well-tolerated safety profile. Regarding the increase in all-grade GI toxicities, it needs further caution with addition of cytotoxic chemotherapy. PMID:29090083

  17. Hematological adverse effects in breast cancer patients treated with cyclin-dependent kinase 4 and 6 inhibitors: a systematic review and meta-analysis.

    PubMed

    Kassem, Loay; Shohdy, Kyrillus S; Lasheen, Shaimaa; Abdel-Rahman, Omar; Bachelot, Thomas

    2018-01-01

    The introduction of specific cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors significantly improved progression-free survival in hormone receptor-positive metastatic breast cancer. CDK 4/6 inhibitors induce cell cycle arrest via liberating the tumor suppressor retinoblastoma protein from CDK4/6 inhibitory effect. Preliminary studies suggested an increase in the hematological toxicities which might affect the quality of life in such palliative setting. We searched PubMed, ASCO, ESMO and San Antonio meeting databases for randomized phase II/III trials in metastatic breast cancer receiving CDK4/6 inhibitors with safety data provided on the incidence of hematological adverse effects. Our search identified 1012 citations that were screened for relevance. Thirty-six studies were found to be potentially eligible. After excluding the ineligible studies, six studies were deemed to be eligible for meta-analysis. The risk ratio (RR) was 11.31 [95% confidence interval (CI) 8.06-15.87; p < 0.0001] for all-grade leucopenia, 14.86 (95% CI 11.37-19.41; p < 0.0001) for all-grade neutropenia, 9.04 (95% CI 3.78-21.63; p < 0.0001) for all-grade thrombocytopenia and 3.57 (95% CI 2.65-4.81; p < 0.0001) for all-grade anemia. The RR for grade 3/4 leucopenia was 33.86 (95% CI 14.59-78.57; p < 0.0001), for grade 3/4 neutropenia was 44.00 (95% CI 24.72-78.33; p < 0.0001), for grade 3/4 thrombocytopenia was 5.70 (95% CI 2.03-16.01; p = 0.001) and for grade 3/4 anemia was 2.80 (95% CI 1.45-5.41; p = 0.002). There was no significant increase in the RR of febrile neutropenia with RR of 3.29 (95% CI 0.93-11.57; p = 0.06). Our analysis provides evidence that the use of CDK 4/6 inhibitors is associated with an increased risk of all-grade and high-grade hematological adverse events, which seems to be a class-effect, but not of febrile neutropenia compared with hormonal therapy alone.

  18. Loss of the Cyclin-Dependent Kinase Inhibitor 1 in the Context of Brachyury-Mediated Phenotypic Plasticity Drives Tumor Resistance to Immune Attack

    PubMed Central

    Hamilton, Duane H.; McCampbell, Kristen K.; Palena, Claudia

    2018-01-01

    The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of

  19. Variability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study

    PubMed Central

    Taghizadeh, Mohammad; Goliaei, Bahram; Madadkar-Sobhani, Armin

    2016-01-01

    Background Protein flexibility, which has been referred as a dynamic behavior has various roles in proteins’ functions. Furthermore, for some developed tools in bioinformatics, such as protein-protein docking software, considering the protein flexibility, causes a higher degree of accuracy. Through undertaking the present work, we have accomplished the quantification plus analysis of the variations in the human Cyclin Dependent Kinase 2 (hCDK2) protein flexibility without affecting a significant change in its initial environment or the protein per se. Objectives The main goal of the present research was to calculate variations in the flexibility for each residue of the hCDK2, analysis of their flexibility variations through clustering, and to investigate the functional aspects of the residues with high flexibility variations. Materials and Methods Using Gromacs package (version 4.5.4), three independent molecular dynamics (MD) simulations of the hCDK2 protein (PDB ID: 1HCL) was accomplished with no significant changes in their initial environments, structures, or conformations, followed by Root Mean Square Fluctuations (RMSF) calculation of these MD trajectories. The amount of variations in these three curves of RMSF was calculated using two formulas. Results More than 50% of the variation in the flexibility (the distance between the maximum and the minimum amount of the RMSF) was found at the region of Val-154. As well, there are other major flexibility fluctuations in other residues. These residues were mostly positioned in the vicinity of the functional residues. The subsequent works were done, as followed by clustering all hCDK2 residues into four groups considering the amount of their variability with respect to flexibility and their position in the RMSF curves. Conclusions This work has introduced a new class of flexibility aspect of the proteins’ residues. It could also help designing and engineering proteins, with introducing a new dynamic aspect of h

  20. Alterations of cyclin-dependent kinase 4 inhibitor (p16INK4A/MTS1) gene structure and expression in acute lymphoblastic leukemias.

    PubMed

    Delmer, A; Tang, R; Senamaud-Beaufort, C; Paterlini, P; Brechot, C; Zittoun, R

    1995-07-01

    The cyclin-dependent kinase 4 (cdk4) inhibitor (p16INK4/MTS1/CDKN2) gene has been recently identified as a putative tumor suppressor gene because of the high frequency of homozygous deletion observed in numerous human tumor cell lines, including leukemias. However, results obtained from uncultured tumor samples have led to discussion of the relevance of these findings. Using reverse transcriptase polymerase chain reaction (RT-PCR) and Southern blot analysis, we have investigated p16INK4A gene at both RNA and genomic levels in various types of leukemias: acute myeloid leukemia (AML) (n = 23); acute lymphocytic leukemia (ALL) (n = 22) and B cell chronic lymphoproliferative disorders (CLPD) (n = 33). p16INK4A mRNA expression was not found in only 1/20 AML and 2/23 CLPD samples. Conversely, p16INK4A mRNA was not detected in 5/17 ALL cases, and intensity of PCR products were barely detectable in seven additional cases, possibly related to the contamination by normal cells in some cases. By Southern blotting, a homozygous deletion of p16INK4A gene was found in 6/17 ALL cases (35%) among which 4/6 were negative or weakly positive by RT-PCR assay. None of the five AML and 20 CLL samples studied had p16INK4A deletion. Sequence analysis of p16INK4A exon 2 did not show point mutation in two of these cases lacking mRNA expression. Our data provide further evidence that among hematological malignancies, ALL are the most likely to be associated with p16INK4A inactivation, mainly by homozygous gene deletion. Since most hematological malignancies-except ALL-are infrequently associated with p16INK4A and retinoblastoma (Rb) gene alteration it seems worthwhile to explore cdk4 and cdk6 expression to determine whether or not the disruption of the p16INK4A/Rb/cdk4/cdk6 regulatory loop might play a role in their pathogenesis.

  1. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

    PubMed

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-08

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone

    PubMed Central

    Stetz, Gabrielle; Tse, Amanda

    2017-01-01

    The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired

  3. Long non-coding RNA colon cancer-associated transcript 1 functions as a competing endogenous RNA to regulate cyclin-dependent kinase 1 expression by sponging miR-490-3p in hepatocellular carcinoma progression.

    PubMed

    Dou, Chunqing; Sun, Liyuan; Jin, Xin; Han, Mingming; Zhang, Bao; Li, Tao

    2017-04-01

    Hepatocellular carcinoma is an aggressive neoplasm and is one of the most common human cancers. Recently, long non-coding RNAs have been demonstrated to participate in pathogenesis of many diseases including the progression in several cancers. In this study, we found that the long non-coding RNA colon cancer-associated transcript 1 was upregulated in hepatocellular carcinoma tissues (p < 0.05), and high colon cancer-associated transcript 1 expression level was positively associated with tumor volume (p < 0.05) and American Joint Committee on Cancer stage (p < 0.05) in hepatocellular carcinoma patients. Luciferase reporter assays and RNA-pulldown assays showed that colon cancer-associated transcript 1 is a target of miR-490-3p. Real-time quantitative polymerase chain reaction and Western blot analysis indicated that colon cancer-associated transcript 1 regulated cyclin-dependent kinase 1 expression as a competing endogenous RNA by sponging miR-490-3p in hepatocellular carcinoma cells. Furthermore, colon cancer-associated transcript 1 silencing decreased hepatocellular carcinoma cells proliferation and invasion and overexpression promoted cell proliferation and invasion in vitro. These data demonstrated that the colon cancer-associated transcript 1/miR-490-3p/cyclin-dependent kinase 1 regulatory pathway promotes the progression of hepatocellular carcinoma. Inhibition of colon cancer-associated transcript 1 expression may be a novel therapeutic strategy for hepatocellular carcinoma.

  4. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

    PubMed

    Schofield, Alice V; Gamell, Cristina; Suryadinata, Randy; Sarcevic, Boris; Bernard, Ora

    2013-03-15

    Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.

  5. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    SciTech Connect

    Oi, Ami; Katayama, Syouichi; Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed amore » typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.« less

  6. Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells.

    PubMed

    Pan, Min-Hsiung; Chen, Wei-Jen; Lin-Shiau, Shoei-Yn; Ho, Chi-Tang; Lin, Jen-Kun

    2002-10-01

    Tangeretin (5,6,7,8,4'-pentamethoxyflavone) is concentrated in the peel of citrus fruits. DNA flow cytometric analysis indicated that tangeretin blocked cell cycle progression at G1 phase in colorectal carcinoma COLO 205 cells. Over a 24 h exposure to tangeretin, the degree of phosphorylation of Rb was decreased after 12 h and G1 arrest developed. The protein expression of cyclins A, D1, and E reduced slightly under the same conditions. Immunocomplex kinase experiments showed that tangeretin inhibited the activities of cyclin-dependent kinases 2 (Cdk2) and 4 (Cdk4) in a dose-dependent manner in the cell-free system. As the cells were exposed to tangeretin (50 microM) over 48 h a gradual loss of both Cdk2 and 4 kinase activities occurred. Tangeretin also increased the content of the Cdk inhibitor p21 protein and this effect correlated with the elevation in p53 levels. In addition, tangeretin also increased the level of the Cdk inhibitor p27 protein within 18 h. These results suggest that tangeretin either exerts its growth-inhibitory effects through modulation of the activities of several key G1 regulatory proteins, such as Cdk2 and Cdk4, or mediates the increase of Cdk inhibitors p21 and p27.

  7. A Protein Encoded by the Latency-Related Gene of Bovine Herpesvirus 1 Is Expressed in Trigeminal Ganglionic Neurons of Latently Infected Cattle and Interacts with Cyclin-Dependent Kinase 2 during Productive Infection

    PubMed Central

    Jiang, Yunquan; Hossain, Ashfaque; Winkler, Maria Teresa; Holt, Todd; Doster, Alan; Jones, Clinton

    1998-01-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation. PMID:9733854

  8. A protein encoded by the latency-related gene of bovine herpesvirus 1 is expressed in trigeminal ganglionic neurons of latently infected cattle and interacts with cyclin-dependent kinase 2 during productive infection.

    PubMed

    Jiang, Y; Hossain, A; Winkler, M T; Holt, T; Doster, A; Jones, C

    1998-10-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807-3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.

  9. Establishment of an immortalized cell line derived from the prairie vole via lentivirus-mediated transduction of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase

    PubMed Central

    Katayama, Masafumi; Kiyono, Tohru; Horie, Kengo; Hirayama, Takashi; Eitsuka, Takahiro; Kuroda, Kengo; Donai, Kenichiro; Hidema, Shizu; Nishimori, Katsuhiko; Fukuda, Tomokazu

    2015-01-01

    The prairie vole (Microtus ochrogaster) shows social behaviors such as monogamy and parenting of infants with pair bonding. These social behaviors are specific to the prairie vole and have not been observed in other types of voles, such as mountain voles. Although the prairie vole has several unique characteristics, an in vitro cell culture system has not been established for this species. Furthermore, establishment of cultured cells derived from the prairie vole may be beneficial based on the three Rs (i.e., Replacement, Reduction, and Refinement) concept. Therefore, in this study, we attempted to establish an immortalized cell line derived from the prairie vole. Our previous research has shown that transduction with mutant forms of cyclin-dependent kinase 4 (CDK4), cyclin D, and telomerase reverse transcriptase (TERT) could efficiently immortalize cells from multiple species, including humans, cattle, pigs, and monkeys. Here, we introduced these three genes into prairie vole-derived muscle fibroblasts. The expression of mutant CDK4 and cyclin D proteins was confirmed by western blotting, and telomerase activity was detected in immortalized vole muscle-derived fibroblasts (VMF-K4DT cells or VMFs) by stretch PCR. Population doubling analysis showed that the introduction of mutant CDK4, cyclin D, and TERT extended the lifespan of VMFs. To the best of our knowledge, this is the first report describing the establishment of an immortalized cell line derived from the prairie vole through the expression of mutant CDK4, cyclin D, and human TERT. PMID:26496927

  10. Establishment of an immortalized cell line derived from the prairie vole via lentivirus-mediated transduction of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase.

    PubMed

    Katayama, Masafumi; Kiyono, Tohru; Horie, Kengo; Hirayama, Takashi; Eitsuka, Takahiro; Kuroda, Kengo; Donai, Kenichiro; Hidema, Shizu; Nishimori, Katsuhiko; Fukuda, Tomokazu

    2016-01-01

    The prairie vole (Microtus ochrogaster) shows social behaviors such as monogamy and parenting of infants with pair bonding. These social behaviors are specific to the prairie vole and have not been observed in other types of voles, such as mountain voles. Although the prairie vole has several unique characteristics, an in vitro cell culture system has not been established for this species. Furthermore, establishment of cultured cells derived from the prairie vole may be beneficial based on the three Rs (i.e., Replacement, Reduction, and Refinement) concept. Therefore, in this study, we attempted to establish an immortalized cell line derived from the prairie vole. Our previous research has shown that transduction with mutant forms of cyclin-dependent kinase 4 (CDK4), cyclin D, and telomerase reverse transcriptase (TERT) could efficiently immortalize cells from multiple species, including humans, cattle, pigs, and monkeys. Here, we introduced these three genes into prairie vole-derived muscle fibroblasts. The expression of mutant CDK4 and cyclin D proteins was confirmed by western blotting, and telomerase activity was detected in immortalized vole muscle-derived fibroblasts (VMF-K4DT cells or VMFs) by stretch PCR. Population doubling analysis showed that the introduction of mutant CDK4, cyclin D, and TERT extended the lifespan of VMFs. To the best of our knowledge, this is the first report describing the establishment of an immortalized cell line derived from the prairie vole through the expression of mutant CDK4, cyclin D, and human TERT.

  11. A Novel Non-agonist Peroxisome Proliferator-activated Receptor γ (PPARγ) Ligand UHC1 Blocks PPARγ Phosphorylation by Cyclin-dependent Kinase 5 (CDK5) and Improves Insulin Sensitivity*

    PubMed Central

    Choi, Sun-Sil; Kim, Eun Sun; Koh, Minseob; Lee, Soo-Jin; Lim, Donghyun; Yang, Yong Ryoul; Jang, Hyun-Jun; Seo, Kyung-ah; Min, Sang-Hyun; Lee, In Hee; Park, Seung Bum; Suh, Pann-Ghill; Choi, Jang Hyun

    2014-01-01

    Thiazolidinedione class of anti-diabetic drugs which are known as peroxisome proliferator-activated receptor γ (PPARγ) ligands have been used to treat metabolic disorders, but thiazolidinediones can also cause several severe side effects, including congestive heart failure, fluid retention, and weight gain. In this study, we describe a novel synthetic PPARγ ligand UNIST HYUNDAI Compound 1 (UHC1) that binds tightly to PPARγ without the classical agonism and which blocks cyclin-dependent kinase 5 (CDK5)-mediated PPARγ phosphorylation. We modified the non-agonist PPARγ ligand SR1664 chemically to improve its solubility and then developed a novel PPARγ ligand, UHC1. According to our docking simulation, UHC1 occupied the ligand-binding site of PPARγ with a higher docking score than SR1664. In addition, UHC1 more potently blocked CDK5-mediated PPARγ phosphorylation at Ser-273. Surprisingly, UHC1 treatment effectively ameliorated the inflammatory response both in vitro and in high-fat diet-fed mice. Furthermore, UHC1 treatment dramatically improved insulin sensitivity in high-fat diet-fed mice without causing fluid retention and weight gain. Taken together, compared with SR1664, UHC1 exhibited greater beneficial effects on glucose and lipid metabolism by blocking CDK5-mediated PPARγ phosphorylation, and these data indicate that UHC1 could be a novel therapeutic agent for use in type 2 diabetes and related metabolic disorders. PMID:25100724

  12. A novel pyrazolo[1,5-a]pyrimidine is a potent inhibitor of cyclin-dependent protein kinases 1, 2, and 9, which demonstrates antitumor effects in human tumor xenografts following oral administration.

    PubMed

    Heathcote, Dean A; Patel, Hetal; Kroll, Sebastian H B; Hazel, Pascale; Periyasamy, Manikandan; Alikian, Mary; Kanneganti, Seshu K; Jogalekar, Ashutosh S; Scheiper, Bodo; Barbazanges, Marion; Blum, Andreas; Brackow, Jan; Siwicka, Alekasandra; Pace, Robert D M; Fuchter, Matthew J; Snyder, James P; Liotta, Dennis C; Freemont, Paul S; Aboagye, Eric O; Coombes, R Charles; Barrett, Anthony G M; Ali, Simak

    2010-12-23

    Cyclin-dependent protein kinases (CDKs) are central to the appropriate regulation of cell proliferation, apoptosis, and gene expression. Abnormalities in CDK activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. Here, we report the identification of a pyrazolo[1,5-a]pyrimidine derived compound, 4k (BS-194), as a selective and potent CDK inhibitor, which inhibits CDK2, CDK1, CDK5, CDK7, and CDK9 (IC₅₀= 3, 30, 30, 250, and 90 nmol/L, respectively). Cell-based studies showed inhibition of the phosphorylation of CDK substrates, Rb and the RNA polymerase II C-terminal domain, down-regulation of cyclins A, E, and D1, and cell cycle block in the S and G₂/M phases. Consistent with these findings, 4k demonstrated potent antiproliferative activity in 60 cancer cell lines tested (mean GI₅₀= 280 nmol/L). Pharmacokinetic studies showed that 4k is orally bioavailable, with an elimination half-life of 178 min following oral dosing in mice. When administered at a concentration of 25 mg/kg orally, 4k inhibited human tumor xenografts and suppressed CDK substrate phosphorylation. These findings identify 4k as a novel, potent CDK selective inhibitor with potential for oral delivery in cancer patients.

  13. Targeted overexpression of Tumor Necrosis Factor-α increases Cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons

    PubMed Central

    Rozas, Pablo; Lazcano, Pablo; Piña, Ricardo; Cho, Andrew; Terse, Anita; Pertusa, Maria; Madrid, Rodolfo; Gonzalez-Billault, Christian; Kulkarni, Ashok B.; Utreras, Elias

    2016-01-01

    We reported earlier that TNF-α, a proinflammatory cytokine implicated in many inflammatory disorders causing orofacial pain increases Cdk5 activity, a key kinase involved in brain development and function and recently in pain signaling. To investigate a potential mechanism underlying inflammatory pain in trigeminal ganglia (TG), we engineered a transgenic mouse model (TNFglo) that can conditionally overexpresses TNF-α upon genomic recombination by Cre recombinase. TNFglo mice were bred with Nav1.8-Cre mouse line that expresses the Cre recombinase in sensory neurons to obtain TNF-α:Nav1.8-Cre (TNF-α cTg) mice. Although TNF-α cTg mice appeared normal without any gross phenotype, they displayed a significant increase in TNF-α levels after activation of NFκB signaling in the TG. IL-6 and MCP-1 levels were also increased along with intense immunostaining for Iba1 and GFAP in TG, indicating the presence of infiltrating macrophages and the activation of satellite glial cells. TNF-α cTg mice displayed increased trigeminal Cdk5 activity, and this increase was associated with elevated levels of phospho-T407-TRPV1 and capsaicin-evocated Ca2+ influx in cultured trigeminal neurons. Remarkably, this effect was prevented by roscovitine, an inhibitor of Cdk5, suggesting that TNF-α overexpression induced sensitization of the TRPV1 channel. Furthermore, TNF-α cTg mice displayed more aversive behavior to noxious thermal stimulation (45°C) of the face in an operant pain assessment device as compared with control mice. In summary, TNF-α overexpression in the sensory neurons of TNF-α cTg mice results in inflammatory sensitization and increased Cdk5 activity, therefore this mouse model would be valuable for investigating mechanism involved TNF-α in orofacial pain. PMID:26894912

  14. Targeting the cyclin D–cyclin-dependent kinase (CDK)4/6–retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions

    PubMed Central

    Spring, Laura; Bardia, Aditya; Modi, Shanu

    2017-01-01

    Dysregulation of the cyclin D–cyclin-dependent kinase (CDK)4/6–INK4–retinoblastoma (Rb) pathway is an important contributor to endocrine therapy resistance. Recent clinical development of selective inhibitors of CDK4 and CDK6 kinases has led to renewed interest in cell cycle regulators, following experience with relatively nonselective pan-CDK inhibitors that often resulted in limited activity and poor safety profiles in the clinic. The highly selective oral CDK 4/6 inhibitors palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219) are able to inhibit the proliferation of Rb-positive tumor cells and have demonstrated dose-dependent growth inhibition in ER+ breast cancer models. In metastatic breast cancer, all three agents are being explored in combination with endocrine therapy in Phase III studies. Results so far indicate promising efficacy and manageable safety profiles, and led to the FDA approval of palbociclib. Phase II–III studies of these agents, in combination with endocrine therapy, are also underway in early breast cancer in the neoadjuvant and adjuvant settings. Selective CDK 4/6 inhibitors are also being investigated with other targeted agents or chemotherapy in the advanced setting. This article reviews the rationale for targeting cyclin D–CDK 4/6 in hormone receptor-positive (HR+) breast cancer, provides an overview of the available preclinical and clinical data with CDK 4/6 inhibitors in breast cancer to date, and summarizes the main features of ongoing clinical trials of these new agents in breast cancer. Future trials evaluating further combinations strategies with CDK 4/6 backbone and translational studies refining predictive biomarkers are needed to help personalize the optimal treatment regimen for individual patients with ER+ breast cancer. PMID:26896604

  15. Targeting the cyclin D-cyclin-dependent kinase (CDK) 4/6-retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions.

    PubMed

    Spring, Laura; Bardia, Aditya; Modi, Shanu

    2016-01-01

    Dysregulation of the cyclin D-cyclin-dependent kinase (CDK) 4/6-INK4-retinoblastoma (Rb) pathway is an important contributor to endocrine therapy resistance. Recent clinical development of selective inhibitors of CDK4 and CDK6 kinases has led to renewed interest in cell cycle regulators, following experience with relatively non-selective pan-CDK inhibitors that often resulted in limited activity and poor safety profiles in the clinic. The highly selective oral CDK 4/6 inhibitors palbociclib (PD0332991), ribociclib (LEE011), and abemaciclib (LY2835219) are able to inhibit the proliferation of Rb-positive tumor cells and have demonstrated dose-dependent growth inhibition in ER+ breast cancer models. In metastatic breast cancer, all three agents are being explored in combination with endocrine therapy in Phase III studies. Results so far indicated promising efficacy and manageable safety profiles, and led to the FDA approval of palbociclib. Phase II-III studies of these agents, in combination with endocrine therapy, are also underway in early breast cancer in the neoadjuvant and adjuvant settings. Selective CDK 4/6 inhibitors are also being investigated with other targeted agents or chemotherapy in the advanced setting. This article reviews the rationale for targeting cyclin D-CDK 4/6 in hormone receptor-positive (HR+) breast cancer, provides an overview of the available preclinical and clinical data with CDK 4/6 inhibitors in breast cancer to date, and summarizes the main features of ongoing clinical trials of these new agents in breast cancer. Future trials evaluating further combination strategies with CDK 4/6 backbone and translational studies refining predictive biomarkers are needed to help personalize the optimal treatment regimen for individual patients with ER+ breast cancer.

  16. A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell lines.

    PubMed

    Brandi, Giorgio; Paiardini, Mirko; Cervasi, Barbara; Fiorucci, Chiara; Filippone, Paolino; De Marco, Cinzia; Zaffaroni, Nadia; Magnani, Mauro

    2003-07-15

    Indole-3-carbinol (I3C), autolysis product of glucosinolates present in cruciferous vegetables, has been indicated as a promising agent in preventing the development and progression of breast cancer. I3C has been shown to inhibit the growth of human cancer cells in vitro and possesses anticarcinogenic activity in vivo. Because I3C is unstable and may be converted into many polymeric products in the digestive tract, it is not yet clear whether the biological activity observed can be attributed to I3C or some of its polymeric products. In this study we synthesized a stable I3C cyclic tetrameric derivative and investigated its effects on a panel of human breast cancer cell lines. The I3C tetramer suppressed the growth of both estrogen receptor (ER) -positive (MCF-7, 734B, and BT474) and ER-negative (BT20, MDA-MB-231, and BT539) human breast cancer cell lines, and it was found to induce G(1) cell cycle arrest in a dose-dependent manner without evidence of apoptosis, suggesting a growth arrest via a cytostatic mechanism. At the molecular level, the tetramer inhibited cyclin-dependent kinase (CDK) 6 expression and activity, induced an increase in the level of p27(kip1), and reduced the level of retinoblastoma protein expression. Contrarily to CDK6, the level of CDK4, the other kinase involved in the G(1) phase of the cell cycle, remains unchanged. Interestingly, the tetramer resulted about five times more active than I3C in suppressing the growth of human breast cancer cells. On the whole, our data suggest that the I3C tetrameric derivative is a novel lead inhibitor of breast cancer cell growth that may be a considered a new, promising therapeutic agent for both ER+ and ER- breast cancer.

  17. Interaction with Cyclin H/Cyclin-dependent Kinase 7 (CCNH/CDK7) Stabilizes C-terminal Binding Protein 2 (CtBP2) and Promotes Cancer Cell Migration*

    PubMed Central

    Wang, Yuchan; Liu, Fang; Mao, Feng; Hang, Qinlei; Huang, Xiaodong; He, Song; Wang, Yingying; Cheng, Chun; Wang, Huijie; Xu, Guangfei; Zhang, Tianyi; Shen, Aiguo

    2013-01-01

    CtBP2 has been demonstrated to possess tumor-promoting capacities by virtue of up-regulating epithelial-mesenchymal transition (EMT) and down-regulating apoptosis in cancer cells. As a result, cellular CtBP2 levels are considered a key factor determining the outcome of oncogenic transformation. How pro-tumorigenic and anti-tumorigenic factors compete for fine-tuning CtBP2 levels is incompletely understood. Here we report that the cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) complex interacted with CtBP2 in vivo and in vitro. Depletion of either CCNH or CDK7 decreased CtBP2 protein levels by accelerating proteasome-dependent CtBP2 clearance. Further analysis revealed that CCNH/CDK7 competed with the tumor repressor HIPK2 for CtBP2 binding and consequently inhibited phosphorylation and dimerization of CtBP2. Phosphorylation-defective CtBP2 interacted more strongly with CCNH/CDK7 and was more resistant to degradation. Finally, overexpression of CtBP2 increased whereas depletion of CtBP2 dampened the invasive and migratory potential of breast cancer cells. CtBP2 promoted the invasion and migration of breast cancer cells in a CCNH-dependent manner. Taken together, our data have delineated a novel pathway that regulates CtBP2 stability, suggesting that targeting the CCNH/CDK7-CtBP2 axis may yield a viable anti-tumor strategy. PMID:23393140

  18. Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types

    PubMed Central

    Moussa, Rayan S.; Kovacevic, Zaklina; Richardson, Des R.

    2015-01-01

    Chelators such as 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) target tumor cell iron pools and inhibit proliferation. These agents also modulate multiple targets, one of which is the cyclin-dependent kinase inhibitor, p21. Hence, this investigation examined the mechanism of action of these compounds in targeting p21. All the chelators up-regulated p21 mRNA in the five tumor cell-types assessed. In contrast, examining their effect on total p21 protein levels, these agents induced either: (1) down-regulation in MCF-7 cells; (2) up-regulation in SK-MEL-28 and CFPAC-1 cells; or (3) had no effect in LNCaP and SK-N-MC cells. The nuclear localization of p21 was also differentially affected by the ligands depending upon the cell-type, with it being decreased in MCF-7 cells, but increased in SK-MEL-28 and CFPAC-1 cells. Further studies assessing the mechanisms responsible for these effects demonstrated that p21 expression was not correlated with p53 status, suggesting a p53-independent mechanism. Considering this, we examined proteins that modulate p21 independently of p53, namely NDRG1, MDM2 and ΔNp63. These studies demonstrated that a dominant negative MDM2 isoform (p75MDM2) closely resembled p21 expression in response to chelation in three cell lines. These data suggest MDM2 may be involved in the regulation of p21 by chelators. PMID:26335183

  19. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity.

    PubMed

    Duncan, Robin E; Lau, Dominic; El-Sohemy, Ahmed; Archer, Michael C

    2004-11-01

    3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the formation of mevalonate, a precursor of cholesterol that is also required for cell proliferation. Mevalonate depletion results in a G1 phase cell cycle arrest that is mediated in part by impaired activity of cyclin-dependent kinase (CDK) 2, and decreased expression of positive regulators of G1 to S phase progression. Inhibition of mevalonate synthesis may, therefore, be a useful strategy to impair the growth of malignant cells. Plant isoprenoids, including beta-ionone and geraniol, have previously been shown to inhibit rodent mammary tumor development, and rodent and avian hepatic HMG-CoA reductase activity. We hypothesized that the putative anti-proliferative and cell cycle inhibitory effects of beta-ionone and geraniol on MCF-7 human breast cancer cells in culture are mediated by mevalonate depletion resulting from inhibition of HMG-CoA reductase activity. Flow cytometric analysis showed a G1 arrest in isoprenoid-treated MCF-7 cells, and also a G2/M arrest at higher concentrations of isoprenoids. These compounds minimally affected the growth of MCF-10F normal breast epithelial cells. Both beta-ionone and geraniol inhibited CDK 2 activity and dose-dependently decreased the expression of cyclins D1, E, and A, and CDK 2 and 4, without changing the expression of p21cip1 or p27kip1. Although both beta-ionone and geraniol also inhibited MCF-7 proliferation, only geraniol inhibited HMG-CoA reductase activity. While these effects were significantly correlated (r2=0.89, P <0.01), they were not causally related, since exogenous mevalonate did not restore growth in geraniol-inhibited cells. These findings indicate that mechanisms other than impaired mevalonate synthesis mediate the anti-proliferative and cell cycle regulatory effects of beta-ionone and geraniol in human breast cancer cells.

  20. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells.

    PubMed

    Rathos, Maggie J; Khanwalkar, Harshal; Joshi, Kavita; Manohar, Sonal M; Joshi, Kalpana S

    2013-01-23

    In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression.

  1. Potentiation of in vitro and in vivo antitumor efficacy of doxorubicin by cyclin-dependent kinase inhibitor P276-00 in human non-small cell lung cancer cells

    PubMed Central

    2013-01-01

    Background In the present study, we show that the combination of doxorubicin with the cyclin-dependent kinase inhibitor P276-00 was synergistic at suboptimal doses in the non-small cell lung carcinoma (NSCLC) cell lines and induces extensive apoptosis than either drug alone in H-460 human NSCLC cells. Methods Synergistic effects of P276-00 and doxorubicin on growth inhibition was studied using the Propidium Iodide (PI) assay. The doses showing the best synergistic effect was determined and these doses were used for further mechanistic studies such as western blotting, cell cycle analysis and RT-PCR. The in vivo efficacy of the combination was evaluated using the H-460 xenograft model. Results The combination of 100 nM doxorubicin followed by 1200 nM P276-00 showed synergistic effect in the p53-positive and p53-mutated cell lines H-460 and H23 respectively as compared to the p53-null cell line H1299. Abrogation of doxorubicin-induced G2/M arrest and induction of apoptosis was observed in the combination treatment. This was associated with induction of tumor suppressor protein p53 and reduction of anti-apoptotic protein Bcl-2. Furthermore, doxorubicin alone greatly induced COX-2, a NF-κB target and Cdk-1, a target of P276-00, which was downregulated by P276-00 in the combination. Doxorubicin when combined with P276-00 in a sequence-specific manner significantly inhibited tumor growth, compared with either doxorubicin or P276-00 alone in H-460 xenograft model. Conclusion These findings suggest that this combination may increase the therapeutic index over doxorubicin alone and reduce systemic toxicity of doxorubicin most likely via an inhibition of doxorubicin-induced chemoresistance involving NF-κB signaling and inhibition of Cdk-1 which is involved in cell cycle progression. PMID:23343191

  2. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    PubMed

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due

  3. Cortactin modulates RhoA activation and expression of Cip/Kip cyclin-dependent kinase inhibitors to promote cell cycle progression in 11q13-amplified head and neck squamous cell carcinoma cells.

    PubMed

    Croucher, David R; Rickwood, Danny; Tactacan, Carole M; Musgrove, Elizabeth A; Daly, Roger J

    2010-11-01

    The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) and inhibition of S-phase entry. These effects were associated with increased binding of p21(WAF1/Cip1) and p27(Kip1) to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21(WAF1/Cip1) and p27(Kip1) at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27(Kip1) and p57(Kip2) for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.

  4. 123I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1).

    PubMed

    Hu, Meiduo; Chen, Paul; Wang, Judy; Scollard, Deborah A; Vallis, Katherine A; Reilly, Raymond M

    2007-03-01

    To evaluate the internalization and nuclear translocation of (123)I-tat-peptide radioimmunoconjugates in MDA-MB-468 breast cancer cells and their ability to interact with the cyclin-dependent kinase inhibitor, p21(WAF-1/Cip-1). Peptides [GRKKRRQRRRPPQGYGC] harboring the nuclear-localizing sequence from HIV tat domain were conjugated to anti-p21(WAF-1/Cip-1) antibodies. Immunoreactivity was assessed by Western blot using lysate from MDA-MB-468 cells exposed to EGF to induce p21(WAF-1/Cip-1). Internalization and nuclear translocation were measured. The ability of tat-anti-p21(WAF-1/Cip-1) to block G(1)-S phase arrest in MDA-MB-468 cells caused by EGF-induced p21(WAF-1/Cip-1) was evaluated. Tumor and normal tissue uptake were determined at 48 h p.i. in athymic mice implanted s.c. with MDA-MB-468 xenografts injected intratumorally with EGF. There was 13.4+/-0.2% of radioactivity internalized by MDA-MB-468 cells incubated with (123)I-tat-anti-p21(WAF-1/Cip-1) and 34.6+/-3.1% imported into the nucleus. Tat-anti-p21(WAF-1/Cip-1)(8 muM) decreased the proportion of EGF-treated cells in G(1) phase from 81.9+/-0.7% to 46.1+/-0.7% (p<0.001), almost restoring the G(1) phase fraction to that of unexposed cells (25.8+/-0.2%). Non-specific tat-mouse IgG did not block EGF-induced G(1)-S phase arrest. Tumor uptake of radioactivity was higher in mice injected with EGF to induce p21(WAF-1/Cip-1) than in mice not receiving EGF (3.1+/-0.4% versus 1.8+/-0.2% ID/g; p=0.04). Western blot analysis of tumors revealed a threefold increase in the p21(WAF-1/Cip-1)/beta-actin ratio. We conclude that intracellular and nuclear epitopes in cancer cells can be functionally targeted with tat-radioimmunoconjugates to exploit many more epitopes for imaging and radiotherapeutic applications than have previously been accessible.

  5. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases*

    PubMed Central

    Walkup, Ward G.; Washburn, Lorraine; Sweredoski, Michael J.; Carlisle, Holly J.; Graham, Robert L.; Hess, Sonja; Kennedy, Mary B.

    2015-01-01

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. PMID:25533468

  6. CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways.

    PubMed

    Wang, Yufeng; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Akada, Junko; Nakamura, Kazuyuki

    2015-11-24

    Microtubule-associated protein 1A/1B-light chain 3 (LC3)-II is essential for autophagosome formation and is widely used to monitor autophagic activity. We show that CGK733 induces LC3 II and LC3-puncta accumulation, which are not involved in the activation of autophagy. The treatment of CGK733 did not alter the autophagic flux and was unrelated to p62 degradation. Treatment with CGK733 activated the AMP-activated protein kinase (AMPK) and protein kinase RNA-like endoplasmic reticulum kinase/CCAAT-enhancer-binding protein homologous protein (PERK/CHOP) pathways and elevated the expression of p21Waf1/Cip1. Inhibition of both AMPK and PERK/CHOP pathways by siRNA or chemical inhibitor could block CGK733-induced p21Waf1/Cip1 expression as well as caspase-3 cleavage. Knockdown of LC3 B (but not LC3 A) abolished CGK733-triggered LC3 II accumulation and consequently diminished AMPK and PERK/CHOP activity as well as p21Waf1/Cip1 expression. Our results demonstrate that CGK733-triggered LC3 II formation is an initial event upstream of the AMPK and PERK/CHOP pathways, both of which control p21Waf1/Cip1 expression.

  7. Cyclin Dependent Kinase Inhibitors as Targets in Ovarian Cancer

    DTIC Science & Technology

    2005-10-01

    STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The objective of this proposal is to develop gene ...have identified key genes that may be effective targets in ovarian cancer therapy. The first three projects seek to identify alterations in these genes ...that allow for high expression of our key gene (s) in ovarian cancer cells but minimal expression in normal tissues. 15. SUBJECT TERMS Cell cycle control

  8. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study.

    PubMed

    Finn, Richard S; Crown, John P; Lang, Istvan; Boer, Katalin; Bondarenko, Igor M; Kulyk, Sergey O; Ettl, Johannes; Patel, Ravindranath; Pinter, Tamas; Schmidt, Marcus; Shparyk, Yaroslav; Thummala, Anu R; Voytko, Nataliya L; Fowst, Camilla; Huang, Xin; Kim, Sindy T; Randolph, Sophia; Slamon, Dennis J

    2015-01-01

    Palbociclib (PD-0332991) is an oral, small-molecule inhibitor of cyclin-dependent kinases (CDKs) 4 and 6 with preclinical evidence of growth-inhibitory activity in oestrogen receptor-positive breast cancer cells and synergy with anti-oestrogens. We aimed to assess the safety and efficacy of palbociclib in combination with letrozole as first-line treatment of patients with advanced, oestrogen receptor-positive, HER2-negative breast cancer. In this open-label, randomised phase 2 study, postmenopausal women with advanced oestrogen receptor-positive and HER2-negative breast cancer who had not received any systemic treatment for their advanced disease were eligible to participate. Patients were enrolled in two separate cohorts that accrued sequentially: in cohort 1, patients were enrolled on the basis of their oestrogen receptor-positive and HER2-negative biomarker status alone, whereas in cohort 2 they were also required to have cancers with amplification of cyclin D1 (CCND1), loss of p16 (INK4A or CDKN2A), or both. In both cohorts, patients were randomly assigned 1:1 via an interactive web-based randomisation system, stratified by disease site and disease-free interval, to receive continuous oral letrozole 2.5 mg daily or continuous oral letrozole 2.5 mg daily plus oral palbociclib 125 mg, given once daily for 3 weeks followed by 1 week off over 28-day cycles. The primary endpoint was investigator-assessed progression-free survival in the intention-to-treat population. Accrual to cohort 2 was stopped after an unplanned interim analysis of cohort 1 and the statistical analysis plan for the primary endpoint was amended to a combined analysis of cohorts 1 and 2 (instead of cohort 2 alone). The study is ongoing but closed to accrual; these are the results of the final analysis of progression-free survival. The study is registered with the ClinicalTrials.gov, number NCT00721409. Between Dec 22, 2009, and May 12, 2012, we randomly assigned 165 patients, 84 to palbociclib

  9. Deciphering the binding behavior of flavonoids to the cyclin dependent kinase 6/cyclin D complex.

    PubMed

    Zhang, Jingxiao; Zhang, Lilei; Xu, Yangcheng; Jiang, Shanshan; Shao, Yueyue

    2018-01-01

    Flavonoids, a class of natural compounds with variable phenolic structures, have been found to possess anti-cancer activities by modulating different enzymes and receptors like CDK6. To understand the binding behavior of flavonoids that inhibit the active CDK6, molecular dynamics (MD) simulations were performed on six inhibitors, chrysin (M01), fisetin (M03), galangin (M04), genistein (M05), quercetin (M06) and kaempferol (M07), complexed with CDK6/cyclin D. For all six flavonoids, the 3'-OH and 4'-OH of B-ring were found to be favorable for hydrogen bond formation, but the 3-OH on the C-ring and 5-OH on the A-ring were unfavorable, which were confirmed by the MD simulation results of the test molecule, 3', 4', 7-trihydroxyflavone (M15). The binding efficiencies of flavonoids against the CDK6/cyclin D complex were mainly through the electrostatic (especially the H-bond force) and vdW interactions with residues ILE19, VAL27, ALA41, GLU61, PHE98, GLN103, ASP163 and LEU152. The order of binding affinities of these flavonoids toward the CDK6/cyclin D was M03 > M01 > M07 > M15 > M06 > M05 > M04. It is anticipated that the binding features of flavonoid inhibitors studied in the present work may provide valuable insights for the development of CDK6 inhibitors.

  10. Cyclin-dependent kinase inhibitor flavopiridol promotes remyelination in a cuprizone induced demyelination model

    PubMed Central

    Mi, Guiyun; Gao, Yunyun; Liu, Shuai; Ye, Enmao; Li, Yanyan; Jin, Xiao; Yang, Hongju; Yang, Zheng

    2016-01-01

    ABSTRACT The cuprizone (CPZ) model has been widely used for the studies of de-and remyelination. The CPZ-exposed mice show oligodendrocyte precursor cells (OPCs) increase and mature oligodendrocytes decrease, suggesting an imbalance between proliferation and differentiation of OPCs. In the first experiment of this study, we examined the expression of cell cycle related genes in brains of mice following CPZ administration for 5 weeks by means of microarray assay. In addition, we performed a double labeling of BrdU and Ki-67 to calculate cell cycle exit index in the mice. Our results showed that CPZ administration up-regulated the expression of 16 cell cycle related genes, but down-regulated the expression of only one in the prefrontal cortex (PFC) of mice compared to control group. The treatment inhibited potential precursor cells exit from cell cycle. In the second experiment, we evaluated effects of a CDK inhibitor flavopiridol (FLA) on CPZ-induced neuropathological changes and spatial working memory impairment in mice.FLA treatment for one week effectively attenuated the CPZ-induced increases in NG2 positive cells, microglia and astrocytes, alleviated the concurrent mature oligodendrocyte loss and myelin breakdown, and improved spatial working memory deficit in the CPZ-exposed mice. These results suggest that CPZ-induced neuropathological changes involve in dysregulation of cell cycle related genes. The therapeutic effects of FLA on CPZ-exposed mice may be related to its ability of cell cycle inhibition. PMID:27580304

  11. Cigarette smoke induces aberrant EGF receptor activation which mediates lung cancer development and resistance to tyrosine kinase inhibitors

    PubMed Central

    Filosto, Simone; Becker, Cathleen R.; Goldkorn, Tzipora

    2015-01-01

    The EGF Receptor (EGFR) and its downstream signaling are implicated in lung cancer development. Therefore, much effort was spent in developing specific tyrosine kinase inhibitors (TKIs) that bind to the EGFR ATP-pocket, blocking EGFR phosphorylation/signaling. Clinical use of TKIs is effective in a subset of lung cancers with mutations in the EGFR kinase domain, rendering the receptor highly susceptible to TKIs. However, these benefits are limited, and emergence of additional EGFR mutations usually results in TKI resistance and disease progression. Previously, we demonstrated one mechanism linking cigarette smoke (CS) to EGFR-driven lung cancer. Specifically, exposure of lung epithelial cells to CS-induced oxidative stress stimulates aberrant EGFR phosphorylation/activation with impaired receptor ubiquitination/degradation. The abnormal stabilization of the activated receptor leads to uncontrolled cell growth and tumorigenesis. Here we describe for the first time a novel post-translational mechanism of EGFR resistance to TKIs. Exposure of airway epithelial cells to CS causes aberrant phosphorylation/activation of EGFR, resulting in a conformation that is different from that induced by the ligand EGF. Unlike EGF-activated EGFR, CS-activated EGFR binds c-Src and caveolin-1 and does not undergo canonical dimerization. Importantly, the CS-activated EGFR is not inhibited by TKIs (AG1478; Erlotinib; Gefitinib); in fact, the CS exposure induces TKI-resistance even in the TKI-sensitive EGFR mutants. Our findings demonstrate that CS exposure stimulates not only aberrant EGFR phosphorylation impairing receptor degradation, but also induces a different EGFR conformation and signaling that are resistant to TKIs. Together, these findings offer new insights into CS-induced lung cancer development and TKI resistance. PMID:22302097

  12. Phase I dose-escalation studies of roniciclib, a pan-cyclin-dependent kinase inhibitor, in advanced malignancies.

    PubMed

    Bahleda, Rastislav; Grilley-Olson, Juneko E; Govindan, Ramaswamy; Barlesi, Fabrice; Greillier, Laurent; Perol, Maurice; Ray-Coquard, Isabelle; Strumberg, Dirk; Schultheis, Beate; Dy, Grace K; Zalcman, Gérard; Weiss, Glen J; Walter, Annette O; Kornacker, Martin; Rajagopalan, Prabhu; Henderson, David; Nogai, Hendrik; Ocker, Matthias; Soria, Jean-Charles

    2017-06-06

    To evaluate safety, pharmacokinetics, and maximum tolerated dose of roniciclib in patients with advanced malignancies, with dose expansion to evaluate clinical benefit at the recommended phase II dose (RP2D). Two phase I dose-escalation studies evaluated two roniciclib dosing schedules: 3 days on/4 days off or 4 weeks on/2 weeks off. The expansion phase included patients with small-cell lung cancer (SCLC), ovarian cancer, or tumour mutations involving the CDK signalling pathway. Ten patients were evaluable in the 4 weeks on/2 weeks off schedule (terminated following limited tolerability) and 47 in the 3 days on/4 days off schedule dose-escalation cohorts. On the 3 days on/4 days off schedule, RP2D was 5 mg twice daily in solid tumours (n=40); undetermined in lymphoid malignancies (n=7). Common roniciclib-related adverse events included nausea (76.6%), fatigue (65.8%), diarrhoea (63.1%), and vomiting (57.7%). Roniciclib demonstrated rapid absorption and dose-proportional increase in exposure. One partial response (1.0%) was observed. In RP2D expansion cohorts, the disease control rate (DCR) was 40.9% for patients with ovarian cancer (n=25), 17.4% for patients with SCLC (n=33), and 33.3% for patients with CDK-related tumour mutations (n=6). Roniciclib demonstrated an acceptable safety profile and moderate DCR in 3 days on/4 days off schedule.

  13. MicroRNA-320c inhibits tumorous behaviors of bladder cancer by targeting Cyclin-dependent kinase 6

    PubMed Central

    2014-01-01

    Background Increasing evidence has suggested that dysregulation of microRNAs (miRNAs) could contribute to human disease including cancer. Previous miRNA microarray analysis illustrated that miR-320c is down-regulated in various cancers. However, the roles of miR-320c in human bladder cancer have not been well elucidated. Therefore, this study was performed to investigate the biological functions and molecular mechanisms of miR-320c in human bladder cancer cell lines, discussing whether it could be a therapeutic biomarker of bladder cancer in the future. Methods Two human bladder cancer cell lines and samples from thirteen patients with bladder cancer were analyzed for the expression of miR-320c by quantitative RT-PCR. Over-expression of miR-320c was established by transfecting mimics into T24 and UM-UC-3. Cell proliferation and cell cycle were assessed by cell viability assay, flow cytometry and colony formation assay. Cell motility ability was evaluated by transwell assay. The target gene of miR-320c was determined by luciferase assay, quantitative RT-PCR and western blot. The regulation of cell cycle and mobility by miR-320c was analyzed by western blot. Results We observed that miR-320c was down-regulated in human bladder cancer tissues and bladder cancer cell lines T24 and UM-UC-3. Over-expression of miR-320c could induce G1 phase arrest in UM-UC-3 and T24 cells, and subsequently inhibited cell growth. We also indentified miR-320c could impair UM-UC-3 and T24 cell motility. In addition, we identified CDK6, a cell cycle regulator, as a novel target of miR-320c. Moreover, we demonstrated miR-320c could induce bladder cancer cell cycle arrest and mobility via regulating CDK6. We also observed that inhibition of miR-320c or restoration of CDK6 in miR-320c-over-expressed bladder cancer cells partly reversed the suppressive effects of miR-320c. Conclusions miR-320c could inhibit the proliferation, migration and invasion of bladder cancer cells via regulating CDK6. Our study revealed that miR-320c could be a therapeutic biomarker of bladder cancer in the future. PMID:25178497

  14. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis.

    PubMed

    Romanov, V S; Pospelov, V A; Pospelova, T V

    2012-06-01

    p21(Waf1) was identified as a protein suppressing cyclin E/A-CDK2 activity and was originally considered as a negative regulator of the cell cycle and a tumor suppressor. It is now considered that p21(Waf1) has alternative functions, and the view of its role in cellular processes has begun to change. At present, p21(Waf1) is known to be involved in regulation of fundamental cellular programs: cell proliferation, differentiation, migration, senescence, and apoptosis. In fact, it not only exhibits antioncogenic, but also oncogenic properties. This review provides a contemporary understanding of the functions of p21(Waf1) depending on its intracellular localization. On one hand, when in the nucleus, it serves as a negative cell cycle regulator and tumor suppressor, in particular by participating in the launch of a senescence program. On the other hand, when p21(Waf1) is localized in the cytoplasm, it acts as an oncogene by regulating migration, apoptosis, and proliferation.

  15. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    PubMed Central

    Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P.; Niesen, Willem; Vodicka, Pavel; Fave, Gianfranco Delle; Bueno-de-Mesquita, H. Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J.; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E.; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk. PMID:27486979

  17. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk.

    PubMed

    Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P; Niesen, Willem; Vodicka, Pavel; Delle Fave, Gianfranco; Bueno-de-Mesquita, H Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico

    2016-08-30

    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.

  18. Activation of choline kinase drives aberrant choline metabolism in esophageal squamous cell carcinomas.

    PubMed

    Ma, Wang; Wang, Shuangyuan; Zhang, Tengfei; Zhang, Erik Y; Zhou, Lina; Hu, Chunxiu; Yu, Jane J; Xu, Guowang

    2018-06-05

    Esophageal squamous cell carcinoma (ESCC) is a major health threat worldwide. Research focused on molecular events associated with ESCC carcinogenesis for diagnosis, treatment and prevention is needed. Our goal is to discover novel biomarkers and investigate the underlying molecular mechanisms of ESCC progression by employing a global metabolomic approach. Sera from 34 ESCC patients and 32 age and sex matched healthy controls were profiled using two-dimensional liquid chromatography-mass spectrometry (2D LC-MS). We identified 120 differential metabolites in ESCC patient serums compared to healthy controls. Several amino acids, serine, arginine, lysine and histidine were significantly changed in ESCC patients. Most importantly, we found dysregulated lipid metabolism as an important characteristic in ESCC patients. Several free fat acids (FFA) and carnitines were found down-regulated in ESCC patients. Choline was significantly increased and phosphatidylcholines (PC) were significantly decreased in ESCC serum. The high expression of choline and low expression of total PC in patient serum were associated with the high expression of choline kinase (Chok) and activated Kennedy pathway in ESCC cells. Chok expression can serve as a significant biomarker for ESCC prognosis. In conclusion, metabolite profiles in the ESCC patient serum were significantly different from those in the healthy controls. Phosphatidylcholines and Chok, the key enzyme in the PC metabolism pathway, may serve as novel biomarkers for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Structural Basis of the Interaction of Cyclin-Dependent Kinase 2 with Roscovitine and Its Analogues Having Bioisosteric Central Heterocycles.

    PubMed

    Nekardová, Michaela; Vymětalová, Ladislava; Khirsariya, Prashant; Kováčová, Silvia; Hylsová, Michaela; Jorda, Radek; Kryštof, Vladimír; Fanfrlík, Jindřich; Hobza, Pavel; Paruch, Kamil

    2017-04-05

    The structural basis for the interaction of roscovitine and analogues containing 13 different bioisosteric central heterocycles with the enzyme cyclin-dependent kinase 2 (CDK2) is elucidated. Although all the central scaffolds are very similar to the purine core of roscovitine, the experimentally determined IC 50 values of the inhibitors span three orders of magnitude. By using an extensive computational chemistry approach, the affinities of the inhibitors to CDK2 are determined as calculated binding scores of complexes of the inhibitors with the protein. The interactions of the inhibitors with CDK2 are computationally described by using a hybrid quantum mechanics/semi-empirical quantum mechanics method (QM/SQM), which combines the DFT-D method for the QM part and the PM6-D3H4X method for the SQM part. The solvent effect is described by the COSMO implicit solvation model at the SQM level for the whole system. The contributions of the scaffolds and the individual substituents, quantified and evaluated in relation to conformations of optimized protein-inhibitor complexes, are found not to be simply additive. The inhibitory activity of the selected candidates, including two newly prepared compounds, is tested against CDK2. The results of the calculations are in close agreement with the experimental data. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tyrosine kinase receptor c-ros-oncogene 1 inhibition alleviates aberrant bone formation of TWIST-1 haploinsufficient calvarial cells from Saethre-Chotzen syndrome patients.

    PubMed

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Glackin, Carlotta A; Gronthos, Stan

    2018-09-01

    Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1 del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1 del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function. © 2018 Wiley Periodicals, Inc.

  1. Direct binding of the N-terminus of HTLV-1 tax oncoprotein to cyclin-dependent kinase 4 is a dominant path to stimulate the kinase activity.

    PubMed

    Li, Junan; Li, Hongyuan; Tsai, Ming-Daw

    2003-06-10

    The involvement of Tax oncoprotein in the INK4-CDK4/6-Rb pathway has been regarded as a key factor for immortalization and transformation of human T-cell leukemia virus 1 (HTLV-1) infected cells. In both p16 -/- and +/+ cells, expression of Tax has been correlated with an increase in CDK4 activity, which subsequently increases the phosphorylation of Rb and drives the infected cells into cell cycle progression. In relation to these effects, Tax has been shown to interact with two components of the INK4-CDK4/6-Rb pathway, p16 and cyclin D(s). While Tax competes with CDK4 for p16 binding, thus suppressing p16 inhibition of CDK4, Tax also binds to cyclin D(s) with concomitant increases in both CDK4 activity and the phosphorylation of cyclin D(s). Here we show that both Tax and residues 1-40 of the N-terminus of Tax, Tax40N, bind to and activate CDK4 in vitro. In the presence of INK4 proteins, binding of Tax and Tax40N to CDK4 counteracts against the inhibition of p16 and p18 and acts as the major path to regulate Tax-mediated activation of CDK4. We also report that Tax40N retains the transactivation ability. These results of in vitro studies demonstrate a potentially novel, p16-independent route to regulate CDK4 activity by the Tax oncoprotein in HTLV-1 infected cells.

  2. Plum polyphenols inhibit colorectal aberrant crypt foci formation in rats: potential role of the miR-143/protein kinase B/mammalian target of rapamycin axis.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Talcott, Stephen T; Turner, Nancy D; Byrne, David H; Mertens-Talcott, Susanne U

    2016-10-01

    The nutritional prevention of aberrant crypt foci by polyphenols may be a crucial step to dietary cancer prevention. The objective of this study was to determine the underlying mechanisms that contribute to the anti-inflammatory and antitumorigenic properties of plum (Prunus salicina L.) polyphenols, including chlorogenic acid and neochlorogenic acid, in azoxymethane (AOM)-treated rats. The hypothesis was that plum polyphenolics suppress AOM-induced aberrant crypt foci formation through alterations in the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and relative micro-RNA expressions. Sprague-Dawley rats (n=10/group) received plum beverage (1346mg gallic acid equivalents/L) or a control beverage ad libitum for 10 weeks with subcutaneous injections of AOM (15mg/kg) at weeks 2 and 3. Results show that the consumption of the plum beverage decreased the number of dysplastic aberrant crypt foci by 48% (P<.05) and lowered proliferation of mucosal cells by 24% (P<.05). The plum beverage decreased the activity of glutathione peroxidase, superoxide dismutase, and catalase in mucosal scrapings, as well as the superoxide dismutase activity in serum. The results were accompanied by a down-regulation of proinflammatory enzymes nuclear factor κB, nitric oxide synthase, cyclooxygenase-2, and vascular cell adhesion molecule 1 messenger RNA. Plum inhibited the expression of AKT and mTOR messenger RNA, phosphorylated AKT, mTOR, and hypoxia-inducible factor-1α protein levels, and the ratio of the phosphorylated/total protein expression of mTOR. Also, the plum beverage increased the expression of miR-143, which is involved in the regulation of AKT. These results suggest that plum polyphenols may exhibit a chemopreventive potential against colon carcinogenesis by impacting the AKT/mTOR pathway and miR-143. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Crystal structure of casein kinase-1, a phosphate-directed protein kinase.

    PubMed Central

    Xu, R M; Carmel, G; Sweet, R M; Kuret, J; Cheng, X

    1995-01-01

    The structure of a truncated variant of casein kinase-1 from Schizosaccharomyces pombe, has been determined in complex with MgATP at 2.0 A resolution. The model resembles the 'closed', ATP-bound conformations of the cyclin-dependent kinase 2 and the cAMP-dependent protein kinase, with clear differences in the structure of surface loops that impart unique features to casein kinase-1. The structure is of unphosphorylated, active conformation of casein kinase-1 and the peptide-binding site is fully accessible to substrate. Images PMID:7889932

  4. Protein Kinase C alpha (PKCα) dependent signaling mediates endometrial cancer cell growth and tumorigenesis

    PubMed Central

    Haughian, James M.; Reno, Elaine M.; Thorne, Alicia M.; Bradford, Andrew P.

    2009-01-01

    Endometrial cancer is the most common invasive gynecologic malignancy, yet molecular mechanisms and signaling pathways underlying its etiology and pathophysiology remain poorly characterized. We sought to define a functional role for the protein kinase C (PKC) isoform, PKCα, in an established cell model of endometrial adenocarcinoma. Ishikawa cells depleted of PKCα protein grew slower, formed fewer colonies in anchorage-independent growth assays and exhibited impaired xenograft tumor formation in nude mice. Consistent with impaired growth, PKCα knockdown increased levels of the cyclin dependent kinase (CDK) inhibitors p21Cip1/WAF1 (p21) and p27Kip1 (p27). Despite the absence of functional phosphatase and tensin homologue (PTEN) protein in Ishikawa cells, PKCα knockdown reduced Akt phosphorylation at serine 473 and concomitantly inhibited phosphorylation of the Akt target, glycogen synthase kinase-3β (GSK-3β). PKCα knockdown also resulted in decreased basal ERK phosphorylation and attenuated ERK activation following EGF stimulation. p21 and p27 expression was not increased by treatment of Ishikawa cells with ERK and Akt inhibitors, suggesting PKCα regulates CDK expression independently of Akt and ERK. Immunohistochemical analysis of grade 1 endometrioid adenocarcinoma revealed aberrant PKCα expression, with foci of elevated PKCα staining, not observed in normal endometrium. These studies demonstrate a critical role for PKCα signaling in endometrial tumorigenesis by regulating expression of CDK inhibitors p21 and p27 and activation of Akt and ERK dependent proliferative pathways. Thus, targeting PKCα may provide novel therapeutic options in endometrial tumors. PMID:19672862

  5. p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells

    PubMed Central

    Cen, Ling; Carlson, Brett L.; Schroeder, Mark A.; Ostrem, Jamie L.; Kitange, Gaspar J.; Mladek, Ann C.; Fink, Stephanie R.; Decker, Paul A.; Wu, Wenting; Kim, Jung-Sik; Waldman, Todd; Jenkins, Robert B.; Sarkaria, Jann N.

    2012-01-01

    Deregulation of the p16INK4a-Cdk4/6-Rb pathway is commonly detected in patients with glioblastoma multiforme (GBM) and is a rational therapeutic target. Here, we characterized the p16INK4a-Cdk4/6-Rb pathway in the Mayo panel of GBM xenografts, established from primary tissue samples from patients with GBM, and evaluated their response to PD0332991, a specific inhibitor of Cdk4/6. All GBM xenograft lines evaluated in this study had disruptions in the p16INK4a-Cdk4/6-Rb pathway. In vitro evaluation using short-term explant cultures from selected GBM xenograft lines showed that PD0332991 effectively arrested cell cycle in G1-phase and inhibited cell proliferation dose-dependently in lines deleted for CDKN2A/B-p16INK4a and either single-copy deletion of CDK4 (GBM22), high-level CDK6 amplification (GBM34), or deletion of CDKN2C/p18INK4c (GBM43). In contrast, 2 GBM lines with p16INK4a expression and either CDK4 amplification (GBM5) or RB mutation (GBM28) were completely resistant to PD0332991. Additional xenograft lines were screened, and GBM63 was identified to have p16INK4a expression and CDK4 amplification. Similar to the results with GBM5, GBM63 was resistant to PD0332991 treatment. In an orthotopic survival model, treatment of GBM6 xenografts (CDKN2A/B-deleted and CDK4 wild-type) with PD0332991 significantly suppressed tumor cell proliferation and prolonged survival. Collectively, these data support the concept that GBM tumors lacking p16INK4a expression and with nonamplified CDK4 and wild-type RB status may be more susceptible to Cdk4/6 inhibition using PD0332991. PMID:22711607

  6. Cyclin-dependent kinase inhibitor, P276-00, inhibits HIF-1α and induces G2/M arrest under hypoxia in prostate cancer cells.

    PubMed

    Manohar, S M; Padgaonkar, A A; Jalota-Badhwar, A; Rao, S V; Joshi, K S

    2012-03-01

    Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to oxygen deprivation and controls genes involved in glycolysis, angiogenesis, migration and invasion. Overexpression of HIF-1α has been demonstrated in many common human cancers. Luciferase reporter gene assay under hypoxia and normoxia was used to demonstrate transcriptional inhibition of HIF-1 by P276-00. Detailed studies such as western blotting, reverse-transcriptase-PCR and immunofluorescence were carried out to elucidate its mechanism of action. Cytotoxic potential of P276-00 under normoxia and hypoxia was determined on prostate cancer cells using CCK-8 assay, and cell-cycle analysis was carried out using flow cytometry. Antiangiogenic activity of P276-00 was demonstrated by migration assay and tube-formation assay. Efficacy study of P276-00 was performed in a PC-3 xenograft model. P276-00 inhibits transcriptional activation of HIF-1 under hypoxia. It suppressed hypoxia-mediated nuclear HIF-1α expression, as well as phosphorylation of Akt and 4E-BP1 and abrogated expression of HIF-1-inducible gene viz. vascular endothelial growth factor. Under hypoxia, P276-00 did not exhibit enhanced cytotoxic activity in prostate cancer cells but arrested them in the G2/M phase of the cell cycle. The tubular formation of human umbilical vein endothelial cells and migration of prostate cancer cells were also inhibited by P276-00 in vitro. In addition, it demonstrated significant in vivo efficacy in the PC-3 xenograft model. Given its low toxicity profile, its demonstrated antitumor activity and its potential to inhibit the HIF-1 pathway, P276-00 should be considered as antiangiogenic chemotherapy for prostate cancer.

  7. Sulforaphane Increases Cyclin-Dependent Kinase Inhibitor, p21 Protein in Human Oral Carcinoma Cells and Nude Mouse Animal Model to Induce G2/M Cell Cycle Arrest

    PubMed Central

    Kim, Jun-Hee; Han Kwon, Ki; Jung, Ji-Youn; Han, Hye-Suk; Hyun Shim, Jung; Oh, SeJun; Choi, Kyeong-Hee; Choi, Eun-Sun; Shin, Ji-Ae; Leem, Dae-Ho; Soh, Yunjo; Cho, Nam-Pyo; Cho, Sung-Dae

    2010-01-01

    Previously, our group reported that sulforaphane (SFN), a naturally occurring chemopreventive agent from cruciferous vegetables, effectively inhibits the proliferation of KB and YD-10B human oral squamous carcinoma cells by causing apoptosis. In this study, treatment of 20 and 40 µM of SFN for 12 h caused a cell cycle arrest in the G2/M phase. Cell cycle arrest induced by SFN was associated with a significant increase in the p21 protein level and a decrease in cyclin B expression, but there was no change in the cyclin A protein level. In addition, SFN increased the p21 promoter activity significantly. Furthermore, SFN induced p21 protein expression in a nude mouse xenograft model suggesting that SFN is a potent inducer of the p21 protein in human oral squamous carcinoma cells. These findings show that SFN is a promising candidate for molecular-targeting chemotherapy against human oral squamous cell carcinoma. PMID:20104266

  8. Establishment of a dog model for the p53 family pathway and identification of a novel isoform of p21 cyclin-dependent kinase inhibitor

    PubMed Central

    Zhang, Jin; Chen, Xiangling; Kent, Michael S.; Rodriguez, Carlos O.; Chen, Xinbin

    2009-01-01

    Spontaneous tumors in the dog offer a unique opportunity as models to study human cancer etiology and therapy. p53, the most commonly mutated gene in human cancers, is found to be altered in dog cancers. However, little is known about the role of p53 in dog tumorigenesis. Here, we found that upon exposure to DNA damage agents or Mdm2 inhibitor nutlin-3, canine p53 is accumulated and capable of inducing its target genes, MDM2 and p21. We also found that upon DNA damage, canine p53 is accumulated in the nucleus, followed by MDM2 nuclear translocation and increased 53BP1 foci formation. In addition, we found that canine p63 and p73 are up-regulated by DNA damage agents. Furthermore, colony formation assay showed that canine tumor cells are sensitive to DNA damage agents and nutlin-3 in a p53-dependent manner. Surprisingly, canine p21 is expressed as two isoforms. Thus, we generated multiple canine p21 mutants and found that aa 129 to 142 is required, whereas aa 139 is one of the key determinants, for two p21 isoform expression. Finally, we showed that although the full-length human p21 cDNA expresses one polypeptide, aa 139 appears to play a similar role as that in canine p21 for various migration patterns. Taken together, our results indicate that canine p53 family proteins have biological activities similar to human counterparts. These similarities make the dog as an excellent out-bred spontaneous tumor model and the dog can serve as a translation model from bench-top to cage-side and then to bed-side. PMID:19147538

  9. Synchronous and Time-Dependent Expression of Cyclins, Cyclin-Dependant Kinases, and Apoptotic Genes in the Rumen Epithelia of Butyrate-Infused Goats

    PubMed Central

    Soomro, Jamila; Lu, Zhongyan; Gui, Hongbing; Zhang, Bei; Shen, Zanming

    2018-01-01

    In our previous study, we demonstrated that butyrate induced ruminal epithelial growth through cyclin D1 upregulation. Here, we investigated the influence of butyrate on the expression of genes associated with cell cycle and apoptosis in rumen epithelium. Goats (n = 24) were given an intra ruminal infusion of sodium butyrate at 0.3 (group B, n = 12) or 0 (group A, n = 12) g/kg of body weight (BW) per day before morning feeding for 28 days and were slaughtered (4 goat/group) at 5,7 and 9 h after butyrate infusion. Rumen fluid was analyzed for short chain fatty acids (SCFAs) concentration. Ruminal tissues were analyzed for morpho-histrometry and the expressions of genes associated with cell cycle and apoptosis. The results revealed that the ruminal butyrate concentration increased (P < 0.05) in B compared to group A. Morphometric analysis showed increased (P < 0.05) papillae size associated with higher number of cell layers in epithelial strata in B compared to A. Butyrate-induced papillae enlargement was coupled with enhanced mRNA expression levels (P < 0.05) of cyclin D1, CDK2, CDK4, and CDK6 (G0/G1 phase regulators) at 5 h, cyclin E1 (G1/S phase regulator) at 7 h and cyclin A and CDK1 (S phase regulators) at 9 h post-infusion compared to A group. In addition, the mRNA expression levels of apoptotic genes, i.e., caspase 3, caspase 9 and Bax at 5 h post-infusion were upregulated (P < 0.05) in group B compared to group A. The present study demonstrated that butyrate improved ruminal epithelial growth through concurrent and time-dependent changes in the expressions of genes involved in cell proliferation and apoptosis. It seems that the rate of proliferation was higher than the apoptosis which was reflected in epithelial growth. PMID:29875672

  10. Genetic analysis of the relationship between activation loop phosphorylation and cyclin binding in the activation of the Saccharomyces cerevisiae Cdc28p cyclin-dependent kinase.

    PubMed Central

    Cross, F R; Levine, K

    2000-01-01

    We showed recently that a screen for mutant CDC28 with improved binding to a defective Cln2p G1 cyclin yielded a spectrum of mutations similar to those yielded by a screen for intragenic suppressors of the requirement for activation loop phosphorylation (T169E suppressors). Recombination among these mutations yielded CDC28 mutants that bypassed the G1 cyclin requirement. Here we analyze further the interrelationship between T169E suppression, interaction with defective cyclin, and G1 cyclin bypass. DNA shuffling of mutations from the various screens and recombination onto a T169E-encoding 3' end yielded CDC28 mutants with strong T169E suppression. Some of the strongest T169E suppressors could suppress the defective Cln2p G1 cyclin even while retaining T169E. The strong T169E suppressors did not exhibit bypass of the G1 cyclin requirement but did so when T169E was reverted to T. These results suggested that for these mutants, activation loop phosphorylation and cyclin binding might be alternative means of activation rather than independent requirements for activation (as with wild type). These results suggest mechanistic overlap between the conformational shift induced by cyclin binding and that induced by activation loop phosphorylation. This conclusion was supported by analysis of suppressors of a mutation in the Cdk phosphothreonine-binding pocket created by cyclin binding. PMID:10747052

  11. Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2.

    PubMed

    Goyeneche, Alicia A; Seidel, Erin E; Telleria, Carlos M

    2012-06-01

    Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21(cip1) and p27(kip1) and increased association of p21(cip1) and p27(kip1) with Cdk-2. They also promoted nuclear localization of p21(cip1) and p27(kip1), reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.

  12. Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

    PubMed

    AL Shabanah, Othman A; Alotaibi, Moureq rashed; Al Rejaie, Salim S; Alhoshani, Ali R; Almutairi, Mashal M; Alshammari, Musaad A; Hafez, Mohamed M

    2016-11-01

    Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway. Creative Commons Attribution License

  13. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    PubMed

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  14. Role of aberrant striatal dopamine D1 receptor/cAMP/protein kinase A/DARPP32 signaling in the paradoxical calming effect of amphetamine.

    PubMed

    Napolitano, Francesco; Bonito-Oliva, Alessandra; Federici, Mauro; Carta, Manolo; Errico, Francesco; Magara, Salvatore; Martella, Giuseppina; Nisticò, Robert; Centonze, Diego; Pisani, Antonio; Gu, Howard H; Mercuri, Nicola B; Usiello, Alessandro

    2010-08-18

    Attention deficit/hyperactivity disorder (ADHD) is characterized by inattention, impulsivity, and motor hyperactivity. Several lines of research support a crucial role for the dopamine transporter (DAT) gene in this psychiatric disease. Consistently, the most commonly prescribed medications in ADHD treatment are stimulant drugs, known to preferentially act on DAT. Recently, a knock-in mouse [DAT-cocaine insensitive (DAT-CI)] has been generated carrying a cocaine-insensitive DAT that is functional but with reduced dopamine uptake function. DAT-CI mutants display enhanced striatal extracellular dopamine levels and basal motor hyperactivity. Herein, we showed that DAT-CI animals present higher striatal dopamine turnover, altered basal phosphorylation state of dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP32) at Thr75 residue, but preserved D(2) receptor (D(2)R) function. However, although we demonstrated that striatal D(1) receptor (D(1)R) is physiologically responsive under basal conditions, its stimulus-induced activation strikingly resulted in paradoxical electrophysiological, behavioral, and biochemical responses. Indeed, in DAT-CI animals, (1) striatal LTP was completely disrupted, (2) R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF 81297) treatment induced paradoxical motor calming effects, and (3) SKF 81297 administration failed to increase cAMP/protein kinase A (PKA)/DARPP32 signaling. Such biochemical alteration selectively affected dopamine D(1)Rs since haloperidol, by blocking the tonic inhibition of D(2)R, unmasked a normal activation of striatal adenosine A(2A) receptor-mediated cAMP/PKA/DARPP32 cascade in mutants. Most importantly, our studies highlighted that amphetamine, nomifensine, and bupropion, through increased striatal dopaminergic transmission, are able to revert motor hyperactivity of DAT-CI animals. Overall, our results suggest that the paradoxical motor calming effect induced by these

  15. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs

    PubMed Central

    Galano, Jean-Marie; Guerranti, Roberto; Rossi, Marcello; Ciccoli, Lucia; Hayek, Joussef

    2015-01-01

    An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system. PMID:26236424

  16. Cytokine Dysregulation in MECP2- and CDKL5-Related Rett Syndrome: Relationships with Aberrant Redox Homeostasis, Inflammation, and ω-3 PUFAs.

    PubMed

    Leoncini, Silvia; De Felice, Claudio; Signorini, Cinzia; Zollo, Gloria; Cortelazzo, Alessio; Durand, Thierry; Galano, Jean-Marie; Guerranti, Roberto; Rossi, Marcello; Ciccoli, Lucia; Hayek, Joussef

    2015-01-01

    An involvement of the immune system has been suggested in Rett syndrome (RTT), a devastating neurodevelopmental disorder related to oxidative stress, and caused by a mutation in the methyl-CpG binding protein 2 gene (MECP2) or, more rarely, cyclin-dependent kinase-like 5 (CDKL5). To date, it is unclear whether both mutations may have an impact on the circulating cytokine patterns. In the present study, cytokines involved in the Th1-, Th2-, and T regulatory (T-reg) response, as well as chemokines, were investigated in MECP2- (MECP2-RTT) (n = 16) and CDKL5-Rett syndrome (CDKL5-RTT) (n = 8), before and after ω-3 polyunsaturated fatty acids (PUFAs) supplementation. A major cytokine dysregulation was evidenced in untreated RTT patients. In MECP2-RTT, a Th2-shifted balance was evidenced, whereas in CDKL5-RTT both Th1- and Th2-related cytokines (except for IL-4) were upregulated. In MECP2-RTT, decreased levels of IL-22 were observed, whereas increased IL-22 and T-reg cytokine levels were evidenced in CDKL5-RTT. Chemokines were unchanged. The cytokine dysregulation was proportional to clinical severity, inflammatory status, and redox imbalance. Omega-3 PUFAs partially counterbalanced cytokine changes, as well as aberrant redox homeostasis and the inflammatory status. RTT is associated with a subclinical immune dysregulation as the likely consequence of a defective inflammation regulatory signaling system.

  17. Effects of brevetoxins on murine myeloma SP2/O cells: Aberrant cellular division

    USGS Publications Warehouse

    Han, T.K.; Derby, M.; Martin, D.F.; Wright, S.D.; Dao, M.L.

    2003-01-01

    Massive deaths of manatees (Trichechus manatus latirostris) during the red tide seasons have been attributed to brevetoxins produced by the dinoflagellate Karenia brevis (formerly Ptychodiscus breve and Gymnodinium breve). Although these toxins have been found in macrophages and lymphocytes in the lung, liver, and secondary lymphoid tissues of these animals, the molecular mechanisms of brevetoxicosis have not yet been identified. To investigate the effects of brevetoxins on immune cells, a murine myeloma cell line (SP2/O) was used as a model for in vitro studies. By adding brevetoxins to cultures of the SP2/O cells at concentrations ranging from 20 to 600 ng/ml, an apparent increase in proliferation was observed at around 2 hours post challenge as compared to the unchallenged cell cultures. This was followed by a drop in cell number at around 3 hours, suggesting an aberrant effect of brevetoxins on cellular division, the cells generated at 2 hours being apparently short-lived. In situ immunochemical staining of the SP2/O cells at 1 and 2 hour post challenge showed an accumulation of the toxins in the nucleus. A 21-kDa protein was subsequently isolated from the SP2/O cells as having brevetoxin-binding properties, and immunologically identified as p21, a nuclear factor known to down-regulate cellular proliferation through inhibition of cyclin-dependent kinases. These data are the first on a possible effect of brevetoxins on the cell cycle via binding to p21, a phenomenon that needs to be further investigated and validated in normal immune cells.

  18. Kinases Involved in Both Autophagy and Mitosis.

    PubMed

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  19. Kinases Involved in Both Autophagy and Mitosis

    PubMed Central

    2017-01-01

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266

  20. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis.

    PubMed

    van Doorn, Remco; Dijkman, Remco; Vermeer, Maarten H; Out-Luiting, Jacoba J; van der Raaij-Helmer, Elisabeth M H; Willemze, Rein; Tensen, Cornelis P

    2004-08-15

    Sézary syndrome (Sz) is a malignancy of CD4+ memory skin-homing T cells and presents with erythroderma, lymphadenopathy, and peripheral blood involvement. To gain more insight into the molecular features of Sz, oligonucleotide array analysis was performed comparing gene expression patterns of CD4+ T cells from peripheral blood of patients with Sz with those of patients with erythroderma secondary to dermatitis and healthy controls. Using unsupervised hierarchical clustering gene, expression patterns of T cells from patients with Sz were classified separately from those of benign T cells. One hundred twenty-three genes were identified as significantly differentially expressed and had an average fold change exceeding 2. T cells from patients with Sz demonstrated decreased expression of the following hematopoietic malignancy-linked tumor suppressor genes: TGF-beta receptor II, Mxi1, Riz1, CREB-binding protein, BCL11a, STAT4, and Forkhead Box O1A. Moreover, the tyrosine kinase receptor EphA4 and the potentially oncogenic transcription factor Twist were highly and selectively expressed in T cells of patients with Sz. High expression of EphA4 and Twist was also observed in lesional skin biopsy specimens of a subset of patients with cutaneous T cell lymphomas related to Sz, whereas their expression was nearly undetectable in benign T cells or in skin lesions of patients with inflammatory dermatoses. Detection of EphA4 and Twist may be used in the molecular diagnosis of Sz and related cutaneous T-cell lymphomas. Furthermore, the membrane-bound EphA4 receptor may serve as a target for directed therapeutic intervention.

  1. Fission yeast Csk1 is a CAK-activating kinase (CAKAK).

    PubMed Central

    Hermand, D; Pihlak, A; Westerling, T; Damagnez, V; Vandenhaute, J; Cottarel, G; Mäkelä, T P

    1998-01-01

    Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK). PMID:9857180

  2. Correlations between radiation-induced double strand breaks, cell division delay, and cyclin-dependent signaling in x-irradiated NIH3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Cariveau, Mickael J.

    2005-07-01

    Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.

  3. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor.

    PubMed

    Roy, R; Adamczewski, J P; Seroz, T; Vermeulen, W; Tassan, J P; Schaeffer, L; Nigg, E A; Hoeijmakers, J H; Egly, J M

    1994-12-16

    A protein kinase activity that phosphorylates the C-terminal domain (CTD) of RNA polymerase II and is associated with the basal transcription-repair factor TFIIH (also called BTF2) resides with MO15, a cyclin-dependent protein kinase that was first found to be involved in cell cycle regulation. Using in vivo and in vitro repair assays, we show that MO15 is important for nucleotide excision repair, most likely through its association with TFIIH, thus providing an unexpected link among three important cellular mechanisms.

  4. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  5. Mitotic Regulation by NEK Kinase Networks

    PubMed Central

    Fry, Andrew M.; Bayliss, Richard; Roig, Joan

    2017-01-01

    Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease. PMID:29250521

  6. Modulation of the cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by Zac1 through the antagonistic regulators p53 and histone deacetylase 1 in HeLa Cells.

    PubMed

    Liu, Pei-Yao; Chan, James Yi-Hsin; Lin, Hsiu-Chen; Wang, Sung-Ling; Liu, Shu-Ting; Ho, Ching-Liang; Chang, Li-Chien; Huang, Shih-Ming

    2008-07-01

    Zac1 is a novel seven-zinc finger protein which possesses the ability to bind specifically to GC-rich DNA elements. Zac1 not only promotes apoptosis and cell cycle arrest but also acts as a transcriptional cofactor for p53 and a number of nuclear receptors. Our previous study indicated that the enhancement of p53 activity by Zac1 is much more pronounced in HeLa cells compared with other cell lines tested. This phenomenon might be due to the coactivator effect of Zac1 on p53 and the ability of Zac1 to reverse E6 inhibition of p53. In the present study, we showed that Zac1 acted synergistically with either p53 or a histone deacetylase inhibitor, trichostatin A, to enhance p21(WAF1/Cip1) promoter activity. We showed that Zac1 physically interacted with some nuclear receptor corepressors such as histone deacetylase 1 (HDAC1) and mSin3a, and the induction of p21(WAF1/Cip1) gene and protein by Zac1 was suppressed by either overexpressing HDAC1 or its deacetylase-dead mutant. In addition, our data suggest that trichostatin A-induced p21(WAF1/Cip1) protein expression might be mediated through a p53-independent and HDAC deacetylase-independent pathway. Taken together, our data suggest that Zac1 might be involved in regulating the p21(WAF1/Cip1) gene and protein expression through its protein-protein interaction with p53 and HDAC1 in HeLa cells.

  7. Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors

    PubMed Central

    Jordan, Jamie L.; Darr, David D.; Roberts, Patrick J.; Tavares, Francis X.; Strum, Jay C.

    2017-01-01

    Inhibition of the p16INK4a/cyclin D/CDK4/6/RB pathway is an effective therapeutic strategy for the treatment of estrogen receptor positive (ER+) breast cancer. Although efficacious, current treatment regimens require a dosing holiday due to severe neutropenia potentially leading to an increased risk of infections, as well as tumor regrowth and emergence of drug resistance. Therefore, a next generation CDK4/6 inhibitor that can inhibit proliferation of CDK4/6-dependent tumors while minimizing neutropenia could reduce both the need for treatment holidays and the risk of inducing drug resistance. Here, we describe the preclinical characterization and development of G1T38; a novel, potent, selective, and orally bioavailable CDK4/6 inhibitor. In vitro, G1T38 decreased RB1 (RB) phosphorylation, caused a precise G1 arrest, and inhibited cell proliferation in a variety of CDK4/6-dependent tumorigenic cell lines including breast, melanoma, leukemia, and lymphoma cells. In vivo, G1T38 treatment led to equivalent or improved tumor efficacy compared to the first-in-class CDK4/6 inhibitor, palbociclib, in an ER+ breast cancer xenograft model. Furthermore, G1T38 accumulated in mouse xenograft tumors but not plasma, resulting in less inhibition of mouse myeloid progenitors than after palbociclib treatment. In larger mammals, this difference in pharmacokinetics allowed for 28 day continuous dosing of G1T38 in beagle dogs without producing severe neutropenia. These data demonstrate G1T38 has unique pharmacokinetic and pharmacodynamic properties, which result in high efficacy against CDK4/6 dependent tumors while minimizing the undesirable on-target bone marrow activity, thus potentially allowing G1T38 to be used as a continuous, daily oral antineoplastic agent. PMID:28418845

  8. Upregulation of MicroRNA-15a Contributes to Pathogenesis of Abdominal Aortic Aneurysm (AAA) by Modulating the Expression of Cyclin-Dependent Kinase Inhibitor 2B (CDKN2B).

    PubMed

    Gao, Peng; Si, Jiyuan; Yang, Bin; Yu, Jixiang

    2017-02-18

    BACKGROUND The objective of the present study was to identify the association between miR-15a-5p and CDKN2B, and their roles in regulating the development of abdominal aortic aneurysm (AAA). MATERIAL AND METHODS We searched the miRNA database online (www.mirdb.org) and used a luciferase reporter assay system to study the regulatory relationship between miR-15a-5p and CDKN2B. We also conducted real-time PCR and Western blot analysis to study the mRNA and protein expression level of CDKN2B among different patient groups (participants with abdominal aortic aneurysm (AAA) and normal controls) or cells treated with scramble control, miR-15a-5p mimics, CDKN2B siRNA, and miR-15a-5p inhibitors. RESULTS We found that CDKN2B was a virtual target of miR-15a-5p with potential binding sites in the 3'UTR of CDKN2B (77-83 bp). We also showed that miR-15a-5p could bind to the CDKN2B 3'UTR, resulting in a significant decrease in luciferase activity compared with the scramble control. Furthermore, we found that the cells isolated from AAA participants showed an over-expression of miR-15a-5p compared to the normal controls, while the CDKN2B mRNA and protein expression level of the AAA group were much lower than the normal control group. Additionally, the expression of CDKN2B mRNA and the protein of the cells transfected with miR-15a-5p mimics and CDKN2B siRNA was downregulated, while the cells showed upregulated expression subsequent to transfection with miR-15a-5p inhibitors compared to the scramble control. CONCLUSIONS The data revealed a negative regulatory role of miR-15a-5p in the apoptosis of smooth muscle cells via targeting CDKN2B, and showed that miR-15a-5p could be a novel therapeutic target of AAA.

  9. Insights into the structural basis of N2 and O6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations.

    PubMed

    Alzate-Morales, Jans H; Caballero, Julio; Vergara Jague, Ariela; González Nilo, Fernando D

    2009-04-01

    N2 and O6 substituted guanine derivatives are well-known as potent and selective CDK2 inhibitors. The ability of molecular docking using the program AutoDock3 and the hybrid method ONIOM, to obtain some quantum chemical descriptors with the aim to successfully rank these inhibitors, was assessed. The quantum chemical descriptors were used to explain the affinity, of the series studied, by a model of the CDK2 binding site. The initial structures were obtained from docking studies and the ONIOM method was applied with only a single point energy calculation on the protein-ligand structure. We obtained a good correlation model between the ONIOM derived quantum chemical descriptor "H-bond interaction energy" and the experimental biological activity, with a correlation coefficient value of R = 0.80 for 75 compounds. To the best of our knowledge, this is the first time that both methodologies are used in conjunction in order to obtain a correlation model. The model suggests that electrostatic interactions are the principal driving force in this protein-ligand interaction. Overall, the approach was successful for the cases considered, and it suggests that could be useful for the design of inhibitors in the lead optimization phase of drug discovery.

  10. Interleukin-6 (IL-6) rs1800796 and cyclin dependent kinase inhibitor (CDKN2A/CDKN2B) rs2383207 are associated with ischemic stroke in indigenous West African Men.

    PubMed

    Akinyemi, Rufus; Arnett, Donna K; Tiwari, Hemant K; Ovbiagele, Bruce; Sarfo, Fred; Srinivasasainagendra, Vinodh; Irvin, Marguerite Ryan; Adeoye, Abiodun; Perry, Rodney T; Akpalu, Albert; Jenkins, Carolyn; Owolabi, Lukman; Obiako, Reginald; Wahab, Kolawole; Sanya, Emmanuel; Komolafe, Morenikeji; Fawale, Michael; Adebayo, Philip; Osaigbovo, Godwin; Sunmonu, Taofiki; Olowoyo, Paul; Chukwuonye, Innocent; Obiabo, Yahaya; Akpa, Onoja; Melikam, Sylvia; Saulson, Raelle; Kalaria, Raj; Ogunniyi, Adesola; Owolabi, Mayowa

    2017-08-15

    Inherited genetic variations offer a possible explanation for the observed peculiarities of stroke in sub - Saharan African populations. Interleukin-6 polymorphisms have been previously associated with ischemic stroke in some non-African populations. Herein we investigated, for the first time, the association of genetic polymorphisms of IL-6, CDKN2A- CDKN2B and other genes with ischemic stroke among indigenous West African participants in the Stroke Investigative Research and Education Network (SIREN) Study. Twenty-three previously identified single nucleotide polymorphisms (SNPs) in 14 genes of relevance to the neurobiology of ischemic stroke were investigated. Logistic regression models adjusting for known cardiovascular disease risk factors were constructed to assess the associations of the 23 SNPs in rigorously phenotyped cases (N=429) of ischemic stroke (Men=198; Women=231) and stroke- free (N=483) controls (Men=236; Women=247). Interleukin-6 (IL6) rs1800796 (C minor allele; frequency: West Africans=8.6%) was significantly associated with ischemic stroke in men (OR=2.006, 95% CI=[1.065, 3.777], p=0.031) with hypertension in the model but not in women. In addition, rs2383207 in CDKN2A/CDKN2B (minor allele A with frequency: West Africans=1.7%) was also associated with ischemic stroke in men (OR=2.550, 95% CI=[1.027, 6.331], p=0.044) with primary covariates in the model, but not in women. Polymorphisms in other genes did not show significant association with ischemic stroke. Polymorphisms rs1800796 in IL6 gene and rs2383207 in CDKN2A/CDKN2B gene have significant associations with ischemic stroke in indigenous West African men. CDKN2A/CDKN2B SNP rs2383207 is independently associated with ischemic stroke in indigenous West African men. Further research should focus on the contributions of inflammatory genes and other genetic polymorphisms, as well as the influence of sex on the neurobiology of stroke in people of African ancestry. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  12. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  13. Aberrant alternative splicing is another hallmark of cancer.

    PubMed

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks.

  14. Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor beta-activated kinase 1/activating transcription factor 2 signaling: a potential clinical implication for osteoarthritis.

    PubMed

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R; Flick, Lisa M; Konttinen, Yrjö T; Chen, Di; Schwarz, Edward M; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2010-08-01

    To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor beta (TGFbeta) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Joint disease in Smad3-knockout (Smad3(-/-)) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3(-/-) mice. In Smad3(-/-) mice, an end-stage OA phenotype gradually developed. TGFbeta-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3(-/-) mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3(-/-) cells restored the normal p38 response to TGFbeta. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3(-/-) chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms alpha, beta, and gamma, but not delta. Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3-phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic

  15. Signaling through protein kinases and transcriptional regulators in Candida albicans.

    PubMed

    Dhillon, Navneet K; Sharma, Sadhna; Khuller, G K

    2003-01-01

    The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. Several signaling pathways that regulate morphogenesis have been identified, including various transcription factors that either activate or repress hypha-specific genes. Two well-characterized pathways include the MAP kinase cascade and cAMP-dependent protein kinase pathway that regulate the transcription factors Cph1p and Efg1p, respectively. cAMP also appears to interplay with other second messengers: Ca2+, inositol tri-phosphates in regulating yeast-hyphal transition. Other, less-characterized pathways include two component histidine kinases, cyclin-dependent kinase pathway, and condition specific pathways such as pH and embedded growth conditions. Nrg1 and Rfg1 function as transcriptional repressors of hyphal genes via recruitment of Tup1 co-repressor complex. Different upstream signals converge into a common downstream output during hyphal switch. The levels of expression of several genes have been shown to be associated with hyphal morphogenesis rather than with a specific hypha-inducing condition. Hyphal development is also linked to the expression of a range of other virulence factors. This review explains the relative contribution of multiple pathways that could be used by Candida albican cells to sense subtle differences in the growth conditions of its native host environment.

  16. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  17. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors

    PubMed Central

    Kris, M. G.; Camidge, D. R.; Giaccone, G.; Hida, T.; Li, B. T.; O'Connell, J.; Taylor, I.; Zhang, H.; Arcila, M. E.; Goldberg, Z.; Jänne, P. A.

    2015-01-01

    Background HER2 mutations and amplifications have been identified as oncogenic drivers in lung cancers. Dacomitinib, an irreversible inhibitor of HER2, EGFR (HER1), and HER4 tyrosine kinases, has demonstrated activity in cell-line models with HER2 exon 20 insertions or amplifications. Here, we studied dacomitinib in patients with HER2-mutant or amplified lung cancers. Patients and methods As a prespecified cohort of a phase II study, we included patients with stage IIIB/IV lung cancers with HER2 mutations or amplification. We gave oral dacomitinib at 30–45 mg daily in 28-day cycles. End points included partial response rate, overall survival, and toxicity. Results We enrolled 30 patients with HER2-mutant (n = 26, all in exon 20 including 25 insertions and 1 missense mutation) or HER2-amplified lung cancers (n = 4). Three of 26 patients with tumors harboring HER2 exon 20 mutations [12%; 95% confidence interval (CI) 2% to 30%] had partial responses lasting 3+, 11, and 14 months. No partial responses occurred in four patients with tumors with HER2 amplifications. The median overall survival was 9 months from the start of dacomitinib (95% CI 7–21 months) for patients with HER2 mutations and ranged from 5 to 22 months with amplifications. Treatment-related toxicities included diarrhea (90%; grade 3/4: 20%/3%), dermatitis (73%; grade 3/4: 3%/0%), and fatigue (57%; grade 3/4: 3%/0%). One patient died on study likely due to an interaction of dacomitinib with mirtazapine. Conclusions Dacomitinib produced objective responses in patients with lung cancers with specific HER2 exon 20 insertions. This observation validates HER2 exon 20 insertions as actionable targets and justifies further study of HER2-targeted agents in specific HER2-driven lung cancers. ClinicalTrials.gov NCT00818441. PMID:25899785

  18. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  19. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.

    PubMed

    Martić, Sanela; Rains, Meghan K; Freeman, Daniel; Kraatz, Heinz-Bernhard

    2011-08-17

    The 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates (3 and 4), containing the poly(ethylene glycol) spacers, were synthesized and compared to a hydrophobic analogue as co-substrates for the following protein kinases: sarcoma related kinase (Src), cyclin-dependent kinase (CDK), casein kinase II (CK2α), and protein kinase A (PKA). Electrochemical kinase assays indicate that the hydrophobic Fc-ATP analogue was an optimal co-substrate for which K(M) values were determined to be in the 30-200 μM range, depending on the particular protein kinase. The luminescence kinase assay demonstrated the kinase utility for all Fc-ATP conjugates, which is in line with the electrochemical data. Moreover, Fc-ATP bioconjugates exhibit competitive behavior with respect to ATP. Relatively poor performance of the polar Fc-ATP bioconjugates as co-substrates for protein kinases was presumably due to the additional H-bonding and electrostatic interactions of the poly(ethylene glycol) linkers of Fc-ATP with the kinase catalytic site and the target peptides. Phosphorylation of the full-length protein, His-tagged pro-caspase-3, was demonstrated through Fc-phosphoamide transfer to the Ser residues of the surface-bound protein by electrochemical means. These results suggest that electrochemical detection of the peptide and protein Fc-phosphorylation via tailored Fc-ATP co-substrates may be useful for probing protein-protein interactions.

  20. Repression of TFIIH Transcriptional Activity and TFIIH-Associated cdk7 Kinase Activity at Mitosis

    PubMed Central

    Long, John J.; Leresche, Anne; Kriwacki, Richard W.; Gottesfeld, Joel M.

    1998-01-01

    Nuclear transcription is repressed when eukaryotic cells enter mitosis. Mitotic repression of transcription of various cellular and viral gene promoters by RNA polymerase II can be reproduced in vitro either with extracts prepared from cells arrested at mitosis with the microtubule polymerization inhibitor nocodazole or with nuclear extracts prepared from asynchronous cells and the mitotic protein kinase cdc2/cyclin B. Purified cdc2/cyclin B kinase is also sufficient to inhibit transcription in reconstituted transcription reactions with biochemically purified and recombinant basal transcription factors and RNA polymerase II. The cyclin-dependent kinase inhibitor p21Waf1/Cip1/Sdi1 can reverse the effect of cdc2/cyclin B kinase, indicating that repression of transcription is due to protein phosphorylation. Transcription rescue and inhibition experiments with each of the basal factors and the polymerase suggest that multiple components of the transcription machinery are inactivated by cdc2/cyclin B kinase. For an activated promoter, targets of repression are TFIID and TFIIH, while for a basal promoter, TFIIH is the major target for mitotic inactivation of transcription. Protein labeling experiments indicate that the p62 and p36 subunits of TFIIH are in vitro substrates for mitotic phosphorylation. Using the carboxy-terminal domain of the large subunit of RNA polymerase II as a test substrate for phosphorylation, the TFIIH-associated kinase, cdk7/cyclin H, is inhibited concomitant with inhibition of transcription activity. Our results suggest that there exist multiple phosphorylation targets for the global shutdown of transcription at mitosis. PMID:9488463

  1. Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32.

    PubMed

    Zhang, Y; Svenningsson, P; Picetti, R; Schlussman, S D; Nairn, A C; Ho, A; Greengard, P; Kreek, M J

    2006-03-08

    The reinforcing effect of cocaine is associated with increases in dopamine in the striatum. The phosphoprotein DARPP-32 (dopamine- and cAMP-regulated phosphoprotein) has been shown to mediate the intracellular events after activation of dopamine receptors. DARPP-32 is phosphorylated at multiple sites by different protein kinases, but little is known about the functional role of these different sites. Cocaine self-administration and striatal levels of dopamine after acute "binge" cocaine administration were measured in separate lines of mice with alanine mutations introduced into DARPP-32 at either Thr34 (protein kinase A site, Thr34A), Thr75, (cyclin-dependent kinase 5 site, Thr75A), Ser97 (kinase CK2 site, Ser97A), or Ser130 (kinase CK1 site, Ser130A). Acquisition of stable cocaine self-administration required significantly more time in Thr34A-/- mice. Both Thr34A- and Ser130A-DARPP-32 mutant mice self-administered more cocaine than their respective wild-type controls. Also, cocaine-induced increases of dopamine in dorsal striatum were attenuated in the Thr34A- and Ser130A-DARPP-32 phosphomutant mice compared with wild-type mice. Notably, levels of P-Thr34- and P-Ser130-DARPP-32 were reduced after self-administration of cocaine in wild-type mice. Thus, phosphorylation states of Thr34- and Ser130-DARPP-32 play important roles in modulating the reinforcing effects of cocaine.

  2. OF TRYPANOSOMATIDS. ENDOTRANSFORMATIONS AND ABERRATIONS].

    PubMed

    Frolov, A O; Malysheva, M N; Kostygov, A Yu

    2016-01-01

    Endotransformations and aberrations of the life cycle in the evolutionary history of trypanosomatids (Kinetoplastea: Trypanosomatidae) are analyzed. We treat the term "endotransformations" as evolutionarily fixed changes of phases and/or developmental stages of parasites. By contrast, we treat aberrations as evolutionary unstable, periodically arising deformations of developmental phases of trypanosomatids, never leading to life cycle changes. Various examples of life cycle endotransformations and aberrations in representatives of the family Trypanosomatidae are discussed.

  3. Arg-Pro-X-Ser/Thr is a Consensus Phosphoacceptor Sequence for the Meiosis-Specific Ime2 Protein Kinase in Saccharomyces cerevisiae†

    PubMed Central

    Moore, Michael; Shin, Marcus; Bruning, Adrian; Schindler, Karen; Vershon, Andrew; Winter, Edward

    2008-01-01

    Ime2 is a meiosis-specific protein kinase in Saccharomyces cerevisiae that is functionally related to cyclin-dependent kinase. Although Ime2 regulates multiple steps in meiosis, only a few of its substrates have been identified. Here we show that Ime2 phosphorylates Sum1, a repressor of meiotic gene transcription, on Thr-306. Ime2 protein kinase assays on Sum1 mutants and synthetic peptides define a consensus motif Arg-Pro-X-Ser/Thr that is required for efficient phosphorylation by Ime2. The carboxyl residue adjacent to the phosphoacceptor (+1 position) also influences the efficiency of Ime2 phosphorylation with alanine being a preferred residue. This information has predictive value in identifying new potential Ime2 targets as shown by the ability of Ime2 to phosphorylate Sgs1 and Gip1 in vitro, and could be important in differentiating mitotic and meiotic regulatory pathways. PMID:17198398

  4. τ kinases in the rat heat shock model: Possible implications for Alzheimer disease

    PubMed Central

    Shanavas, Alikunju; Papasozomenos, Sozos Ch.

    2000-01-01

    We have previously shown, by using the phosphate-dependent anti-τ antibodies Tau-1 and PHF-1, that heat shock induces rapid dephosphorylation of τ followed by hyperphosphorylation in female rats. In this study, we analyzed in forebrain homogenates from female Sprague–Dawley rats the activities of extracellular signal regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), cyclin-dependent kinase 5 (Cdk5), cAMP-dependent protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at 0 (n = 5), 3 (n = 4), 6 (n = 5), and 12 (n = 5) h after heat shock and in non-heat-shocked controls (n = 5). Immunoprecipitation kinase assays at 0 h showed suppression of the activities of all kinases except of GSK-3β, which showed increased activity. At 3–6 h, the activities of ERK1/2, JNK, Cdk5, and GSK-3β toward selective substrates were increased; however, only JNK, Cdk5, and GSK-3β but not ERK1/2 were overactivated toward purified bovine τ. At 3–6 h, kinase assays specific for PKA and CaMKII showed no increased activity toward either τ or selective substrates. All of eight anti-τ antibodies tested showed dephosphorylation at 0 h and hyperphosphorylation at 3–6 h, except for 12E8, which showed hyperphosphorylation also at 0 h. Immunoblot analysis using activity-dependent antibodies against ERK1/2, JNK, and GSK-3β confirmed the above data. Increased activation and inhibition of kinases after heat shock were statistically significant in comparison with controls. Because τ is hyperphosphorylated in Alzheimer disease these findings suggest that JNK, GSK-3β, and Cdk5 may play a role in its pathogenesis. PMID:11121021

  5. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  6. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH.

    PubMed Central

    Rossignol, M; Kolb-Cheynel, I; Egly, J M

    1997-01-01

    The transcription/DNA repair factor TFIIH consists of nine subunits, several exhibiting known functions: helicase/ATPase, kinase activity and DNA binding. Three subunits of TFIIH, cdk7, cyclin H and MAT1, form a ternary complex, cdk-activating kinase (CAK), found either on its own or as part of TFIIH. In the present work, we demonstrate that purified human CAK complex (free CAK) and recombinant CAK (rCAK) produced in insect cells exhibit a strong preference for the cyclin-dependent kinase 2 (cdk2) over a ctd oligopeptide substrate (which mimics the carboxy-terminal domain of the RNA polymerase II). In contrast, TFIIH preferentially phosphorylates the ctd as well as TFIIE alpha, but not cdk2. TFIIH was resolved into four subcomplexes: the kinase complex composed of cdk7, cyclin H and MAT1; the core TFIIH which contains XPB, p62, p52, p44 and p34; and two other subcomplexes in which XPD is found associated with either the kinase complex or with the core TFIIH. Using these fractions, we demonstrate that TFIIH lacking the CAK subcomplex completely recovers its transcriptional activity in the presence of free CAK. Furthermore, studies examining the interactions between TFIIH subunits provide evidence that CAK is integrated within TFIIH via XPB and XPD. PMID:9130708

  7. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  8. [Effects of polydatin on learning and memory and Cdk5 kinase activity in the hippocampus of rats with chronic alcoholism].

    PubMed

    Li, Xin-juan; Zhang, Yan; Xu, Chun-yang; Li, Shuang; Du, Ai-lin; Zhang, Li-bin; Zhang, Rui-ling

    2015-03-01

    To observe the effects of polydatin on learning and memory and cyclin-dependent kinase 5 (Cdk5) kinase activity in the hippocampus of rats with chronic alcoholism. Forty rats were randomly divided into 4 groups: control group, chronic alcoholism group, low and high polydatin group. The rat chronic alcoholism model was established by ethanol 3.0 g/(kg · d) (intragastric administration). The abstinence scoring was used to evaluate the rats withdrawal symptoms; cognitive function was measured by Morris water maze experiment; Cdk5 protein expression in the hippocampus was detected by immunofluorescence; Cdk5 kinase activity in the hippocampus was detected by liquid scintillation counting method. The abstinence score, escape latency, Cdk5 kinase activity in chronic alcoholism group rats were significantly higher than those of control group (P < 0.05). The abstinence score, escape latency in high polydatin group rats were significantly lower than those of chronic alcoholism group (P < 0.05); Cdk5 kinase activity in high and low polydatin group rats was significantly lower than that of chronic alcoholism group( P < 0.05); immunofluorescence showed that the Cdk5 positive cells of chronic alcoholism group were significantly increased compared with control group (P < 0.05), and the Cdk5 positive cells of polydatin groups were significantly decreased compared with chronic alcoholism group ( P < 0.05). Polydatin-reduced the chronic alcoholism damage may interrelate with regulation of Cdk5 kinase activity.

  9. Aurora kinases: structure, functions and their association with cancer.

    PubMed

    Kollareddy, Madhu; Dzubak, Petr; Zheleva, Daniella; Hajduch, Marian

    2008-06-01

    Aurora kinases are a recently discovered family of kinases (A, B & C) consisting of highly conserved serine\\threonine protein kinases found to be involved in multiple mitotic events: regulation of spindle assembly checkpoint pathway, function of centrosomes and cytoskeleton, and cytokinesis. Aberrant expression of Aurora kinases may lead to cancer. For this reason the Aurora kinases are potential targets in the treatment of cancer. In this review we discuss the biology of these kinases: structure, function, regulation and association with cancer. A literature search. Many of the multiple functions of mitosis are mediated by the Aurora kinases. Their aberrant expression can lead to the deregulation of cell division and cancer. For this reason, the Aurora kinases are currently one of the most interesting targets for cancer therapy. Some Aurora kinase inhibitors in the clinic have proven effectively on a wide range of tumor types. The clinical data are very encouraging and promising for development of novel class of structurally different Aurora kinase inhibitors. Hopefully the Aurora kinases will be potentially useful in drug targeted cancer treatment.

  10. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16

    PubMed Central

    Dixon-Clarke, Sarah E.; Shehata, Saifeldin N.; Krojer, Tobias; Sharpe, Timothy D.; vonDelft, Frank; Sakamoto, Kei

    2017-01-01

    CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts. PMID:28057719

  11. Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16.

    PubMed

    Dixon-Clarke, Sarah E; Shehata, Saifeldin N; Krojer, Tobias; Sharpe, Timothy D; von Delft, Frank; Sakamoto, Kei; Bullock, Alex N

    2017-02-20

    CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts. © 2017 The Author(s).

  12. Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1

    PubMed Central

    Pal, Gayatri; Paraz, Maria T.Z.; Kellogg, Douglas R.

    2008-01-01

    The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression. PMID:18316413

  13. Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation.

    PubMed

    Deegan, Tom D; Yeeles, Joseph Tp; Diffley, John Fx

    2016-05-02

    The initiation of eukaryotic DNA replication requires the assembly of active CMG (Cdc45-MCM-GINS) helicases at replication origins by a set of conserved and essential firing factors. This process is controlled during the cell cycle by cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), and in response to DNA damage by the checkpoint kinase Rad53/Chk1. Here we show that Sld3, previously shown to be an essential CDK and Rad53 substrate, is recruited to the inactive MCM double hexamer in a DDK-dependent manner. Sld3 binds specifically to DDK-phosphorylated peptides from two MCM subunits (Mcm4, 6) and then recruits Cdc45. MCM mutants that cannot bind Sld3 or Sld3 mutants that cannot bind phospho-MCM or Cdc45 do not support replication. Moreover, phosphomimicking mutants in Mcm4 and Mcm6 bind Sld3 without DDK and facilitate DDK-independent replication. Thus, Sld3 is an essential "reader" of DDK phosphorylation, integrating signals from three distinct protein kinase pathways to coordinate DNA replication during S phase. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants

    PubMed Central

    Bakó, László; Umeda, Masaaki; Tiburcio, Antonio F.; Schell, Jeff; Koncz, Csaba

    2003-01-01

    The bacterial virulence protein VirD2 plays an important role in nuclear import and chromosomal integration of Agrobacterium-transferred DNA in fungal, plant, animal, and human cells. Here we show that in nuclei of alfalfa cells, VirD2 interacts with and is phosphorylated by CAK2Ms, a conserved plant ortholog of cyclin-dependent kinase-activating kinases. CAK2Ms binds to and phosphorylates the C-terminal regulatory domain of RNA polymerase II largest subunit, which can recruit the TATA box-binding protein. VirD2 is found in tight association with the TATA box-binding protein in vivo. These results indicate that recognition of VirD2 is mediated by widely conserved nuclear factors in eukaryotes. PMID:12900506

  15. On the Definition of Aberration

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Wang, Guangli

    2014-12-01

    There was a groundbreaking step in the history of astronomy in 1728 when the effect of aberration was discovered by James Bradley (1693-1762). Recently, the solar acceleration, due to the variations in the aberrational effect of extragalactic sources caused by it, has been determined from VLBI observations with an uncertainty of about 0.5 mm{\\cdot}{s^{-1}}{\\cdot}{yr^{-1}} level. As a basic concept in astrometry with a nearly 300-year history, the definition of aberration, however, is still equivocal and discordant in the literature. It has been under continuing debate whether it depends on the relative motion between the observer and the observed source or only on the motion of the observer with respect to the frame of reference. In this paper, we will review the debate and the inconsistency in the definition of the aberration since the last century, and then discuss its definition in detail, which involves the discussions on the planetary aberration, the stellar aberration, the proper motion of an object during the travel time of light from the object to the observer, and the way of selecting the reference frame to express and distinguish the motions of the source and the observer. The aberration is essentially caused by the transformation between coordinate systems, and consequently quantified by the velocity of the observer with respect to the selected reference frame, independent of the motion of the source. Obviously, this nature is totally different from that of the definition given by the IAU WG NFA (Capitaine, 2007) in 2006, which is stated as, ``the apparent angular displacement of the observed position of a celestial object from its geometric position, caused by the finite velocity of light in combination with the motions of the observer and of the observed object.''

  16. The Art of Optical Aberrations

    NASA Astrophysics Data System (ADS)

    Wylde, Clarissa Eileen Kenney

    Art and optics are inseparable. Though seemingly opposite disciplines, the combination of art and optics has significantly impacted both culture and science as they are now known. As history has run its course, in the sciences, arts, and their fruitful combinations, optical aberrations have proved to be a problematic hindrance to progress. In an effort to eradicate aberrations the simple beauty of these aberrational forms has been labeled as undesirable and discarded. Here, rather than approach aberrations as erroneous, these beautiful forms are elevated to be the photographic subject in a new body of work, On the Bright Side. Though many recording methods could be utilized, this work was composed on classic, medium-format, photographic film using white-light, Michelson interferometry. The resulting images are both a representation of the true light rays that interacted on the distorted mirror surfaces (data) and the artist's compositional eye for what parts of the interferogram are chosen and displayed. A detailed description of the captivating interdisciplinary procedure is documented and presented alongside the final artwork, CCD digital reference images, and deformable mirror contour maps. This alluring marriage between the arts and sciences opens up a heretofore minimally explored aspect of the inextricable art-optics connection. It additionally provides a fascinating new conversation on the importance of light and optics in photographic composition.

  17. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn.

    PubMed

    Miyamoto, Yuki; Yamauchi, Junji; Tanoue, Akito

    2008-08-13

    Myelin formation of the CNS is a complex and dynamic process. Before the onset of myelination, oligodendrocytes (OLs), the myelin-forming glia of the CNS, proliferate and migrate along axons. Little is known about the molecular mechanisms underlying the early myelination processes. Here, we show that platelet-derived growth factor (PDGF), the crucial physiological ligand in early OL development, controls the migration of oligodendrocyte precursor cells (OPCs) through cyclin-dependent kinase 5 (Cdk5). PDGF stimulates Cdk5 activity in a time-dependent manner, whereas suppression of Cdk5 by the specific inhibitor roscovitine or by the retrovirus encoding short-hairpin RNA for Cdk5 impairs PDGF-dependent OPC migration. The activation of Cdk5 by PDGF is mediated by the phosphorylation of the nonreceptor tyrosine kinase, Fyn, whose inhibition reduces PDGF-dependent OPC migration. Furthermore, Cdk5 regulates PDGF-dependent OPC migration through the direct phosphorylation of WASP (Wiskott-Aldrich syndrome protein)-family verprolin-homologous protein 2 (WAVE2). Cdk5 phosphorylates WAVE2 at Ser-137 in vitro. Infection of the WAVE2 construct harboring the Ser-137-to-Ala reduces PDGF-dependent migration. Together, PDGF regulates OPC migration through an as-yet-unidentified signaling cascade coupling Fyn kinase to Cdk5 phosphorylation of WAVE2. These results provide new insights into both the role of Cdk5 in glial cells and the molecular mechanisms controlling the early developmental stage of OLs.

  18. Semiconductor technology in protein kinase research and drug discovery: sensing a revolution.

    PubMed

    Bhalla, Nikhil; Di Lorenzo, Mirella; Estrela, Pedro; Pula, Giordano

    2017-02-01

    Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  20. Cdk-related kinase 9 regulates RNA polymerase II mediated transcription in Toxoplasma gondii.

    PubMed

    Deshmukh, Abhijit S; Mitra, Pallabi; Kolagani, Ashok; Gurupwar, Rajkumar

    2018-06-01

    Cyclin-dependent kinases are an essential part of eukaryotic transcriptional machinery. In Apicomplexan parasites, the role and relevance of the kinases in the multistep process of transcription seeks more attention given the absence of full repertoire of canonical Cdks and cognate cyclin partners. In this study, we functionally characterize T. gondii Cdk-related kinase 9 (TgCrk9) showing maximal homology to eukaryotic Cdk9. An uncanonical cyclin, TgCyclin L, colocalizes with TgCrk9 in the parasite nucleus and co-immunoprecipitate, could activate the kinase in-vitro. We identify two threonines in conserved T-loop domain of TgCrk9 that are important for its activity. The activated TgCrk9 phosphorylates C-terminal domain (CTD) of TgRpb1, the largest subunit of RNA polymerase II highlighting its role in transcription. Selective chemical inhibition of TgCrk9 affected serine 2 phosphorylation in the heptapeptide repeats of TgRpb1-CTD towards 3' end of genes consistent with a possible role in transcription elongation. Interestingly, TgCrk9 kinase activity is regulated by the upstream TgCrk7 based CAK complex. TgCrk9 was found to functionally complement the role of its yeast counterpart Bur1 establishing its role as an important transcriptional kinase. In this study, we provide robust evidence that TgCrk9 is an important part of transcription machinery regulating gene expression in T. gondii. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae.

    PubMed Central

    Asakawa, K; Yoshida, S; Otake, F; Toh-e, A

    2001-01-01

    Exit from mitosis requires the inactivation of cyclin-dependent kinase (CDK) activity. In the budding yeast Saccharomyces cerevisiae, a number of gene products have been identified as components of the signal transduction network regulating inactivation of CDK (called the MEN, for the mitotic exit network). Cdc15, one of such components of the MEN, is an essential protein kinase. By the two-hybrid screening, we identified Cdc15 as a binding protein of Tem1 GTPase, another essential regulator of the MEN. Coprecipitation experiments revealed that Tem1 binds to Cdc15 in vivo. By deletion analysis, we found that the Tem1-binding domain resides near the conserved kinase domain of Cdc15. The cdc15-LF mutation, which was introduced into the Tem1-binding domain, reduced the interaction with Cdc15 and Tem1 and caused temperature-sensitive growth.The kinase activity of Cdc15 was not so much affected by the cdc15-LF mutation. However, Cdc15-LF failed to localize to the SPB at the restrictive temperature. Our data show that the interaction with Tem1 is important for the function of Cdc15 and that Cdc15 and Tem1 function in a complex to direct the exit from mitosis. PMID:11290702

  2. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    PubMed

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  3. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Mask-induced aberration in EUV lithography

    NASA Astrophysics Data System (ADS)

    Nakajima, Yumi; Sato, Takashi; Inanami, Ryoichi; Nakasugi, Tetsuro; Higashiki, Tatsuhiko

    2009-04-01

    We estimated aberrations using Zernike sensitivity analysis. We found the difference of the tolerated aberration with line direction for illumination. The tolerated aberration of perpendicular line for illumination is much smaller than that of parallel line. We consider this difference to be attributable to the mask 3D effect. We call it mask-induced aberration. In the case of the perpendicular line for illumination, there was a difference in CD between right line and left line without aberration. In this report, we discuss the possibility of pattern formation in NA 0.25 generation EUV lithography tool. In perpendicular pattern for EUV light, the dominant part of aberration is mask-induced aberration. In EUV lithography, pattern correction based on the mask topography effect will be more important.

  5. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  6. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases.

    PubMed

    Huang, Yongqi; Yoon, Mi-Kyung; Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W

    2015-01-30

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21(Cip1), p27(Kip1) and p57(Kip2). Their kinase inhibitory activities are mediated by a homologous N-terminal kinase inhibitory domain. The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the kinase inhibitory domain and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, as well as its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  9. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  10. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression

    PubMed Central

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian

    2015-01-01

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle–dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle–dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2ACdc55) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle. PMID:25713391

  11. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression.

    PubMed

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian; Kohlwein, Sepp D

    2015-03-10

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle.

  12. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces.

    PubMed

    Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man

    2009-08-28

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21(cip1) and p27(kip1) and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  13. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  14. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  15. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.

    PubMed

    Behzad, Masumeh Maleki; Shahrabi, Saeid; Jaseb, Kaveh; Bertacchini, Jessika; Ketabchi, Neda; Saki, Najmaldin

    2018-01-31

    Chronic myeloid leukemia (CML) is a hematopoietic stem cell malignancy characterized by the expression of the BCR-ABL1 fusion gene with different chimeric transcripts. Despite the crucial impact of constitutively active tyrosine kinase in CML pathogenesis, aberrant DNA methylation of certain genes plays an important role in disease progression and the development of drug resistance. This article reviews recent findings relevant to the effect of DNA methylation pattern of regulatory genes on various cellular activities such as cell proliferation and survival, as well as cell-signaling molecules in CML. These data might contribute to defining the role of aberrant DNA methylation in disease initiation and progression. However, further studies are needed on the validation of specific aberrant methylation markers regarding the prognosis and prediction of response among the CML patients.

  16. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  17. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2.

    PubMed Central

    Poon, R Y; Yamashita, K; Adamczewski, J P; Hunt, T; Shuttleworth, J

    1993-01-01

    Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit. Images PMID:8393783

  18. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2.

    PubMed

    Poon, R Y; Yamashita, K; Adamczewski, J P; Hunt, T; Shuttleworth, J

    1993-08-01

    Activation of the cyclin-dependent protein kinases p34cdc2 and p33cdk2 requires binding with a cyclin partner and phosphorylation on the first threonine residue in the sequence THEVVTLWYRAPE. We present evidence that this threonine residue, number 160 in p33cdk2, can be specifically phosphorylated by a cdc2-related protein kinase from Xenopus oocytes called p40MO15. Binding to cyclin A and phosphorylation of this threonine are both required to activate fully the histone H1 kinase activity of p33cdk2. In cell extracts, a portion of p40MO15 is found in a high molecular weight complex that is considerably more active than a lower molecular weight form. Wild-type MO15 protein expressed in bacteria does not possess kinase activity, but acquires p33cdk2-T160 kinase activity after incubation with cell extract and ATP. We conclude that p40MO15 corresponds to CAK (cdc2/cdk2 activating kinase) and speculate that, like p33cdk2 and p34cdc2, p40MO15 requires activation by phosphorylation and association with a companion subunit.

  19. Aberration hubs in protein interaction networks highlight actionable targets in cancer.

    PubMed

    Karimzadeh, Mehran; Jandaghi, Pouria; Papadakis, Andreas I; Trainor, Sebastian; Rung, Johan; Gonzàlez-Porta, Mar; Scelo, Ghislaine; Vasudev, Naveen S; Brazma, Alvis; Huang, Sidong; Banks, Rosamonde E; Lathrop, Mark; Najafabadi, Hamed S; Riazalhosseini, Yasser

    2018-05-18

    Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e. individual proteins that interact extensively with genes that show aberrant mutation or expression. Our analysis of the breast cancer data of the TCGA and the renal cancer data from the ICGC shows that aberration hubs are involved in relevant cancer pathways, including factors promoting cell cycle and DNA replication in basal-like breast tumors, and Src kinase and VEGF signaling in renal carcinoma. Moreover, our analysis uncovers novel functionally relevant and actionable targets, among which we have experimentally validated abnormal splicing of spleen tyrosine kinase as a key factor for cell proliferation in renal cancer. Thus, AbHAC provides an effective strategy to uncover novel disease factors that are only identifiable by examining mutational and expression data in the context of biological networks.

  20. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases

    PubMed Central

    Ng, Ley-Moy; Soon, Fen-Fen; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Suino-Powell, Kelly M.; Chalmers, Michael J.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2011-01-01

    Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases. PMID:22160701

  1. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases

    PubMed Central

    Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W.

    2014-01-01

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21Cip1, p27Kip1 and p57Kip2. Their kinase inhibitory activities are mediated by a homologous N-terminal kinase-inhibitory domain (KID). The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the KID and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, and its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. PMID:25463440

  2. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  3. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway.

    PubMed

    Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H

    1999-05-25

    To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

  4. Meriolins (3-(pyrimidin-4-yl)-7-azaindoles): synthesis, kinase inhibitory activity, cellular effects, and structure of a CDK2/cyclin A/meriolin complex.

    PubMed

    Echalier, Aude; Bettayeb, Karima; Ferandin, Yoan; Lozach, Olivier; Clément, Monique; Valette, Annie; Liger, François; Marquet, Bernard; Morris, Jonathan C; Endicott, Jane A; Joseph, Benoît; Meijer, Laurent

    2008-02-28

    We report the synthesis and biological characterization of 3-(pyrimidin-4-yl)-7-azaindoles (meriolins), a chemical hybrid between the natural products meridianins and variolins, derived from marine organisms. Meriolins display potent inhibitory activities toward cyclin-dependent kinases (CDKs) and, to a lesser extent, other kinases (GSK-3, DYRK1A). The crystal structures of 1e (meriolin 5) and variolin B (Bettayeb, K.; Tirado, O. M.; Marionneau-Lambert, S.; Ferandin, Y.; Lozach, O.; Morris, J.; Mateo-Lozano, S.; Drückes, P.; Schächtele, C.; Kubbutat, M.; Liger, F.; Marquet, B.; Joseph, B.; Echalier, A.; Endicott, J.; Notario, V.; Meijer, L. Cancer Res. 2007, 67, 8325-8334) in complex with CDK2/cyclin A reveal that the two inhibitors are orientated in very different ways inside the ATP-binding pocket of the kinase. A structure-activity relationship provides further insight into the molecular mechanism of action of this family of kinase inhibitors. Meriolins are also potent antiproliferative and proapoptotic agents in cells cultured either as monolayers or in spheroids. Proapoptotic efficacy of meriolins correlates best with their CDK2 and CDK9 inhibitory activity. Meriolins thus constitute a promising class of pharmacological agents to be further evaluated against the numerous human diseases that imply abnormal regulation of CDKs including cancers, neurodegenerative disorders, and polycystic kidney disease.

  5. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  7. Rooting Out Aberrant Behavior in Training.

    ERIC Educational Resources Information Center

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  8. Effect of monochromatic aberrations on photorefractive patterns

    NASA Astrophysics Data System (ADS)

    Campbell, Melanie C. W.; Bobier, W. R.; Roorda, A.

    1995-08-01

    Photorefractive methods have become popular in the measurement of refractive and accommodative states of infants and children owing to their photographic nature and rapid speed of measurement. As in the case of any method that measures the refractive state of the human eye, monochromatic aberrations will reduce the accuracy of the measurement. Monochromatic aberrations cannot be as easily predicted or controlled as chromatic aberrations during the measurement, and accordingly they will introduce measurement errors. This study defines this error or uncertainty by extending the existing paraxial optical analyses of coaxial and eccentric photorefraction. This new optical analysis predicts that, for the amounts of spherical aberration (SA) reported for the human eye, there will be a significant degree of measurement uncertainty introduced for all photorefractive methods. The dioptric amount of this uncertainty may exceed the maximum amount of SA present in the eye. The calculated effects on photorefractive measurement of a real eye with a mixture of spherical aberration and coma are shown to be significant. The ability, developed here, to predict photorefractive patterns corresponding to different amounts and types of monochromatic aberration may in the future lead to an extension of photorefractive methods to the dual measurement of refractive states and aberrations of individual eyes. aberration, retinal image quality,

  9. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  10. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    PubMed

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  11. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  12. Aberrant regeneration of the third cranial nerve.

    PubMed

    Shrestha, U D; Adhikari, S

    2012-01-01

    Aberrant regeneration of the third cranial nerve is most commonly due to its damage by trauma. A ten-month old child presented with the history of a fall from a four-storey building. She developed traumatic third nerve palsy and eventually the clinical features of aberrant regeneration of the third cranial nerve. The adduction of the eye improved over time. She was advised for patching for the strabismic amblyopia as well. Traumatic third nerve palsy may result in aberrant regeneration of the third cranial nerve. In younger patients, motility of the eye in different gazes may improve over time. © NEPjOPH.

  13. Rho-associated Kinase Connects a Cell Cycle-controlling Anchorage Signal to the Mammalian Target of Rapamycin Pathway*

    PubMed Central

    Park, Jung-ha; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2011-01-01

    When deprived of anchorage to the extracellular matrix, fibroblasts arrest in G1 phase at least in part due to inactivation of G1 cyclin-dependent kinases. Despite great effort, how anchorage signals control the G1-S transition of fibroblasts remains highly elusive. We recently found that the mammalian target of rapamycin (mTOR) cascade might convey an anchorage signal that regulates S phase entry. Here, we show that Rho-associated kinase connects this signal to the TSC1/TSC2-RHEB-mTOR pathway. Expression of a constitutively active form of ROCK1 suppressed all of the anchorage deprivation effects suppressible by tsc2 mutation in rat embryonic fibroblasts. TSC2 contains one evolutionarily conserved ROCK target-like sequence, and an alanine substitution for Thr1203 in this sequence severely impaired the ability of ROCK1 to counteract the anchorage loss-imposed down-regulation of both G1 cell cycle factors and mTORC1 activity. Moreover, TSC2 Thr1203 underwent ROCK-dependent phosphorylation in vivo and could be phosphorylated by bacterially expressed active ROCK1 in vitro, providing biochemical evidence for a direct physical interaction between ROCK and TSC2. PMID:21561859

  14. Switches and latches: a biochemical tug-of-war between the kinases and phosphatases that control mitosis.

    PubMed

    Domingo-Sananes, Maria Rosa; Kapuy, Orsolya; Hunt, Tim; Novak, Bela

    2011-12-27

    Activation of the cyclin-dependent kinase (Cdk1) cyclin B (CycB) complex (Cdk1:CycB) in mitosis brings about a remarkable extent of protein phosphorylation. Cdk1:CycB activation is switch-like, controlled by two auto-amplification loops--Cdk1:CycB activates its activating phosphatase, Cdc25, and inhibits its inhibiting kinase, Wee1. Recent experimental evidence suggests that parallel to Cdk1:CycB activation during mitosis, there is inhibition of its counteracting phosphatase activity. We argue that the downregulation of the phosphatase is not just a simple latch that suppresses futile cycles of phosphorylation/dephosphorylation during mitosis. Instead, we propose that phosphatase regulation creates coherent feed-forward loops and adds extra amplification loops to the Cdk1:CycB regulatory network, thus forming an integral part of the mitotic switch. These network motifs further strengthen the bistable characteristic of the mitotic switch, which is based on the antagonistic interaction of two groups of proteins: M-phase promoting factors (Cdk1:CycB, Cdc25, Greatwall and Endosulfine/Arpp19) and interphase promoting factors (Wee1, PP2A-B55 and a Greatwall counteracting phosphatase, probably PP1). The bistable character of the switch implies the existence of a CycB threshold for entry into mitosis. The end of G2 phase is determined by the point where CycB level crosses the CycB threshold for Cdk1 activation.

  15. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition.

    PubMed

    Liu, Dan; You, Pengtao; Luo, Yan; Yang, Min; Liu, Yanwen

    2018-06-07

    The study aimed to investigate the molecular mechanism of inhibition of proliferation and apoptosis induction by galangin against MCF-7 human breast cancer cells. Cell Counting Kit-8 assay was used to assess cell viability and flow cytometry was used to detect cell apoptosis. The expression level of apoptosis-related proteins (cleaved-caspase-9, cleaved-caspase-8, cleaved-caspase-3, Bad, cleaved-Bid, Bcl-2, Bax, p-phosphatidylinositol 3-kinase [PI3K], and p-Akt) and cell cycle-related proteins (cyclin D3, cyclin B1, cyclin-dependent kinases CDK1, CDK2, CDK4, p21, p27, p53) were evaluated by Western blotting. Galangin increased the expression of Bax and decreased the expression of Bcl-2 in a concentration-dependent manner, inhibited cell viability, and induced apoptosis. Meanwhile, the expression of cleavage of caspase-9, caspase-8, caspase-3, Bid, and Bad increased significantly while the expression of p-PI3K and p-Akt proteins decreased. In addition, the protein levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated while the expression levels of p21, p27, and p53 were upregulated significantly. Galangin could suppress the viability of MCF-7 cells and induce cell apoptosis via the mitochondrial pathway and PI3K/Akt inhibition as well as cell cycle arrest. © 2018 S. Karger AG, Basel.

  16. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Depletion of Mediator Kinase Module Subunits Represses Superenhancer-Associated Genes in Colon Cancer Cells.

    PubMed

    Kuuluvainen, Emilia; Domènech-Moreno, Eva; Niemelä, Elina H; Mäkelä, Tomi P

    2018-06-01

    In cancer, oncogene activation is partly mediated by acquired superenhancers, which therefore represent potential targets for inhibition. Superenhancers are enriched for BRD4 and Mediator, and both BRD4 and the Mediator MED12 subunit are disproportionally required for expression of superenhancer-associated genes in stem cells. Here we show that depletion of Mediator kinase module subunit MED12 or MED13 together with MED13L can be used to reduce expression of cancer-acquired superenhancer genes, such as the MYC gene, in colon cancer cells, with a concomitant decrease in proliferation. Whereas depletion of MED12 or MED13/MED13L caused a disproportional decrease of superenhancer gene expression, this was not seen with depletion of the kinases cyclin-dependent kinase 9 (CDK8) and CDK19. MED12-MED13/MED13L-dependent superenhancer genes were coregulated by β-catenin, which has previously been shown to associate with MED12. Importantly, β-catenin depletion caused reduced binding of MED12 at the MYC superenhancer. The effect of MED12 or MED13/MED13L depletion on cancer-acquired superenhancer gene expression was more specific than and partially distinct from that of BRD4 depletion, with the most efficient inhibition seen with combined targeting. These results identify a requirement of MED12 and MED13/MED13L for expression of acquired superenhancer genes in colon cancer, implicating these Mediator subunits as potential therapeutic targets for colon cancer, alone or together with BRD4. Copyright © 2018 American Society for Microbiology.

  18. Aberrations in stimulated emission depletion (STED) microscopy

    NASA Astrophysics Data System (ADS)

    Antonello, Jacopo; Burke, Daniel; Booth, Martin J.

    2017-12-01

    Like all methods of super-resolution microscopy, stimulated emission depletion (STED) microscopy can suffer from the effects of aberrations. The most important aspect of a STED microscope is that the depletion focus maintains a minimum, ideally zero, intensity point that is surrounded by a region of higher intensity. It follows that aberrations that cause a non-zero value of this minimum intensity are the most detrimental, as they inhibit fluorescence emission even at the centre of the depletion focus. We present analysis that elucidates the nature of these effects in terms of the different polarisation components at the focus for two-dimensional and three-dimensional STED resolution enhancement. It is found that only certain low-order aberration modes can affect the minimum intensity at the Gaussian focus. This has important consequences for the design of adaptive optics aberration correction systems.

  19. Quality factor analysis for aberrated laser beam

    NASA Astrophysics Data System (ADS)

    Ghafary, B.; Alavynejad, M.; Kashani, F. D.

    2006-12-01

    The quality factor of laser beams has attracted considerable attention and some different approaches have been reported to treat the problem. In this paper we analyze quality factor of laser beam and compare the effect of different aberrations on beam quality by expanding pure phase term of wavefront in terms of Zernike polynomials. Also we analyze experimentally the change of beam quality for different Astigmatism aberrations, and compare theoretical results with experimentally results. The experimental and theoretical results are in good agreement.

  20. Corneal spherical aberration in Saudi population

    PubMed Central

    Al-Sayyari, Tarfah M.; Fawzy, Samah M.; Al-Saleh, Ahmed A.

    2014-01-01

    Purpose To find out the mean corneal spherical aberration and its changes with age in Saudi population. Setting AlHokama Eye Specialist Center, Riyadh, Saudi Arabia. Methods Three hundred (300) eyes of 185 Saudi subjects (97 men and 88 women), whose age ranged from 15 to 85 years old, with matched refractive errors, were divided into three groups according to their age, 100 for each. All the subjects were included in measuring the spherical aberration (SA) using pentacam HR (OCULUS, Germany) at the 6-mm optical zone. Results The mean corneal spherical aberration (CSA) of the fourth order (Z40) of the whole groups was 0.252 ± 0.1154 μm. Patients from 15 to 35 years old have root mean square (RMS) of CSA of 0.2068 ± 0.07151 μm, 0.2370 ± 0.08023 μm was the RMS of CSA of the patients from 35 to 50 years old, while those from 50 to 85 years old have a CSA-RMS of 0.31511 ± 0.1503 μm (P < 0.0001). A positive correlation was found between the spherical aberration (Z40) and the progress of age (r = 0.3429, P < 0.0001). The high order aberration (HOA) presented 28.1% of the total corneal aberrations. While the fourth order corneal spherical aberration constituted 57% of the HOA and 16% of the total aberration. The pupil diameter shows a negative correlation with the increase in age (P = 0.0012). Conclusion Our results showed a CSA (Z40) that is varied among the population, comparable to other studies, and significantly correlates to the progress of age. PMID:25278799

  1. Ephrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway

    PubMed Central

    WANG, YUNYUN; LIU, YONG; LI, GUO; SU, ZHONGWU; REN, SHULING; TAN, PINGQING; ZHANG, XIN; QIU, YUANZHENG; TIAN, YONGQUAN

    2015-01-01

    Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC. PMID:25351620

  2. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder.

    PubMed

    Sekiguchi, Mari; Katayama, Syouichi; Hatano, Naoya; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2013-07-15

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in brain and mutations of its gene are known to be associated with neurodevelopmental disorders such as X-linked West syndrome and Rett syndrome. However, the physiological substrates of CDKL5 that are directly linked to these neurodevelopmental disorders are currently unknown. In this study, we explored endogenous substrates for CDKL5 in mouse brain extracts fractionated by a liquid-phase isoelectric focusing. In conjunction with CDKL5 phosphorylation assay, this approach detected a protein band with an apparent molecular mass of 120kDa that is remarkably phosphorylated by CDKL5. This 120-kDa protein was identified as amphiphysin 1 (Amph1) by LC-MS/MS analysis, and the site of phosphorylation by CDKL5 was determined to be Ser-293. The phosphorylation mimic mutants, Amph1(S293E) and Amph1(S293D), showed significantly reduced affinity for endophilin, a protein involved in synaptic vesicle endocytosis. Introduction of point mutations in the catalytic domain of CDKL5, which are disease-causing missense mutations found in Rett patients, resulted in the impairment of kinase activity toward Amph1. These results suggest that Amph1 is the cytoplasmic substrate for CDKL5 and that its phosphorylation may play crucial roles in the neuronal development. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Extrasynaptic N-Methyl-d-aspartate (NMDA) Receptor Stimulation Induces Cytoplasmic Translocation of the CDKL5 Kinase and Its Proteasomal Degradation*

    PubMed Central

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-01-01

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-d-aspartate receptors and suggest regulation of CDKL5 by cell death pathways. PMID:21832092

  4. Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation.

    PubMed

    Rusconi, Laura; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta

    2011-10-21

    Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) have been found in patients with epileptic encephalopathy characterized by early onset intractable epilepsy, including infantile spasms and other types of seizures, severe developmental delay, and often the development of Rett syndrome-like features. Despite its clear involvement in proper brain development, CDKL5 functions are still far from being understood. In this study, we analyzed the subcellular localization of the endogenous kinase in primary murine hippocampal neurons. CDKL5 was localized both in nucleus and cytoplasm and, conversely to proliferating cells, did not undergo constitutive shuttling between these compartments. Nevertheless, glutamate stimulation was able to induce the exit of the kinase from the nucleus and its subsequent accumulation in the perinuclear cytoplasm. Moreover, we found that sustained glutamate stimulation promoted CDKL5 proteasomal degradation. Both events were mediated by the specific activation of extrasynaptic pool of N-methyl-d-aspartate receptors. Proteasomal degradation was also induced by withdrawal of neurotrophic factors and hydrogen peroxide treatment, two different paradigms of cell death. Altogether, our results indicate that both subcellular localization and expression of CDKL5 are modulated by the activation of extrasynaptic N-methyl-D-aspartate receptors and suggest regulation of CDKL5 by cell death pathways.

  5. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells.

    PubMed

    Strömberg, Thomas; Ekman, Simon; Girnita, Leonard; Dimberg, Lina Y; Larsson, Olle; Axelson, Magnus; Lennartsson, Johan; Hellman, Ulf; Carlson, Kristina; Osterborg, Anders; Vanderkerken, Karin; Nilsson, Kenneth; Jernberg-Wiklund, Helena

    2006-01-15

    Emerging evidence suggests the insulin-like growth factor-1 receptor (IGF-1R) to be an important mediator of tumor-cell survival and resistance to cytotoxic therapy in multiple myeloma (MM). Recently, members of the cyclolignan family have been shown to selectively inhibit the receptor tyrosine kinase (RTK) activity of the IGF-1R beta-chain. The effects of the cyclolignan picropodophyllin (PPP) were studied in vitro using a panel of 13 MM cell lines and freshly purified tumor cells from 10 patients with MM. PPP clearly inhibited growth in all MM cell lines and primary MM samples cultured in the presence or absence of bone marrow stromal cells. PPP induced a profound accumulation of cells in the G(2)/M-phase and an increased apoptosis. Importantly, IGF-1, IGF-2, insulin, or IL-6 did not reduce the inhibitory effects of PPP. As demonstrated by in vitro kinase assays, PPP down-regulated the IGF-1 RTK activity without inhibiting the insulin RTK activity. This conferred decreased phosphorylation of Erk1/2 and reduced cyclin dependent kinase (CDK1) activity. In addition, the expression of mcl-1 and survivin was reduced. Taken together, we suggest that interfering with the IGF-1 RTK by using the cyclolignan PPP offers a novel and selective therapeutic strategy for MM.

  6. The SH2 Domain Regulates c-Abl Kinase Activation by a Cyclin-Like Mechanism and Remodulation of the Hinge Motion

    PubMed Central

    Dölker, Nicole; Górna, Maria W.; Sutto, Ludovico; Torralba, Antonio S.; Superti-Furga, Giulio; Gervasio, Francesco L.

    2014-01-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors. PMID:25299346

  7. The SH2 domain regulates c-Abl kinase activation by a cyclin-like mechanism and remodulation of the hinge motion.

    PubMed

    Dölker, Nicole; Górna, Maria W; Sutto, Ludovico; Torralba, Antonio S; Superti-Furga, Giulio; Gervasio, Francesco L

    2014-10-01

    Regulation of the c-Abl (ABL1) tyrosine kinase is important because of its role in cellular signaling, and its relevance in the leukemiogenic counterpart (BCR-ABL). Both auto-inhibition and full activation of c-Abl are regulated by the interaction of the catalytic domain with the Src Homology 2 (SH2) domain. The mechanism by which this interaction enhances catalysis is not known. We combined computational simulations with mutagenesis and functional analysis to find that the SH2 domain conveys both local and global effects on the dynamics of the catalytic domain. Locally, it regulates the flexibility of the αC helix in a fashion reminiscent of cyclins in cyclin-dependent kinases, reorienting catalytically important motifs. At a more global level, SH2 binding redirects the hinge motion of the N and C lobes and changes the conformational equilibrium of the activation loop. The complex network of subtle structural shifts that link the SH2 domain with the activation loop and the active site may be partially conserved with other SH2-domain containing kinases and therefore offer additional parameters for the design of conformation-specific inhibitors.

  8. Accommodation to wavefront vergence and chromatic aberration.

    PubMed

    Wang, Yinan; Kruger, Philip B; Li, James S; Lin, Peter L; Stark, Lawrence R

    2011-05-01

    Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In this study, we examined the effect of pupil size and LCA on accommodation. Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m) and two artificial pupil conditions (3 and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less.

  9. Accommodation to Wavefront Vergence and Chromatic Aberration

    PubMed Central

    Wang, Yinan; Kruger, Philip B.; Li, James S.; Lin, Peter L.; Stark, Lawrence R.

    2011-01-01

    Purpose Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In the present study, we examined the effect of pupil size and LCA on accommodation. Methods Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m2) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m2) and two artificial pupil conditions (3 mm and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Results Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Conclusions Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less. PMID:21317666

  10. Pulse compressor with aberration correction

    SciTech Connect

    Mankos, Marian

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separatormore » to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were

  11. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  12. Linear phase conjugation for atmospheric aberration compensation

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Stappaerts, Eddy A.

    1998-01-01

    Atmospheric induced aberrations can seriously degrade laser performance, greatly affecting the beam that finally reaches the target. Lasers propagated over any distance in the atmosphere suffer from a significant decrease in fluence at the target due to these aberrations. This is especially so for propagation over long distances. It is due primarily to fluctuations in the atmosphere over the propagation path, and from platform motion relative to the intended aimpoint. Also, delivery of high fluence to the target typically requires low beam divergence, thus, atmospheric turbulence, platform motion, or both results in a lack of fine aimpoint control to keep the beam directed at the target. To improve both the beam quality and amount of laser energy delivered to the target, Northrop Grumman has developed the Active Tracking System (ATS); a novel linear phase conjugation aberration compensation technique. Utilizing a silicon spatial light modulator (SLM) as a dynamic wavefront reversing element, ATS undoes aberrations induced by the atmosphere, platform motion or both. ATS continually tracks the target as well as compensates for atmospheric and platform motion induced aberrations. This results in a high fidelity, near-diffraction limited beam delivered to the target.

  13. Recurrent branchial sinus tract with aberrant extension.

    PubMed

    Barret, J P

    2004-01-01

    Second branchial cysts are the commonest lesions among congenital lateral neck anomalies. Good knowledge of anatomy and embryology are necessary for proper treatment. Surgical treatment involves resection of all branchial remnants, which extend laterally in the neck, medial to the sternocleidomastoid muscle with cranial extension to the pharynx and ipsilateral tonsillar fosa. However, infections and previous surgery can distort anatomy, making the approach to branchial anomalies more difficult. We present a case of a 17-year-old patient who presented with a second branchial tract anomaly with an aberrant extension to the midline and part of the contralateral neck. Previous surgical interventions and chronic infections may have been the primary cause for this aberrant tract. All head and neck surgeons should bear in mind that aberrant presentations may exist when reoperating on chronic branchial cysts fistulas.

  14. Aberration correction for charged particle lithography

    NASA Astrophysics Data System (ADS)

    Munro, Eric; Zhu, Xieqing; Rouse, John A.; Liu, Haoning

    2001-12-01

    At present, the throughput of projection-type charge particle lithography systems, such as PREVAIL and SCALPEL, is limited primarily by the combined effects of field curvature in the projection lenses and Coulomb interaction in the particle beam. These are fundamental physical limitations, inherent in charged particle optics, so there seems little scope for significantly improving the design of such systems, using conventional rotationally symmetric electron lenses. This paper explores the possibility of overcoming the field aberrations of round electron lense, by using a novel aberration corrector, proposed by Professor H. Rose of University of Darmstadt, called a hexapole planator. In this scheme, a set of round lenses is first used to simultaneously correct distortion and coma. The hexapole planator is then used to correct the field curvature and astigmatism, and to create a negative spherical aberration. The size of the transfer lenses around the planator can then be adjusted to zero the residual spherical aberration. In a way, an electron optical projection system is obtained that is free of all primary geometrical aberrations. In this paper, the feasibility of this concept has been studied with a computer simulation. The simulations verify that this scheme can indeed work, for both electrostatic and magnetic projection systems. Two design studies have been carried out. The first is for an electrostatic system that could be used for ion beam lithography, and the second is for a magnetic projection system for electron beam lithography. In both cases, designs have been achieved in which all primary third-order geometrical aberrations are totally eliminated.

  15. Spherical aberrations of human astigmatic corneas.

    PubMed

    Zhao, Huawei; Dai, Guang-Ming; Chen, Li; Weeber, Henk A; Piers, Patricia A

    2011-11-01

    To evaluate whether the average spherical aberration of human astigmatic corneas is statistically equivalent to human nonastigmatic corneas. Spherical aberrations of 445 astigmatic corneas prior to laser vision correction were retrospectively investigated to determine Zernike coefficients for central corneal areas 6 mm in diameter using CTView (Sarver and Associates). Data were divided into groups according to cylinder power (0.01 to 0.25 diopters [D], 0.26 to 0.75 D, 0.76 to 1.06 D, 1.07 to 1.53 D, 1.54 to 2.00 D, and >2.00 D) and according to age by decade. Spherical aberrations were correlated with age and astigmatic power among groups and the entire population. Statistical analyses were conducted, and P<.05 was considered statistically significant. Mean patient age was 42.6±11 years. Astigmatic corneas had an average astigmatic power of 0.78±0.58 D and mean spherical aberration was 0.25±0.13 μm for the entire population and approximately the same (0.27 μm) for individual groups, ranging from 0.23 to 0.29 μm (P>.05 for all tested groups). Mean spherical aberration of astigmatic corneas was not correlated significantly with cylinder power or age (P>.05). Spherical aberrations are similar to those of nonastigmatic corneas, permitting the use of these additional data in the design of aspheric toric intra-ocular lenses. Copyright 2011, SLACK Incorporated.

  16. Novel Autophosphorylation Sites of Src Family Kinases Regulate Kinase Activity and SH2 Domain Binding Capacity

    PubMed Central

    Weir, Marion E.; Mann, Jacqueline E.; Corwin, Thomas; Fulton, Zachary W.; Hao, Jennifer M.; Maniscalco, Jeanine F.; Kenney, Marie C.; Roque, Kristal M. Roman; Chapdelaine, Elizabeth F.; Stelzl, Ulrich; Deming, Paula B.; Ballif, Bryan A.; Hinkle, Karen L.

    2016-01-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly-regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly-phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the site C-terminal to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024

  17. Small molecule inhibitors reveal PTK6 kinase is not an oncogenic driver in breast cancers

    PubMed Central

    Gajiwala, Ketan S.; Cronin, Ciarán N.; Nagata, Asako; Johnson, Eric; Kraus, Michelle; Tatlock, John; Kania, Robert; Foley, Timothy

    2018-01-01

    Protein tyrosine kinase 6 (PTK6, or BRK) is aberrantly expressed in breast cancers, and emerging as an oncogene that promotes tumor cell proliferation, migration and evasion. Both kinase-dependent and -independent functions of PTK6 in driving tumor growth have been described, therefore targeting PTK6 kinase activity by small molecule inhibitors as a therapeutic approach to treat cancers remains to be validated. In this study, we identified novel, potent and selective PTK6 kinase inhibitors as a means to investigate the role of PTK6 kinase activity in breast tumorigenesis. We report here the crystal structures of apo-PTK6 and inhibitor-bound PTK6 complexes, providing the structural basis for small molecule interaction with PTK6. The kinase inhibitors moderately suppress tumor cell growth in 2D and 3D cell cultures. However, the tumor cell growth inhibition shows neither correlation with the PTK6 kinase activity inhibition, nor the total or activated PTK6 protein levels in tumor cells, suggesting that the tumor cell growth is independent of PTK6 kinase activity. Furthermore, in engineered breast tumor cells overexpressing PTK6, the inhibition of PTK6 kinase activity does not parallel the inhibition of tumor cell growth with a >500-fold shift in compound potencies (IC50 values). Overall, these findings suggest that the kinase activity of PTK6 does not play a significant role in tumorigenesis, thus providing important evidence against PTK6 kinase as a potential therapeutic target for breast cancer treatment. PMID:29879184

  18. Effect of aberrations in human eye on contrast sensitivity function

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.

  19. LOCALIZATION OF THE MOUSE THYMIDINE KINASE GENE TO THE DISTAL PORTION OF CHROMOSOME 11

    EPA Science Inventory

    We report the regional mapping of the thymidine kinase (tk-1) gene in the mouse using two complementary analyses: 1) investigation of chromosome aberrations associated with tx-1 gene inactivation in the L5178Y TX+/-3.7.2c cell line and (2) in situ molecular hybridization of a clo...

  20. Targeting HER2 Aberrations in Non-Small Cell Lung Cancer with Osimertinib.

    PubMed

    Liu, Shengwu; Li, Shuai; Hai, Josephine; Wang, Xiaoen; Chen, Ting; Quinn, Max M; Gao, Peng; Zhang, Yanxi; Ji, Hongbin; Cross, Darren A E; Wong, Kwok-Kin

    2018-01-03

    Purpose: HER2 (or ERBB2 ) aberrations, including both amplification and mutations, have been classified as oncogenic drivers that contribute to 2% to 6% of lung adenocarcinomas. HER2 amplification is also an important mechanism for acquired resistance to EGFR tyrosine kinase inhibitors (TKI). However, due to limited preclinical studies and clinical trials, currently there is still no available standard of care for lung cancer patients with HER2 aberrations. To fulfill the clinical need for targeting HER2 in patients with non-small cell lung cancer (NSCLC), we performed a comprehensive preclinical study to evaluate the efficacy of a third-generation TKI, osimertinib (AZD9291). Experimental Design: Three genetically modified mouse models (GEMM) mimicking individual HER2 alterations in NSCLC were generated, and osimertinib was tested for its efficacy against these HER2 aberrations in vivo Results: Osimertinib treatment showed robust efficacy in HER2 wt overexpression and EGFR del19/HER2 models, but not in HER2 exon 20 insertion tumors. Interestingly, we further identified that combined treatment with osimertinib and the BET inhibitor JQ1 significantly increased the response rate in HER2 -mutant NSCLC, whereas JQ1 single treatment did not show efficacy. Conclusions: Overall, our data indicated robust antitumor efficacy of osimertinib against multiple HER2 aberrations in lung cancer, either as a single agent or in combination with JQ1. Our study provides a strong rationale for future clinical trials using osimertinib either alone or in combination with epigenetic drugs to target aberrant HER2 in patients with NSCLC. Clin Cancer Res; 24(11); 1-11. ©2018 AACR. See related commentary by Cappuzzo and Landi, p. 2470 . ©2018 American Association for Cancer Research.

  1. Spectral estimation for characterization of acoustic aberration.

    PubMed

    Varslot, Trond; Angelsen, Bjørn; Waag, Robert C

    2004-07-01

    Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.

  2. Anti-forensics of chromatic aberration

    NASA Astrophysics Data System (ADS)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  3. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  4. Human cytomegalovirus UL76 induces chromosome aberrations

    PubMed Central

    2009-01-01

    Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723

  5. The M Phase Kinase Greatwall (Gwl) Promotes Inactivation of PP2A/B55δ, a Phosphatase Directed Against CDK Phosphosites

    PubMed Central

    Castilho, Priscila V.; Williams, Byron C.; Mochida, Satoru; Zhao, Yong

    2009-01-01

    We have previously shown that Greatwall kinase (Gwl) is required for M phase entry and maintenance in Xenopus egg extracts. Here, we demonstrate that Gwl plays a crucial role in a novel biochemical pathway that inactivates, specifically during M phase, “antimitotic” phosphatases directed against phosphorylations catalyzed by cyclin-dependent kinases (CDKs). A major component of this phosphatase activity is heterotrimeric PP2A containing the B55δ regulatory subunit. Gwl is activated during M phase by Cdk1/cyclin B (MPF), but once activated, Gwl promotes PP2A/B55δ inhibition with no further requirement for MPF. In the absence of Gwl, PP2A/B55δ remains active even when MPF levels are high. The removal of PP2A/B55δ corrects the inability of Gwl-depleted extracts to enter M phase. These findings support the hypothesis that M phase requires not only high levels of MPF function, but also the suppression, through a Gwl-dependent mechanism, of phosphatase(s) that would otherwise remove MPF-driven phosphorylations. PMID:19793917

  6. The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans.

    PubMed

    Grants, Jennifer M; Ying, Lisa T L; Yoda, Akinori; You, Charlotte C; Okano, Hideyuki; Sawa, Hitoshi; Taubert, Stefan

    2016-02-01

    Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals. Copyright © 2016 by the Genetics Society of America.

  7. Kinase fusions are frequent in Spitz tumors and spitzoid melanomas

    PubMed Central

    Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T; Stephens, Philip J; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumors with distinctive histopathologic features. They include benign tumors (Spitz nevi), malignant tumors (spitzoid melanomas), and tumors with borderline histopathologic features and uncertain clinical outcome (atypical Spitz tumors). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbor kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%), and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signaling pathways, are tumorigenic, and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz nevi, 56% of atypical Spitz tumors, and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signaling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms, and may serve as therapeutic targets for metastatic spitzoid melanomas. PMID:24445538

  8. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas

    NASA Astrophysics Data System (ADS)

    Wiesner, Thomas; He, Jie; Yelensky, Roman; Esteve-Puig, Rosaura; Botton, Thomas; Yeh, Iwei; Lipson, Doron; Otto, Geoff; Brennan, Kristina; Murali, Rajmohan; Garrido, Maria; Miller, Vincent A.; Ross, Jeffrey S.; Berger, Michael F.; Sparatta, Alyssa; Palmedo, Gabriele; Cerroni, Lorenzo; Busam, Klaus J.; Kutzner, Heinz; Cronin, Maureen T.; Stephens, Philip J.; Bastian, Boris C.

    2014-01-01

    Spitzoid neoplasms are a group of melanocytic tumours with distinctive histopathological features. They include benign tumours (Spitz naevi), malignant tumours (spitzoid melanomas) and tumours with borderline histopathological features and uncertain clinical outcome (atypical Spitz tumours). Their genetic underpinnings are poorly understood, and alterations in common melanoma-associated oncogenes are typically absent. Here we show that spitzoid neoplasms harbour kinase fusions of ROS1 (17%), NTRK1 (16%), ALK (10%), BRAF (5%) and RET (3%) in a mutually exclusive pattern. The chimeric proteins are constitutively active, stimulate oncogenic signalling pathways, are tumourigenic and are found in the entire biologic spectrum of spitzoid neoplasms, including 55% of Spitz naevi, 56% of atypical Spitz tumours and 39% of spitzoid melanomas. Kinase inhibitors suppress the oncogenic signalling of the fusion proteins in vitro. In summary, kinase fusions account for the majority of oncogenic aberrations in spitzoid neoplasms and may serve as therapeutic targets for metastatic spitzoid melanomas.

  9. Tyrosine kinase inhibition: A therapeutic target for the management of chronic-phase chronic myeloid leukemia

    PubMed Central

    Jabbour, Elias J; Cortes, Jorge E; Kantarjian, Hagop M

    2014-01-01

    Chronic myeloid leukemia (CML) is a hematologic neoplasm with a progressive, ultimately terminal, disease course. In most cases, CML arises owing to the aberrant formation of a chimeric gene for a constitutively active tyrosine kinase. Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target transforming the prognosis of patients with CML. New tyrosine kinase inhibitors (TKIs) continue to improve the management of CML, offering alternative options for those resistant to or intolerant of standard TKIs. Here we review the pathobiology of CML and explore emerging strategies to optimize the management of chronic-phase CML, particularly first-line treatment. PMID:24236822

  10. Aurora Kinase B, a novel regulator of TERF1 binding and telomeric integrity

    PubMed Central

    Chan, Foong Lyn; Vinod, Benjamin; Novy, Karel; Schittenhelm, Ralf B.; Huang, Cheng; Udugama, Maheshi; Nunez-Iglesias, Juan; Lin, Jane I.; Hii, Linda; Chan, Julie; Pickett, Hilda A.; Daly, Roger J.

    2017-01-01

    Abstract AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity. PMID:29040668

  11. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    PubMed Central

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  12. Theoretical investigation of aberrations upon ametropic human eyes

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Baker, Kevin

    2003-11-01

    The human eye aberrations are important for visual acuity and ophthalmic diagnostics and surgical procedures. Reported monochromatic aberration data of the normal 20/20 human eyes are scarce. There exist even fewer reports of the relation between ametropic conditions and aberrations. We theoretically investigate the monochromatic and chromatic aberrations of human eyes for refractive errors of -10 to +10 diopters. Schematic human eye models are employed using optical design software for axial, index, and refractive types of ametropia.

  13. Primary aberrations in focused radially polarized vortex beams

    NASA Astrophysics Data System (ADS)

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  14. Aberration Compensation in Aplanatic Solid Immersion Lens Microscopy

    DTIC Science & Technology

    2013-11-08

    model and ray tracing software ( Zemax ) to understand how much aberrations are in the system and how much can be compensated by the DM. Subsequently...aberration. Table 2 shows the Zemax simulation on this particular case. With aberration compensation, the finest resolvable group is at 252 nm

  15. RADIATION-INDUCED CHROMOSOME ABERRATIONS IN MAN

    SciTech Connect

    Sasaki, M.; Ottoman, R.E.; Norman, A.

    1963-10-01

    A study was made of the production and elimination of radioinduced chromosomal aberrations in leukocytes from the peripheral blood of persons exposed to chronic or acute doses of high-energy radiation. Included in the group were radiologists and laboratory scientists, for whom there were available complete records of the radiation dose received during their working life, and a number of distinguished radiologists who have practiced more than 25 yrs and who may have received substantial doses One of seven leukocytes from a distinguished radiologist contained a pair of chromosomes that could be classified as pseudo- diploid. In laboratory personnel for whommore » the doses received were significantly within the prescribed limits, the incidence of pseudo-diploid cells, of dicentrics, and of other chroNonemosomal aberrations was significantly higher than in a more or less comparable control group. (tr-auth)« less

  16. Aberrations associated with rigid contact lenses.

    PubMed

    Atchison, D A

    1995-10-01

    A rigid contact lens on an eye can produce levels of spherical aberration very different from those produced by a spectacle lens in front of the eye. These levels are considerably affected by contact lens surface asphericity. Change in longitudinal spherical aberration associated with aspherizing a contact lens surface is well predicted by a simple equation for change in sagittal power of the surface. Displacing an aspheric contact lens on the eye can produce considerable defocus, which is well predicted by simple equations for change in sagittal and tangential surface powers. The best refractive correction with contact lenses can be determined only by overrefraction with a patient wearing a contact lens of power and characteristics similar to that which will be prescribed. An aspheric contact lens that moves to a considerable extent on the eye will cause more unstable vision than will a spherical lens that moves to the same extent.

  17. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    PubMed Central

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B.; Murray, Brion W.

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; K i<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment

  18. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.

    PubMed

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B; Murray, Brion W

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2-6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment

  19. Anterior Corneal, Posterior Corneal, and Lenticular Contributions to Ocular Aberrations.

    PubMed

    Atchison, David A; Suheimat, Marwan; Mathur, Ankit; Lister, Lucas J; Rozema, Jos

    2016-10-01

    To determine the corneal surfaces and lens contributions to ocular aberrations. There were 61 healthy participants with ages ranging from 20 to 55 years and refractions -8.25 diopters (D) to +3.25 D. Anterior and posterior corneal topographies were obtained with an Oculus Pentacam, and ocular aberrations were obtained with an iTrace aberrometer. Raytracing through models of corneas provided total corneal and surface component aberrations for 5-mm-diameter pupils. Lenticular contributions were given as differences between ocular and corneal aberrations. Theoretical raytracing investigated influence of object distance on aberrations. Apart from defocus, the highest aberration coefficients were horizontal astigmatism, horizontal coma, and spherical aberration. Most correlations between lenticular and ocular parameters were positive and significant, with compensation of total corneal aberrations by lenticular aberrations for 5/12 coefficients. Anterior corneal aberrations were approximately three times higher than posterior corneal aberrations and usually had opposite signs. Corneal topographic centers were displaced from aberrometer pupil centers by 0.32 ± 0.19 mm nasally and 0.02 ± 0.16 mm inferiorly; disregarding corneal decentration relative to pupil center was significant for oblique astigmatism, horizontal coma, and horizontal trefoil. An object at infinity, rather than at the image in the anterior cornea, gave incorrect aberration estimates of the posterior cornea. Corneal and lenticular aberration magnitudes are similar, and aberrations of the anterior corneal surface are approximately three times those of the posterior surface. Corneal decentration relative to pupil center has significant effects on oblique astigmatism, horizontal coma, and horizontal trefoil. When estimating component aberrations, it is important to use correct object/image conjugates and heights at surfaces.

  20. Contemporary management of aberrant right subclavian arteries.

    PubMed

    Stone, William M; Ricotta, Joseph J; Fowl, Richard J; Garg, Nitin; Bower, Thomas C; Money, Samuel R

    2011-05-01

    Aberrant origin of right subclavian arteries represents the most common of the aortic arch anomalies. This variant has few published series to guide management. Our goal was to review treatment options and results for these potentially complex reconstructions. A retrospective review was performed on all patients with a diagnosis of aberrant right subclavian artery at our institution between January 2003 and July 2009. A total of 24 patients, which comprises one of the largest series reported, including 10 males and 14 females (mean age: 46.6 years, range: 7-77), were diagnosed with an aberrant right subclavian artery. Sixteen (66%) were diagnosed incidentally, but eight (33%) had symptoms of either dysphagia, upper extremity ischemia, or both. Computed tomography was most commonly used to establish the diagnosis (19 patients, 79%). Magnetic resonance imaging established the diagnosis in three patients (12%), upper gastrointestinal barium study in one (4%), and standard angiography in one (4%). A Kommerell's diverticulum (KD) was the most common associated anomaly (seven patients, 29%). All seven patients (100%) with a KD required intervention for either symptoms or aneurysmal degeneration. Intervention was performed in 10 patients (42%), including carotid subclavian bypass in five (50%), carotid subclavian transposition in three (30%), and ascending aorta to subclavian bypass in two (20%). Four patients (40%) had additional intervention for management of aneurysmal disease of the aorta or KD, with open aortic replacement in two (20%) and aortic endografting in two (20%). There was one perioperative death (10%) in a patient undergoing aortic arch debranching with placement of an aortic endograft. In all, 18 patients survived without symptoms after a mean follow-up of 38 months. Aberrant right subclavian arteries are most commonly found incidentally with computed tomography. The presence of a KD seemed to correlate with the need for intervention. Patients with no

  1. Aberrant phenotypes in peripheral T cell lymphomas.

    PubMed Central

    Hastrup, N; Ralfkiaer, E; Pallesen, G

    1989-01-01

    Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701

  2. Antibodies directed against receptor tyrosine kinases

    PubMed Central

    FAUVEL, Bénédicte; Yasri, Aziz

    2014-01-01

    Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229

  3. 3D resolved mapping of optical aberrations in thick tissues

    PubMed Central

    Zeng, Jun; Mahou, Pierre; Schanne-Klein, Marie-Claire; Beaurepaire, Emmanuel; Débarre, Delphine

    2012-01-01

    We demonstrate a simple method for mapping optical aberrations with 3D resolution within thick samples. The method relies on the local measurement of the variation in image quality with externally applied aberrations. We discuss the accuracy of the method as a function of the signal strength and of the aberration amplitude and we derive the achievable resolution for the resulting measurements. We then report on measured 3D aberration maps in human skin biopsies and mouse brain slices. From these data, we analyse the consequences of tissue structure and refractive index distribution on aberrations and imaging depth in normal and cleared tissue samples. The aberration maps allow the estimation of the typical aplanetism region size over which aberrations can be uniformly corrected. This method and data pave the way towards efficient correction strategies for tissue imaging applications. PMID:22876353

  4. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  5. Human eyes do not need monochromatic aberrations for dynamic accommodation.

    PubMed

    Bernal-Molina, Paula; Marín-Franch, Iván; Del Águila-Carrasco, Antonio J; Esteve-Taboada, Jose J; López-Gil, Norberto; Kruger, Philip B; Montés-Micó, Robert

    2017-09-01

    To determine if human accommodation uses the eye's own monochromatic aberrations to track dynamic accommodative stimuli. Wavefront aberrations were measured while subjects monocularly viewed a monochromatic Maltese cross moving sinusoidally around 2D of accommodative demand with 1D amplitude at 0.2 Hz. The amplitude and phase (delay) of the accommodation response were compared to the actual vergence of the stimulus to obtain gain and temporal phase, calculated from wavefront aberrations recorded over time during experimental trials. The tested conditions were as follows: Correction of all the subject's aberrations except defocus (C); Correction of all the subject's aberrations except defocus and habitual second-order astigmatism (AS); Correction of all the subject's aberrations except defocus and odd higher-order aberrations (HOAs); Correction of all the subject's aberrations except defocus and even HOAs (E); Natural aberrations of the subject's eye, i.e., the adaptive-optics system only corrected the optical system's aberrations (N); Correction of all the subject's aberrations except defocus and fourth-order spherical aberration (SA). The correction was performed at 20 Hz and each condition was repeated six times in randomised order. Average gain (±2 standard errors of the mean) varied little across conditions; between 0.55 ± 0.06 (SA), and 0.62 ± 0.06 (AS). Average phase (±2 standard errors of the mean) also varied little; between 0.41 ± 0.02 s (E), and 0.47 ± 0.02 s (O). After Bonferroni correction, no statistically significant differences in gain or phase were found in the presence of specific monochromatic aberrations or in their absence. These results show that the eye's monochromatic aberrations are not necessary for accommodation to track dynamic accommodative stimuli. © 2017 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.

  6. Genomic aberrations in spitzoid tumours and their implications for diagnosis, prognosis and therapy

    PubMed Central

    Wiesner, Thomas; Kutzner, Heinz; Cerroni, Lorenzo; Mihm, Martin J.; Busam, Klaus J.; Murali, Rajmohan

    2016-01-01

    Summary Histopathological evaluation of melanocytic tumours usually allows reliable distinction of benign melanocytic naevi from melanoma. More difficult is the histopathological classification of Spitz tumours, a heterogeneous group of tumours composed of large epithelioid or spindle-shaped melanocytes. Spitz tumours are biologically distinct from conventional melanocytic naevi and melanoma, as exemplified by their distinct patterns of genetic aberrations. Whereas conventional naevi and melanoma often harbour BRAF mutations, NRAS mutations, or inactivation of NF1, Spitz tumours show HRAS mutations, inactivation of BAP1 (often combined with BRAF mutations), or genomic rearrangements involving the kinases ALK, ROS1, NTRK1, BRAF, RET, and MET. In Spitz naevi, which lack significant histological atypia, all of these mitogenic driver aberrations trigger rapid cell proliferation, but after an initial growth phase, various tumour suppressive mechanisms stably block further growth. In some tumours, additional genomic aberrations may abrogate various tumour suppressive mechanisms, such as cell-cycle arrest, telomere shortening, or DNA damage response. The melanocytes then start to grow in a less organised fashion, may spread to regional lymph nodes, and are termed atypical Spitz tumours. Upon acquisition of even more aberrations, which often activate additional oncogenic pathways or reduce and alter cell differentiation, the neoplastic cells become entirely malignant and may colonise and take over distant organs (spitzoid melanoma). The sequential acquisition of genomic aberrations suggests that Spitz tumours represent a continuous biological spectrum, rather than a dichotomy of benign versus malignant, and that tumours with ambiguous histological features (atypical Spitz tumours) might be best classified as low-grade melanocytic tumours. The number of genetic aberrations usually correlates with the degree of histological atypia and explains why existing ancillary genetic

  7. Evaluation of the kinase domain of c-KIT in canine cutaneous mast cell tumors

    PubMed Central

    Webster, Joshua D; Kiupel, Matti; Yuzbasiyan-Gurkan, Vilma

    2006-01-01

    Background Mutations in the c-KIT proto-oncogene have been implicated in the progression of several neoplastic diseases, including gastrointestinal stromal tumors and mastocytosis in humans, and cutaneous mast cell tumors (MCTs) in canines. Mutations in human mastocytosis patients primarily occur in c-KIT exon 17, which encodes a portion of its kinase domain. In contrast, deletions and internal tandem duplication (ITD) mutations are found in the juxtamembrane domain of c-KIT in approximately 15% of canine MCTs. In addition, ITD c-KIT mutations are significantly associated with aberrant KIT protein localization in canine MCTs. However, some canine MCTs have aberrant KIT localization but lack ITD c-KIT mutations, suggesting that other mutations or other factors may be responsible for aberrant KIT localization in these tumors. Methods In order to characterize the prevalence of mutations in the phospho-transferase portion of c-KIT's kinase domain in canine MCTs exons 16–20 of 33 canine MCTs from 33 dogs were amplified and sequenced. Additionally, in order to determine if mutations in c-KIT exon 17 are responsible for aberrant KIT localization in MCTs that lack juxtamembrane domain c-KIT mutations, c-KIT exon 17 was amplified and sequenced from 18 canine MCTs that showed an aberrant KIT localization pattern but did not have ITD c-KIT mutations. Results No mutations or polymorphisms were identified in exons 16–20 of any of the MCTs examined. Conclusion In conclusion, mutations in the phospho-transferase portion of c-KIT's kinase domain do not play an important role in the progression of canine cutaneous MCTs, or in the aberrant localization of KIT in canine MCTs. PMID:16579858

  8. Fragment-based approaches to the discovery of kinase inhibitors.

    PubMed

    Mortenson, Paul N; Berdini, Valerio; O'Reilly, Marc

    2014-01-01

    Protein kinases are one of the most important families of drug targets, and aberrant kinase activity has been linked to a large number of disease areas. Although eminently targetable using small molecules, kinases present a number of challenges as drug targets, not least obtaining selectivity across such a large and relatively closely related target family. Fragment-based drug discovery involves screening simple, low-molecular weight compounds to generate initial hits against a target. These hits are then optimized to more potent compounds via medicinal chemistry, usually facilitated by structural biology. Here, we will present a number of recent examples of fragment-based approaches to the discovery of kinase inhibitors, detailing the construction of fragment-screening libraries, the identification and validation of fragment hits, and their optimization into potent and selective lead compounds. The advantages of fragment-based methodologies will be discussed, along with some of the challenges associated with using this route. Finally, we will present a number of key lessons derived both from our own experience running fragment screens against kinases and from a large number of published studies.

  9. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  10. Detecting independent and recurrent copy number aberrations using interval graphs.

    PubMed

    Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J

    2014-06-15

    Somatic copy number aberrations SCNAS: are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNA: s makes the problem of identifying recurrent aberrations notoriously difficult. We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNA: s, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNA: s as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. http://compbio.cs.brown.edu/software. © The Author 2014. Published by Oxford University Press.

  11. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery

    PubMed Central

    Cook, Gemma S.; Grønlund, Anne Lentz; Siciliano, Ilario; Spadafora, Natasha; Amini, Maryam; Herbert, Robert J.; Bitonti, M. Beatrice; Graumann, Katja; Francis, Dennis; Rogers, Hilary J.

    2013-01-01

    In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome. PMID:23536609

  12. Genomic aberrations in borderline ovarian tumors

    PubMed Central

    2010-01-01

    Background According to the scientific literature, less than 30 borderline ovarian tumors have been karyotyped and less than 100 analyzed for genomic imbalances by CGH. Methods We report a series of borderline ovarian tumors (n = 23) analyzed by G-banding and karyotyping as well as high resolution CGH; in addition, the tumors were analyzed for microsatellite stability status and by FISH for possible 6q deletion. Results All informative tumors were microsatellite stable and none had a deletion in 6q27. All cases with an abnormal karyotype had simple chromosomal aberrations with +7 and +12 as the most common. In three tumors with single structural rearrangements, a common breakpoint in 3q13 was detected. The major copy number changes detected in the borderline tumors were gains from chromosome arms 2q, 6q, 8q, 9p, and 13q and losses from 1p, 12q, 14q, 15q, 16p, 17p, 17q, 19p, 19q, and 22q. The series included five pairs of bilateral tumors and, in two of these pairs, informative data were obtained as to their clonal relationship. In both pairs, similarities were found between the tumors from the right and left side, strongly indicating that bilaterality had occurred via a metastatic process. The bilateral tumors as a group showed more aberrations than did the unilateral ones, consistent with the view that bilaterality is a sign of more advanced disease. Conclusion Because some of the imbalances found in borderline ovarian tumors seem to be similar to imbalances already known from the more extensively studied overt ovarian carcinomas, we speculate that the subset of borderline tumors with detectable imbalances or karyotypic aberrations may contain a smaller subset of tumors with a tendency to develop a more malignant phenotype. The group of borderline tumors with no imbalances would, in this line of thinking, have less or no propensity for clonal evolution and development to full-blown carcinomas. PMID:20184781

  13. Correction of large amplitude wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Bierden, P. A.; Bifano, T. G.; Webb, R. H.; Burns, S.; Pappas, S.

    2005-12-01

    Recently, a number of research groups around the world have developed ophthalmic instruments capable of in vivo diffraction limited imaging of the human retina. Adaptive optics was used in these systems to compensate for the optical aberrations of the eye and provide high contrast, high resolution images. Such compensation uses a wavefront sensor and a wavefront corrector (usually a deformable mirror) coordinated in a closed- loop control system that continuously works to counteract aberrations. While those experiments produced promising results, the deformable mirrors have had insufficient range of motion to permit full correction of the large amplitude aberrations of the eye expected in a normal population of human subjects. Other retinal imaging systems developed to date with MEMS (micro-electromechanical systems) DMs suffer similar limitations. This paper describes the design, manufacture and testing of a 6um stroke polysilicon surface micromachined deformable mirror that, coupled with an new optical method to double the effective stroke of the MEMS-DM, will permit diffraction-limited retinal imaging through dilated pupils in at least 90% of the human population. A novel optical design using spherical mirrors provides a double pass of the wavefront over the deformable mirror such that a 6um mirror displacement results in 12um of wavefront compensation which could correct for 24um of wavefront error. Details of this design are discussed. Testing of the effective wavefront modification was performed using a commercial wavefront sensor. Results are presented demonstrating improvement in the amplitude of wavefront control using an existing high degree of freedom MEMS deformable mirror.

  14. Predicting aberrant CpG island methylation

    PubMed Central

    Feltus, F. A.; Lee, E. K.; Costello, J. F.; Plass, C.; Vertino, P. M.

    2003-01-01

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context. PMID:14519846

  15. Predicting aberrant CpG island methylation.

    PubMed

    Feltus, F A; Lee, E K; Costello, J F; Plass, C; Vertino, P M

    2003-10-14

    Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.

  16. Higher-order aberrations of lenticular opacities.

    PubMed

    Sachdev, Nisha; Ormonde, Susan E; Sherwin, Trevor; McGhee, Charles N J

    2004-08-01

    To measure and quantify higher-order aberrations induced by different types of lenticular opacities. Department of Ophthalmology, University of Auckland, and Department of Ophthalmology, Auckland Public Hospital, Auckland, New Zealand. Patients with lenticular opacities were recruited from outpatient clinics of a major tertiary referral center for ophthalmology. Patients were included if they had clinically evident, mild to moderate lenticular opacity with no coexisting ocular pathology. Patients were examined using standard preoperative techniques with additional assessment by wavefront aberrometry (Zywave, Bausch & Lomb) and Scheimpflug photography (EAS-1000, Nidek). For comparison, 20 eyes of 10 subjects with no lenticular opacity (control group) were recruited and assessed in an identical manner. Thirty persons were recruited and 40 eyes assessed, 20 with lenticular opacities. Ten eyes had predominantly cortical opacification, and 10 had mainly nuclear opacification. In eyes with predominantly cortical opacification, the mean logMAR uncorrected visual acuity (UCVA) was 0.5 +/- 0.2 (SD) (6/18 Snellen equivalent) and the mean logMAR best spectacle-corrected visual acuity (BSCVA), 0.2 +/- 0.2 (6/9). Analysis of aberrometry data for a 6.0 mm pupil in this group revealed an increase in coma of cosine phase (Z(3), P =.06) and tetrafoil of cosine phase (Z(4), P =.07) compared to eyes in the control group. Eyes with predominantly nuclear opacification had a mean logMAR UCVA of 0.7 +/- 0.2 (6/30) and a logMAR BSCVA of 0.4 +/- 0.2 (6/15). Aberrometry data for this cohort for a 6.0 mm pupil showed a statistically greater amount of spherical aberration (Z(4)(0), P =.001) and tetrafoil of cosine phase (Z(4), P =.005; Z(4)(-4), P =.004). This pilot study suggests that different types of early lenticular opacities induce different wavefront aberration profiles. Predominantly cortical opacification produced an increase in coma and nuclear opacification induced an increase in

  17. Gefitinib and EGFR Gene Copy Number Aberrations in Esophageal Cancer.

    PubMed

    Petty, Russell D; Dahle-Smith, Asa; Stevenson, David A J; Osborne, Aileen; Massie, Doreen; Clark, Caroline; Murray, Graeme I; Dutton, Susan J; Roberts, Corran; Chong, Irene Y; Mansoor, Wasat; Thompson, Joyce; Harrison, Mark; Chatterjee, Anirban; Falk, Stephen J; Elyan, Sean; Garcia-Alonso, Angel; Fyfe, David Walter; Wadsley, Jonathan; Chau, Ian; Ferry, David R; Miedzybrodzka, Zosia

    2017-07-10

    Purpose The Cancer Esophagus Gefitinib trial demonstrated improved progression-free survival with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib relative to placebo in patients with advanced esophageal cancer who had disease progression after chemotherapy. Rapid and durable responses were observed in a minority of patients. We hypothesized that genetic aberration of the EGFR pathway would identify patients benefitting from gefitinib. Methods A prespecified, blinded molecular analysis of Cancer Esophagus Gefitinib trial tumors was conducted to compare efficacy of gefitinib with that of placebo according to EGFR copy number gain (CNG) and EGFR, KRAS, BRAF, and PIK3CA mutation status. EGFR CNG was determined by fluorescent in situ hybridization (FISH) using prespecified criteria and EGFR FISH-positive status was defined as high polysomy or amplification. Results Biomarker data were available for 340 patients. In EGFR FISH-positive tumors (20.2%), overall survival was improved with gefitinib compared with placebo (hazard ratio [HR] for death, 0.59; 95% CI, 0.35 to 1.00; P = .05). In EGFR FISH-negative tumors, there was no difference in overall survival with gefitinib compared with placebo (HR for death, 0.90; 95% CI, 0.69 to 1.18; P = .46). Patients with EGFR amplification (7.2%) gained greatest benefit from gefitinib (HR for death, 0.21; 95% CI, 0.07 to 0.64; P = .006). There was no difference in overall survival for gefitinib versus placebo for patients with EGFR, KRAS, BRAF, and PIK3CA mutations, or for any mutation versus none. Conclusion EGFR CNG assessed by FISH appears to identify a subgroup of patients with esophageal cancer who may benefit from gefitinib as a second-line treatment. Results of this study suggest that anti-EGFR therapies should be investigated in prospective clinical trials in different settings in EGFR FISH-positive and, in particular, EGFR-amplified esophageal cancer.

  18. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  19. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  20. Eye aberration analysis with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.

    1998-06-01

    New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.

  1. Third-rank chromatic aberrations of electron lenses.

    PubMed

    Liu, Zhixiong

    2018-02-01

    In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of Aberrations After Standard and Customized Refractive Surgery

    NASA Astrophysics Data System (ADS)

    Fang, L.; He, X.; Wang, Y.

    2013-09-01

    To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.

  3. Whole eye wavefront aberrations in Mexican male subjects.

    PubMed

    Cantú, Roberto; Rosales, Marco A; Tepichín, Eduardo; Curioca, Andrée; Montes, Victor; Bonilla, Julio

    2004-01-01

    To analyze the characteristics, incidence, and appearance of wavefront aberrations in undilated, normal, unoperated eyes. Eighty-eight eyes of 44 healthy male Mexican subjects (mean age 25.32 years, range 18 to 36 yr) were divided into three groups based on uncorrected visual acuity of greater than or equal to 20/20, 20/30, or 20/40. UCVA measurements were obtained using an Acuity Max computer screen chart. Wavefront aberrations were measured with the Nidek OPD-Scan ARK 10000, Ver. 1.11b. All measurements were carried out at the same center by the same technician during a single session, following manufacturer instructions. Background illumination was 3 Lux. Wavefront aberration measurements for each group were statistically analyzed using StatView; an average eye was characterized and the resulting aberrations were simulated using MATLAB. We obtained wavefront aberration maps for the 20/20 undilated normal unoperated eyes for total, low, and high order aberration coefficients. Wavefront maps for right eyes were practically the same as those for left eyes. Higher aberrations did not contribute substantially to total wavefront analysis. Average aberrations of this "normal eye" will be used as criteria to decide the necessity of wavefront-guided ablation in our facilities. We will focus on the nearly zero average of high order aberrations in this normal whole eye as a reference to be matched.

  4. Dynamic accommodation with simulated targets blurred with high order aberrations

    PubMed Central

    Gambra, Enrique; Wang, Yinan; Yuan, Jing; Kruger, Philip B.; Marcos, Susana

    2010-01-01

    High order aberrations have been suggested to play a role in determining the direction of accommodation. We have explored the effect of retinal blur induced by high order aberrations on dynamic accommodation by measuring the accommodative response to sinusoidal variations in accommodative demand (1–3 D). The targets were blurred with 0.3 and 1 μm (for a 3-mm pupil) of defocus, coma, trefoil and spherical aberration. Accommodative gain decreased significantly when 1-μm of aberration was induced. We found a strong correlation between the relative accommodative gain (and phase lag) and the contrast degradation imposed on the target at relevant spatial frequencies. PMID:20600230

  5. Imaging characteristics of Zernike and annular polynomial aberrations.

    PubMed

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  6. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  7. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    PubMed

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  8. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  9. Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

    PubMed Central

    Mansilla, Sabrina F; Bertolin, Agustina P; Bergoglio, Valérie; Pillaire, Marie-Jeanne; González Besteiro, Marina A; Luzzani, Carlos; Miriuka, Santiago G; Hoffmann, Jean-Sébastien; Gottifredi, Vanesa

    2016-01-01

    The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21’s PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis. DOI: http://dx.doi.org/10.7554/eLife.18020.001 PMID:27740454

  10. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  11. Enterococcus faecalis phosphomevalonate kinase

    PubMed Central

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  12. Activation pathway of Src kinase reveals intermediate states as novel targets for drug design

    PubMed Central

    Shukla, Diwakar; Meng, Yilin; Roux, Benoît; Pande, Vijay S.

    2014-01-01

    Unregulated activation of Src kinases leads to aberrant signaling, uncontrolled growth, and differentiation of cancerous cells. Reaching a complete mechanistic understanding of large scale conformational transformations underlying the activation of kinases could greatly help in the development of therapeutic drugs for the treatment of these pathologies. In principle, the nature of conformational transition could be modeled in silico via atomistic molecular dynamics simulations, although this is very challenging due to the long activation timescales. Here, we employ a computational paradigm that couples transition pathway techniques and Markov state model-based massively distributed simulations for mapping the conformational landscape of c-src tyrosine kinase. The computations provide the thermodynamics and kinetics of kinase activation for the first time, and help identify key structural intermediates. Furthermore, the presence of a novel allosteric site in an intermediate state of c-src that could be potentially utilized for drug design is predicted. PMID:24584478

  13. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    PubMed

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. © 2016 Federation of European Biochemical Societies.

  14. Overlapped Fourier coding for optical aberration removal

    PubMed Central

    Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei

    2014-01-01

    We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982

  15. Analysis of Chromosomal Aberrations after Low and High Dose Rate Gamma Irradiation in ATM or NBS Suppressed Human Fibroblast Cells

    NASA Technical Reports Server (NTRS)

    Hada, M.; Huff, J. L.; Patel, Z.; Pluth, J. M.; George, K. A.; Cucinotta, F. A.

    2009-01-01

    A detailed understanding of the biological effects of heavy nuclei is needed for space radiation protection and for cancer therapy. High-LET radiation produces more complex DNA lesions that may be non-repairable or that may require additional processing steps compared to endogenous DSBs, increasing the possibility of misrepair. Interplay between radiation sensitivity, dose, and radiation quality has not been studied extensively. Previously we studied chromosome aberrations induced by low- and high- LET radiation in several cell lines deficient in ATM (ataxia telangactasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. We found that the yields of both simple and complex chromosomal aberrations were significantly increased in the DSB repair defective cells compared to normal cells. The increased aberrations observed for the ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex aberrations, while the linear dose-response term was significantly higher in NBS cells only for simple exchanges. These results point to the importance of the functions of ATM and NBS in chromatin modifications that function to facilitate correct DSB repair and minimize aberration formation. To further understand the sensitivity differences that were observed in ATM and NBS deficient cells, in this study, chromosomal aberration analysis was performed in normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, or Mirin, an MRN complex inhibitor involved in activation of ATM. We are also testing siRNA knockdown of these proteins. Normal and ATM or NBS suppressed cells were irradiated with gamma-rays and chromosomes were collected with a premature chromosome

  16. Modified Matching Ronchi Test to Visualize Lens Aberrations

    ERIC Educational Resources Information Center

    Hassani, Kh; Ziafi, H. Hooshmand

    2011-01-01

    We introduce a modification to the matching Ronchi test to visualize lens aberrations with simple and inexpensive equipment available in educational optics labs. This method can help instructors and students to observe and estimate lens aberrations in real time. It is also a semi-quantitative tool for primary tests in research labs. In this work…

  17. Aberrated laser beams in terms of Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Alda, Javier; Alonso, Jose; Bernabeu, Eusebio

    1996-11-01

    The characterization of light beams has devoted a lot of attention in the past decade. Several formalisms have been presented to treat the problem of parameter invariance and characterization in the propagation of light beam along ideal, ABCD, optical systems. The hard and soft apertured optical systems have been treated too. Also some aberrations have been analyzed, but it has not appeared a formalism able to treat the problem as a whole. In this contribution we use a classical approach to describe the problem of aberrated, and therefore apertured, light beams. The wavefront aberration is included in a pure phase term expanded in terms of the Zernike polynomials. Then, we can use the relation between the lower order Zernike polynomia and the Seidel or third order aberrations. We analyze the astigmatism, the spherical aberration and the coma, and we show how higher order aberrations can be taken into account. We have calculated the divergence, and the radius of curvature of such aberrated beams and the influence of these aberrations in the quality of the light beam. Some numerical simulations have been done to illustrate the method.

  18. Aberrant Breast in a Rare Site: A Case Report

    PubMed Central

    Yeniay, Levent; Mulailwa, Kilongo; Asgerov, Elmir; Hoşcoşkun, Cüneyt; Zekioğlu, Osman

    2012-01-01

    Aberrant breast tissue is an anomaly in the embryogenesis of the breast that is found along the mammary ridge or out of that line. We report a case of a 71-year-old female patient with an abdominal aberrant breast tissue found incidentally in a piece of mesenteric biopsy. The histological features were consistent with breast tissue. PMID:22792115

  19. Sextupole system for the correction of spherical aberration

    DOEpatents

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  20. Statistical estimation of ultrasonic propagation path parameters for aberration correction.

    PubMed

    Waag, Robert C; Astheimer, Jeffrey P

    2005-05-01

    Parameters in a linear filter model for ultrasonic propagation are found using statistical estimation. The model uses an inhomogeneous-medium Green's function that is decomposed into a homogeneous-transmission term and a path-dependent aberration term. Power and cross-power spectra of random-medium scattering are estimated over the frequency band of the transmit-receive system by using closely situated scattering volumes. The frequency-domain magnitude of the aberration is obtained from a normalization of the power spectrum. The corresponding phase is reconstructed from cross-power spectra of subaperture signals at adjacent receive positions by a recursion. The subapertures constrain the receive sensitivity pattern to eliminate measurement system phase contributions. The recursion uses a Laplacian-based algorithm to obtain phase from phase differences. Pulse-echo waveforms were acquired from a point reflector and a tissue-like scattering phantom through a tissue-mimicking aberration path from neighboring volumes having essentially the same aberration path. Propagation path aberration parameters calculated from the measurements of random scattering through the aberration phantom agree with corresponding parameters calculated for the same aberrator and array position by using echoes from the point reflector. The results indicate the approach describes, in addition to time shifts, waveform amplitude and shape changes produced by propagation through distributed aberration under realistic conditions.

  1. Accuracy of modal wavefront estimation from eye transverse aberration measurements

    NASA Astrophysics Data System (ADS)

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.

    2001-01-01

    The influence of random errors in measurement of eye transverse aberrations on the accuracy of reconstructing wave aberration as well as ametropia and astigmatism parameters is investigated. The dependence of mentioned errors on a ratio between the number of measurement points and the number of polynomial coefficients is found for different pupil location of measurement points. Recommendations are proposed for setting these ratios.

  2. Structural centrosome aberrations promote non-cell-autonomous invasiveness.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Oertle, Philipp; Lim, Roderick Yh; Plodinec, Marija; Nigg, Erich A

    2018-05-02

    Centrosomes are the main microtubule-organizing centers of animal cells. Although centrosome aberrations are common in tumors, their consequences remain subject to debate. Here, we studied the impact of structural centrosome aberrations, induced by deregulated expression of ninein-like protein (NLP), on epithelial spheres grown in Matrigel matrices. We demonstrate that NLP-induced structural centrosome aberrations trigger the escape ("budding") of living cells from epithelia. Remarkably, all cells disseminating into the matrix were undergoing mitosis. This invasive behavior reflects a novel mechanism that depends on the acquisition of two distinct properties. First, NLP-induced centrosome aberrations trigger a re-organization of the cytoskeleton, which stabilizes microtubules and weakens E-cadherin junctions during mitosis. Second, atomic force microscopy reveals that cells harboring these centrosome aberrations display increased stiffness. As a consequence, mitotic cells are pushed out of mosaic epithelia, particularly if they lack centrosome aberrations. We conclude that centrosome aberrations can trigger cell dissemination through a novel, non-cell-autonomous mechanism, raising the prospect that centrosome aberrations contribute to the dissemination of metastatic cells harboring normal centrosomes. © 2018 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  3. Optical aberrations measurement with a low cost optometric instrument

    NASA Astrophysics Data System (ADS)

    Furlan, Walter D.; Muñoz-Escrivá, L.; Pons, A.; Martínez-Corral, M.

    2002-08-01

    A simple experimental method for measuring optical aberrations of a single lens is proposed. The technique is based on the use of an optometric instrument employed for the assessment of the refractive state of the eye: the retinoscope. Experimental results for spherical aberration and astigmatism are obtained.

  4. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  5. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  7. SAMHD1 Phosphorylation Coordinates the Anti-HIV-1 Response by Diverse Interferons and Tyrosine Kinase Inhibition.

    PubMed

    Szaniawski, Matthew A; Spivak, Adam M; Cox, James E; Catrow, Jonathan L; Hanley, Timothy; Williams, Elizabeth S C P; Tremblay, Michel J; Bosque, Alberto; Planelles, Vicente

    2018-05-15

    Macrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted. IMPORTANCE Our experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved

  8. Image based method for aberration measurement of lithographic tools

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa

    2018-01-01

    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  9. Surgical and healing changes to ocular aberrations following refractive surgery

    NASA Astrophysics Data System (ADS)

    Straub, Jochen; Schwiegerling, Jim

    2003-07-01

    Purpose: To measure ocular aberrations before and at several time periods after LASIK surgery to determine the change to the aberration structure of the eye. Methods: A Shack-Hartmann wavefront sensor was used to measure 88 LASIK patients pre-operatively and at 1 week and 12 months following surgery. Reconstructed wavefront errors are compared to look at induced differences. Manifest refraction was measured at 1 week, 1 month, 3 months, 6 months and 12 months following surgery. Sphere, cylinder, spherical aberration, and pupil diameter are analyzed. Results: A dramatic elevation in spherical aberration is seen following surgery. This elevation appears almost immediately and remains for the duration of the study. A temporary increase in pupil size is seen following surgery. Conclusions: LASIK surgery dramatically reduces defocus and astigmatism in the eye, but simultaneously increases spherical aberration levels. This increase occurs at the time of surgery and is not an effect of the healing response.

  10. Hydronephrosis by an Aberrant Renal Artery: A Case Report

    PubMed Central

    Park, Byoung Seok; Jeong, Taek Kyun; Ma, Seong Kwon; Kim, Soo Wan; Kim, Nam Ho; Choi, Ki Chul; Jeong, Yong Yeon

    2003-01-01

    Ureteropelvic junction obstruction is usually intrinsic and is most common in children. Aberrant renal arteries are present in about 30% of individuals. Aberrant renal arteries to the inferior pole cross anteriorly to the ureter and may cause hydronephrosis. To the best of our knowledge, although there are some papers about aberrant renal arteries producing ureteropelvic junction obstruction, there is no report of a case which is diagnosed by the new modalities, such as computed tomography angiogram (CTA) or magnetic resonance angiogram (MRA). We describe a 36-year-old woman with right hydronephrosis. Kidney ultrasonogram and excretory urogram revealed right hydronephrosis. CTA and MRA clearly displayed an aberrant renal artery and hydronephrosis. The patient underwent surgical exploration. For the evaluation of hydronephrosis by an aberrant renal artery, use of CTA and MRA is advocated. PMID:12760271

  11. Aberration-free intraocular lenses - What does this really mean?

    PubMed

    Langenbucher, Achim; Schröder, Simon; Cayless, Alan; Eppig, Timo

    2017-09-01

    So-called aberration-free intraocular lenses (IOLs) are well established in modern cataract surgery. Usually, they are designed to perfectly refract a collimated light beam onto the focal point. We show how much aberration can be expected with such an IOL in a convergent light beam such as that found anterior to the human cornea. Additionally, the aberration in a collimated beam is estimated for an IOL that has no aberrations in the convergent beam. The convergent beam is modelled as the pencil of rays corresponding to the spherical wavefront resulting from a typical corneal power of 43m -1 . The IOLs are modelled as infinitely thin phase plates with 20m -1 optical power placed 5mm behind the cornea. Their aberrations are reported in terms of optical path length difference and longitudinal spherical aberration (LSA) of the marginal rays, as well as nominal spherical aberration (SA) calculated based on a Zernike representation of the wavefront-error at the corneal plane within a 6mm aperture. The IOL designed to have no aberrations in a collimated light beam has an optical path length difference of -1.8μm, and LSA of 0.15m -1 in the convergent beam of a typical eye. The corresponding nominal SA is 0.065μm. The IOL designed to have no aberrations in a convergent light beam has an optical path length difference of 1.8μm, and LSA of -0.15m -1 in the collimated beam. An IOL designed to have no aberrations in a collimated light beam will increase the SA of a patient's eye after implantation. Copyright © 2017. Published by Elsevier GmbH.

  12. Wave aberrations in rhesus monkeys with vision-induced ametropias

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Huang, Juan; Roorda, Austin; Smith, Earl L.

    2007-01-01

    The purpose of this study was to investigate the relationship between refractive errors and high-order aberrations in infant rhesus monkeys. Specifically, we compared the monochromatic wave aberrations measured with a Shack-Hartman wavefront sensor between normal monkeys and monkeys with vision-induced refractive errors. Shortly after birth, both normal monkeys and treated monkeys reared with optically induced defocus or form deprivation showed a decrease in the magnitude of high-order aberrations with age. However, the decrease in aberrations was typically smaller in the treated animals. Thus, at the end of the lens-rearing period, higher than normal amounts of aberrations were observed in treated eyes, both hyperopic and myopic eyes and treated eyes that developed astigmatism, but not spherical ametropias. The total RMS wavefront error increased with the degree of spherical refractive error, but was not correlated with the degree of astigmatism. Both myopic and hyperopic treated eyes showed elevated amounts of coma and trefoil and the degree of trefoil increased with the degree of spherical ametropia. Myopic eyes also exhibited a much higher prevalence of positive spherical aberration than normal or treated hyperopic eyes. Following the onset of unrestricted vision, the amount of high-order aberrations decreased in the treated monkeys that also recovered from the experimentally induced refractive errors. Our results demonstrate that high-order aberrations are influenced by visual experience in young primates and that the increase in high-order aberrations in our treated monkeys appears to be an optical byproduct of the vision-induced alterations in ocular growth that underlie changes in refractive error. The results from our study suggest that the higher amounts of wave aberrations observed in ametropic humans are likely to be a consequence, rather than a cause, of abnormal refractive development. PMID:17825347

  13. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma.

    PubMed

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-05-23

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1 , p14 , p16 , death-associated protein kinase ( DAPK ), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response.

  14. Aberrant DNA Methylation as a Biomarker and a Therapeutic Target of Cholangiocarcinoma

    PubMed Central

    Nakaoka, Toshiaki; Saito, Yoshimasa; Saito, Hidetsugu

    2017-01-01

    Cholangiocarcinoma is an epithelial malignancy arising in the region between the intrahepatic bile ducts and the ampulla of Vater at the distal end of the common bile duct. The effect of current chemotherapy regimens against cholangiocarcinoma is limited, and the prognosis of patients with cholangiocarcinoma is poor. Aberrant DNA methylation and histone modification induce silencing of tumor suppressor genes and chromosomal instability during carcinogenesis. Studies have shown that the tumor suppressor genes and microRNAs (miRNAs) including MLH1, p14, p16, death-associated protein kinase (DAPK), miR-370 and miR-376c are frequently methylated in cholangiocarcinoma. Silencing of these tumor suppressor genes and miRNAs plays critical roles in the initiation and progression of cholangiocarcinoma. In addition, recent studies have demonstrated that DNA methylation inhibitors induce expression of endogenous retroviruses and exert the anti-tumor effect of via an anti-viral immune response. Aberrant DNA methylation of tumor suppressor genes and miRNAs could be a powerful biomarker for the diagnosis and treatment of cholangiocarcinoma. Epigenetic therapy with DNA methylation inhibitors holds considerable promise for the treatment of cholangiocarcinoma through the reactivation of tumor suppressor genes and miRNAs as well as the induction of an anti-viral immune response. PMID:28545228

  15. A Evaluation of Optical Aberrations in Underwater Hologrammetry

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. M.

    Available from UMI in association with The British Library. An iterative ray-trace procedure is developed in conjunction with semi-analytic expressions for spherical aberration, coma, and astigmatism in the reconstructed holographic images of underwater objects. An exact expression for the astigmatic difference is obtained, based on the geometry of the caustic for refraction. The geometrical characteristics of the aberrated images associated with axial and non-axial field positions are represented by ray intersection diagrams. A third order expression for the wavefront aberration introduced at a planar air/water boundary is given. The associated third order aberration coefficients are used to obtain analytic expressions for the aberrations observed in underwater hologrammetry. The results of the third order treatment are shown to give good agreement with the results obtained by geometrical ray tracing and by direct measurement on the reconstructed real image. The third order aberration coefficients are employed to estimate the limit of resolution in the presence of the aberrations associated with reconstruction in air. In concurrence with practical observations it is found that the estimated resolution is primarily limited by astigmatism. The limitations of the planar window in underwater imaging applications are outlined and various schemes are considered to effect a reduction in the extent of aberration. The analogous problems encountered in underwater photography are examined in order to establish the grounds for a common solution based on a conventional optical corrector. The performance of one such system, the Ivanoff Corrector, is investigated. The spherical aberration associated with axial image formation is evaluated. The equivalence of the third order wavefront aberration introduced at a planar air/water boundary to that introduced upon reconstruction by an appropriate wavelength change is shown to provide a basis for the compensation of aberrations in

  16. Human Protein Kinases and Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity, and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified by the target amino acid in their substrates. Some protein kinases can phosphorylate both serine/threonine, as well as tyrosine residues. This group of kinases has been known as dual specificity kinases. Unlike the dual specificity kinases, a heterogeneous group of protein phosphatases are known as dual-specificity phosphatases. These phosphatases remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases. The protein kinase-phosphoproteins interactions play an important role in obesity . In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signaling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the c-Jun N-terminal kinase (JNK) systems as well as the inhibitor of kappaB-kinase beta (IKK beta). Impairment of insulin signaling in obesity is largely mediated by the activation of the IKKbeta and the JNK. Furthermore, oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2alpha kinase (PERK) and activating transcription factor-6. The transcriptional regulation of

  17. Aberration corrected STEM by means of diffraction gratings

    SciTech Connect

    Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.

    In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less

  18. Population dynamics of aberrant chromosome 1 in mice.

    PubMed

    Sabantsev, I; Spitsin, O; Agulnik, S; Ruvinsky, A

    1993-05-01

    Natural populations of two semispecies of house mouse, Mus musculus domesticus and M.m. musculus, were found to be polymorphic for an aberrant chromosome 1 bearing a large inserted block of homogeneously staining heterochromatin. Strong meiotic drive for the aberrant chromosome from M.m. musculus was previously observed in heterozygous female mice. There are at least three meiotic drive levels determined by different allelic variants of distorter. Homozygotes had low viability and females showed low fertility. Both homo- and heterozygous males had normal fertility and their segregation patterns did not deviate from normal. Computer simulations were performed of the dynamics of aberrant chromosome 1 in demes and populations. The data demonstrate that a spontaneous mutation (inversion) of an aberrant chromosome 1, once arisen, has a high probability of spreading in a population at high coefficients of meiotic drive and migration. In the long-term, the population attains a stationary state which is determined by the drive level and migration intensity. The state of stable genotypic equilibrium is independent of deme and population size, as well as of the initial concentration of the aberrant chromosome. As populations initially polymorphic for the distorters approach the stationary state, the stronger distorter is eliminated. The frequencies of the aberrant chromosome determined by computer analysis agree well with those obtained for the studied Asian M.m. musculus populations. The evolutionary pathways for the origin and fixation of the aberrant chromosome in natural populations are considered.

  19. Aberration corrected STEM by means of diffraction gratings

    DOE PAGES

    Linck, Martin; Ercius, Peter A.; Pierce, Jordan S.; ...

    2017-06-12

    In the past 15 years, the advent of aberration correction technology in electron microscopy has enabled materials analysis on the atomic scale. This is made possible by precise arrangements of multipole electrodes and magnetic solenoids to compensate the aberrations inherent to any focusing element of an electron microscope. In this paper, we describe an alternative method to correct for the spherical aberration of the objective lens in scanning transmission electron microscopy (STEM) using a passive, nanofabricated diffractive optical element. This holographic device is installed in the probe forming aperture of a conventional electron microscope and can be designed to removemore » arbitrarily complex aberrations from the electron's wave front. In this work, we show a proof-of-principle experiment that demonstrates successful correction of the spherical aberration in STEM by means of such a grating corrector (GCOR). Our GCOR enables us to record aberration-corrected high-resolution high-angle annular dark field (HAADF-) STEM images, although yet without advancement in probe current and resolution. Finally, improvements in this technology could provide an economical solution for aberration-corrected high-resolution STEM in certain use scenarios.« less

  20. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  1. The Mechanisms of Aberrant Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel; Vendruscolo, Michele; Dobson, Chris; Knowles, Tuomas

    2012-02-01

    We discuss the development of a kinetic theory for understanding the aberrant loss of solubility of proteins. The failure to maintain protein solubility results often in the assembly of organized linear structures, commonly known as amyloid fibrils, the formation of which is associated with over 50 clinical disorders including Alzheimer's and Parkinson's diseases. A true microscopic understanding of the mechanisms that drive these aggregation processes has proved difficult to achieve. To address this challenge, we apply the methodologies of chemical kinetics to the biomolecular self-assembly pathways related to protein aggregation. We discuss the relevant master equation and analytical approaches to studying it. In particular, we derive the underlying rate laws in closed-form using a self-consistent solution scheme; the solutions that we obtain reveal scaling behaviors that are very generally present in systems of growing linear aggregates, and, moreover, provide a general route through which to relate experimental measurements to mechanistic information. We conclude by outlining a study of the aggregation of the Alzheimer's amyloid-beta peptide. The study identifies the dominant microscopic mechanism of aggregation and reveals previously unidentified therapeutic strategies.

  2. Ocular higher-order aberrations in a school children population.

    PubMed

    Papamastorakis, George; Panagopoulou, Sophia; Tsilimbaris, Militadis K; Pallikaris, Ioannis G; Plainis, Sotiris

    2015-01-01

    The primary objective of the study was to explore the statistics of ocular higher-order aberrations in a population of primary and secondary school children. A sample of 557 children aged 10-15 years were selected from two primary and two secondary schools in Heraklion, Greece. Children were classified by age in three subgroups: group I (10.7±0.5 years), group II (12.4±0.5 years) and group III (14.5±0.5 years). Ocular aberrations were measured using a wavefront aberrometer (COAS, AMO Wavefront Sciences, USA) at mesopic light levels (illuminance at cornea was 4lux). Wavefront analysis was achieved for a 5mm pupil. Statistical analysis was carried out for the right eye only. The average coefficient of most high-order aberrations did not differ from zero with the exception of vertical (0.076μm) and horizontal (0.018μm) coma, oblique trefoil (-0.055μm) and spherical aberration (0.018μm). The most prominent change between the three groups was observed for the spherical aberration, which increased from 0.007μm (SE 0.005) in group I to 0.011μm (SE 0.004) in group II and 0.030μm (SE 0.004) in group III. Significant differences were also found for the oblique astigmatism and the third-order coma aberrations. Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Ocular higher-order aberrations in a school children population

    PubMed Central

    Papamastorakis, George; Panagopoulou, Sophia; Tsilimbaris, Militadis K.; Pallikaris, Ioannis G.; Plainis, Sotiris

    2014-01-01

    Purpose The primary objective of the study was to explore the statistics of ocular higher-order aberrations in a population of primary and secondary school children. Methods A sample of 557 children aged 10–15 years were selected from two primary and two secondary schools in Heraklion, Greece. Children were classified by age in three subgroups: group I (10.7 ± 0.5 years), group II (12.4 ± 0.5 years) and group III (14.5 ± 0.5 years). Ocular aberrations were measured using a wavefront aberrometer (COAS, AMO Wavefront Sciences, USA) at mesopic light levels (illuminance at cornea was 4 lux). Wavefront analysis was achieved for a 5 mm pupil. Statistical analysis was carried out for the right eye only. Results The average coefficient of most high-order aberrations did not differ from zero with the exception of vertical (0.076 μm) and horizontal (0.018 μm) coma, oblique trefoil (−0.055 μm) and spherical aberration (0.018 μm). The most prominent change between the three groups was observed for the spherical aberration, which increased from 0.007 μm (SE 0.005) in group I to 0.011 μm (SE 0.004) in group II and 0.030 μm (SE 0.004) in group III. Significant differences were also found for the oblique astigmatism and the third-order coma aberrations. Conclusions Differences in the low levels of ocular spherical aberration in young children possibly reflect differences in lenticular spherical aberration and relate to the gradient refractive index of the lens. The evaluation of spherical aberration at certain stages of eye growth may help to better understand the underlying mechanisms of myopia development. PMID:25288226

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  5. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  9. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  10. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products.

    PubMed

    Siveen, Kodappully S; Prabhu, Kirti S; Achkar, Iman W; Kuttikrishnan, Shilpa; Shyam, Sunitha; Khan, Abdul Q; Merhi, Maysaloun; Dermime, Said; Uddin, Shahab

    2018-02-19

    Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.

  11. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens

    PubMed Central

    Kretz, Florian T A; Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd U

    2015-01-01

    AIM To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting, monofocal intraocular lens (IOL). METHODS Twenty-one patients (34 eyes) aged 50 to 83y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL (Tecnis ZCB00, Abbott Medical Optics). Three months after surgery they were examined for uncorrected (UDVA) and corrected distance visual acuity (CDVA), contrast sensitivity (CS) under photopic and mesopic conditions with and without glare source, ocular high order aberrations (HOA, Zywave II) and retinal straylight (C-Quant). RESULTS Postoperatively, patients achieved a postoperative CDVA of 0.0 logMAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27 (primary coma components) and -0.04±0.16 (spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed (P≥0.28). CONCLUSION The implantation of an aspherical aberration correcting monofocal IOL after cataract surgery resulted in very low residual higher order aberration (HOA) and normal straylight. PMID:26309872

  13. Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.

    PubMed

    Martin, Ludovic; Magnaudeix, Amandine; Esclaire, Françoise; Yardin, Catherine; Terro, Faraj

    2009-02-03

    In tauopathies such as Alzheimer's disease (AD), the molecular mechanisms of tau protein aggregation into neurofibrillary tangles (NFTs) and their contribution to neurodegeneration remain not understood. It was recently demonstrated that tau, regardless of its aggregation, might represent a key mediator of neurodegeneration. Therefore, reduction of tau levels might represent a mechanism of neuroprotection. Glycogen synthase kinase-3beta (GSK3beta) and protein phosphatase-2A (PP2A) are key enzymes involved in the regulation of tau phosphorylation, and have been suggested to be involved in the abnormal tau phosphorylation and aggregation in AD. Connections between PP2A and GSK3beta signaling have been reported. We have previously demonstrated that exposure of cultured cortical neurons to lithium decreased tau protein expression and provided neuroprotection against Abeta. Since lithium is not a specific inhibitor of GSK3beta (ID50=2.0 mM), whether or not the lithium-induced tau decrease involves GSK3beta remained to be determined. For that purpose, cultured cortical neurons were exposed to 6-bromo-indirubin-3'-oxime (6-BIO), a more selective and potent GSK3beta inhibitor (ID50=1.5 microM) or to lithium. Analysis of tau levels and phosphorylation by western-blot assays showed that lithium and 6-BIO dose-dependently decreased both tau protein levels and tau phosphorylation. Conversely, inhibition of cyclin-dependent kinase-5 (CDK5) by roscovitine decreased phosphorylated tau but failed to alter tau protein levels. These data indicate that GSK3beta might be selectively involved in the regulation of tau protein levels. Moreover, inhibition of PP2A by okadaic acid, but not that of PP2B (protein phosphatase-2B)/calcineurin by FK506, dose-dependently reversed lithium-induced tau decrease. These data indicate that GSK3beta regulates both tau phosphorylation and total tau levels through PP2A.

  14. Curcumin-induced downregulation of Axl receptor tyrosine kinase inhibits cell proliferation and circumvents chemoresistance in non-small lung cancer cells.

    PubMed

    Kim, Kyung-Chan; Baek, Suk-Hwan; Lee, Chuhee

    2015-12-01

    Lung cancer is still in the first place in terms of both incidence and mortality. In the present study, we demonstrated the effect of curcumin, a phytochemical of the plant Curcuma longa, on expression and activation of Axl receptor tyrosine kinase (RTK) which plays an important role in cell survival, proliferation and anti-apoptosis. Curcumin treatment of non-small cell lung cancer (NSCLC) A549 and H460 cells, was found to decrease Axl protein as well as mRNA levels in a dose- and time-dependent manner. Axl promoter activity was also reduced by curcumin, indicating that curcumin downregulates Axl expression at the transcriptional level. Moreover, Axl phosphorylation in response to binding of its ligand, Gas6, was abrogated by curcumin, suggesting the inhibitory effect of curcumin on Gas6-induced Axl activation. We next found cytotoxic effect of cucumin on both the parental A549 and H460 cells, and their variants which are resistant to cisplatin (A549/CisR and H460/CisR) and paclitaxel (A549/TR and H460/TR). Exposure of these cells to curcumin resulted in dose-dependent decline of cell viability and clonogenic ability. It is further observed that the anti-proliferative effect of curcumin on A549 cells overexpressing Axl protein was reduced, while that on H460 cells transfected Axl specific siRNA was augmented, confirming that curcumin inhibits cell proliferation via downregulation of Axl expression. In addition, curcumin was found to cause the induction of p21, a cyclin-dependent kinase inhibitor, and reduction of X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic molecule, in parental H460 cells as well as chemoresistant cells, H460/CisR and H460/TR. Taken together, our data imply that Axl RTK is a novel target of curcumin through which it exerts anti-proliferative effect in both parental and chemoresistant NSCLC cells.

  15. Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer

    PubMed Central

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Abstract Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated. The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes. Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA). qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAFV600E-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAFV600E mutation (odds ratio, 4.662; 95% confidence interval 1.066 − 21.609; P = 0.045). Moreover, moderate

  16. Aberrant expression of COT is related to recurrence of papillary thyroid cancer.

    PubMed

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-02-01

    Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated.The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes.Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA).qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAF-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAF mutation (odds ratio, 4.662; 95% confidence interval 1.066 - 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC

  17. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  18. The Structure of Lombricine Kinase

    PubMed Central

    Bush, D. Jeffrey; Kirillova, Olga; Clark, Shawn A.; Davulcu, Omar; Fabiola, Felcy; Xie, Qing; Somasundaram, Thayumanasamy; Ellington, W. Ross; Chapman, Michael S.

    2011-01-01

    Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free. The two structures are similar to each other and more similar to the substrate-free forms of homologs than to the substrate-bound forms of the other phosphagen kinases. Active site specificity loop 309–317, which is disordered in substrate-free structures of homologs and is known from the NMR of arginine kinase to be inherently dynamic, is resolved in both lombricine kinase structures, providing an improved basis for understanding the loop dynamics. Phosphagen kinases undergo a segmented closing on substrate binding, but the lombricine kinase ADP complex is in the open form more typical of substrate-free homologs. Through a comparison with prior complexes of intermediate structure, a correlation was revealed between the overall enzyme conformation and the substrate interactions of His178. Comparative modeling provides a rationale for the more relaxed specificity of these kinases, of which the natural substrates are among the largest of the phosphagen substrates. PMID:21212263

  19. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  20. Electron Optics for Biologists: Physical Origins of Spherical Aberrations

    ERIC Educational Resources Information Center

    Geissler, Peter; Zadunaisky, Jose

    1974-01-01

    Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)

  1. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Edrei, Eitan; Scarcelli, Giuliano

    2018-04-01

    Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.

  2. Using aberrant behaviors as reinforcers for autistic children.

    PubMed Central

    Charlop, M H; Kurtz, P F; Casey, F G

    1990-01-01

    In a series of experiments, we assessed the efficacy of using autistic children's aberrant behaviors as reinforcers to increase their correct task responding. In Experiment 1, reinforcer conditions of stereotypy, food, and varied (food or stereotypy) were compared. In Experiment 2, the conditions were delayed echolalia, food, and varied (food or delayed echolalia), and in Experiment 3, perseverative behavior was compared with stereotypy and food as potential reinforcers. A multielement design was used for all comparisons, and side-effect measures were recorded during and after teaching sessions as well as at home. Results indicated that, in general, task performance was highest when brief opportunities to engage in aberrant behaviors were provided as reinforcers. Edibles were associated with the lowest performance. Furthermore, no negative side effects (e.g., an increase in aberrant behaviors) occurred. The results are discussed in terms of suggesting a more pragmatic treatment approach by addressing the contingent use of autistic children's aberrant behaviors as reinforcers. PMID:2373653

  3. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma

    PubMed Central

    Carpenter, EL; Haglund, EA; Mace, EM; Deng, D; Martinez, D; Wood, AC; Chow, AK; Weiser, DA; Belcastro, LT; Winter, C; Bresler, SC; Asgharzadeh, S; Seeger, RC; Zhao, H; Guo, R; Christensen, JG; Orange, JS; Pawel, BR; Lemmon, MA; Mossé, YP

    2013-01-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in neuroblastoma, a devastating pediatric cancer of the sympathetic nervous system. Germline and somatically acquired ALK aberrations induce increased autophosphorylation, constitutive ALK activation and increased downstream signaling. Thus, ALK is a tractable therapeutic target in neuroblastoma, likely to be susceptible to both small-molecule tyrosine kinase inhibitors and therapeutic antibodies–as has been shown for other receptor tyrosine kinases in malignancies such as breast and lung cancer. Small-molecule inhibitors of ALK are currently being studied in the clinic, but common ALK mutations in neuroblastoma appear to show de novo insensitivity, arguing that complementary therapeutic approaches must be developed. We therefore hypothesized that antibody targeting of ALK may be a relevant strategy for the majority of neuroblastoma patients likely to have ALK-positive tumors. We show here that an antagonistic ALK antibody inhibits cell growth and induces in vitro antibody-dependent cellular cytotoxicity of human neuroblastoma-derived cell lines. Cytotoxicity was induced in cell lines harboring either wild type or mutated forms of ALK. Treatment of neuroblastoma cells with the dual Met/ALK inhibitor crizotinib sensitized cells to antibody-induced growth inhibition by promoting cell surface accumulation of ALK and thus increasing the accessibility of antigen for antibody binding. These data support the concept of ALK-targeted immunotherapy as a highly promising therapeutic strategy for neuroblastomas with mutated or wild-type ALK. PMID:22266870

  4. Aberration correction results in the IBM STEM instrument.

    PubMed

    Batson, P E

    2003-09-01

    Results from the installation of aberration correction in the IBM 120 kV STEM argue that a sub-angstrom probe size has been achieved. Results and the experimental methods used to obtain them are described here. Some post-experiment processing is necessary to demonstrate the probe size of about 0.078 nm. While the promise of aberration correction is demonstrated, we remain at the very threshold of practicality, given the very stringent stability requirements.

  5. Stability of corneal topography and wavefront aberrations in young Singaporeans.

    PubMed

    Zhu, Mingxia; Collins, Michael J; Yeo, Anna C H

    2013-09-01

    The aim was to investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total-eye optics in the morning, midday and late afternoon on two separate days. Topographic data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the fourth radial order of the Zernike polynomial expansion and were centred on the entrance pupil (5.0 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. For all subjects considered together, there were significant changes in some of the aberrations across the day, such as spherical aberration ( Z(4 0)) and vertical coma ( Z (3 - 1)) (repeated measures analysis of variance, p < 0.05). The magnitude of positive spherical aberration ( Z(4 0)) was significantly lower in the progressing myopic group than in the stable myopic (p = 0.04) and emmetropic (p = 0.02) groups. There were also significant interactions between refractive group and time of day for with and against-the-rule astigmatism ( Z(2 2)). Significantly lower fourth-order root mean square of ocular wavefront aberrations were found in the progressing myopic group compared with the stable myopes and emmetropes (p < 0.01). These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  6. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  7. Generalized Alvarez lens for correction of laser aberrations

    SciTech Connect

    LaFortune, K N

    2004-12-02

    The Alvarez lens (US Patent No. 3,305,294 [1]) is a compact aberration corrector. The original design emphasized in the patent consists of a pair of adjacent optical elements that provide a variable focus. A lens system with a variable effective focal length is nothing new. Such systems are widely used in cameras, for example. It is the compactness and simplicity of operation that is the key advantage of the Alvarez lens. All of the complexity is folded into the design and fabrication of the optical elements. As mentioned in the Alvarez patent [1] and elaborated upon in Palusinski et al.more » [2], if one is willing to fold even more complexity into the optical elements, it is possible to correct higher-order aberrations as well. There is no theoretical limit to the number or degree of wavefront distortions that can be corrected. The only limitation is that there must be a fixed relative magnitude of the aberrations. Independent correction of each component of the higher-order aberrations can not be performed without additional elements and degrees of freedom [3]. Under some circumstances, coupling may be observed between different aberrations. This can be mitigated with the appropriate choice of design parameters. New methods are available today that increase the practicality of making higher-order aberration correctors [4,5,6].« less

  8. Lesion Generation Through Ribs Using Histotripsy Therapy Without Aberration Correction

    PubMed Central

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A.

    2012-01-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction. PMID:22083767

  9. Lesion generation through ribs using histotripsy therapy without aberration correction.

    PubMed

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A

    2011-11-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.

  10. Dimensions of driving anger and their relationships with aberrant driving.

    PubMed

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Induction of chromosome aberrations in human cells by charged particles

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; George, K.; Yang, T. C.

    1997-01-01

    Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.

  12. Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Nigg, Erich A

    2018-06-01

    Centrosome aberrations disrupt tissue architecture and may confer invasive properties to cancer cells. Here we show that structural centrosome aberrations, induced by overexpression of either Ninein-like protein (NLP) or CEP131/AZI1, sensitize polarized mammalian epithelia to basal cell extrusion. While unperturbed epithelia typically dispose of damaged cells through apical dissemination into luminal cavities, certain oncogenic mutations cause a switch in directionality towards basal cell extrusion, raising the potential for metastatic cell dissemination. Here we report that NLP-induced centrosome aberrations trigger the preferential extrusion of damaged cells towards the basal surface of epithelial monolayers. This switch in directionality from apical to basal dissemination coincides with a profound reorganization of the microtubule cytoskeleton, which in turn prevents the contractile ring repositioning that is required to support extrusion towards the apical surface. While the basal extrusion of cells harbouring NLP-induced centrosome aberrations requires exogenously induced cell damage, structural centrosome aberrations induced by excess CEP131 trigger the spontaneous dissemination of dying cells towards the basal surface from MDCK cysts. Thus, similar to oncogenic mutations, structural centrosome aberrations can favour basal extrusion of damaged cells from polarized epithelia. Assuming that additional mutations may promote cell survival, this process could sensitize epithelia to disseminate potentially metastatic cells. © 2018 The Authors.

  13. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease.

    PubMed

    Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki

    2017-12-01

    Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.

  14. RON kinase isoforms demonstrate variable cell motility in normal cells.

    PubMed

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  15. Transcranial phase aberration correction using beam simulations and MR-ARFI

    SciTech Connect

    Vyas, Urvi, E-mail: urvi.vyas@gmail.com; Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focusedmore » ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.« less

  16. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  17. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.

    PubMed

    Zhai, Yi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; He, Yuanqing; Chang, Shengjiang

    2014-01-01

    An achromatic element eliminating only longitudinal chromatic aberration (LCA) while maintaining transverse chromatic aberration (TCA) is established for the eye model, which involves the angle formed by the visual and optical axis. To investigate the impacts of higher-order aberrations on vision, the actual data of higher-order aberrations of human eyes with three typical levels are introduced into the eye model along visual axis. Moreover, three kinds of individual eye models are established to investigate the impacts of higher-order aberrations, chromatic aberration (LCA+TCA), LCA and TCA on vision under the photopic condition, respectively. Results show that for most human eyes, the impact of chromatic aberration on vision is much stronger than that of higher-order aberrations, and the impact of LCA in chromatic aberration dominates. The impact of TCA is approximately equal to that of normal level higher-order aberrations and it can be ignored when LCA exists.

  18. Sixth-order wave aberration theory of ultrawide-angle optical systems.

    PubMed

    Lu, Lijun; Cao, Yiqing

    2017-10-20

    In this paper, we develop sixth-order wave aberration theory of ultrawide-angle optical systems like fisheye lenses. Based on the concept and approach to develop wave aberration theory of plane-symmetric optical systems, we first derive the sixth-order intrinsic wave aberrations and the fifth-order ray aberrations; second, we present a method to calculate the pupil aberration of such kind of optical systems to develop the extrinsic aberrations; third, the relation of aperture-ray coordinates between adjacent optical surfaces is fitted with the second-order polynomial to improve the calculation accuracy of the wave aberrations of a fisheye lens with a large acceptance aperture. Finally, the resultant aberration expressions are applied to calculate the aberrations of two design examples of fisheye lenses; the calculation results are compared with the ray-tracing ones with Zemax software to validate the aberration expressions.

  19. Chromosomal aberrations in peripheral lymphocytes of train engine drivers.

    PubMed

    Nordenson, I; Mild, K H; Järventaus, H; Hirvonen, A; Sandström, M; Wilén, J; Blix, N; Norppa, H

    2001-07-01

    Studies of Swedish railway employees have indicated that railroad engine drivers have an increased cancer morbidity and incidence of chronic lymphatic leukemia. The drivers are exposed to relatively high magnetic fields (MF), ranging from a few to over a hundred microT. Although the possible genotoxic potential of MF is unclear, some earlier studies have indicated that occupational exposure to MF may increase chromosome aberrations in blood lymphocytes. Since an increased level of chromosomal aberrations has been suggested to predict elevated cancer risk, we performed a cytogenetic analysis on cultured (48 h) peripheral lymphocytes of Swedish train engine drivers. A pilot study of 18 engine drivers indicated a significant difference in the frequency of cells with chromosomal aberrations (gaps included or excluded) in comparison with seven concurrent referents (train dispatchers) and a control group of 16 office workers. The engine drivers had about four times higher frequency of cells with chromosome-type aberrations (excluding gaps) than the office workers (P < 0.01) and the dispatchers (P < 0.05). Seventy-eight percent of the engine drivers showed at least one cell per 100 with chromosome-type aberrations compared with 29% among the dispatchers and 31% among the office workers. In a follow-up study, another 30 engine drivers showed an increase (P < 0.05) in the frequency of cells with chromosome-type aberrations (gaps excluded) as compared with 30 referent policemen. Sixty percent of the engine drivers had one or more cells (per 100 cells) with chromosome-type aberrations compared with 30% among the policemen. In conclusion, the results of the two studies support the hypothesis that exposure to MF at mean intensities of 2-15 microT can induce chromosomal damage. Copyright 2001 Wiley-Liss, Inc.

  20. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  1. Aberrant status and clinicopathologic characteristic associations of 11 target genes in 1,321 Chinese patients with lung adenocarcinoma.

    PubMed

    Zhao, Mengnan; Zhan, Cheng; Li, Ming; Yang, Xiaodong; Yang, Xinyu; Zhang, Yong; Lin, Miao; Xia, Yifeng; Feng, Mingxiang; Wang, Qun

    2018-01-01

    The aberrant status of target genes and their associations with clinicopathologic characteristics are still unclear in primary lung adenocarcinoma. The common mutations and translocations of nine target genes were evaluated in 1,247 specimens of surgically-resected primary lung adenocarcinoma. Immunohistochemistry was used to analyze the expressions of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) in 731 specimens. The frequency of the aberrations and their associations with clinicopathologic characteristics were analyzed. Overall, 952 (76.3%) of 1,247 patients harbored at least one target mutation or translocation: epidermal growth factor receptor ( EGFR ) (729, 58.5%), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog ( KRAS ) (83, 6.7%), human epidermal growth factor receptor 2 ( HER2 ) (82, 6.6%), anaplastic lymphoma kinase ( ALK) (23, 1.8%), phosphoinositide-3-kinase catalytic alpha polypeptide ( PIK3CA ) (20, 1.6%), Ret proto-oncogene RET (15, 1.2%), ROS proto-oncogene 1 receptor tyrosine kinase ( ROS1 ) (12, 1.0%), B-raf proto-oncogene ( BRAF ) (9, 0.7%), neuroblastoma RAS viral (v-ras) oncogene homolog ( NRAS ) (3, 0.2%). Fourteen (1.9%) of 731 patients were PD-1 positive and 95 (13.0%) were PD-L1 positive in tumor cells. In men and smokers, there were more frequent KRAS mutations (both P<0.001) and PD-L1 positive tumors (P<0.001, P=0.005, respectively), and less frequent EGFR mutations (P=0.049, <0.001, respectively). In ground-glass opacity (GGO) or ground-glass nodules (GGN), there were more HER2 (P=0.033) but less EGFR (P=0.025) and PIK3CA mutations (P=0.012), and ALK translocations (P=0.014). EGFR (P<0.001), KRAS mutations (P=0.004) and PD-L1 positive tumors (P=0.046) were more frequent in older patients, while HER2 (P<0.001), ALK (P=0.005) and ROS1 aberrations (P=0.044) were less frequent. Invasive mucinous adenocarcinoma was significantly associated with KRAS and ALK aberrations (both P<0.001), while solid predominant adenocarcinoma

  2. A model of chromosome aberration induction: applications to space research.

    PubMed

    Ballarini, Francesca; Ottolenghi, Andrea

    2005-10-01

    A mechanistic model and Monte Carlo code simulating chromosome aberration induction in human lymphocytes is presented. The model is based on the assumption that aberrations arise from clustered DNA lesions and that only the free ends of clustered lesions created in neighboring chromosome territories or in the same territory can join and produce exchanges. The lesions are distributed in the cell nucleus according to the radiation track structure. Interphase chromosome territories are modeled as compact intranuclear regions with volumes proportional to the chromosome DNA contents. Both Giemsa staining and FISH painting can be simulated, and background aberrations can be taken into account. The good agreement with in vitro data provides validation of the model in terms of both the assumptions adopted and the simulation techniques. As an application in the field of space research, the model predictions were compared with aberration yields measured among crew members of long-term missions on board Mir and ISS, assuming an average radiation quality factor of 2.4. The agreement obtained also validated the model for in vivo exposure scenarios and suggested possible applications to the prediction of other relevant aberrations, typically translocations.

  3. Aberration Theory and Design Techniques for Refracting Prism Systems.

    NASA Astrophysics Data System (ADS)

    Al-Bizri, N.

    Available from UMI in association with The British Library. The general case of image formation by optical systems consisting of combinations of ordinary lens components and refracting prisms is studied in detail. Formulae for the sagittal and tangential magnifications, the pupil scale ratios, the image tilt, the positions of (newly defined) principal planes and the equivalent focal lengths have been derived. Formulae for the axial astigmatism, axial transverse chromatic aberration and the focal shift measure of the aberration due to the tilt of the image plane have also been obtained. All of these formulae are equally valid for any optical system which has a single plane of symmetry. The calculation of the wavefront aberration coefficients and of the variance of the aberration for such systems has been treated using the pre-inverted matrix method. In addition formulae for the numerical evaluation of the optical transfer function, the point spread function, the line spread function and the edge response function, have been obtained and programmed. First-order formulae, and a refinement technique, for the design of cemented refracting doublet prisms have been obtained, which ensure that the desired prismatic deviation of the axis is obtained, and that the axial astigmatism and the axial transverse chromatic aberration have stipulated target values. All of the above formulae have been carefully tested by numerical examples, and the design technique has been used to design endoscope objectives which provide small deviations (<10^circ ) of the optical axis.

  4. Primary chromatic aberration elimination via optimization work with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  5. Ocular wavefront aberrations in patients with macular diseases

    PubMed Central

    Bessho, Kenichiro; Bartsch, Dirk-Uwe G.; Gomez, Laura; Cheng, Lingyun; Koh, Hyoung Jun; Freeman, William R.

    2009-01-01

    Background There have been reports that by compensating for the ocular aberrations using adaptive optical systems it may be possible to improve the resolution of clinical retinal imaging systems beyond what is now possible. In order to develop such system to observe eyes with retinal disease, understanding of the ocular wavefront aberrations in individuals with retinal disease is required. Methods 82 eyes of 66 patients with macular disease (epiretinal membrane, macular edema, macular hole etc.) and 85 eyes of 51 patients without retinal disease were studied. Using a ray-tracing wavefront device, each eye was scanned at both small and large pupil apertures and Zernike coefficients up to 6th order were acquired. Results In phakic eyes, 3rd order root mean square errors (RMS) in macular disease group were statistically greater than control, an average of 12% for 5mm and 31% for 3mm scan diameters (p<0.021). In pseudophakic eyes, there also was an elevation of 3rd order RMS, on average 57% for 5mm and 51% for 3mm scan diameters (p<0.031). Conclusion Higher order wavefront aberrations in eyes with macular disease were greater than in control eyes without disease. Our study suggests that such aberrations may result from irregular or multiple reflecting retinal surfaces. Modifications in wavefront sensor technology will be needed to accurately determine wavefront aberration and allow correction using adaptive optics in eyes with macular irregularities. PMID:19574950

  6. Minimum change in spherical aberration that can be perceived

    PubMed Central

    Manzanera, Silvestre; Artal, Pablo

    2016-01-01

    It is important to know the visual sensitivity to optical blur from both a basic science perspective and a practical point of view. Of particular interest is the sensitivity to blur induced by spherical aberration because it is being used to increase depth of focus as a component of a presbyopic solution. Using a flicker detection-based procedure implemented on an adaptive optics visual simulator, we measured the spherical aberration thresholds that produce just-noticeable differences in perceived image quality. The thresholds were measured for positive and negative values of spherical aberration, for best focus and + 0.5 D and + 1.0 D of defocus. At best focus, the SA thresholds were 0.20 ± 0.01 µm and −0.17 ± 0.03 µm for positive and negative spherical aberration respectively (referred to a 6-mm pupil). These experimental values may be useful in setting spherical aberration permissible levels in different ophthalmic techniques. PMID:27699113

  7. Optical aberrations induced by subclinical decentrations of the ablation pattern

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo

    2000-06-01

    Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations af