Science.gov

Sample records for aberrant dna hypermethylation

  1. Aberrant promoter hypermethylation in serum DNA from patients with silicosis.

    PubMed

    Umemura, Shigeki; Fujimoto, Nobukazu; Hiraki, Akio; Gemba, Kenichi; Takigawa, Nagio; Fujiwara, Keiichi; Fujii, Masanori; Umemura, Hiroshi; Satoh, Mamoru; Tabata, Masahiro; Ueoka, Hiroshi; Kiura, Katsuyuki; Kishimoto, Takumi; Tanimoto, Mitsune

    2008-09-01

    It is well established that patients with silicosis are at high risk for lung cancer; however, it is difficult to detect lung cancer by chest radiography during follow-up treatment of patients with silicosis because of preexisting diffuse pulmonary shadows. The purpose of this study is to evaluate the usefulness of detection of serum DNA methylation for early detection of lung cancer in silicosis. Serum samples from healthy controls (n = 20) and silicosis patients with (n = 11) and without (n = 67) lung cancer were tested for aberrant hypermethylation at the promoters of the DNA repair gene O(6)-methylguanine-DNA methyltransferase (MGMT), p16(INK4a), ras association domain family 1A (RASSF1A), the apoptosis-related gene death-associated protein kinase (DAPK) and retinoic acid receptor beta (RARbeta) by methylation-specific polymerase chain reaction. Aberrant promoter methylation in at least one of five tumor suppressor genes was detected more frequently in the serum DNA of silicosis patients with lung cancer than in that of patients without it (P = 0.006). Furthermore, the odds ratio of having lung cancer was 9.77 (P = 0.009) for those silicosis patients with methylation of at least one gene. Extended exposure to silica (>30 years) was correlated with an increased methylation frequency (P = 0.017); however, methylation status did not correlate with age, smoking history or radiographic findings of silicosis. These results suggest that testing for aberrant promoter methylation of tumor suppressor genes using serum DNA may facilitate early detection of lung cancer in patients with silicosis.

  2. Dysregulation of the epigenome in triple-negative breast cancers: basal-like and claudin-low breast cancers express aberrant DNA hypermethylation.

    PubMed

    Roll, J Devon; Rivenbark, Ashley G; Sandhu, Rupninder; Parker, Joel S; Jones, Wendell D; Carey, Lisa A; Livasy, Chad A; Coleman, William B

    2013-12-01

    A subset of human breast cancer cell lines exhibits aberrant DNA hypermethylation that is characterized by hyperactivity of the DNA methyltransferase enzymes, overexpression of DNMT3b, and concurrent methylation-dependent silencing of numerous epigenetic biomarker genes. The objective of this study was to determine if this aberrant DNA hypermethylation (i) is found in primary breast cancers, (ii) is associated with specific breast cancer molecular subtypes, and (iii) influences patient outcomes. Analysis of epigenetic biomarker genes (CDH1, CEACAM6, CST6, ESR1, GNA11, MUC1, MYB, SCNN1A, and TFF3) identified a gene expression signature characterized by reduced expression levels or loss of expression among a cohort of primary breast cancers. The breast cancers that express this gene expression signature are enriched for triple-negative subtypes - basal-like and claudin-low breast cancers. Methylation analysis of primary breast cancers showed extensive promoter hypermethylation of epigenetic biomarker genes among triple-negative breast cancers, compared to other breast cancer subclasses where promoter hypermethylation events were less frequent. Furthermore, triple-negative breast cancers either did not express or expressed significantly reduced levels of protein corresponding to methylation-sensitive biomarker gene products. Together, these findings suggest strongly that loss of epigenetic biomarker gene expression is frequently associated with gene promoter hypermethylation events. We propose that aberrant DNA hypermethylation is a common characteristic of triple-negative breast cancers and may represent a fundamental biological property of basal-like and claudin-low breast cancers. Kaplan-Meier analysis of relapse-free survival revealed a survival disadvantage for patients with breast cancers that exhibit aberrant DNA hypermethylation. Identification of this distinguishing trait among triple-negative breast cancers forms the basis for development of new rational

  3. Aberrant DNA hypermethylation reduces the expression of the desmosome-related molecule periplakin in esophageal squamous cell carcinoma

    PubMed Central

    Otsubo, Takeshi; Hagiwara, Teruki; Tamura-Nakano, Miwa; Sezaki, Takuhito; Miyake, Oki; Hinohara, Chihaya; Shimizu, Toshio; Yamada, Kazuhiko; Dohi, Taeko; Kawamura, Yuki I

    2015-01-01

    Periplakin (PPL), a member of the plakin family of proteins that localizes to desmosomes and intermediate filaments, is downregulated in human esophageal squamous cell carcinoma (ESCC). Little is known, however, about the molecular mechanism underlying the regulation of PPL expression and the contribution of PPL loss to the malignant property of the cancer is unclear. We demonstrated that PPL mRNA expression was significantly reduced in ESCC tissues compared with that in normal tissues. Therefore, we hypothesized that CpG hypermethylation is the cause of the downregulation of PPL. Bisulfite-pyrosequencing of 17 cases demonstrated that the frequency of PPL methylation was higher in ESCC tissues than in normal tissues. When human ESCC cell lines were treated with 5-aza-2′-deoxycytidine (5-aza-dC), a DNA-methyltransferase inhibitor, PPL transcription was induced. Human KYSE270 ESCC cells do not stratify under ordinary culture conditions and rarely produce desmosomes; however, the forced expression of PPL promoted cell stratification. PPL induction also promoted adhesion to extracellular matrix but delayed cell migration. The abundance of desmosome-like structures was greatly increased in PPL transfectant as determined by transmission electron microscopy. Very low expression of another desmosome protein EVPL in ESCC, even in PPL transfectant, also supported the significant role of PPL in desmosome formation and cell stratification. Our results first indicate that the downregulation of PPL mediated by DNA hypermethylation, which may play an important role in the loss of ESCC stratification and likely in metastatic phenotype. PMID:25583674

  4. Aberrant CpG Islands Hypermethylation Profiles in Malignant Gliomas

    PubMed Central

    Kim, Kwang Ryeol; Kim, Ealmaan

    2014-01-01

    Background The authors analyzed whether the promoter hypermethylation of cancer-related genes was involved in the tumorigenesis of malignant gliomas. Methods A total of 29 patients received surgery and histologically confirmed to have malignant gliomas from January 2000 to December 2006. The promoter methylation status of several genes, which were reported to be frequently methylated in malignant gliomas, was investigated using methylation-specific polymerase chain reaction. Results All cases of malignant gliomas represented the promoter hypermethylation in at least 2 or more genes tested. Of 29 tumors, 28 (96.55%) showed concurrent hypermethylation of 3 or more genes. Ras association domain family member 1, epithelial cadherin, O-6 methyl guanine DNA methyltransferase, thrombospondin 1, p14 and adenomatous polyposis coli were frequently methylated in high grade gliomas including glioblastomas, anaplastic astrocytomas, and anaplastic oligodendrogliomas. Conclusion Aberrant hypermethylation profile was closely related with malignant gliomas suggesting that epigenetic change may play a role in the development of malignant gliomas. Two or three target genes may provide useful clues to the development of the useful prognostic as well as diagnostic assays for malignant gliomas. PMID:24926469

  5. The transglutaminase 2 gene is aberrantly hypermethylated in glioma

    PubMed Central

    Dyer, Lisa M.; Schooler, Kevin P.; Ai, Lingbao; Klop, Corinne; Qiu, Jingxin; Robertson, Keith D.

    2010-01-01

    Transglutaminase 2 (TG2) is a ubiquitously expressed protein that catalyzes protein/protein crosslinking. Because extracellular TG2 crosslinks components of the extracellular matrix, TG2 is thought to function as a suppressor of cellular invasion. We have recently uncovered that the TG2 gene (TGM2) is a target for epigenetic silencing in breast cancer, highlighting a molecular mechanism that drives reduced TG2 expression, and this aberrant molecular event may contribute to invasiveness in this tumor type. Because tumor invasiveness is a primary determinant of brain tumor aggressiveness, we sought to determine if TGM2 is targeted for epigenetic silencing in glioma. Analysis of TGM2 gene methylation in a panel of cultured human glioma cells indicated that the 5′ flanking region of the TGM2 gene is hypermethylated and that this feature is associated with reduced TG2 expression as judged by immunoblotting. Further, culturing glioma cells in the presence of the global DNA demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor Trichostatin A resulted in re-expression of TG2 in these lines. In primary brain tumors we observed that the TGM2 promoter is commonly hypermethylated and that this feature is a cancer-associated phenomenon. Using publically available databases, TG2 expression in gliomas was found to vary widely, with many tumors showing overexpression or underexpression of this gene. Since overexpression of TG2 leads to resistance to doxorubicin through the ectopic activation of NFκB, we sought to examine the effects of recombinant TG2 expression in glioma cells treated with commonly used brain tumor therapeutics. We observed that in addition to doxorubicin, TG2 expression drove resistance to CCNU; however, TG2 expression did not alter sensitivity to other drugs tested. Finally, a catalytically null mutant of TG2 was also able to support doxorubicin resistance in glioma cells indicating that transglutaminase activity is not necessary

  6. HOXA11 gene is hypermethylation and aberrant expression in gastric cancer

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is an acquired epigenetic alteration that serves as an alternative to genetic defects in the inactivation of tumor suppressor genes and other genes in diverse human cancers. Gastric carcinoma is one of the tumors with a high frequency of aberrant methylation in promoter region. Hence we investigated the promoter methylation status and expression level of HOXA11 gene which may involve in GC development. Methods Thirty-two surgical excised gastric cancer specimens, twelve paired adjacent non-cancerous specimens and seven normal gastric mucosas were examined. The methylation status and expression level of HOXA11 gene were determined by bisulfite sequencing polymerase chain reaction (BSP), real-time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) respectively. HOXA11 expression was knocked-down with siRNA to mimic HOXA11 gene hypermethylation and ability of cell proliferation and migration was determinate. In addition, we analyzed and correlated the findings with clinicopathological features. Results The methylation level of HOXA11 gene in gastric cancer tissues and adjacent non-cancerous tissues were higher than those in normal gastric mucosa (P < 0.05). The methylation level was higher in TNM III and IV patients of GC than those in TNM I and II patients (P < 0.05). The expression of HOXA11 mRNA and protein decreased in normal gastric mucosa, peri-cancer tissue and GC (P < 0.05). HOXA11 expression was inversely correlated with DNA methylation (P < 0.05). Knocked-down of HOXA11 expression with siRNA in BGC-823 cells enhanced cell proliferation compared with control, but no significant different was observed in migration ability. Conclusion Hypermethylation and decreased expression of HOXA11 gene may be involved in the carcinogenesis and development of GC and may provide useful information for the prediction of the malignant behaviors of GC. And the expression of HOXA11 is impaired by DNA methylation. However

  7. Tumor hypoxia causes DNA hypermethylation by reducing TET activity

    PubMed Central

    Kuchnio, Anna; Ploumakis, Athanasios; Ghesquière, Bart; Van Dyck, Laurien; Boeckx, Bram; Schoonjans, Luc; Hermans, Els; Amant, Frederic; Kristensen, Vessela N.; Peng Koh, Kian; Mazzone, Massimiliano; Coleman, Mathew; Carell, Thomas; Carmeliet, Peter; Lambrechts, Diether

    2016-01-01

    Summary Hypermethylation of tumor suppressor gene (TSG) promoters confers growth advantages to cancer cells, but how these changes arise is poorly understood. Here, we report that tumor hypoxia reduces the activity of oxygen-dependent TET enzymes, which catalyze DNA de-methylation through 5-methylcytosine oxidation. This occurs independently of hypoxia-associated alterations in TET expression, proliferation, metabolism, HIF activity or reactive oxygen, but directly depends on oxygen shortage. Hypoxia-induced loss of TET activity increases hypermethylation at gene promoters in vitro. Also in patients, TSG promoters are markedly more methylated in hypoxic tumors, independently of proliferation, stromal cell infiltration and tumor characteristics. Our data suggest cellular selection of hypermethylation events, with almost half of them being ascribable to hypoxia across tumor types. Accordingly, increased hypoxia after vessel pruning in murine breast tumors increases hypermethylation, while restored tumor oxygenation by vessel normalization abrogates this effect. Tumor hypoxia thus acts as a novel regulator underlying DNA methylation. PMID:27533040

  8. Aberrant DNA Methylation and Prostate Cancer

    PubMed Central

    Majumdar, Sunipa; Buckles, Eric; Estrada, John; Koochekpour, Shahriar

    2011-01-01

    Prostate cancer (PCa) is the most prevalent cancer, a significant contributor to morbidity and a leading cause of cancer-related death in men in Western industrialized countries. In contrast to genetic changes that vary among individual cases, somatic epigenetic alterations are early and highly consistent events. Epigenetics encompasses several different phenomena, such as DNA methylation, histone modifications, RNA interference, and genomic imprinting. Epigenetic processes regulate gene expression and can change malignancy-associated phenotypes such as growth, migration, invasion, or angiogenesis. Methylations of certain genes are associated with PCa progression. Compared to normal prostate tissues, several hypermethylated genes have also been identified in benign prostate hyperplasia, which suggests a role for aberrant methylation in this growth dysfunction. Global and gene-specific DNA methylation could be affected by environmental and dietary factors. Among other epigenetic changes, aberrant DNA methylation might have a great potential as diagnostic or prognostic marker for PCa and could be tested in tumor tissues and various body fluids (e.g., serum, urine). The DNA methylation markers are simple in nature, have high sensitivity, and could be detected either quantitatively or qualitatively. Availability of genome-wide screening methodologies also allows the identification of epigenetic signatures in high throughput population studies. Unlike irreversible genetic changes, epigenetic alterations are reversible and could be used for PCa targeted therapies. PMID:22547956

  9. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    PubMed

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding.

  10. Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics

    PubMed Central

    Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Masuda, Kenta; Kobayashi, Yusuke; Ueki, Arisa; Tsuji, Kosuke; Yamagami, Wataru; Nomura, Hiroyuki; Susumu, Nobuyuki; Aoki, Daisuke

    2012-01-01

    Endometrial cancer is the seventh most common cancer in women worldwide. Therefore elucidation of the pathogenesis and development of effective treatment for endometrial cancer are important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic variation and mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, in recent years, epigenetic mechanisms that do not involve changes in DNA sequences have been examined. Studies aimed at detection of aberrant DNA hypermethylation in cancer cells present in microscopic amounts in vivo and application of the results to cancer diagnosis have also started. Breakdown of the DNA mismatch repair mechanism is thought to play a large role in the development of endometrial cancer, with changes in the expression of the hMLH1 gene being particularly important. Silencing of genes such as APC and CHFR, Sprouty 2, RASSF1A, GPR54, CDH1, and RSK4 by DNA hypermethylation, onset of Lynch syndrome due to hereditary epimutation of hMLH1 and hMSH2 mismatch repair genes, and regulation of gene expression by microRNAs may also underlie the carcinogenic mechanisms of endometrial cancer. Further understanding of these issues may permit development of new therapies. PMID:22548175

  11. Fetal DNA hypermethylation in tight junction pathway is associated with neural tube defects: A genome-wide DNA methylation analysis.

    PubMed

    Wang, Linlin; Lin, Shanshan; Zhang, Ji; Tian, Tian; Jin, Lei; Ren, Aiguo

    2017-02-01

    Neural tube defects (NTDs) are a spectrum of severe congenital malformations of fusion failure of the neural tube during early embryogenesis. Evidence on aberrant DNA methylation in NTD development remains scarce, especially when exposure to environmental pollutant is taken into consideration. DNA methylation profiling was quantified using the Infinium HumanMethylation450 array in neural tissues from 10 NTD cases and 8 non-malformed controls (stage 1). Subsequent validation was performed using a Sequenom MassARRAY system in neural tissues from 20 NTD cases and 20 non-malformed controls (stage 2). Correlation analysis of differentially methylated CpG sites in fetal neural tissues and polycyclic aromatic hydrocarbons concentrations in fetal neural tissues and maternal serum was conducted. Differentially methylated CpG sites of neural tissues were further validated in fetal mice with NTDs induced by benzo(a)pyrene given to pregnant mice. Differentially hypermethylated CpG sites in neural tissues from 17 genes and 6 pathways were identified in stage 1. Subsequently, differentially hypermethylated CpG sites in neural tissues from 6 genes (BDKRB2, CTNNA1, CYFIP2, MMP7, MYH2, and TIAM2) were confirmed in stage 2. Correlation analysis showed that methylated CpG sites in CTNNA1 and MYH2 from NTD cases were positively correlated to polycyclic aromatic hydrocarbon level in fetal neural tissues and maternal serum. The correlation was confirmed in NTD-affected fetal mice that were exposed to benzo(a)pyrene in utero. In conclusion, hypermethylation of the CTNNA1 and MYH2 genes in tight junction pathway is associated with the risk for NTDs, and the DNA methylation aberration may be caused by exposure to benzo(a)pyrene.

  12. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers.

    PubMed

    Agirre, Xabier; Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C; Beekman, Renée; Rodríguez-Madoz, Juan R; San José-Enériz, Edurne; Fang, Fang; Gutiérrez, Norma C; García-Verdugo, José M; Robson, Michael I; Schirmer, Eric C; Guruceaga, Elisabeth; Martens, Joost H A; Gut, Marta; Calasanz, Maria J; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F San; Melnick, Ari; Stunnenberg, Hendrik G; Gut, Ivo G; Prosper, Felipe; Martín-Subero, José I

    2015-04-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.

  13. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers

    PubMed Central

    Castellano, Giancarlo; Pascual, Marien; Heath, Simon; Kulis, Marta; Segura, Victor; Bergmann, Anke; Esteve, Anna; Merkel, Angelika; Raineri, Emanuele; Agueda, Lidia; Blanc, Julie; Richardson, David; Clarke, Laura; Datta, Avik; Russiñol, Nuria; Queirós, Ana C.; Beekman, Renée; Rodríguez-Madoz, Juan R.; José-Enériz, Edurne San; Fang, Fang; Gutiérrez, Norma C.; García-Verdugo, José M.; Robson, Michael I.; Schirmer, Eric C.; Guruceaga, Elisabeth; Martens, Joost H.A.; Gut, Marta; Calasanz, Maria J.; Flicek, Paul; Siebert, Reiner; Campo, Elías; Miguel, Jesús F. San; Melnick, Ari; Stunnenberg, Hendrik G.; Gut, Ivo G.

    2015-01-01

    While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM. PMID:25644835

  14. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML. PMID:24944583

  15. Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos

    PubMed Central

    Zhang, Sheng; Chen, Xin; Wang, Fang; An, Xinglan; Tang, Bo; Zhang, Xueming; Sun, Liguang; Li, Ziyi

    2016-01-01

    DNA methylation reprogramming plays important roles in mammalian embryogenesis. Mammalian somatic cell nuclear transfer (SCNT) embryos with reprogramming defects fail to develop. Thus, we compared DNA methylation reprogramming in preimplantation embryos from bovine SCNT and in vitro fertilization (IVF) and analyzed the influence of vitamin C (VC) on the reprogramming of DNA methylation. The results showed that global DNA methylation followed a typical pattern of demethylation and remethylation in IVF preimplantation embryos; however, the global genome remained hypermethylated in SCNT preimplantation embryos. Compared with the IVF group, locus DNA methylation reprogramming showed three patterns in the SCNT group. First, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) showed insufficient demethylation and hypermethylation in the SCNT group. Second, a differentially methylated region (DMR) of an imprint control region (ICR) in H19 exhibited excessive demethylation and hypomethylation. Third, some pluripotency genes (CDX2 and SOX2) were hypomethylated in both the IVF and SCNT groups. Additionally, VC improved the DNA methylation reprogramming of satellite I, α-satellite and H19 but not that of POU5F1 and NANOG in SCNT preimplantation embryos. These results indicate that DNA methylation reprogramming was aberrant and that VC influenced DNA methylation reprogramming in SCNT embryos in a locus-specific manner. PMID:27456302

  16. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis

    PubMed Central

    Rasmussen, Kasper D.; Jia, Guangshuai; Johansen, Jens V.; Pedersen, Marianne T.; Rapin, Nicolas; Bagger, Frederik O.; Porse, Bo T.; Bernard, Olivier A.; Christensen, Jesper

    2015-01-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this specific enhancer hypermethylation phenotype in human AML patients with TET2 mutations. Analysis of immediate gene expression changes reveals rapid deregulation of a large number of genes implicated in tumorigenesis, including many down-regulated tumor suppressor genes. Hence, we propose that TET2 prevents leukemic transformation by protecting enhancers from aberrant DNA methylation and that it is the combined silencing of several tumor suppressor genes in TET2 mutated hematopoietic cells that contributes to increased stem cell proliferation and leukemogenesis. PMID:25886910

  17. Global DNA methylation and PTEN hypermethylation alterations in lung tissues from human silicosis

    PubMed Central

    Zhang, Xianan; Jia, Xiaowei; Mei, Liangying; Zheng, Min; Yu, Chen

    2016-01-01

    Background Silicosis is a respiratory disease caused by long-term silica dust exposure. Our previous study has demonstrated that silica mediates the activation of phosphatidylinositol 3-kinase (PI3K)/phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/serine or threonine kinase (AKT)/mitogen-activated protein kinases (MAPK)/AP-1 pathway in human embryo lung fibroblasts (HELFs). The purpose of this study is to identify genome-wide aberrant DNA methylation profiling in lung tissues from silicosis patients. Methods We performed Illumina Human Methylation 450K Beadchip arrays to investigate the methylation alteration in formalin-fixed, paraffin-embedded (FFPE) lung specimens, immunohistochemistry to detect the level of c-Jun and PTEN proteins; methylation specific PCR (MS-PCR) to identify PTEN and c-Jun promoter methylation in HELFs. Results We found 86,770 CpG sites and 79,660 CpG sites significantly differed in methylation status in early-stage and advanced-stage compared with GEO normal lung methylation data. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed the methylated status of MAPK signaling pathway was considered changed. The number of PTEN and c-Jun CpG promoter methylated-sites were increased in advanced-stage. Early-stage showed the positive expression of c-Jun and PTEN protein and negative or mild expression in advanced-stage. PTEN promoter was no differentially methylated and c-Jun promoter differed at 12 and 24 h in HELFs. Conclusions Abnormal DNA methylation on genome-scale was implicated in silicosis, and PTEN promoter hypermethylation might be associated with decrease of PTEN protein. PMID:27621875

  18. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  19. Compendium of aberrant DNA methylation and histone modifications in cancer.

    PubMed

    Hattori, Naoko; Ushijima, Toshikazu

    2014-12-05

    Epigenetics now refers to the study or research field related to DNA methylation and histone modifications. Historically, global DNA hypomethylation was first revealed in 1983, and, after a decade, silencing of a tumor suppressor gene by regional DNA hypermethylation was reported. After the proposal of the histone code in the 2000s, alterations of histone methylation were also identified in cancers. Now, it is established that aberrant epigenetic alterations are involved in cancer development and progression, along with mutations and chromosomal losses. Recent cancer genome analyses have revealed a large number of mutations of epigenetic modifiers, supporting their important roles in cancer pathogenesis. Taking advantage of the reversibility of epigenetic alterations, drugs targeting epigenetic regulators and readers have been developed for restoration of normal pattern of the epigenome, and some have already demonstrated clinical benefits. In addition, DNA methylation of specific marker genes can be used as a biomarker for cancer diagnosis, including risk diagnosis, detection of cancers, and pathophysiological diagnosis. In this paper, we will summarize the major concepts of cancer epigenetics, placing emphasis on history.

  20. Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture.

    PubMed

    Weidner, Carola Ingrid; Walenda, Thomas; Lin, Qiong; Wölfler, Monika Martina; Denecke, Bernd; Costa, Ivan Gesteira; Zenke, Martin; Wagner, Wolfgang

    2013-11-28

    Hematopoietic stem and progenitor cells (HPCs) can be maintained in vitro, but the vast majority of their progeny loses stemness during culture. In this study, we compared DNA-methylation (DNAm) profiles of freshly isolated and culture-expanded HPCs. Culture conditions of CD34(+) cells - either with or without mesenchymal stromal cells (MSCs) - had relatively little impact on DNAm, although proliferation is greatly increased by stromal support. However, all cultured HPCs - even those which remained CD34(+) - acquired significant DNA-hypermethylation. DNA-hypermethylation occurred particularly in up-stream promoter regions, shore-regions of CpG islands, binding sites for PU.1, HOXA5 and RUNX1, and it was reflected in differential gene expression and variant transcripts of DNMT3A. Low concentrations of DNAm inhibitors slightly increased the frequency of colony-forming unit initiating cells. Our results demonstrate that HPCs acquire DNA-hypermethylation at specific sites in the genome which is relevant for the rapid loss of stemness during in vitro manipulation.

  1. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia

    PubMed Central

    Sakaguchi, Hirotoshi; Muramatsu, Hideki; Okuno, Yusuke; Makishima, Hideki; Xu, Yinyan; Furukawa-Hibi, Yoko; Wang, Xinan; Narita, Atsushi; Yoshida, Kenichi; Shiraishi, Yuichi; Doisaki, Sayoko; Yoshida, Nao; Hama, Asahito; Takahashi, Yoshiyuki; Yamada, Kiyofumi; Miyano, Satoru; Ogawa, Seishi; Maciejewski, Jaroslaw P.; Kojima, Seiji

    2015-01-01

    Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic / myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1–2, or 3–4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1–2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3–4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3–4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options. PMID:26720758

  2. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility

    PubMed Central

    Su, Ren-Wei; Strug, Michael R.; Jeong, Jae-Wook; Miele, Lucio; Fazleabas, Asgerally T.

    2016-01-01

    In mammalian reproduction, implantation is one of the most critical events. Failure of implantation and the subsequent decidualization contribute to more than 75% of pregnancy losses in women. Our laboratory has previously reported that inhibition of Notch signaling results in impaired decidualization in both women and a transgenic mouse model. In this study, we generated a Notch gain-of-function transgenic mouse by conditionally overexpressing the Notch1 intracellular domain (N1ICD) in the reproductive tract driven by a progesterone receptor (Pgr) -Cre. We show that the overexpression of N1ICD in the uterus results in complete infertility as a consequence of multiple developmental and physiological defects, including the absence of uterine glands and dysregulation of progesterone and estrogen signaling by a Recombination Signal Binding Protein Jκ-dependent signaling mechanism. We further show that the inhibition of progesterone signaling is caused by hypermethylation of its receptor Pgr by Notch1 overexpression through the transcription factor PU.1 and DNA methyltransferase 3b (Dnmt3b). We have generated a mouse model to study the consequence of increased Notch signaling in female reproduction and provide the first evidence, to our knowledge, that Notch signaling can regulate epigenetic modification of the Pgr. PMID:26858409

  3. A Multi-Factorial Signature of DNA Sequence and Polycomb Binding Predicts Aberrant CpG Island Methylation

    PubMed Central

    McCabe, Michael T.; Lee, Eva K.; Vertino, Paula M.

    2008-01-01

    Aberrant CpG island methylation is associated with transcriptional silencing of regulatory genes in human cancer. While most CpG islands remain unmethylated, a subset accrues aberrant methylation in cancer via unknown mechanisms. Previously, we showed that CpG islands differ in their intrinsic propensity towards hypermethylation. We developed a classifier (PatMAn) based on the frequencies of seven DNA sequence patterns that discriminated methylation-prone (MP) and methylation-resistant (MR) CpG islands. Here we report on the genome-wide application and direct testing of PatMAn in cancer. Although trained on data from a cell culture model of de novo methylation involving overexpression of DNMT1, PatMAn accurately predicted CpG islands at increased risk of hypermethylation in cancer cell lines and primary tumors. Analysis of CpG islands predicted to be MP revealed a strong association with embryonic targets of Polycomb Repressive Complex 2 (PRC2), indicating that PatMAn predicts not only aberrant methylation, but also PRC2 binding. A second classifier (SUPER-PatMAn) that integrates the seven PatMAn DNA patterns with SUZ12 protein enriched regions as a marker of PRC2 occupancy showed improved performance (prediction accuracy=81-88%). In addition to many non-PRC2 targets, SUPER-PatMAn identified a subset of PRC2 targets that were more likely to be hypermethylated in cancer. Genome-wide, CpG islands predicted to be MP were enriched in genes known to undergo hypermethylation in cancer, genes functioning in transcriptional regulation, and components of developmental pathways. These findings demonstrate that hypermethylation of certain gene loci is controlled in part by an underlying susceptibility influenced by both local sequence context and trans-acting factors. PMID:19118013

  4. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  5. Genome-wide DNA methylation profiling reveals parity-associated hypermethylation of FOXA1.

    PubMed

    Ghosh, Sagar; Gu, Fei; Wang, Chou-Miin; Lin, Chun-Lin; Liu, Joseph; Wang, Howard; Ravdin, Peter; Hu, Yanfen; Huang, Tim H M; Li, Rong

    2014-10-01

    Early pregnancy in women by the age of 20 is known to have a profound effect on reduction of lifelong breast cancer risk as compared to their nulliparous counterparts. Additional pregnancies further enhance the protection against breast cancer development. Nationwide trend of delayed pregnancy may contribute to the recently reported increase in the incidence of advanced breast cancer among young women in this country. The underlying mechanism for the parity-associated reduction of breast cancer risk is not clearly understood. The purpose of the current study is to use whole-genome DNA methylation profiling to explore a potential association between parity and epigenetic changes in breast tissue from women with early parity and nulliparity. Breast tissue was collected from age-matched cancer-free women with early parity (age < 20; n = 15) or nulliparity (n = 13). The methyl-CpG binding domain-based capture-sequencing technology was used for whole-genome DNA methylation profiling. Potential parity-associated hypermethylated genes were further verified by locus-specific pyrosequencing, using an expanded cohort of parous (n = 19) and nulliparous (n = 16) women that included the initial samples used in the global analysis. Our study identified six genes that are hypermethylated in the parous group (P < 0.05). Pyrosequencing confirmed parity-associated hypermethylation at multiple CpG islands of the FOXA1 gene, which encodes a pioneer factor that facilitates chromatin binding of estrogen receptor α. Our work identifies several potential methylation biomarkers for parity-associated breast cancer risk assessment. In addition, the results are consistent with the notion that parity-associated epigenetic silencing of FOXA1 contributes to long-term attenuation of the estrogenic impact on breast cancer development.

  6. Aberrant DNA methylation in 5' regions of DNA methyltransferase genes in aborted bovine clones.

    PubMed

    Liu, Jinghe; Liang, Xingwei; Zhu, Jiaqiao; Wei, Liang; Hou, Yi; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-09-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning. It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation. DNA methylation is established and maintained by DNA methyltransferases (DNMTs), therefore, it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs. Since DNA methylation can strongly inhibit gene expression, aberrant DNA methylation of DNMT genes may disturb gene expression. But presently, it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos. In our study, we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a, Dnmt3b, Dnmt1 and Dnmt2 in four aborted bovine clones. Using bisulfite sequencing method, we found that 3 out of 4 aborted bovine clones (AF1, AF2 and AF3) showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b, indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed. However, the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF) fetuses. Besides, we found that the 5' regions of Dnmt1 and Dnmt2 were nearly completely unmethylated in all normal adults, IVF fetuses, sperm and aborted clones. Together, our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  7. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  8. Aberrant DNA methylation of acute myeloid leukemia and colorectal cancer in a Chinese pedigree with a MLL3 germline mutation.

    PubMed

    Yang, Fuhua; Gong, Qiang; Shi, Wentao; Zou, Yunding; Shi, Jingmin; Wei, Fengjiang; Li, Qingrong; Chen, Jieping; Li, Wei-Dong

    2016-09-01

    Unlike genetic aberrations, epigenetic alterations do not modify the deoxyribonucleic acid (DNA) coding sequence and can be reversed pharmacologically. Identifying a particular epigenetic alteration such as abnormal DNA methylation may provide better understanding of cancers and improve current therapy. In a Chinese pedigree with colorectal carcinoma and acute myeloid leukemia, we examined the genome-wide DNA methylation level of cases and explored the role of methylation in pathogenesis and progression. DNA methylation status in the four cases, which all harbor a MLL3 germline mutation, differed from that of the normal control, and hypermethylation was more prevalent. Also, more CpG sites were hypermethylated in the acute-phase AML patient than in the AML patient in remission. Fifty-nine hyper- or hypomethylated genes were identified as common to all four cases. Genome-wide DNA methylation analysis demonstrated that differentially methylated sites among acute myeloid leukemia and colorectal carcinoma cases and the control were in both promoters (CpG island) and gene body regions (shelf/shore areas). Hypermethylation was more prevalent in cancer cases. The study supports the suggestion that the level of DNA methylation changes in AML progression.

  9. Folate status and aberrant DNA methylation are associated with HPV infection and cervical pathogenesis.

    PubMed

    Flatley, Janet E; McNeir, Kristelle; Balasubramani, Latha; Tidy, John; Stuart, Emma L; Young, Tracey A; Powers, Hilary J

    2009-10-01

    Aberrant DNA methylation is a recognized feature of human cancers, and folate is directly involved in DNA methylation via one-carbon metabolism. Previous reports also suggest that folate status is associated with the natural history of human papillomavirus (HPV) infection. A cross-sectional study was conducted to test the hypothesis that folate status and aberrant DNA methylation show a progressive change across stages of cervical pathology from normal cells to cervical cancer. Additionally, we postulated that a gene-specific hypermethylation profile might be used as a predictive biomarker of cervical cancer risk. DNA hypermethylation of seven tumor suppressor genes, global DNA hypomethylation, systemic folate status, and HPV status were measured in 308 women with a diagnosis of normal cervix (n = 58), low-grade cervical intraepithelial neoplasia (CIN1; n = 68), high-grade cervical intraepithelial neoplasia (CIN2, n = 56; and CIN3, n = 76), or invasive cervical cancer (ICC; n = 50). Lower folate status was associated with high-risk HPV infection (P = 0.031) and with a diagnosis of cervical intraepithelial neoplasia or invasive cervical cancer (P < 0.05). Global DNA hypomethylation was greater in women with invasive cervical cancer than all other groups (P < 0.05). A cluster of three tumor suppressor genes, CDH1, DAPK, and HIC1, displayed a significantly increased frequency of promoter methylation with progressively more severe cervical neoplasia (P < 0.05). These findings are compatible with a role for folate in modulating the risk of cervical cancer, possibly through an influence over high-risk HPV infection. DAPK, CDH1, and HIC1 genes are potential biomarkers of cervical cancer risk.

  10. Lead Exposure Induces Weight Gain in Adult Rats, Accompanied by DNA Hypermethylation

    PubMed Central

    Zhao, Li; Li, Qin; Cang, Zhen; Chen, Chi; Lu, Meng; Cheng, Jing; Zhai, Hualing; Xia, Fangzhen; Ye, Lin; Lu, Yingli

    2017-01-01

    Objective Previous studies have revealed the association of lead (Pb) exposure with obesity. DNA methylation alteration has been suggested to be one of the regulatory mechanisms of obesity. We aimed to explore whether Pb exposure is related with weight gain and DNA methylation alteration. Methods Male adult 8 week Wistar rats were divided into 5 groups: the normal chow diet (NCD); the NCD+0.05%Pb; the NCD+0.15%Pb; the NCD+0.45%Pb and the high fat diet. Rats were exposed to different dosages of Pb through drinking water for 21 weeks. Body weight, fasted blood glucose level, fasted insulin level, homeostasis assessment of insulin resistance (HOMA-IR) index and lipid profile were detected. Intra-peritoneal glucose tolerance test (IPGTT) was constructed to evaluate the glucose tolerance. Lipid accumulation of liver was detected and liver DNA underwent whole genome bisulfite sequencing. Results The NCD+0.05%Pb group had significantly greater weight, HOMA-IR and triglycerides, and lower glucose intolerance than the NCD group (P <0.05). This group also showed hepatic lipid accumulation. These metabolic changes were not observed in the other two Pb dosage groups. Furthermore, DNA hypermethylation extended along pathways related to glucose and lipid metabolism in NCD+0.05%Pb group. Conclusion Pb exposure resulted in dose-specific weight gain in adult Wistar rats, accompanied by alteration of DNA methylation. PMID:28107465

  11. Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism in gastric cancer

    PubMed Central

    Song, Binbin; Ai, Jiang; Kong, Xianghong; Liu, Dexin; Li, Jun

    2013-01-01

    Objective: We aimed to explore the association of P16, MGMT and HMLH1 with gastric cancer and their relation with Methylenetetrahydrofolate reductase (MTHFR). Methods: 322 gastric patients who were confirmed with pathological diagnosis were included in our study. Aberrant DNA methylation of P16, MGMT and HMLH1 and polymorphisms of MTHFR C677T and A1298C were detected using PCR-RFLP. Results: The proportions of DNA hypermethylation in P16, MGMT and hMLH1 genes in gastric cancer tissues were 75.2% (242/322), 27.6% (89/322) and 5.3% (17/322), respectively. In the remote normal-appearing tissues, 29.5% (95/322) and 16.1%(52/322) showed hypermethylation in P16 and MGMT genes, respectively. We found a significantly higher proportion of DNA hypermethylation of P16 in patients with N1 TNM stage in cancer tissues and remote normal-appearing tissues (P<0.05). Similarly, we found DNA hypermethylation of MGMT had significantly higher proportion in N1 and M1 TNM stage (P<0.05). Individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues [OR (95% CI)=4.27(1.76-7.84)], and a significant risk was also found in those carrying MTHFR 677CT/TT genotype [OR (95% CI)= 3.27(1.21-4.77)]. Conclusion: We found the aberrant hypermethylation of cancer-related genes, such as P16, MGMT and HMLH1, could be predictive biomarkers for detection of gastric cancer. PMID:24550949

  12. Quantitative Evaluation of DNA Hypermethylation in Malignant and Benign Breast Tissue and Fluids

    PubMed Central

    Zhu, Weizhu; Qin, Wenyi; Hewett, John E.; Sauter, Edward R.

    2012-01-01

    The assessment of DNA had demonstrated altered methylation in malignant compared to benign breast tissue.The purpose of our study was to 1) confirm the predictive ability of methylation assessment in breast tissue, and 2) use the genes found to be cancer predictive in tissue to evaluate the diagnostic potential of hypermethylation assessment in nipple aspirate fluid (NAF) and mammary ductoscopic (MD) samples. Quantitative methylation specific (qMS)-PCR was conducted on three specimen sets: 44 malignant (CA) and 34 normal (NL) tissue specimens, 18 matched CA, adjacent normal (ANL) tissue and NAF specimens, and 119 MD specimens. Training and validation tissue sets were analyzed to determine the optimal group of cancer predictive genes for NAF and MD analysis. NAF and MD cytologic review were also performed. Methylation of CCND-2, p16, RAR-β and RASSF-1a was significantly more prevalent in tumor than in normal tissue specimens. Receiver operating characteristic curve analysis demonstrated an area under the curve of 0.96. For the 18 matched CA, ANL and NAF specimens, the four predictive genes identified in cancer tissue contained increased methylation in CA vs. ANL tissue; NAF samples had higher methylation than ANL specimens. Methylation frequency was higher in MD specimens from breasts with cancer than benign samples for p16 and RASSF-1a. In summary, 1) routine quantitative DNA methylation assessment in NAF and MD samples is possible, and 2) genes hypermethylated in malignant breast tissue are also altered in matched NAF and in MD samples, and may be useful to assist in early breast cancer detection. PMID:19618401

  13. Hypermethylation of the HIC1 promoter and aberrant expression of HIC1/SIRT1 contribute to the development of thyroid papillary carcinoma.

    PubMed

    Wu, Wenyi; Zhang, Liting; Lin, Jianqing; Huang, Hanwei; Shi, Bai; Lin, Xingong; Huang, Zhongxin; Wang, Chaoyang; Qiu, Jianlong; Wei, Xiaolong

    2016-12-20

    Hypermethylation leading to the loss of hypermethylated in cancer-1 (HIC1) gene expression occurs in many different types of human cancer. HIC1 is a transcriptional repressor that directly binds to the promoter region of NAD-dependent deacetylase sirtuin-1 (SIRT1). SIRT1 functions in cell growth, is anti-apoptotic, protect neurons, functions in senescence, and regulates energy restriction. Epigenetic modification and dysregulation affecting the HIC1/SIRT1 axis is potentially important for the development of malignancies. However, the importance of HIC1 expression in the development of papillary thyroid carcinoma, especially in Chinese patients, is uncertain. Therefore, we assessed the level of methylation in the HIC1 promoter and the mRNA and protein expression levels of HIC1 and SIRT1 in human thyroid papillary carcinoma and tumor adjacent control tissues. The demethylation reagent 5-aza-2'-deoxyctidine (5-aza-dc) and an HIC1 overexpression plasmid were used to manipulate the HIC1/SIRT1 pathway, and the effects on cell senescence, apoptosis, and cell cycle progression were assessed. Compared to normal thyroid tissue, thyroid tumors had lower expression of HIC1 and higher SIRT1 expression. The level of HIC1 methylation was also higher in thyroid carcinoma tissues than adjacent tissues. HIC1 expression was closely correlated with patient age and tumor progression. Restoration of HIC1 expression through an overexpression plasmid or 5-aza-dC treatment reduced SIRT1 expression and cell proliferation, and led to senescence, cell cycle arrest, and apoptosis. Aberrant expression of HIC1/SIRT1 and hypermethylation of the HIC1 promoter may be critical for the development and progression of papillary thyroid cancer.

  14. Diagnostic and prognostic utility of a DNA hypermethylated gene signature in prostate cancer.

    PubMed

    Goh, Liang Kee; Liem, Natalia; Vijayaraghavan, Aadhitthya; Chen, Gengbo; Lim, Pei Li; Tay, Kae-Jack; Chang, Michelle; Low, John Soon Wah; Joshi, Adita; Huang, Hong Hong; Kalaw, Emarene; Tan, Puay Hoon; Hsieh, Wen-Son; Yong, Wei Peng; Alumkal, Joshi; Sim, Hong Gee

    2014-01-01

    We aimed to identify a prostate cancer DNA hypermethylation microarray signature (denoted as PHYMA) that differentiates prostate cancer from benign prostate hyperplasia (BPH), high from low-grade and lethal from non-lethal cancers. This is a non-randomized retrospective study in 111 local Asian men (87 prostate cancers and 24 BPH) treated from 1995 to 2009 in our institution. Archival prostate epithelia were laser-capture microdissected and genomic DNA extracted and bisulfite-converted. Samples were profiled using Illumina GoldenGate Methylation microarray, with raw data processed by GenomeStudio. A classification model was generated using support vector machine, consisting of a 55-probe DNA methylation signature of 46 genes. The model was independently validated on an internal testing dataset which yielded cancer detection sensitivity and specificity of 95.3% and 100% respectively, with overall accuracy of 96.4%. Second validation on another independent western cohort yielded 89.8% sensitivity and 66.7% specificity, with overall accuracy of 88.7%. A PHYMA score was developed for each sample based on the state of methylation in the PHYMA signature. Increasing PHYMA score was significantly associated with higher Gleason score and Gleason primary grade. Men with higher PHYMA scores have poorer survival on univariate (p = 0.0038, HR = 3.89) and multivariate analyses when controlled for (i) clinical stage (p = 0.055, HR = 2.57), and (ii) clinical stage and Gleason score (p = 0.043, HR = 2.61). We further performed bisulfite genomic sequencing on 2 relatively unknown genes to demonstrate robustness of the assay results. PHYMA is thus a signature with high sensitivity and specificity for discriminating tumors from BPH, and has a potential role in early detection and in predicting survival.

  15. Aberrant DNA Methylation: Implications in Racial Health Disparity

    PubMed Central

    Wang, Xuefeng; Ji, Ping; Zhang, Yuanhao; LaComb, Joseph F.; Tian, Xinyu; Li, Ellen; Williams, Jennie L.

    2016-01-01

    Background Incidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans (AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations. Materials and Methods Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing were employed to evaluate total genome methylation of 5’-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit. Results DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs). Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4), and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA patients with CRC versus CA patients. Conclusion DNA methylation profile and/or products of its downstream targets could serve as biomarker(s) addressing racial health disparity. PMID:27111221

  16. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition

    PubMed Central

    Kernytsky, Andrew; Wang, Fang; Hansen, Erica; Schalm, Stefanie; Straley, Kimberly; Gliser, Camelia; Yang, Hua; Travins, Jeremy; Murray, Stuart; Dorsch, Marion; Agresta, Sam; Schenkein, David P.; Biller, Scott A.; Su, Shinsan M.; Yen, Katharine E.

    2015-01-01

    Mutations of IDH1 and IDH2, which produce the oncometabolite 2-hydroxyglutarate (2HG), have been identified in several tumors, including acute myeloid leukemia. Recent studies have shown that expression of the IDH mutant enzymes results in high levels of 2HG and a block in cellular differentiation that can be reversed with IDH mutant-specific small-molecule inhibitors. To further understand the role of IDH mutations in cancer, we conducted mechanistic studies in the TF-1 IDH2 R140Q erythroleukemia model system and found that IDH2 mutant expression caused both histone and genomic DNA methylation changes that can be reversed when IDH2 mutant activity is inhibited. Specifically, histone hypermethylation is rapidly reversed within days, whereas reversal of DNA hypermethylation proceeds in a progressive manner over the course of weeks. We identified several gene signatures implicated in tumorigenesis of leukemia and lymphoma, indicating a selective modulation of relevant cancer genes by IDH mutations. As methylation of DNA and histones is closely linked to mRNA expression and differentiation, these results indicate that IDH2 mutant inhibition may function as a cancer therapy via histone and DNA demethylation at genes involved in differentiation and tumorigenesis. PMID:25398940

  17. Association between hypermethylation of DNA repetitive elements in white blood cell DNA and pancreatic cancer.

    PubMed

    Neale, Rachel E; Clark, Paul J; Fawcett, Jonathan; Fritschi, Lin; Nagler, Belinda N; Risch, Harvey A; Walters, Rhiannon J; Crawford, William J; Webb, Penelope M; Whiteman, David C; Buchanan, Daniel D

    2014-10-01

    Pancreatic cancer is a leading cause of cancer-related deaths worldwide. Methylation of DNA may influence risk or be a marker of early disease. The aim of this study was to measure the association between methylation of three DNA repetitive elements in white blood cell (WBC) DNA and pancreatic cancer. DNA from WBCs of pancreatic cancer cases (n=559) and healthy unrelated controls (n=603) were tested for methylation of the LINE-1, Alu and Sat2 DNA repetitive elements using MethyLight quantitative PCR assays. Odds ratios (ORs) and 95% confidence intervals (95%CI) between both continuous measures of percent of methylated sample compared to a reference (PMR) or quintiles of PMR and pancreatic cancer, adjusted for age, sex, smoking, BMI, alcohol and higher education, were estimated. The PMR for each of the three markers was higher in cases than in controls, although only LINE-1 was significantly associated with pancreatic cancer (OR per log unit=1.37, 95%CI=1.16-1.63). The marker methylation score for all three markers combined was significantly associated with pancreatic cancer (p-trend=0.0006). There were no associations between measures of PMR and either presence of metastases, or timing of blood collection in relation to diagnosis, surgery, chemotherapy or death (all p>0.1). We observed an association between methylation of LINE-1 in WBC DNA and risk of pancreatic cancer. Further studies are needed to confirm this association.

  18. Association of Reduced Type IX Collagen Gene Expression in Human Osteoarthritic Chondrocytes With Epigenetic Silencing by DNA Hypermethylation

    PubMed Central

    Imagawa, Kei; de Andrés, María C; Hashimoto, Ko; Itoi, Eiji; Otero, Miguel; Roach, Helmtrud I; Goldring, Mary B; Oreffo, Richard O C

    2014-01-01

    Objective To investigate whether the changes in collagen gene expression in osteoarthritic (OA) human chondrocytes are associated with changes in the DNA methylation status in the COL2A1 enhancer and COL9A1 promoter. Methods Expression levels were determined using quantitative reverse transcription–polymerase chain reaction, and the percentage of DNA methylation was quantified by pyrosequencing. The effect of CpG methylation on COL9A1 promoter activity was determined using a CpG-free vector; cotransfections with expression vectors encoding SOX9, hypoxia-inducible factor 1α (HIF-1α), and HIF-2α were carried out to analyze COL9A1 promoter activities in response to changes in the methylation status. Chromatin immunoprecipitation assays were carried out to validate SOX9 binding to the COL9A1 promoter and the influence of DNA methylation. Results Although COL2A1 messenger RNA (mRNA) levels in OA chondrocytes were 19-fold higher than those in the controls, all of the CpG sites in the COL2A1 enhancer were totally demethylated in both samples. The levels of COL9A1 mRNA in OA chondrocytes were 6,000-fold lower than those in controls; 6 CpG sites of the COL9A1 promoter were significantly hypermethylated in OA patients as compared with controls. Treatment with 5-azadeoxycitidine enhanced COL9A1 gene expression and prevented culture-induced hypermethylation. In vitro methylation decreased COL9A1 promoter activity. Mutations in the 5 CpG sites proximal to the transcription start site decreased COL9A1 promoter activity. Cotransfection with SOX9 enhanced COL9A1 promoter activity; CpG methylation attenuated SOX9 binding to the COL9A1 promoter. Conclusion This first demonstration that hypermethylation is associated with down-regulation of COL9A1 expression in OA cartilage highlights the pivotal role of epigenetics in OA, involving not only hypomethylation, but also hypermethylation, with important therapeutic implications for OA treatment. PMID:25048791

  19. Abnormal expression of mRNA, microRNA alteration and aberrant DNA methylation patterns in rectal adenocarcinoma

    PubMed Central

    Liu, Xianglong; Yuan, Xiangfei; Qin, Hai; Zhang, Xipeng

    2017-01-01

    Aim Rectal adenocarcinoma (READ) is a malignancy cancer with the high morbidity and motility worldwide. Our study aimed to explore the potential pathogenesis of READ through integrated analysis of gene expression profiling and DNA methylation data. Methods The miRNA, mRNA expression profiling and corresponding DNA methylation data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed mRNAs/ miRNAs/methylated regions (DEmRNA/DEmiRNAs) were identified in READ. The negatively correlation of DEmiRNA-DEmRNAs and DNA methylation-DEmRNAs were obtained. DEmRNAs expression was validated through quantitative real-time polymerase chain reaction (qRT-PCR) and microarray expression profiling analyses. Results 1192 dysregulated DEmRNAs, 27 dysregulated DEmiRNAs and 6403 aberrant methylation CpG sites were screened in READ compared to normal controls. 1987 negative interaction pairs among 27 DEmiRNAs and 668 DEmRNAs were predicted. 446 genes with aberrant methylation were annotated. Eventually, 50 DEmRNAs (39 down- and 11 up-regulated DEmRNAs) with hypermethylation, synchronously negatively targeted by DEmiRNAs, were identified through the correlation analysis among 446 genes with aberrant methylation and 668 DEmRNAs. 50 DEmRNAs were significantly enriched in cAMP signaling pathway, circadian entrainment and glutamatergic synapse. The validation results of expression levels of DEmRNAs through qRT-PCR and microarray analyses were compatible with our study. Conclusion 7 genes of SORCS1, PDZRN4, LONRF2, CNGA3, HAND2, RSPO2 and GNAO1 with hypermethylation and negatively regulation by DEmiRNAs might contribute to the tumorigenesis of READ. Our work might provide valuable foundation for the READ in mechanism elucidation, early diagnosis and therapeutic target identification. PMID:28350845

  20. Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen.

    PubMed

    Lee, Jin-Young; Jeong, Wooyoung; Lim, Whasun; Lim, Chul-Hong; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W; Song, Gwonhwa

    2013-01-01

    DNA methyltransferases (DNMTs) are key regulators of DNA methylation and have crucial roles in carcinogenesis, embryogenesis and epigenetic modification. In general, DNMT1 has enzymatic activity affecting maintenance of DNA methylation, whereas DNMT3A and DNMT3B are involved in de novo methylation events. Although DNMT genes are well known in mammals including humans and mice, they are not well studied in avian species, especially the laying hen which is recognized as an excellent animal model for research on human ovarian carcinogenesis. Results of the present study demonstrated that expression of DNMT1, DNMT3A and DNMT3B genes was significantly increased, particularly in the glandular epithelia (GE) of cancerous ovaries, but not normal ovaries. Consistent with this result, immunoreactive 5-methylcytosine protein was predominantly abundant in nuclei of stromal and GE cells of cancerous ovaries, but it was also found that, to a lesser extent, in nuclei of stromal cells of normal ovaries. Methylation-specific PCR analysis detected hypermethylation of the promoter regions of the tumor suppressor genes in the initiation and development of chicken ovarian cancer. Further, several microRNAs, specifically miR-1741, miR-16c, and miR-222, and miR-1632 were discovered to influence expression of DNMT3A and DNMT3B, respectively, via their 3'-UTR which suggests post-transcriptional regulation of their expression in laying hens. Collectively, results of the present study demonstrated increased expression of DNMT genes in cancerous ovaries of laying hens and post-transcriptional regulation of those genes by specific microRNAs, as well as control of hypermethylation of the promoters of tumor suppressor genes.

  1. The green tea polyphenol EGCG alleviates maternal diabetes–induced neural tube defects by inhibiting DNA hypermethylation

    PubMed Central

    Zhong, Jianxiang; Xu, Cheng; Albert Reece, E.; Yang, Peixin

    2017-01-01

    BACKGROUND Maternal diabetes increases the risk of neural tube defects in offspring. Our previous study demonstrated that the green tea polyphenol, Epigallocatechin gallate, inhibits high glucose-induced neural tube defects in cultured embryos. However, the therapeutic effect of Epigallocatechin gallate on maternal diabetes–induced neural tube defects is still unclear. OBJECTIVE We aimed to examine whether Epigallocatechin gallate treatment can reduce maternal diabetes–induced DNA methylation and neural tube defects. STUDY DESIGN Nondiabetic and diabetic pregnant mice at embryonic day 5.5 were given drinking water with or without 1 or 10 μM Epigallocatechin gallate. At embryonic day 8.75, embryos were dissected from the visceral yolk sac for the measurement of the levels and activity of DNA methyltransferases, the levels of global DNA methylation, and methylation in the CpG islands of neural tube closure essential gene promoters. embryonic day 10.5 embryos were examined for neural tube defect incidence. RESULTS Epigallocatechin gallate treatment did not affect embryonic development because embryos from nondiabetic dams treated with Epigallocatechin gallate did not exhibit any neural tube defects. Treatment with 1 μM Epigallocatechin gallate did not reduce maternal diabetes–induced neural tube defects significantly. Embryos from diabetic dams treated with 10 μM Epigallocatechin gallate had a significantly lower neural tube defect incidence compared with that of embryos without Epigallocatechin gallate treatment. Epigallocatechin gallate reduced neural tube defect rates from 29.5% to 2%, an incidence that is comparable with that of embryos from nondiabetic dams. Ten micromoles of Epigallocatechin gallate treatment blocked maternal diabetes–increased DNA methyltransferases 3a and 3b expression and their activities, leading to the suppression of global DNA hypermethylation. Additionally, 10 μM Epigallocatechin gallate abrogated maternal diabetes

  2. Systemic Age-Associated DNA Hypermethylation of ELOVL2 Gene: In Vivo and In Vitro Evidences of a Cell Replication Process.

    PubMed

    Bacalini, Maria Giulia; Deelen, Joris; Pirazzini, Chiara; De Cecco, Marco; Giuliani, Cristina; Lanzarini, Catia; Ravaioli, Francesco; Marasco, Elena; van Heemst, Diana; Suchiman, H Eka D; Slieker, Roderick; Giampieri, Enrico; Recchioni, Rina; Mercheselli, Fiorella; Salvioli, Stefano; Vitale, Giovanni; Olivieri, Fabiola; Spijkerman, Annemieke M W; Dollé, Martijn E T; Sedivy, John M; Castellani, Gastone; Franceschi, Claudio; Slagboom, Pieternella E; Garagnani, Paolo

    2016-09-26

    Epigenetic remodeling is one of the major features of the aging process. We recently demonstrated that DNA methylation of ELOVL2 and FHL2 CpG islands is highly correlated with age in whole blood. Here we investigated several aspects of age-associated hypermethylation of ELOVL2 and FHL2 We showed that ELOVL2 methylation is significantly different in primary dermal fibroblast cultures from donors of different ages. Using epigenomic data from public resources, we demonstrated that most of the tissues show ELOVL2 and FHL2 hypermethylation with age. Interestingly, ELOVL2 hypermethylation was not found in tissues with very low replication rate. We demonstrated that ELOVL2 hypermethylation is associated with in vitro cell replication rather than with senescence. We confirmed intra-individual hypermethylation of ELOVL2 and FHL2 in longitudinally assessed participants from the Doetinchem Cohort Study. Finally we showed that, although the methylation of the two loci is not associated with longevity/mortality in the Leiden Longevity Study, ELOVL2 methylation is associated with cytomegalovirus status in nonagenarians, which could be informative of a higher number of replication events in a fraction of whole-blood cells. Collectively, these results indicate that ELOVL2 methylation is a marker of cell divisions occurring during human aging.

  3. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data.

    PubMed

    Yang, Jing; Bai, Wenlin; Niu, Piye; Tian, Lin; Gao, Ai

    2014-06-01

    Chronic occupational benzene exposure is associated with an increased risk of hematological malignancies such as aplastic anemia and leukemia. The new biomarker and action mechanisms of chronic benzene poisoning are still required to be explored. Aberrant DNA methylation, which may lead to genomic instability and the altered gene expression, is frequently observed in hematological cancers. To gain an insight into the new biomarkers and molecular mechanisms of chronic benzene poisoning, DNA methylation profiles and mRNA expression pattern from the peripheral blood mononuclear cells of four chronic benzene poisoning patients and four health controls that matched age and gender without benzene exposure were performed using the high resolution Infinium 450K methylation array and Gene Chip Human Gene 2.0ST Arrays, respectively. By integrating DNA methylation and mRNA expression data, we identified 3 hypermethylated genes showing concurrent down-regulation (PRKG1, PARD3, EPHA8) and 2 hypomethylated genes showing increased expression (STAT3, IFNGR1). Signal net analysis of differential methylation genes associated with chronic benzene poisoning showed that two key hypomethylated STAT3 and hypermethylated GNAI1 were identified. Further GO analysis and pathway analysis indicated that hypomethylated STAT3 played central roles through regulation of transcription, DNA-dependent, positive regulation of transcription from RNA polymerase II promoter, JAK-STAT cascade and adipocytokine signaling pathway, Acute myeloid leukemia, and JAK-STAT signaling pathway. In conclusion, the aberrant hypomethylated STAT3 might be a potential biomarker of chronic benzene poisoning.

  4. Transcription factor LSF-DNMT1 complex dissociation by FQI1 leads to aberrant DNA methylation and gene expression

    PubMed Central

    Chin, Hang Gyeong; Ponnaluri, V.K. Chaithanya; Zhang, Guoqiang; Estève, Pierre-Olivier; Schaus, Scott E.; Hansen, Ulla; Pradhan, Sriharsa

    2016-01-01

    The transcription factor LSF is highly expressed in hepatocellular carcinoma (HCC) and promotes oncogenesis. Factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity and exerts anti-proliferative activity. Here, we show that LSF binds directly to the maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1) and its accessory protein UHRF1 both in vivo and in vitro. Binding of LSF to DNMT1 stimulated DNMT1 activity and FQI1 negated the methyltransferase activation. Addition of FQI1 to the cell culture disrupted LSF bound DNMT1 and UHRF1 complexes, resulting in global aberrant CpG methylation. Differentially methylated regions (DMR) containing at least 3 CpGs, were significantly altered by FQI1 compared to control cells. The DMRs were mostly concentrated in CpG islands, proximal to transcription start sites, and in introns and known genes. These DMRs represented both hypo and hypermethylation, correlating with altered gene expression. FQI1 treatment elicits a cascade of effects promoting altered cell cycle progression. These findings demonstrate a novel mechanism of FQI1 mediated alteration of the epigenome by DNMT1-LSF complex disruption, leading to aberrant DNA methylation and gene expression. PMID:27845898

  5. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis.

    PubMed

    Yin, Shasha; Zhang, Qin; Yang, Jun; Lin, Wenjun; Li, Yanning; Chen, Fang; Cao, Wangsen

    2017-03-07

    Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD) and its development and progression are significantly affected by epigenetic modifications such as aberrant miRNA and DNA methylation. Klotho is an anti-aging and anti-fibrotic protein and its early decline after renal injury is reportedly associated with aberrant DNA methylation. However, the key upstream pathological mediators and the molecular cascade leading to epigenetic Klotho suppression are not appreciably established. Here we investigate the epigenetic mechanism of Klotho deficiency and its functional relevance in renal fibrogenesis. Fibrotic kidneys induced by unilateral ureteral occlusion (UUO) displayed marked Klotho suppresison and the promoter hypermethylation. These abnormalities were likely due to elevated transforming growth factor-beta (TGFβ) since TGFβ alone caused the same epigenetic aberrations in cultured renal cells and TGFβ blockade prevented the alterations in UUO kidney. Further investigation revealed that TGFβ enhanced DNA methyltransferase (DNMT) 1 and DNMT3a via inhibiting miR-152 and miR-30a in both renal cells and fibrotic kidneys. Accordingly the blockade of either TGFβ signaling or DNMT1/3a activities significantly recovered Klotho loss and attenuated pro-fibrotic protein expression and renal fibrosis. Moreover, Klotho knockdown by RNA interferences abolished the anti-fibrotic effects of DNMT inhibition in both TGFβ-treated renal cell and UUO kidney, indicating that TGFβ-mediated miR-152/30a inhibitions, DNMT1/3a aberrations and subsequent Klotho loss constituted a critical regulatory loop that eliminate Klotho's anti-fibrotic activities and potentiate renal fibrogenesis. Thus, our results elaborate a novel epigenetic cascade of renal fibrogenesis and reveal the potential therapeutic targets for treating the renal fibrosis-associated kideny diseases.

  6. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation.

    PubMed

    Blum, Kristie A; Liu, Zhongfa; Lucas, David M; Chen, Ping; Xie, Zhiliang; Baiocchi, Robert; Benson, Donald M; Devine, Steven M; Jones, Jeffrey; Andritsos, Leslie; Flynn, Joseph; Plass, Christoph; Marcucci, Guido; Chan, Kenneth K; Grever, Michael R; Byrd, John C

    2010-07-01

    Targeting aberrant DNA hypermethylation in chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma (NHL) with decitabine may reverse epigenetic silencing in B-cell malignancies. Twenty patients were enrolled in two phase I trials to determine the minimum effective pharmacological dose of decitabine in patients with relapsed/refractory CLL (n = 16) and NHL (n = 4). Patients received 1-3 cycles of decitabine. Dose-limiting toxicity (DLT) was observed in 2 of 4 CLL and 2 of 2 NHL patients receiving decitabine at 15 mg/m(2) per d days 1-10, consisting of grade 3-4 thrombocytopenia and hyperbilirubinaemia. Six patients with CLL received decitabine at 10 mg/m(2) per d days 1-10 without DLT; however, re-expression of methylated genes or changes in global DNA methylation were not observed. Therefore, a 5-day decitabine schedule was examined. With 15 mg/m(2) per d decitabine days 1-5, DLT occurred in 2 of 6 CLL and 2 of 2 NHL patients, consisting of grade 3-4 neutropenia, thrombocytopenia, and febrile neutropenia. Eight patients had stable disease. In 17 patients, there were no significant changes in genome-wide methylation or in target gene re-expression. In conclusion, dose-limiting myelosuppression and infectious complications prevented dose escalation of decitabine to levels associated with changes in global methylation or gene re-expression in CLL and NHL.

  7. Homocysteine Triggers Inflammatory Responses in Macrophages through Inhibiting CSE-H2S Signaling via DNA Hypermethylation of CSE Promoter

    PubMed Central

    Li, Jiao-Jiao; Li, Qian; Du, Hua-Ping; Wang, Ya-Li; You, Shou-Jiang; Wang, Fen; Xu, Xing-Shun; Cheng, Jian; Cao, Yong-Jun; Liu, Chun-Feng; Hu, Li-Fang

    2015-01-01

    Hyperhomocysteinemia (HHcy) is an independent risk factor of atherosclerosis and other cardiovascular diseases. Unfortunately, Hcy-lowering strategies were found to have limited effects in reducing cardiovascular events. The underlying mechanisms remain unclear. Increasing evidence reveals a role of inflammation in the pathogenesis of HHcy. Homocysteine (Hcy) is a precursor of hydrogen sulfide (H2S), which is formed via the transsulfuration pathway catalyzed by cystathionine β-synthase and cystathionine γ-lyase (CSE) and serves as a novel modulator of inflammation. In the present study, we showed that methionine supplementation induced mild HHcy in mice, associated with the elevations of TNF-α and IL-1β in the plasma and reductions of plasma H2S level and CSE expression in the peritoneal macrophages. H2S-releasing compound GYY4137 attenuated the increases of TNF-α and IL-1β in the plasma of HHcy mice and Hcy-treated raw264.7 cells while CSE inhibitor PAG exacerbated it. Moreover, the in vitro study showed that Hcy inhibited CSE expression and H2S production in macrophages, accompanied by the increases of DNA methyltransferase (DNMT) expression and DNA hypermethylation in cse promoter region. DNMT inhibition or knockdown reversed the decrease of CSE transcription induced by Hcy in macrophages. In sum, our findings demonstrate that Hcy may trigger inflammation through inhibiting CSE-H2S signaling, associated with increased promoter DNA methylation and transcriptional repression of cse in macrophages. PMID:26047341

  8. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-02

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.

  9. Measurement of DNA Length Changes Upon CpG Hypermethylation by Microfluidic Molecular Stretching

    PubMed Central

    Onoshima, Daisuke; Kawakita, Naoko; Takeshita, Daiki; Niioka, Hirohiko; Yukawa, Hiroshi; Miyake, Jun; Baba, Yoshinobu

    2017-01-01

    Abnormal DNA methylation in CpG-rich promoters is recognized as a distinct molecular feature of precursor lesions to cancer. Such unintended methylation can occur during in vitro differentiation of stem cells. It takes place in a subset of genes during the differentiation or expansion of stem cell derivatives under general culture conditions, which may need to be monitored in future cell transplantation studies. Here we demonstrate a microfluidic device for investigating morphological length changes in DNA methylation. Arrayed polymer chains of single DNA molecules were fluorescently observed by parallel trapping and stretching in the microfluidic channel. This observational study revealed that the shortened DNA length is due to the increased rigidity of the methylated DNA molecule. The trapping rate of the device for DNA molecules was substantially unaffected by changes in the CpG methylation. PMID:28293464

  10. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries

    PubMed Central

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-01

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts. PMID:26758245

  11. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries.

    PubMed

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-13

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts.

  12. Aberrant DNA methylation imprints in aborted bovine clones.

    PubMed

    Liu, Jing-He; Yin, Shen; Xiong, Bo; Hou, Yi; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-04-01

    Genomic imprinting plays a very important role during development and its abnormality may heavily undermine the developmental potential of bovine embryos. Because of limited resources of the cow genome, bovine genomic imprinting, both in normal development and in somatic cell nuclear transfer (SCNT) cloning, is not well documented. DNA methylation is thought to be a major factor for the establishment of genomic imprinting. In our study, we determined the methylation status of differential methylated regions (DMRs) of four imprinted genes in four spontaneously aborted SCNT-cloned fetuses (AF). Firstly, abnormal methylation imprints were observed in each individual to different extents. In particular, Peg3 and MAOA were either seriously demethylated or showed aberrant methylation patterns in four aborted clones we tested, but Xist and Peg10 exhibited relatively better maintained methylation status in AF1 and AF4. Secondly, two aborted fetuses, AF2 and AF3 exhibited severe aberrant methylation imprints of four imprinted genes. Finally, MAOA showed strong heterogeneous methylation patterns of its DMR in normal somatic adult tissue, but largely variable methylation levels and relatively homogeneous methylation patterns in aborted cloned fetuses. Our data indicate that the aborted cloned fetuses exhibited abnormal methylation imprints, to different extent, in aborted clones, which partially account for the higher abortion and developmental abnormalities during bovine cloning.

  13. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    SciTech Connect

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  14. Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway.

    PubMed

    Maeda, Masahiro; Moro, Hiroshi; Ushijima, Toshikazu

    2017-03-01

    Multiple pathogenic mechanisms by which Helicobacter pylori infection induces gastric cancer have been established in the last two decades. In particular, aberrant DNA methylation is induced in multiple driver genes, which inactivates them. Methylation profiles in gastric cancer are associated with specific subtypes, such as microsatellite instability. Recent comprehensive and integrated analyses showed that many cancer-related pathways are more frequently altered by aberrant DNA methylation than by mutations. Aberrant DNA methylation can even be present in noncancerous gastric mucosae, producing an "epigenetic field for cancerization." Mechanistically, H. pylori-induced chronic inflammation, but not H. pylori itself, plays a direct role in the induction of aberrant DNA methylation. The expression of three inflammation-related genes, Il1b, Nos2, and Tnf, is highly associated with the induction of aberrant DNA methylation. Importantly, the degree of accumulated aberrant DNA methylation is strongly correlated with gastric cancer risk. A recent multicenter prospective cohort study demonstrated the utility of epigenetic cancer risk diagnosis for metachronous gastric cancer. Suppression of aberrant DNA methylation by a demethylating agent was shown to inhibit gastric cancer development in an animal model. Induction of aberrant DNA methylation is the major pathway by which H. pylori infection induces gastric cancer, and this can be utilized for translational opportunities.

  15. Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells

    SciTech Connect

    Fujishiro, Hitomi; Okugaki, Satomi; Yasumitsu, Saori; Enomoto, Shuichi; Himeno, Seiichiro

    2009-12-01

    The Zrt/Irt-related protein 8 (ZIP8) encoded by slc39a8 is now emerging as an important zinc transporter involved in cellular cadmium incorporation. We have previously shown that mRNA and protein levels of ZIP8 were decreased in cadmium-resistant metallothionein-null (A7) cells, leading to a decrease in cadmium accumulation. However, the mechanism by which ZIP8 expression is suppressed in these cells remains to be elucidated. In the present study, we investigated the possibility that epigenetic silencing of the slc39a8 gene by DNA hypermethylation is involved in the down-regulation of ZIP8 expression. A7 cells showed a higher mRNA level of DNA methyltransferase 3b than parental cells. Hypermethylation of the CpG island of the slc39a8 gene was detected in A7 cells. Treatment of A7 cells with 5-aza-deoxycytidine, an inhibitor of DNA methyltransferase, caused demethylation of the CpG island of the slc39a8 gene and enhancement of mRNA and protein levels of ZIP8. In response to the recovery of ZIP8 expression, A7 cells treated with 5-aza-deoxycytidine showed an increase in cadmium accumulation and consequently an increase in sensitivity to cadmium. These results suggest that epigenetic silencing of the slc39a8 gene by DNA hypermethylation plays an important role in the down-regulation of ZIP8 in cadmium-resistant metallothionein-null cells.

  16. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  17. Bivalent histone modifications in stem cells poise miRNA loci for CpG island hypermethylation in human cancer.

    PubMed

    Iliou, Maria S; Lujambio, Amaia; Portela, Anna; Brüstle, Oliver; Koch, Philipp; Andersson-Vincent, Per Henrik; Sundström, Erik; Hovatta, Outi; Esteller, Manel

    2011-11-01

    It has been proposed that the existence of stem cell epigenetic patterns confer a greater likelihood of CpG island hypermethylation on tumor suppressor-coding genes in cancer. The suggested mechanism is based on the Polycomb-mediated methylation of K27 of histone H3 and the recruitment of DNA methyltransferases on the promoters of tumor suppressor genes in cancer cells, when those genes are preferentially pre-marked in embryonic stem cells (ESCs) with bivalent chromatin domains. On the other hand, miRNAs appear to be dysregulated in cancer, with many studies reporting silencing of miRNA genes due to aberrant hypermethylation of their promoter regions. We wondered whether a pre-existing histone modification profile in stem cells might also contribute to the DNA methylation-associated silencing of miRNA genes in cancer. To address this, we examined a group of tumor suppressor miRNA genes previously reported to become hypermethylated and inactivated specifically in cancer cells. We analyzed the epigenetic events that take place along their promoters in human embryonic stem cells and in transformed cells. Our results suggest that there is a positive correlation between the existence of bivalent chromatin domains on miRNA promoters in ESCs and the hypermethylation of those genes in cancer, leading us to conclude that this epigenetic mark could be a mechanism that prepares miRNA promoters for further DNA hypermethylation in human tumors.

  18. Disruption of Maternal DNA Repair Increases Sperm-DerivedChromosomal Aberrations

    SciTech Connect

    Marchetti, Francesco; Essers, Jeroun; Kanaar, Roland; Wyrobek,Andrew J.

    2007-02-07

    The final weeks of male germ cell differentiation occur in aDNA repair-deficient environment and normal development depends on theability of the egg to repair DNA damage in the fertilizing sperm. Geneticdisruption of maternal DNA double-strand break repair pathways in micesignificantly increased the frequency of zygotes with chromosomalstructural aberrations after paternal exposure to ionizing radiation.These findings demonstrate that radiation-induced DNA sperm lesions arerepaired after fertilization by maternal factors and suggest that geneticvariation in maternal DNA repair can modulate the risk of early pregnancylosses and of children with chromosomal aberrations of paternalorigin.

  19. Aberrant DNA methylation occurs in colon neoplasms arising in the azoxymethane colon cancer model

    PubMed Central

    Borinstein, Scott C.; Conerly, Melissa; Dzieciatkowski, Slavomir; Biswas, Swati; Washington, M. Kay; Trobridge, Patty; Henikoff, Steve; Grady, William M.

    2010-01-01

    Mouse models of intestinal tumors have advanced our understanding of the role of gene mutations in colorectal malignancy. However, the utility of these systems for studying the role of epigenetic alterations in intestinal neoplasms remains to be defined. Consequently, we assessed the role of aberrant DNA methylation in the azoxymethane (AOM) rodent model of colon cancer. AOM induced tumors display global DNA hypomethylation, which is similar to human colorectal cancer. We next assessed the methylation status of a panel of candidate genes previously shown to be aberrantly methylated in human cancer or in mouse models of malignant neoplasms. This analysis revealed different patterns of DNA methylation that were gene specific. Zik1 and Gja9 demonstrated cancer-specific aberrant DNA methylation, whereas, Cdkn2a/p16, Igfbp3, Mgmt, Id4, and Cxcr4 were methylated in both the AOM tumors and normal colon mucosa. No aberrant methylation of Dapk1 or Mlt1 was detected in the neoplasms, but normal colon mucosa samples displayed methylation of these genes. Finally, p19Arf, Tslc1, Hltf, and Mlh1 were unmethylated in both the AOM tumors and normal colon mucosa. Thus, aberrant DNA methylation does occur in AOM tumors, although the frequency of aberrantly methylated genes appears to be less common than in human colorectal cancer. Additional studies are necessary to further characterize the patterns of aberrantly methylated genes in AOM tumors. PMID:19777566

  20. C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD.

    PubMed

    Liu, Elaine Y; Russ, Jenny; Wu, Kathryn; Neal, Donald; Suh, Eunran; McNally, Anna G; Irwin, David J; Van Deerlin, Vivianna M; Lee, Edward B

    2014-10-01

    Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hypermethylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.

  1. A nuclear-replicating viroid antagonizes infectivity and accumulation of a geminivirus by upregulating methylation-related genes and inducing hypermethylation of viral DNA

    PubMed Central

    Torchetti, Enza Maria; Pegoraro, Mattia; Navarro, Beatriz; Catoni, Marco; Di Serio, Francesco; Noris, Emanuela

    2016-01-01

    DNA methylation and post-transcriptional gene silencing play critical roles in controlling infection of single-stranded (ss) DNA geminiviruses and ssRNA viroids, respectively, but both pathogens can counteract these host defense mechanisms and promote their infectivity. Moreover, a specific role of DNA methylation in viroid-host interactions is not yet confirmed. Here, using an experimental system where two nuclear-replicating agents, the geminivirus tomato yellow leaf curl Sardinia virus (TYLCSV) and potato spindle tuber viroid (PSTVd), co-infect their common host tomato, we observed that PSTVd severely interferes with TYLCSV infectivity and accumulation, most likely as a consequence of strong activation of host DNA methylation pathways. In fact, PSTVd alone or in co-infection with TYLCSV significantly upregulates the expression of key genes governing DNA methylation in plants. Using methylation-sensitive restriction and bisulfite conversion assays, we further showed that PSTVd infection promotes a strong hypermethylation of TYLCSV DNA, thus supporting a mechanistic link with the antagonism of the viroid on the virus in co-infected tomato plants. These results describe the interaction between two nuclear-replicating pathogens and show that they differentially interfere with DNA methylation pathways. PMID:27739453

  2. Promoter Hypermethylation in Prostate Cancer

    PubMed Central

    Park, Jong Y.

    2011-01-01

    Background The prostate gland is the most common site of cancer and the second leading cause of cancer mortality in American men. It is well known that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. Methods This review discusses current information on methylated genes associated with prostate cancer development and progression. Results Over 30 genes have been investigated for promoter methylation in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is reviewed. Conclusions These findings may provide new information of the pathogenesis of prostate cancer. Certain epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use. PMID:20861812

  3. Quantification of extracellular DNA using hypermethylated RASSF1A, SRY, and GLO sequences--evaluation of diagnostic possibilities for predicting placental insufficiency.

    PubMed

    Hromadnikova, Ilona; Zejskova, Lenka; Kotlabova, Katerina; Jancuskova, Tereza; Doucha, Jindrich; Dlouha, Klara; Krofta, Ladislav; Jirasek, Jan E; Vlk, Radovan

    2010-06-01

    This study evaluated quantification of fetal extracellular DNA in maternal plasma for differentiation between cases at risk of onset of placental-insufficiency-related complications and normal pregnancies. Using real-time polymerase chain reaction, fetal (sex-determining region Y [SRY] and hypermethylated RASSF1A sequence) and total (beta-globin [GLO] gene) extracellular DNA was examined in 70 normal pregnancies, 18 at risk of placental-insufficiency-related pregnancy complications, 24 preeclampsia with or without (w or w/o) intrauterine growth retardation (IUGR) (median 34.0 week), and 11 IUGR (median 28.5 week). IUGR was diagnosed when estimated fetal weight was below the 10th percentile for evaluated gestational age. Although increased levels of extracellular DNA were detected in pregnancies with preeclampsia w or w/o IUGR relative to controls (RASSF1A, p < 0.001; SRY, p = 0.009; GLO, p < 0.001), quantities of fetal extracellular DNA in IUGR were not statistically significant (RASSF1A, p = 0.21; SRY, p = 0.2). RASSF1A, SRY, and GLO achieved 93.1%, 93.6%, and 92.1% accuracy for differentiation between normal pregnancy and preeclampsia w or w/o IUGR. Lower sensitivity was observed for pregnancies with onset of IUGR (RASSF1A, 60.0%; SRY, 80.0%; GLO, 72.7%), but did not influence final accuracy (RASSF1A, 91.6%; SRY, 92.5%; GLO, 89.5%). Among 18 patients at risk, 8 pregnancies involving 3 female and 5 male fetuses developed preeclampsia (n = 4), IUGR (n = 3), and chronic placentopathy causing hypoxia (n = 1). Elevation of extracellular DNA was demonstrated in 3/5 (SRY), 1/8 (hypermethylated RASSF1A), and 4/8 (GLO) patients at the earliest 26 weeks and at the latest 2 weeks before the onset of symptoms. These data indicate that fetal and total extracellular DNA concentrations can be significantly elevated in plasma of patients who later developed placental-insufficiency-related pregnancy complications. However, this is strongly individualized, and not a rule for all

  4. Role of DNA polymerase. cap alpha. in chromosomal aberration production by ionizing radiation

    SciTech Connect

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase ..cap alpha.., apparently by binding to and inactivating the DNA-polymerase ..cap alpha.. complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G/sub 2/ phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G/sub 2/ phase as feasible. Because DNA polymerase ..cap alpha.. is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  5. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing.

    PubMed

    Chan, Rebecca W Y; Jiang, Peiyong; Peng, Xianlu; Tam, Lai-Shan; Liao, Gary J W; Li, Edmund K M; Wong, Priscilla C H; Sun, Hao; Chan, K C Allen; Chiu, Rossa W K; Lo, Y M Dennis

    2014-12-09

    We performed a high-resolution analysis of the biological characteristics of plasma DNA in systemic lupus erythematosus (SLE) patients using massively parallel genomic and methylomic sequencing. A number of plasma DNA abnormalities were found. First, aberrations in measured genomic representations (MGRs) were identified in the plasma DNA of SLE patients. The extent of the aberrations in MGRs correlated with anti-double-stranded DNA (anti-dsDNA) antibody level. Second, the plasma DNA of active SLE patients exhibited skewed molecular size-distribution profiles with a significantly increased proportion of short DNA fragments. The extent of plasma DNA shortening in SLE patients correlated with the SLE disease activity index (SLEDAI) and anti-dsDNA antibody level. Third, the plasma DNA of active SLE patients showed decreased methylation densities. The extent of hypomethylation correlated with SLEDAI and anti-dsDNA antibody level. To explore the impact of anti-dsDNA antibody on plasma DNA in SLE, a column-based protein G capture approach was used to fractionate the IgG-bound and non-IgG-bound DNA in plasma. Compared with healthy individuals, SLE patients had higher concentrations of IgG-bound DNA in plasma. More IgG binding occurs at genomic locations showing increased MGRs. Furthermore, the IgG-bound plasma DNA was shorter in size and more hypomethylated than the non-IgG-bound plasma DNA. These observations have enhanced our understanding of the spectrum of plasma DNA aberrations in SLE and may provide new molecular markers for SLE. Our results also suggest that caution should be exercised when interpreting plasma DNA-based noninvasive prenatal testing and cancer testing conducted for SLE patients.

  6. Altered regulation of DNA ligase IV activity by aberrant promoter DNA methylation and gene amplification in colorectal cancer.

    PubMed

    Kuhmann, Christine; Li, Carmen; Kloor, Matthias; Salou, Mariam; Weigel, Christoph; Schmidt, Christopher R; Ng, Linda W C; Tsui, Wendy W Y; Leung, Suet Y; Yuen, Siu T; Becker, Natalia; Weichenhan, Dieter; Plass, Christoph; Schmezer, Peter; Chan, Tsun L; Popanda, Odilia

    2014-04-15

    Colorectal cancer (CRC) presents as a very heterogeneous disease which cannot sufficiently be characterized with the currently known genetic and epigenetic markers. To identify new markers for CRC we scrutinized the methylation status of 231 DNA repair-related genes by methyl-CpG immunoprecipitation followed by global methylation profiling on a CpG island microarray, as altered expression of these genes could drive genomic and chromosomal instability observed in these tumors. We show for the first time hypermethylation of MMP9, DNMT3A and LIG4 in CRC which was confirmed in two CRC patient groups with different ethnicity. DNA ligase IV (LIG4) showed strong differential promoter methylation (up to 60%) which coincided with downregulation of mRNA in 51% of cases. This functional association of LIG4 methylation and gene expression was supported by LIG4 re-expression in 5-aza-2'-deoxycytidine-treated colon cancer cell lines, and reduced ligase IV amounts and end-joining activity in extracts of tumors with hypermethylation. Methylation of LIG4 was not associated with other genetic and epigenetic markers of CRC in our study. As LIG4 is located on chromosome 13 which is frequently amplified in CRC, two loci were tested for gene amplification in a subset of 47 cases. Comparison of amplification, methylation and expression data revealed that, in 30% of samples, the LIG4 gene was amplified and methylated, but expression was not changed. In conclusion, hypermethylation of the LIG4 promoter is a new mechanism to control ligase IV expression. It may represent a new epigenetic marker for CRC independent of known markers.

  7. HBD-2 is downregulated in oral carcinoma cells by DNA hypermethylation, and increased expression of hBD-2 by DNA demethylation and gene transfection inhibits cell proliferation and invasion.

    PubMed

    Kamino, Yoshitaka; Kurashige, Yoshihito; Uehara, Osamu; Sato, Jun; Nishimura, Michiko; Yoshida, Koki; Arakawa, Toshiya; Nagayasu, Hiroki; Saitoh, Masato; Abiko, Yoshihiro

    2014-08-01

    Human β-defensin-2 (hBD-2) is a type of epithelial antimicrobial peptide. The expression level of hBD-2 mRNA is lower in oral carcinoma cells (OCCs) than in healthy oral epithelium. Yet, it is still unknown how hBD-2 expression is downregulated in OCCs. The present study investigated DNA hypermethylation of hBD-2 in OCCs and the effect of the demethylation and increased expression of hBD-2 on cell proliferation and invasion. Six different types of oral carcinoma cell lines (OSC-19, BSC-OF, SAS, HSC-2, HSC-4 and HSY) and normal oral keratinocytes (NOKs) were used. The expression levels of hBD-2 in all OCCs were significantly lower than that in the NOKs. Treatment with DNA methyltransferase inhibitor, 5-aza-dC, at the concentration of 50 µM significantly induced upregulation of expression of hBD-2 in the OCCs. Using methylation-specific PCR, DNA hypermethylation was observed in all OCCs. These results suggest that DNA hypermethylation is, at least in part, involved in the decreased expression of hBD-2 in OCCs. We examined the effect of 5-aza-dC on the cell proliferation and invasive ability of OCCs. The cell invasion assays showed that the number of OCCs treated with 5-aza-dC on the filters was significantly lower than that of the controls. We examined whether increased expression of hBD-2 generated by gene transfection inhibited the proliferation and invasion of SAS cells. The number of SAS cells exhibiting increased expression of hBD-2 on the filters in the invasion assay were significantly lower on day 7 when compared with the control. hBD-2 may function as a tumor suppressor. Increased expression of hBD-2 induced by demethylation or increased expression generated by gene transfection may be useful therapeutic methods for oral carcinoma.

  8. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location

    PubMed Central

    Yauk, Carole; Polyzos, Aris; Rowan-Carroll, Andrea; Somers, Christopher M.; Godschalk, Roger W.; Van Schooten, Frederik J.; Berndt, M. Lynn; Pogribny, Igor P.; Koturbash, Igor; Williams, Andrew; Douglas, George R.; Kovalchuk, Olga

    2008-01-01

    Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation. PMID:18195365

  9. DNA hypermethylation of acetoacetyl-CoA synthetase contributes to inhibited cholesterol supply and steroidogenesis in fetal rat adrenals under prenatal nicotine exposure.

    PubMed

    Wu, Dong-Mei; He, Zheng; Chen, Ting; Liu, Yang; Ma, Liang-Peng; Ping, Jie

    2016-01-18

    Prenatal nicotine exposure is a risk factor for intrauterine growth retardation (IUGR). Steroid hormones synthesized from cholesterol in the fetal adrenal play an important role in the fetal development. The aim of this study is to investigate the effects of prenatal nicotine exposure on steroidogenesis in fetal rat adrenals from the perspective of cholesterol supply and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were administered 1.0mg/kg nicotine subcutaneously twice a day from gestational day (GD) 7 to GD17. The results showed that prenatal nicotine exposure increased IUGR rates. Histological changes, decreased steroid hormone concentrations and decreased cholesterol supply were observed in nicotine-treated fetal adrenals. In the gene expression array, the expression of genes regulating ketone metabolic process decreased in nicotine-treated fetal adrenals. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that acetoacetyl-CoA synthetase (AACS), the enzyme utilizing ketones for cholesterol supply, may play an important role in nicotine-induced cholesterol supply deficiency. Moreover, the decreased expression of AACS and increased DNA methylation in the proximal promoter of AACS in the fetal adrenal was verified by real-time reverse-transcription PCR (RT-PCR) and bisulfite sequencing PCR (BSP), respectively. In conclusion, prenatal nicotine exposure can cause DNA hypermethylation of the AACS promoter in the rat fetal adrenal. These changes may result in decreased AACS expression and cholesterol supply, which inhibits steroidogenesis in the fetal adrenal.

  10. Global methylation status of sperm DNA in carriers of chromosome structural aberrations

    PubMed Central

    Olszewska, Marta; Barciszewska, Miroslawa Z; Fraczek, Monika; Huleyuk, Nataliya; Chernykh, Vyacheslav B; Zastavna, Danuta; Barciszewski, Jan; Kurpisz, Maciej

    2017-01-01

    Male infertility might be clearly associated with aberrant DNA methylation patterns in human spermatozoa. An association between oxidative stress and the global methylation status of the sperm genome has also been suggested. The aim of the present study was to determine whether the global sperm DNA methylation status was affected in the spermatozoa of carriers of chromosome structural aberrations. The relationships between the 5-methylcytosine (m5C) levels in spermatozoa and chromatin integrity status were evaluated. The study patients comprised male carriers of chromosome structural aberrations with reproductive failure (n = 24), and the controls comprised normozoospermic sperm volunteers (n = 23). The global m5C level was measured using thin-layer chromatography (TLC) and immunofluorescence (IF) techniques. The sperm chromatin integrity was assessed using aniline blue (AB) staining and TUNEL assay. The mean m5C levels were similar between the investigated chromosome structural aberrations carriers (P) and controls (K). However, sperm chromatin integrity tests revealed significantly higher values in chromosomal rearrangement carriers than in controls (P < 0.05). Although the potential relationship between sperm chromatin integrity status and sperm DNA fragmentation and the m5C level juxtaposed in both analyzed groups (P vs K) was represented in a clearly opposite manner, the low chromatin integrity might be associated with the high hypomethylation status of the sperm DNA observed in carriers of chromosome structural aberrations. PMID:26908061

  11. Aberrant DNA methylation of cancer-related genes in giant breast fibroadenoma: a case report

    PubMed Central

    2011-01-01

    Introduction Giant fibroadenoma is an uncommon variant of benign breast lesions. Aberrant methylation of CpG islands in promoter regions is known to be involved in the silencing of genes (for example, tumor-suppressor genes) and appears to be an early event in the etiology of breast carcinogenesis. Only hypermethylation of p16INK4a has been reported in non-giant breast fibroadenoma. In this particular case, there are no previously published data on epigenetic alterations in giant fibroadenomas. Our previous results, based on the analysis of 49 cancer-related CpG islands have confirmed that the aberrant methylation is specific to malignant breast tumors and that it is completely absent in normal breast tissue and breast fibroadenomas. Case presentation A 13-year-old Hispanic girl was referred after she had noted a progressive development of a mass in her left breast. On physical examination, a 10 × 10 cm lump was detected and axillary lymph nodes were not enlarged. After surgical removal the lump was diagnosed as a giant fibroadenoma. Because of the high growth rate of this benign tumor, we decided to analyze the methylation status of 49 CpG islands related to cell growth control. We have identified the methylation of five cancer-related CpG islands in the giant fibroadenoma tissue: ESR1, MGMT, WT-1, BRCA2 and CD44. Conclusion In this case report we show for the first time the methylation analysis of a giant fibroadenoma. The detection of methylation of these five cancer-related regions indicates substantial epigenomic differences with non-giant fibroadenomas. Epigenetic alterations could explain the higher growth rate of this tumor. Our data contribute to the growing knowledge of aberrant methylation in breast diseases. In this particular case, there exist no previous data regarding the role of methylation in giant fibroadenomas, considered by definition as a benign breast lesion. PMID:22011321

  12. BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1α contributes to cardiomyopathy in male rats.

    PubMed

    Jiang, Ying; Xia, Wei; Yang, Jie; Zhu, Yingshuang; Chang, Huailong; Liu, Juan; Huo, Wenqian; Xu, Bing; Chen, Xi; Li, Yuanyuan; Xu, Shunqing

    2015-03-02

    Implication of environmental endocrine disruptors, such as bisphenol A (BPA), on the development of cardiopathy has been poorly investigated. The aim of the study was to investigate the effects of long-term exposure to BPA at the reference dose on the myocardium of rats, and the underlying mechanisms. Male rats received corn oil or 50 μg/kg/day of BPA since delactation. At 24 and 48 weeks (wk), cardiac function and mitochondrial function were examined. The mRNA expression and the methylation status of PCG-1α, a major regulator of mitochondrial biogenesis in cardiac muscle, were also tested. At 48 wk, BPA-exposed rats displayed cardiomyopathy, characterized by myocardium hypertrophy, cardiomyocyte enlargement, and impairment of cardiac function. At 24 wk, significantly reduced ATP production, dissipated mitochondrial membrane potential (Ψm) and declined mitochondrial respiratory complex (MRC) activity in cardiomyocytes were observed in BPA-exposed rats compared with the control rats, indicating a decrease in mitochondrial function occurs before the development of cardiomyopathy. Additionally, BPA exposure decreased the expression of PGC-1α and induced hypermethylation of PGC-1 α in heart tissue in 24- and 48-week-old rats. The change in methylation of PGC-1α was observed more pronounced in BPA-exposed rats at 48 wk. Overall, long-term BPA exposure induces cardiomyopathy in male rats, and the underlying mechanism may involve the impairment of cardiac mitochondrial function and the disturbance of methylation of PGC-1α.

  13. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing

    PubMed Central

    2010-01-01

    Background Cancer cells undergo massive alterations to their DNA methylation patterns that result in aberrant gene expression and malignant phenotypes. However, the mechanisms that underlie methylome changes are not well understood nor is the genomic distribution of DNA methylation changes well characterized. Results Here, we performed methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) to obtain whole-genome DNA methylation profiles for eight human breast cancer cell (BCC) lines and for normal human mammary epithelial cells (HMEC). The MeDIP-seq analysis generated non-biased DNA methylation maps by covering almost the entire genome with sufficient depth and resolution. The most prominent feature of the BCC lines compared to HMEC was a massively reduced methylation level particularly in CpG-poor regions. While hypomethylation did not appear to be associated with particular genomic features, hypermethylation preferentially occurred at CpG-rich gene-related regions independently of the distance from transcription start sites. We also investigated methylome alterations during epithelial-to-mesenchymal transition (EMT) in MCF7 cells. EMT induction was associated with specific alterations to the methylation patterns of gene-related CpG-rich regions, although overall methylation levels were not significantly altered. Moreover, approximately 40% of the epithelial cell-specific methylation patterns in gene-related regions were altered to those typical of mesenchymal cells, suggesting a cell-type specific regulation of DNA methylation. Conclusions This study provides the most comprehensive analysis to date of the methylome of human mammary cell lines and has produced novel insights into the mechanisms of methylome alteration during tumorigenesis and the interdependence between DNA methylome alterations and morphological changes. PMID:20181289

  14. Simulation of the Formation of DNA Double Strand Breaks and Chromosome Aberrations in Irradiated Cells

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Ponomarev, Artem L.; Wu, Honglu; Blattnig, Steve; George, Kerry

    2014-01-01

    The formation of DNA double-strand breaks (DSBs) and chromosome aberrations is an important consequence of ionizing radiation. To simulate DNA double-strand breaks and the formation of chromosome aberrations, we have recently merged the codes RITRACKS (Relativistic Ion Tracks) and NASARTI (NASA Radiation Track Image). The program RITRACKS is a stochastic code developed to simulate detailed event-by-event radiation track structure: [1] This code is used to calculate the dose in voxels of 20 nm, in a volume containing simulated chromosomes, [2] The number of tracks in the volume is calculated for each simulation by sampling a Poisson distribution, with the distribution parameter obtained from the irradiation dose, ion type and energy. The program NASARTI generates the chromosomes present in a cell nucleus by random walks of 20 nm, corresponding to the size of the dose voxels, [3] The generated chromosomes are located within domains which may intertwine, and [4] Each segment of the random walks corresponds to approx. 2,000 DNA base pairs. NASARTI uses pre-calculated dose at each voxel to calculate the probability of DNA damage at each random walk segment. Using the location of double-strand breaks, possible rejoining between damaged segments is evaluated. This yields various types of chromosomes aberrations, including deletions, inversions, exchanges, etc. By performing the calculations using various types of radiations, it will be possible to obtain relative biological effectiveness (RBE) values for several types of chromosome aberrations.

  15. Retrotransposon-like nature of Tp1 elements: implications for the organisation of highly repetitive, hypermethylated DNA in the genome of Physarum polycephalum.

    PubMed Central

    Rothnie, H M; McCurrach, K J; Glover, L A; Hardman, N

    1991-01-01

    The repetitive fraction of the genome of the eukaryotic slime mould Physarum polycephalum is dominated by the Tp1 family of highly repetitive retrotransposon-like sequences. Tp1 elements consist of two terminal direct repeats of 277bp which flank an internal domain of 8.3kb. They are the major sequence component in the hypermethylated (M+) fraction of the genome where they have been found exclusively in scrambled clusters of up to 50kb long. Scrambling is thought to have arisen by insertion of Tp1 into further copies of the same sequence. In the present study, sequence analysis of cloned Tp1 elements has revealed striking homologies of the predicted amino acid sequence to several highly conserved domains characteristic of retrotransposons. The relative order of the predicted coding regions indicates that Tp1 elements are more closely related to copia and Ty than to retroviruses. Self-integration and methylation of Tp1 elements may function to limit transposition frequency. Such mechanisms provide a possible explanation for the origin and organisation of M + DNA in the Physarum genome. PMID:1707520

  16. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  17. DNA Hypermethylation of the Serotonin Receptor Type-2A Gene Is Associated with a Worse Response to a Weight Loss Intervention in Subjects with Metabolic Syndrome

    PubMed Central

    Perez-Cornago, Aurora; Mansego, Maria L.; Zulet, María Angeles; Martinez, José Alfredo

    2014-01-01

    Understanding the regulation of gene activities depending on DNA methylation has been the subject of much recent study. However, although polymorphisms of the HTR2A gene have been associated with both obesity and psychiatric disorders, the role of HTR2A gene methylation in these illnesses remains uncertain. The aim of this study was to evaluate the association of HTR2A gene promoter methylation levels in white blood cells (WBC) with obesity traits and depressive symptoms in individuals with metabolic syndrome (MetS) enrolled in a behavioural weight loss programme. Analyses were based on 41 volunteers (mean age 49 ± 1 year) recruited within the RESMENA study. Depressive symptoms (as determined using the Beck Depression Inventory), anthropometric and biochemical measurements were analysed at the beginning and after six months of weight loss treatment. At baseline, DNA from WBC was isolated and cytosine methylation in the HTR2A gene promoter was quantified by a microarray approach. In the whole-study sample, a positive association of HTR2A gene methylation with waist circumference and insulin levels was detected at baseline. Obesity measures significantly improved after six months of dietary treatment, where a lower mean HTR2A gene methylation at baseline was associated with major reductions in body weight, BMI and fat mass after the treatment. Moreover, mean HTR2A gene methylation at baseline significantly predicted the decrease in depressive symptoms after the weight loss treatment. In conclusion, this study provides newer evidence that hypermethylation of the HTR2A gene in WBC at baseline is significantly associated with a worse response to a weight-loss intervention and with a lower decrease in depressive symptoms after the dietary treatment in subjects with MetS. PMID:24959950

  18. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs).

    PubMed

    Paget, Sonia; Dubuissez, Marion; Dehennaut, Vanessa; Nassour, Joe; Harmon, Brennan T; Spruyt, Nathalie; Loison, Ingrid; Abbadie, Corinne; Rood, Brian R; Leprince, Dominique

    2017-01-10

    The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.

  19. Aberrant DNA methylation profile in pleural fluid for differential diagnosis of malignant pleural mesothelioma.

    PubMed

    Fujii, Masanori; Fujimoto, Nobukazu; Hiraki, Akio; Gemba, Kenichi; Aoe, Keisuke; Umemura, Shigeki; Katayama, Hideki; Takigawa, Nagio; Kiura, Katsuyuki; Tanimoto, Mitsune; Kishimoto, Takumi

    2012-03-01

    Malignant pleural mesothelioma (MPM) usually develops pleural fluid. We investigated the value of DNA methylation in the pleural fluid for differentiating MPM from lung cancer (LC). Pleural fluid was collected from 39 patients with MPM, 46 with LC, 25 with benign asbestos pleurisy (BAP) and 30 with other causes. The methylation of O(6)-methylguanine-DNA methyltransferase (MGMT), p16(INK4a) , ras association domain family 1A (RASSF1A), death-associated protein kinase (DAPK), and retinoic acid receptor β (RARβ) was examined using quantitative real-time PCR. DNA methylation of RASSF1A, p16(INK4a), RARβ, MGMT and DAPK was detected in 12 (30.8%), 3 (7.7%), 11 (28.2%), 0 (0.0%) and five patients (12.8%) with MPM, and in 22 (47.8%), 14 (30.4%), 24 (52.2%), 1 (2.2%) and six patients (13.0%) with LC, respectively. The mean methylation ratios of RASSF1A, p16(INK4a) and RARβ were 0.37 (range 0.0-2.84), 0.11 (0.0-2.67) and 0.44 (0.0-3.32) in MPM, and 0.87 (0.0-3.14), 1.16 (0.0-5.35) and 1.69 (0.0-6.49) in LC, respectively. The methylation ratios for the three genes were significantly higher in LC than in MPM (RASSF1A, P = 0.039; p16(INK4a), P = 0.005; and RARβ, P = 0.002). Patients with methylation in at least one gene were 3.51 (95% confidence interval, 1.09-11.34) times more likely to have LC. Hypermethylation seemed no greater with MPM than with BAP. Extended exposure to asbestos (≧30 years) was correlated with an increased methylation frequency (P = 0.020). Hypermethylation of tumor suppressor genes in pleural fluid DNA has the potential to be a valuable marker for differentiating MPM from LC.

  20. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer

    PubMed Central

    Gao, Dan; Herman, James G.; Guo, Mingzhou

    2016-01-01

    The stability and integrity of the human genome are maintained by the DNA damage repair (DDR) system. Unrepaired DNA damage is a major source of potentially mutagenic lesions that drive carcinogenesis. In addition to gene mutation, DNA methylation occurs more frequently in DDR genes in human cancer. Thus, DNA methylation may play more important roles in DNA damage repair genes to drive carcinogenesis. Aberrant methylation patterns in DNA damage repair genes may serve as predictive, diagnostic, prognostic and chemosensitive markers of human cancer. MGMT methylation is a marker for poor prognosis in human glioma, while, MGMT methylation is a sensitive marker of glioma cells to alkylating agents. Aberrant epigenetic changes in DNA damage repair genes may serve as therapeutic targets. Treatment of MLH1-methylated colon cancer cell lines with the demethylating agent 5′-aza-2′-deoxycytidine induces the expression of MLH1 and sensitizes cancer cells to 5-fluorouracil. Synthetic lethality is a more exciting approach in patients with DDR defects. PARP inhibitors are the most effective anticancer reagents in BRCA-deficient cancer cells. PMID:26967246

  1. Mitochondrial DNA Aberrations and Pathophysiological Implications in Hematopoietic Diseases, Chronic Inflammatory Diseases, and Cancers

    PubMed Central

    Kim, Hye-Ran; Won, Stephanie Jane; Fabian, Claire; Kang, Min-Gu; Szardenings, Michael

    2015-01-01

    Mitochondria are important intracellular organelles that produce energy for cellular development, differentiation, and growth. Mitochondrial DNA (mtDNA) presents a 10- to 20-fold higher susceptibility to genetic mutations owing to the lack of introns and histone proteins. The mtDNA repair system is relatively inefficient, rendering it vulnerable to reactive oxygen species (ROS) produced during ATP synthesis within the mitochondria, which can then target the mtDNA. Under conditions of chronic inflammation and excess stress, increased ROS production can overwhelm the antioxidant system, resulting in mtDNA damage. This paper reviews recent literature describing the pathophysiological implications of oxidative stress, mitochondrial dysfunction, and mitochondrial genome aberrations in aging hematopoietic stem cells, bone marrow failure syndromes, hematological malignancies, solid organ cancers, chronic inflammatory diseases, and other diseases caused by exposure to environmental hazards. PMID:25553274

  2. ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma

    PubMed Central

    2009-01-01

    Background Cancer cells display widespread changes in DNA methylation that may lead to genetic instability by global hypomethylation and aberrant silencing of tumor suppressor genes by focal hypermethylation. In turn, altered DNA methylation patterns have been used to identify putative tumor suppressor genes. Methods In a methylation screening approach, we identified ECRG4 as a differentially methylated gene. We analyzed different cancer cells for ECRG4 promoter methylation by COBRA and bisulfite sequencing. Gene expression analysis was carried out by semi-quantitative RT-PCR. The ECRG4 coding region was cloned and transfected into colorectal carcinoma cells. Cell growth was assessed by MTT and BrdU assays. ECRG4 localization was analyzed by fluorescence microscopy and Western blotting after transfection of an ECRG4-eGFP fusion gene. Results We found a high frequency of ECRG4 promoter methylation in various cancer cell lines. Remarkably, aberrant methylation of ECRG4 was also found in primary human tumor tissues, including samples from colorectal carcinoma and from malignant gliomas. ECRG4 hypermethylation associated strongly with transcriptional silencing and its expression could be re-activated in vitro by demethylating treatment with 5-aza-2'-deoxycytidine. Overexpression of ECRG4 in colorectal carcinoma cells led to a significant decrease in cell growth. In transfected cells, ECRG4 protein was detectable within the Golgi secretion machinery as well as in the culture medium. Conclusions ECRG4 is silenced via promoter hypermethylation in different types of human cancer cells. Its gene product may act as inhibitor of cell proliferation in colorectal carcinoma cells and may play a role as extracellular signaling molecule. PMID:20017917

  3. Chromosomal aberrations in tire plant workers and interaction with polymorphisms of biotransformation and DNA repair genes.

    PubMed

    Musak, Ludovit; Soucek, Pavel; Vodickova, Ludmila; Naccarati, Alessio; Halasova, Erika; Polakova, Veronika; Slyskova, Jana; Susova, Simona; Buchancova, Janka; Smerhovsky, Zdenek; Sedikova, Jana; Klimentova, Gabriela; Osina, Oto; Hemminki, Kari; Vodicka, Pavel

    2008-05-10

    We evaluated chromosomal aberrations in lymphocytes of 177 workers exposed to xenobiotics in a tire plant and in 172 controls, in relation to their genetic background. Nine polymorphisms in genes encoding biotransformation enzymes and nine polymorphisms in genes involved in main DNA repair pathways were investigated for possible modulation of chromosomal damage. Chromosomal aberration frequencies were the highest among exposed smokers and the lowest in non-smoking unexposed individuals (2.5+/-1.8% vs. 1.7+/-1.2%, respectively). The differences between groups (ANOVA) were borderline significant (F=2.6, P=0.055). Chromosomal aberrations were higher in subjects with GSTT1-null (2.4+/-1.7%) than in those with GSTT1-plus genotype (1.8+/-1.4%; F=7.2, P=0.008). Considering individual groups, this association was significant in smoking exposed workers (F=4.4, P=0.040). Individuals with low activity EPHX1 genotype exhibited significantly higher chromosomal aberrations (2.3+/-1.6%) in comparison with those bearing medium (1.7+/-1.2%) and high activity genotype (1.5+/-1.2%; F=4.7, P=0.010). Both chromatid- and chromosome-type aberration frequencies were mainly affected by exposure and smoking status. Binary logistic regression analysis revealed that frequencies of chromatid-type aberrations were modulated by NBS1 Glu185Gln (OR 4.26, 95%CI 1.38-13.14, P=0.012), and to a moderate extent, by XPD Lys751Gln (OR 0.16, 95%CI 0.02-1.25, P=0.081) polymorphisms. Chromosome-type aberrations were lowest in individuals bearing the EPHX1 genotype conferring the high activity (OR 0.38, 95%CI 0.15-0.98, P=0.045). Present results show that exposed individuals in the tire production, who smoke, exhibit higher chromosomal aberrations frequencies, and the extent of chromosomal damage may additionally be modified by relevant polymorphisms.

  4. Extensive demethylation of normally hypermethylated CpG islands occurs in human atherosclerotic arteries.

    PubMed

    Castillo-Díaz, Silvia A; Garay-Sevilla, María E; Hernández-González, Martha A; Solís-Martínez, Martha O; Zaina, Silvio

    2010-11-01

    Global DNA hypomethylation potentially leading to pro-atherogenic gene expression occurs in atherosclerotic lesions. However, limited information is available on the genomic location of hypomethylated sequences. We present a microarray-based survey of the methylation status of CpG islands (CGIs) in 45 human atherosclerotic arteries and 16 controls. Data from 10,367 CGIs revealed that a subset (151 or 1.4%) of these was hypermethylated in control arteries. The vast majority (142 or 94%) of this CGI subset was found to be unmethylated or partially methylated in atherosclerotic tissue, while only 17 of the normally unmethylated CGIs were hypermethylated in the diseased tissue. The most common functional classes among annotated genes adjacent to or containing differentially methylated CGIs, were transcription (23%) and signalling factors (16%). The former included HOX members, PROX1, NOTCH1 and FOXP1, which are known to regulate key steps of atherogenesis. Expression analysis revealed differential expression of all CGI-associated genes analysed. Sequence analysis identified novel DNA motifs with regulatory potential, associated with differentially methylated CGIs. This study is the first large-scale analysis of DNA methylation in atherosclerosis. Our data suggest that aberrant DNA methylation in atherosclerosis affects the transcription of critical regulatory genes for the induction of a pro-atherogenic cellular phenotype.

  5. Aberrant DNA topoisomerase II activity, radioresistance and inherited susceptibility to cancer.

    PubMed Central

    Cunningham, J. M.; Francis, G. E.; Holland, M. J.; Pirollo, K. F.; Chang, E. H.

    1991-01-01

    Inherited susceptibility to a wide variety of neoplasias (Li-Fraumeni syndrome), has been shown in studies of one cancer-prone family, to have an intriguing association with an aberrant c-raf-1 gene and inheritance of a radioresistant phenotype in their non-cancerous skin fibroblasts. This association together with observations that DNA topoisomerases, when defective, can introduce errors into DNA and that these enzymes are perturbed in vitro by serine/threonine kinases similar to raf encoded proteins, prompted investigation of DNA topoisomerase activity of the family's fibroblasts. Since radioresistance was transferred to murine cells (NIH-3T3) when the aberrant c-raf-1 gene from this family was transfected, we also examined transformants containing this and other oncogenes. V-raf/c-myc and EJ-ras transformants were examined, the former because the family's skin fibroblasts also have 3-8-fold elevated myc expression (not apparently relevant to radioresistance) and the latter because ras, like raf, conveys radioresistance. The family members' fibroblasts and the three transfected murine lines, showed a similar perturbation of a spermidine and ATP-dependent DNA catenation activity (typical of DNA topoisomerase II). There was a significant positive correlation (r = 0.93; P = 0.0026) between the degree of activation of topoisomerase II and one measure of radioresistance (the Dq value). Relaxation of DNA supercoiling (topoisomerase I activity and other DNA nicking enzymes) was not abnormal. Cytotoxicity assays and evaluation of the influence of topoisomerase II inhibitors on DNA/protein complex formation, corroborated the existence of a qualitative topoisomerase II defect in the family's cells and transfectants. Although the contention that the qualitative topoisomerase II abnormalities observed here may be associated with malfunction is highly speculative, these findings may be relevant to the mechanism of oncogenesis, not only in this family, but with raf and ras

  6. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression

    PubMed Central

    Zhao, Christopher Q.; Young, Matthew R.; Diwan, Bhalchandra A.; Coogan, Timothy P.; Waalkes, Michael P.

    1997-01-01

    Inorganic arsenic, a human carcinogen, is enzymatically methylated for detoxication, consuming S-adenosyl-methionine (SAM) in the process. The fact that DNA methyltransferases (MeTases) require this same methyl donor suggests a role for methylation in arsenic carcinogenesis. Here we test the hypothesis that arsenic-induced initiation results from DNA hypomethylation caused by continuous methyl depletion. The hypothesis was tested by first inducing transformation in a rat liver epithelial cell line by chronic exposure to low levels of arsenic, as confirmed by the development of highly aggressive, malignant tumors after inoculation of cells into Nude mice. Global DNA hypomethylation occurred concurrently with malignant transformation and in the presence of depressed levels of S-adenosyl-methionine. Arsenic-induced DNA hypomethylation was a function of dose and exposure duration, and remained constant even after withdrawal of arsenic. Hyperexpressibility of the MT gene, a gene for which expression is clearly controlled by DNA methylation, was also detected in transformed cells. Acute arsenic or arsenic at nontransforming levels did not induce global hypomethylation of DNA. Whereas transcription of DNA MeTase was elevated, the MeTase enzymatic activity was reduced with arsenic transformation. Taken together, these results indicate arsenic can act as a carcinogen by inducing DNA hypomethylation, which in turn facilitates aberrant gene expression, and they constitute a tenable theory of mechanism in arsenic carcinogenesis. PMID:9380733

  7. The promoter of miR-663 is hypermethylated in Chinese pediatric acute myeloid leukemia (AML)

    PubMed Central

    2013-01-01

    Background There is growing evidence supporting a role for microRNAs (miRNA) as targets in aberrant mechanisms of DNA hypermethylation. Epigenetic silencing of tumor suppressor miRNAs, including miR-663, which has recently been reported to be inactivated by hypermethylation in several cancers, may play important roles in pediatric acute myeloid leukemia (AML). However, expression of miR-663 and its promoter methylation remain status unclear in childhood leukemia. Methods Promoter methylation status of miR-663 was investigated by methylation specific PCR (MSP) and bisulfate genomic sequencing (BGS). Transcriptional expression of miR-663 was evaluated by semi-quantitative and real-time PCR, and the relationship between expression of miR-663 and promoter methylation was confirmed using 5-aza-2’-deoxycytidine (5-Aza) demethylation reagent. Results MiR-663 was aberrantly methylated in 45.5% (5/11) leukemia cell lines; BGS showed that the promoter was significantly methylated in three AML cell lines; methylation of miR-663 was significantly higher in Chinese pediatric AML patients [41.4% (29/70)] compared to normal bone marrow (NBM) control samples [10.0% (3/30)]. These results were confirmed by both BGS and 5-Aza demethylation analysis. In addition, miR-663 transcript expression was significantly lower in AML patients, both with and without miR-663 methylation, compared to controls; however, there were no significant differences in clinical features or French-American-British (FAB) classification between patients with and without miR-663 methylation. Conclusions Expression of miR-663 was significantly lower in pediatric AML cells compared to NBM controls; furthermore, a high frequency of miR-663 promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Inactivation of miR-663 by promoter hypermethylation could be affected by 5-Aza demethylation. These findings suggest that hypermethylation of the miR-663 promoter may be an early event in

  8. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  9. Space Radiation Effects on Human Cells: Modeling DNA Breakage, DNA Damage Foci Distribution, Chromosomal Aberrations and Tissue Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, A. L.; Huff, J. L.; Cucinotta, F. A.

    2011-01-01

    Future long-tem space travel will face challenges from radiation concerns as the space environment poses health risk to humans in space from radiations with high biological efficiency and adverse post-flight long-term effects. Solar particles events may dramatically affect the crew performance, while Galactic Cosmic Rays will induce a chronic exposure to high-linear-energy-transfer (LET) particles. These types of radiation, not present on the ground level, can increase the probability of a fatal cancer later in astronaut life. No feasible shielding is possible from radiation in space, especially for the heavy ion component, as suggested solutions will require a dramatic increase in the mass of the mission. Our research group focuses on fundamental research and strategic analysis leading to better shielding design and to better understanding of the biological mechanisms of radiation damage. We present our recent effort to model DNA damage and tissue damage using computational models based on the physics of heavy ion radiation, DNA structure and DNA damage and repair in human cells. Our particular area of expertise include the clustered DNA damage from high-LET radiation, the visualization of DSBs (DNA double strand breaks) via DNA damage foci, image analysis and the statistics of the foci for different experimental situations, chromosomal aberration formation through DSB misrepair, the kinetics of DSB repair leading to a model-derived spectrum of chromosomal aberrations, and, finally, the simulation of human tissue and the pattern of apoptotic cell damage. This compendium of theoretical and experimental data sheds light on the complex nature of radiation interacting with human DNA, cells and tissues, which can lead to mutagenesis and carcinogenesis later in human life after the space mission.

  10. Promoter histone H3 lysine 9 di-methylation is associated with DNA methylation and aberrant expression of p16 in gastric cancer cells.

    PubMed

    Meng, Chun-Feng; Zhu, Xin-Jiang; Peng, Guo; Dai, Dong-Qiu

    2009-11-01

    In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylation manner in gastric cancer. Accordingly, we chose p16 to clarify whether there is a correlation among histone H3 lysine 9 (H3-K9) di-methylation, H3-K9 acetylation, DNA methylation and p16 expression in human gastric cancer. Three gastric cancer cells, MKN-45, SGC-7901 and BGC-823, were treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and/or trichostatin A (TSA). We investigated p16 promoter DNA methylation status, p16 mRNA levels, regional and global levels of di-methyl-H3-K9 and acetyl-H3-K9 in four groups: i) 5-Aza-dC, ii) TSA, iii) the combination of 5-Aza-dC and TSA and iv) control group with no treatments. p16 silencing is characterized by DNA hypermethylation, H3-K9 hypoacetylation and H3-K9 hypermethylation at the promoter region. Treatment with TSA, increased H3-K9 acetylation at the hypermethylated promoter, but did not affect H3-K9 di-methylation or p16 expression. By contrast, treatment with 5-Aza-dC, reduced H3-K9 di-methylation, increased H3-K9 acetylation at the hypermethylated promoter and reactivated the expression of p16. Combined treatment restored the expression of p16 synergistically. In addition, 5-Aza-dC and the combined treatment did not result in global alteration of H3-K9 di-methylation. These results suggest that H3-K9 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence p16 in gastric cancer. The decreased H3-K9 di-methylation correlates with DNA demethylation and reactivation of p16. H3-K9 di-methylation as well as DNA methylation related to p16 silencing is limited to the promoter region. In addition to its effect

  11. Aberrant expression of DNA damage response proteins is associated with breast cancer subtype and clinical features

    PubMed Central

    Guler, Gulnur; Himmetoglu, Cigdem; Jimenez, Rafael E.; Geyer, Susan M.; Wang, Wenle P.; Costinean, Stefan; Pilarski, Robert T.; Morrison, Carl; Suren, Dinc; Liu, Jianhua; Chen, Jingchun; Kamal, Jyoti; Shapiro, Charles L.

    2013-01-01

    Landmark studies of the status of DNA damage checkpoints and associated repair functions in preneoplastic and neoplastic cells has focused attention on importance of these pathways in cancer development, and inhibitors of repair pathways are in clinical trials for treatment of triple negative breast cancer. Cancer heterogeneity suggests that specific cancer subtypes will have distinct mechanisms of DNA damage survival, dependent on biological context. In this study, status of DNA damage response (DDR)-associated proteins was examined in breast cancer subtypes in association with clinical features; 479 breast cancers were examined for expression of DDR proteins γH2AX, BRCA1, pChk2, and p53, DNA damage-sensitive tumor suppressors Fhit and Wwox, and Wwox-interacting proteins Ap2α, Ap2γ, ErbB4, and correlations among proteins, tumor subtypes, and clinical features were assessed. In a multivariable model, triple negative cancers showed significantly reduced Fhit and Wwox, increased p53 and Ap2γ protein expression, and were significantly more likely than other subtype tumors to exhibit aberrant expression of two or more DDR-associated proteins. Disease-free survival was associated with subtype, Fhit and membrane ErbB4 expression level and aberrant expression of multiple DDR-associated proteins. These results suggest that definition of specific DNA repair and checkpoint defects in subgroups of triple negative cancer might identify new treatment targets. Expression of Wwox and its interactor, ErbB4, was highly significantly reduced in metastatic tissues vs. matched primary tissues, suggesting that Wwox signal pathway loss contributes to lymph node metastasis, perhaps by allowing survival of tumor cells that have detached from basement membranes, as proposed for the role of Wwox in ovarian cancer spread. PMID:21069451

  12. Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance

    PubMed Central

    Palle, Komaraiah; Mani, Chinnadurai; Tripathi, Kaushlendra; Athar, Mohammad

    2015-01-01

    The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for

  13. Aberrant DNA methylation impacts gene expression and prognosis in breast cancer subtypes.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Fleischer, Thomas; Munkácsy, Gyöngyi; Budczies, Jan; Paladini, Laura; Børresen-Dale, Anne-Lise; Kristensen, Vessela N; Santarpia, Libero

    2016-01-01

    DNA methylation has a substantial impact on gene expression, affecting the prognosis of breast cancer (BC) patients dependent on molecular subtypes. In this study, we investigated the prognostic relevance of the expression of genes reported as aberrantly methylated, and the link between gene expression and DNA methylation in BC subtypes. The prognostic value of the expression of 144 aberrantly methylated genes was evaluated in ER+/HER2-, HER2+, and ER-/HER2- molecular BC subtypes, in a meta-analysis of two large transcriptomic cohorts of BC patients (n = 1,938 and n = 1,640). The correlation between gene expression and DNA methylation in distinct gene regions was also investigated in an independent dataset of 104 BCs. Survival and Pearson correlation analyses were computed for each gene separately. The expression of 48 genes was significantly associated with BC prognosis (p < 0.05), and 32 of these prognostic genes exhibited a direct expression-methylation correlation. The expression of several immune-related genes, including CD3D and HLA-A, was associated with both relapse-free survival (HR = 0.42, p = 3.5E-06; HR = 0.35, p = 1.7E-08) and overall survival (HR = 0.50, p = 5.5E-04; HR = 0.68, p = 4.5E-02) in ER-/HER2- BCs. On the overall, the distribution of both positive and negative expression-methylation correlation in distinct gene regions have different effects on gene expression and prognosis in BC subtypes. This large-scale meta-analysis allowed the identification of several genes consistently associated with prognosis, whose DNA methylation could represent a promising biomarker for prognostication and clinical stratification of patients with distinct BC subtypes.

  14. Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells.

    PubMed

    Bryant, P E; Johnston, P J

    1993-05-01

    Restriction endonucleases (RE) can be used to mimic and model the clastogenic effects of ionising radiation. With the development of improved techniques for cell poration: electroporation and recently streptolysin O (SLO), it has become possible more confidently to study the relationships between DNA double-strand breaks (dsb) of various types (e.g. blunt or cohesive-ended) and the frequencies of induced metaphase chromosomal aberrations or micronuclei in cytokinesis-blocked cells. Although RE-induced dsb do not mimic the chemical end-structure of radiation-induced dsb (i.e. the 'dirty' ends of radiation-induced dsb), it has become clear that cohesive-ended dsb, which are thought to be the major type of dsb induced by radiation, are much less clastogenic than blunt-ended dsb. It has also been possible, with the aid of electroporation or SLO to measure the kinetics of dsb in cells as a function of time after treatment. These experiments have shown that some RE (e.g. Pvu II) are extremely stable inside CHO cells and at high concentrations persist and induce dsb over a period of many hours following treatment. Cutting of DNA by RE is thought to be at specific recognition sequences (as in free DNA) although the frequencies of sites in native chromatin available to RE is not yet known. DNA condensation and methylation are both factors limiting the numbers of available cutting sites. Relatively little is known about the kinetics of incision or repair of RE-induced dsb in cells. Direct ligation may be a method used by cells to rejoin the bulk of RE-induced dsb, since inhibitors such as araA, araC and aphidicolin appear not prevent rejoining, although these inhibitors have been found to lead to enhanced frequencies of chromosomal aberrations. 3-Aminobenzimide, the poly-ADP ribose polymerase inhibitor is the only agent that has so far been shown to inhibit rejoining of RE-induced dsb. Data from the radiosensitive xrs5 cell line, where chromosomal aberration frequencies are

  15. DNA Hypermethylation of CREB3L1 and Bcl-2 Associated with the Mitochondrial-Mediated Apoptosis via PI3K/Akt Pathway in Human BEAS-2B Cells Exposure to Silica Nanoparticles

    PubMed Central

    Zou, Yang; Li, Qiuling; Jiang, Lizhen; Guo, Caixia; Li, Yanbo; Yu, Yang; Li, Yang; Duan, Junchao; Sun, Zhiwei

    2016-01-01

    The toxic effects of silica nanoparticles (SiNPs) are raising concerns due to its widely applications in biomedicine. However, current information about the epigenetic toxicity of SiNPs is insufficient. In this study, the epigenetic regulation of low-dose exposure to SiNPs was evaluated in human bronchial epithelial BEAS-2B cells over 30 passages. Cell viability was decreased in a dose- and passage-dependent manner. The apoptotic rate, the expression of caspase-9 and caspase-3, were significantly increased induced by SiNPs. HumanMethylation450 BeadChip analysis identified that the PI3K/Akt as the primary apoptosis-related pathway among the 25 significant altered processes. The differentially methylated sites of PI3K/Akt pathway involved 32 differential genes promoters, in which the CREB3L1 and Bcl-2 were significant hypermethylated. The methyltransferase inhibitor, 5-aza, further verified that the DNA hypermethylation status of CREB3L1 and Bcl-2 were associated with downregulation of their mRNA levels. In addition, mitochondrial-mediated apoptosis was triggered by SiNPs via the downregulation of PI3K/Akt/CREB/Bcl-2 signaling pathway. Our findings suggest that long-term low-dose exposure to SiNPs could lead to epigenetic alterations. PMID:27362941

  16. Effect of aspirin on chromosome aberration and DNA damage induced by X-rays in mice

    NASA Astrophysics Data System (ADS)

    Niikawa, M.; Chuuriki, K.; Shibuya, K.; Seo, M.; Nagase, H.

    In order to reveal the anticlastogenic potency of aspirin, we evaluated the suppressive ability of aspirin on chromosome aberrations induced by X-ray. Aspirin at doses of 0.5, 5 and 50 mg/kg was administrated intraperitoneally or orally at 0.5 h after or before the X-ray irradiation. The anticlastogenic activity of aspirin on chromosome aberrations induced by X-ray was determined in the mouse micronucleus test and alkaline single cell gel electrophoresis (SCG) assay in vivo. The frequency by polychromatic erythrocytes with micronuclei (MNPCEs) was decreased by about 19-61% at 0.5 h after and about 23-62% at 0.5 h before the X-ray irradiation. DNA damage by X-ray was significantly decreased by oral administration of aspirin at 0.5 h after or before the X-ray irradiation for the SCG assay. We consider aspirin can be used as preventive agents against exposure of X-ray.

  17. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation.

    PubMed

    Zhou, Wei; Tian, Dongdong; He, Jun; Wang, Yimei; Zhang, Lijun; Cui, Lan; Jia, Li; Zhang, Li; Li, Lizhong; Shu, Yulei; Yu, Shouzhong; Zhao, Jun; Yuan, Xiaoyan; Peng, Shuangqing

    2016-04-12

    Long-term exposure to fine particulate matter (PM2.5) has been reported to be closely associated with the increased lung cancer risk in populations, but the mechanisms underlying PM-associated carcinogenesis are not yet clear. Previous studies have indicated that aberrant epigenetic alterations, such as genome-wide DNA hypomethylation and gene-specific DNA hypermethylation contribute to lung carcinogenesis. And silence or mutation of P53 tumor suppressor gene is the most prevalent oncogenic driver in lung cancer development. To explore the effects of PM2.5 on global and P53 promoter methylation changes and the mechanisms involved, we exposed human bronchial epithelial cells (BEAS-2B) to low concentrations of PM2.5 for 10 days. Our results indicated that PM2.5-induced global DNA hypomethylation was accompanied by reduced DNMT1 expression. PM2.5 also induced hypermethylation of P53 promoter and inhibited its expression by increasing DNMT3B protein level. Furthermore, ROS-induced activation of Akt was involved in PM2.5-induced increase in DNMT3B. In conclusion, our results strongly suggest that repeated exposure to PM2.5 induces epigenetic silencing of P53 through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation, which not only provides a possible explanation for PM-induced lung cancer, but also may help to identify specific interventions to prevent PM-induced lung carcinogenesis.

  18. Chromosomal aberrations, Yq microdeletion, and sperm DNA fragmentation in infertile men opting for assisted reproduction.

    PubMed

    Shamsi, Monis B; Kumar, Rajeev; Malhotra, Neena; Singh, Nita; Mittal, Suneeta; Upadhyay, Ashish D; Dada, Rima

    2012-09-01

    Male infertility is a multi-factorial disorder, and identification of its etiology in an individual is critical for treatment. Systematically elucidating the underlying genetic causes (chromosomal and Yq microdeletion) and factors, such as reactive oxygen species (ROS) levels and total antioxidant capacity (TAC), which contribute to sperm DNA damage, may help to reduce the number of men with idiopathic infertility and provide them with the most suitable therapeutics and counseling. This study was done to comprehensively investigate genetic and oxidative stress factors that might be the etiology of a large percentage of men with idiopathic infertility. One hundred twelve infertile men and 76 fertile controls were screened for chromosomal aberrations and Yq microdeletions. ROS, TAC, and sperm DNA damage were assessed in cytogenetically normal, non-azoospermic men with intact Y chromosome (n = 93). ROS was assessed in neat and washed semen by chemiluminescence; seminal TAC with a commercially available kit; and sperm DNA damage by the comet assay. Two men had cytogenetic abnormalities and seven men harbored Yq microdeletions. ROS levels in neat and washed semen of infertile men were significantly higher (P < 0.01) than controls. Infertile men had significantly lower (P < 0.01) TAC levels (1.79 mM), whereas sperm DNA fragmentation in infertile men was significantly higher (P < 0.01) than controls. Genetic factors and oxidative stress cumulatively account for large number of idiopathic infertile cases. Unlike, genetic causes, which cannot be cured, timely identification and management of oxidative stress may help to reverse/reduce the effects on induced DNA damage, and improve the outcomes for infertile males.

  19. The tumor suppressor gene HIC1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties.

    PubMed

    Pinte, Sébastien; Stankovic-Valentin, Nicolas; Deltour, Sophie; Rood, Brian R; Guérardel, Cateline; Leprince, Dominique

    2004-09-10

    HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene located at chromosome 17p13.3, a region frequently hypermethylated or deleted in human tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome. HIC1 is a transcriptional repressor containing five Krüppel-like C(2)H(2) zinc fingers and an N-terminal dimerization and autonomous repression domain called BTB/POZ. Although some of the HIC1 transcriptional repression mechanisms have been recently deciphered, target genes are still to be discovered. In this study, we determined the consensus binding sequence for HIC1 and investigated its DNA binding properties. Using a selection and amplification of binding sites technique, we identified the sequence 5'-(C)/(G)NG(C)/(G)GGGCA(C)/(A) CC-3' as an optimal binding site. In silico and functional analyses fully validated this consensus and highlighted a GGCA core motif bound by zinc fingers 3 and 4. The BTB/POZ domain inhibits the binding of HIC1 to a single site but mediates cooperative binding to a probe containing five concatemerized binding sites, a property shared by other BTB/POZ proteins. Finally, full-length HIC1 proteins transiently expressed in RK13 cells and more importantly, endogenous HIC1 proteins from the DAOY medulloblastoma cell line, repress the transcription of a reporter gene through their direct binding to these sites, as confirmed by chromatin immunoprecipitation experiments. The definition of the HIC1-specific DNA binding sequence as well as the requirement for multiple sites for optimal binding of the full-length protein are mandatory prerequisites for the identification and analyses of bona fide HIC1 target genes.

  20. DNA copy number aberrations associated with lymphovascular invasion in upper urinary tract urothelial carcinoma.

    PubMed

    Misumi, Taku; Yamamoto, Yoshiaki; Miyachika, Yoshihiro; Eguchi, Satoshi; Chochi, Yasuyo; Nakao, Motonao; Nagao, Kazuhiro; Hara, Takahiko; Sakano, Shigeru; Furuya, Tomoko; Oga, Atsunori; Kawauchi, Shigeto; Sasaki, Kohsuke; Matsuyama, Hideyasu

    2012-06-01

    Recent studies have reported that lymphovascular invasion (LVI) is a predictor of patient prognosis in upper urinary tract urothelial carcinoma (UUTUC). DNA copy number aberrations (DCNAs) identified by array-based comparative genomic hybridization (aCGH) had not previously been examined in UUTUC. We therefore examined DCNAs in UUTUC and compared them with DCNAs in LVI. We applied aCGH technology using DNA chips spotted with 4,030 BAC clones to 32 UUTUC patients. Frequent copy number gains were detected on chromosomal regions 8p23.1 and 20q13.12, whereas frequent copy number losses were detected on chromosomal regions 13q21.1, 17p13.1, 6q16.3, and 17p11.2. DCNAs occurred more frequently in tumors with LVI than in those without it (P = 0.0002), and this parameter was more closely associated with LVI than with the tumor grade or pT stage. Disease-specific survival rate was higher in tumors without LVI than in those with it (P = 0.0120); however, tumor grade and stage were not significant prognostic factors of patient outcome. These data support our hypothesis that tumors with LVI have more genetic alterations in terms of total numbers of DCNAs than those without, and provide proof that aggressive adjuvant therapy should be considered for UUTUC patients with LVI.

  1. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation

    PubMed Central

    Difilippantonio, Michael J.; Zhu, Jie; Chen, Hua Tang; Meffre, Eric; Nussenzweig, Michel C.; Max, Edward E.; Ried, Thomas; Nussenzweig, André

    2016-01-01

    Cancer susceptibility genes have been classified into two groups: gatekeepers and caretakers1. Gatekeepers are genes that control cell proliferation and death, whereas caretakers are DNA repair genes whose inactivation leads to genetic instability. Abrogation of both caretaker and gatekeeper function markedly increases cancer susceptibility. Although the importance of Ku80 in DNA double-strand break repair is well established, neither Ku80 nor other components of the non-homologous end-joining pathway are known to have a caretaker role in maintaining genomic stability. Here we show that mouse cells deficient for Ku80 display a marked increase in chromosomal aberrations, including breakage, translocations and aneuploidy. Despite the observed chromosome instabilities, Ku80−/− mice have only a slightly earlier onset of cancer2,3. Loss of p53 synergizes with Ku80 to promote tumorigenesis such that all Ku80−/−p53−/− mice succumb to disseminated pro-B-cell lymphoma before three months of age. Tumours result from a specific set of chromosomal translocations and gene amplifications involving IgH and c-Myc, reminiscent of Burkitt's lymphoma. We conclude that Ku80 is a caretaker gene that maintains the integrity of the genome by a mechanism involving the suppression of chromosomal rearrangements. PMID:10761921

  2. Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer.

    PubMed

    de Vogel, Stefan; Wouters, Kim A D; Gottschalk, Ralph W H; van Schooten, Frederik J; de Goeij, Anton F P M; de Bruïne, Adriaan P; Goldbohm, Royle A; van den Brandt, Piet A; Weijenberg, Matty P; van Engeland, Manon

    2009-11-01

    Aberrant DNA methylation affects carcinogenesis of colorectal cancer. Folate metabolizing enzymes may influence the bioavailability of methyl groups, whereas DNA and histone methyltransferases are involved in epigenetic regulation of gene expression. We studied associations of genetic variants of folate metabolizing enzymes (MTHFR, MTR, and MTRR), DNA methyltransferase DNMT3b, and histone methyltransferases (EHMT1, EHMT2, and PRDM2), with colorectal cancers, with or without the CpG island methylator phenotype (CIMP), MLH1 hypermethylation, or microsatellite instability. Incidence rate ratios were calculated in case-cohort analyses, with common homozygotes as reference, among 659 cases and 1,736 subcohort members of the Netherlands Cohort Study on diet and cancer (n = 120,852). Men with the MTHFR 677TT genotype were at decreased colorectal cancer risk (incidence rate ratio, 0.49; P = 0.01), but the T allele was associated with increased risk in women (incidence rate ratio, 1.39; P = 0.02). The MTR 2756GG genotype was associated with increased colorectal cancer risk (incidence rate ratio, 1.58; P = 0.04), and inverse associations were observed among women carrying DNMT3b C-->T (rs406193; incidence rate ratio, 0.72; P = 0.04) or EHMT2 G-->A (rs535586; incidence rate ratio, 0.76; P = 0.05) polymorphisms. Although significantly correlated (P < 0.001), only 41.5% and 33.3% of CIMP tumors harbored MLH1 hypermethylation or microsatellite instability, respectively. We observed inverse associations between MTR A2756G and CIMP among men (incidence rate ratio, 0.58; P = 0.04), and between MTRR A66G and MLH1 hypermethylation among women (incidence rate ratio, 0.55; P = 0.02). In conclusion, MTHFR, MTR, DNMT3b, and EHMT2 polymorphisms are associated with colorectal cancer, and rare variants of MTR and MTRR may reduce promoter hypermethylation. The incomplete overlap between CIMP, MLH1 hypermethylation, and microsatellite instability indicates that these related "methylation

  3. Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset.

    PubMed

    Melas, Philippe A; Rogdaki, Maria; Ösby, Urban; Schalling, Martin; Lavebratt, Catharina; Ekström, Tomas J

    2012-06-01

    Even though schizophrenia has a strong hereditary component, departures from simple genetic transmission are prominent. DNA methylation has emerged as an epigenetic explanatory candidate of schizophrenia's nonmendelian characteristics. To investigate this assumption, we examined genome-wide (global) and gene-specific DNA methylation levels, which are associated with genomic stability and gene expression activity, respectively. Analyses were conducted using DNA from leukocytes of patients with schizophrenia and controls. Global methylation results revealed a highly significant hypomethylation in patients with schizophrenia (P<2.0×10(-6)) and linear regression among patients generated a model in which antipsychotic treatment and disease onset explained 11% of the global methylation variance (adjusted R(2)=0.11, ANOVA P<0.001). Specifically, haloperidol was associated with higher ("control-like") methylation (P=0.001), and early onset (a putative marker of schizophrenia severity) was associated with lower methylation (P=0.002). With regard to the gene-specific methylation analyses, and in accordance with the dopamine hypothesis of psychosis, we found that the analyzed region of S-COMT was hypermethylated in patients with schizophrenia (P=0.004). In summary, these data support the notion of a dysregulated epigenome in schizophrenia, which, at least globally, is more pronounced in early-onset patients and can be partly rescued by antipsychotic medication. In addition, blood DNA-methylation signatures show promise of serving as a schizophrenia biomarker in the future.

  4. Hypermethylation of CCND2 May Reflect a Smoking-Induced Precancerous Change in the Lung.

    PubMed

    Salskov, Alexander; Hawes, Stephen E; Stern, Joshua E; Feng, Qinghua; Jordan, C Diana; Wiens, Linda; Rasey, Janet; Lu, Hiep; Kiviat, Nancy B; Vesselle, Hubert

    2011-01-01

    It remains unknown whether tobacco smoke induces DNA hypermethylation as an early event in carcinogenesis or as a late event, specific to overt cancer tissue. Using MethyLight assays, we analyzed 316 lung tissue samples from 151 cancer-free subjects (121 ever-smokers and 30 never-smokers) for hypermethylation of 19 genes previously observed to be hypermethylated in nonsmall cell lung cancers. Only APC (39%), CCND2 (21%), CDH1 (7%), and RARB (4%) were hypermethylated in >2% of these cancer-free subjects. CCND2 was hypermethylated more frequently in ever-smokers (26%) than in never-smokers (3%). CCND2 hypermethylation was also associated with increased age and upper lobe sample location. APC was frequently hypermethylated in both ever-smokers (41%) and never-smokers (30%). BVES, CDH13, CDKN2A (p16), CDKN2B, DAPK1, IGFBP3, IGSF4, KCNH5, KCNH8, MGMT, OPCML, PCSK6, RASSF1, RUNX, and TMS1 were rarely hypermethylated (<2%) in all subjects. Hypermethylation of CCND2 may reflect a smoking-induced precancerous change in the lung.

  5. Sex-specific association of sequence variants in CBS and MTRR with risk for promoter hypermethylation in the lung epithelium of smokers.

    PubMed

    Flores, Kristina G; Stidley, Christine A; Mackey, Amanda J; Picchi, Maria A; Stabler, Sally P; Siegfried, Jill M; Byers, Tim; Berwick, Marianne; Belinsky, Steven A; Leng, Shuguang

    2012-08-01

    Gene promoter hypermethylation is now regarded as a promising biomarker for the risk and progression of lung cancer. The one-carbon metabolism pathway is postulated to affect deoxyribonucleic acid (DNA) methylation because it is responsible for the generation of S-adenosylmethionine (SAM), the methyl donor for cellular methylation reactions. This study investigated the association of single nucleotide polymorphisms (SNPs) in six one-carbon metabolism-related genes with promoter hypermethylation in sputum DNA from non-Hispanic white smokers in the Lovelace Smokers Cohort (LSC) (n = 907). Logistic regression was used to assess the association of SNPs with hypermethylation using a high/low methylation cutoff. SNPs in the cystathionine beta synthase (CBS) and 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) genes were significantly associated with high methylation in males [CBS rs2850146 (-8283G > C), OR = 4.9; 95% CI: 1.98, 12.2, P = 0.0006] and low methylation in females [MTRR rs3776467 (7068A > G), OR = 0.57, 95% CI: 0.42, 0.77, P = 0.0003]. The variant allele of rs2850146 was associated with reduced gene expression and increased plasma homocysteine (Hcy) concentrations. Three plasma metabolites, Hcy, methionine and dimethylglycine, were associated with increased risk for gene methylation. These studies suggest that SNPs in CBS and MTRR have sex-specific associations with aberrant methylation in the lung epithelium of smokers that could be mediated by the affected one-carbon metabolism and transsulfuration in the cells.

  6. Recognition of hypermethylated triplet repeats in vitro by cationic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gearheart, Latha A.; Caswell, Kimberlyn; Murphy, Catherine J.

    2001-04-01

    Genomic DNA contains many higher-order structural deviations from the Watson-Crick global average. The massive expansion and hypermethylation of the duplex triplet repeat (CCG)n(CGG)n has characteristic higher-order structures that are associated with the fragile X syndrome. We have used luminescent mineral nanoparticles of protein-sized cadmium sulfide in optical assays to detect anomalous DNA structures. The photoluminescence of these particles is sensitive to the presence and nature of adsorbates. We previously found that our nanoparticles bind the fragile X repeat well but do not bind to normal double-helical DNA. In this study, we have determined that these particles are also able to detect the hypermethylated forms of these triplet repeats. Therefore, these nanoparticles may form the basis for future optical assays of higher-order DNA structures, especially those associated with human disease.

  7. The aberrant expression and localization of DNA methyltransferase 3B in endometriotic stromal cells

    PubMed Central

    Dyson, Matthew T.; Kakinuma, Toshiyuki; Pavone, Mary Ellen; Monsivais, Diana; Navarro, Antonia; Malpani, Saurabh S.; Ono, Masanori; Bulun, Serdar E.

    2015-01-01

    Objective To define the expression and function of DNA methyltransferases (DNMTs) in response to decidualizing stimuli in endometriotic cells compared with healthy endometrial stroma. Design Basic science. Setting University research center. Patients Premenopausal women with or without endometriosis. Interventions Primary cultures of stromal cells from healthy endometrium (E-IUM) or endometriomas (E-OSIS) were subjected to in vitro decidualization (IVD) using 1 µM medroxyprogesterone acetate, 35 nM 17β-estradiol, and 0.05 mM 8-Br-cAMP. Main Outcome Measure(s) DNMT1, DNMT3A, and DNMT3B expression in E-IUM and E-OSIS were assessed by qRT-PCR and immunoblotting. DNMT3B recruitment to the promoters of steroidogenic factor 1 (SF-1) and estrogen receptor α (ESR1) was examined by chromatin immunoprecipitation Results IVD treatment reduced DNMT3B mRNA (74%) and protein levels (81%) only in E-IUM. DNMT1 and DNMT3A were unchanged in both cell types. Significantly more DNMT3B bound to the SF-1 promoter in E-IUM compared with E-OSIS, and IVD treatment reduced binding in E-IUM to levels similar to those in E-OSIS. DNMT3B enrichment across three ESR1 promoters was reduced in E-IUM after IVD, although the more distal promoter showed increased DNMT3B enrichment in E-OSIS after IVD. Conclusions The inability to downregulate DNMT3B expression in E-OSIS may contribute to an aberrant epigenetic fingerprint that misdirects gene expression in endometriosis and contributes to its altered response to steroid hormones. PMID:26239024

  8. Characterization of a new aberration of the human Y chromosome by banding methods and DNA restriction endonuclease analysis.

    PubMed

    Schmid, M; Gall, H; Schempp, W; Weber, L; Schmidtke, J

    1981-01-01

    Comparative cytogenetic analyses were performed with ten different banding methods on a previously undescribed, inherited structural aberration of a Y chromosome, and the results compared with those of normal Y chromosomes occurring in the same family. The value of the individual staining techniques in investigations of Y chromosomal aberrations is emphasized. The aberrant Y chromosome analyzed can be formally derived from an isodicentric Y chromosome for the short arm with a very terminal long-arm breakpoint, in which the centromere, an entire short arm, and the proximal region on one long arm was lost. This interpretation was confirmed by determining the amount of the two Y-specific DNA sequences (2.1 and 3.4 kb in length) by means of Hae III restriction endonuclease analysis. The karyotype-phenotype correlations in the men with this aberrant Y chromosome, especially the fertility dysfunctions (oligoasthenoteratozoospermia, cryptozoospermia), are discussed. The possibility of the existence of fertility factors involved in the control of spermatogenesis within the quinacrine-bright heterochromatic region of the Y long arm is presented.

  9. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development?

    PubMed Central

    Upchurch, Garland Michael; Haney, Staci L.; Opavsky, Rene

    2016-01-01

    Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL. PMID:27563627

  10. Global DNA hypomethylation coupled to cellular transformation and metastatic ability.

    PubMed

    Funaki, Soichiro; Nakamura, Toshinobu; Nakatani, Tsunetoshi; Umehara, Hiroki; Nakashima, Hiroyuki; Okumura, Meinoshin; Oboki, Keisuke; Matsumoto, Kenji; Saito, Hirohisa; Nakano, Toru

    2015-12-21

    Global DNA hypomethylation and DNA hypermethylation of promoter regions are frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. Here, we show that the enforced expression of Stella (also known as PGC7 and Dppa3) induced not only global DNA demethylation but also transformation of NIH3T3 cells. Furthermore, overexpression of Stella enhanced the metastatic ability of B16 melanoma cells, presumably through the induction of metastasis-related genes. These results provide new insights into the function of global DNA hypomethylation in carcinogenesis.

  11. High incidence of LRAT promoter hypermethylation in colorectal cancer correlates with tumor stage

    PubMed Central

    Pincas, Hanna; Huang, Jianmin; Zachariah, Emmanuel; Zeng, Zhaoshi; Notterman, Daniel A.; Paty, Philip; Barany, Francis

    2015-01-01

    Lecithin:retinol acyltransferase (LRAT) is a major enzyme involved in vitamin A/retinol metabolism, which regulates various physiological processes like cell proliferation and differentiation. LRAT expression is reduced in numerous cancers, yet the underlying mechanisms have remained undefined. We hypothesized that methylation silencing may contribute to decreased LRAT gene expression in colorectal cancer (CRC). LRAT hypermethylation status was analyzed in five CRC cell lines, 167 colorectal tumors, and 69 adjacent normal colonic mucosae, using a quantitative bisulfite/PCR/LDR/Universal Array assay. LRAT transcription levels were determined by real-time RT-PCR in a subset of tumors and matched normal tissues and in CRC cell lines that were treated with a demethylating agent, 5-aza-2′-deoxycytidine. The incidence of LRAT hypermethylation was significantly higher in colorectal tumors than in adjacent normal mucosae (p = 0.0025). Aberrant methylation occurred in 51 % of microsatellite-stable CRCs, in 84 % of microsatellite-unstable CRCs, and in 12 out of 13 colonic polyps. The number of hypermethylated LRAT events was inversely correlated with CRC stage (p < 0.0001). Importantly, LRAT hypermethylation was associated with decreased mRNA level in CRC clinical specimens, and demethylation treatment resulted in LRAT transcriptional reactivation. Our data support the idea that LRAT promoter hypermethylation associates with LRAT gene expression in CRC. The higher frequency of LRAT hypermethylation in colonic polyps and early-stage CRCs indicates that it may occur early in malignant progression. PMID:25260806

  12. Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With Synoviocytes

    PubMed Central

    Rhead, Brooke; Holingue, Calliope; Cole, Michael; Shao, Xiaorong; Quach, Hong L.; Quach, Diana; Shah, Khooshbu; Sinclair, Elizabeth; Graf, John; Link, Thomas; Harrison, Ruby; Rahmani, Elior; Halperin, Eran; Wang, Wei; Firestein, Gary S.; Barcellos, Lisa F.

    2017-01-01

    Objective To determine whether differentially methylated CpGs in synovium‐derived fibroblast‐like synoviocytes (FLS) of patients with rheumatoid arthritis (RA) were also differentially methylated in RA peripheral blood (PB) samples. Methods For this study, 371 genome‐wide DNA methylation profiles were measured using Illumina HumanMethylation450 BeadChips in PB samples from 63 patients with RA and 31 unaffected control subjects, specifically in the cell subsets of CD14+ monocytes, CD19+ B cells, CD4+ memory T cells, and CD4+ naive T cells. Results Of 5,532 hypermethylated FLS candidate CpGs, 1,056 were hypermethylated in CD4+ naive T cells from RA PB compared to control PB. In analyses of a second set of CpG candidates based on single‐nucleotide polymorphisms from a genome‐wide association study of RA, 1 significantly hypermethylated CpG in CD4+ memory T cells and 18 significant CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naive T cells were found. A prediction score based on the hypermethylated FLS candidates had an area under the curve of 0.73 for association with RA case status, which compared favorably to the association of RA with the HLA–DRB1 shared epitope risk allele and with a validated RA genetic risk score. Conclusion FLS‐representative DNA methylation signatures derived from the PB may prove to be valuable biomarkers for the risk of RA or for disease status. PMID:27723282

  13. Targeting the IL-6 pathway in multiple myeloma and its implications in cancer-associated gene hypermethylation.

    PubMed

    Ingersoll, Susan Blaydes; Ahmad, Sarfraz; Thoni, Natalie D; Ahmed, Farhana H; Monahan, Kimberly A; Edwards, John R

    2011-09-01

    Aberrant methylation of tumor suppressor genes (TSG) is an important epigenetic event in cancer, including multiple myeloma (MM). Interleukin-6 (IL-6), which plays a significant role in the pathogenesis of MM, also regulates DNA methylation. However, attempts to bring IL-6 blockade to the clinic have had limited success. We hypothesize that IL-6 regulation of hypermethylation may be an important pathway leading to rational chemotherapeutic/anti-IL-6 combinations. We first studied the correlation of IL-6 expression and dependence in MM cell lines: U266B1, RPMI8226, and KAS6/1. We confirmed that KAS6/1 is IL-6-dependent whereas U266B1 and RPMI8226 cells are IL-6-independent and that blocking IL-6 inhibited the growth of U266B1 (36% inhibition; p<0.05) and KAS6/1 (68% inhibition; p<0.01), but not the RPMI8226 cells. Using RT-PCR, we showed that U266B1 cells express IL-6, but RPMI8226 and KAS6/1 cells do not. This IL-6 expression pattern correlates with the anti-IL-6 inhibition findings. To correlate IL-6 sensitivity with hypermethylation of TSG, we investigated promoter methylation of CDH1 and DcR1. We found that the promoter of DcR1 and CDH1 is methylated in U266B1 cells and un-methylated in RPMI8226 cells. Furthermore, the DcR1 promoter was un-methylated in KAS6/1 cells. These data support our hypothesis that an IL-6-dependent pathway may regulate hypermethylation of TSG in MM. Newer chemotherapeutic agents that affect methylation are being studied in combination with IL-6 blockade.

  14. Aberrant DNA methylation of the PDGF gene in homocysteine‑mediated VSMC proliferation and its underlying mechanism.

    PubMed

    Han, Xue-Bo; Zhang, Hui-Ping; Cao, Cheng-Jian; Wang, Yan-Hua; Tian, Jue; Yang, Xiao-Ling; Yang, An-Ning; Wang, Jie; Jiang, Yi-Deng; Xu, Hua

    2014-08-01

    It is well established that homocysteine (Hcy) is an independent risk factor for atherosclerosis (AS), which is characterized by vascular smooth muscle cell (VSMC) proliferation. However, the molecular mechanism underlying AS in VSMCs is yet to be elucidated. The aim of this study was to investigate the potential involvement of aberrant DNA methylation of the platelet‑derived growth factor (PDGF) gene in Hcy‑mediated VSMC proliferation and its underlying mechanism. Cultured human VSMCs were treated with varying concentrations of Hcy. VSMC proliferation, PDGF mRNA and protein expression and PDGF promoter demethylation showed a dose‑dependent increase with Hcy concentration, suggesting an association among them. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase, indicating that VSMC proliferation was increased under Hcy treatment. Furthermore, S‑adenosylhomocysteine (SAH) levels were observed to increase and those of S‑adenosylmethionine (SAM) were observed to decrease. The consequent decrease in the ratio of SAM/SAH may partially explain the hypomethylation of PDGF with Hcy treatment. Folate treatment exhibited an antagonistic effect against Hcy‑induced VSMC proliferation, aberrant PDGF methylation and PDGF expression. These data suggest that Hcy may stimulate VSMC proliferation through the PDGF signaling pathway by affecting the epigenetic regulation of PDGF through the demethylation of its promoter region. These findings may provide novel insight into the molecular association between aberrant PDGF gene demethylation and the proliferation of VSMCs in Hcy‑associated AS.

  15. BOTH HYPOMETHYLATION AND HYPERMETHYLATION OF DNA ASSOCIATED WITH ARSENITE EXPOSURE IN CULTURES OF HUMAN CELLS IDENTIFIED BY METHYLATION-SENSITIVE ARBITRARILY-PRIMED PCR

    EPA Science Inventory

    Differentially Methylated DNA Sequences Associated with Exposure to Arsenite in Cultures of Human Cells Identified by Methylation-Sensitive-Primed PCR

    Arsenic, a known human carcinogen, is converted to methylated derivatives by a methyltransferase (Mtase) and its biotra...

  16. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    SciTech Connect

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; Wyrobek, Andrew J.

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widely used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.

  17. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE PAGES

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; ...

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  18. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes

    PubMed Central

    Lambros, Maryou; Stankiewicz, Elzbieta; Ng, Charlotte K. Y.; Weigelt, Britta; Rajab, Ramzi; Tinwell, Brendan; Corbishley, Cathy; Watkin, Nick; Berney, Dan; Reis-Filho, Jorge S.

    2016-01-01

    Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents. PMID:26901676

  19. Suppressor of Cytokine Signaling (SOCS) Genes Are Silenced by DNA Hypermethylation and Histone Deacetylation and Regulate Response to Radiotherapy in Cervical Cancer Cells

    PubMed Central

    Kim, Moon-Hong; Kim, Moon-Sun; Kim, Wonwoo; Kang, Mi Ae; Cacalano, Nicholas A.; Kang, Soon-Beom; Shin, Young-Joo; Jeong, Jae-Hoon

    2015-01-01

    Suppressor of cytokine signaling (SOCS) family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer. PMID:25849377

  20. Promoter Hypermethylation and Its Impact on Expression of MGMT Gene in the GIT Malignant Patients of Kashmiri Origin.

    PubMed

    Bhat, Arif Akbar; Wani, Hilal Ahmad; Ishaq, Shiekh; Waza, Ajaz Ahmad; Malik, Rawoof Ahmad; Shabir, Iram; Jeelani, Showkat; Kadla, Showkat; Qureshie, Waseem; Masood, Akbar; Majid, Sabhiya

    2017-02-07

    Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Gastrointestinal tract (GIT) cancer is a major medical and economic burden worldwide. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumor suppressor genes. Although a number of cancer-associated genes have been found to be hypermethylated in GIT cancer, valuable methylation markers for early diagnosis and prognostic evaluation of this cancer remain largely unknown. O6-methyguanine DNA methyltransferase (MGMT) is a DNA-repair gene that removes mutagenic and cytotoxic adducts from the O6 position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression have been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human GIT carcinomas. A total of 210 GIT tumor samples and 90 adjacent normal tissues were analyzed for MGMT promoter methylation by methylation-specific polymerase chain reaction after bisulfite modification of DNA and same samples were analyzed for MGMT protein expression by Western blotting. The methylation frequencies of MGMT gene promoter were 41.4%, 34.2%, and 44.2% in stomach, esophageal, and colorectal cancer cases while as 16.6, 13.3, and 13.3 in respective controls. MGMT protein was found downregulated in controls of all GIT. The results suggest that methylation at CpG islands of MGMT may be responsible for the downregulation of MGMT protein expression in GIT cancers.

  1. Agglomerative Epigenetic Aberrations are a Common Event in Human Breast Cancer

    PubMed Central

    Petr, Novak; Taylor, Jensen; Oshiro Marc, M; Watts George, S; Kim Christina, J; Futscher Bernard, W

    2009-01-01

    Changes in DNA methylation patterns are a common characteristic of cancer cells. Recent studies suggest that DNA methylation affects not only discrete genes, but it can also affect large chromosomal regions, potentially leading to long range epigenetic silencing. It is unclear whether such long-range epigenetic events are relatively rare or frequent occurrences in cancer. Here we use a high-resolution promoter tiling array approach to analyze DNA methylation in breast cancer specimens and normal breast tissue to address this question. We identified 3506 cancer specific differentially methylated regions (DMR) in human breast cancer with 2033 being hypermethylation events and 1473 hypomethylation events. Most of these DMRs are recurrent in breast cancer; 90% of the identified DMRs occurred in at least 33% of the samples. Interestingly, we found a non-random spatial distribution of aberrantly methylated regions across the genome that showed a tendency to concentrate in relatively small genomic regions. Such agglomerates of hyper- and hypomethylated DMRs spanned up to several hundred kilobases and were frequently found at gene family clusters. The hypermethylation events usually occurred in the proximity of the transcription start site in CpG island promoters while hypomethylation events were frequently found in regions of segmental duplication. One example of a newly discovered agglomerate of hypermethylated DMRs associated with gene silencing in breast cancer that we examined in greater detail involved the protocadherin gene family clusters on chromosome 5 (PCDHA, PCDHB, and PCDHG). Taken together, our results suggest that agglomerative epigenetic aberrations are frequent events in human breast cancer. PMID:18922938

  2. Crosstalk between BRCA-Fanconi anemia and mismatch repair pathways prevents MSH2-dependent aberrant DNA damage responses.

    PubMed

    Peng, Min; Xie, Jenny; Ucher, Anna; Stavnezer, Janet; Cantor, Sharon B

    2014-08-01

    Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is suppressed by depletion of the upstream mismatch recognition factor MSH2. MSH2 depletion suppresses an aberrant DNA damage response, restores cell cycle progression, and promotes ICL resistance through a Rad18-dependent mechanism. MSH2 depletion also suppresses ICL sensitivity in cells deficient for BRCA1 or FANCD2, but not FANCA. Rescue by Msh2 loss was confirmed in Fancd2-null primary mouse cells. Thus, we propose that regulation of MSH2-dependent DNA damage response underlies the importance of interactions between BRCA-FA and MMR pathways.

  3. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance.

  4. Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease.

    PubMed

    Grau, Elena; Martinez, Francisco; Orellana, Carmen; Canete, Adela; Yañez, Yania; Oltra, Silvestre; Noguera, Rosa; Hernandez, Miguel; Bermúdez, Jose D; Castel, Victoria

    2011-03-01

    Neuroblastoma (NB) is an embryonal tumour of neuroectodermal cells, and its prognosis is based on patient age at diagnosis, tumour stage and MYCN amplification, but it can also be classified according to their degree of methylation. Considering that epigenetic aberrations could influence patient survival, we studied the methylation status of a series of 17 genes functionally involved in different cellular pathways in patients with NB and their impact on survival. We studied 82 primary NB tumours and we used methylation-specific-PCR to perform the epigenetic analysis. We evaluated the putative association among the evidence of hypermethylation with the most important NB prognostic factors, as well as to determine the relationship among methylation, clinical classification and survival. CASP8 hypermethylation showed association with relapse susceptibility and, TMS1 and APAF1 hypermethylation are associated with bad prognosis and showed high influence on NB overall survival. Hypermethylation of apoptotic genes has been identified as a good candidate of prognostic factor. We propose the simultaneous analysis of hypermethylation of APAF1, TMS1 and CASP8 apoptotic genes on primary NB tumour as a good prognostic factor of disease progression.

  5. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes.

    PubMed

    Katyal, Sachin; Lee, Youngsoo; Nitiss, Karin C; Downing, Susanna M; Li, Yang; Shimada, Mikio; Zhao, Jingfeng; Russell, Helen R; Petrini, John H J; Nitiss, John L; McKinnon, Peter J

    2014-06-01

    DNA damage is considered to be a prime factor in several spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. We observed the endogenous accumulation of pathogenic topoisomerase-1 (Top1)-DNA cleavage complexes (Top1ccs) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We found that the defective DNA damage response factors in these two diseases cooperatively modulated Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single-strand break repair factors, including tyrosyl-DNA phosphodiesterase-1 or XRCC1, resulted in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Notably, direct Top1 poisoning to elevate Top1cc levels phenocopied the neuropathology of the mouse models described above. Our results identify a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating that genome integrity is important for preventing disease in the nervous system.

  6. Aberrant Topoisomerase-1-DNA Lesions are Pathogenic in Neurodegenerative Genome Instability Syndromes

    PubMed Central

    Katyal, Sachin; Lee, Youngsoo; Nitiss, Karin C.; Downing, Susanna M.; Li, Yang; Shimada, Mikio; Zhao, Jingfeng; Russell, Helen R.; Petrini, John H. J.; Nitiss, John L.; McKinnon, Peter J.

    2014-01-01

    DNA damage is considered a prime factor in multiple spinocerebellar neurodegenerative diseases; however, the DNA lesions underpinning disease etiology are unknown. Here we identify the endogenous accumulation of pathogenic topoisomerase-1-DNA cleavage complexes (Top1cc) in murine models of ataxia telangiectasia and spinocerebellar ataxia with axonal neuropathy 1. We also show that the defective DNA damage response factors in these two diseases cooperatively modulate Top1cc turnover in a non-epistatic and ATM kinase-independent manner. Furthermore, coincident neural inactivation of ATM and DNA single strand break repair factors including tyrosyl-DNA phosphodiesterase-1 or XRCC1 result in increased Top1cc formation and excessive DNA damage and neurodevelopmental defects. Importantly, direct topoisomerase-1 poisoning to elevate Top1cc levels phenocopies the neuropathology of the mouse models above. Our study identifies a critical endogenous pathogenic lesion associated with neurodegenerative syndromes arising from DNA repair deficiency, indicating the essential role that genome integrity plays in preventing disease in the nervous system. PMID:24793032

  7. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford Progeria and Werner syndrome.

    PubMed

    Heyn, Holger; Moran, Sebastian; Esteller, Manel

    2013-01-01

    DNA methylation gradiently changes with age and is likely to be involved in aging-related processes with subsequent phenotype changes and increased susceptibility to certain diseases. The Hutchinson-Gilford Progeria (HGP) and Werner Syndrome (WS) are two premature aging diseases showing features of common natural aging early in life. Mutations in the LMNA and WRN genes were associated to disease onset; however, for a subset of patients the underlying causative mechanisms remain elusive. We aimed to evaluate the role of epigenetic alteration on premature aging diseases by performing comprehensive DNA methylation profiling of HGP and WS patients. We observed profound changes in the DNA methylation landscapes of WRN and LMNA mutant patients, which were narrowed down to a set of aging related genes and processes. Although of low overall variance, non-mutant patients revealed differential DNA methylation at distinct loci. Hence, we propose DNA methylation to have an impact on premature aging diseases.

  8. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  9. Aberrant DNA Double-strand Break Repair Threads in Breast Carcinoma: Orchestrating Genomic Insult Survival.

    PubMed

    Kumar, Azad; Purohit, Shruti; Sharma, Nilesh Kumar

    2016-12-01

    Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct manner. The DNA double-strand damage repair machinery is manipulated by breast carcinoma to selectively repair the damage or insults inflicted by the genotoxic effects of chemotherapy or radiation therapy. The two DNA double-strand break repair pathways employed by breast carcinoma are homologous recombination and non-homologous end joining. In recent decades, therapeutic interventions targeting one or more factors involved in repairing DNA double-strand breaks inflicted by chemo/radiation therapy have been widely studied. Herein, this review paper summarizes the recent evidence and ongoing clinical trials citing potential therapeutic combinatorial interventions targeting DNA double-strand break repair pathways in breast carcinoma.

  10. Aberrant DNA Double-strand Break Repair Threads in Breast Carcinoma: Orchestrating Genomic Insult Survival

    PubMed Central

    Kumar, Azad; Purohit, Shruti; Sharma, Nilesh Kumar

    2016-01-01

    Breast carcinoma is a heterogeneous disease that has exhibited rapid resistance to treatment in the last decade. Depending genotype and phenotype of breast cancer, there are discernible differences in DNA repair protein responses including DNA double strand break repair. It is a fact that different molecular sub-types of breast carcinoma activate these dedicated protein pathways in a distinct manner. The DNA double-strand damage repair machinery is manipulated by breast carcinoma to selectively repair the damage or insults inflicted by the genotoxic effects of chemotherapy or radiation therapy. The two DNA double-strand break repair pathways employed by breast carcinoma are homologous recombination and non-homologous end joining. In recent decades, therapeutic interventions targeting one or more factors involved in repairing DNA double-strand breaks inflicted by chemo/radiation therapy have been widely studied. Herein, this review paper summarizes the recent evidence and ongoing clinical trials citing potential therapeutic combinatorial interventions targeting DNA double-strand break repair pathways in breast carcinoma. PMID:28053956

  11. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  12. Relationship between radiation-induced aberrations in individual chromosomes and their DNA content: effects of interaction distance

    NASA Technical Reports Server (NTRS)

    Wu, H.; Durante, M.; Lucas, J. N.

    2001-01-01

    PURPOSE: To study the effect of the interaction distance on the frequency of inter- and intrachromosome exchanges in individual chromosomes with respect to their DNA content. Assumptions: Chromosome exchanges are formed by misrejoining of two DNA double-strand breaks (DSB) induced within an interaction distance, d. It is assumed that chromosomes in G(0)/G(1) phase of the cell cycle occupy a spherical domain in a cell nucleus, with no spatial overlap between individual chromosome domains. RESULTS: Formulae are derived for the probability of formation of inter-, as well as intra-, chromosome exchanges relating to the DNA content of the chromosome for a given interaction distance. For interaction distances <1 microm, the relative frequency of interchromosome exchanges predicted by the present model is similar to that by Cigarran et al. (1998) based on the assumption that the probability of interchromosome exchanges is proportional to the "surface area" of the chromosome territory. The "surface area" assumption is shown to be a limiting case of d-->0 in the present model. The present model also predicts that the probability of intrachromosome exchanges occurring in individual chromosomes is proportional to their DNA content with correction terms. CONCLUSION: When the interaction distance is small, the "surface area" distribution for chromosome participation in interchromosome exchanges has been expected. However, the present model shows that for the interaction distance as large as 1 microm, the predicted probability of interchromosome exchange formation is still close to the surface area distribution. Therefore, this distribution does not necessarily rule out the formation of complex chromosomal aberrations by long-range misrejoining of DSB.

  13. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability

    PubMed Central

    Colosio, Arianna; Frattini, Camilla; Pellicanò, Grazia; Villa-Hernández, Sara; Bermejo, Rodrigo

    2016-01-01

    Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork structures and counteracting the accumulation of aberrant intermediates resembling fork cleavage products. Genetic analyses demonstrated a functional interplay of Exo1 with Mus81, Dna2 and Sae2 nucleases in promoting cell survival following replication stress, suggestive of concerted nucleolytic processing of stalled forks. While Mus81 and other Structure Specific Endonucleases do not contribute to obvious collapsed fork transitions, Dna2 promotes reversed fork resection likely by facilitating Exo1 access to nascent strands. Instead, Sae2 cooperates with Exo1 in counteracting putative fork cleavage events linked to double strand breaks formation and increased gross chromosomal rearrangement rates. Our data indicate that in checkpoint deficient cells diverse nuclease activities interface to eliminate aberrant replication intermediates and prevent chromosome instability. PMID:27672038

  14. Nucleolytic processing of aberrant replication intermediates by an Exo1-Dna2-Sae2 axis counteracts fork collapse-driven chromosome instability.

    PubMed

    Colosio, Arianna; Frattini, Camilla; Pellicanò, Grazia; Villa-Hernández, Sara; Bermejo, Rodrigo

    2016-12-15

    Problems during DNA replication underlie genomic instability and drive malignant transformation. The DNA damage checkpoint stabilizes stalled replication forks thus counteracting aberrant fork transitions, DNA breaks and chromosomal rearrangements. We analyzed fork processing in checkpoint deficient cells by coupling psoralen crosslinking with replication intermediate two-dimensional gel analysis. This revealed a novel role for Exo1 nuclease in resecting reversed replication fork structures and counteracting the accumulation of aberrant intermediates resembling fork cleavage products. Genetic analyses demonstrated a functional interplay of Exo1 with Mus81, Dna2 and Sae2 nucleases in promoting cell survival following replication stress, suggestive of concerted nucleolytic processing of stalled forks. While Mus81 and other Structure Specific Endonucleases do not contribute to obvious collapsed fork transitions, Dna2 promotes reversed fork resection likely by facilitating Exo1 access to nascent strands. Instead, Sae2 cooperates with Exo1 in counteracting putative fork cleavage events linked to double strand breaks formation and increased gross chromosomal rearrangement rates. Our data indicate that in checkpoint deficient cells diverse nuclease activities interface to eliminate aberrant replication intermediates and prevent chromosome instability.

  15. Investigation of DNA-damage and Chromosomal Aberrations in Blood Cells under the Influence of New Silver-based Antiviral Complex

    PubMed Central

    Plotnikov, Evgenii; Silnikov, Vladimir; Gapeyev, Andrew; Plotnikov, Vladimir

    2016-01-01

    Purpose: The problem of infectious diseases and drug resistance is becoming increasingly important worldwide. Silver is extensively used as an anti-infective agent, but it has significant toxic side effects. In this regard, it is topical to develop new silver compounds with high biological activity and low toxicity. This work is aimed to study DNA damage and chromosomal aberrations in blood cells under the influence of new silver-based compound of general formula C6H19Ag2N4LiO6S2, with antiviral activity. Methods: The comet assay was applied for the genotoxic affects assessment on mice blood leukocytes. DNA damage was determined bases on the percentage of DNA in a comet tail (tail DNA), under the influence of silver complex in different concentrations. Genotoxic effect of the tested substance on the somatic cells was determined by chromosomal aberration test of bone marrow cells of mice. Results: In the course of the experiments, no essential changes in the level of DNA damage in the cells were found, even at highest concentrations. The administration of the substance in doses up to 2.5 g/kg in mice did not cause any increase in the frequency of chromosomal aberration in bone marrow cells. Conclusion: Taking into account known silver drug genotoxic properties, the use of a given complexed silver compound has possible great advantages for potential applications in the treatment of infectious diseases. PMID:27123420

  16. Aberrant repair of etheno-DNA adducts in leukocytes and colon tissue of colon cancer patients.

    PubMed

    Obtułowicz, Tomasz; Winczura, Alicja; Speina, Elzbieta; Swoboda, Maja; Janik, Justyna; Janowska, Beata; Cieśla, Jarosław M; Kowalczyk, Paweł; Jawien, Arkadiusz; Gackowski, Daniel; Banaszkiewicz, Zbigniew; Krasnodebski, Ireneusz; Chaber, Andrzej; Olinski, Ryszard; Nair, Jagadesaan; Bartsch, Helmut; Douki, Thierry; Cadet, Jean; Tudek, Barbara

    2010-09-15

    To assess the role of lipid peroxidation-induced DNA damage and repair in colon carcinogenesis, the excision rates and levels of 1,N(6)-etheno-2'-deoxyadenosine (epsilondA), 3,N(4)-etheno-2'-deoxycytidine (epsilondC), and 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilondG) were analyzed in polymorphic blood leukocytes (PBL) and resected colon tissues of 54 colorectal carcinoma (CRC) patients and PBL of 56 healthy individuals. In PBL the excision rates of 1,N(6)-ethenoadenine (epsilonAde) and 3,N(4)-ethenocytosine (epsilonCyt), measured by the nicking of oligodeoxynucleotide duplexes with single lesions, and unexpectedly also the levels of epsilondA and 1,N(2)-epsilondG, measured by LC/MS/MS, were lower in CRC patients than in controls. In contrast the mRNA levels of repair enzymes, alkylpurine- and thymine-DNA glycosylases and abasic site endonuclease (APE1), were higher in PBL of CRC patients than in those of controls, as measured by QPCR. In the target colon tissues epsilonAde and epsilonCyt excision rates were higher, whereas the epsilondA and epsilondC levels in DNA, measured by (32)P-postlabeling, were lower in tumor than in adjacent colon tissue, although a higher mRNA level was observed only for APE1. This suggests that during the onset of carcinogenesis, etheno adduct repair in the colon seems to be under a complex transcriptional and posttranscriptional control, whereby deregulation may act as a driving force for malignancy.

  17. High-level DNA amplifications are common genetic aberrations in B-cell neoplasms.

    PubMed Central

    Werner, C. A.; Döhner, H.; Joos, S.; Trümper, L. H.; Baudis, M.; Barth, T. F.; Ott, G.; Möller, P.; Lichter, P.; Bentz, M.

    1997-01-01

    Gene amplification is one of the molecular mechanisms resulting in the up-regulation of gene expression. In non-Hodgkin's lymphomas, such gene amplifications have been identified rarely. Using comparative genomic hybridization, a technique that has proven to be very sensitive for the detection of high-level DNA amplifications, we analyzed 108 cases of B-cell neoplasms (42 chronic B-cell leukemias, 5 mantle cell lymphomas, and 61 aggressive B-cell lymphomas). Twenty-four high-level amplifications were identified in 13% of the patients and mapped to 15 different genomic regions. Regions most frequently amplified were bands Xq26-28, 2p23-24, and 2p14-16 as well as 18q21 (three times each). Amplification of several proto-oncogenes and a cell cycle control gene (N-MYC (two cases), BCL2, CCND2, and GLI) located within the amplified regions was demonstrated by Southern blot analysis or fluorescence in situ hybridization to interphase nuclei of tumor cells. These data demonstrate that gene amplifications in B-cell neoplasms are much more frequent than previously assumed. The identification of highly amplified DNA regions and genes included in the amplicons provides important information for further analyses of genetic events involved in lymphomagenesis. Images Figure 2 Figure 3 PMID:9250147

  18. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays

    PubMed Central

    Gribble, Susan M; Ng, Bee Ling; Prigmore, Elena; Fitzgerald, Tomas; Carter, Nigel P

    2012-01-01

    Aarray painting is a technique that uses microarray technology to rapidly map chromosome translocation breakpoints. previous methods to map translocation breakpoints have used fluorescence in situ hybridization (FIsH) and have consequently been labor-intensive, time-consuming and restricted to the low breakpoint resolution imposed by the use of metaphase chromosomes. array painting combines the isolation of derivative chromosomes (chromosomes with translocations) and high-resolution microarray analysis to refine the genomic location of translocation breakpoints in a single experiment. In this protocol, we describe array painting by isolation of derivative chromosomes using a MoFlo flow sorter, amplification of these derivatives using whole-genome amplification and hybridization onto commercially available oligonucleotide microarrays. although the sorting of derivative chromosomes is a specialized procedure requiring sophisticated equipment, the amplification, labeling and hybridization of Dna is straightforward, robust and can be completed within 1 week. the protocol described produces good quality data; however, array painting is equally achievable using any combination of the available alternative methodologies for chromosome isolation, amplification and hybridization. PMID:19893508

  19. Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression

    PubMed Central

    2013-01-01

    Background Altered gene methylation, regulated by DNA methyltransferases (DNMT) 1, 3a and 3b, contributes to tumorigenesis. However, the role of DNMT in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Methods Expression of DNMT 1, 3a and 3b was detected in 88 Pancreatic ductal adenocarcinoma (PDAC) and 10 normal tissue samples by immunohistochemistry. Changes in cell viability, cell cycle distribution, and apoptosis of PDAC cell lines (Panc-1 and SW1990) were assessed after transfection with DNMT1 and 3b siRNA. Levels of CDKN1A, Bcl-2 and Bax mRNA were assessed by qRT-PCR, and methylation of the Bax gene promoter was assayed by methylation-specific PCR (MSP). Results DNMT1, 3a and 3b proteins were expressed in 46.6%, 23.9%, and 77.3% of PDAC tissues, respectively, but were not expressed in normal pancreatic tissues. There was a co-presence of DNMT3a and DNMT3b expression and an association of DNMT1 expression with alcohol consumption and poor overall survival. Moreover, knockdown of DNMT1 and DNMT3b expression significantly inhibited PDAC cell viability, decreased S-phase but increased G1-phase of the cell cycle, and induced apoptosis. Molecularly, expression of CDKN1A and Bax mRNA was upregulated, and the Bax gene promoter was demethylated. However, a synergistic effect of combined DNMT1 and 3b knockdown was not observed. Conclusion Expression of DNMT1, 3a and 3b proteins is increased in PDAC tissues, and DNMT1 expression is associated with poor prognosis of patients. Knockdown of DNMT1 and 3b expression arrests tumor cells at the G1 phase of the cell cycle and induces apoptosis. The data suggest that DNMT knockdown may be a novel treatment strategy for PDAC. PMID:24423239

  20. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    PubMed Central

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10−9), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10−3). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. PMID:25924914

  1. Hypermethylated Chromosome Regions in Nine Fish Species with Heteromorphic Sex Chromosomes.

    PubMed

    Schmid, Michael; Steinlein, Claus; Yano, Cassia F; Cioffi, Marcelo B

    2015-01-01

    Sites and amounts of 5-methylcytosine (5-MeC)-rich chromosome regions were detected in the karyotypes of 9 Brazilian species of Characiformes fishes by indirect immunofluorescence using a monoclonal anti-5-MeC antibody. These species, belonging to the genera Leporinus, Triportheus and Hoplias, are characterized by highly differentiated and heteromorphic ZW and XY sex chromosomes. In all species, the hypermethylated regions are confined to constitutive heterochromatin. The number and chromosome locations of hypermethylated heterochromatic regions in the karyotypes are constant and species-specific. Generally, heterochromatic regions that are darkly stained by the C-banding technique are distinctly hypermethylated, but several of the brightly fluorescing hypermethylated regions merely exhibit moderate or faint C-banding. The ZW and XY sex chromosomes of all 9 analyzed species also show species-specific heterochromatin hypermethylation patterns. The analysis of 5-MeC-rich chromosome regions contributes valuable data for comparative cytogenetics of closely related species and highlights the dynamic process of differentiation operating in the repetitive DNA fraction of sex chromosomes.

  2. Hyper-Methylated Loci Persisting from Sessile Serrated Polyps to Serrated Cancers

    PubMed Central

    Andrew, Angeline S.; Baron, John A.; Butterly, Lynn F.; Suriawinata, Arief A.; Tsongalis, Gregory J.; Robinson, Christina M.; Amos, Christopher I.

    2017-01-01

    Although serrated polyps were historically considered to pose little risk, it is now understood that progression down the serrated pathway could account for as many as 15%–35% of colorectal cancers. The sessile serrated adenoma/polyp (SSA/P) is the most prevalent pre-invasive serrated lesion. Our objective was to identify the CpG loci that are persistently hyper-methylated during serrated carcinogenesis, from the early SSA/P lesion through the later cancer phases of neoplasia development. We queried the loci hyper-methylated in serrated cancers within our right-sided SSA/Ps from the New Hampshire Colonoscopy Registry, using the Illumina Infinium Human Methylation 450 k panel to comprehensively assess the DNA methylation status. We identified CpG loci and regions consistently hyper-methylated throughout the serrated carcinogenesis spectrum, in both our SSA/P specimens and in serrated cancers. Hyper-methylated CpG loci included the known the tumor suppressor gene RET (p = 5.72 × 10−10), as well as loci in differentially methylated regions for GSG1L, MIR4493, NTNG1, MCIDAS, ZNF568, and RERG. The hyper-methylated loci that we identified help characterize the biology of SSA/P development, and could be useful as therapeutic targets, or for future identification of patients who may benefit from shorter surveillance intervals. PMID:28257124

  3. Epigenetic inactivation of E-cadherin by promoter hypermethylation in oral carcinoma cells.

    PubMed

    Maeda, Genta; Chiba, Tadashige; Aoba, Takaaki; Imai, Kazushi

    2007-07-01

    The loss of E-cadherin expression by epigenetic aberrations, including promoter hypermethylation and transcription repressor binding, plays a key role in the initiation of the epithelial-mesenchymal transition, which leads to the progression of oral squamous cell carcinomas. However, mutual actions and roles of the epigenetic pathways remain to be elucidated. In this study, we determined the methylation status of cytosine within CpG islands of the E-cadherin promoter region in relation to the expression level of SIP1, a major E-cadherin repressor in oral carcinoma cells. Methylation-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism analyses showed that the expression of E-cadherin was downregulated in parallel with promoter hypermethylation. The use of a bisulfite-modified sequence further validated that methylation was observed in 22.6 +/- 38.7% (mean +/- 1 SD) of cytosines in carcinoma cells negligibly expressing E-cadherin, in contrast to 7.5 +/- 1.8% in E-cadherin-expressing cells. Treatment with a demethylating reagent, 5-azacytidine, induced upregulation of E-cadherin in some E-cadherin-expressing carcinoma cell lines but not in others. The finding that the unresponsive cell lines retained high expression of SIP1 supports the repressive effect of SIP1 on E-cadherin expression regardless of promoter hypermethylation. Collectively, the overall results suggest the dynamic but differential regulation of E-cadherin by epigenetic aberrations in the pathology of oral carcinomas.

  4. Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands

    PubMed Central

    Talhaoui, Ibtissam; Couve, Sophie; Gros, Laurent; Ishchenko, Alexander A.; Matkarimov, Bakhyt; Saparbaev, Murat K.

    2014-01-01

    The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N6-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA→CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes. PMID:24692658

  5. A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer.

    PubMed

    Vollan, Hans Kristian Moen; Rueda, Oscar M; Chin, Suet-Feung; Curtis, Christina; Turashvili, Gulisa; Shah, Sohrab; Lingjærde, Ole Christian; Yuan, Yinyin; Ng, Charlotte K; Dunning, Mark J; Dicks, Ed; Provenzano, Elena; Sammut, Stephen; McKinney, Steven; Ellis, Ian O; Pinder, Sarah; Purushotham, Arnie; Murphy, Leigh C; Kristensen, Vessela N; Brenton, James D; Pharoah, Paul D P; Børresen-Dale, Anne-Lise; Aparicio, Samuel; Caldas, Carlos

    2015-01-01

    Complex focal chromosomal rearrangements in cancer genomes, also called "firestorms", can be scored from DNA copy number data. The complex arm-wise aberration index (CAAI) is a score that captures DNA copy number alterations that appear as focal complex events in tumors, and has potential prognostic value in breast cancer. This study aimed to validate this DNA-based prognostic index in breast cancer and test for the first time its potential prognostic value in ovarian cancer. Copy number alteration (CNA) data from 1950 breast carcinomas (METABRIC cohort) and 508 high-grade serous ovarian carcinomas (TCGA dataset) were analyzed. Cases were classified as CAAI positive if at least one complex focal event was scored. Complex alterations were frequently localized on chromosome 8p (n = 159), 17q (n = 176) and 11q (n = 251). CAAI events on 11q were most frequent in estrogen receptor positive (ER+) cases and on 17q in estrogen receptor negative (ER-) cases. We found only a modest correlation between CAAI and the overall rate of genomic instability (GII) and number of breakpoints (r = 0.27 and r = 0.42, p < 0.001). Breast cancer specific survival (BCSS), overall survival (OS) and ovarian cancer progression free survival (PFS) were used as clinical end points in Cox proportional hazard model survival analyses. CAAI positive breast cancers (43%) had higher mortality: hazard ratio (HR) of 1.94 (95%CI, 1.62-2.32) for BCSS, and of 1.49 (95%CI, 1.30-1.71) for OS. Representations of the 70-gene and the 21-gene predictors were compared with CAAI in multivariable models and CAAI was independently significant with a Cox adjusted HR of 1.56 (95%CI, 1.23-1.99) for ER+ and 1.55 (95%CI, 1.11-2.18) for ER- disease. None of the expression-based predictors were prognostic in the ER- subset. We found that a model including CAAI and the two expression-based prognostic signatures outperformed a model including the 21-gene and 70-gene signatures but excluding CAAI. Inclusion of CAAI in the

  6. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas.

    PubMed

    Oster, Bodil; Thorsen, Kasper; Lamy, Philippe; Wojdacz, Tomasz K; Hansen, Lise Lotte; Birkenkamp-Demtröder, Karin; Sørensen, Karina D; Laurberg, Søren; Orntoft, Torben F; Andersen, Claus L

    2011-12-15

    In our study, whole-genome methylation arrays were applied to identify novel genes with tumor specific DNA methylation of promoter CpG islands in pre-malignant and malignant colorectal lesions. Using a combination of Illumina HumanMethylation27 beadchips, Methylation-Sensitive High Resolution Melting (MS-HRM) analysis, and Exon arrays (Affymetrix) the DNA methylation pattern of ∼14,000 genes and their transcript levels were investigated in six normal mucosas, six adenomas and 30 MSI and MSS carcinomas. Sixty eight genes with tumor-specific hypermethylation were identified (p < 0.005). Identified hypermethylated sites were validated in an independent sample set of eight normal mucosas, 12 adenomas, 40 MSS and nine MSI cancer samples. The methylation patterns of 15 selected genes, hypermethylated in adenomas and carcinomas (FLI1, ST6GALNAC5, TWIST1, ADHFE1, JAM2, IRF4, CNRIP1, NRG1 and EYA4), in carcinomas only (ABHD9, AOX1 and RERG), or in MSI but not MSS carcinomas (RAMP2, DSC3 and MLH1) were validated using MS-HRM. Four of these genes (MLH1, AOX1, EYA4 and TWIST1) had previously been reported to be hypermethylated in CRC. Eleven genes, not previously known to be affected by CRC specific hypermethylation, were identified and validated. Inverse correlation to gene expression was observed for six of the 15 genes with Spearman correlation coefficients ranging from -0.39 to -0.60. For six of these genes the altered methylation patterns had a profound transcriptional association, indicating that methylation of these genes may play a direct regulatory role. The hypermethylation changes often occurred already in adenomas, indicating that they may be used as biomarkers for early detection of CRC.

  7. The clinicopathological significance of RUNX3 hypermethylation and mRNA expression in human breast cancer, a meta-analysis.

    PubMed

    Song, Xiao-Yun; Li, Bo-Yan; Zhou, En-Xiang; Wu, Feng-Xia

    2016-01-01

    Aberrant promoter methylation of RUNX3 has been reported in several tumors including human breast cancer (BC). However, the association between RUNX3 hypermethylation and incidence of BC remains elusive. In this study, a detailed literature search was performed in Medline and Google Scholar for related research publications. Analysis of pooled data were executed. Odds ratios with corresponding confidence intervals were determined and summarized, respectively. Finally, 13 studies were identified for the meta-analysis. Analysis of the pooled data showed that RUNX3 hypermethylation was significantly higher in both ductal carcinoma in situ and invasive ductal carcinoma (IDC) than in normal breast tissues. In addition, RUNX3 methylation was significantly higher in IDC than in benign tumor. However, RUNX3 methylation was not significantly higher in IDC than in ductal carcinoma in situ. We also determined that RUNX3 hypermethylation was significantly higher in ER positive BC than in ER negative BC. In addition, high RUNX3 mRNA expression was found to be correlated with better overall survival and relapse-free survival for all BC patients. Our results strongly support that RUNX3 hypermethylation may play an important role in BC incidence. RUNX3 methylation is a valuable early biomarker for the diagnosis of BC. Further large-scale studies will provide more insight into the role of RUNX3 hypermethylation in the carcinogenesis and clinical diagnosis of BC patients.

  8. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency

    PubMed Central

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J.; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A.; Puffenberger, Erik G.; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status. PMID:26974671

  9. Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency.

    PubMed

    Motzek, Antje; Knežević, Jelena; Switzeny, Olivier J; Cooper, Alexis; Barić, Ivo; Beluzić, Robert; Strauss, Kevin A; Puffenberger, Erik G; Mudd, S Harvey; Vugrek, Oliver; Zechner, Ulrich

    2016-01-01

    S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blood samples from patients with AHCY deficiency. Global DNA methylation was increased in two of three analysed patients. In addition, we analysed the DNA methylation levels at differentially methylated regions (DMRs) of six imprinted genes (MEST, SNRPN, LIT1, H19, GTL2 and PEG3) as well as Alu and LINE1 repetitive elements in seven patients. Three patients showed a hypermethylation in up to five imprinted gene DMRs. Abnormal methylation in Alu and LINE1 repetitive elements was not observed. We conclude that DNA hypermethylation seems to be a frequent but not a constant feature associated with AHCY deficiency that affects different genomic regions to different degrees. Thus AHCY deficiency may represent an ideal model disease for studying the molecular origins and biological consequences of DNA hypermethylation due to impaired cellular methylation status.

  10. Differential role of gene hypermethylation in adenocarcinomas, squamous cell carcinomas and cervical intraepithelial lesions of the uterine cervix.

    PubMed

    Blanco-Luquin, Idoia; Guarch, Rosa; Ojer, Amaya; Pérez-Janices, Noemí; Martín-Sánchez, Esperanza; Maria-Ruiz, Sergio; Monreal-Santesteban, Iñaki; Blanco-Fernandez, Laura; Pernaut-Leza, Eduardo; Escors, David; Guerrero-Setas, David

    2015-09-01

    Cervical cancer is the third most common cancer in women worldwide. The hypermethylation of P16, TSLC-1 and TSP-1 genes was analyzed in squamous cell carcinomas (SCC), cervical intraepithelial lesions (CIN) and adenocarcinomas (ADC) of the uterine cervix (total 181 lesions). Additionally human papillomavirus (HPV) type, EPB41L3, RASSF1 and RASSF2 hypermethylation were tested in ADC and the results were compared with those obtained previously by our group in SCC. P16, TSLC-1 and TSP-1 hypermethylation was more frequent in SCCs than in CINs. These percentages and the corresponding ones for EPB41L3, RASSF1 and RASSF2 genes were also higher in SCCs than in ADCs, except for P16. The presence of HPV in ADCs was lower than reported previously in SCC and CIN. Patients with RASSF1A hypermethylation showed significantly longer disease-free survival (P = 0.015) and overall survival periods (P = 0.009) in ADC patients. To our knowledge, this is the first description of the EPB41L3 and RASSF2 hypermethylation in ADCs. These results suggest that the involvement of DNA hypermethylation in cervical cancer varies depending on the histological type, which might contribute to explaining the different prognosis of patients with these types of tumors.

  11. A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms

    PubMed Central

    Bibikova, Marina; Wickham-Garcia, Eliza; Agirre, Xabier; Alvarez, Sara; Brüggemann, Monika; Bug, Stefanie; Calasanz, Maria J.; Deckert, Martina; Dreyling, Martin; Du, Ming Q.; Dürig, Jan; Dyer, Martin J. S.; Fan, Jian-Bing; Gesk, Stefan; Hansmann, Martin-Leo; Harder, Lana; Hartmann, Sylvia; Klapper, Wolfram; Küppers, Ralf; Montesinos-Rongen, Manuel; Nagel, Inga; Pott, Christiane; Richter, Julia; Román-Gómez, José; Seifert, Marc; Stein, Harald; Suela, Javier; Trümper, Lorenz; Vater, Inga; Prosper, Felipe; Haferlach, Claudia; Cigudosa, Juan Cruz; Siebert, Reiner

    2009-01-01

    Background Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play

  12. Variable maternal methylation overlapping the nc886/vtRNA2-1 locus is locked between hypermethylated repeats and is frequently altered in cancer

    PubMed Central

    Romanelli, Valeria; Nakabayashi, Kazuhiko; Vizoso, Miguel; Moran, Sebastián; Iglesias-Platas, Isabel; Sugahara, Naoko; Sugahara, Naoko; Simón, Carlos; Simón, Carlos; Hata, Kenichiro; Hata, Kenichiro; Esteller, Manel; Esteller, Manel; Court, Franck; Court, Franck; Monk, David; Monk, David

    2014-01-01

    Cancer is as much an epigenetic disease as a genetic one; however, the interplay between these two processes is unclear. Recently, it has been shown that a large proportion of DNA methylation variability can be explained by allele-specific methylation (ASM), either at classical imprinted loci or those regulated by underlying genetic variants. During a recent screen for imprinted differentially methylated regions, we identified the genomic interval overlapping the non-coding nc886 RNA (previously known as vtRNA2-1) as an atypical ASM that shows variable levels of methylation, predominantly on the maternal allele in many tissues. Here we show that the nc886 interval is the first example of a polymorphic imprinted DMR in humans. Further analysis of the region suggests that the interval subjected to ASM is approximately 2 kb in size and somatically acquired. An in depth analysis of this region in primary cancer samples with matching normal adjacent tissue from the Cancer Genome Atlas revealed that aberrant methylation in bladder, breast, colon and lung tumors occurred in approximately 27% of cases. Hypermethylation occurred more frequently than hypomethylation. Using additional normal-tumor paired samples we show that on rare occasions the aberrant methylation profile is due to loss-of-heterozygosity. This work therefore suggests that the nc886 locus is subject to variable allelic methylation that undergoes cancer-associated epigenetic changes in solid tumors. PMID:24589629

  13. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium

    SciTech Connect

    Zhang, Chen; Liang, Yihuai; Lei, Lijian; Zhu, Guoying; Chen, Xiao; Jin, Taiyi; Wu, Qing

    2013-08-15

    Exposure to cadmium (Cd) can affect both DNA methylation and renal function, but there are few examples of the association between epigenetic markers and Cd-induced kidney damage. It has been suggested that hypermethylation of the genes RASAL1 and KLOTHO is associated with renal fibrogenesis. To investigate whether hypermethylation of RASAL1 and KLOTHO in peripheral blood DNA can be associated with Cd exposure and/or Cd-induced renal dysfunction, the degrees of methylation of RASAL1 and KLOTHO in peripheral blood DNA from 81 residents in Cd-polluted and non-polluted areas were measured using bisulfate-PCR-pyrosequencing. Changes in blood cadmium (BCd), urinary cadmium (UCd), and kidney parameters were measured, and the glomerular filtration rate (eGFR) was estimated. The levels of BCd and UCd correlated positively with the levels of DNA methylation in RASAL1 and in KLOTHO. The more heavily exposed residents (BCd, 4.23–13.22 μg/L; UCd, 8.65–32.90 μg/g creatinine) exhibited obvious renal dysfunction. Notably, when Cd concentration in blood and urine was adjusted, the increased methylation level in RASAL1 was inversely correlated with eGFR (P < 0.01) but the relationship between hypermethylation of KLOTHO and eGFR was not statistically significant. The methylation of RASAL1 increased along with the increased abnormal prevalence of eGFR. Our findings suggest that Cd exposure can induce the hypermethylation of RASAL1 and KLOTHO. Hypermethylation of RASAL1 may be an indicator of the progress for chronic kidney disease. - Highlights: • A long term heavily Cd exposure induced renal dysfunction. • Cd exposure correlated positively with DNA methylation in RASAL1 and KLOTHO. • Hypermethylation of RASAL1 correlated with adjusted renal function indicators.

  14. Downregulation of miR-150 Expression by DNA Hypermethylation Is Associated with High 2-Hydroxy-(4-methylthio)butanoic Acid-Induced Hepatic Cholesterol Accumulation in Nursery Piglets.

    PubMed

    Jia, Yimin; Ling, Mingfa; Zhang, Luchu; Jiang, Shuxia; Sha, Yusheng; Zhao, Ruqian

    2016-10-12

    Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.

  15. DNA methylation abnormalities in congenital heart disease.

    PubMed

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A

    2015-01-01

    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  16. Xeroderma pigmentosum group C gene expression is predominantly regulated by promoter hypermethylation and contributes to p53 mutation in lung cancers.

    PubMed

    Wu, Y-H; Tsai Chang, J-H; Cheng, Y-W; Wu, T-C; Chen, C-Y; Lee, H

    2007-07-19

    Reduced DNA repair capability is associated with developing lung cancer, especially in nonsmokers. XPC participates in the initial recognition of DNA damage during the DNA nucleotide excision repair process. We hypothesize that inactivation of XPC by promoter hypermethylation may play an important role in the reduction of DNA repair capability to cause p53 mutation during lung carcinogenesis. In this report we demonstrate that hypermethylation of 17 CpG islands between -175 and -1 of the XPC promoter correlates very well with XPC expression levels in eight lung cancer cell lines. When cells with hypermethylated XPC promoters were treated with the demethylating agent 5-aza-2'-deoxycytidine, XPC expression was de-repressed. Interestingly, XPC hypermethylation was found in 4 of 5 (80%) lung cancer cell lines harbored p53 mutation, but not observed in two lung cancer cells which had a wild-type p53 gene. Among the analysis of the hypermethylation status of 158 lung tumors, XPC hypermethylation is more common in nonsmokers (39 of 94, 41%) than in smokers (14 of 64, 22%; P=0.010). Additionally, XPC hypermethylation is more often with G --> T or G --> C mutations in the p53 gene. To verify whether XPC inactivation is involved in the occurrence of p53 mutation, XPC gene of A549 cells was knockdown by a small interference RNA and then XPC-inactivated cells were treated with benzo[a]pynrene for different passages. Surprisingly, G --> T mutation in p53 gene at codon 215 was indeed detected in XPC-inactivated A549 cells of passages 15 and confirmed by loss of transcription activity of mdm2. These results show that hypermethylation of the XPC promoter may play a crucial role in XPC inactivation, which may partly contribute to the occurrence of p53 mutations during lung tumorigenesis, especially nonsmokers.

  17. The role of mutation of metabolism-related genes in genomic hypermethylation.

    PubMed

    Waterfall, Joshua J; Killian, J Keith; Meltzer, Paul S

    2014-12-05

    Genetic mutations, metabolic dysfunction, and epigenetic misregulation are commonly considered to play distinct roles in tumor development and maintenance. However, intimate relationships between these mechanisms are now emerging. In particular, mutations in genes for the core metabolic enzymes IDH, SDH, and FH are significant drivers of diverse tumor types. In each case, the resultant accumulation of particular metabolites inhibits TET enzymes responsible for oxidizing 5-methylcytosine, leading to pervasive DNA hypermethylation.

  18. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  19. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis.

    PubMed

    Wu, Yan; Strawn, Estil; Basir, Zainab; Halverson, Gloria; Guo, Sun-Wei

    2006-01-01

    The physiological effects of progesterone (P) are mediated by two isoforms of progesterone receptors (PRs): PR-A and PR-B. Progestins have long been used in the treatment of endometriosis but unfortunately the relief of pain is relatively short-term. In addition, about nine percent of women with endometriosis simply do not respond to progestin therapy due to unknown reasons. In fact, a general tendency for relative progesterone resistance within eutopic and ectopic endometrium of women with endometriosis and also the downregulation of PR-B, but not PR-A, in endometriosis have been noted. Since promoter hypermethylation is well-documented to be associated with transcriptional silencing, we sought to determine the methylation status of the PR-A and PR-B promoter regions in the epithelial component of endometriotic implants using a combination of laser capture microdissection (LCM), methylation specific PCR, and bisulfite sequencing. We found that the promoter region of PR-B, but not PR-A, is hypermethylated in endometriosis as compared with controls. In addition, the PR-B expression was significantly reduced in the ectopic endometrium. Our finding suggests that progesterone resistance in endometriosis in general and the down regulation of PR-B, but not PR-A, in particular, are a result of promoter hypermethylation of PR-B, but not PR-A. This, in conjunction with our reported aberrant methylation of HOXA10 in the eutopic endometrium of women with endometriosis, strongly suggests that endometriosis is an epigenetic disease. This perspective should potentially open up new avenues for the delineation of pathogenesis of endometriosis, and might also lead to novel ways to treat the disease through reversing aberrant methylation via pharmacological means.

  20. Aberrant reduction of telomere repetitive sequences in plasma cell-free DNA for early breast cancer detection.

    PubMed

    Wu, Xi; Tanaka, Hiromi

    2015-10-06

    Excessive telomere shortening is observed in breast cancer lesions when compared to adjacent non-cancerous tissues, suggesting that telomere length may represent a key biomarker for early cancer detection. Because tumor-derived, cell-free DNA (cfDNA) is often released from cancer cells and circulates in the bloodstream, we hypothesized that breast cancer development is associated with changes in the amount of telomeric cfDNA that can be detected in the plasma. To test this hypothesis, we devised a novel, highly sensitive and specific quantitative PCR (qPCR) assay, termed telomeric cfDNA qPCR, to quantify plasma telomeric cfDNA levels. Indeed, the internal reference primers of our design correctly reflected input cfDNA amount (R(2) = 0.910, P = 7.82 × 10(-52)), implying accuracy of this assay. We found that plasma telomeric cfDNA levels decreased with age in healthy individuals (n = 42, R(2) = 0.094, P = 0.048), suggesting that cfDNA is likely derived from somatic cells in which telomere length shortens with increasing age. Our results also showed a significant decrease in telomeric cfDNA level from breast cancer patients with no prior treatment (n = 47), compared to control individuals (n = 42) (P = 4.06 × 10(-8)). The sensitivity and specificity for the telomeric cfDNA qPCR assay was 91.49% and 76.19%, respectively. Furthermore, the telomeric cfDNA level distinguished even the Ductal Carcinoma In Situ (DCIS) group (n = 7) from the healthy group (n = 42) (P = 1.51 × 10(-3)). Taken together, decreasing plasma telomeric cfDNA levels could be an informative genetic biomarker for early breast cancer detection.

  1. DNA methylation as a target of epigenetic therapeutics in cancer.

    PubMed

    Li, Keqin K; Li, Fangcheng; Li, Qiushi S; Yang, Kun; Jin, Bilian

    2013-02-01

    Epigenetic alterations have been implicated in the development and progression of human cancer. It is noteworthy that epigenetic modifications, in contrast to genetic mutations, are intrinsically reversible. This triggers an impressive interest of researchers in treatment of cancer patients via targeting epigenetic mechanisms, leading to subsequent intensive investigations of epigenetic drugs as a novel therapeutic intervention. DNA methylation, the major form of epigenetic modifications, is catalyzed by the maintenance DNA methyltransferase (DNMT) 1 and/or the de novo methyltransferases DNMT3A and DNMT3B. Aberrant expression of DNMTs and disruption of DNA methylation are closely associated with multiple forms of cancer, although the exact mechanisms underlying this link remain elusive. An array of tumor suppressor genes (TSGs) frequently sustain promoter hypermethylation, which results in epigenetic silencing of these genes and makes cancer cells acquire growth advantages. DNA demethylating agents, re-activating TSGs via inhibiting hypermethylation of their promoter regions, are currently being tested in clinical trials, and several of them are already applied in clinics. DNA demethylating agents, used either alone or in combination with other agents, such as chemotherapeutic drugs and the histone deacetylase inhibitors, have shown to be effective in treatment of cancer, although only in a small set of patients. In this review, we examine and discuss the most recent advances in epigenetic therapy of cancer, with a focus on DNA demethylating agents.

  2. Associations of risk factors obesity and occupational airborne exposures with CDKN2A/p16 aberrant DNA methylation in esophageal cancer patients.

    PubMed

    Mohammad Ganji, S; Miotto, E; Callegari, E; Sayehmiri, K; Fereidooni, F; Yazdanbod, M; Rastgar-Jazii, F; Negrini, M

    2010-09-01

    It is known that obesity and occupational airborne exposure such as dust are among risk factors of esophageal cancer development, in particular squamous cell carcinoma (SCC) of esophagus. Here, we tested whether these factors could also affect aberrant DNA methylation. DNAs from 44 fresh tumor tissues and 19 non-tumor adjacent normal tissues, obtained from 44 patients affected by SCC of esophagus (SCCE), were studied for methylation at the CDKN2A/p16 gene promoter by methylation-specific polymerase chain reaction assay. Statistical methods were used to assess association of promoter methylation with biopathological, clinical, and personal information data, including obesity and airborne exposures. Methylation at the CDKN2A/p16 gene promoter was detected in 12 out of 44 tumor samples. None of the non-tumor tissues exhibited the aberrant methylation. Our results confirmed previously described significant association with low tumor stage (P= 0.002); in addition, we found that obesity (P= 0.001) and occupational exposure (P= 0.008) were both significantly associated with CDKN2A/p16 promoter methylation. This study provides evidence that obesity and occupational exposure increase the risk of developing esophageal cancer through an enhancement of CDKN2A/p16 promoter methylation.

  3. Aberrant promoter methylation of cancer-related genes in human breast cancer

    PubMed Central

    Wu, Liang; Shen, Ye; Peng, Xianzhen; Zhang, Simin; Wang, Ming; Xu, Guisheng; Zheng, Xianzhi; Wang, Jianming; Lu, Cheng

    2016-01-01

    The clinical relevance of aberrant DNA methylation is being increasingly recognized in breast cancer. The present study aimed to evaluate the promoter methylation status of seven candidate genes and to explore their potential use as a biomarker for the diagnosis of breast cancer. A total of 70 Chinese patients with breast cancer were recruited, and matched with 20 patients with benign breast disease (BBD). Methylation-specific polymerase chain reaction was performed to measure the methylation status of selected genes. The protein expression of candidate genes was determined by immunohistochemistry. Hypermethylation of Breast cancer 1, early onset; DNA repair associated (BRCA1), glutathione S-transferase pi 1 (GSTP1), cyclin dependent kinase inhibitor 2A, O-6-methylguanine-DNA methyltransferase, phosphatase and tensin homolog, retinoic acid receptor beta 2 and cyclin D2 was observed to be more common in cancerous tissues (24.3, 31.4, 40.0, 27.1, 48.6, 55.7 and 67.1%, respectively) as compared with BBD controls (0.0, 0.0, 20.0, 25.0, 40.0, 40.0 and 45.0%, respectively). Immunohistochemical analysis demonstrated a correlation between the methylation of the target gene and downregulation of protein expression. When BRCA1 and GSTP1 were combined as the biomarker, the area under the receiver operating characteristic curve reached 0.721 (95% confidence interval, 0.616–0.827). The present findings indicated that promoter methylation of cancer-related genes was frequently observed in patients with breast cancer and was associated with various clinical features. Hypermethylation of BRCA1 and GSTP1 may be used as promising biomarkers for breast cancer. PMID:28105221

  4. DNA methyltransferase-1 inhibitors as epigenetic therapy for cancer.

    PubMed

    Singh, Varinder; Sharma, Prince; Capalash, Neena

    2013-05-01

    DNA methylation is an epigenetic modification involved in gene expression regulation. In cancer, the DNA methylation pattern becomes aberrant, causing an array of tumor suppressor genes to undergo promoter hypermethylation and become transcriptionally silent. Reexpression of methylation silenced tumor suppressor genes by inhibiting the DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) has emerged as an effective strategy against cancer. The expression of DNA methyltransferase 1 (DNMT1) being high in S-phase of cell cycle makes it a specific target for methylation inhibition in rapidly dividing cells as in cancer. This review discusses nucleoside analogues (azacytidine, decitabine, zebularine, SGI-110, CP-4200), non-nucleoside ihibitors both synthetic (hydralazine, RG108, procaine, procainamide, IM25, disulfiram) and natural compounds (curcumin, genistein, EGCG, resveratrol, equol, parthenolide) which act through different mechanisms to inhibit DNMTs. The issues of bioavailability, toxicity, side effects, hypomethylation resistance and combinatorial therapies have also been highlighted.

  5. Inferring a role for methylation of intergenic DNA in the regulation of genes aberrantly expressed in precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Almamun, Md; Kholod, Olha; Stuckel, Alexei J; Levinson, Benjamin T; Johnson, Nathan T; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2017-01-17

    A complete understanding of the mechanisms involved in the development of pre-B ALL is lacking. In this study, we integrated DNA methylation data and gene expression data to elucidate the impact of aberrant intergenic DNA methylation on gene expression in pre-B ALL. We found a subset of differentially methylated intergenic loci that were associated with altered gene expression in pre-B ALL patients. Notably, 84% of these regions were also bound by transcription factors (TF) known to play roles in differentiation and B-cell development in a lymphoblastoid cell line. Further, an overall downregulation of eRNA transcripts was observed in pre-B ALL patients and these transcripts were associated with the downregulation of putative target genes involved in B-cell migration, proliferation, and apoptosis. The identification of novel putative regulatory regions highlights the significance of intergenic DNA sequences and may contribute to the identification of new therapeutic targets for the treatment of pre-B ALL.

  6. Binding of 14-3-3 reader proteins to phosphorylated DNMT1 facilitates aberrant DNA methylation and gene expression

    PubMed Central

    Estève, Pierre-Olivier; Zhang, Guoqiang; Ponnaluri, V.K. Chaithanya; Deepti, Kanneganti; Chin, Hang Gyeong; Dai, Nan; Sagum, Cari; Black, Karynne; Corrêa, Ivan R.; Bedford, Mark T.; Cheng, Xiaodong; Pradhan, Sriharsa

    2016-01-01

    Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion. PMID:26553800

  7. Concurrent Hypermethylation of SFRP2 and DKK2 Activates the Wnt/β-Catenin Pathway and Is Associated with Poor Prognosis in Patients with Gastric Cancer

    PubMed Central

    Wang, Hao; Duan, Xiang-Long; Qi, Xiao-Li; Meng, Lei; Xu, Yi-Song; Wu, Tong; Dai, Peng-Gao

    2017-01-01

    Aberrant hypermethylation of Wnt antagonists has been observed in gastric cancer. A number of studies have focused on the hypermethylation of a single Wnt antagonist and its role in regulating the activation of signaling. However, how the Wnt antagonists interacted to regulate the signaling pathway has not been reported. In the present study, we systematically investigated the methylation of some Wnt antagonist genes (SFRP2, SFRP4, SFRP5, DKK1, DKK2, and APC) and their regulatory role in carcinogenesis. We found that aberrant promoter methylation of SFRP2, SFRP4, DKK1, and DKK2 was significantly increased in gastric cancer. Moreover, concurrent hypermethylation of SFRP2 and DKK2 was observed in gastric cancer and this was significantly associated with increased expression of β-catenin, indicating that the joint inactivation of these two genes promoted the activation of the Wnt signaling pathway. Further analysis using a multivariate Cox proportional hazards model showed that DKK2 methylation was an independent prognostic factor for poor overall survival, and the predictive value was markedly enhanced when the combined methylation status of SFRP2 and DKK2 was considered. In addition, the methylation level of SFRP4 and DKK2 was correlated with the patient’s age and tumor differentiation, respectively. In conclusion, epigenetic silencing of Wnt antagonists was associated with gastric carcinogenesis, and concurrent hypermethylation of SFRP2 and DKK2 could be a potential marker for a prognosis of poor overall survival. PMID:28152305

  8. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria.

    PubMed

    Dobrowolski, S F; Lyons-Weiler, J; Spridik, K; Vockley, J; Skvorak, K; Biery, A

    2016-09-01

    Phenylalanine hydroxylase deficient phenylketonuria (PKU) is the paradigm for a treatable inborn error of metabolism where maintaining plasma phenylalanine (Phe) in the therapeutic range relates to improved clinical outcomes. While Phe is the presumed intoxicating analyte causal in neurologic damage, the mechanism(s) of Phe toxicity has remained elusive. Altered DNA methylation is a recognized response associated with exposure to numerous small molecule toxic agents. Paralleling this effect, we hypothesized that chronic Phe over-exposure in the brain would lead to aberrant DNA methylation with secondary influence upon gene regulation that would ultimately contribute to PKU neuropathology. The PAH(enu2) mouse models human PKU with intrinsic hyperphenylalaninemia, abnormal response to Phe challenge, and neurologic deficit. To examine this hypothesis, we assessed DNA methylation patterns in brain tissues using methylated DNA immunoprecipitation and paired end sequencing in adult PAH(enu2) animals maintained under either continuous dietary Phe restriction or chronic hyperphenylalaninemia. Heterozygous PAH(enu2/WT) litter mates served as controls for normal Phe exposure. Extensive repatterning of DNA methylation was observed in brain tissue of hyperphenylalaninemic animals while Phe restricted animals displayed an attenuated pattern of aberrant DNA methylation. Affected gene coding regions displayed aberrant hypermethylation and hypomethylation. Gene body methylation of noncoding RNA genes was observed and among these microRNA genes were prominent. Of particular note, observed only in hyperphenylalaninemic animals, was hypomethylation of miRNA genes within the imprinted Dlk1-Dio3 locus on chromosome 12. Aberrant methylation of microRNA genes influenced their expression which has secondary effects upon the expression of targeted protein coding genes. Differential hypermethylation of gene promoters was exclusive to hyperphenylalaninemic PAH(enu2) animals. Genes with

  9. DNA methylation markers for oral pre-cancer progression: A critical review.

    PubMed

    Shridhar, Krithiga; Walia, Gagandeep Kaur; Aggarwal, Aastha; Gulati, Smriti; Geetha, A V; Prabhakaran, Dorairaj; Dhillon, Preet K; Rajaraman, Preetha

    2016-02-01

    Although oral cancers are generally preceded by a well-established pre-cancerous stage, there is a lack of well-defined clinical and morphological criteria to detect and signal progression from pre-cancer to malignant tumours. We conducted a critical review to summarize the evidence regarding aberrant DNA methylation patterns as a potential diagnostic biomarker predicting progression. We identified all relevant human studies published in English prior to 30th April 2015 that examined DNA methylation (%) in oral pre-cancer by searching PubMed, Web-of-Science and Embase databases using combined key-searches. Twenty-one studies (18-cross-sectional; 3-longitudinal) were eligible for inclusion in the review, with sample sizes ranging from 4 to 156 affected cases. Eligible studies examined promoter region hyper-methylation of tumour suppressor genes in pathways including cell-cycle-control (n=15), DNA-repair (n=7), cell-cycle-signalling (n=4) and apoptosis (n=3). Hyper-methylated loci reported in three or more studies included p16, p14, MGMT and DAPK. Two longitudinal studies reported greater p16 hyper-methylation in pre-cancerous lesions transformed to malignancy compared to lesions that regressed (57-63.6% versus 8-32.1%; p<0.01). The one study that explored epigenome-wide methylation patterns reported three novel hyper-methylated loci (TRHDE; ZNF454; KCNAB3). The majority of reviewed studies were small, cross-sectional studies with poorly defined control groups and lacking validation. Whilst limitations in sample size and study design preclude definitive conclusions, current evidence suggests a potential utility of DNA methylation patterns as a diagnostic biomarker for oral pre-cancer progression. Robust studies such as large epigenome-wide methylation explorations of oral pre-cancer with longitudinal tracking are needed to validate the currently reported signals and identify new risk-loci and the biological pathways of disease progression.

  10. Hypermethylation of the p16 gene in normal oral mucosa of smokers.

    PubMed

    von Zeidler, S Ventorin; Miracca, E C; Nagai, M A; Birman, E G

    2004-11-01

    The oral cavity is the sixth most common anatomical localization of head and neck carcinoma in men. Detection of oral carcinomas in the early asymptomatic stages improves cure rates and the quality of life. Tobacco smoking and alcohol drinking are the most important known risk factors for the development of head and neck tumors, suggesting that the exposure to these risk factors may increase the predisposition for genetic and epigenetic alterations, such as DNA methylation. The presence of methylated CpG islands in the promoter region of human genes can suppress their expression due to the presence of 5-methylcytosine that interferes with the binding of transcription factors or other DNA-binding proteins repressing transcription activity. Hypermethylation leading to the inactivation of some tumor suppressor genes, such as p16, has been pointed out as an initial event in head and neck cancer. Our aim was to evaluate an early diagnostic method of oral pre-cancerous lesions through the analysis of methylation of the p16 gene. DNA samples from normal oral mucosa and posterior tongue border from 258 smokers, without oral cancer, were investigated for the occurrence of p16 promoter hypermethylation. The methylation status of the p16 gene was analyzed using MS-PCR (methylation-sensitive restriction enzymes and PCR amplification), MSP (Methylation-specific PCR) or direct DNA sequence of bisulfite modified DNA. Hyper-methylation was detected in 9.7% (25/258) of the cases analyzed. These findings provide further evidence that epigenetic alteration, leading to the inactivation of the p16 tumor suppressor gene is an early event that might confer cell growth advantages contributing to the tumorigenic process. Thus, the detection of abnormal p16 methylation pattern may be a valuable tool for early oral cancer detection.

  11. RUNX3 promoter hypermethylation is frequent in leukaemia cell lines and associated with acute myeloid leukaemia inv(16) subtype.

    PubMed

    Estécio, Marcos R H; Maddipoti, Sirisha; Bueso-Ramos, Carlos; DiNardo, Courtney D; Yang, Hui; Wei, Yue; Kondo, Kimie; Fang, Zhihong; Stevenson, William; Chang, Kun-Sang; Pierce, Sherry A; Bohannan, Zachary; Borthakur, Gautam; Kantarjian, Hagop; Garcia-Manero, Guillermo

    2015-05-01

    Correlative and functional studies support the involvement of the RUNX gene family in haematological malignancies. To elucidate the role of epigenetics in RUNX inactivation, we evaluated promoter DNA methylation of RUNX1, 2, and 3 in 23 leukaemia cell lines and samples from acute myeloid leukaemia (AML), acute lymphocytic leukaemia (ALL) and myelodysplatic syndromes (MDS) patients. RUNX1 and RUNX2 gene promoters were mostly unmethylated in cell lines and clinical samples. Hypermethylation of RUNX3 was frequent among cell lines (74%) and highly variable among patient samples, with clear association to cytogenetic status. High frequency of RUNX3 hypermethylation (85% of the 20 studied cases) was found in AML patients with inv(16)(p13.1q22) compared to other AML subtypes (31% of the other 49 cases). RUNX3 hypermethylation was also frequent in ALL (100% of the six cases) but low in MDS (21%). In support of a functional role, hypermethylation of RUNX3 was correlated with low levels of protein, and treatment of cell lines with the DNA demethylating agent, decitabine, resulted in mRNA re-expression. Furthermore, relapse-free survival of non-inv(16)(p13.1q22) AML patients without RUNX3 methylation was significantly better (P = 0·016) than that of methylated cases. These results suggest that RUNX3 silencing is an important event in inv(16)(p13.1q22) leukaemias.

  12. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    PubMed

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen.

  13. Loss of 6q or 8p23 is associated with the total number of DNA copy number aberrations in adenoid cystic carcinoma.

    PubMed

    Oga, Atsunori; Uchida, Kenichiro; Nakao, Motonao; Kawauchi, Shigeto; Furuya, Tomoko; Chochi, Yasuyo; Ikemoto, Kenzo; Okada, Takae; Ueyama, Yoshiya; Sasaki, Kohsuke; Yousefpour, Fatemeh

    2011-12-01

    We analyzed 10 adenoid cystic carcinomas (ACCs) of the salivary glands by array-based comparative genomic hybridization (a-CGH) using DNA chips spotted with 4,030 bacterial artificial chromosome clones. After the data smoothing procedure was applied, a total of 88 DNA copy number aberrations (DCNAs) were detected. The frequent (≥30%) DCNAs were loss of 6q23-27 and 8p23, and gains of 6p, 6q23, 8p23 and 22q13. High-level gains were detected on 12q15, including MDM2 in two cases. These two cases showed an immunohistochemically high-level (>50%) expression of MDM2 and a low-level expression of p53 (<20%). Furthermore, the total number of DCNAs was significantly greater in ACCs with loss of 6q compared to other ACCs, and in ACCs without the loss of 8p23 compared to other ACCs, respectively. Although limitations exist, a-CGH detected several candidate chromosomal imbalances associated with accumulation of DCNAs in ACCs.

  14. Genome-Wide Loss of Heterozygosity and DNA Copy Number Aberration in HPV-Negative Oral Squamous Cell Carcinoma and Their Associations with Disease-Specific Survival.

    PubMed

    Chen, Chu; Zhang, Yuzheng; Loomis, Melissa M; Upton, Melissa P; Lohavanichbutr, Pawadee; Houck, John R; Doody, David R; Mendez, Eduardo; Futran, Neal; Schwartz, Stephen M; Wang, Pei

    2015-01-01

    Oral squamous cell cancer of the oral cavity and oropharynx (OSCC) is associated with high case-fatality. For reasons that are largely unknown, patients with the same clinical and pathologic staging have heterogeneous response to treatment and different probability of recurrence and survival, with patients with Human Papillomavirus (HPV)-positive oropharyngeal tumors having the most favorable survival. To gain insight into the complexity of OSCC and to identify potential chromosomal changes that may be associated with OSCC mortality, we used Affymtrix 6.0 SNP arrays to examine paired DNA from peripheral blood and tumor cell populations isolated by laser capture microdissection to assess genome-wide loss of heterozygosity (LOH) and DNA copy number aberration (CNA) and their associations with risk factors, tumor characteristics, and oral cancer-specific mortality among 75 patients with HPV-negative OSCC. We found a highly heterogeneous and complex genomic landscape of HPV-negative tumors, and identified regions in 4q, 8p, 9p and 11q that seem to play an important role in oral cancer biology and survival from this disease. If confirmed, these findings could assist in designing personalized treatment or in the creation of models to predict survival in patients with HPV-negative OSCC.

  15. Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies.

    PubMed

    Liu, Xia; Zheng, Hong; Li, Xiaobo; Wang, Siying; Meyerson, Howard J; Yang, Wentian; Neel, Benjamin G; Qu, Cheng-Kui

    2016-01-26

    Gain-of-function (GOF) mutations of protein tyrosine phosphatase nonreceptor type 11 Ptpn11 (Shp2), a protein tyrosine phosphatase implicated in multiple cell signaling pathways, are associated with childhood leukemias and solid tumors. The underlying mechanisms are not fully understood. Here, we report that Ptpn11 GOF mutations disturb mitosis and cytokinesis, causing chromosomal instability and greatly increased susceptibility to DNA damage-induced malignancies. We find that Shp2 is distributed to the kinetochore, centrosome, spindle midzone, and midbody, all of which are known to play critical roles in chromosome segregation and cytokinesis. Mouse embryonic fibroblasts with Ptpn11 GOF mutations show a compromised mitotic checkpoint. Centrosome amplification and aberrant mitosis with misaligned or lagging chromosomes are significantly increased in Ptpn11-mutated mouse and patient cells. Abnormal cytokinesis is also markedly increased in these cells. Further mechanistic analyses reveal that GOF mutant Shp2 hyperactivates the Polo-like kinase 1 (Plk1) kinase by enhancing c-Src kinase-mediated tyrosine phosphorylation of Plk1. This study provides novel insights into the tumorigenesis associated with Ptpn11 GOF mutations and cautions that DNA-damaging treatments in Noonan syndrome patients with germ-line Ptpn11 GOF mutations could increase the risk of therapy-induced malignancies.

  16. Ras regulation of DNA-methylation and cancer

    SciTech Connect

    Patra, Samir Kumar

    2008-04-01

    Genome wide hypomethylation and regional hypermethylation of cancer cells and tissues remain a paradox, though it has received a convincing confirmation that epigenetic switching systems, including DNA-methylation represent a fundamental regulatory mechanism that has an impact on genome maintenance and gene transcription. Methylated cytosine residues of vertebrate DNA are transmitted by clonal inheritance through the strong preference of DNA methyltransferase, DNMT1, for hemimethylated-DNA. Maintenance of methylation patterns is necessary for normal development of mice, and aberrant methylation patterns are associated with many human tumours. DNMT1 interacts with many proteins during cell cycle progression, including PCNA, p53, EZH2 and HP1. Ras family of GTPases promotes cell proliferation by its oncogenic nature, which transmits signals by multiple pathways in both lipid raft dependent and independent fashion. DNA-methylation-mediated repression of DNA-repair protein O6-methylguanine DNA methyltransferase (MGMT) gene and increased rate of K-Ras mutation at codon for amino acids 12 and 13 have been correlated with a secondary role for Ras-effector homologues (RASSFs) in tumourigenesis. Lines of evidence suggest that DNA-methylation associated repression of tumour suppressors and apoptotic genes and ceaseless proliferation of tumour cells are regulated in part by Ras-signaling. Control of Ras GTPase signaling might reduce the aberrant methylation and accordingly may reduce the risk of cancer development.

  17. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses

    PubMed Central

    Winans, Bethany; Nagari, Anusha; Chae, Minho; Post, Christina M.; Ko, Chia-I; Puga, Alvaro; Kraus, W. Lee; Lawrence, B. Paige

    2015-01-01

    Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8+ T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8+ T cells prior to and during infection. Altered transcriptional profiles in CD8+ T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8+ T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life. PMID:25810390

  18. Aberrant Expression of MICO1 and MICO1OS in Deceased Somatic Cell Nuclear Transfer Calves.

    PubMed

    Wang, Guan-Nan; Yang, Wen-Zhi; Xu, Da; Li, Dong-Jie; Zhang, Cui; Chen, Wei-Na; Li, Shi-Jie

    2017-04-06

    Incomplete reprogramming of a donor nucleus following somatic cell nuclear transfer (SCNT) results in aberrant expression of developmentally important genes, and is the primary source of the phenotypic abnormalities observed in cloned animals. Expression of non-coding RNAs in the murine Dlk1-Dio3 imprinted domain was previously shown to correlate with the pluripotency of mouse induced pluripotent stem cells. In this study, we examined the transcription of the bovine orthologs from this locus, MICO1 (Maternal intergenic circadian oscillating 1) and MICO1OS (MICO1 opposite strand), in tissues from artificially inseminated and SCNT calves that died during the perinatal period. A single-nucleotide polymorphism (SNP), a T-to-C transition, was used to analyze the allelic transcription of MICO1. Our results indicate monoallelic expression of the MICO1 C allele among the six analyzed tissues (heart, liver, spleen, lung, kidney, and brain) of artificially inseminated calves, indicating that this gene locus may be imprinted in bovine. Conversely, we observed variable allelic transcription of MICO1 in SCNT calves. We asked if DNA methylation regulated the monoallelic expression of MICO1 and MICO1OS by evaluating the methylation levels of six regions within or around this locus in tissues with normal or aberrant MICO1 transcription; all of the samples from either artificially inseminated or SCNT calves exhibited hypermethylation, implying that DNA methylation may not be involved in regulating its monoallelic expression. Furthermore, three imprinted genes (GTL2, MEG9, and DIO3) nearby MICO1 showed monoallelic expression in SCNT calves with aberrant MICO1 transcription, indicating that not all of the genes in the bovine DLK1-DIO3 domain are mis-regulated. This article is protected by copyright. All rights reserved.

  19. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines

    PubMed Central

    Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura

    2013-01-01

    The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212

  20. DNA copy number aberrations in small-cell lung cancer reveal activation of the focal adhesion pathway

    PubMed Central

    Ocak, S; Yamashita, H; Udyavar, AR; Miller, AN; Gonzalez, AL; Zou, Y; Jiang, A; Yi, Y; Shyr, Y; Estrada, L; Quaranta, V; Massion, PP

    2015-01-01

    Small-cell lung cancer (SCLC) is the most aggressive subtype of lung cancer in its clinical behavior, with a 5-year overall survival as low as 5%. Despite years of research in the field, molecular determinants of SCLC behavior are still poorly understood, and this deficiency has translated into an absence of specific diagnostics and targeted therapeutics. We hypothesized that tumor DNA copy number alterations would allow the identification of molecular pathways involved in SCLC progression. Array comparative genomic hybridization was performed on DNA extracted from 46 formalin-fixed paraffin-embedded SCLC tissue specimens. Genomic profiling of tumor and sex-matched control DNA allowed the identification of 70 regions of copy number gain and 55 regions of copy number loss. Using molecular pathway analysis, we found a strong enrichment in these regions of copy number alterations for 11 genes associated with the focal adhesion pathway. We verified these findings at the genomic, gene expression and protein level. Focal Adhesion Kinase (FAK), one of the central genes represented in this pathway, was commonly expressed in SCLC tumors and constitutively phosphorylated in SCLC cell lines. Those were poorly adherent to most substrates but not to laminin-322. Inhibition of FAK phosphorylation at Tyr397 by a small-molecule inhibitor, PF-573,228, induced a dose-dependent decrease of adhesion and an increase of spreading in SCLC cell lines on laminin-322. Cells that tended to spread also showed a decrease in focal adhesions, as demonstrated by a decreased vinculin expression. These results support the concept that pathway analysis of genes in regions of copy number alterations may uncover molecular mechanisms of disease progression and demonstrate a new role of FAK and associated adhesion pathways in SCLC. Further investigations of FAK at the functional level may lead to a better understanding of SCLC progression and may have therapeutic implications. PMID:20802517

  1. Supplementation of Seaweeds Extracts Suppresses Azoxymethane-induced Aberrant DNA Methylation in Colon and Liver of ICR Mice

    PubMed Central

    Bu, So Young; Kwon, Hoonjeong; Sung, Mi-Kyung

    2014-01-01

    Background: Seamustard and seatangle are commonly consumed seaweeds in Korea and rich sources of non-digestible polysaccharides which possess biological activities. However anti-mutagenic and anti-cancer activities of these seaweeds under physiological condition have not been clarified yet. The objective of this study was to investigate the effect of seaweeds consumption on azoxymethane (AOM) -induced DNA methylation at N7 and O6 position of guanine base, an indicator of DNA damage related to cancer initiation. Methods: Thirty ICR mice were divided into five groups and fed one of the following diets for two weeks: control diet, diet containing 10% water-soluble or water-insoluble fraction of seamustard or seatangle. After two weeks of experimental diet AOM was injected at 6 hours before sacrifice and N7-methylguanine (N7-meG) and O6-methylguanine (O6-meG) from the colon and liver DNA were quantified using a gas chromatography-mass spectroscopy. Results: Water-soluble fractions of both seamustard and seatangle significantly reduced AOM-induced production of N7-meG guanine in colon and liver. Also water-soluble fractions of these seaweeds suppressed the level of methylation at O6-guanine of colon and liver directly responsible for tumorigenesis. While water-insoluble fraction of seamustard suppressed the production of N7-meG in liver this seaweed fraction decreased O6-meG and the ratio of O6/N7-meG in liver. Water insoluble fraction of seatangle decreased both O6- and N7-meG in colon and liver. Supplementation of all seaweeds extracts increased fecal weight of animals and the increase of fecal weight by water-insoluble fraction of seaweeds were higher than that by water-soluble fraction. Conclusion: Seamustard and seatangle intake may effectively prevent colon and liver carcinogenesis by decreasing DNA damage and the mechanism of inhibiting carcinogenesis by seaweeds in a long term study are warranted. PMID:25337591

  2. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia.

    PubMed

    Moon, Ho Jin; Yim, Sung-Vin; Lee, Woon Kyu; Jeon, Yang-Whan; Kim, Young Hoon; Ko, Young Jin; Lee, Kwang-Soo; Lee, Kweon-Haeng; Han, Sang-Ick; Rha, Hyoung Kyun

    2006-06-02

    Chromosomal abnormalities are implicated as important markers for the pathogenesis in patients with schizophrenia. In this study, with using bacterial artificial chromosome (BAC) array-based comparative genomic hybridization (CGH), we analyzed DNA copy-number changes among 30 patients with schizophrenia. The most frequent changes were partial gain of Xq23 (52%) and loss of 3q13.12 (32%). Other frequent gains were found in: 1p, 6q, 10p, 11p, 11q, 14p, and 15q regions, and frequent losses were found in: 2p, 9q, 10q, 14q, 20q, and 22q regions. The set of abnormal regions was confirmed by real-time PCR (9q12, 9q34.2, 11p15.4, 14q32.33, 15q15.1, 22q11.21, and Xq23). All real-time PCR results were consistent with the array-CGH results. Therefore, it is suggested that array-CGH and real-time PCR analysis could be used as powerful tools in screening for schizophrenia-related genes. Our results might be useful for further exploration of candidate genomic regions in the pathogenesis of schizophrenia.

  3. Clinicopathological significance of RUNX3 gene hypermethylation in hepatocellular carcinoma.

    PubMed

    Yang, Yuewu; Ye, Zhiqiang; Zou, Zengcheng; Xiao, Gemin; Luo, Gangjian; Yang, Hongzhi

    2014-10-01

    Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors including hepatocellular carcinoma (HCC). However, the correlation between RUNX3 hypermethylation and incidence of HCC remains unclear. Here, we conducted a systematic review and meta-analysis aiming to comprehensively assess the potential role of RUNX3 hypermethylation in the pathogenesis of HCC. A detailed literature search was made from PubMed, EMBASE, and ISI web of knowledge to identify studies for related research publications. Methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analysis of pooled data was performed. Odds ratio (OR) was calculated and summarized, respectively. Final analysis of 821 HCC patients from 14 eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in HCC than in normal liver tissue, the pooled OR from eight studies including 382 HCC and 161 normal liver tissue (OR = 39.32, 95 % confidence interval (CI) = 13.72-112.7, p < 0.00001). The pooled analysis showed significantly increased OR of RUNX3 hypermethylation (OR = 5.4, 95 % CI = 2.06-14.17, p < 0.00001) in HCC tissues and non-tumor liver tissues. In addition, statistically significant OR of RUNX3 hypermethylation was obtained from non-tumorous liver tissue of HCC patients and normal liver tissue (OR = 12.57, 95 % CI = 3.56-44.35, p < 0.0001). The results of this meta-analysis suggest that RUNX3 hypermethylation may be implicated in the pathogenesis of HCC. Thus, detection of RUNX3 hypermethylation may be a helpful and valuable biomarker for diagnosis of HCC.

  4. Skew aberration: a form of polarization aberration.

    PubMed

    Yun, Garam; Crabtree, Karlton; Chipman, Russell A

    2011-10-15

    We define a new class of aberration, skew aberration, which is a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates, independent of coatings and interface polarization. Skew aberration in a radially symmetric system has the form of a circular retardance tilt plus coma aberration. Skew aberration causes undesired polarization distribution in the exit pupil. We demonstrate statistics on skew aberration of 2383 optical systems described in Code V's U.S. patent library [Code V Version 10.3 (Synopsys, 2011), pp. 22-24]; the mean skew aberration is 0.89° and the standard deviation is 1.37°. The maximum skew aberration found is 17.45° and the minimum is -11.33°. U.S. patent 2,896,506, which has ±7.01° of skew aberration, is analyzed in detail. Skew aberration should be of concern in microlithography optics and other high NA and large field of view optical systems.

  5. Aberrant methylation of CDH13 can be a diagnostic biomarker for lung adenocarcinoma

    PubMed Central

    Pu, Weilin; Geng, Xin; Chen, Sidi; Tan, Lixing; Tan, Yulong; Wang, An; Lu, Zhouyi; Guo, Shicheng; Chen, Xiaofeng; Wang, Jiucun

    2016-01-01

    Background: Aberrant methylation of CpG islands in tumor cells in promoter regions is a critical event in non-small cell lung carcinoma (NSCLC) tumorigenesis and can be a potential diagnostic biomarker for NSCLC patients. The present study systemically and quantitatively reviewed the diagnostic ability of CDH13 methylation in NSCLC as well as in its subsets. Eligible studies were identified through searching PubMed, Web of Science, Cochrane Library and Embase. The pooled odds of CDH13 promoter methylation in lung cancer tissues versus normal controls were calculated by meta-analysis method. Simultaneously, four independent DNA methylation datasets of NSCLC from TCGA and GEO database were downloaded and analyzed to validate the results from meta-analysis. Results: Thirteen studies, including 1850 samples were included in this meta-analysis. The pooled odds ratio of CDH13 promoter methylation in cancer tissues was 7.41 (95% CI: 5.34 to 10.29, P < 0.00001) compared with that in controls under fixed-effect model. In validation stage, 126 paired samples from TCGA were analyzed and 5 out of the 6 CpG sites in the CpG island of CDH13 were significantly hypermethylated in lung adenocarcinoma tissues but none of the 6 CpG sites was hypermethylated in squamous cell carcinoma tissues. Concordantly, the results from other three datasets, which were subsequently obtained from GEO database consisting of 568 tumors and 256 normal tissues, also consisted with those from TCGA dataset. Conclusion: The pooled data showed that the methylation status of the CDH13 promoter is strongly associated with lung adenocarcinoma. The CDH13 methylation status could be a promising diagnostic biomarker for diagnosis of lung adenocarcinoma. PMID:27994665

  6. The application of delivery systems for DNA methyltransferase inhibitors.

    PubMed

    Lim, Sue Ping; Neilsen, Paul; Kumar, Raman; Abell, Andrew; Callen, David F

    2011-08-01

    DNA methylation, which often occurs at the cytosine residue of cytosine-guanine dinucleotides, is critical for the control of gene expression and mitotic inheritance in eukaryotes. DNA methylation silences gene expression either by directly hindering the access of transcription factors to the target DNA, or through recruitment of histone deacetylases to remodel the chromatin structure to an inactive state. Aberrant hypermethylation of tumor suppressor genes is commonly associated with the development of cancer. A number of anti-cancer agents have been developed that function through demethylation, reversing regional hypermethylation to restore the expression of tumor suppressor genes. Azacitidine and decitabine are used in the clinic, but their applications are limited to myelodysplastic syndrome and other blood-related diseases. Despite the potency of these drugs, their broader clinical application is restricted by cytotoxicity, nonspecific targeting, structural instability, catabolism, and poor bioavailability. Further improvements in the delivery systems for these drugs could overcome the issues associated with inefficient bioavailability, whilst facilitating the administration of combinations of demethylating agents and histone deacetylase inhibitors to enhance efficacy. This review focuses on the current limitations of existing demethylating agents and highlights possible approaches using recent developments in drug delivery systems to improve the clinical potential of these drugs.

  7. The clinicopathological significance of hMLH1 hypermethylation in non-small-cell lung cancer: a meta-analysis and literature review

    PubMed Central

    Han, Yi; Shi, Kang; Zhou, Shi-Jie; Yu, Da-Ping; Liu, Zhi-Dong

    2016-01-01

    The hMLH1 gene plays an essential role in DNA repair. Methylation of the hMLH1 gene is common in many types of cancer and can lead to the loss of hMLH1 expression. However, the association and clinicopathological significance between hMLH1 promoter hypermethylation and non-small-cell lung cancer (NSCLC) is elusive. Here, we investigated the correlation of hMLH1 promoter hypermethylation and NSCLC using 13 studies by comprising 1,056 lung cancer patients via a meta-analysis. We observed that 1) loss of hMLH1 protein expression was significantly associated with its promoter hypermethylation, 2) hMLH1 gene inactivation through hypermethylation contributed to the tumorigenesis of NSCLC, which could be a decisive factor for the pathogenesis of NSCLC due to its high occurrence in NSCLC tissues compared to normal lung tissues, 3) a correlation exists between histologic subtypes/disease stages (TNM I+II vs III+IV) and hypermethylation status of hMLH1 gene, and 4) NSCLC patients with hMLH1 hypermethylation and subsequent low expression levels of hMLH1 have a short overall survival period than those patients with normal expression of hMLH1 gene. hMLH1 mRNA predicts patient survival in lung cancer, and this was confirmed by using a public database. We then discussed the tumor suppressor function of hMLH1 and the clinicopathological significance of hMLH1 in NSCLC. We concluded that hMLH1 hypermethylation should be an early diagnostic marker for NSCLC and also a prognostic index for NSCLC. hMLH1 is an interesting therapeutic target in human lung cancers. PMID:27574449

  8. MTHFR, MTR, and MTRR Polymorphisms in Relation to p16INK4A Hypermethylation in Mucosa of Patients with Colorectal Cancer

    PubMed Central

    Wettergren, Yvonne; Odin, Elisabeth; Carlsson, Göran; Gustavsson, Bengt

    2010-01-01

    We recently analyzed the hypermethylation status of the p16INK4a (p16) gene promoter in normal-appearing mucosa obtained from patients with colorectal cancer. Hypermethylation of p16 was associated with reduced survival of these patients. In the present study, germ line polymorphisms in the folate- and methyl-associated genes, methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR), were analyzed in the same patient cohort to find a possible link between these genetic variants and p16 hypermethylation. Genomic DNA was extracted from blood of patients (n = 181) and controls (n = 300). Genotype analyses were run on an ABI PRISM® 7900HT sequence-detection system (Applied Biosystems), using real-time polymerase chain reaction and TaqMan chemistry. The results showed that the genotype distributions of the patient and control groups were similar. No significant differences in cancer-specific or disease-free survival of stage I–III patients according to polymorphic variants were detected, nor were any differences in cancer-specific or disease-free survival detected when patients were subgrouped according to the MTHFR or MTR genotype groups and dichotomized by p16 hypermethylation status in mucosa. However, patients with the MTRR 66 AA/AG genotypes were found to have a significantly worse cancer-specific survival when the mucosa were positive, compared with negative, for p16 hypermethylation (hazard ratio 2.7; 95% confidence interval 1.2–6.4; P = 0.023). In contrast, there was no difference in survival among patients with the MTRR 66 GG genotype stratified by p16 hypermethylation status. These results indicate a relationship between genetic germ-line variants of the MTRR gene and p16 hypermethylation in mucosa, which may affect the clinical outcome of patients with colorectal cancer. PMID:20549016

  9. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis.

    PubMed

    de Faria Amormino, Simone Angélica; Arão, Telma Cristina; Saraiva, Adriana Machado; Gomez, Ricardo Santiago; Dutra, Walderez Ornelas; da Costa, José Eustáquio; de Fátima Correia Silva, Jeane; Moreira, Paula Rocha

    2013-09-01

    Periodontitis is an inflammatory disorder characterized by interactions between periodontal pathogens and host's immune response. Epigenetic may contribute to disease development and outcome by influencing the expression of genes involved in the immune response. It has been shown that Toll-like receptors (TLR) play an important role in the response to periodontopathic bacteria. The aim of study was to evaluate the methylation status and the expression of TLR2 gene in gingival samples from individuals with and without periodontitis. DNA was analyzed using the Methyl Profiler DNA Methylation qPCR assay. DNA methylation and transcript levels were evaluated by real-time polymerase chain reaction. The periodontitis group showed a hypermethylated profile and a low expression of gene. Positive correlation between the TLR2 methylation frequency and probing depth was observed. This study gives the first evidence of methylation frequency in inflamed periodontal tissues and of the possible participation of methylation in the development of periodontitis.

  10. Aberrant Assembly of RNA Recognition Motif 1 Links to Pathogenic Conversion of TAR DNA-binding Protein of 43 kDa (TDP-43)*

    PubMed Central

    Shodai, Akemi; Morimura, Toshifumi; Ido, Akemi; Uchida, Tsukasa; Ayaki, Takashi; Takahashi, Rina; Kitazawa, Soichiro; Suzuki, Sakura; Shirouzu, Mikako; Kigawa, Takanori; Muto, Yutaka; Yokoyama, Shigeyuki; Takahashi, Ryosuke; Kitahara, Ryo; Ito, Hidefumi; Fujiwara, Noriko; Urushitani, Makoto

    2013-01-01

    Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS. PMID:23558684

  11. MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma

    PubMed Central

    Falzone, Luca; Salemi, Rossella; Travali, Salvatore; Scalisi, Aurora; McCubrey, James A.; Candido, Saverio; Libra, Massimo

    2016-01-01

    Tumor spreading is associated with the degradation of extracellular matrix proteins, mediated by the overexpression of matrix metalloproteinase 9 (MMP-9). Although, such overexpression was linked to epigenetic promoter methylation, the role of intragenic methylation was not clarified yet. Melanoma was used as tumor model to investigate the relationship between the DNA intragenic methylation of MMP9 gene and MMP-9 overexpression at transcriptional and protein levels. Computational analysis revealed DNA hypermethylation within the intragenic CpG-2 region of MMP9 gene in melanoma samples with high MMP-9 transcript levels. In vitro validation showed that CpG-2 hotspot region was hypermethylated in the A375 melanoma cell line with highest mRNA and protein levels of MMP-9, while low methylation levels were observed in the MEWO cell line where MMP-9 was undetectable. Concordant results were demonstrated in both A2058 and M14 cell lines. This correlation may give further insights on the role of MMP-9 upregulation in melanoma. PMID:27115178

  12. Oxidative damage to nucleic acids and benzo(a)pyrene-7,8-diol-9,10-epoxide-DNA adducts and chromosomal aberration in children with psoriasis repeatedly exposed to crude coal tar ointment and UV radiation.

    PubMed

    Borska, Lenka; Andrys, Ctirad; Krejsek, Jan; Palicka, Vladimir; Chmelarova, Marcela; Hamakova, Kvetoslava; Kremlacek, Jan; Fiala, Zdenek

    2014-01-01

    The paper presents a prospective cohort study. Observed group was formed of children with plaque psoriasis (n=19) treated by Goeckerman therapy (GT). The study describes adverse (side) effects associated with application of GT (combined exposure of 3% crude coal tar ointment and UV radiation). After GT we found significantly increased markers of oxidative stress (8-hydroxy-2'-deoxyguanosine, 8-hydroxyguanosine, and 8-hydroxyguanine), significantly increased levels of benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE) DNA adducts (BPDE-DNA), and significantly increased levels of total number of chromosomal aberrations in peripheral lymphocytes. We found significant relationship between (1) time of UV exposure and total number of aberrated cells and (2) daily topical application of 3% crude coal tar ointment (% of body surface) and level of BPDE-DNA adducts. The findings indicated increased hazard of oxidative stress and genotoxic effects related to the treatment. However, it must be noted that the oxidized guanine species and BPDE-DNA adducts also reflect individual variations in metabolic enzyme activity (different extent of bioactivation of benzo[a]pyrene to BPDE) and overall efficiency of DNA/RNA repair system. The study confirmed good effectiveness of the GT (significantly decreased PASI score).

  13. Molecular structure of bovine Gtl2 gene and DNA methylation status of Dlk1-Gtl2 imprinted domain in cloned bovines.

    PubMed

    Su, Hong; Li, Dongjie; Hou, Xiaohui; Tan, Beibei; Hu, Jiaqi; Zhang, Cui; Dai, Yunping; Li, Ning; Li, Shijie

    2011-08-01

    Somatic cell nuclear transfer (SCNT) is an inefficient process, which is due to incomplete reprogramming of the donor nucleus. DNA methylation of imprinted genes is essential to the reprogramming of the somatic cell nucleus in SCNT. Dlk1-Gtl2 imprinted domain has been widely studied in mouse and human. However, little is known in bovine, possibly because of limited appropriate sequences of bovine. In our study, we first isolated the cDNA sequence and found multiple transcript variants occurred in bovine Gtl2 gene, which was conserved among species. A probably 110-kb-long Dlk1-Gtl2 imprinted domain was detected on bovine chromosome 21. We identified the putative Gtl2 DMR and IG-DMR corresponding to the mouse and human DMRs and assessed the methylation status of the two DMRs and Dlk1 5' promoter in lungs of deceased SCNT bovines that died within 48h after birth and the normal controls. In cloned bovines, Gtl2 DMR exhibited hypermethylation, which was similar to controls. However, the methylation status of IG-DMR and Dlk1 5' promoter in clones was significantly different from controls, with severe loss of methylation in IG-DMR and hypermethylation in the Dlk1 5' promoter region. Our data suggested that abnormal methylation patterns of IG-DMR may lead to the abnormal expression of Gtl2 and Dlk1 5' hypermethylated promoter is associated with the aberrant development of lungs of cloned bovines, which consequently may contribute to the low efficiency of SCNT.

  14. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes.

    PubMed

    Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, Laurence J; Casero, Robert A

    2012-03-15

    Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys(4) of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N(1)-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer.

  15. Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes

    PubMed Central

    Wu, Yu; Steinbergs, Nora; Murray-Stewart, Tracy; Marton, Laurence J.; Casero, Robert A.

    2011-01-01

    Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys4 of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N1-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer. PMID:22132744

  16. Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

    PubMed

    Panopoulos, Athanasia D; Smith, Erin N; Arias, Angelo D; Shepard, Peter J; Hishida, Yuriko; Modesto, Veronica; Diffenderfer, Kenneth E; Conner, Clay; Biggs, William; Sandoval, Efren; D'Antonio-Chronowska, Agnieszka; Berggren, W Travis; Izpisua Belmonte, Juan Carlos; Frazer, Kelly A

    2017-04-06

    Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming.

  17. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia

    PubMed Central

    Pedersen, Susanne K; Mitchell, Susan M; Graham, Lloyd D; McEvoy, Aidan; Thomas, Melissa L; Baker, Rohan T; Ross, Jason P; Xu, Zheng-Zhou; Ho, Thu; LaPointe, Lawrence C; Young, Graeme P; Molloy, Peter L

    2014-01-01

    The CAHM gene (Colorectal Adenocarcinoma HyperMethylated), previously LOC100526820, is located on chromosome 6, hg19 chr6:163 834 097–163 834 982. It lacks introns, encodes a long non-coding RNA (lncRNA) and is located adjacent to the gene QKI, which encodes an RNA binding protein. Deep bisulphite sequencing of ten colorectal cancer (CRC) and matched normal tissues demonstrated frequent hypermethylation within the CAHM gene in cancer. A quantitative methylation-specific PCR (qMSP) was used to characterize additional tissue samples. With a threshold of 5% methylation, the CAHM assay was positive in 2/26 normal colorectal tissues (8%), 17/21 adenomas (81%), and 56/79 CRC samples (71%). A reverse transcriptase-qPCR assay showed that CAHM RNA levels correlated negatively with CAHM % methylation, and therefore CAHM gene expression is typically decreased in CRC. The CAHM qMSP assay was applied to DNA isolated from plasma specimens from 220 colonoscopy-examined patients. Using a threshold of 3 pg methylated genomic DNA per mL plasma, methylated CAHM sequences were detected in the plasma DNA of 40/73 (55%) of CRC patients compared with 3/73 (4%) from subjects with adenomas and 5/74 (7%) from subjects without neoplasia. Both the frequency of detection and the amount of methylated CAHM DNA released into plasma increased with increasing cancer stage. Methylated CAHM DNA shows promise as a plasma biomarker for use in screening for CRC. PMID:24799664

  18. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation

    PubMed Central

    Pigazzi, Martina; Manara, Elena; Bresolin, Silvia; Tregnago, Claudia; Beghin, Alessandra; Baron, Emma; Giarin, Emanuela; Cho, Er-Chieh; Masetti, Riccardo; Rao, Dinesh S.; Sakamoto, Kathleen M.; Basso, Giuseppe

    2013-01-01

    MicroRNA-34b down-regulation in acute myeloid leukemia was previously shown to induce CREB overexpression, thereby causing leukemia proliferation in vitro and in vivo. The role of microRNA-34b and CREB in patients with myeloid malignancies has never been evaluated. We examined microRNA-34b expression and the methylation status of its promoter in cells from patients diagnosed with myeloid malignancies. We used gene expression profiling to identify signatures of myeloid transformation. We established that microRNA-34b has suppressor ability and that CREB has oncogenic potential in primary bone marrow cell cultures and in vivo. MicroRNA-34b was found to be up-regulated in pediatric patients with juvenile myelomonocytic leukemia (n=17) and myelodysplastic syndromes (n=28), but was down-regulated in acute myeloid leukemia patients at diagnosis (n=112). Our results showed that hypermethylation of the microRNA-34b promoter occurred in 66% of cases of acute myeloid leukemia explaining the low microRNA-34b levels and CREB overexpression, whereas preleukemic myelodysplastic syndromes and juvenile myelomonocytic leukemia were not associated with hypermethylation or CREB overexpression. In paired samples taken from the same patients when they had myelodysplastic syndrome and again during the subsequent acute myeloid leukemia, we confirmed microRNA-34b promoter hypermethylation at leukemia onset, with 103 CREB target genes differentially expressed between the two disease stages. This subset of CREB targets was confirmed to associate with high-risk myelodysplastic syndromes in a separate cohort of patients (n=20). Seventy-eight of these 103 CREB targets were also differentially expressed between healthy samples (n=11) and de novo acute myeloid leukemia (n=72). Further, low microRNA-34b and high CREB expression levels induced aberrant myelopoiesis through CREB-dependent pathways in vitro and in vivo. In conclusion, we suggest that microRNA-34b controls CREB expression and

  19. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions.

    PubMed

    Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpathanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Whorton, Elbert B

    2015-11-01

    Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 Me

  20. Discovery and Validation of Hypermethylated Markers for Colorectal Cancer

    PubMed Central

    2016-01-01

    Colorectal carcinoma (CRC) is one of the most prevalent malignant tumors worldwide. Screening and early diagnosis are critical for the clinical management of this disease. DNA methylation changes have been regarded as promising biomarkers for CRC diagnosis. Here, we map DNA methylation profiling on CRC in six CRCs and paired normal samples using a 450 K bead array. Further analysis confirms the methylation status of candidates in two data sets from the Gene Expression Omnibus. Receiver operating characteristic (ROC) curves are calculated to determine the diagnostic performances. We identify 1549 differentially methylated regions (DMRs) showing differences in methylation between CRC and normal tissue. Two genes (ADD2 and AKR1B1), related to the DMRs, are selected for further validation. ROC curves show that the areas under the curves of ADD2 and AKR1B1 are higher than that of SEPT9, which has been clinically used as a screening biomarker of CRC. Our data suggests that aberrant DNA methylation of ADD2 and AKR1B1 could be potential screening markers of CRC. PMID:27493446

  1. Hypermethylation of brain natriuretic peptide gene is associated with the risk of rheumatic heart disease

    PubMed Central

    Li, Ni; Zheng, Dawei; Sun, Lebo; Shi, Huoshun; Zhu, Xiuying; Xu, Guodong; Wang, Qinning; Zhu, Caimin

    2016-01-01

    To investigate the contribution of brain natriuretic peptide (BNP) promoter DNA methylation to the risk of rheumatic heart disease (RHD) and the influence of warfarin anticoagulant therapy on BNP methylation levels for RHD patients after surgery. BNP methylation levels were determined by bisulfite pyrosequencing from plasma samples of RHD patients compared with healthy controls. Several factors influencing the RHD patients were included like age, smoking and cholesterol levels. A fragment of five CG sites (CpG1–5) in the promoter region of BNP gene was measured. BNP gene hypermethylation was found in CpG4 and CpG5 in RHD patients compared with non-RHD controls. A significant difference was also observed between RHD patients with long-term administration of warfarin and RHD patients who had recently undergone an operation. Moreover, single CpG4 and CpG5 analysis revealed a significant increase in methylation levels in men. BNP gene body hypermethylation is associated with the risk of RHD, and also influenced by the warfarin anticoagulant therapy of RHD patients after surgery, which could represent novel and promising targets for therapeutic development. PMID:27920275

  2. p16INK4A and p14ARF Gene Promoter Hypermethylation as Prognostic Biomarker in Oral and Oropharyngeal Squamous Cell Carcinoma: A Review

    PubMed Central

    Al-Kaabi, A.; van Bockel, L. W.; Pothen, A. J.; Willems, S. M.

    2014-01-01

    Head and neck squamous cell carcinoma is a heterogeneous group of tumors with each subtype having a distinct histopathological and molecular profile. Most tumors share, to some extent, the same multistep carcinogenic pathways, which include a wide variety of genetic and epigenetic changes. Epigenetic alterations represent all changes in gene expression patterns that do not alter the actual DNA sequence. Recently, it has become clear that silencing of cancer related genes is not exclusively a result of genetic changes such as mutations or deletions, but it can also be regulated on epigenetic level, mostly by means of gene promoter hypermethylation. Results from recent studies have demonstrated that DNA methylation patterns contain tumor-type-specific signatures, which could serve as biomarkers for clinical outcome in the near future. The topic of this review discusses gene promoter hypermethylation in oral and oropharyngeal squamous cell carcinoma (OSCC). The main objective is to analyse the available data on gene promoter hypermethylation of the cell cycle regulatory proteins p16INK4A and p14ARF and to investigate their clinical significance as novel biomarkers in OSCC. Hypermethylation of both genes seems to possess predictive properties for several clinicopathological outcomes. We conclude that the methylation status of p16INK4A is definitely a promising candidate biomarker for predicting clinical outcome of OSCC, especially for recurrence-free survival. PMID:24803719

  3. Chicago aberration correction work.

    PubMed

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  4. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma.

    PubMed

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-11-07

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein-Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5' azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL.

  5. Hypermethylation of the tumor suppressor gene PRDM1/Blimp-1 supports a pathogenetic role in EBV-positive Burkitt lymphoma

    PubMed Central

    Zhang, T; Ma, J; Nie, K; Yan, J; Liu, Y; Bacchi, C E; Queiroga, E M; Gualco, G; Sample, J T; Orazi, A; Knowles, D M; Tam, W

    2014-01-01

    PRDM1/Blimp-1 is a tumor suppressor gene in the activated B-cell subtype of diffuse large B-cell lymphomas. Its inactivation contributes to pathogenesis in this setting by impairing terminal B-cell differentiation induced by constitutive nuclear factor-κB activation. The role of PRDM1 in Burkitt lymphoma (BL) lymphomagenesis is not known. Here we identified hypermethylation of the promoter region and exon 1 of PRDM1 in all six Epstein–Barr virus (EBV)-positive BL cell lines and 12 of 23 (52%) primary EBV-positive BL or BL-related cases examined, but in none of the EBV-negative BL cell lines or primary tumors that we assessed, implying a tumor suppressor role for PRDM1 specifically in EBV-associated BL. A direct induction of PRDM1 hypermethylation by EBV is unlikely, as PRDM1 hypermethylation was not observed in EBV-immortalized B lymphoblastoid cell lines. Treatment of EBV-positive BL cells with 5′ azacytidine resulted in PRDM1 induction associated with PRDM1 demethylation, consistent with transcriptional silencing of PRDM1 as a result of DNA methylation. Overexpression of PRDM1 in EBV-positive BL cell lines resulted in cell cycle arrest. Our results expand the spectrum of lymphoid malignancies in which PRDM1 may have a tumor suppressor role and identify an epigenetic event that likely contributes to the pathogenesis of BL. PMID:25382611

  6. High frequency of hypermethylation at the 14-3-3 σ locus leads to gene silencing in breast cancer

    PubMed Central

    Ferguson, Anne T.; Evron, Ella; Umbricht, Christopher B.; Pandita, Tej K.; Chan, Timothy A.; Hermeking, Heiko; Marks, Jeffrey R.; Lambers, Anouk R.; Futreal, P. Andrew; Stampfer, Martha R.; Sukumar, Saraswati

    2000-01-01

    Expression of 14-3-3 σ (σ) is induced in response to DNA damage, and causes cells to arrest in G2. By SAGE (serial analysis of gene expression) analysis, we identified σ as a gene whose expression is 7-fold lower in breast carcinoma cells than in normal breast epithelium. We verified this finding by Northern blot analysis. Remarkably, σ mRNA was undetectable in 45 of 48 primary breast carcinomas. Genetic alterations at σ such as loss of heterozygosity were rare (1/20 informative cases), and no mutations were detected (0/34). On the other hand, hypermethylation of CpG islands in the σ gene was detected in 91% (75/82) of breast tumors and was associated with lack of gene expression. Hypermethylation of σ is functionally important, because treatment of σ-non-expressing breast cancer cell lines with the drug 5-aza-2′-deoxycytidine resulted in demethylation of the gene and synthesis of σ mRNA. Breast cancer cells lacking σ expression showed increased number of chromosomal breaks and gaps when exposed to γ-irradiation. Therefore, it is possible that loss of σ expression contributes to malignant transformation by impairing the G2 cell cycle checkpoint function, thus allowing an accumulation of genetic defects. Hypermethylation and loss of σ expression are the most consistent molecular alterations in breast cancer identified so far. PMID:10811911

  7. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    PubMed Central

    2010-01-01

    Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS") but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) not to be biological transcription factor binding sites ("empirical TFBS"). We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation. PMID:20875111

  8. Arsenicals Produce Stable Progressive Changes in DNA Methylation Patterns that are Linked to Malignant Transformation of Immortalized Urothelial Cells

    PubMed Central

    Jensen, Taylor J.; Novak, Petr; Wnek, Shawn M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-01-01

    Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortal to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome. PMID:19716837

  9. [Familial, structural aberration of the Y chromosome with fertility disorders].

    PubMed

    Gall, H; Schmid, M; Schmidtke, J; Schempp, W; Weber, L

    1985-11-01

    Cytogenetic studies on a patient with Klinefelter's syndrome revealed an inherited, structural aberration of the Y-chromosome which has not been described before. The aberrant Y-chromosome was characterized by eight different banding methods. The value of individual staining techniques in studies on Y-heterochromatin aberrations is emphasized. Analysis of the cytogenetic studies (banding methods, restriction endonuclease of DNA, and measurement of the length of the Y-chromosome) permits an interpretation to be made on how the aberrant Y-chromosome originated. The functions of the Y-chromosome are discussed. The decrease in fertility (cryptozoospermia) in the two brothers with the same aberrant Y-chromosome was striking.

  10. Hypermethylation of the CaSR and VDR genes in the parathyroid glands in chronic kidney disease rats with high-phosphate diet.

    PubMed

    Uchiyama, Taketo; Tatsumi, Norifumi; Kamejima, Sahoko; Waku, Tsuyoshi; Ohkido, Ichiro; Yokoyama, Keitaro; Yokoo, Takashi; Okabe, Masataka

    2016-10-01

    Chronic kidney disease (CKD) disrupts mineral homeostasis and its representative pathosis is defined as secondary hyperparathyroidism (SHPT). SHPT occurs during the early course of progressive renal insufficiency, and is associated with mortality and cardiovascular events. SHPT results in reduction of calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) in the parathyroid glands during CKD. However, the precise mechanism of CaSR and VDR reduction is largely unknown. CKD was induced through two-step 5/6 nephrectomy, and then CKD rats and sham-operated rats were maintained for 8 weeks on diets containing 0.7 % phosphorus (normal phosphate) or 1.2 % phosphorus (high phosphate). In gene expression analysis, TaqMan probes were used for quantitative real-time polymerase chain reaction. Finally, CaSR and VDR protein expressions were analyzed using immunohistochemistry. DNA methylation analysis was performed using a restriction digestion and quantitative PCR. CaSR and VDR mRNA were reduced only in CKD rats fed the high-phosphorus diets (CKD HP), then CaSR and VDR immunohistochemical expressions were compatible with gene expression assay. SHPT was then confirmed only in CKD HP rats. Furthermore, sole CKD HP rats showed the hypermethylation in CaSR and VDR genes; however, the percentage methylation of both genes was low. Although CaSR and VDR hypermethylation was demonstrated in PTGs of CKD HP rats, the extent of hypermethylation was insufficient to support the relevance between hypermethylation and down-regulation of gene expression because of the low percentage of methylation. Consequently, our data suggest that mechanisms, other than DNA hypermethylation, were responsible for the reduction in mRNA and protein levels of CaSR and VDR in PTGs of CKD HP rats.

  11. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report.

    PubMed

    Abdolmaleky, Hamid Mostafavi; Cheng, Kuang-hung; Russo, Andrea; Smith, Cassandra L; Faraone, Stephen V; Wilcox, Marsha; Shafa, Rahim; Glatt, Stephen J; Nguyen, Giang; Ponte, Joe F; Thiagalingam, Sam; Tsuang, Ming T

    2005-04-05

    hypermethylation of the CpG islands flanking a CRE and SP1 binding site observed at a significantly higher level (t = -5.07, P = 0.001) may provide a mechanism for the decreased RELN expression, frequently observed in post-mortem brains of schizophrenic patients. We also found an inverse relationship between the level of DNA methylation using MSP analysis and the expression of the RELN gene using semi-quantitative RT-PCR. Despite the small sample size, these studies indicate that promoter hypermethylation of the RELN gene could be a significant contributor in effecting epigenetic alterations and provides a molecular basis for the RELN gene hypoactivity in schizophrenia. Further studies with a larger sample set would be required to validate these preliminary observations.

  12. Changes in DNA methylation patterns in subjects exposed to low-dose benzene.

    PubMed

    Bollati, Valentina; Baccarelli, Andrea; Hou, Lifang; Bonzini, Matteo; Fustinoni, Silvia; Cavallo, Domenico; Byun, Hyang-Min; Jiang, Jiayi; Marinelli, Barbara; Pesatori, Angela C; Bertazzi, Pier A; Yang, Allen S

    2007-02-01

    Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, < 6-478 microg/m(3)). Bisulfite-PCR pyrosequencing was used to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and AluI repetitive elements as a surrogate of genome-wide methylation and examine gene-specific methylation of MAGE-1 and p15. Allele-specific pyrosequencing of the H19 gene was used to detect LOI in 96 subjects heterozygous for the H19 imprinting center G/A single-nucleotide polymorphism. Airborne benzene was associated with a significant reduction in LINE-1 (-2.33% for a 10-fold increase in airborne benzene levels; P = 0.009) and AluI (-1.00%; P = 0.027) methylation. Hypermethylation in p15 (+0.35%; P = 0.018) and hypomethylation in MAGE-1 (-0.49%; P = 0.049) were associated with increasing airborne benzene levels. LOI was found only in exposed subjects (4 of 73, 5.5%) and not in referents (0 of 23, 0.0%). However, LOI was not significantly associated with airborne benzene (P > 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.

  13. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia.

    PubMed

    Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2010-11-01

    Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells.

  14. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma

    PubMed Central

    Ren, Xianyue; Yang, Xiaojing; Cheng, Bin; Chen, Xiaozhong; Zhang, Tianpeng; He, Qingmei; Li, Bin; Li, Yingqin; Tang, Xinran; Wen, Xin; Zhong, Qian; Kang, Tiebang; Zeng, Musheng; Liu, Na; Ma, Jun

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is characterized by a high rate of local invasion and early distant metastasis. Increasing evidence indicates that epigenetic abnormalities play important roles in NPC development. However, the epigenetic mechanisms underlying NPC metastasis remain unclear. Here we investigate aberrantly methylated transcription factors in NPC tissues, and we identify the HOP homeobox HOPX as the most significantly hypermethylated gene. Consistently, we find that HOXP expression is downregulated in NPC tissues and NPC cell lines. Restoring HOPX expression suppresses metastasis and enhances chemosensitivity of NPC cells. These effects are mediated by HOPX-mediated epigenetic silencing of SNAIL transcription through the enhancement of histone H3K9 deacetylation in the SNAIL promoter. Moreover, we find that patients with high methylation levels of HOPX exhibit poor clinical outcomes in both the training and validation cohorts. In summary, HOPX acts as a tumour suppressor via the epigenetic regulation of SNAIL transcription, which provides a novel prognostic biomarker for NPC metastasis and therapeutic target for NPC treatment. PMID:28146149

  15. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder

    PubMed Central

    2014-01-01

    Background Although genetic variation is believed to contribute to an individual’s susceptibility to major depressive disorder, genome-wide association studies have not yet identified associations that could explain the full etiology of the disease. Epigenetics is increasingly believed to play a major role in the development of common clinical phenotypes, including major depressive disorder. Results Genome-wide MeDIP-Sequencing was carried out on a total of 50 monozygotic twin pairs from the UK and Australia that are discordant for depression. We show that major depressive disorder is associated with significant hypermethylation within the coding region of ZBTB20, and is replicated in an independent cohort of 356 unrelated case-control individuals. The twins with major depressive disorder also show increased global variation in methylation in comparison with their unaffected co-twins. ZBTB20 plays an essential role in the specification of the Cornu Ammonis-1 field identity in the developing hippocampus, a region previously implicated in the development of major depressive disorder. Conclusions Our results suggest that aberrant methylation profiles affecting the hippocampus are associated with major depressive disorder and show the potential of the epigenetic twin model in neuro-psychiatric disease. PMID:24694013

  16. Epstein-Barr virus infection and gene promoter hypermethylation in rheumatoid arthritis patients with methotrexate-associated B cell lymphoproliferative disorders.

    PubMed

    Ejima-Yamada, Kozue; Oshiro, Yumi; Okamura, Seiichi; Fujisaki, Tomoaki; Mihashi, Yasuhito; Tamura, Kazuo; Fukushige, Tomoko; Kojima, Masaru; Shibuya, Kazutoshi; Takeshita, Morishige

    2017-02-01

    We analyzed CpG-island hypermethylation status in 12 genes of paraffin-embedded tissues from 38 rheumatoid arthritis (RA) patients with methotrexate (MTX)-associated large B cell lymphoproliferative disorder (BLPD), 11 RA patients with non-MTX-associated BLPD (non-MTX-BLPD), 22 controls with diffuse large B cell lymphoma (DLBCL), and 10 controls with Epstein-Barr virus (EBV)(+) DLBCL. Among them, tumor cells from EBV(+) MTX-BLPD patients and control EBV(+) DLBCL patients had significantly lower median incidence of CpG island methylator phenotype (CIMP) than those from non-MTX-BLPD and control DLBCL groups (2.3 and 1.7 vs. 4.3 and 4.4; P < 0.01 for each). In the MTX-BLPD group, EBV(+) patients showed lower median CIMP than EBV(-) patients (2.3 vs. 3.2); they also had significantly lower hypermethylation incidence in four apoptosis-related genes, especially death-associated protein kinase (14 vs. 55 %), higher incidence of massive tumor necrosis (86 vs. 27 %), and lower BCL2 protein expression (19 vs. 86 %) than did the control DLBCL group (P < 0.01 for all). In all clinical stages, EBV(+) MTX-BLPD patients had better prognoses than the EBV(-) MTX-BLPD (P = 0.011), non-MTX-BLPD (P = 0.002), and control DLBCL groups (P = 0.015). MTX-BLPD patients without hypermethylated RAS-associated domain family-1A (RASSF1A) or O (6) -methyl guanine-DNA methyltransferase (MGMT) had significantly better prognosis than those with hypermethylation of those genes (P = 0.033). We conclude that in RA patients with MTX-BLPD, EBV infection is associated with a lower incidence of CIMP, apoptosis-related gene hypermethylation, and BCL2 expression, which can induce tumor regression by MTX withdrawal and lead to better prognoses.

  17. Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer.

    PubMed

    Chen, Ke; Zhang, Jing; Guo, Zhongqiang; Ma, Qin; Xu, Zhengzheng; Zhou, Yuanyuan; Xu, Ziying; Li, Zhongwu; Liu, Yiqiang; Ye, Xiongjun; Li, Xuesong; Yuan, Bifeng; Ke, Yuwen; He, Chuan; Zhou, Liqun; Liu, Jiang; Ci, Weimin

    2016-01-01

    Both 5-methylcytosine (5mC) and its oxidized form 5-hydroxymethylcytosine (5hmC) have been proposed to be involved in tumorigenesis. Because the readout of the broadly used 5mC mapping method, bisulfite sequencing (BS-seq), is the sum of 5mC and 5hmC levels, the 5mC/5hmC patterns and relationship of these two modifications remain poorly understood. By profiling real 5mC (BS-seq corrected by Tet-assisted BS-seq, TAB-seq) and 5hmC (TAB-seq) levels simultaneously at single-nucleotide resolution, we here demonstrate that there is no global loss of 5mC in kidney tumors compared with matched normal tissues. Conversely, 5hmC was globally lost in virtually all kidney tumor tissues. The 5hmC level in tumor tissues is an independent prognostic marker for kidney cancer, with lower levels of 5hmC associated with shorter overall survival. Furthermore, we demonstrated that loss of 5hmC is linked to hypermethylation in tumors compared with matched normal tissues, particularly in gene body regions. Strikingly, gene body hypermethylation was significantly associated with silencing of the tumor-related genes. Downregulation of IDH1 was identified as a mechanism underlying 5hmC loss in kidney cancer. Restoring 5hmC levels attenuated the invasion capacity of tumor cells and suppressed tumor growth in a xenograft model. Collectively, our results demonstrate that loss of 5hmC is both a prognostic marker and an oncogenic event in kidney cancer by remodeling the DNA methylation pattern.

  18. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

    PubMed Central

    Sanchez-Mut, Jose V.; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G.; Fernandez, Agustin F.; Astudillo, Aurora; Martin-Subero, Jose I.; Balint, Balazs; Fraga, Mario F.; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K.; Ferrer, Isidre

    2013-01-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease. PMID:24030951

  19. DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease.

    PubMed

    Sanchez-Mut, Jose V; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G; Fernandez, Agustin F; Astudillo, Aurora; Martin-Subero, Jose I; Balint, Balazs; Fraga, Mario F; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K; Ferrer, Isidre; Esteller, Manel

    2013-10-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer's disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5'-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer's disease. We were able to translate these findings to patients with Alzheimer's disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease.

  20. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks

    PubMed Central

    Zilberman, Daniel; Coleman-Derr, Devin; Ballinger, Tracy; Henikoff, Steven

    2010-01-01

    Eukaryotic chromatin is separated into functional domains differentiated by posttranslational histone modifications, histone variants, and DNA methylation1–6. Methylation is associated with repression of transcriptional initiation in plants and animals, and is frequently found in transposable elements. Proper methylation patterns are critical for eukaryotic development4,5, and aberrant methylation-induced silencing of tumor suppressor genes is a common feature of human cancer7. In contrast to methylation, the histone variant H2A.Z is preferentially deposited by the Swr1 ATPase complex near 5′ ends of genes where it promotes transcriptional competence8–20. How DNA methylation and H2A.Z influence transcription remains largely unknown. Here we show that in the plant Arabidopsis thaliana, regions of DNA methylation are quantitatively deficient in H2A.Z. Exclusion of H2A.Z is seen at sites of DNA methylation in the bodies of actively transcribed genes and in methylated transposons. Mutation of the MET1 DNA methyltransferase, which causes both losses and gains of DNA methylation4,5, engenders opposite changes in H2A.Z deposition, while mutation of the PIE1 subunit of the Swr1 complex that deposits H2A.Z17 leads to genome-wide hypermethylation. Our findings indicate that DNA methylation can influence chromatin structure and effect gene silencing by excluding H2A.Z, and that H2A.Z protects genes from DNA methylation. PMID:18815594

  1. Detection of aberrant methylated SEPT9 and NTRK3 genes in sporadic colorectal cancer patients as a potential diagnostic biomarker

    PubMed Central

    Behrouz Sharif, Shahin; Hashemzadeh, Shahriar; Mousavi Ardehaie, Reza; Eftekharsadat, Amirtaher; Ghojazadeh, Mortaza; Mehrtash, Amir Hossein; Estiar, Mehrdad Asghari; Teimoori-Toolabi, Ladan; Sakhinia, Ebrahim

    2016-01-01

    Colorectal cancer (CRC) is one of the most common malignancies, and the third leading cause of cancer mortality worldwide. Timely detection of CRC in patients with earlier stages provides the highest rate of survival. Epigenetic alterations are important in the occurrence and progression of CRC, and represent the primary modifications of cancer cells. Therefore, detection of these alterations in CRC cases are thought to hold great promise as diagnostic biomarkers. It has been shown that the SEPT9 and NTRK3 genes are aberrantly methylated and their detection can be used as biomarkers for early diagnosis of CRC. The present study analyzed promoter methylation status of these genes in CRC patients. Genomic DNA was extracted from 45 CRC and paired adjacent healthy tissues and undergone bisulfite conversion, and the methylation status of NTRK3 and SEPT9 were defined using the MS-HRM assay. Our results showed that there are statistically significant differences in methylation status of NTRK3 and specially SEPT9 between CRC and adjacent normal tissues (P<0.001). High sensitivity and specificity for a specific location in SEPT9 gene promoter as a diagnostic biomarker was observed. SEPT9 promoter hypermethylation may serve as a promising biomarker for the detection of CRC development. However, to validate the biomarker potential of NTRK3 there is a requirement for further investigation. PMID:28105243

  2. DNA demethylation and invasive cancer: implications for therapeutics.

    PubMed

    Cheishvili, David; Boureau, Lisa; Szyf, Moshe

    2015-06-01

    One of the hallmarks of cancer is aberrant DNA methylation, which is associated with abnormal gene expression. Both hypermethylation and silencing of tumour suppressor genes as well as hypomethylation and activation of prometastatic genes are characteristic of cancer cells. As DNA methylation is reversible, DNA methylation inhibitors were tested as anticancer drugs with the idea that such agents would demethylate and reactivate tumour suppressor genes. Two cytosine analogues, 5-azacytidine (Vidaza) and 5-aza-2'-deoxycytidine, were approved by the Food and Drug Administration as antitumour agents in 2004 and 2006 respectively. However, these agents might cause activation of a panel of prometastatic genes in addition to activating tumour suppressor genes, which might lead to increased metastasis. This poses the challenge of how to target tumour suppressor genes and block cancer growth with DNA-demethylating drugs while avoiding the activation of prometastatic genes and precluding the morbidity of cancer metastasis. This paper reviews current progress in using DNA methylation inhibitors in cancer therapy and the potential promise and challenges ahead.

  3. Discovery of inhibitors of aberrant gene transcription from Libraries of DNA binding molecules: inhibition of LEF-1-mediated gene transcription and oncogenic transformation.

    PubMed

    Stover, James S; Shi, Jin; Jin, Wei; Vogt, Peter K; Boger, Dale L

    2009-03-11

    The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA-LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1-mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1-driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was (1) the use of a technically nondemanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds.

  4. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy.

    PubMed

    Majumder, Avisek; JyotirmayaBehera; Jeremic, Navena; Tyagi, Suresh C

    2016-12-16

    A detrimental consequence of hypermethylation is hyperhomocysteinemia (HHcy), that causes oxidative stress, inflammation and matrix degradation, which leads to multi-pathology in different organs. Although, it is well known that hypermethylation leads to overall gene silencing and hypomethylation leads to overall gene activation, the role of such process in skeletal muscle dysfunction during HHcy condition is unclear. In this study, we emphasized the multiple mechanisms including epigenetic alteration by which HHcy causes skeletal muscle myopathy. This review also highlights possible role of methylation, histone modification and RNA interference in skeletal muscle dysfunction during HHcy condition and potential therapeutic molecules, putative challenges, and methodologies to deal with HHcy mediated skeletal muscle dysfunction. We also highlighted that B vitamins (mainly B12 and B6) with folic acid supplementation, could be useful as an adjuvant therapy to reverse these consequences associated with this HHcy conditions in skeletal muscle. However, we would recommend to further study involving long-term trials could help to assess efficacy of the use of these therapeutic agents. This article is protected by copyright. All rights reserved.

  5. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia.

    PubMed

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Li, Jinfeng; Yin, Honglei; Gao, Shugui; Duan, Shiwei

    2015-11-01

    Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required.

  6. Lack of the H-NS Protein Results in Extended and Aberrantly Positioned DNA during Chromosome Replication and Segregation in Escherichia coli

    PubMed Central

    Helgesen, Emily; Fossum-Raunehaug, Solveig

    2016-01-01

    ABSTRACT The architectural protein H-NS binds nonspecifically to hundreds of sites throughout the chromosome and can multimerize to stiffen segments of DNA as well as to form DNA-protein-DNA bridges. H-NS has been suggested to contribute to the orderly folding of the Escherichia coli chromosome in the highly compacted nucleoid. In this study, we investigated the positioning and dynamics of the origins, the replisomes, and the SeqA structures trailing the replication forks in cells lacking the H-NS protein. In H-NS mutant cells, foci of SeqA, replisomes, and origins were irregularly positioned in the cell. Further analysis showed that the average distance between the SeqA structures and the replisome was increased by ∼100 nm compared to that in wild-type cells, whereas the colocalization of SeqA-bound sister DNA behind replication forks was not affected. This result may suggest that H-NS contributes to the folding of DNA along adjacent segments. H-NS mutant cells were found to be incapable of adopting the distinct and condensed nucleoid structures characteristic of E. coli cells growing rapidly in rich medium. It appears as if H-NS mutant cells adopt a “slow-growth” type of chromosome organization under nutrient-rich conditions, which leads to a decreased cellular DNA content. IMPORTANCE It is not fully understood how and to what extent nucleoid-associated proteins contribute to chromosome folding and organization during replication and segregation in Escherichia coli. In this work, we find in vivo indications that cells lacking the nucleoid-associated protein H-NS have a lower degree of DNA condensation than wild-type cells. Our work suggests that H-NS is involved in condensing the DNA along adjacent segments on the chromosome and is not likely to tether newly replicated strands of sister DNA. We also find indications that H-NS is required for rapid growth with high DNA content and for the formation of a highly condensed nucleoid structure under such

  7. Discovery of Inhibitors of Aberrant Gene Transcription from Libraries of DNA Binding Molecules: Inhibition of LEF-1 Mediated Gene Transcription and Oncogenic Transformation

    PubMed Central

    Stover, James S.; Shi, Jin; Jin, Wei; Vogt, Peter K.; Boger, Dale L.

    2009-01-01

    The screening of a >9000 compound library of synthetic DNA binding molecules for selective binding to the consensus sequence of the transcription factor LEF-1 followed by assessment of the candidate compounds in a series of assays that characterized functional activity (disruption of DNA–LEF-1 binding) at the intended target and site (inhibition of intracellular LEF-1 mediated gene transcription) resulting in a desired phenotypic cellular change (inhibit LEF-1 driven cell transformation) provided two lead compounds: lefmycin-1 and lefmycin-2. The sequence of screens defining the approach assures that activity in the final functional assay may be directly related to the inhibition of gene transcription and DNA binding properties of the identified molecules. Central to the implementation of this generalized approach to the discovery of DNA binding small molecule inhibitors of gene transcription was: (1) the use of a technically non-demanding fluorescent intercalator displacement (FID) assay for initial assessment of the DNA binding affinity and selectivity of a library of compounds for any sequence of interest, and (2) the technology used to prepare a sufficiently large library of DNA binding compounds. PMID:19216569

  8. Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats.

    PubMed

    Barth, S W; Fähndrich, C; Bub, A; Dietrich, H; Watzl, B; Will, F; Briviba, K; Rechkemmer, G

    2005-08-01

    Clear (CleA) and cloudy (CloA) apple juices containing different amounts of analyzed procyanidins and pectin were investigated for preventive effects of colon cancer and underlying molecular mechanisms in F344 rats given intraperitoneal injections of 1,2-dimethylhydrazine (DMH; 20 mg/kg body wt) once a week for 4 weeks. Rats received either water (Cont), CleA or CloA (ad libitum) for 7 weeks starting 1 week before the first DMH injection. CloA inhibited DMH induced genotoxic damage in mucosa cells of the distal colon compared with Cont as investigated by single-cell microgel electrophoresis assay. The mean tail intensity in mucosa cells of DMH-treated controls (Cont/DMH: 6.1+/-0.9%) was significantly reduced by CloA (2.4+/-0.8%; P<0.01) but not by CleA intervention (4.1+/-1.2%; P>0.05). The crypt cell proliferation index induced by DMH (Cont/NaCl: 10.0+/-0.7%; Cont/DMH: 19.9+/-1.0%; P<0.001) was significantly decreased by CleA (15.7+/-0.7%; P<0.001) and CloA intervention (11.9+/-0.4%; P<0.001). CloA but not CleA significantly reduced the number of large aberrant crypt foci (ACF) consisting of more than four aberrant crypts (AC) (Cont/DMH: 37.4+/-5.4; CleA/DMH: 32.8+/-4.4, P>0.05; CloA/DMH: 18.8+/-2.5 ACF; P<0.05) and the overall mean ACF size in the distal colon (Cont/DMH: 2.31+/-0.09; CleA/DMH: 2.27+/-0.05; CloA/DMH: 2.04+/-0.03 AC/ACF; P<0.05). After treatment with DMH and/or apple juices there were no changes in transcript levels of colonic cyclooxygenase isoforms (COX-1, COX-2) or glutathione-associated enzymes (GST-M2, gamma-GCS, GST-P), the splenocyte natural killer cell activity and plasma antioxidant status. However, CloA but not CleA prevented the DMH-induced reduction of splenocyte CD4/CD8 (T-helper cells to cytotoxic lymphocytes) ratio. Since both formulations contained comparable concentrations and types of monomeric polyphenols, complex polyphenols or non-polyphenolic compounds, such as pectin might be responsible for the stronger cancer

  9. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin causes

  10. Hypermethylation reduces the expression of PNPLA7 in hepatocellular carcinoma

    PubMed Central

    ZHANG, XIAOJIAO; ZHANG, JUN; WANG, RUI; GUO, SHICHENG; ZHANG, HUILU; MA, YANYUN; LIU, QINGMEI; CHU, HAIYAN; XU, XIANGHONG; ZHANG, YITONG; YANG, DONGQIN; WANG, JIUCUN; LIU, JIE

    2016-01-01

    Liver cancer has a high morbidity and mortality rate, and is one of the most common types of cancer in men. PNPLA7 is a member of the patatin-like phospholipase domain-containing protein family which is involved in triglyceride hydrolysis, energy metabolism and lipid droplet metabolism. The liver is the most important energy metabolism organ; whether PNPLA7 is deregulated in liver cancer has not been previously reported. In the present study, reverse transcription-quantitative polymerase chain reaction and subsequent methylation analysis provided evidence that PNPLA7 is down-regulated in hepatocellular carcinoma (HCC) cell lines and tissue samples, via the mechanism of transcriptional silencing by promoter hypermethylation. These results may provide novel insights for HCC diagnosis. PMID:27347198

  11. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer

    PubMed Central

    Jeong, Young-Hee; Lu, Hanlin; Park, Chi-Hun; Li, Meiyan; Luo, Huijuan; Kim, Joung Joo; Liu, Siyang; Ko, Kyeong Hee; Huang, Shujia; Hwang, In Sung; Kang, Mi Na; Gong, Desheng; Park, Kang Bae; Choi, Eun Ji; Park, Jung Hyun; Jeong, Yeon Woo; Moon, Changjong; Hyun, Sang-Hwan; Kim, Nam Hyung; Jeung, Eui-Bae; Yang, Huanming; Hwang, Woo Suk; Gao, Fei

    2016-01-01

    Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, extensive but stochastic anomalies of genome-wide DNA methylation were discovered in these SCNT DSD dogs. Persistent abnormal hypermethylation of the SRY gene was observed together with its down-regulated mRNA and protein expression. Failure of SRY expression due to hypermethylation was further correlated with silencing of a serial of testis determining genes, including SOX9, SF1, SOX8, AMH and DMRT1 in an early embryonic development stage at E34 in the XYDSD gonad, and high activation of the female specific genes, including FOXL2, RSPO1, CYP19A1, WNT4, ERα and ERβ, after one postnatal year in the ovotestis. Our results demonstrate that incomplete demethylation on the SRY gene is the driving cause of XYDSD in these XY DSD dogs, indicating a central role of epigenetic regulation in sex determination. PMID:27501986

  12. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer.

    PubMed

    Jeong, Young-Hee; Lu, Hanlin; Park, Chi-Hun; Li, Meiyan; Luo, Huijuan; Kim, Joung Joo; Liu, Siyang; Ko, Kyeong Hee; Huang, Shujia; Hwang, In Sung; Kang, Mi Na; Gong, Desheng; Park, Kang Bae; Choi, Eun Ji; Park, Jung Hyun; Jeong, Yeon Woo; Moon, Changjong; Hyun, Sang-Hwan; Kim, Nam Hyung; Jeung, Eui-Bae; Yang, Huanming; Hwang, Woo Suk; Gao, Fei

    2016-08-09

    Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, extensive but stochastic anomalies of genome-wide DNA methylation were discovered in these SCNT DSD dogs. Persistent abnormal hypermethylation of the SRY gene was observed together with its down-regulated mRNA and protein expression. Failure of SRY expression due to hypermethylation was further correlated with silencing of a serial of testis determining genes, including SOX9, SF1, SOX8, AMH and DMRT1 in an early embryonic development stage at E34 in the XY(DSD) gonad, and high activation of the female specific genes, including FOXL2, RSPO1, CYP19A1, WNT4, ERα and ERβ, after one postnatal year in the ovotestis. Our results demonstrate that incomplete demethylation on the SRY gene is the driving cause of XY(DSD) in these XY DSD dogs, indicating a central role of epigenetic regulation in sex determination.

  13. Aberrant methylation of H19-DMR acquired after implantation was dissimilar in soma versus placenta of patients with Beckwith-Wiedemann syndrome.

    PubMed

    Higashimoto, Ken; Nakabayashi, Kazuhiko; Yatsuki, Hitomi; Yoshinaga, Hokuto; Jozaki, Kosuke; Okada, Junichiro; Watanabe, Yoriko; Aoki, Aiko; Shiozaki, Arihiro; Saito, Shigeru; Koide, Kayoko; Mukai, Tsunehiro; Hata, Kenichiro; Soejima, Hidenobu

    2012-07-01

    Gain of methylation (GOM) at the H19-differentially methylated region (H19-DMR) is one of several causative alterations in Beckwith-Wiedemann syndrome (BWS), an imprinting-related disorder. In most patients with epigenetic changes at H19-DMR, the timing of and mechanism mediating GOM is unknown. To clarify this, we analyzed methylation at the imprinting control regions of somatic tissues and the placenta from two unrelated, naturally conceived patients with sporadic BWS. Maternal H19-DMR was abnormally and variably hypermethylated in both patients, indicating epigenetic mosaicism. Aberrant methylation levels were consistently lower in placenta than in blood and skin. Mosaic and discordant methylation strongly suggested that aberrant hypermethylation occurred after implantation, when genome-wide de novo methylation normally occurs. We expect aberrant de novo hypermethylation of H19-DMR happens to a greater extent in embryos than in placentas, as this is normally the case for de novo methylation. In addition, of 16 primary imprinted DMRs analyzed, only H19-DMR was aberrantly methylated, except for NNAT DMR in the placental chorangioma of Patient 2. To our knowledge, these are the first data suggesting when GOM of H19-DMR occurs.

  14. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  15. Maternal diabetes modulates dental epithelial stem cells proliferation and self-renewal in offspring through apurinic/apyrimidinicendonuclease 1-mediated DNA methylation

    PubMed Central

    Chen, Guoqing; Chen, Jie; Yan, Zhiling; Li, Ziyue; Yu, Mei; Guo, Weihua; Tian, Weidong

    2017-01-01

    Maternal gestational diabetes mellitus (GDM) has many adverse effects on the development of offspring. Aberrant DNA methylation is a potential mechanism associated with these effects. However, the effects of GDM on tooth development and the underlying mechanisms have not been thoroughly investigated. In the present study, a GDM rat model was established and incisor labial cervical loop tissue and dental epithelial stem cells (DESCs) were harvested from neonates of diabetic and control dams. GDM significantly suppressed incisor enamel formation and DESCs proliferation and self-renewal in offspring. Gene expression profiles showed that Apex1 was significantly downregulated in the offspring of diabetic dams. In vitro, gain and loss of function analyses showed that APEX1 was critical for DESCs proliferation and self-renewal and Oct4 and Nanog regulation via promoter methylation. In vivo, we confirmed that GDM resulted in significant downregulation of Oct4 and Nanog and hypermethylation of their promoters. Moreover, we found that APEX1 modulated DNA methylation by regulating DNMT1 expression through ERK and JNK signalling. In summary, our data suggest that GDM-induced APEX1 downregulation increased DNMT1 expression, thereby inhibiting Oct4 and Nanog expression, through promoter hypermethylation, resulting in suppression of DESCs proliferation and self-renewal, as well as enamel formation. PMID:28094306

  16. Hypermethylation of Hippocampal Synaptic Plasticity-Related genes is Involved in Neonatal Sevoflurane Exposure-Induced Cognitive Impairments in Rats.

    PubMed

    Ju, Ling-sha; Jia, Min; Sun, Jie; Sun, Xiao-ru; Zhang, Hui; Ji, Mu-huo; Yang, Jian-jun; Wang, Zhong-yun

    2016-02-01

    General anesthetics given to immature rodents cause delayed neurobehavioral abnormalities via incompletely understood mechanisms. DNA methylation, one of the epigenetic modifications, is essential for the modulation of hippocampal synaptic plasticity through regulating the related genes. Therefore, we investigated whether abnormalities in the hippocampal DNA methylation of synaptic plasticity-related genes are involved in neonatal sevoflurane exposure-induced cognitive impairments in rats. Male Sprague-Dawley rats were exposed to 3 % sevoflurane or 30 % oxygen/air for 2 h daily from postnatal day 7 (P7) to P9 and were treated with DNA methyltransferases (DNMTs) inhibitor 5-aza-2-deoxycytidine (5-AZA) or vehicle 1 h before the first sevoflurane exposure on P7. The rats were euthanized 1, 6, 24 h, and 30 days after the last sevoflurane exposure, and the brain tissues were harvested for biochemical analysis. Cognitive functions were evaluated by the open field, fear conditioning, and Morris water maze (MWM) tests on P39, P41-43, and P50-57, respectively. In the present study, repeated neonatal sevoflurane exposure resulted in hippocampus-dependent cognitive impairments as assessed by fear conditioning and MWM tests. The cognitive impairments were associated with the increased DNMTs and hypermethylation of brain-derived neurotrophic factor (BDNF) and Reelin genes, and subsequent down-regulation of BDNF and Reelin genes, which finally led to the decrease of dendritic spines in the hippocampal pyramidal neurons in adolescent rats. Notably, pretreatment with 5-AZA reversed these sevoflurane-induced abnormalities. In conclusion, our results suggest that hypermethylation of hippocampal BDNF and Reelin is involved in neonatal sevoflurane exposure-induced cognitive impairments.

  17. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia

    PubMed Central

    2013-01-01

    Background Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood. Results We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. Conclusions Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment. PMID:24063430

  18. miR-203, a Tumor Suppressor Frequently Down-regulated by Promoter Hypermethylation in Rhabdomyosarcoma*

    PubMed Central

    Diao, Yarui; Guo, Xing; Jiang, Lei; Wang, Gang; Zhang, Chao; Wan, Jun; Jin, Yan; Wu, Zhenguo

    2014-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma found in children and young adults. It is characterized by the expression of a number of skeletal muscle-specific proteins, including MyoD and muscle α-actin. However, unlike normal myoblasts, RMS cells differentiate poorly both in vivo and in culture. As microRNAs are known to regulate tumorigenesis, intensive efforts have been made to identify microRNAs that are involved in RMS development. In this work, we found that miR-203 was frequently down-regulated by promoter hypermethylation in both RMS cell lines and RMS biopsies and could be reactivated by DNA-demethylating agents. Re-expression of miR-203 in RMS cells inhibited their migration and proliferation and promoted terminal myogenic differentiation. Mechanistically, miR-203 exerts its tumor-suppressive effect by directly targeting p63 and leukemia inhibitory factor receptor in RMS cells, which promotes myogenic differentiation by inhibiting the Notch and the JAK1/STAT1/STAT3 pathways, respectively. Our work reveals that miR-203 functions as a tumor suppressor in RMS development. PMID:24247238

  19. Abnormal Hypermethylation of the VDAC2 Promoter is a Potential Cause of Idiopathic Asthenospermia in Men

    PubMed Central

    Xu, Aiming; Hua, Yibo; Zhang, Jianzhong; Chen, Wei; Zhao, Kai; Xi, Wei; Wang, Hainan; Fang, Jianzheng; Su, Shifeng; Tang, Min; Liu, Bianjiang; Wang, Zengjun

    2016-01-01

    This study aimed to explore the association between the methylation status of the VDAC2 gene promoter region and idiopathic asthenospermia (IAS). Twenty-five IAS patients and 27 fertile normozoospermia (NZ) were involved. GC-2spd cells were treated with different concentrations of 5-aza-2′-deoxycytidine (5-Aza-CdR) for 24 h and 48 h. qRT-PCR was conducted to reveal whether or not VDAC2 expression was regulated by methylated modification. A dual-luciferase activity detection was used to verify VDAC2 promoter activity in GC-2spd cells. Bisulphite genomic sequence was used to analyse DNA methylation of the VDAC2 promoter. The results showed that VDAC2 expression was significantly increased after treated with 5-Aza-CdR. A strong activity of the promoter (−2000 bp to +1000 bp) was detected by dual-luciferase activity detection (P < 0.05). The bisulphite genomic sequencing and correlation analysis showed that sperm motility was positively associated with the methylation pattern of uncomplete methylation and mild hypermethylation, and negatively related to the percentage of moderate methylation. In conclusion, high methylation of the VDAC2 promoter CpGs could be positively correlated with low sperm motility. Abnormal methylation of VDAC2 promoter may be a potential cause to idiopathic asthenospermia. PMID:27892527

  20. Expression of the tumor suppressor gene hypermethylated in cancer 1 in laryngeal carcinoma.

    PubMed

    Markowski, Jarosław; Sieroń, Aleksander L; Kasperczyk, Katarzyna; Ciupińska-Kajor, Monika; Auguściak-Duma, Aleksandra; Likus, Wirginia

    2015-05-01

    Hypermethylated in cancer 1 (HIC1) is a putative suppressor gene, cooperating with TP53 in the regulation of apoptosis. The promoter site of this gene contains CpG islands susceptible to methylation. Altered methylation leads to the silencing of HIC1. Persistent loss of HIC1 function reflects the attenuation of proapoptotic characteristics of TP53 and may constitute the background for carcinogenesis. Altered methylation profiles along with diminished expression of HIC1 were documented in a number of solid neoplasms. The aim of this study was to evaluate the expression of the HIC1 gene in laryngeal carcinoma. RNA was extracted from samples of laryngeal cancer and corresponding healthy tissues of 21 patients with advanced laryngeal cancer (T3-T4). The amount of RNA (cDNA) was evaluated using reverse transcription-quantitative polymerase chain reaction with GADPH as the reference gene. Data demonstrated that HIC1 expression was significantly reduced in laryngeal cancer tissues. The relative expression of HIC1 was found to be ~40% lower in tumor samples compared to that in healthy controls. The median tumor/normal tissue ratio for HIC1 was 0.615. These results suggest that low HIC1 expression may be associated with neoplastic transformation in the larynx.

  1. Expression of the tumor suppressor gene hypermethylated in cancer 1 in laryngeal carcinoma

    PubMed Central

    MARKOWSKI, JAROSŁAW; SIEROŃ, ALEKSANDER L.; KASPERCZYK, KATARZYNA; CIUPIŃSKA-KAJOR, MONIKA; AUGUŚCIAK-DUMA, ALEKSANDRA; LIKUS, WIRGINIA

    2015-01-01

    Hypermethylated in cancer 1 (HIC1) is a putative suppressor gene, cooperating with TP53 in the regulation of apoptosis. The promoter site of this gene contains CpG islands susceptible to methylation. Altered methylation leads to the silencing of HIC1. Persistent loss of HIC1 function reflects the attenuation of proapoptotic characteristics of TP53 and may constitute the background for carcinogenesis. Altered methylation profiles along with diminished expression of HIC1 were documented in a number of solid neoplasms. The aim of this study was to evaluate the expression of the HIC1 gene in laryngeal carcinoma. RNA was extracted from samples of laryngeal cancer and corresponding healthy tissues of 21 patients with advanced laryngeal cancer (T3-T4). The amount of RNA (cDNA) was evaluated using reverse transcription-quantitative polymerase chain reaction with GADPH as the reference gene. Data demonstrated that HIC1 expression was significantly reduced in laryngeal cancer tissues. The relative expression of HIC1 was found to be ~40% lower in tumor samples compared to that in healthy controls. The median tumor/normal tissue ratio for HIC1 was 0.615. These results suggest that low HIC1 expression may be associated with neoplastic transformation in the larynx. PMID:26137060

  2. Fatty acid-binding protein FABP4 mechanistically links obesity with aggressive AML by enhancing aberrant DNA methylation in AML cells.

    PubMed

    Yan, F; Shen, N; Pang, J X; Zhang, Y W; Rao, E Y; Bode, A M; Al-Kali, A; Zhang, D E; Litzow, M R; Li, B; Liu, S J

    2016-12-02

    Obesity is becoming more prevalent worldwide and is a major risk factor for cancer development. Acute myeloid leukemia (AML), the most common acute leukemia in adults, remains a frequently fatal disease. Here we investigated the molecular mechanisms by which obesity favors AML growth and uncovered the fatty acid-binding protein 4 (FABP4) and DNA methyltransferase 1 (DNMT1) regulatory axis that mediates aggressive AML in obesity. We showed that leukemia burden was much higher in high-fat diet-induced obese mice, which had higher levels of FABP4 and interleukin (IL)-6 in the sera. Upregulation of environmental and cellular FABP4 accelerated AML cell growth in both a cell-autonomous and cell-non-autonomous manner. Genetic disruption of FABP4 in AML cells or in mice blocked cell proliferation in vitro and induced leukemia regression in vivo. Mechanistic investigations showed that FABP4 upregulation increased IL-6 expression and signal transducer and activator of transcription factor 3 phosphorylation leading to DNMT1 overexpression and further silencing of the p15(INK4B) tumor-suppressor gene in AML cells. Conversely, FABP4 ablation reduced DNMT1-dependent DNA methylation and restored p15(INK4B) expression, thus conferring substantial protection against AML growth. Our findings reveal the FABP4/DNMT1 axis in the control of AML cell fate in obesity and suggest that interference with the FABP4/DNMT1 axis might be a new strategy to treat leukemia.Leukemia advance online publication, 2 December 2016; doi:10.1038/leu.2016.349.

  3. CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer

    PubMed Central

    Caldeira, José Roberto F; Prando, Érika C; Quevedo, Francisco C; Neto, Francisco A Moraes; Rainho, Cláudia A; Rogatto, Silvia R

    2006-01-01

    Background The E-cadherin gene (CDH1) maps, at chromosome 16q22.1, a region often associated with loss of heterozygosity (LOH) in human breast cancer. LOH at this site is thought to lead to loss of function of this tumor suppressor gene and was correlated with decreased disease-free survival, poor prognosis, and metastasis. Differential CpG island methylation in the promoter region of the CDH1 gene might be an alternative way for the loss of expression and function of E-cadherin, leading to loss of tissue integrity, an essential step in tumor progression. Methods The aim of our study was to assess, by Methylation-Specific Polymerase Chain Reaction (MSP), the methylation pattern of the CDH1 gene and its possible correlation with the expression of E-cadherin and other standard immunohistochemical parameters (Her-2, ER, PgR, p53, and K-67) in a series of 79 primary breast cancers (71 infiltrating ductal, 5 infiltrating lobular, 1 metaplastic, 1 apocrine, and 1 papillary carcinoma). Results CDH1 hypermethylation was observed in 72% of the cases including 52/71 ductal, 4/5 lobular carcinomas and 1 apocrine carcinoma. Reduced levels of E-cadherin protein were observed in 85% of our samples. Although not statistically significant, the levels of E-cadherin expression tended to diminish with the CDH1 promoter region methylation. In the group of 71 ductal cancinomas, most of the cases of showing CDH1 hypermethylation also presented reduced levels of expression of ER and PgR proteins, and a possible association was observed between CDH1 methylation and ER expression (p = 0.0301, Fisher's exact test). However, this finding was not considered significant after Bonferroni correction of p-value. Conclusion Our preliminary findings suggested that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression in a subgroup of cases characterized by loss of expression of other important genes to the mammary

  4. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of nonmutagenic environmental exposures can sometimes be transmitted for several generations, suggesting transgenerational inheritance of induced epigenetic variation. Methyl donor supplementation of female mice during pregnancy induces CpG hypermethylation at the agouti viable yellow (A...

  5. DNA Methyltransferases Inhibitors from Natural Sources.

    PubMed

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials.

  6. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice.

    PubMed

    Kikuchihara, Yoh; Abe, Hajime; Tanaka, Takeshi; Kato, Mizuho; Wang, Liyun; Ikarashi, Yoshiaki; Yoshida, Toshinori; Shibutani, Makoto

    2015-05-04

    We previously found persistent aberration of hippocampal adult neurogenesis, along with brain manganese (Mn) accumulation, in mouse offspring after developmental exposure to 800-ppm dietary Mn. Reduction of parvalbumin (Pvalb)(+) γ-aminobutyric acid (GABA)-ergic interneurons in the hilus of the dentate gyrus along with promoter region hypermethylation are thought to be responsible for this aberrant neurogenesis. The present study was conducted to examine the relationship between the induction of aberrant neurogenesis and brain Mn accumulation after oral Mn exposure as well as the responsible mechanism in young adult animals. We used two groups of mice with 28- or 56-day exposure periods to oral MnCl2·xH2O at 800 ppm as Mn, a dose sufficient to lead to aberrant neurogenesis after developmental exposure. A third group of mice received intravenous injections of Mn at 5-mg/kg body weight once weekly for 28 days. The 28-day oral Mn exposure did not cause aberrations in neurogenesis. In contrast, 56-day oral exposure caused aberrations in neurogenesis suggestive of reductions in type 2b and type 3 progenitor cells and immature granule cells in the dentate subgranular zone. Brain Mn accumulation in 56-day exposed cases, as well as in directly Mn-injected cases occurred in parallel with reduction of Pvalb(+) GABAergic interneurons in the dentate hilus, suggesting that this may be responsible for aberrant neurogenesis. For reduction of Pvalb(+) interneurons, suppression of brain-derived neurotrophic factor-mediated signaling of mature granule cells may occur via suppression of c-Fos-mediated neuronal plasticity due to direct Mn-toxicity rather than promoter region hypermethylation of Pvalb.

  7. Aberrantly regulated dysadherin and B-cell lymphoma 2/B-cell lymphoma 2-associated X enhances tumorigenesis and DNA targeting drug resistance of liver cancer stem cells

    PubMed Central

    JIANG, NAN; CHEN, WEI; ZHANG, JIAN-WEN; LI, YANG; ZENG, XIAN-CHENG; ZHANG, TONG; FU, BIN-SHENG; YI, HUI-MIN; ZHANG, QI

    2015-01-01

    Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) are frequently resistant to current therapeutic regimens and therefore responsible for tumor recurrence. Previous studies have reported that expression levels of dysadherin in CSCs may be used as a prognostic indicator, which is also responsible for treatment failure and poor survival rates. The present study analyzed the association of enhanced dysadherin levels with drug resistance and evasion of apoptosis in human HCC SP cells. An SP of 3.7% was isolated from human HCC cells using fluorescence-activated cell sorting. These SP cells displayed elevated levels of dysadherin and stemness proteins as well as high resistance to chemotherapeutic drugs and apoptosis. In order to reveal the possible link between dysadherin levels and tumorigenesis of SP cells, small interfering RNA technology was used to knockdown the expression of dysadherin in SP cells. Of note, the siRNA-transfected SP cells showed significantly reduced levels of stemness proteins, and were more sensitive to DNA-targeting drugs and apoptotic cell death as compared to non-transfected cells. Furthermore, in vivo experiments in NON/SCID mice indicated that dysadherin-expressing SP cells were highly tumorigenic, as they were able to induce tumor growth. The SP cell-derived tumor tissues in turn showed elevated dysadherin levels. The results of the present study therefore suggested that knockdown of dysadherin suppressed the tumorigenic properties of cancer stem-like SP cells. Hence, dysadherin is a valuable potential target for the development of novel anti-cancer drugs. PMID:26458963

  8. Promoter hypermethylation of Wnt inhibitory factor-1 in patients with lung cancer

    PubMed Central

    Zheng, Yu; Li, Xia; Jiang, Yiming; Xu, Yufen; Song, Binbin; Zhou, Qiang; Liang, Xiaodong; Yang, Xinmei

    2016-01-01

    Abstract Background: Promoter hypermethylation of Wnt inhibitory factor-1 (WIF-1)—a tumor suppressor gene—has been detected in several types of human tumors. However, the association between WIF-1 promoter hypermethylation and lung cancer remains to be elucidated. Therefore, we conducted this study to evaluate the clinical significance of WIF-1 promoter hypermethylation in lung cancer. Methods: A comprehensive literature search was conducted to obtain eligible studies. The combined odds ratios (ORs) or hazard ratios and 95% confidence intervals were used to estimate the strength of associations. Results: A total of 8 eligible publications with 626 cases and 512 controls were included in our study. The combined ORs revealed that WIF-1 promoter hypermethylation was significantly higher in lung cancer than in controls (OR 10.53, P < 0.001). Moreover, WIF-1 promoter hypermethylation was significantly associated with smoking behavior (OR 1.88, P = 0.002). No significant correlation was found between WIF-1 promoter hypermethylation and sex status, age status, tumor stage, and pathological types in cancer. Multivariate analysis results indicated the absence of correlation between WIF-1 promoter hypermethylation and with relapse-free survival and overall survival. Subgroup analysis by sample type demonstrated that promoter hypermethylation of WIF-1 was significantly associated with an increased risk of lung cancer in the tissue (OR 7.89, P < 0.001), blood (OR 21.83, P = 0.034), and pleural effusion subgroups (OR 157.43, P = 0.001). Conclusions: Promoter hypermethylation of WIF-1 may play a crucial role in lung cancer carcinogenesis. It may be a noninvasive biomarker using blood or pleural effusion detection. WIF-1 promoter hypermethylation is correlated with smoking behavior, but not with sex status, age status, tumor stage, pathological types, and the prognosis of lung cancer patients in terms of relapse-free survival and overall survival. More investigations

  9. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study

    PubMed Central

    Valentini, Elisabetta; Zampieri, Michele; Malavolta, Marco; Bacalini, Maria Giulia; Calabrese, Roberta; Guastafierro, Tiziana; Reale, Anna; Franceschi, Claudio; Hervonen, Antti; Koller, Bernhard; Bernhardt, Jürgen; Slagboom, P. Eline; Toussaint, Olivier; Sikora, Ewa; Gonos, Efstathios S.; Breusing, Nicolle; Grune, Tilman; Jansen, Eugène; Dollé, Martijn E.T.; Moreno-Villanueva, María; Sindlinger, Thilo; Bürkle, Alexander; Ciccarone, Fabio; Caiafa, Paola

    2016-01-01

    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project ‘MARK-AGE’. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly. PMID:27587280

  10. Analysis of the machinery and intermediates of the 5hmC-mediated DNA demethylation pathway in aging on samples from the MARK-AGE Study.

    PubMed

    Valentini, Elisabetta; Zampieri, Michele; Malavolta, Marco; Bacalini, Maria Giulia; Calabrese, Roberta; Guastafierro, Tiziana; Reale, Anna; Franceschi, Claudio; Hervonen, Antti; Koller, Bernhard; Bernhardt, Jürgen; Slagboom, P Eline; Toussaint, Olivier; Sikora, Ewa; Gonos, Efstathios S; Breusing, Nicolle; Grune, Tilman; Jansen, Eugène; Dollé, Martijn E T; Moreno-Villanueva, María; Sindlinger, Thilo; Bürkle, Alexander; Ciccarone, Fabio; Caiafa, Paola

    2016-08-29

    Gradual changes in the DNA methylation landscape occur throughout aging virtually in all human tissues. A widespread reduction of 5-methylcytosine (5mC), associated with highly reproducible site-specific hypermethylation, characterizes the genome in aging. Therefore, an equilibrium seems to exist between general and directional deregulating events concerning DNA methylation controllers, which may underpin the age-related epigenetic changes. In this context, 5mC-hydroxylases (TET enzymes) are new potential players. In fact, TETs catalyze the stepwise oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), driving the DNA demethylation process based on thymine DNA glycosylase (TDG)-mediated DNA repair pathway. The present paper reports the expression of DNA hydroxymethylation components, the levels of 5hmC and of its derivatives in peripheral blood mononuclear cells of age-stratified donors recruited in several European countries in the context of the EU Project 'MARK-AGE'. The results provide evidence for an age-related decline of TET1, TET3 and TDG gene expression along with a decrease of 5hmC and an accumulation of 5caC. These associations were independent of confounding variables, including recruitment center, gender and leukocyte composition. The observed impairment of 5hmC-mediated DNA demethylation pathway in blood cells may lead to aberrant transcriptional programs in the elderly.

  11. The association between phosphatase and tensin homolog hypermethylation and patients with breast cancer, a meta-analysis and literature review

    PubMed Central

    Lu, Yi-Min; Cheng, Feng; Teng, Li-Song

    2016-01-01

    The Phosphatase and tensin homolog (PTEN) protein is a negative regulator of the Akt pathway, leading to suppression of apoptois and increased cell survival. Its role as a tumor-suppressor gene has been adequately substantiated, and PTEN hypermethylation has been demonstrated in familial and sporadic cancers. However, the association and clinical significance between PTEN hypermethylation and breast cancer remains unclear. In this study, we systematically reviewed studies of PTEN hypermethylation and breast cancer and quantify the association between PTEN hypermethylation and breast cancer using meta-analysis methods. The pooled OR, 22.30, 95% confidential intervals, CI = 1.98–251.51, P = 0.01, which demonstrates that loss of PTEN expression by hypermethylation plays a critical role in the early tumorigenesis of ductal carcinoma in situ (DCIS). In addition, PTEN hypermethylation also is detected in invasive ductal carcinomas (IDCs) and is significantly higher than in normal controls, OR = 23.32, 95% CI = 10.43–52.13, P < 0.00001. Further analysis did not show significant correlation between PTEN hypermethylation and the progression of breast cancer, estrogen receptor (ER), progesterone receptor (PgR), as well as HER2 status. These results indicate the PTEN hypermethylation is significantly associated with both DCIS and IDCs. The detection of PTEN hypermethylation could be an early tumorigenesis marker for breast cancer patients. PMID:27620353

  12. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro

    PubMed Central

    Salilew-Wondim, Dessie; Fournier, Eric; Hoelker, Michael; Saeed-Zidane, Mohammed; Tholen, Ernst; Looft, Christian; Neuhoff, Christiane; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; A. Shojaei Saadi, Habib; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY), 4-cell (4C) or 16-cell (16C) were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP). Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO) using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic imprinting and

  13. Hypermethylation of the death-associated protein kinase CpG island in canine B-cell lymphoid tumors.

    PubMed

    Sato, Masahiko; Mochizuki, Hiroyuki; Goto-Koshino, Yuko; Fujiwara-Igarashi, Aki; Takahashi, Masashi; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2014-10-15

    Death-associated protein kinase (DAPK) is a 160-kD serine/threonine kinase known as a key molecule in interferon-γ (IFN-γ)-induced apoptosis and tumor suppression. Hypermethylation of the CpG island in DAPK inactivates the gene in a variety of human malignancies. This study aimed to detect the inactivation of DAPK in canine lymphoid tumor cells. The sequence of canine DAPK cDNA was obtained from normal dog peripheral blood mononuclear cells after reverse transcription polymerase chain reaction (RT-PCR). By rapid amplification of 5'-cDNA ends, the transcription initiation site of the DAPK gene was identified. The CpG island located upstream of the translation initiation site was identified by using a search algorithm. The methylation status of the CpG island was examined using bisulfite sequence analysis and methylation-specific PCR (MSP). The inactivation of DAPK gene was examined in 3 canine lymphoid tumor cell lines, GL-1 (B-cell leukemia), CLBL-1 (B-cell lymphoma), and CL-1 (T-cell lymphoma). DAPK mRNA expression was measured by real-time RT-PCR. IFN-γ-induced apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. The influence of demethylation was examined with 5-aza-2'-deoxycytidine (5-aza-dC). The methylation status in 14 dogs with various lymphoid tumors was screened by MSP. A 1926-bp CpG island containing 280 CpG repeats was identified upstream of the translation start site of canine DAPK. Bisulfate sequence analysis and MSP revealed hypermethylation of the CpG island in GL-1 cells, but not in CLBL-1 or CL-1 cells. The amount of DAPK mRNA was significantly smaller in GL-1 cells than CLBL-1 and CL-1 cells. IFN-γ-induced apoptosis was detected in CLBL-1 and CL-1 cells but not in GL-1 cells. Treatment with 5-aza-dC significantly increased the amount of DAPK mRNA and IFN-γ-induced apoptosis in GL-1 cells. These results revealed the inactivation of DAPK through methylation of its CpG island in GL-1 cells. MSP

  14. Promoter Hypermethylation and Decreased Expression of Syncytin-1 in Pancreatic Adenocarcinomas

    PubMed Central

    Senkowski, Christopher; Tang, Zuoqing; Wang, Jianhao; Huang, Tianhe; Wang, Xue; Terry, Karen; Brower, Steven; Glasgow, Wayne; Chen, Haibin; Jiang, Shi-Wen

    2015-01-01

    Syncytin-1 is a member of human endogenous retroviral W gene family (HERVW1). Known to be expressed in human placental trophoblast, syncytin-1 protein mediates the fusion of cytotrophoblasts for the formation of syncytiotrophoblasts, the terminally differentiated form of trophoblast lineage. In addition, in vitro studies indicate that syncytin-1 possessed nonfusogenic functions such as those for immune suppression, cell cycle regulation and anti-apoptotic activities. Overexpression of syncytin-1 has been observed in various malignant tissues including breast, endometrial and ovarian cancers. It was reported that syncytin-1 gene expression is associated with dynamic changes of DNA hypomethylation in the 5’ LTR. In this study, applying the real-time PCR, Western blot analysis and immunohistochemistry methods, we demonstrate a constitutive expression of syncytin-1 in normal pancreas tissues as well as normal tissues adjacent to cancer lesions. Moreover, a reduced expression is found in the pancreatic adenocarcinoma tissues. The expression levels of syncytin-1 are not correlated with the stage, historical grade and gender, but inversely correlated with patients’ age. Furthermore, COBRA and bisulfite sequencing results indicated that the lower expression of syncytin-1 is correlated with the hypermethylation of two CpG dinucleotides in the 5’ LTR of syncytin-1 gene. The nonfusogenic function of syncytin-1 in normal pancreas as well as its role(s) in the pathogenesis and progression of pancreatic cancers remains to be investigated. Identification of the two CpG dinucleotides around transcription start site as key epigenetic elements has provided valuable information for further studies on the epigenetic regulation of syncytin-1 in pancreatic cancer cells. PMID:26230721

  15. DCB - DNA and Chromosome Aberrations Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, this research area is focused on making clear the genetic and epigenetic mechanisms of tumorigenesis and mechanisms of chemical and physical carcinogenesis.

  16. Identification of Predictive DNA Methylation Biomarkers for Chemotherapy Response in Colorectal Cancer

    PubMed Central

    Baharudin, Rashidah; Ab Mutalib, Nurul-Syakima; Othman, Sri N.; Sagap, Ismail; Rose, Isa M.; Mohd Mokhtar, Norfilza; Jamal, Rahman

    2017-01-01

    Resistance to 5-Fluorouracil (5-FU) is a major obstacle to the successful treatment of colorectal cancer (CRC) and posed an increased risk of recurrence. DNA methylation has been suggested as one of the underlying mechanisms for recurrent disease and its contribution to the development of drug resistance remains to be clarified. This study aimed to determine the methylation phenotype in CRC for identification of predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non-recurrent and five recurrent CRC patients using the Illumina Infinium HumanMethylation450 Beadchip assay. In addition, CRC cells with different genetic backgrounds, response to 5-FU and global methylation levels (HT29 and SW48) were treated with 5-FU and DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC). The singular and combined effects of these two drug classes on cell viability and global methylation profiles were investigated. Our genome-wide methylation study on the clinical specimens showed that recurrent CRCs exhibited higher methylation levels compared to non-recurrent CRCs. We identified 4787 significantly differentially methylated genes (P < 0.05); 3112 genes were hyper- while 1675 genes were hypomethylated in the recurrent group compared to the non-recurrent. Fifty eight and 47 of the significantly hypermethylated and hypomethylated genes have an absolute recurrent/non-recurrent methylation difference of ≥20%. Most of the hypermethylated genes were involved in the MAPK signaling pathway which is a key regulator for apoptosis while the hypomethylated genes were involved in the PI3K-AKT signaling pathway and proliferation process. We also demonstrate that 5-azadC treatment enhanced response to 5-FU which resulted in significant growth inhibition compared to 5-FU alone in hypermethylated cell lines SW48. In conclusion, we found the evidence of five potentially biologically important genes in recurrent CRCs that could possibly serve as a new

  17. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  18. Aberrant CpG Methylation Mediates Abnormal Transcription of MAO-A Induced by Acute and Chronic L-3,4-Dihydroxyphenylalanine Administration in SH-SY5Y Neuronal Cells.

    PubMed

    Yang, Zhaofei; Wang, Xuan; Yang, Jian; Sun, Min; Wang, Yong; Wang, Xiaomin

    2017-04-01

    L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective drug for therapy of Parkinson's disease (PD); however, long-term use of it causes serious side effects. L-dopa-induced dyskinesia (LID) has consistently been related to L-dopa-derived excessive dopamine release, but the mechanisms have not been addressed very clear. Monoamine oxidase A (MAO-A) is one of the key enzymes in dopamine metabolism and therefore may be involved in L-dopa-induced side effects. And, epigenetic modification controls MAO-A gene transcription. To investigate the effects of L-dopa on MAO-A transcription and its underlying epigenetic mechanism, neuronal SH-SY5Y cells were treated with L-dopa for 24 h (acute) and for 7-21 days (chronic). Results showed that chronic L-dopa administration resulted in a dose-dependent and time-dependent downregulation of MAO-A, whereas acute L-dopa administration induced upregulation of MAO-A transcription and expression. Meanwhile, chronic L-dopa exposure induced CpG hypermethylation in MAO-A promoter, while acute L-dopa administration caused CpG hypomethylation. And, CpG demethylation resulted in reactivation of MAO-A transcription. These results indicated that aberrant CpG methylation might play a key role in MAO-A transcriptional misregulation in L-dopa administration. In addition, results showed that acute L-dopa administration induced downregulation of DNA methyltransferase 3a (DNMT3a). Transcription of ten-eleven translocation 1 (TET1) were significantly downregulated in chronic L-dopa administration. These data indicated that in chronic L-dopa administration, TET1 downregulation might mediate CpG hypermethylation, which is responsible for the downregulation of MAO-A transcription. In contrast, in acute L-dopa administration, DNMT3a downregulation might mediate hypomethylation, contributing to the MAO-A upregulation. In conclusion, our findings suggested that TET1 and DNMTs might mediate aberrant CpG methylation, associated with the

  19. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  20. Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC)

    PubMed Central

    Smiraglia, D; Smith, L; Lang, J; Rush, L; Dai, Z; Schuller, D; Plass, C

    2003-01-01

    Head and neck squamous cell carcinomas (HNSCC) often metastasise to the cervical lymph nodes. It is known for HNSCC as well as other cancers that progression from normal tissue to primary tumour and finally to metastatic tumour is characterised by an accumulation of genetic mutations. DNA methylation, an epigenetic modification, can result in loss of gene function in cancer, similar to genetic mutations such as deletions and point mutations. We have investigated the DNA methylation phenotypes of both primary HNSCC and metastatic tumours from 13 patients using restriction landmark genomic scanning (RLGS). With this technique, we were able to assess the methylation status of an average of nearly 1300 CpG islands for each tumour. We observed that the number of CpG islands hypermethylated in metastatic tumours is significantly greater than what is found in the primary tumours overall, but not in every patient. Interestingly, the data also clearly show that many loci methylated in a patient's primary tumour are no longer methylated in the metastatic tumour of the same patient. Thus, even though metastatic HNSCC methylate a greater proportion of CpG islands than do the primary tumours, they do so at different subsets of loci. These data show an unanticipated variability in the methylation state of loci in primary and metastatic HNSCCs within the same patient. We discuss two possible explanations for how different epigenetic events might arise between the primary tumour and the metastatic tumour of a person. PMID:12525538

  1. DNA methyltransferases and TETs in the regulation of differentiation and invasiveness of extra-villous trophoblasts

    PubMed Central

    Logan, Philip C.; Mitchell, Murray D.; Lobie, Peter E.

    2013-01-01

    Specialized cell types of trophoblast cells form the placenta in which each cell type has particular properties of proliferation and invasion. The placenta sustains the growth of the fetus throughout pregnancy and any aberrant trophoblast differentiation or invasion potentially affects the future health of the child and adult. Recently, the field of epigenetics has been applied to understand differentiation of trophoblast lineages and embryonic stem cells (ESC), from fertilization of the oocyte onward. Each trophoblast cell-type has a distinctive epigenetic profile and we will concentrate on the epigenetic mechanism of DNA methyltransferases and TETs that regulate DNA methylation. Environmental factors affecting the mother potentially regulate the DNA methyltransferases in trophoblasts, and so do steroid hormones, cell cycle regulators, such as p53, and cytokines, especially interlukin-1β. There are interesting questions of why trophoblast genomes are globally hypomethylated yet specific genes can be suppressed by hypermethylation (in general, tumor suppressor genes, such as E-cadherin) and how invasive cell-types are liable to have condensed chromatin, as in metastatic cancer cells. Future work will attempt to understand the interactive nature of all epigenetic mechanisms together and their effect on the complex biological system of trophoblast differentiation and invasion in normal as well as pathological conditions. PMID:24363660

  2. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient

    PubMed Central

    Heyn, Holger; Vidal, Enrique; Sayols, Sergi; Sanchez-Mut, Jose V.; Moran, Sebastian; Medina, Ignacio; Sandoval, Juan; Simó-Riudalbas, Laia; Szczesna, Karolina; Huertas, Dori; Gatto, Sole; Matarazzo, Maria R.; Dopazo, Joaquin; Esteller, Manel

    2012-01-01

    The immunodeficiency, centromere instability and facial anomalies (ICF) syndrome is associated to mutations of the DNA methyl-transferase DNMT3B, resulting in a reduction of enzyme activity. Aberrant expression of immune system genes and hypomethylation of pericentromeric regions accompanied by chromosomal instability were determined as alterations driving the disease phenotype. However, so far only technologies capable to analyze single loci were applied to determine epigenetic alterations in ICF patients. In the current study, we performed whole-genome bisulphite sequencing to assess alteration in DNA methylation at base pair resolution. Genome-wide we detected a decrease of methylation level of 42%, with the most profound changes occurring in inactive heterochromatic regions, satellite repeats and transposons. Interestingly, transcriptional active loci and ribosomal RNA repeats escaped global hypomethylation. Despite a genome-wide loss of DNA methylation the epigenetic landscape and crucial regulatory structures were conserved. Remarkably, we revealed a mislocated activity of mutant DNMT3B to H3K4me1 loci resulting in hypermethylation of active promoters. Functionally, we could associate alterations in promoter methylation with the ICF syndrome immunodeficient phenotype by detecting changes in genes related to the B-cell receptor mediated maturation pathway. PMID:22595875

  3. Constitutional H19 hypermethylation in a patient with isolated cardiac tumor.

    PubMed

    Descartes, Maria; Romp, Robb; Franklin, Judy; Biggio, Joseph R; Zehnbauer, Barbara

    2008-08-15

    Beckwith-Wiedemann syndrome (BWS) is clinically and molecularly very heterogenous. Molecular findings characteristic of BWS have been reported in individuals with no or few associated features. We report on a child with isolated cardiac tumor and a constitutional H19 hypermethylation with none of the features of BWS.

  4. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  5. Frequent promoter hypermethylation of RASSF1A and CASP8 in neuroblastoma

    PubMed Central

    Lázcoz, Paula; Muñoz, Jorge; Nistal, Manuel; Pestaña, Ángel; Encío, Ignacio; Castresana, Javier S

    2006-01-01

    Background Epigenetic alterations and loss of heterozygosity are mechanisms of tumor suppressor gene inactivation. A new carcinogenic pathway, targeting the RAS effectors has recently been documented. RASSF1A, on 3p21.3, and NORE1A, on 1q32.1, are among the most important, representative RAS effectors. Methods We screened the 3p21 locus for the loss of heterozygosity and the hypermethylation status of RASSF1A, NORE1A and BLU (the latter located at 3p21.3) in 41 neuroblastic tumors. The statistical relationship of these data was correlated with CASP8 hypermethylation. The expression levels of these genes, in cell lines, were analyzed by RT-PCR. Results Loss of heterozygosity and microsatellite instability at 3p21 were detected in 14% of the analyzed tumors. Methylation was different for tumors and cell lines (tumors: 83% in RASSF1A, 3% in NORE1A, 8% in BLU and 60% in CASP8; cell lines: 100% in RASSF1A, 50% in NORE1A, 66% in BLU and 92% in CASP8). In cell lines, a correlation with lack of expression was evident for RASSF1A, but less clear for NORE1A, BLU and CASP8. We could only demonstrate a statistically significant association between hypermethylation of RASSF1A and hypermethylation of CASP8, while no association with MYCN amplification, 1p deletion, and/or aggressive histological pattern of the tumor was demonstrated. Conclusion 1) LOH at 3p21 appears in a small percentage of neuroblastomas, indicating that a candidate tumor suppressor gene of neuroblastic tumors is not located in this region. 2) Promoter hypermethylation of RASSF1A and CASP8 occurs at a high frequency in neuroblastomas. PMID:17064406

  6. The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction.

    PubMed

    van Straten, Esther M E; Bloks, Vincent W; Huijkman, Nicolette C A; Baller, Julius F W; van Meer, Hester; Lütjohann, Dieter; Kuipers, Folkert; Plösch, Torsten

    2010-02-01

    Prenatal nutrition as influenced by the nutritional status of the mother has been identified as a determinant of adult disease. Feeding low-protein diets during pregnancy in rodents is a well-established model to induce programming events in offspring. We hypothesized that protein restriction would influence fetal lipid metabolism by inducing epigenetic adaptations. Pregnant C57BL/6J mice were exposed to a protein-restriction protocol (9% vs. 18% casein). Shortly before birth, dams and fetuses were killed. To identify putative epigenetic changes, CG-dinucleotide-rich region in the promoter of a gene (CpG island) methylation microarrays were performed on DNA isolated from fetal livers. Two hundred four gene promoter regions were differentially methylated upon protein restriction. The liver X-receptor (Lxr) alpha promoter was hypermethylated in protein-restricted pups. Lxr alpha is a nuclear receptor critically involved in control of cholesterol and fatty acid metabolism. The mRNA level of Lxra was reduced by 32% in fetal liver upon maternal protein restriction, whereas expression of the Lxr target genes Abcg5/Abcg8 was reduced by 56% and 51%, respectively, measured by real-time quantitative PCR. The same effect, although less pronounced, was observed in the fetal intestine. In vitro methylation of a mouse Lxra-promoter/luciferase expression cassette resulted in a 24-fold transcriptional repression. Our study demonstrates that, in mice, protein restriction during pregnancy interferes with DNA methylation in fetal liver. Lxra is a target of differential methylation, and Lxra transcription is dependent on DNA methylation. It is tempting to speculate that perinatal nutrition may influence adult lipid metabolism by DNA methylation, which may contribute to the epidemiological relation between perinatal/neonatal nutrition and adult disease.

  7. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  8. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process.

  9. Promoter hypermethylation-mediated downregulation of miR-770 and its host gene MEG3, a long non-coding RNA, in the development of gastric cardia adenocarcinoma.

    PubMed

    Guo, Wei; Dong, Zhiming; Liu, Shengnan; Qiao, Yiling; Kuang, Gang; Guo, Yanli; Shen, Supeng; Liang, Jia

    2017-03-27

    Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes an lncRNA and is downregulated in an expanding list of cancer cell lines and primary human cancers. The miR-770 is transcribed from the intronic sequence of MEG3 and MEG3 may be the host gene for miR-770. However, the biological role of MEG3 and miR-770 in gastric cardia adenocarcinoma (GCA) development and prognosis is poorly defined. The present study was to investigate the function and methylation status of MEG3 in GCA, and further to detect the functional association of miR-770 and its host gene MEG3 in GCA carcinogenesis and prognosis. MEG3 and miR-770 was significantly downregulated in GCA patients and cell lines, and their expression was associated with TNM stage and lymph node metastasis. Overexpression of MEG3 and miR-770 inhibited gastric cancer cell proliferation and invasion in vitro. Furthermore, the expression level of MEG3 and miR-770 was significantly increased in cancer cells after treated with 5-Aza-dC. The aberrant hypermethylation of proximal promoter and enhancer region of MEG3 was detected in GCA tissues. In addition, the proximal promoter and enhancer region hypermethylation and dysregulation of MEG3 and miR-770 were associated with poorer GCA patients' survival. These findings suggest that miR-770 and its host gene MEG3 may play tumor suppressor role and hypermethylation of proximal promoter and enhancer region may be one of the critical mechanisms in inactivation of MEG3 and miR-770 in GCA development. MEG3 and miR-770 may be used as potential biomarkers in predicting GCA patients' prognosis. This article is protected by copyright. All rights reserved.

  10. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  11. Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating Hedgehog signaling pathway in colorectal cancer

    PubMed Central

    Zhi, Xiaofei; Tao, Jinqiu; Zhang, Lei; Tao, Ran; Ma, Lilin; Qin, Jun

    2016-01-01

    Epigenetic silencing of tumor suppressors contributes to the development and progression of colorectal cancer (CRC). We recently found that speckle-type POZ protein (SPOP) was significantly downregulated and the inactivation of SPOP promoted metastasis in CRC. This study aimed to clarify its epigenetic alteration, molecular mechanisms and clinical significance in CRC. Our results revealed that the core region of SPOP promoter was hypermethylated in CRC tissues and its methylation was correlated with poor survival. Transcription factor RXRA had a vital role in the regulation of SPOP gene. The data indicated that DNA methylation at −167 bp of the SPOP gene altered the binding affinity between transcription factor RXRA and SPOP promoter. Moreover, SPOP was found to associate with Gli2 and promoted its ubiquitination and degradation in CRC. Consequently, the expression level of Hh/Gli2 pathway-related apoptotic protein Bcl-2 was decreased and the function of resisting cell death was inhibited in CRC. It suggests that methylation status of SPOP promoter can be used as a novel epigenetic biomarker and a therapeutic target in CRC. PMID:28032859

  12. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5-hydroxymethylcytosine, and high proliferative activity

    PubMed Central

    Lu, Huarui; Bhoopatiraju, Sweta; Wang, Hongbo; Schmitz, Nolan P.; Wang, Xiaohong; Freeman, Matthew J.; Forster, Colleen L.; Verneris, Michael R.; Linden, Michael A.; Hallstrom, Timothy C.

    2016-01-01

    Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) binds to 5-hydroxymethylcytosine (5hmC), a DNA base involved in tissue development, but it is unknown how their distribution compares with each other in normal and malignant human tissues. We used IHC on human tumor specimens (160 from 19 tumor types) or normal tissue to determine the expression and distribution of UHRF2, Ki-67, and 5hmC. We also examined UHRF2 expression in cord blood progenitors and compared its expression to methylation status in 6 leukemia cell lines and 15 primary human leukemias. UHRF2 is highly expressed, paralleling that of 5hmC, in most non-neoplastic, differentiated tissue with low Ki-67 defined proliferative activity. UHRF2 is expressed in common lymphoid progenitors and mature lymphocytes but not common myeloid progenitors or monocytes. In contrast, UHRF2 immunostaining in human cancer tissues revealed widespread reduction or abnormal cytoplasmic localization which correlated with a higher Ki-67 and reduced 5hmC. UHRF2 expression is reduced in some leukemia cell lines, this correlates with promoter hypermethylation, and similar UHRF2 methylation profiles are seen in primary human leukemia samples. Thus, UHRF2 and 5hmC are widely present in differentiated human tissues, and UHRF2 protein is poorly expressed or mislocalized in diverse human cancers. PMID:27738314

  13. Integrated analysis of genome-wide DNA methylation and gene expression profiles identifies potential novel biomarkers of rectal cancer

    PubMed Central

    Zhang, Jinning; Zhou, Yuhui; Dang, Shuwei; Chen, Hongsheng; Wu, Qiong; Liu, Ming

    2016-01-01

    DNA methylation was regarded as the promising biomarker for rectal cancer diagnosis. However, the optimal methylation biomarkers with ideal diagnostic performance for rectal cancer are still limited. To identify new molecular markers for rectal cancer, we mapped DNA methylation and transcriptomic profiles in the six rectal cancer and paired normal samples. Further analysis revealed the hypermethylated probes in cancer prone to be located in gene promoter. Meanwhile, transcriptome analysis presented 773 low-expressed and 1,161 over-expressed genes in rectal cancer. Correction analysis identified a panel of 36 genes with an inverse correlation between methylation and gene expression levels, including 10 known colorectal cancer related genes. From the other 26 novel marker genes, GFRA1 and GSTM2 were selected for further analysis on the basis of their biological functions. Further experiment analysis confirmed their methylation and expression status in a larger number (44) of rectal cancer samples, and ROC curves showed higher AUC than SEPT9, which has been used as a biomarker in rectal cancer. Our data suggests that aberrant DNA methylation of contiguous CpG sites in methylation array may be potential diagnostic markers of rectal cancer. PMID:27566576

  14. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner

    PubMed Central

    Jin, Lihua; Hanigan, Christin L.; Wu, Yu; Wang, Wei; Park, Ben Ho; Woster, Patrick M.; Casero, Robert A.

    2012-01-01

    Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys4) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD1 on these proteins is necessary for their stabilization. To examine the role of LSD1 we generated LSD1 heterozygous (LSD1+/−) and homozygous (LSD1−/−) knockouts in the human colorectal cancer cell line HCT116. The deletion of LSD1 led to a reduced cell proliferation both in vitro and in vivo. Surprisingly, the knockout of LSD1 in HCT116 cells did not result in global increases in its histone substrate H3K4me2 (dimethyl-H3K4) or changes in the stability or function of p53 or DNMT1. However, there was a significant difference in gene expression between cells containing LSD1 and those null for LSD1. The results of the present study suggested that LSD1 is critical in the regulation of cell proliferation, but also indicated that LSD1 is not an absolute requirement for the stabilization of either p53 or DNMT1. PMID:23072722

  15. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner.

    PubMed

    Jin, Lihua; Hanigan, Christin L; Wu, Yu; Wang, Wei; Park, Ben Ho; Woster, Patrick M; Casero, Robert A

    2013-01-15

    Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys4) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD1 on these proteins is necessary for their stabilization. To examine the role of LSD1 we generated LSD1 heterozygous (LSD1+/-) and homozygous (LSD1-/-) knockouts in the human colorectal cancer cell line HCT116. The deletion of LSD1 led to a reduced cell proliferation both in vitro and in vivo. Surprisingly, the knockout of LSD1 in HCT116 cells did not result in global increases in its histone substrate H3K4me2 (dimethyl-H3K4) or changes in the stability or function of p53 or DNMT1. However, there was a significant difference in gene expression between cells containing LSD1 and those null for LSD1. The results of the present study suggested that LSD1 is critical in the regulation of cell proliferation, but also indicated that LSD1 is not an absolute requirement for the stabilization of either p53 or DNMT1.

  16. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome.

    PubMed

    Colla, Simona; Ong, Derrick Sek Tong; Ogoti, Yamini; Marchesini, Matteo; Mistry, Nipun A; Clise-Dwyer, Karen; Ang, Sonny A; Storti, Paola; Viale, Andrea; Giuliani, Nicola; Ruisaard, Kathryn; Ganan Gomez, Irene; Bristow, Christopher A; Estecio, Marcos; Weksberg, David C; Ho, Yan Wing; Hu, Baoli; Genovese, Giannicola; Pettazzoni, Piergiorgio; Multani, Asha S; Jiang, Shan; Hua, Sujun; Ryan, Michael C; Carugo, Alessandro; Nezi, Luigi; Wei, Yue; Yang, Hui; D'Anca, Marianna; Zhang, Li; Gaddis, Sarah; Gong, Ting; Horner, James W; Heffernan, Timothy P; Jones, Philip; Cooper, Laurence J N; Liang, Han; Kantarjian, Hagop; Wang, Y Alan; Chin, Lynda; Bueso-Ramos, Carlos; Garcia-Manero, Guillermo; DePinho, Ronald A

    2015-05-11

    Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.

  17. Age-associated hyper-methylated regions in the human brain overlap with bivalent chromatin domains.

    PubMed

    Watson, Corey T; Disanto, Giulio; Sandve, Geir Kjetil; Breden, Felix; Giovannoni, Gavin; Ramagopalan, Sreeram V

    2012-01-01

    Recent associations between age-related differentially methylated sites and bivalently marked chromatin domains have implicated a role for these genomic regions in aging and age-related diseases. However, the overlap between such epigenetic modifications has so far only been identified with respect to age-associated hyper-methylated sites in blood. In this study, we observed that age-associated differentially methylated sites characterized in the human brain were also highly enriched in bivalent domains. Analysis of hyper- vs. hypo-methylated sites partitioned by age (fetal, child, and adult) revealed that enrichment was significant for hyper-methylated sites identified in children and adults (child, fold difference = 2.28, P = 0.0016; adult, fold difference = 4.73, P = 4.00 × 10(-5)); this trend was markedly more pronounced in adults when only the top 100 most significantly hypo- and hyper-methylated sites were considered (adult, fold difference = 10.7, P = 2.00 × 10(-5)). Interestingly, we found that bivalently marked genes overlapped by age-associated hyper-methylation in the adult brain had strong involvement in biological functions related to developmental processes, including neuronal differentiation. Our findings provide evidence that the accumulation of methylation in bivalent gene regions with age is likely to be a common process that occurs across tissue types. Furthermore, particularly with respect to the aging brain, this accumulation might be targeted to loci with important roles in cell differentiation and development, and the closing off of these developmental pathways. Further study of these genes is warranted to assess their potential impact upon the development of age-related neurological disorders.

  18. SOCS3 genetic variants and promoter hypermethylation in patients with chronic hepatitis B.

    PubMed

    Hoan, Nghiem Xuan; Van Tong, Hoang; Giang, Dao Phuong; Cuong, Bui Khac; Toan, Nguyen Linh; Wedemeyer, Heiner; Bock, C Thomas; Kremsner, Peter G; Song, Le Huu; Velavan, Thirumalaisamy P

    2017-02-04

    The clinical manifestations of hepatitis B viral infection (HBV) include chronic hepatitis B (CHB), liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The contribution of negative regulator suppressor of cytokine signaling-3 (SOCS3) promoter variants in HBV disease and SOCS3 hypermethylation in tumor tissues were investigated. The SOCS3 promoter region was screened for polymorphisms in 878 HBV patients and in 272 healthy individuals. SOCS3 promoter methylation was examined by bisulfite sequencing. SOCS3 mRNA expression was quantified in 37 tumor and adjacent non-tumor liver tissue specimens. The minor allele rs12953258A was associated with increased susceptibility to HBV infection (OR=1.3, 95%CI=1.1-1.6, adjusted P=0.03). The minor allele rs111033850C and rs12953258A were observed in increased frequencies in HCC and LC patients compared to CHB patients (HCC: OR=1.7, 95%CI=1.1-2.9, adjusted P=0.046; LC: OR=1.4, 95%CI=1.1-1.9, adjusted P=0.017, respectively). HBV patients with rs111033850CC major genotype had decreased viral load (P=0.034), whereas the rs12953258AA major genotype contributed towards increased viral load (P=0.029). Tumor tissues revealed increased hypermethylation compared to adjacent non-tumor tissues (OR=5.4; 95%CI= 1.9-17.1; P=0.001). Increased SOCS3 expression was observed in HBV infested tumor tissues than non-HBV related tumor tissues (P=0.0048). SOCS3 promoter hypermethylation was associated with relatively low mRNA expression in tumor tissues (P=0.0023). In conclusion, SOCS3 promoter variants are associated with HBV susceptibility and SOCS3 hypermethylation stimulates HCC development.

  19. Analysis of molecular aberrations of Wnt pathway gladiators in colorectal cancer in the Kashmiri population.

    PubMed

    Syed Sameer, A; Shah, Zaffar A; Abdullah, Safiya; Chowdri, Nissar A; Siddiqi, Mushtaq A

    2011-07-01

    The development and progression of colorectal cancer (CRC) is a multi-step process, and the Wnt pathways with its two molecular gladiators adenomatous polyposis coli (APC) and β-catenin plays an important role in transforming a normal tissue into a malignant one. In this study, we aimed to investigate the role of aberrations in the APC and β-catenin genes in the pathogenesis of CRC in the Kashmir valley, and to correlate it with various clinicopathological variables. We examined the paired tumour and normal-tissue specimens of 86 CRC patients for the occurrence of aberrations in the mutation cluster region (MCR) of the APC gene and exon 3 of the β-catenin gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and/or PCR-direct sequencing. Analysis of promoter hypermethylation of the APC gene was also carried out using methylation-specific PCR (MS-PCR). The overall mutation rate of the MCR of the APC gene among 86 CRC cases was 12.8 per cent (11 of 86). Promoter hypermethylation of APC was observed in 54.65 per cent (47 of 86) of cases. Furthermore, we found a significant association between tumour location, tumour grade and node status and the methylation status of the APC gene (p ≤ 0.05). Although the number of mutations in the APC and β-catenin genes in our CRC cases was very low, the study confirms the role of epigenetic gene silencing of the pivotal molecular gladiator, APC, of the Wnt pathway in the development of CRC in the Kashmiri population.

  20. Analysis of molecular aberrations of Wnt pathway gladiators in colorectal cancer in the Kashmiri population

    PubMed Central

    2011-01-01

    The development and progression of colorectal cancer (CRC) is a multi-step process, and the Wnt pathways with its two molecular gladiators adenomatous polyposis coli (APC) and β-catenin plays an important role in transforming a normal tissue into a malignant one. In this study, we aimed to investigate the role of aberrations in the APC and β-catenin genes in the pathogenesis of CRC in the Kashmir valley, and to correlate it with various clinicopathological variables. We examined the paired tumour and normal-tissue specimens of 86 CRC patients for the occurrence of aberrations in the mutation cluster region (MCR) of the APC gene and exon 3 of the β-catenin gene by polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and/or PCR-direct sequencing. Analysis of promoter hypermethylation of the APC gene was also carried out using methylation-specific PCR (MS-PCR). The overall mutation rate of the MCR of the APC gene among 86 CRC cases was 12.8 per cent (11 of 86). Promoter hypermethylation of APC was observed in 54.65 per cent (47 of 86) of cases. Furthermore, we found a significant association between tumour location, tumour grade and node status and the methylation status of the APC gene (p ≤ 0.05). Although the number of mutations in the APC and β-catenin genes in our CRC cases was very low, the study confirms the role of epigenetic gene silencing of the pivotal molecular gladiator, APC, of the Wnt pathway in the development of CRC in the Kashmiri population. PMID:21807601

  1. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  2. DNA Hypermethylation Patterns Detected in Serum as a Tool for Early Breast Cancer Diagnosis

    DTIC Science & Technology

    2008-09-01

    Invitrogen, Carlsbad CA). Briefly, the vector ligation reaction was conducted directly after the completion of the MSP program. This reaction...One Shot® TOP10F’ Competent Cells (Invitrogen, Carlsbad CA) was carried out using 3μl of ligation reaction and 1μl for the pUC19 control provided

  3. DNA Hypermethylation Patterns Detected in Serum as a Tool for Early Breast Cancer Diagnosis

    DTIC Science & Technology

    2009-09-01

    23 201 genes (CCND2, RASSF1A, APC, and HIN1) was able 202 to distinguish between invasive carcinomas (n = 66), 203 fibroadenomas (n = 31) and normal...studies have estimated that one in two women 227develops fibrocystic disease and one in five fibroadenoma 228during her lifetime [56]. Mammography is...of genes including, BRCA1, p16 INK4A, ESR1, 245GSTP1, TRb1, RARb2, HIC1, APC, CCND2, and CDH1, it 246was found that fibroadenomas (n = 10) had patterns

  4. Genetic variation in DNMT3B and increased global DNA methylation is associated with suicide attempts in psychiatric patients.

    PubMed

    Murphy, T M; Mullins, N; Ryan, M; Foster, T; Kelly, C; McClelland, R; O'Grady, J; Corcoran, E; Brady, J; Reilly, M; Jeffers, A; Brown, K; Maher, A; Bannan, N; Casement, A; Lynch, D; Bolger, S; Buckley, A; Quinlivan, L; Daly, L; Kelleher, C; Malone, K M

    2013-02-01

    Recently, a significant epigenetic component in the pathology of suicide has been realized. Here we investigate candidate functional SNPs in epigenetic-regulatory genes, DNMT1 and DNMT3B, for association with suicide attempt (SA) among patients with co-existing psychiatric illness. In addition, global DNA methylation levels [5-methyl cytosine (5-mC%)] between SA and psychiatric controls were quantified using the Methylflash Methylated DNA Quantification Kit. DNA was obtained from blood of 79 suicide attempters and 80 non-attempters, assessed for DSM-IV Axis I disorders. Functional SNPs were selected for each gene (DNMT1; n = 7, DNMT3B; n = 10), and genotyped. A SNP (rs2424932) residing in the 3' UTR of the DNMT3B gene was associated with SA compared with a non-attempter control group (P = 0.001; Chi-squared test, Bonferroni adjusted P value = 0.02). Moreover, haplotype analysis identified a DNMT3B haplotype which differed between cases and controls, however this association did not hold after Bonferroni correction (P = 0.01, Bonferroni adjusted P value = 0.56). Global methylation analysis showed that psychiatric patients with a history of SA had significantly higher levels of global DNA methylation compared with controls (P = 0.018, Student's t-test). In conclusion, this is the first report investigating polymorphisms in DNMT genes and global DNA methylation quantification in SA risk. Preliminary findings suggest that allelic variability in DNMT3B may be relevant to the underlying diathesis for suicidal acts and our findings support the hypothesis that aberrant DNA methylation profiles may contribute to the biology of suicidal acts. Thus, analysis of global DNA hypermethylation in blood may represent a biomarker for increased SA risk in psychiatric patients.

  5. p16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hyper-methylation or mutation in endometrioid and mucinous tumors.

    PubMed

    Milde-Langosch, K; Ocon, E; Becker, G; Löning, T

    1998-02-20

    Inactivation of the tumor-suppressor gene p16 (MTS1/ CDKN2/INK4a) has been described in various human malignancies. Although p16 deletion has been found in various ovarian tumor cell lines, p16 inactivation by homozygous deletion or mutation has been reported only sporadically in primary ovarian carcinomas. In a comprehensive study, we analyzed p16 protein expression by immuno-histochemistry (IHC) on paraffin sections of 94 primary ovarian carcinomas of different histological subtype. Loss of expression was detected in 19 primary tumors (20%), mainly mucinous and endometrioid carcinomas. To reveal the cause of suppressed expression, we performed (i) analysis of homozygous deletions by comparative PCR after micro-dissection, (ii) mutation analysis by single-strand conformation polymorphism analysis and subsequent direct sequencing and (iii) methylation-specific PCR to determine the methylation status of 5'-CpG islands. Loss of or weak p16 expression was caused by hyper-methylation (12/19 IHC-negative cases), somatic mutation (10 tumors) or homozygous deletion (1 case). Aberrant p 16 results by one of these methods were detected in 71-79% of endometrioid and mucinous, but in only 10% of serous-papillary, carcinomas. Our data suggest that p16 inactivation is a typical feature of certain subtypes of ovarian carcinoma.

  6. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  7. Comparative DNA adduct formation and induction of colonic aberrant crypt foci in mice exposed to 2-amino-9H-pyrido[2,3-b]indole, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline and azoxymethane

    PubMed Central

    Kim, Sangyub; Guo, Jingshu; O’Sullivan, M. Gerald; Gallaher, Daniel D.; Turesky, Robert J.

    2015-01-01

    Considerable evidence suggests that environmental factors, including diet and cigarette smoke, are involved in the pathogenesis of colon cancer. Carcinogenic nitroso compounds (NOC), such as N-nitrosodimethylamine (NDMA), are present in tobacco and processed red meat, and NOC have been implicated in colon cancer. Azoxymethane (AOM), commonly used for experimental colon carcinogenesis, is an isomer of NDMA, and it produces the same DNA adducts as does NDMA. Heterocyclic aromatic amines (HAAs) formed during the combustion of tobacco and high-temperature cooking of meats are also associated with an elevated risk of colon cancer. The most abundant carcinogenic HAA formed in tobacco smoke is 2-amino-9H-pyrido[2,3-b]indole (AαC), whereas 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) is the most potent carcinogenic HAA formed during the cooking of meat and fish. However, the comparative tumor-initiating potential of AαC, MeIQ, and AOM is unknown. In this report, we evaluate the formation of DNA adducts as a measure of genotoxicity, and the induction of colonic aberrant crypt foci (ACF) and dysplastic ACF, as an early measure of carcinogenic potency of these compounds in the colon of male A/J mice. Both AαC and AOM induced a greater number of DNA adducts than MeIQ in the liver and colon. AOM induced a greater number of ACF and dysplastic ACF than either AαC or MeIQ. Conversely, based on adduct levels, MeIQ-DNA adducts were more potent than AαC- and AOM-DNA adducts at inducing ACF. Long-term feeding studies are required to relate levels of DNA adducts, induction of ACF, and colon cancer by these colon genotoxicants. PMID:26734915

  8. DNA methylation patterns of protein coding genes and long noncoding RNAs in female schizophrenic patients.

    PubMed

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Gao, Shugui; Duan, Shiwei

    2015-02-01

    Schizophrenia (SCZ) is a complex mental disorder contributed by both genetic and epigenetic factors. Long noncoding RNAs (lncRNAs) was recently found playing an important regulatory role in mental disorders. However, little was known about the DNA methylation of lncRNAs, although numerous SCZ studies have been performed on genetic polymorphisms or epigenetic marks in protein coding genes. We presented a comprehensive genome wide DNA methylation study of both protein coding genes and lncRNAs in female patients with paranoid and undifferentiated SCZ. Using the methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), 8,163 and 764 peaks were identified in paranoid and undifferentiated SCZ, respectively (p < 1 × 10-5). Gene ontology analysis showed that the hypermethylated regions were enriched in the genes related to neuron system and brain for both paranoid and undifferentiated SCZ (p < 0.05). Among these peaks, 121 peaks were located in gene promoter regions that might affect gene expression and influence the SCZ related pathways. Interestingly, DNA methylation of 136 and 23 known lncRNAs in Refseq database were identified in paranoid and undifferentiated SCZ, respectively. In addition, ∼20% of intergenic peaks annotated based on Refseq genes were overlapped with lncRNAs in UCSC and gencode databases. In order to show the results well for most biological researchers, we created an online database to display and visualize the information of DNA methyation peaks in both types of SCZ (http://www.bioinfo.org/scz/scz.htm). Our results showed that the aberrant DNA methylation of lncRNAs might be another important epigenetic factor for SCZ.

  9. A cancer specific hypermethylation signature of the TERT promoter predicts biochemical relapse in prostate cancer: a retrospective cohort study.

    PubMed

    Castelo-Branco, Pedro; Leão, Ricardo; Lipman, Tatiana; Campbell, Brittany; Lee, Donghyun; Price, Aryeh; Zhang, Cindy; Heidari, Abolfazl; Stephens, Derek; Boerno, Stefan; Coelho, Hugo; Gomes, Ana; Domingos, Celia; Apolonio, Joana D; Schäfer, Georg; Bristow, Robert G; Schweiger, Michal R; Hamilton, Robert; Zlotta, Alexandre; Figueiredo, Arnaldo; Klocker, Helmut; Sültmann, Holger; Tabori, Uri

    2016-09-06

    The identification of new biomarkers to differentiate between indolent and aggressive prostate tumors is an important unmet need. We examined the role of THOR (TERT Hypermethylated Oncological Region) as a diagnostic and prognostic biomarker in prostate cancer (PCa).We analyzed THOR in common cancers using genome-wide methylation arrays. Methylation status of the whole TERT gene in benign and malignant prostate samples was determined by MeDIP-Seq. The prognostic role of THOR in PCa was assessed by pyrosequencing on discovery and validation cohorts from patients who underwent radical prostatectomy with long-term follow-up data.Most cancers (n = 3056) including PCa (n = 300) exhibited hypermethylation of THOR. THOR was the only region within the TERT gene that is differentially methylated between normal and malignant prostate tissue (p < 0.0001). Also, THOR was significantly hypermethylated in PCa when compared to paired benign tissues (n = 164, p < 0.0001). THOR hypermethylation correlated with Gleason scores and was associated with tumor invasiveness (p = 0.0147). Five years biochemical progression free survival (BPFS) for PCa patients in the discovery cohort was 87% (95% CI 73-100) and 65% (95% CI 52-78) for THOR non-hypermethylated and hypermethylated cancers respectively (p = 0.01). Similar differences in BPFS were noted in the validation cohort (p = 0.03). Importantly, THOR was able to predict outcome in the challenging (Gleason 6 and 7 (3 + 4)) PCa (p = 0.007). For this group, THOR was an independent risk factor for BPFS with a hazard-ratio of 3.685 (p = 0.0247). Finally, THOR hypermethylation more than doubled the risk of recurrence across all PSA levels (OR 2.5, p = 0.02).

  10. A cancer specific hypermethylation signature of the TERT promoter predicts biochemical relapse in prostate cancer: a retrospective cohort study

    PubMed Central

    Lipman, Tatiana; Campbell, Brittany; Lee, Donghyun; Price, Aryeh; Zhang, Cindy; Heidari, Abolfazl; Stephens, Derek; Boerno, Stefan; Coelho, Hugo; Gomes, Ana; Domingos, Celia; Apolonio, Joana D.; Schäfer, Georg; Bristow, Robert G.; Schweiger, Michal R.; Hamilton, Robert; Zlotta, Alexandre; Figueiredo, Arnaldo; Klocker, Helmut; Sültmann, Holger; Tabori, Uri

    2016-01-01

    The identification of new biomarkers to differentiate between indolent and aggressive prostate tumors is an important unmet need. We examined the role of THOR (TERT Hypermethylated Oncological Region) as a diagnostic and prognostic biomarker in prostate cancer (PCa). We analyzed THOR in common cancers using genome-wide methylation arrays. Methylation status of the whole TERT gene in benign and malignant prostate samples was determined by MeDIP-Seq. The prognostic role of THOR in PCa was assessed by pyrosequencing on discovery and validation cohorts from patients who underwent radical prostatectomy with long-term follow-up data. Most cancers (n = 3056) including PCa (n = 300) exhibited hypermethylation of THOR. THOR was the only region within the TERT gene that is differentially methylated between normal and malignant prostate tissue (p < 0.0001). Also, THOR was significantly hypermethylated in PCa when compared to paired benign tissues (n = 164, p < 0.0001). THOR hypermethylation correlated with Gleason scores and was associated with tumor invasiveness (p = 0.0147). Five years biochemical progression free survival (BPFS) for PCa patients in the discovery cohort was 87% (95% CI 73–100) and 65% (95% CI 52–78) for THOR non-hypermethylated and hypermethylated cancers respectively (p = 0.01). Similar differences in BPFS were noted in the validation cohort (p = 0.03). Importantly, THOR was able to predict outcome in the challenging (Gleason 6 and 7 (3 + 4)) PCa (p = 0.007). For this group, THOR was an independent risk factor for BPFS with a hazard-ratio of 3.685 (p = 0.0247). Finally, THOR hypermethylation more than doubled the risk of recurrence across all PSA levels (OR 2.5, p = 0.02). PMID:27437772

  11. Protein expression and methylation of MGMT, a DNA repair gene and their correlation with clinicopathological parameters in invasive ductal carcinoma of the breast.

    PubMed

    Asiaf, Asia; Ahmad, Shiekh Tanveer; Malik, Ajaz Ahmad; Aziz, Shiekh Aejaz; Rasool, Zubaida; Masood, Akbar; Zargar, Mohammad Afzal

    2015-08-01

    Epigenetic mechanisms such as DNA methylation are being increasingly recognized to play an important role in cancer and may serve as a cancer biomarker. The aim of this study was to evaluate the promoter methylation status of MGMT (O6-methylguanine-DNA methyltransferase) and a possible correlation with the expression of MGMT and standard clinicopathological parameters in invasive ductal breast carcinoma patients (IDC) of Kashmir. Methylation-specific PCR was carried out to investigate the promoter methylation status of MGMT in breast tumors paired with the corresponding normal tissue samples from 128 breast cancer patients. The effect of promoter methylation on protein expression in the primary breast cancer and adjacent normal tissues was evaluated by immunohistochemistry (n = 128) and western blotting (n = 30). The frequency of tumor hypermethylation was 39.8 % and a significant difference in methylation frequency among breast tumors were found (p < 0.001) when compared with the corresponding normal tissue. Immunohistochemical analysis showed no detectable expression of MGMT in 68/128 (53.1 %) tumors. MGMT promoter methylation mediated gene silencing was associated with loss of its protein expression (rs = -0.285, p = 0.001, OR = 3.38, 95 % CI = 1.59-7.17). A significant correlation was seen between loss of MGMT and lymph node involvement (p = 0.030), tumor grade (p < 0.0001), loss of estrogen receptors (ER; p = 0.021) and progesterone receptors (PR) (p = 0.016). Also, MGMT methylation was found to be associated with tumor grade (p = 0.011), tumor stage (p = 0.009), and loss of ER (p = 0.003) and PR receptors (p = 0.009). To our knowledge, our findings, for the first time, in Kashmiri population, indicate that MGMT is aberrantly methylated in breast cancer and promoter hypermethylation could be attributed to silencing of MGMT gene expression in breast cancer. Our data suggests that MGMT promoter

  12. Wave aberration function and its definition

    NASA Astrophysics Data System (ADS)

    Zverev, V. A.; Rytova, E. S.; Timoshchuk, I. N.

    2011-06-01

    A definition of a wave aberration as a phase shift upon composition of light waves in the image of a point is given using the concept of point eikonal. An expression that determines the total differential of a wave aberration function is obtained and the condition of its integrability is determined. The sequence of the wave aberration function definition at the known functions of the meridional and sagittal components of lateral aberration is presented.

  13. Association between Retinoic acid receptor-β hypermethylation and NSCLC risk: a meta-analysis and literature review

    PubMed Central

    Li, Yan; Lu, De-guo; Ma, Ying-mei; Liu, Hongxiang

    2017-01-01

    Emerging evidence indicates that Retinoic acid receptor-β (RARβ) is a tumor suppressor in many types of tumor. However, whether or not RARβ is a risk factor and is correlated to clinicopathological characteristics of non-small cell lung cancer (NSCLC) remains unclear. In this report, we performed a meta-analysis to determine the effects of RARβ hypermethylation on the incidence of NSCLC and clinicopathological characteristics in human NSCLC patients. Final valuation and analysis of 1780 cancer patients from 16 eligible studies was performed. RARβ hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue, the pooled OR from 7 studies including 646 NSCLC and 580 normal lung tissues, OR = 6.05, 95% CI = 3.56-10.25, p<0.00001. RARβ hypermethylation was significantly higher in adenocarcinoma (AC) compared to squamous cell carcinoma (SCC), pooled OR is 0.68 (95% CI = 0.52-0.89, p = 0.005). RARβ hypermethylation was also found to occur significantly higher in smoker (n = 232) than non-smoker (n = 213) (OR = 2.46, 95% CI = 1.54-3.93, p = 0.0002). Our results indicate that RARβ hypermethylation correlates well with an increased risk in NSCLC patients. RARβ geneinactivation caused by RARβ methylation contributes the NSCLC tumorigenesis and may serve as a potential risk factor, diagnostic marker and drug target of NSCLC. PMID:28008143

  14. Chromosome aberration assays in genetic toxicology testing in vitro.

    PubMed

    Ishidate, M; Miura, K F; Sofuni, T

    1998-08-03

    The chromosome aberration test using cultured mammalian cells is one of the sensitive methods to predict environmental mutagens and/or carcinogens, and is a complementary test to the Salmonella/microsome assay (Ames test). From our recent survey of 951 chemicals which have been tested for their clastogenicity in cultured mammalian cells such as Chinese hamster fibroblasts or human lymphocytes, it was noted that 47% of them are consistently positive either with or without metabolic activation. When the test was performed using the cell line CHL/IU, 39.2% (292/745) were found to be positive. However, 8% (36/447) of such clastogens were positive only at an extremely high concentration of more than 10 mM. About 11% (48/447) of clastogens such as diethylstilbestrol (DES) and methyl AalphaC (Glob-P-1) induced mainly polyploid cells. Most chemicals induced chromatid-type aberrations, some induce only break-type aberrations at relatively high dose levels, but others induce more exchange-type aberrations at relatively low dose levels. Clastogenic activities were compared among different clastogens, using the D20 value, which is the minimum dose (mg/ml) at which aberrations were found in 20% of metaphases. In addition, the translocation (TR) value was calculated from the incidence of cells with exchange-type aberrations. It was suggested that possible carcinogens are included in the group of compounds with relatively low D20 values, but with high TR values. Karyological analysis was performed, using a FISH painting probe prepared from No. 1 chromosome of CHO cells, on the clonal subline isolated after treatment with benzo(a)pyrene. However, no specific changes common to the agent were detected. Laser scanning cytometry (LSC) was also applied to screen for abnormal karyotypes. A translocation between particular chromosomes was reflected by the deletion of a DNA peak.

  15. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells.

    PubMed

    Papoutsis, Andreas J; Borg, Jamie L; Selmin, Ornella I; Romagnolo, Donato F

    2012-10-01

    Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XREs=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XREs in the proximal BRCA-1 promoter and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-α-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17β-estradiol-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR; DNA methyl transferase (DNMT)1, DNMT3a and DNMT3b; methyl binding protein (MBD)2; and trimethylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses (1 μmol/L) the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation and the recruitment of the AhR, MBD2, H3K9me3 and DNMTs (1, 3a and 3b). Taken together, these observations provide mechanistic evidence for AhR agonists in the establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.

  16. Using geometric algebra to study optical aberrations

    SciTech Connect

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  17. DNMT 1 maintains hypermethylation of CAG promoter specific region and prevents expression of exogenous gene in fat-1 transgenic sheep

    PubMed Central

    Yang, Chunrong; Shang, Xueying; Cheng, Lei; Yang, Lei; Liu, Xuefei; Bai, Chunling; Wei, Zhuying; Hua, Jinlian; Li, Guangpeng

    2017-01-01

    Methylation is an important issue in gene expression regulation and also in the fields of genetics and reproduction. In this study, we created fat-1 transgenic sheep, investigated the fine-mapping and the modulatory mechanisms of promoter methylation. Sheep fetal fibroblasts were transfected by pCAG-fat1-IRES-EGFP. Monoclonal cell line was screened as nuclear donor and carried out nuclear transfer (441 transgenic cloned embryos, 52 synchronism recipient sheep). Six offsprings were obtained. Expressions of exogenous genes fat-1 and EGFP were detectable in 10 examined tissues and upregulated omega-3 fatty acid content. Interestingly, more or less EGFP negative cells were detectable in the positive transgenic fetal skin cells. EGFP negative and positive cells were sorted by flow cytometry, and their methylation status in the whole promoter region (1701 nt) were investigated by bisulphate sequencing. The fine-mapping of methylation in CAG promoter were proposed. The results suggested that exogenous gene expression was determined by the methylation status from 721–1346 nt and modulated by methylation levels at 101, 108 and 115 nt sites in CAG promoter. To clarify the regulatory mechanism of methylation, examination of four DNA methyltransferases (DNMTs) demonstrated that hypermethylation of CAG promoter is mainly maintained by DNMT 1 in EGFP negative cells. Furthermore, investigation of the cell surface antigen CD34, CD45 and CD166 indicated that EGFP positive and negative cells belong to different types. The present study systematically clarified methylation status of CAG promoter in transgenic sheep and regulatory mechanism, which will provide research strategies for gene expression regulation in transgenic animals. PMID:28158319

  18. RHCG and TCAF1 promoter hypermethylation predicts biochemical recurrence in prostate cancer patients treated by radical prostatectomy

    PubMed Central

    Strand, Siri H.; Switnicki, Michal; Moller, Mia; Haldrup, Christa; Storebjerg, Tine M.; Hedegaard, Jakob; Nordentoft, Iver; Hoyer, Soren; Borre, Michael; Pedersen, Jakob S.; Wild, Peter J.; Park, Jong Y.; Orntoft, Torben F.; Sorensen, Karina D.

    2017-01-01

    Purpose: The lack of biomarkers that can distinguish aggressive from indolent prostate cancer has caused substantial overtreatment of clinically insignificant disease. Here, by genome-wide DNA methylome profiling, we sought to identify new biomarkers to improve the accuracy of prostate cancer diagnosis and prognosis. Experimental design: Eight novel candidate markers, COL4A6, CYBA, TCAF1 (FAM115A), HLF, LINC01341 (LOC149134), LRRC4, PROM1, and RHCG, were selected from Illumina Infinium HumanMethylation450 BeadChip analysis of 21 tumor (T) and 21 non-malignant (NM) prostate specimens. Diagnostic potential was further investigated by methylation-specific qPCR analysis of 80 NM vs. 228 T tissue samples. Prognostic potential was assessed by Kaplan-Meier, uni- and multivariate Cox regression analysis in 203 Danish radical prostatectomy (RP) patients (cohort 1), and validated in an independent cohort of 286 RP patients from Switzerland and the U.S. (cohort 2). Results: Hypermethylation of the 8 candidates was highly cancer-specific (area under the curves: 0.79-1.00). Furthermore, high methylation of the 2-gene panel RHCG-TCAF1 was predictive of biochemical recurrence (BCR) in cohort 1, independent of the established clinicopathological parameters Gleason score, pathological tumor stage, and pre-operative PSA (HR (95% confidence interval (CI)): 2.09 (1.26 - 3.46); P = 0.004), and this was successfully validated in cohort 2 (HR (95% CI): 1.81 (1.05 - 3.12); P = 0.032). Conclusion: Methylation of the RHCG-TCAF1 panel adds significant independent prognostic value to established prognostic parameters for prostate cancer and thus may help to guide treatment decisions in the future. Further investigation in large independent cohorts is necessary before translation into clinical utility. PMID:28052017

  19. Increased Oxidative Stress and RUNX3 Hypermethylation in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma (HCC) and Induction of RUNX3 Hypermethylation by Reactive Oxygen Species in HCC Cells.

    PubMed

    Poungpairoj, Poonsin; Whongsiri, Patcharawalai; Suwannasin, Surasit; Khlaiphuengsin, Apichaya; Tangkijvanich, Pisit; Boonla, Chanchai

    2015-01-01

    Promoter hypermethylation of the runt-related transcription factor 3 (RUNX3) gene is associated with increased risk of hepatocellular carcinoma (HCC). Oxidative stress plays a vital role in both carcinogenesis and progression of HCC. However, whether oxidative stress and RUNX3 hypermethylation in HCC have a cause- and-effect relationship is not known. In this study, plasma protein carbonyl and total antioxidant capacity (TAC) in patients with hepatitis B virus (HBV)-associated HCC (n=60) and age-matched healthy subjects (n=80) was determined. RUNX3 methylation in peripheral blood mononuclear cells (PBMC) of subjects was measured by methylation-specific PCR. Effect of reactive oxygen species (ROS) on induction of RUNX3 hypermethylation in HCC cells was investigated. Plasma protein carbonyl content was significantly higher, whereas plasma TAC was significantly lower, in HCC patients than healthy controls. Based on logistic regression, increased plasma protein carbonyl and decreased plasma TAC were independently associated with increased risk for HCC. PBMC RUNX3 methylation in the patient group was significantly greater than in the healthy group. RUNX3 methylation in hydrogen peroxide (H2O2)-treated HepG2 cells was significantly higher than in untreated control cells. In conclusion, increase in oxidative stress in Thai patients with HBV-associated HCC was demonstrated. This oxidative increment was independently associated with an increased risk for HCC development. RUNX3 in PBMC was found to be hypermethylated in the HCC patients. In vitro, RUNX3 hypermethylation was experimentally induced by H2O2. Our findings suggest that oxidative stress is a cause of RUNX3 promoter hypermethylation in HCC cells.

  20. Phase Aberrations in Diffraction Microscopy

    SciTech Connect

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  1. Pathophysiology of MDS: genomic aberrations.

    PubMed

    Ichikawa, Motoshi

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  2. Allelic variation in the canine Cox-2 promoter causes hypermethylation of the canine Cox-2 promoter in clinical cases of renal dysplasia

    PubMed Central

    2014-01-01

    Background Novel allelic variants in the promoter of the canine cyclooxygenase-2 (Cox-2) gene are associated with renal dysplasia (RD). These variants consist of either deletions of putative SP1 transcription factor-binding sites or insertions of tandem repeats of SP1-binding sites located in the CpG island just upstream of the ATG translation initiation site. The canine Cox-2 gene was studied because Cox-2-deficient mice have renal abnormalities and a pathology that is strikingly similar to RD in dogs. Findings The allelic variants were associated with hypermethylation of the Cox-2 promoter only in clinical cases of RD. The wild-type allele was never methylated, even in clinical cases that were heterozygous for a mutant allele. In cases that were biopsy-negative, the promoter remained unmethylated, regardless of the genotype. Methylated DNA was found in DNA from various adult tissues of dogs with clinical RD. Conclusions The mechanism of action of the allelic variation in the canine Cox-2 promoter most likely involves variation in the extent of epigenetic downregulation of this gene. This epigenetic downregulation must have occurred early in development because methylated Cox-2 promoter DNA sequences are found in various adult tissues. PMID:24708682

  3. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  4. The Distribution of Chromosomal Aberrations in Human Cells Predicted by a Generalized Time-Dependent Model of Radiation-Induced Formation of Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; George, K.; Cucinotta, F. A.

    2011-01-01

    New experimental data show how chromosomal aberrations for low- and high-LET radiation are dependent on DSB repair deficiencies in wild-type, AT and NBS cells. We simulated the development of chromosomal aberrations in these cells lines in a stochastic track-structure-dependent model, in which different cells have different kinetics of DSB repair. We updated a previously formulated model of chromosomal aberrations, which was based on a stochastic Monte Carlo approach, to consider the time-dependence of DSB rejoining. The previous version of the model had an assumption that all DSBs would rejoin, and therefore we called it a time-independent model. The chromosomal-aberrations model takes into account the DNA and track structure for low- and high-LET radiations, and provides an explanation and prediction of the statistics of rare and more complex aberrations. We compared the program-simulated kinetics of DSB rejoining to the experimentally-derived bimodal exponential curves of the DSB kinetics. We scored the formation of translocations, dicentrics, acentric and centric rings, deletions, and inversions. The fraction of DSBs participating in aberrations was studied in relation to the rejoining time. Comparisons of simulated dose dependence for simple aberrations to the experimental dose-dependence for HF19, AT and NBS cells will be made.

  5. Combined Targeted DNA Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using UNCseq and NGScopy, and RNA Sequencing Using UNCqeR for the Detection of Genetic Aberrations in NSCLC

    PubMed Central

    Walter, Vonn; Patel, Nirali M.; Eberhard, David A.; Hayward, Michele C.; Salazar, Ashley H.; Jo, Heejoon; Soloway, Matthew G.; Wilkerson, Matthew D.; Parker, Joel S.; Yin, Xiaoying; Zhang, Guosheng; Siegel, Marni B.; Rosson, Gary B.; Earp, H. Shelton; Sharpless, Norman E.; Gulley, Margaret L.; Weck, Karen E.

    2015-01-01

    The recent FDA approval of the MiSeqDx platform provides a unique opportunity to develop targeted next generation sequencing (NGS) panels for human disease, including cancer. We have developed a scalable, targeted panel-based assay termed UNCseq, which involves a NGS panel of over 200 cancer-associated genes and a standardized downstream bioinformatics pipeline for detection of single nucleotide variations (SNV) as well as small insertions and deletions (indel). In addition, we developed a novel algorithm, NGScopy, designed for samples with sparse sequencing coverage to detect large-scale copy number variations (CNV), similar to human SNP Array 6.0 as well as small-scale intragenic CNV. Overall, we applied this assay to 100 snap-frozen lung cancer specimens lacking same-patient germline DNA (07–0120 tissue cohort) and validated our results against Sanger sequencing, SNP Array, and our recently published integrated DNA-seq/RNA-seq assay, UNCqeR, where RNA-seq of same-patient tumor specimens confirmed SNV detected by DNA-seq, if RNA-seq coverage depth was adequate. In addition, we applied the UNCseq assay on an independent lung cancer tumor tissue collection with available same-patient germline DNA (11–1115 tissue cohort) and confirmed mutations using assays performed in a CLIA-certified laboratory. We conclude that UNCseq can identify SNV, indel, and CNV in tumor specimens lacking germline DNA in a cost-efficient fashion. PMID:26076459

  6. Seidel aberrations of the Gabor superlens.

    PubMed

    Hamilton Shepard, R

    2014-02-10

    Equations are presented for the third-order Seidel aberrations of the Gabor superlens (GSL) as a function of microtelescope channel position within the aperture array. To reveal the origin and form of increasing aberration with channel height, Seidel coefficients are derived as a function of the accumulating pitch difference between the lens arrays and the aberrations present in the centered channel. Two- and three-element Gabor lenses are investigated and their aberrations are expressed as a function of first-order design parameters. The derived theory is then compared to a real ray trace simulation to demonstrate the accuracy of third-order aberration theory to predict GSL image quality.

  7. Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells.

    PubMed

    Mauro, Maurizio; Caradonna, Fabio; Klein, Catherine B

    2016-03-01

    The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. To investigate potential epigenetic mechanisms, in this study we evaluated global DNA methylation levels in V79 cells and human HaCaT keratinocytes at several time points during expanded growth of cell cultures following removal of arsenite exposures. We have found altered genomic methylation patterns that persisted up to 40 cell generations in HaCaT cells after the treatments were withdrawn. Moreover, mRNA expression levels were evaluated by RT-PCR for DNMT1, DNMT3A, DNMT3B, HMLH1, and HMSH2 genes, demonstrating that the down regulation of DNMT3A and DNMT3B genes, but not DNMT1, occurred in an arsenic dose-dependent manner, and persisted for many cell generations following removal of the arsenite, offering a plausible mechanism of persistently genotoxic arsenic action. Analyses of promoter methylation status of the DNA mismatch repair genes HMLH1 and HMSH2 show that HMSH2, but not HMLH1, was epigenetically regulated by promoter hypermethylation changes following arsenic treatment. The results reported here demonstrate that arsenic exposure promptly induces genome-wide global DNA hypomethylation, and some specific gene promoter methylation changes, that persist for many cell generations following withdrawal of arsenite, supporting the hypothesis that the cells undergo epigenetic reprogramming at both the gene and genome level that is durable over many cell generations in the absence of further arsenic treatment. These DNA methylation changes, in concert with other known epigenome alterations, are likely contributing to long-lasting arsenic-induced genomic instability that manifests in several ways, including aberrant chromosomal effects.

  8. Dysregulation of DNA Methylation Induced by Past Arsenic Treatment Causes Persistent Genomic Instability in Mammalian Cells

    PubMed Central

    Mauro, Maurizio; Caradonna, Fabio; Klein, Catherine B.

    2016-01-01

    The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. To investigate potential epigenetic mechanisms, in this study we evaluated global DNA methylation levels in V79 cells and human HaCaT keratinocytes at several time points during expanded growth of cell cultures following removal of arsenite exposures. We have found altered genomic methylation patterns that persisted up to 40 cell generations in HaCaT cells after the treatments were withdrawn. Moreover, mRNA expression levels were evaluated by RT-PCR for DNMT1, DNMT3A, DNMT3B, HMLH1, and HMSH2 genes, demonstrating that the down regulation of DNMT3A and DNMT3B genes, but not DNMT1, occurred in an arsenic dose-dependent manner, and persisted for many cell generations following removal of the arsenite, offering a plausible mechanism of persistently genotoxic arsenic action. Analyses of promoter methylation status of the DNA mismatch repair genes HMLH1 and HMSH2 show that HMSH2, but not HMLH1, was epigenetically regulated by promoter hypermethylation changes following arsenic treatment. The results reported here demonstrate that arsenic exposure promptly induces genome-wide global DNA hypomethylation, and some specific gene promoter methylation changes, that persist for many cell generations following withdrawal of arsenite, supporting the hypothesis that the cells undergo epigenetic reprogramming at both the gene and genome level that is durable over many cell generations in the absence of further arsenic treatment. These DNA methylation changes, in concert with other known epigenome alterations, are likely contributing to long-lasting arsenic-induced genomic instability that manifests in several ways, including aberrant chromosomal effects. PMID:26581878

  9. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    PubMed Central

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  10. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.

    PubMed

    Sintupisut, Nardnisa; Liu, Pei-Ling; Yeang, Chen-Hsiang

    2013-10-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between 'effector' molecular aberrations and 'target' gene expressions in GBMs. A rich collection of prior studies attempted to combine copy number variation (CNV) and mRNA expression data. However, systematic methods to integrate multiple types of cancer genomic data-gene mutations, single nucleotide polymorphisms, CNVs, DNA methylations, mRNA and microRNA expressions and clinical information-are relatively scarce. We proposed an algorithm to build 'association modules' linking effector molecular aberrations and target gene expressions and applied the module-finding algorithm to the integrated TCGA GBM data sets. The inferred association modules were validated by six tests using external information and datasets of central nervous system tumors: (i) indication of prognostic effects among patients; (ii) coherence of target gene expressions; (iii) retention of effector-target associations in external data sets; (iv) recurrence of effector molecular aberrations in GBM; (v) functional enrichment of target genes; and (vi) co-citations between effectors and targets. Modules associated with well-known molecular aberrations of GBM-such as chromosome 7 amplifications, chromosome 10 deletions, EGFR and NF1 mutations-passed the majority of the validation tests. Furthermore, several modules associated with less well-reported molecular aberrations-such as chromosome 11 CNVs, CD40, PLXNB1 and GSTM1 methylations, and mir-21 expressions-were also validated by external information. In particular, modules constituting trans-acting effects with chromosome 11 CNVs and cis-acting effects with chromosome

  11. Neural compensation for the eye's optical aberrations.

    PubMed

    Artal, Pablo; Chen, Li; Fernández, Enrique J; Singer, Ben; Manzanera, Silvestre; Williams, David R

    2004-04-16

    A fundamental problem facing sensory systems is to recover useful information about the external world from signals that are corrupted by the sensory process itself. Retinal images in the human eye are affected by optical aberrations that cannot be corrected with ordinary spectacles or contact lenses, and the specific pattern of these aberrations is different in every eye. Though these aberrations always blur the retinal image, our subjective impression is that the visual world is sharp and clear, suggesting that the brain might compensate for their subjective influence. The recent introduction of adaptive optics to control the eye's aberrations now makes it possible to directly test this idea. If the brain compensates for the eye's aberrations, vision should be clearest with the eye's own aberrations rather than with unfamiliar ones. We asked subjects to view a stimulus through an adaptive optics system that either recreated their own aberrations or a rotated version of them. For all five subjects tested, the stimulus seen with the subject's own aberrations was always sharper than when seen through the rotated version. This supports the hypothesis that the neural visual system is adapted to the eye's aberrations, thereby removing somehow the effects of blur generated by the sensory apparatus from visual experience. This result could have important implications for methods to correct higher order aberrations with customized refractive surgery because some benefits of optimizing the correction optically might be undone by the nervous system's compensation for the old aberrations.

  12. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure☛

    PubMed Central

    Corrales, J.; Fang, X.; Thornton, C.; Mei, W.; Barbazuk, W.B.; Duke, M.; Scheffler, B.E.; Willett, K.L.

    2014-01-01

    Benzo[a]pyrene (BaP) is an established carcinogen and reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methylation patterns has become an important tool for understanding pathologic gene expression events. The goal of this study was to investigate aberrant changes in promoter DNA methylation in zebrafish embryos and larvae following a parental and continued embryonic waterborne BaP exposure. A total of 21 genes known for their role in human diseases were selected to measure percent methylation by multiplex deep sequencing. At 96 hours post fertilization (hpf) compared to 3.3 hpf, dazl, nqo1, sox3, cyp1b1, and gstp1 had higher methylation percentages while c-fos and cdkn1a had decreased CG methylation. BaP exposure significantly reduced egg production and offspring survival. Moreover, BaP decreased global methylation and altered CG, CHH, and CHG methylation both at 3.3 and 96 hpf. CG methylation changed by 10% or more due to BaP in six genes (c-fos, cdkn1a, dazl, nqo1, nrf2, and sox3) at 3.3 hpf and in ten genes (c-fos, cyp1b1, dazl, gstp1, mlh1, nqo1, pten, p53, sox2, and sox3) at 96 hpf. BaP also induced gene expression of cyp1b1 and gstp1 at 96 hpf which were found to be hypermethylated. Further studies are needed to link aberrant CG, CHH, and CHG methylation to heritable epigenetic consequences associated with disease in later life. PMID:24576477

  13. Aberration

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (1) The apparent displacement of a star from its mean position on the celestial sphere due to the velocity of the Earth in its orbit around the Sun. The phenomenon was discovered in 1729 by James Bradley (1693-1762) who was, in fact, trying to measure stellar parallax. The displacement is caused by the combination of the velocity of the Earth and the velocity of light approaching from the source. ...

  14. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  15. Soy Isoflavones Have an Antiestrogenic Effect and Alter Mammary Promoter Hypermethylation in Healthy Premenopausal Women

    PubMed Central

    Qin, Wenyi; Zhu, Weizhu; Shi, Huidong; Hewett, John E.; Ruhlen, Rachel L.; MacDonald, Ruth S.; Rottinghaus, George E.; Chen, Yin-Chieh; Sauter, Edward R.

    2012-01-01

    We determined if soy isoflavones have dose-related estrogenic and methylation effects. Thirty-four healthy premenopausal women were randomized to 40 mg or 140 mg isoflavones daily through one menstrual cycle. Breast specific and systemic estrogenic effects were assessed measuring the estrogenic marker complement (C)3 and changes in cytology, whereas methylation assessment of 5 cancer related genes (p16, RASSF1A, RARβ2, ER, and CCND2) was performed on intraductal specimens. Serum genistein significantly increased after consuming both isoflavone doses. Cytology did not significantly change at either isoflavone dose. Serum C3 levels posttreatment were inversely related to change in serum genistein (r = −0.76, P = 0.0045) in women consuming low but not high dose isoflavones. The RARβ2 hypermethylation increase posttreatment correlated with the posttreatment genistein level considering the entire group (r 0.67, P = 0.0017) and those receiving high-dose isoflavones (r = 0.68, P = 0.021). At the low but not the high isoflavone dose, CCND2 hypermethylation increase correlated with posttreatment genistein levels (r = 0.79, P = 0.011). In summary, the inverse correlation between C3 and genistein suggests an antiestrogenic effect. Isoflavones induced dose-specific changes in RARβ2 and CCND2 gene methylation, which correlated with genistein levels. This work provides novel insights into estrogenic and methylation effects of dietary isoflavones. PMID:19235040

  16. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker

    PubMed Central

    Esteller, Manel

    2013-01-01

    Using whole blood from 15 twin pairs discordant for breast cancer and high-resolution (450K) DNA methylation analysis, we identified 403 differentially methylated CpG sites including known and novel potential breast cancer genes. Confirming the results in an independent validation cohort of 21 twin pairs determined the docking protein DOK7 as a candidate for blood-based cancer diagnosis. DNA hypermethylation of the promoter region was also seen in primary breast cancer tissues and cancer cell lines. Hypermethylation of DOK7 occurs years before tumor diagnosis, suggesting a role as a powerful epigenetic blood-based biomarker as well as providing insights into breast cancer pathogenesis. PMID:23054610

  17. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    PubMed

    Jiang, Yan; Chen, Jiahong; Tong, Jian; Chen, Tao

    2014-01-01

    Trichloroethylene (TCE), widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s) for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day) for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  18. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma

    PubMed Central

    Krause, Lutz; Nones, Katia; Loffler, Kelly A.; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J.; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J.; Watson, David I.; Lord, Reginald V.; Phillips, Wayne A.; Gotley, David; Smithers, B.Mark; Whiteman, David C.; Hayward, Nicholas K.; Grimmond, Sean M.; Waddell, Nicola; Barbour, Andrew P.

    2016-01-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett’s esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. PMID:26905591

  19. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning.

  20. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  1. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.

  2. Epigenome-wide DNA methylation changes with development of arsenic-induced skin lesions in Bangladesh: a case-control follow-up study.

    PubMed

    Seow, Wei Jie; Kile, Molly L; Baccarelli, Andrea A; Pan, Wen-Chi; Byun, Hyang-Min; Mostofa, Golam; Quamruzzaman, Quazi; Rahman, Mahmuder; Lin, Xihong; Christiani, David C

    2014-07-01

    Studies have found an association between aberrant DNA methylation and arsenic-induced skin lesions. However, little is known about DNA methylation changes over time in people who develop arsenic-induced skin lesions. We sought to investigate epigenome-wide changes of DNA methylation in people who developed arsenic-induced skin lesions in a 10-year period. In 2009-2011, we conducted a follow-up study of 900 skin lesion cases and 900 controls and identified 10 people who developed skin lesions since a baseline survey in 2001-2003. The 10 cases ("New Cases") were matched with 10 controls who did not have skin lesions at baseline or follow-up ("Persistent Controls"). Drinking water and blood samples were collected, and skin lesion was diagnosed by the same physician at both time points. We measured DNA methylation in blood using Infinium HumanMethylation450K BeadChip, followed by quantitative validation using pyrosequencing. Two-sample t-tests were used to compare changes in percent methylation between New Cases and Persistent Controls. Six CpG (cytosine-phosphate-guanine) sites with greatest changes of DNA methylation over time among New Cases were further validated with a correlation of 93% using pyrosequencing. One of the validated CpG site (cg03333116; change of %methylation was 13.2 in New Cases versus -0.09 in Persistent Controls; P < 0.001) belonged to the RHBDF1 gene, which was previously reported to be hypermethylated in arsenic-exposed cases. We examined DNA methylation changes with the development of arsenic-induced skin lesions over time but nothing was statistically significant given the small sample size of this exploratory study and the high dimensionality of data.

  3. Epigenome-wide DNA methylation changes with development of arsenic-induced skin lesions in Bangladesh: a case-control follow-up study

    PubMed Central

    Seow, Wei Jie; Kile, Molly L.; Baccarelli, Andrea A.; Pan, Wen-Chi; Byun, Hyang-Min; Mostofa, Golam; Quamruzzaman, Quazi; Rahman, Mahmuder; Lin, Xihong; Christiani, David C.

    2014-01-01

    Studies have found an association between aberrant DNA methylation and arsenic-induced skin lesions. Yet, little is known about DNA methylation changes over time in people who develop arsenic-induced skin lesions. We sought to investigate epigenome-wide changes of DNA methylation in people who developed arsenic-induced skin lesions in a ten year period. In 2009–2011, we conducted a follow-up study of 900 skin lesion cases and 900 controls and identified 10 people who developed skin lesions since a baseline survey in 2001–2003. The 10 cases (“New Cases”) were matched with 10 controls who did not have skin lesions at baseline or follow-up (“Persistent Controls”). Drinking water and blood samples were collected and skin lesion was diagnosed by the same physician at both time points. We measured DNA methylation in blood using Infinium HumanMethylation450K BeadChip, followed by quantitative validation using pyrosequencing. Two-sample t-tests were used to compare changes in percent methylation between New Cases and Persistent Controls. Six CpG sites with greatest changes of DNA methylation over time among New Cases were further validated with a correlation of 93% using pyrosequencing. One of the validated CpG site (cg03333116; change of %methylation was 13.2 in New Cases versus −0.09 in Persistent Controls; P <0.001) belonged to the RHBDF1 gene, which was previously reported to be hypermethylated in arsenic-exposed cases. We examined DNA methylation changes with the development of arsenic-induced skin lesions over time but nothing was statistically significant given the small sample size of this exploratory study and the high dimensionality of data. PMID:24677489

  4. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    SciTech Connect

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10[sup 5] copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G[sub 0], the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes.

  5. Detection of epigenetic aberrations in the development of hepatocellular carcinoma.

    PubMed

    Zhang, Yujing

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.

  6. The misalignment induced aberrations of TMA telescopes.

    PubMed

    Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P

    2008-12-08

    The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

  7. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  8. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  9. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence.

  10. Chromatic aberration measurement for transmission interferometric testing.

    PubMed

    Seong, Kibyung; Greivenkamp, John E

    2008-12-10

    A method of chromatic aberration measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. The chromatic aberration is derived from transmitted wavefronts measured at five different wavelengths. Reverse ray tracing is used to remove induced aberrations associated with the interferometer from the measurement. In the interferometer, the wavefront transmitted through the sample is tested against a plano reference, allowing for the absolute determination of the wavefront radius of curvature. The chromatic aberrations of a singlet and a doublet have been measured.

  11. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  12. Effects of Valproic Acid on Radiation-Induced Chromosomal Aberrations in Human Lymphocytes

    PubMed Central

    Di Tomaso, María Vittoria; Gregoire, Eric; Martínez-López, Wilner

    2017-01-01

    One of the most widely employed histone deacetylases inhibitors in the clinic is the valproic acid (VA), proving to have a good tolerance and low side effects on human health. VA induces changes in chromatin structure making DNA more susceptible to damage induction and influence DNA repair efficiency. VA is also proposed as a radiosensitizing agent. To know if VA is suitable to sensitize human lymphocytes γ-irradiation in vitro, different types of chromosomal aberrations in the lymphocytes, either in the absence or presence of VA, were analyzed. For this purpose, blood samples from four healthy donors were exposed to γ-rays at a dose of 1.5 Gy and then treated with two different doses of VA (0.35 or 0.70 mM). Unstable and stable chromosomal aberrations were analyzed by means of fluorescence in situ hybridization. Human lymphocytes treated with VA alone did not show any increase in the frequency of chromosomal aberrations. However, a moderate degree of sensitization was observed, through the increase of chromosomal aberrations, when 0.35 mM VA was employed after γ-irradiation, whereas 0.70 mM VA did not modify chromosomal aberration frequencies. The lower number of chromosomal aberrations obtained when VA was employed at higher dose after γ-irradiation, could be related to the induction of a cell cycle arrest, a fact that should be taken into consideration when VA is employed in combination with physical or chemical agents. PMID:28250911

  13. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    PubMed

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  14. MORPHEUS' MOLECULE1 is required to prevent aberrant RNA transcriptional read-through in Arabidopsis.

    PubMed

    Zhou, Yue; Zhang, Jun; Lin, Huixin; Guo, Guangqin; Guo, Yan

    2010-11-01

    Several pathways function to remove aberrant mRNA in eukaryotic cells; however, the exact mechanisms underlying the restriction of aberrant mRNA transcription are poorly understood. In this study, we found that MORPHEUS' MOLECULE1 (MOM1) is a key component of this regulatory machinery. The Arabidopsis (Arabidopsis thaliana) mom1-44 mutation was identified by luciferase imaging in transgenic plants harboring a cauliflower mosaic virus 35S promoter-LUCIFERASE transgene lacking the 3'-untranslated region. In the mom1-44 mutant, transcriptional read-though occurred in genes with an aberrant RNA structure. Analysis of an RNA-dependent RNA polymerase2 mom1 double mutant revealed that the RNA-directed DNA methylation pathway is not involved in this regulatory process. Moreover, the prevention of aberrant mRNA transcriptional read-through by MOM1 is gene locus and transgene copy number independent.

  15. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling.

    PubMed

    Nones, Katia; Waddell, Nic; Song, Sarah; Patch, Ann-Marie; Miller, David; Johns, Amber; Wu, Jianmin; Kassahn, Karin S; Wood, David; Bailey, Peter; Fink, Lynn; Manning, Suzanne; Christ, Angelika N; Nourse, Craig; Kazakoff, Stephen; Taylor, Darrin; Leonard, Conrad; Chang, David K; Jones, Marc D; Thomas, Michelle; Watson, Clare; Pinese, Mark; Cowley, Mark; Rooman, Ilse; Pajic, Marina; Butturini, Giovanni; Malpaga, Anna; Corbo, Vincenzo; Crippa, Stefano; Falconi, Massimo; Zamboni, Giuseppe; Castelli, Paola; Lawlor, Rita T; Gill, Anthony J; Scarpa, Aldo; Pearson, John V; Biankin, Andrew V; Grimmond, Sean M

    2014-09-01

    The importance of epigenetic modifications such as DNA methylation in tumorigenesis is increasingly being appreciated. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), we captured the methylation profiles of 167 untreated resected PDACs and compared them to a panel of 29 adjacent nontransformed pancreata using high-density arrays. A total of 11,634 CpG sites associated with 3,522 genes were significantly differentially methylated (DM) in PDAC and were capable of segregating PDAC from non-malignant pancreas, regardless of tumor cellularity. As expected, PDAC hypermethylation was most prevalent in the 5' region of genes (including the proximal promoter, 5'UTR and CpG islands). Approximately 33% DM genes showed significant inverse correlation with mRNA expression levels. Pathway analysis revealed an enrichment of aberrantly methylated genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, integrin signaling, cell adhesion, stellate cell activation and axon guidance. Given the recent discovery that SLIT-ROBO mutations play a clinically important role in PDAC, the role of epigenetic perturbation of axon guidance was pursued in more detail. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses confirmed recurrent perturbation of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, ITGA2 and MET and suggests epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET and ITGA2 expression. Hypomethylation of MET and ITGA2 correlated with high gene expression, which was associated with poor survival. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting core signaling pathways with potential implications for the disease pathophysiology and therapy.

  16. Increased DNA methylation of Dnmt3b targets impairs leukemogenesis.

    PubMed

    Schulze, Isabell; Rohde, Christian; Scheller-Wendorff, Marina; Bäumer, Nicole; Krause, Annika; Herbst, Friederike; Riemke, Pia; Hebestreit, Katja; Tschanter, Petra; Lin, Qiong; Linhart, Heinz; Godley, Lucy A; Glimm, Hanno; Dugas, Martin; Wagner, Wolfgang; Berdel, Wolfgang E; Rosenbauer, Frank; Müller-Tidow, Carsten

    2016-03-24

    The de novo DNA methyltransferases Dnmt3a and Dnmt3b are of crucial importance in hematopoietic stem cells. Dnmt3b has recently been shown to play a role in genic methylation. To investigate how Dnmt3b-mediated DNA methylation affects leukemogenesis, we analyzed leukemia development under conditions of high and physiological methylation levels in a tetracycline-inducible knock-in mouse model. High expression of Dnmt3b slowed leukemia development in serial transplantations and impaired leukemia stem cell (LSC) function. Forced Dnmt3b expression induced widespread DNA hypermethylation inMyc-Bcl2-induced leukemias, preferentially at gene bodies.MLL-AF9-induced leukemogenesis showed much less pronounced DNA hypermethylation upon Dnmt3b expression. Nonetheless, leukemogenesis was delayed in both models with a shared core set of DNA hypermethylated regions and suppression of stem cell-related genes. Acute myeloid leukemia patients with high expression of Dnmt3b target genes showed inferior survival. Together, these findings indicate a critical role for Dnmt3b-mediated DNA methylation in leukemia development and maintenance of LSC function.

  17. Learning Disorders and Sex Chromosome Aberrations.

    ERIC Educational Resources Information Center

    Hier, D. B.; And Others

    1980-01-01

    In a prospective study of 20 adult dyslexic men, no sex chromosome aberrations were detected. A retrospective study of 89 Ss with known sex chromosome aberrations revealed 20 of them to be mentally retarded. Among the 69 Ss of normal intelligence, learning, speech, and attention disorders were frequent. (Author/DLS)

  18. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes

    PubMed Central

    Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.

    2012-01-01

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869

  19. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    PubMed

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  20. TUMORAL TISSUE SPECIFIC PROMOTER HYPERMETHYLATION OF DISTINCT TUMOR SUPPRESSOR GENES IN A CASE WITH NONSMALL CELL LUNG CARCINOMA: A CASE REPORT

    PubMed Central

    Arslan, Sulhattin; Dogan, Tamer; Koksal, Binnur; Yildirim, Malik Ejder; Gumus, Cesur; Elagoz, Sahenda; Akkurt, Ibrahim; Ozdemir, Oztürk

    2008-01-01

    SUMMARY Objective: Non-small cell lung carcinoma is an aggressive phenomenon and the epigenetical alterations of some tumor supressor genes have been reported for the different tumor types. Case Presentation: It is presented a case report concerning a 43 years old male with NSCLC on the lower segment of the right lung. The patient underwent a diag-nostic excisional thin-needle biopsy and after the histological confirmation. We examined the promoter methylation status of some distinct tumor supressor genes in tumoral and blood tissues of the case after sodium bisulfite conversion and DNA amplification with methylation specific multiplex PCR technique. Both tissues were also searched for G to A transitions in codons 12 and 13 of the K-ras proto-oncogene. Results: Tumor specimen showed fully methyl pattern profiles for the SFRP2, p16, DAPK1 and partially hyper-methylated profile for the p53 and MGMT genes in this case with non-small lung carci-noma. Blood speicemen showed normal hypomethylated profiles for all studied TS genes. The K-ras proto-oncogene was in normal structure both in blood and tumoral spiecemens that examined. Conclusion: Results indicate that genes exhibit tumor suppressor activi-ties in blood, but exhibit epigenetic inactivation in carcinoma cell. These findings strongly support the hypothesis that epigenetic mechanisms may play an important role in the non-small cell lung carcinogenesis in human. PMID:21264081

  1. Specific CpG hyper-methylation leads to Ankrd26 gene down-regulation in white adipose tissue of a mouse model of diet-induced obesity

    PubMed Central

    Raciti, Gregory A.; Spinelli, Rosa; Desiderio, Antonella; Longo, Michele; Parrillo, Luca; Nigro, Cecilia; D’Esposito, Vittoria; Mirra, Paola; Fiory, Francesca; Pilone, Vincenzo; Forestieri, Pietro; Formisano, Pietro; Pastan, Ira; Miele, Claudia; Beguinot, Francesco

    2017-01-01

    Epigenetic modifications alter transcriptional activity and contribute to the effects of environment on the individual risk of obesity and Type 2 Diabetes (T2D). Here, we have estimated the in vivo effect of a fat-enriched diet (HFD) on the expression and the epigenetic regulation of the Ankyrin repeat domain 26 (Ankrd26) gene, which is associated with the onset of these disorders. In visceral adipose tissue (VAT), HFD exposure determined a specific hyper-methylation of Ankrd26 promoter at the −436 and −431 bp CpG sites (CpGs) and impaired its expression. Methylation of these 2 CpGs impaired binding of the histone acetyltransferase/transcriptional coactivator p300 to this same region, causing hypo-acetylation of histone H4 at the Ankrd26 promoter and loss of binding of RNA Pol II at the Ankrd26 Transcription Start Site (TSS). In addition, HFD increased binding of DNA methyl-transferases (DNMTs) 3a and 3b and methyl-CpG-binding domain protein 2 (MBD2) to the Ankrd26 promoter. More importantly, Ankrd26 down-regulation enhanced secretion of pro-inflammatory mediators by 3T3-L1 adipocytes as well as in human sera. Thus, in mice, the exposure to HFD induces epigenetic silencing of the Ankrd26 gene, which contributes to the adipose tissue inflammatory secretion profile induced by high-fat regimens. PMID:28266632

  2. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  3. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  4. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  5. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  6. 40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chromosome aberration test may employ cultures of established cell lines, cell strains or primary cell cultures. The cells used are selected on the basis of growth ability in culture, stability of the karyotype... other than direct DNA damage. (e) Principle of the test method. Cell cultures are exposed to the...

  7. Expression of the TIMP2 gene is not regulated by promoter hypermethylation in the Caski cell line.

    PubMed

    Parashar, Gaurav; Capalash, Neena

    2012-05-01

    Promoter hypermethylation has been linked to loss of expression of tumor suppressor genes in various types of tumors. A strong reciprocal correlation between promoter hypermethylation and expression of the TIMP2 gene was observed in the Caski cell line. The TIMP2 promoter was found to be methylated within the 1919 and 1987 region (-325 to -257), relative to the transcription start site through methylation-specific PCR in the HeLa, SiHa and Caski cervical cancer cell lines. However, a reverse transcription PCR analysis of the TIMP2 gene confirmed a normal expression in the HeLa and SiHa cell lines with a high expression in the Caski cell line, indicating that expression of the TIMP2 gene is independent of methylation of CpG sites located within the -325 to -257 region of the TIMP2 promoter, relative to the transcription start site.

  8. Polarization aberrations of crossed folding mirrors

    NASA Astrophysics Data System (ADS)

    Crandall, David G.; Chipman, Russell A.

    1995-08-01

    Polarization aberrations due to varying polarization state across the field of view (FOV) are investigated for crossed folding mirrors. We define crossed mirrors as oriented in space such that s-polarized light incident on the first mirror is p-polarized at the second mirror. This completely compensates for polarization state changes at one point in the field of view. The resulting polarization aberrations are explored across the FOV using the example of aluminum mirrors overcoated with a 12 layer, highly reflective, dielectric stack. The polarization aberration is very low along a band across the field of view. For arbitrary points in the FOV, the retardance and diattenuation are slightly elliptical.

  9. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair

    PubMed Central

    Lee, Bongyong; Morano, Annalisa; Porcellini, Antonio; Muller, Mark T.

    2012-01-01

    In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair. PMID:22135303

  10. Image Ellipticity from Atmospheric Aberrations

    SciTech Connect

    de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-03-06

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.

  11. Association between CHFR gene hypermethylation and gastric cancer risk: a meta-analysis

    PubMed Central

    Shi, Hua; Wang, Xiaojing; Wang, Jianbo; Pan, Jundi; Liu, Junwei; Ye, Bin

    2016-01-01

    Background The association between the hypermethylation of CHFR gene and gastric cancer risk has been investigated by a number of studies. However, the sample size of the majority of these studies was very small. To get a more a convincing conclusion, here we performed a meta-analysis of the previously published studies to assess the association between CHFR methylation and the risk of gastric cancer. Methods Eligible studies were identified by searching the MEDLINE/PubMed, Embase, and Web of Science databases before May 2016 without any language restriction. The strength of the association was estimated by odds ratio with its 95% confidence interval (CI). Results Totally 1,399 samples, including 758 gastric cancer cases and 641 controls, from 13 studies were included in the present meta-analysis. Compared with non-cancer controls, the pooled OR of CHFR methylation in gastric cancer patients was 9.08 (95% CI: 6.40–12.88, P<0.001), suggesting that the methylation of CHFR was significantly associated with increased risk of gastric cancer. Similar results were observed when subgroup analyses were performed stratified by country, ethnicity, and methylation testing methods. Conclusion Our meta-analysis showed a strong positive correlation between CHFR methylation and risk of gastric cancer, suggesting that CHFR methylation might be a promising biomarker for the diagnosis of gastric cancer. PMID:27994471

  12. Sensing Phase Aberrations behind Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  13. Prediction of Visual Acuity from Wavefront Aberrations

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2013-01-01

    A method for generating a visual acuity metric, based on wavefront aberrations (WFAs), associated with a test subject and representing classes of imperfections, such as defocus, astigmatism, coma and spherical aberrations, of the subject's visual system. The metric allows choices of different image template, can predict acuity for different target probabilities, can incorporate different and possibly subject-specific neural transfer functions, can predict acuity for different subject templates, and incorporates a model of the optotype identification task.

  14. Novel aberrant genetic and epigenetic events in Friedreich's ataxia.

    PubMed

    Quesada, Mari Paz; Jones, Jonathan; Rodríguez-Lozano, F J; Moraleda, Jose M; Martinez, Salvador

    2015-07-01

    It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone.

  15. Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1.

    PubMed

    Peng, Rui; Liu, Handeng; Peng, Huimin; Zhou, Ji; Zha, He; Chen, Xin; Zhang, Luyu; Sun, Yan; Yin, Pin; Wen, Li; Wu, Tianhui; Zhang, Zheng

    2015-10-01

    Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus (DM). Recent researches show that DNA methylation plays a role in DN. However, the exact mechanism is not fully understood. MicroRNAs (miRNAs) are a group of endogenous non-coding small RNAs that are involved in the regulation of the development of DN. We have previously demonstrated that let-7a was down-expressed in DN by microarray, but the mechanism is unclear. In this study, let-7a-3 was found to be the only gene with the CpG island in the promoter region among the three let-7a members (let-7a-1, let-7a-2 and let-7a-3) by bioinformatic methods. Also, the expression levels of three homologues of let-7a were tested by real-time PCR, and DNA methylation of the let-7a-3 gene in the promoter region was analyzed by quantitative methylation-specific PCR (qMSP) in 60 individuals, with 20 cases in the control (CON), DM and DN groups respectively. Additionally, the target gene of let-7a-UHRF1 was proved by bioinformatic analysis and dual-luciferase reporter assay. Results showed that let-7a-3 was down-regulated in DN patients. Moreover, qMSP data showed that the average methylation ratio of the let-7a-3 promoter in the DN group was significantly higher than that in the CON and DM groups (P<0.05). Data also showed that let-7a negatively regulated the mRNA and protein expressions of methylation-related gene-UHRF1 through UHRF1 3'UTR. And the expressions of UHRF1 and DNMT1 were increased in DN patients. Therefore, we concluded that promoter hypermethylation and down-expression of let-7a-3 may play a role in DN by targeting UHRF1.

  16. Development of TRAIL Resistance by Radiation-Induced Hypermethylation of DR4 CpG Island in Recurrent Laryngeal Squamous Cell Carcinoma

    SciTech Connect

    Lee, Jong Cheol; Lee, Won Hyeok; Min, Young Joo; Cha, Hee Jeong; Han, Myung Woul; Chang, Hyo Won; Kim, Sun-A; Choi, Seung-Ho; Kim, Seong Who; Kim, Sang Yoon

    2014-04-01

    Purpose: There are limited therapeutic options for patients with recurrent head and neck cancer after radiation therapy failure. To assess the use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) as a salvage chemotherapeutic agent for recurrent cancer after radiation failure, we investigated the effect of clinically relevant cumulative irradiation on TRAIL-induced apoptosis. Methods and Materials: Using a previously established HN3 cell line from a laryngeal carcinoma patient, we generated a chronically irradiated HN3R isogenic cell line. Viability and apoptosis in HN3 and HN3R cells treated with TRAIL were analyzed with MTS and PI/annexin V-FITC assays. Western blotting and flow cytometry were used to determine the underlying mechanism of TRAIL resistance. DR4 expression was semiquantitatively scored in a tissue microarray with 107 laryngeal cancer specimens. Methylation-specific polymerase chain reaction and bisulfite sequencing for DR4 were performed for genomic DNA isolated from each cell line. Results: HN3R cells were more resistant than HN3 cells to TRAIL-induced apoptosis because of significantly reduced levels of the DR4 receptor. The DR4 staining score in 37 salvage surgical specimens after radiation failure was lower in 70 surgical specimens without radiation treatment (3.03 ± 2.75 vs 5.46 ± 3.30, respectively; P<.001). HN3R cells had a methylated DR4 CpG island that was partially demethylated by the DNA demethylating agent 5-aza-2′-deoxycytidine. Conclusion: Epigenetic silencing of the TRAIL receptor by hypermethylation of a DR4 CpG island might be an underlying mechanism for TRAIL resistance in recurrent laryngeal carcinoma treated with radiation.

  17. Individual eye model based on wavefront aberration

    NASA Astrophysics Data System (ADS)

    Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan

    2005-03-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  18. Aberrant silencing of the endocrine peptide gene tachykinin-1 in gastric cancer

    SciTech Connect

    David, Stefan; Kan, Takatsugu; Cheng, Yulan; Agarwal, Rachana; Jin, Zhe; Mori, Yuriko

    2009-01-16

    Tachykinin-1 (TAC1) is the precursor protein for neuroendocrine peptides, including substance P, and is centrally involved in gastric secretion, motility, mucosal immunity, and cell proliferation. Here we report aberrant silencing of TAC1 in gastric cancer (GC) by promoter hypermethylation. TAC1 methylation and mRNA expression in 47 primary GCs and 41 noncancerous gastric mucosae (NLs) were analyzed by utilizing real-time quantitative PCR-based assays. TAC1 methylation was more prevalent in GCs than in NLs: 21 (45%) of 47 GCs versus 6 (15%) of 41 NLs (p < 0.01). Microsatellite instability was also associated with TAC1 methylation in GCs. There was no significant association between TAC1 methylation and age, gender, stage, histological differentiation, or the presence of Helicobacter pylori. TAC1 mRNA was markedly downregulated in GCs relative to NLs. 5-Aza-2'-deoxycytidine-induced demethylation of the TAC1 promoter resulted in TAC1 mRNA upregulation. Further studies are indicated to elucidate the functional involvement of TAC1 in gastric carcinogenesis.

  19. DNA promoter and histone H3 methylation downregulate NGX6 in gastric cancer cells.

    PubMed

    Liu, Jian; Zhu, Xinjiang; Xu, Xiaoyang; Dai, Dongqiu

    2014-01-01

    Nasopharyngeal carcinoma-associated gene 6 (NGX6) is a novel candidate tumor metastasis suppressor gene. Our study was to determine whether DNA hypermethylation and histone modification at the NGX6 gene promoter play important roles in silencing NGX6 expression in gastric cancer. NGX6 expression was downregulated in all gastric cancer cells and 76.19 % tissues. In three GC cell lines, hypermethylated NGX6 loci were characterized by histone H3-K9 hypoacetylation and hypermethylation. Trichostatin A treatment could moderately increase H3-K9 acetylation at the silenced loci; however, it had no effect on DNA and H3-K9 methylation and minimal effects on NGX6 expression. In contrast, 5'aza-2'-deoxycytidine treatment could rapidly decrease DNA and H3-K9 methylation at the silenced loci, leading to the reexpression of NGX6. Combined treatment with 5'aza-2'-deoxycytidine and trichostatin A had synergistic effects on the reexpression of NGX6 at the hypermethylation loci. Our current study shows that NGX6 expression is downregulated in GC cancer cells and tissues due to NGX6 promoter methylation and H3-K9 methylation, but not H3-K9 acetylation. Our findings indicate that the downregulation of NGX6 expression contributes to the development and progression of gastric cancer. More studies are needed to determine the precise mechanism of NGX6 in the progression of gastric cancer.

  20. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis.

    PubMed

    Stoyanov, Evgeniy; Ludwig, Guy; Mizrahi, Lina; Olam, Devorah; Schnitzer-Perlman, Temima; Tasika, Elena; Sass, Gabriele; Tiegs, Gisa; Jiang, Yong; Nie, Ting; Kohler, James; Schinazi, Raymond F; Vertino, Paula M; Cedar, Howard; Galun, Eithan; Goldenberg, Daniel

    2015-05-10

    Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls. The observed hypermethylation resulted mainly from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2(-/-) liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2(-/-) livers affected either hepatocyte, or non-hepatocyte, or both fractions without a correlation between changes of gene methylation and expression. Our findings demonstrate that chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as useful markers of an increased regenerative activity and of a late precancerous stage in the chronically inflamed liver.

  1. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    PubMed Central

    Fernández, Agustín F.; Bayón, Gustavo F.; Urdinguio, Rocío G.; Toraño, Estela G.; García, María G.; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M.; Riancho, José A.; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A.

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. PMID:25271306

  2. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.

    PubMed

    Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors.

  3. Pulse compressor with aberration correction

    SciTech Connect

    Mankos, Marian

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  4. TET1 Depletion Induces Aberrant CpG Methylation in Colorectal Cancer Cells

    PubMed Central

    Yamamoto, Eiichiro; Harada, Taku; Aoki, Hironori; Maruyama, Reo; Toyota, Mutsumi; Sasaki, Yasushi; Sugai, Tamotsu; Tokino, Takashi; Nakase, Hiroshi

    2016-01-01

    Aberrant DNA methylation is commonly observed in colorectal cancer (CRC), but the underlying mechanism is not fully understood. 5-hydroxymethylcytosine levels and TET1 expression are both reduced in CRC, while epigenetic silencing of TET1 is reportedly associated with the CpG island methylator phenotype. In the present study, we aimed to clarify the relationship between loss of TET1 and aberrant DNA methylation in CRC. Stable TET1 knockdown clones were established using Colo320DM cells, which express high levels of TET1, and HCT116 cells, which express TET1 at a level similar to that in normal colonic tissue. Infinium HumanMethylation450 BeadChip assays revealed increased levels of 5-methylcytosine at more than 10,000 CpG sites in TET1-depleted Colo320DM cells. Changes in DNA methylation were observed at various positions within the genome, including promoters, gene bodies and intergenic regions, and the altered methylation affected expression of a subset of genes. By contrast, TET1 knockdown did not significantly affect DNA methylation in HCT116 cells. However, TET1 depletion was associated with attenuated effects of 5-aza-2’-deoxycytidine on gene expression profiles in both cell lines. These results suggest that loss of TET1 may induce aberrant DNA methylation and may attenuate the effect of 5-aza-2’-deoxycytidine in CRC cells. PMID:27977763

  5. Unabridged Analysis of Human Histone H3 by Differential Top-Down Mass Spectrometry Reveals Hypermethylated Proteoforms from MMSET/NSD2 Overexpression*

    PubMed Central

    Zheng, Yupeng; Fornelli, Luca; Compton, Philip D.; Sharma, Seema; Canterbury, Jesse; Mullen, Christopher; Zabrouskov, Vlad; Fellers, Ryan T.; Thomas, Paul M.; Licht, Jonathan D.; Senko, Michael W.; Kelleher, Neil L.

    2016-01-01

    Histones, and their modifications, are critical components of cellular programming and epigenetic inheritance. Recently, cancer genome sequencing has uncovered driver mutations in chromatin modifying enzymes spurring high interest how such mutations change histone modification patterns. Here, we applied Top-Down mass spectrometry for the characterization of combinatorial modifications (i.e. methylation and acetylation) on full length histone H3 from human cell lines derived from multiple myeloma patients with overexpression of the histone methyltransferase MMSET as the result of a t(4;14) chromosomal translocation. Using the latest in Orbitrap-based technology for clean isolation of isobaric proteoforms containing up to 10 methylations and/or up to two acetylations, we provide extensive characterization of histone H3.1 and H3.3 proteoforms. Differential analysis of modifications by electron-based dissociation recapitulated antagonistic crosstalk between K27 and K36 methylation in H3.1, validating that full-length histone H3 (15 kDa) can be analyzed with site-specific assignments for multiple modifications. It also revealed K36 methylation in H3.3 was affected less by the overexpression of MMSET because of its higher methylation levels in control cells. The co-occurrence of acetylation with a minimum of three methyl groups in H3K9 and H3K27 suggested a hierarchy in the addition of certain modifications. Comparative analysis showed that high levels of MMSET in the myeloma-like cells drove the formation of hypermethyled proteoforms containing H3K36me2 co-existent with the repressive marks H3K9me2/3 and H3K27me2/3. Unique histone proteoforms with such “trivalent hypermethylation” (K9me2/3-K27me2/3-K36me2) were not discovered when H3.1 peptides were analyzed by Bottom-Up. Such disease-correlated proteoforms could link tightly to aberrant transcription programs driving cellular proliferation, and their precise description demonstrates that Top-Down mass spectrometry

  6. Cytogenetics of human sperm: Structural aberrations and DNA replication

    SciTech Connect

    Brandriff, B.F.; Gordon, L.A.; Carrano, A.V.

    1989-07-11

    The human sperm-hamster egg system, first introduced in 1978 (Rudak et al), has yielded some important insights into questions on chromosomal integrity of human sperm. In this system, human sperm are co-incubated with eggs from the golden hamster. After the gametes fuse, eggs are cultured overnight and approximately 15 hours after fusion, display the haploid chromosomal complement of individual human sperm cells. These chromosomes can be analyzed by standard banding techniques to identify and quantify structural and numerical abnormalities in single sperm. 32 refs., 1 fig.

  7. Aberrant Vimentin DNA Methylation in Stool — EDRN Public Portal

    Cancer.gov

    The VIM gene encodes a member of the intermediate filament family. VIM proteins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. These intermediate filaments, along with microtubules and actin microfilaments, make up the cytoskeleton.

  8. RUNX3 is inactivated by promoter hypermethylation in malignant transformation of ovarian endometriosis.

    PubMed

    Guo, Cuishan; Ren, Fang; Wang, Danbo; Li, Yan; Liu, Kuiran; Liu, Shuang; Chen, Peng

    2014-12-01

    The aim of the present study was to investigate the role of epigenetic inactivation of the runt-related transcription factor 3 gene (RUNX3) in the malignant transformation of ovarian endometriosis. Samples obtained by microdissection and scraping included 30 malignant ovarian endometriotic cyst tissues and 30 corresponding eutopic endometrium tissues from the endometriosis-associated ovarian carcinoma (EAOC) group, 19 benign ovarian endometriotic cyst tissues and 22 corresponding eutopic endometrium tissues from the endometriosis (EM) group and 22 normal eutopic endometrium tissues from the control endometrium (CE) group. RUNX3 methylation status was determined by methylation-specific PCR and bisulfite sequencing, while levels of RUNX3 and ERα protein expression were evaluated using immunohistochemistry. The percentage of RUNX3 methylation and negative RUNX3 protein expression in the malignant ovarian endometriotic cysts from the EAOC group was significantly higher than that in the benign ovarian endometriotic cysts from the EM group. The percentage of RUNX3 methylation and negative RUNX3 protein expression in the eutopic endometrium from the EAOC group was significantly higher than that in the EM and CE groups. An inverse correlation between positive RUNX3 protein expression and methylation was observed and a positive correlation was shown between RUNX3 methylation and ERα protein expression. In the malignant ovarian endometriotic cysts from the EAOC group, there was no significant correlation between methylation frequency of the RUNX3 gene and histological type. However, the percentage of RUNX3 gene methylation was significantly higher in the tissue samples from patients with surgical stage IC EAOC than the percentage in patients with stage IA and IB disease. These results suggest that RUNX3 inactivation by promoter hypermethylation plays a role in the progression of malignant transformation of ovarian EM and is closely related to estrogen metabolism. Negative

  9. Hypermethylation of MST1 in IgG4-related autoimmune pancreatitis and rheumatoid arthritis

    SciTech Connect

    Fukuhara, Takataro; Tomiyama, Takashi; Yasuda, Kaneki; Ueda, Yoshihiro; Ozaki, Yoshio; Son, Yonsu; Nomura, Shosaku; Uchida, Kazushige; Okazaki, Kazuichi; Kinashi, Tatsuo

    2015-08-07

    The serine/threonine kinase Mst1 plays important roles in the control of immune cell trafficking, proliferation, and differentiation. Previously, we reported that Mst1 was required for thymocyte selection and regulatory T-cell functions, thereby the prevention of autoimmunity in mice. In humans, MST1 null mutations cause T-cell immunodeficiency and hypergammaglobulinemia with autoantibody production. RASSF5C(RAPL) is an activator of MST1 and it is frequently methylated in some tumors. Herein, we investigated methylation of the promoter regions of MST1 and RASSF5C(RAPL) in leukocytes from patients with IgG4-related autoimmune pancreatitis (AIP) and rheumatoid arthritis (RA). Increased number of CpG methylation in the 5′ region of MST1 was detected in AIP patients with extrapancreatic lesions, whereas AIP patients without extrapancreatic lesions were similar to controls. In RA patients, we detected a slight increased CpG methylation in MST1, although the overall number of methylation sites was lower than that of AIP patients with extrapancreatic lesions. There were no significant changes of the methylation levels of the CpG islands in the 5′ region of RASSF5C(RAPL) in leukocytes from AIP and RA patients. Consistently, we found a significantly down-regulated expression of MST1 in regulatory T cells of AIP patients. Our results suggest that the decreased expression of MST1 in regulatory T cells due to hypermethylation of the promoter contributes to the pathogenesis of IgG4-related AIP. - Highlights: • Mst1 controls immune cells trafficking, cell proliferation and differentiation. • Autoimmune pancreatitis (AIP) is an idiopathic pancreatitis affecting multiple organs. • Decreased MST1 expression and increased CpG methylation of promoter of MST1 in AIP. • Slight increased CpG methylation of MST1 in rheumatoid arthritis patients. • MST1 contributes pathogenesis of IgG4-related AIP.

  10. AIM1 PROMOTER HYPERMETHYLATION AS A PREDICTOR OF DECREASED RISK OF RECURRENCE FOLLOWING RADICAL PROSTATECTOMY

    PubMed Central

    Rosenbaum, Eli; Begum, Shahnaz; Brait, Mariana; Zahurak, Marianna; Maldonado, Leonel; Eisenberger, Mario A; Epstein, Jonathan I; Partin, Alan W; Sidransky, David; Hoque, Mohammad Obaidul

    2012-01-01

    Purpose To evaluate the prognostic significance of six epigenetic biomarkers (AIM1, CDH1, KIF1A, MT1G, PAK3 and RBM6 promoter hypermethlation) in a homogeneous group of prostate cancer patients, following radical prostatectomy. Patients and Methods Biomarker analyses were performed retrospectively on tumors from 95 prostate cancer patients all with a Gleason score of 3+4=7 and a minimum follow up period of 8 years. Using Quantitative Methylation Specific PCR (QMSP), we analyzed the promoter region of six genes in primary prostate tumor tissues. Time to any progression was the primary endpoint and development of metastatic disease and/or death from prostate cancer was a secondary endpoint. The association of clinicopathological and biomolecular risk factors to recurrence was performed using the Log-rank test and Cox proportional hazards model for multivariate analysis. To identify independent prognostic factors, a stepwise selection method was used. Results At a median follow-up time of 10 years, 48 patients (50.5%) had evidence of recurrence: biochemical/PSA relapse, metastases, or death from prostate cancer. In the final multivariate analysis for time to progression, the significant factors were: older age, HR=0.95 (95% CI: 0.91, 1.0) (P=0.03), positive lymph nodes HR=2.11 (95%CI: 1.05, 4.26) (P=0.04) and decreased hypermethylation of AIM1 HR=0.45 (95%CI: 0.2, 1.0) (P=0.05). Conclusions Methylation status of AIM1 in the prostate cancer specimen may predict for time to recurrence in Gleason 3+4=7 patients undergoing prostatectomy. These results should be validated in a larger and unselected cohort. PMID:22127895

  11. DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines.

    PubMed

    Kawamoto, Ken; Hirata, Hiroshi; Kikuno, Nobuyuki; Tanaka, Yuichiro; Nakagawa, Masayuki; Dahiya, Rajvir

    2008-08-01

    Secreted frizzled-related protein 2 (sFRP2) is a negative modulator of the Wingless-type (Wnt) signaling pathway, and shown to be inactivated in renal cell carcinoma (RCC). However, the molecular mechanism of silencing of sFRP2 is not fully understood. Our study was designed to elucidate the silencing mechanism of sFRP2 in RCC. Expression of sFRP2 was examined in 20 pairs of primary cancers by immunohistochemistry. Kidney cell lines (HK-2, Caki-1, Caki-2, A-498 and ACHN) were analyzed for sFRP2 expression using real-time RT-PCR and Western blotting. The methylation status at 46 CpG sites of the 2 CpG islands in the sFRP2 promoter was characterized by bisulfite DNA sequencing. Histone modifications were assessed by chromatin immunoprecipitation (ChIP) assay using antibodies against AcH3, AcH4, H3K4 and H3K9. sFRP2 was frequently repressed in primary cancers and in RCC cells. The majority of sFRP2 negative cells had a methylated promoter. Meanwhile, sFRP2 expression was repressed by a hypomethylated promoter in Caki-1 cells, and these cells had a repressive histone modification at the promoter. In Caki-1 cells, sFRP2 was reactivated by trichostatin A (TSA). Repressive histone modifications were also observed in RCC cells with hypermethylated promoters, but sFRP2 was reactivated only by 5-aza-2'-deoxycytidine (DAC) and not by TSA. However, the activation of the silenced sFRP2 gene could be achieved in all cells using a combination of DAC and TSA. This is the first report indicating that aberrant DNA methylation and histone modifications work together to silence the sFRP2 gene in RCC cells.

  12. Quantitative DNA Methylation Profiling in Cancer.

    PubMed

    Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner

    2016-01-01

    Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.

  13. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays.

    PubMed

    Guttman, Mitchell; Mies, Carolyn; Dudycz-Sulicz, Katarzyna; Diskin, Sharon J; Baldwin, Don A; Stoeckert, Christian J; Grant, Gregory R

    2007-08-01

    Genomic aberrations recurrent in a particular cancer type can be important prognostic markers for tumor progression. Typically in early tumorigenesis, cells incur a breakdown of the DNA replication machinery that results in an accumulation of genomic aberrations in the form of duplications, deletions, translocations, and other genomic alterations. Microarray methods allow for finer mapping of these aberrations than has previously been possible; however, data processing and analysis methods have not taken full advantage of this higher resolution. Attention has primarily been given to analysis on the single sample level, where multiple adjacent probes are necessarily used as replicates for the local region containing their target sequences. However, regions of concordant aberration can be short enough to be detected by only one, or very few, array elements. We describe a method called Multiple Sample Analysis for assessing the significance of concordant genomic aberrations across multiple experiments that does not require a-priori definition of aberration calls for each sample. If there are multiple samples, representing a class, then by exploiting the replication across samples our method can detect concordant aberrations at much higher resolution than can be derived from current single sample approaches. Additionally, this method provides a meaningful approach to addressing population-based questions such as determining important regions for a cancer subtype of interest or determining regions of copy number variation in a population. Multiple Sample Analysis also provides single sample aberration calls in the locations of significant concordance, producing high resolution calls per sample, in concordant regions. The approach is demonstrated on a dataset representing a challenging but important resource: breast tumors that have been formalin-fixed, paraffin-embedded, archived, and subsequently UV-laser capture microdissected and hybridized to two-channel BAC arrays

  14. PPARβ/δ activation protects against corticosterone-induced ER stress in astrocytes by inhibiting the CpG hypermethylation of microRNA-181a.

    PubMed

    Ji, Juan; Zeng, Xiao-Ning; Cao, Lu-Lu; Zhang, Ling; Zhao, Zhan; Yang, Dan-Dan; Sun, Xiu-Lan

    2017-02-01

    Increasing evidence indicates that peroxisome proliferator-activated receptors (PPARs) play neuroprotective roles in various neurodegenerative disease models in vivo and in vitro. However, the underlying mechanisms remain unclear. Astrocyte proliferation is a key process in neural development and plays significant roles in the regeneration of neural tissue after a penetrating injury. Corticosterone can significantly reduce the expression of glial fibrillary acid protein (GFAP) in cultured rat hippocampal astrocytes in vitro, and induce astrocytic dysfunction. Our research found that corticosterone treatment resulted in astrocyte damage and reduced the expression of PPARβ/δ. GW0742, a selective and high-affinity PPARβ/δ agonist, attenuated the corticosterone-induced astrocyte damage, but also significantly reversed the increase in the expression of GRP78 and CHOP, the two predominant proteins in endoplasmic reticulum (ER) stress. Moreover, GW0742 decreased the levels of caspase-12 and cleaved caspase-3, thereby protecting astrocytes against corticosterone-induced astrocyte apoptosis. We then confirmed that GRP78 was a target gene of microRNA-181a and found that PPARβ/δ activation increased microRNA-181a levels. Finally, we demonstrated that PPARβ/δ activation by GW0742 noticeably inhibited the activities and expression of DNA methyltransferases, and reduced the corticosterone-induced CpG island hypermethylation of microRNA-181a1 in astrocytes. Therefore, the present study is the first to reveal that PPARβ/δ activation suppresses CpG island hypermethylation-associated silencing of microRNA-181a and thereby protects against ER stress-induced damage in astrocytes. Our findings suggest that PPARβ/δ activation in astrocytes might be a promising target for regulating ER stress-induced astrocytic injury.

  15. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  16. Aberration Compensation Using Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Somalingam, S.; Hain, M.; Tschudi, T.; Knittel, J.; Richter, H.

    We have developed a novel transmissive nematic liquid crystal device which is capable of compensating spherical wavefront aberration that occurs during the operation of optical pickup systems. In order to increase the storage capacity, next generation optical data storage systems beyond CD and DVD will use according to the Blu-Ray specification (BD) blue laser light and an objective lens with high numerical aperture (N.A.) of 0.85. However, such high N.A. systems have an inherent higher sensitivity on aberrations. For example spherical aberration is inversely proportional to the wavelength and grows with the fourth power of N.A. of the objective lens. In an optical pickup system there are two sources for spherical aberration: The first one is the variation of the substrate thickness due to manufacturing tolerances under mass production conditions. The second one concerns disks with multiple data-layers, which cause spherical aberration when layers are switched, as the objective lens can only be optimized for a single layer thickness. We report a method for effective compensation of spherical aberration by utilizing a novel liquid crystal device, which generates a parabolic wavefront profile. This particular shape makes the device highly tolerant against lateral movement. A sophisticated electrode design allows us to reduce the number of driving electrodes down to two by using the method of conductive ladder mashing. Further evaluation in a blue-DVD test drive has been carried out with good results. By placing the device into an optical pick-up we were able to readout a dual-layer ROM disk with a total capacity of 50 gigabytes (GB). A data-to-clock jitter of 6.9% for the 80 μm and of 8.0% for the 100 μm cover layer could be realized.

  17. Aberration corrected Lorentz scanning transmission electron microscopy.

    PubMed

    McVitie, S; McGrouther, D; McFadzean, S; MacLaren, D A; O'Shea, K J; Benitez, M J

    2015-05-01

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale.

  18. Chromosome aberration test for hydroxyapatite in sheep.

    PubMed

    Kannan, T P; Nik Ahmad Shah, N L; Azlina, A; Samsudin, A R; Narazah, M Y; Salleh, Ma'arof

    2004-05-01

    The present study is aimed at finding the mutagenicity and cytotoxicity of dense form of synthetic hydroxyapatite (Source: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) in the blood of sheep. The biomaterial was implanted in the tibia of Malin, an indigenous sheep breed of Malaysia. Blood was collected from the sheep before implantation of the biomaterial, cultured and a karyological study was made. Six weeks after implantation, blood was collected from the same animal, cultured and screened for chromosome aberrations. The mitotic indices and karyological analysis indicated that the implantation of synthetic hydroxyapatite (dense form) did not produce any cytotoxicity or chromosome aberrations in the blood of sheep.

  19. DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease.

    PubMed

    Karatzas, Pantelis S; Mantzaris, Gerassimos J; Safioleas, Michael; Gazouli, Maria

    2014-12-01

    The contribution of epigenetic alterations to disease pathogenesis is emerging as a research priority. In this study, we aimed to seek DNA methylation changes in peripheral blood and tissue biopsies from patients with inflammatory bowel disease. The promoter methylation status of genes involved in inflammation and autoimmunity was profiled using the Human Inflammatory Response and Autoimmunity EpiTect Methyl II Signature PCR Array profiles. Methylation was considered to be hypermethylated if >20% according to the instructions of the manufacturer. The microarrays were validated with Quantitative Real-time PCR. Regarding Crohn disease (CD) no gene appeared hypermethylated compared to healthy controls. In ulcerative colitis (UC) 5 genes (CXCL14, CXCL5, GATA3, IL17C, and IL4R) were hypermethylated compared to healthy controls. Some of the examined genes show different methylation patterns between CD and UC. Concerning tissue samples we found that all hypermethylated genes appear the same methylation pattern and confirmed a moderate-strong correlation between methylation levels in colon biopsies and peripheral blood (Pearson coefficients r=0.089-0.779, and r=0.023-0.353, respectively). The epigenetic changes observed in this study indicate that CD and UC exhibit specific DNA methylation signatures with potential clinical applications in IBD non-invasive diagnosis and prognosis.

  20. DNA methylation determines nucleosome occupancy in the 5'-CpG islands of tumor suppressor genes.

    PubMed

    Portela, A; Liz, J; Nogales, V; Setién, F; Villanueva, A; Esteller, M

    2013-11-21

    Promoter CpG island hypermethylation of tumor suppressor genes is an epigenetic hallmark of human cancer commonly associated with nucleosome occupancy and the transcriptional silencing of the neighboring gene. Nucleosomes can determine the underlying DNA methylation status. Herein, we show that the opposite is also true: DNA methylation can determine nucleosome positioning. Using a cancer model and digital nucleosome positioning techniques, we demonstrate that the induction of DNA hypomethylation events by genetic (DNMT1/DNMT3B deficient cells) or drug (a DNA demethylating agent) approaches is associated with the eviction of nucleosomes from previously hypermethylated CpG islands of tumor suppressor genes. Most importantly, the establishment of a stable cell line that restores DNMT1/DNMT3B deficiency shows that nucleosomes reoccupy their positions in de novo methylated CpG islands. Finally, we extend these results to the genomic level, combining a DNA methylation microarray and the nucleosome positioning technique. Using this global approach, we observe the dependency of nucleosome occupancy upon the DNA methylation status. Thus, our results suggest that there is a close association between hypermethylated CpG islands and the presence of nucleosomes, such that each of these epigenetic mechanisms can determine the recruitment of the other.

  1. Misalignment induced aberration off-axis optical system

    NASA Astrophysics Data System (ADS)

    Pang, Zhihai; Fan, Xuewu; Ma, Zhen; Zou, Gangyi

    2016-10-01

    Through introducing transformed pupil vector and shifted center of aberration fields vector into the nodal aberration expansions of an axially symmetric optical system, the aberration expression in third order of an off-axis optical system and misaligned off-axis optical system are detailed. Nodal aberration characteristics of misaligned off-axis optical system are revealed only by analyzing the pupil decentration vector, aberration fields shifted vector and the aberration coefficients of the axially symmetric optical system. Actually, it is well demonstrated that the 3rd spherical aberration, 3rd coma, 3rd astigmatism in a misalignment off-axis system are comparable to the aberrations in a misalignment axially symmetric system. Otherwise it will not only induced constant 3rd spherical aberration but also constant 3rd coma and 3rd astigmatism over the field of view, when aligned an off-axis optical system elements with error axial spacing.

  2. Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine

    PubMed Central

    Gao, Ying-Ying; Chen, Li; Wang, Tao; Nie, Zheng-Wen; Zhang, Xia; Miao, Yi-Liang

    2016-01-01

    DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes’ DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes. PMID:27782163

  3. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  4. Unique DNA methylome profiles in CpG island methylator phenotype colon cancers

    PubMed Central

    Xu, Yaomin; Hu, Bo; Choi, Ae-Jin; Gopalan, Banu; Lee, Byron H.; Kalady, Matthew F.; Church, James M.; Ting, Angela H.

    2012-01-01

    A subset of colorectal cancers was postulated to have the CpG island methylator phenotype (CIMP), a higher propensity for CpG island DNA methylation. The validity of CIMP, its molecular basis, and its prognostic value remain highly controversial. Using MBD-isolated genome sequencing, we mapped and compared genome-wide DNA methylation profiles of normal, non-CIMP, and CIMP colon specimens. Multidimensional scaling analysis revealed that each specimen could be clearly classified as normal, non-CIMP, and CIMP, thus signifying that these three groups have distinctly different global methylation patterns. We discovered 3780 sites in various genomic contexts that were hypermethylated in both non-CIMP and CIMP colon cancers when compared with normal colon. An additional 2026 sites were found to be hypermethylated in CIMP tumors only; and importantly, 80% of these sites were located in CpG islands. These data demonstrate on a genome-wide level that the additional hypermethylation seen in CIMP tumors occurs almost exclusively at CpG islands and support definitively that these tumors were appropriately named. When these sites were examined more closely, we found that 25% were adjacent to sites that were also hypermethylated in non-CIMP tumors. Thus, CIMP is also characterized by more extensive methylation of sites that are already prone to be hypermethylated in colon cancer. These observations indicate that CIMP tumors have specific defects in controlling both DNA methylation seeding and spreading and serve as an important first step in delineating molecular mechanisms that control these processes. PMID:21990380

  5. Evaluation of Bleomycin-induced chromosome aberrations under simulated microgravity conditions in human lymphocytes using "FISH" techniques

    NASA Astrophysics Data System (ADS)

    Mosesso, P.; Schuber, M.; Seibt, D.; Schatz, A.; Fosci, A.; Fonti, E.; Palitti, F.

    In the present investigation we report the effects of simulated microgravity conditions (clinostat) on the induction of chromosomal aberrations in human lymphocytes in vitro by ®Bleomycin. Chromosomal aberrations have been analysed by means of fluorescent in situ hybridisation (FISH) and chromosome-specific composite DNA probes (chromosome painting). The results obtained show that, under simulated microgravity conditions, the levels of both symmetrical and asymmetrical (dicentrics, rings), the number of cells bearing "complex" aberrations and hence the total numbers of aberrations were significantly elevated at any of the dose-levels assayed, compared to the parallel treatments performed as 1g control ("ground"). Furthermore, the ratio symmetrical:asymmetrical translocations was markedly elevated under simulated microgravity conditions, compared to the findings usually observed under "normal" 1g conditions. On these bases, we are much inclined to believe that simulated microgravity, rather than limiting the resealing of DNA double strand breaks (DSB's) induced by genotoxic agents is influencing in terms of enhancement the misrejoining of DSB's which is actually responsible for the fixation of the original lesions to DNA into chromosomal aberrations. In addition, the possible different misrepair processes leading to the formation of symmetrical and asymmetrical translocations might be differentially influenced by microgravity being the symmetrical translocations significantly more represented.

  6. Aberrations of diffracted wave fields. II. Diffraction gratings.

    PubMed

    Mahajan, V N

    2000-12-01

    The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order.

  7. HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer.

    PubMed

    Hwang, Jung-Ah; Lee, Bo Bin; Kim, Yujin; Hong, Seung-Hyun; Kim, Young-Ho; Han, Joungho; Shim, Young Mog; Yoon, Chae-Yeong; Lee, Yeon-Su; Kim, Duk-Hwan

    2015-06-01

    This study was aimed at understanding the clinicopathological significance of HOXA9 hypermethylation in non-small cell lung cancer (NSCLC). HOXA9 hypermethylation was characterized in six lung cancer cell lines, and its clinicopathological significance was analyzed using methylation-specific PCR in 271 formalin-fixed paraffin-embedded tissues and 27 fresh-frozen tumor and matched normal tissues from 298 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA9 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA9 into H23 lung cancer cells resulted in the inhibition of cell migration but not proliferation. Conversely, sequence-specific siRNA-mediated knockdown of HOXA9 enhanced cell migration. The mRNA levels of HOXA9 in 27 fresh-frozen tumor tissues were significantly lower than in matched normal tissues (P<0.0001; Wilcoxon signed-rank test). HOXA9 hypermethylation was found in 191 (70%) of 271 primary NSCLCs. HOXA9 hypermethylation was not associated with tumor size (P=0.12) and Ki-67 proliferation index (P=0.15). However, patients with HOXA9 hypermethylation had poor recurrence-free survival (hazard ratio=3.98, 95% confidence interval = 1.07-17.09, P=0.01) in never-smokers, after adjusting for age, sex, tumor size, adjuvant therapy, pathologic stage, and histology. In conclusion, the present study suggests that HOXA9 inhibits migration of lung cancer cells and its hypermethylation is an independent prognostic factor for recurrence-free survival in never-smokers with NSCLC.

  8. Cosmological parameter estimation: impact of CMB aberration

    SciTech Connect

    Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  9. Anti-forensics of chromatic aberration

    NASA Astrophysics Data System (ADS)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  10. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  11. Aberration features in directional dark matter detection

    SciTech Connect

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu

    2012-08-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation.

  12. Functional Analysis and Treatment of Aberrant Behavior.

    ERIC Educational Resources Information Center

    Mace, F. Charles; And Others

    1991-01-01

    This article reviews general classes of variables which help to maintain aberrant behavior including attention seeking, sensory and perceptual consequences, and access to materials or activities. Suggestions for a methodology providing a comprehensive functional analysis are offered which include descriptive analysis, hypothesis forming,…

  13. The Extent of Mismeasurement for Aberrant Examinees

    ERIC Educational Resources Information Center

    Petridou, Alexandra; Williams, Julian

    2010-01-01

    The person-fit literature assumes that aberrant response patterns could be a sign of person mismeasurement, but this assumption has rarely, if ever, been empirically investigated before. We explore the validity of test responses and measures of 10-year-old examinees whose response patterns on a commercial standardized paper-and-pencil mathematics…

  14. Assessing the construct validity of aberrant salience.

    PubMed

    Schmidt, Kristin; Roiser, Jonathan P

    2009-01-01

    We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT). The "aberrant salience" measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance (LIrr), attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a LIrr task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for approximately 75% of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated "Introvertive Anhedonia" schizotypy, replicating our previous finding. LIrr loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of LIrr and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  15. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  16. Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?

    PubMed Central

    Prelog, Martina; Hilligardt, Deborah; Schmidt, Christian A.; Przybylski, Grzegorz K.; Leierer, Johannes; Almanzar, Giovanni; El Hajj, Nady; Lesch, Klaus-Peter; Arolt, Volker; Zwanzger, Peter; Haaf, Thomas; Domschke, Katharina

    2016-01-01

    Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders. PMID:27362416

  17. A Monte-Carlo Model for the Formation of Radiation-induced Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Cornforth, Michael N.; Loucas, Brad D.; Cucinotta, Francis A.

    2009-01-01

    Purpose: To simulate radiation-induced chromosome aberrations in mammalian cells (e.g., rings, translocations, and dicentrics) and to calculate their frequency distributions following exposure to DNA double strand breaks (DSBs) produced by high-LET ions. Methods: The interphase genome was assumed to be comprised of a collection of 2 kbp rigid-block monomers following the random-walk geometry. Additional details for the modeling of chromosomal structure, such as chromosomal domains and chromosomal loops, were included. A radial energy profile for heavy ion tracks was used to simulate the high-LET pattern of induced DSBs. The induced DSB pattern depended on the ion charge and kinetic energy, but always corresponded to the DSB yield of 25 DSBs/cell/Gy. The sum of all energy contributions from Poisson-distributed particle tracks was taken to account for all possible one-track and multi-track effects. The relevant output of the model was DNA fragments produced by DSBs. The DSBs, or breakpoints, were defined by (x, y, z, l) positions, where x, y, z were the Euclidian coordinates of a DSB, and where l was the relative position along the genome. Results: The code was used to carry out Monte Carlo simulations for DSB rejoinings at low doses. The resulting fragments were analyzed to estimate the frequencies of specific types of chromosomal aberrations. Histograms for relative frequencies of chromosomal aberrations and P.D.F.s (probability density functions) of a given aberration type were produced. The relative frequency of dicentrics to rings was compared to empirical data to calibrate rejoining probabilities. Of particular interest was the predicted distribution of ring sizes, irrespective of their frequencies relative to other aberrations. Simulated ring sizes were . 4 kbp, which are far too small to be observed experimentally (i.e., by microscopy) but which, nevertheless, are conjectured to exist. Other aberrations, for example, inversions, translocations, as well as

  18. A Pilot Genome-Scale Profiling of DNA Methylation in Sporadic Pituitary Macroadenomas: Association with Tumor Invasion and Histopathological Subtype

    PubMed Central

    Ling, Chao; Pease, Matthew; Shi, Lingling; Punj, Vasu; Shiroishi, Mark S.; Commins, Deborah; Weisenberger, Daniel J.; Wang, Kai; Zada, Gabriel

    2014-01-01

    Pituitary adenomas (PAs) are neoplasms that may cause a variety of neurological and endocrine effects. Although known causal contributors include heredity, hormonal influence and somatic mutations, the pathophysiologic mechanisms driving tumorigenesis and invasion of sporadic PAs remain unknown. We hypothesized that alterations in DNA methylation are associated with PA invasion and histopathology subtype, and that genome-scale methylation analysis may complement current classification methods for sporadic PAs. Twenty-four surgically-resected sporadic PAs with varying histopathological subtypes were assigned dichotomized Knosp invasion scores and examined using genome-wide DNA methylation profiling and RNA sequencing. PA samples clustered into subgroups according to functional status. Compared with hormonally-active PAs, nonfunctional PAs exhibited global DNA hypermethylation (mean beta-value 0.47 versus 0.42, P = 0.005); the most significant site of differential DNA methylation was within the promoter region of the potassium voltage-gated channel KCNAB2 (FDR = 5.11×10−10). Pathway analysis of promoter-associated CpGs showed that nonfunctional PAs are potentially associated with the ion-channel activity signal pathway. DNA hypermethylation tended to be negatively correlated with gene expression. DNA methylation analysis may be used to identify candidate genes involved in PA function and may potentially complement current standard immunostaining classification in sporadic PAs. DNA hypermethylation of KCNAB2 and downstream ion-channel activity signal pathways may contribute to the endocrine-inactive status of nonfunctional PAs. PMID:24781529

  19. Follow-up of gestational trophoblastic disease/neoplasia via quantification of circulating nucleic acids of placental origin using C19MC microRNAs, hypermethylated RASSF1A, and SRY sequences.

    PubMed

    Hromadnikova, Ilona; Kotlabova, Katerina; Krofta, Ladislav; Hron, Filip

    2017-04-01

    The aim of the study was to evaluate the effectiveness of placental-specific markers, extracellular fetal DNA (sex-determining region Y and hypermethylated RASSF1A sequences) and circulating C19MC microRNAs (miR-516-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, miR-525, and miR-526a) for the diagnosis and consecutive follow-up of gestational trophoblastic disease/neoplasia. Increased levels of extracellular fetal DNA and C19MC microRNAs were detected in patients with active disease when compared with the period when the patients reached remission of the disease. The positive correlation between plasma levels of hypermethylated RASSF1A sequence, C19MC microRNAs, and human chorionic gonadotropin serum levels was found. MiR-520a-5p had the best performance to detect patients with active disease (a positive predictive value of 100% at a null false positive ratio (FPR)). MiR-516-5p and miR-525 were able to diagnose 100% of women with active disease at the FPR 3.9%/7.7%. The overall predictive capacity of single miR-526a (81.8% at null FPR), miR-517-5p (90.9% at 15.4% FPR), miR-518b (100% at 38.5% FPR), and miR-520h (90.9% at 26.9% FPR) biomarkers to detect active disease cases was slightly lower. Transient increase in C19MC microRNA plasma levels after the first cycle of chemotherapy indicated the decay of placental trophoblast residual tissue. The increased levels of extracellular fetal DNA and placental-specific C19MC microRNAs are associated with gestational trophoblastic disease/neoplasia. Screening of extracellular placental-specific biomarkers may represent an additional option to identify a significant proportion of women with active disease and to monitor the therapy response. Non-invasive follow-up of the decomposing residual tissue in the form of extracellular nucleic acids of placental origin packed into apoptotic bodies derived from placental trophoblasts is available.

  20. Hypermethylation of Wnt antagonist gene promoters and activation of Wnt pathway in myelodysplastic marrow cells.

    PubMed

    Masala, Erico; Valencia, Ana; Buchi, Francesca; Nosi, Daniele; Spinelli, Elena; Gozzini, Antonella; Sassolini, Francesca; Sanna, Alessandro; Zecchi, Sandra; Bosi, Alberto; Santini, Valeria

    2012-10-01

    We observed aberrant gene methylation of Wnt antagonists: sFRP1, sFRP2, sFRP4, sFRP5 and DKK1 in marrow cells of 55 MDS cases. Methylation of Wnt antagonist genes was associated with activation of the Wnt signaling pathway, consistent with the up-regulation of the Wnt downstream genes TCF1 and LEF1. Azacitidine exposure induced demethylation of Wnt-antagonist gene promoters and reduction of the non-phosphorylated β-catenin (NPBC) which is prevalent during Wnt pathway inactivation. Presence of ≥5% of bone marrow blasts was associated with methylation of sFRP1 and DKK1 and with methylation of more than two of the five Wnt antagonist genes.

  1. Hyper-methylation of the upstream CpG island shore is a likely mechanism of GPER1 silencing in breast cancer cells.

    PubMed

    Manjegowda, Mohan C; Gupta, Paridhi Singhal; Limaye, Anil M

    2017-05-30

    GPER1, also known as GPR30, is a novel seven-transmembrane G-protein coupled estrogen receptor that mediates both short-term (non-genomic) and long-term (genomic) effects of estrogen in target cells and tissues. A substantial body of work over the last two decades has highlighted its therapeutic or prognostic utility. However, the clinical data on the expression of GPER1 in breast tissue is ambiguous. Analysis of TCGA RNAseq data revealed significantly lower mean expression of GPER1 mRNA in primary breast tumors compared to that in normal breast tissues. This provides support to the tumor suppressor role for GPER1. However, the mechanisms underlying the reduced expression are not completely understood. We analyzed the expression levels of GPER1 mRNA variants in MCF-7 and MDA-MB-231 cells by RT-PCR, and the methylation status of two CpG islands in the GPER1 locus by modified COBRA assays and bisulfite sequencing. Our results show that MCF-7 cells express higher levels of GPER1 mRNA variants compared to MDA-MB-231 cells. Modified COBRA assays revealed differential methylation in the upstream CpG island (upCpGi) that overlaps with the first exon of two GPER1 variants (GPER1v2 and v3) but not in the downstream CpG island (dnCpGi) that overlaps with the coding region common to all variants. Bisulfite sequencing results showed that the core upCpGi was hypo-methylated in both MCF-7 and MDA-MB-231 cells. However, eight CpGs in the 3' end of the upCpGi were hyper-methylated in MDA-MB-231 cells. 5-Azacytidine, a DNA methyltransferase inhibitor, induced the expression levels of GPER1 mRNA variants in MDA-MB-231 cells. Expression-methylation correlation analysis of TCGA breast cancer data revealed that methylation of CpGs in the regions flanking the upCpGi significantly correlated negatively with GPER1 mRNA expression. Taken together, our results demonstrate the role of DNA methylation in GPER1 repression, implicate the flanking regions (shore) of the upCpGi, and suggest a

  2. Accommodative lag and fluctuations when optical aberrations are manipulated.

    PubMed

    Gambra, Enrique; Sawides, Lucie; Dorronsoro, Carlos; Marcos, Susana

    2009-06-09

    We evaluated the accommodative response to a stimulus moving from 0 to 6 D following a staircase function under natural, corrected, and induced optical aberrations, using an adaptive-optics (AO) electromagnetic deformable mirror. The accommodative response of the eye (through the mirror) and the change of aberrations were measured on 5 subjects using a Hartmann-Shack wavefront sensor operating at 12.8 Hz. Five conditions were tested: (1) natural aberrations, (2) AO correction of the unaccommodated state and induction (over 6-mm pupils) of (3) +1 microm and (4) -1 microm of spherical aberration and (5) -2 microm of vertical coma. Four subjects showed a better accommodative response with AO correction than with their natural aberrations. The induction of negative spherical aberration also produced a better accommodative response in the same subjects. Accommodative lag increased in all subjects when positive spherical aberration and coma were induced. Fluctuations of the accommodative response (computed during each 1-D period of steady accommodation) increased with accommodative response when high-order aberrations were induced. The largest fluctuations occurred for induced negative spherical aberration and the smallest for natural and corrected aberrations. The study demonstrates that aberrations influence accommodative lag and fluctuations of accommodation and that correcting aberrations improves rather than compromises the accommodative response.

  3. Effects of interactions among wave aberrations on optical image quality.

    PubMed

    McLellan, J S; Prieto, P M; Marcos, S; Burns, S A

    2006-09-01

    Wave aberrations degrade the optical quality of the eye relative to the diffraction limit, but there are situations in which having slightly aberrated optics can provide some relative visual benefits. This fact led us to consider whether interactions among aberrations in the eye's wavefront produce an advantage for image quality relative to wavefronts with randomized combinations of aberrations with the same total RMS error. Total ocular wave aberrations from two experimental groups and corneal wave aberrations from one group were measured and expressed as Zernike polynomial expansions through the seventh-order. In a series of Monte Carlo simulations, modulation transfer functions (MTFs) for the measured wave aberrations were compared to distributions of artificial MTFs for wavefronts created by randomizing the sign or orientation of the aberrations, while maintaining the RMS error within each Zernike order. In a control condition, "synthetic" model eyes were produced by choosing each individual aberration term at random from individuals in the experimental group, and again MTFs were compared for original and randomized signs. Results were summarized by the MTF ratio: real MTF/mean simulated MTF, as a function of spatial frequency. For a 6mm pupil, the mean MTF ratio for total ocular aberrations was greater than 1.0 up to 60 cycles per degree, suggesting that the eye's aberrations are not independent and that there may be a positive functional consequences to their interrelations. This positive relation did not hold for corneal aberrations alone, or for the synthetic eyes.

  4. Aberrations of diffracted wave fields: distortion.

    PubMed

    Harvey, James E; Bogunovic, Dijana; Krywonos, Andrey

    2003-03-01

    Near-field diffraction patterns are merely aberrated Fraunhofer diffraction patterns. These aberrations, inherent to the diffraction process, provide insight and understanding into wide-angle diffraction phenomena. Nonparaxial patterns of diffracted orders produced by a laser beam passing through a grating and projected upon a plane screen exhibit severe distortion (W311). This distortion is an artifact of the configuration chosen to observe diffraction patterns. Grating behavior expressed in terms of the direction cosines of the propagation vectors of the incident and diffracted orders exhibits no distortion. Use of a simple direction cosine diagram provides an elegant way to deal with nonparaxial diffraction patterns, particularly when large obliquely incident beams produce conical diffraction.

  5. [A rare observation of intralaryngeal aberrant goiter].

    PubMed

    Gadzhimirzaev, G A; Shakhnazarov, A M; Gadzhimirzaeva, R G

    This paper was designed to report a rare observation of intralaryngeal aberrant goiter associated with goiter of the main thyroid tissue and chronic suppurative otitis media complicated by the polyp that causes occlusion of the auditory passage. The histomorphological investigation of the material harvested intraoperatively following rehabilitation of the purulent focus in the middle ear and the removal of the tumour from the inside of the right vestibular fold confirmed the diagnosis of colloid goiter.

  6. The aberrant retroesophageal right subclavian artery.

    PubMed

    Seres-Sturm, M; Maros, T N; Seres-Sturm, L

    1985-01-01

    Two cases with arteria lusoria were found at 278 routine dissections. These arteria arise as the last branches of the aortic arch and have a retroesophageal position. At the crossing point, the esophagus narrows due to the groove caused by the artery. The appearance of this malposition is the consequence of the perturbation in the organo-genesis of the right dorsal aorta and fourth branchial artery. The aberration can lead to disphagia lusoria.

  7. PTEN, RASSF1 and DAPK site-specific hypermethylation and outcome in surgically treated stage I and II nonsmall cell lung cancer patients.

    PubMed

    Buckingham, Lela; Penfield Faber, L; Kim, Anthony; Liptay, Michael; Barger, Carter; Basu, Sanjib; Fidler, Mary; Walters, Kelly; Bonomi, Philip; Coon, John

    2010-04-01

    The primary objective of this study is to identify prognostic site-specific epigenetic changes in surgically treated Stage I and II nonsmall cell lung cancer (NSCLC) patients by quantifying methylation levels at multiple CpG sites within each gene promoter. Paraffin-embedded tumors from stage Ib, IIa and IIb in training and validation groups of 75 and 57 surgically treated NSCLC patients, respectively, were analyzed for p16, MGMT, RASSF1, RASSF5, CDH1, LET7, DAPK and PTEN promoter hypermethylation. Hypermethylation status was quantified individually at multiple CpG sites within each promoter by pyrosequencing. Molecular and clinical characteristics with time to recurrence (TTR) and overall survival (OS) were evaluated. Overall average promoter methylation levels of MGMT and RASSF1 were significantly higher in smokers than in nonsmokers (p = 0.006 and p = 0.029, respectively). Methylation levels of the p16 promoter were significantly higher in squamous cell carcinoma than in adenocarcinoma (p = 0.020). In univariate analysis, hypermethylation of RASSF1 at CpG sites -53 and -48 and PTEN at CpG site -1310 were the significantly associated with shorter TTR (p = 0.002 and p < 0.000, respectively). Hypermethylation of PTEN at -1310 and DAPK at -1482 were most significantly associated with outcome in multivariate analysis. These results show that methylation of specific promoter CpG sites in PTEN, RASSF1 and DAPK is associated with outcome in early stage surgically treated NSCLC.

  8. Associations of P16INK4a promoter hypermethylation with squamous intra-epithelial lesion, cervical cancer and their clinicopathological features: a meta-analysis

    PubMed Central

    Cui, Ning-hua; Zhang, Shuai; Wang, Chen; Zheng, Fang

    2017-01-01

    To assess the associations of P16INK4a methylation status with low-grade squamous intra-epithelial lesion (LSIL), high-grade squamous intra-epithelial lesion (HSIL), cervical cancer (CC) and their clinicopathological features, a meta-analysis with 29 eligible studies was conducted. Pooled odds ratios (ORs) with their 95% confidence intervals (CIs) were estimated to assess the strength of the associations. Heterogeneity, sensitivity of pooled results and publication bias were also evaluated. Overall, there was an increasing trend of P16INK4a hypermethylation rates among LSIL (21.4%), HSIL (30.9%) and CC (35.0%) specimens. P16INK4a hypermethylation was significantly associated with the increased risk of LSIL, HSIL and CC, with the pooled ORs of 3.26 (95% CI: 1.86-5.71), 5.80 (95% CI: 3.80-8.84) and 12.17 (95% CI: 5.86-25.27), respectively. A significant association was also found between P16INK4a hypermethylation and smoking habit (OR = 3.88, 95% CI: 2.13-7.08). Taken together, meta-analysis results support P16INK4a hypermethylation as an epigenetic marker for the progression of cervical carcinogenesis. PMID:27669738

  9. The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression.

    PubMed

    Bilichak, Andriy; Ilnystkyy, Yaroslav; Hollunder, Jens; Kovalchuk, Igor

    2012-01-01

    Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5' and 3' ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants.

  10. Role of p53 codon 72 polymorphism in chromosomal aberrations and mitotic index in patients with chronic hepatitis B.

    PubMed

    Akbaş, H; Yalcin, K; Isi, H; Tekes, S; Atay, A E; Akkus, Z; Budak, T

    2012-11-01

    Polymorphisms of the p53 gene, which participates in DNA repair, can affect the functioning of the p53 protein. The Arg and Pro variants in p53 codon 72 were shown to have different regulation properties of p53-dependent DNA repair target genes that can affect various levels of cytogenetic aberrations in chronic hepatitis B patients. The present study aimed to examine the frequency of chromosomal aberrations and the mitotic index in patients with chronic hepatitis B and their possible association with p53 gene exon 4 codon 72 Arg72Pro (Ex4+119 G>C; rs1042522) polymorphism. Fifty-eight patients with chronic hepatitis B and 30 healthy individuals were genotyped in terms of the p53 gene codon 72 Arg72Pro polymorphism by PCR-RFLP. A 72-h cell culture was performed on the same individuals and evaluated in terms of chromosomal aberrations and mitotic index. A high frequency of chromosomal aberrations and low mitotic index were detected in the patient group compared to the control group. A higher frequency of chromosomal aberrations was detected in both the patient and the control groups with a homozygous proline genotype (13 patients, 3 control subjects) compared to patients and controls with other genotypes [Arg/Pro (38 patients, 20 control subjects) and Arg/Arg (7 patients, 7 control subjects)]. We observed an increased frequency of cytogenetic aberrations in patients with chronic hepatitis B. In addition, a higher frequency of cytogenetic aberrations was observed in p53 variants having the homozygous proline genotype compared to variants having other genotypes both in patients and healthy individuals.

  11. Conserved DNA methylation in Gadd45a(-/-) mice.

    PubMed

    Engel, Nora; Tront, Jennifer S; Erinle, Toyin; Nguyen, Nghi; Latham, Keith E; Sapienza, Carmen; Hoffman, Barbara; Liebermann, Dan A

    2009-02-16

    Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha) plays a pivotal role in cellular stress responses and is implicated in DNA repair, cell cycle arrest and apoptosis.(1) Recently, it was proposed that GADD45A is a key regulator of active DNA demethylation by way of its role in DNA repair.(2) Barreto et al. reported that Gadd45a overexpression activated transcription from methylation-silenced reporter plasmids and promoted global DNA demethylation. siRNA-mediated knockdown of Gadd45a levels resulted in increased levels of DNA methylation at specific endogenous loci. Based on these exciting results, Gadd45a(-/-) mice might be predicted to have a hypermethylation phenotype. We report here that neither global nor locus-specific methylation is increased in Gadd45a(-/-) mice.

  12. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  13. Chromatic variation of aberration: the role of induced aberrations and raytrace direction

    NASA Astrophysics Data System (ADS)

    Berner, A.; Nobis, T.; Shafer, D.; Gross, H.

    2015-09-01

    The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.

  14. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  15. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation

    PubMed Central

    Agius, Fernanda; Kapoor, Avnish; Zhu, Jian-Kang

    2006-01-01

    DNA methylation is a stable epigenetic mark for transcriptional gene silencing in diverse organisms including plants and many animals. In contrast to the well characterized mechanism of DNA methylation by methyltransferases, the mechanisms and function of active DNA demethylation have been controversial. Genetic evidence suggested that the DNA glycosylase domain-containing protein ROS1 of Arabidopsis is a putative DNA demethylase, because loss-of-function ros1 mutations cause DNA hypermethylation and enhance transcriptional gene silencing. We report here the biochemical characterization of ROS1 and the effect of its overexpression on the DNA methylation of target genes. Our data suggest that the DNA glycosylase activity of ROS1 removes 5-methylcytosine from the DNA backbone and then its lyase activity cleaves the DNA backbone at the site of 5-methylcytosine removal by successive β- and δ-elimination reactions. Overexpression of ROS1 in transgenic plants led to a reduced level of cytosine methylation and increased expression of a target gene. These results demonstrate that ROS1 is a 5-methylcytosine DNA glycosylase/lyase important for active DNA demethylation in Arabidopsis. PMID:16864782

  16. Ndrg2 promoter hypermethylation triggered by helicobacter pylori infection correlates with poor patients survival in human gastric carcinoma

    PubMed Central

    Ling, Zhi-Qiang; Ge, Ming-Hua; Lu, Xiao-Xiao; Han, Jin; Wu, Yi-Chen; Liu, Xiang; Zhu, Xin; Hong, Lian-Lian

    2015-01-01

    N-myc downstream regulated gene 2 (Ndrg2) is a candidate suppressor of cancer metastasis. We found that Ndrg2 promoter was frequently hypermethylated in gastric cancer cell lines and in 292 gastric tumor tissues. This resulted in down-regulation of Ndrg2 mRNA and protein. Ndrg2 promoter methylation was associated with H. pylori infection and worse prognosis of gastric cancer patients, which is an independent prognostic factor for the disease-free survival (DFS). We found that H. pylori silenced Ndrg2 by activating the NF-κB pathway and up-regulating DNMT3b, promoting gastric cancer progression. These findings uncover a previously unrecognized role for H. pylori infection in gastric cancer. PMID:25823664

  17. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice.

    PubMed

    Pathak, Rupak; Koturbash, Igor; Hauer-Jensen, Martin

    2017-01-11

    Ionizing radiation (IR) induces numerous stable and unstable chromosomal aberrations. Unstable aberrations, where chromosome morphology is substantially compromised, can easily be identified by conventional chromosome staining techniques. However, detection of stable aberrations, which involve exchange or translocation of genetic materials without considerable modification in the chromosome morphology, requires sophisticated chromosome painting techniques that rely on in situ hybridization of fluorescently labeled DNA probes, a chromosome painting technique popularly known as fluorescence in situ hybridization (FISH). FISH probes can be specific for whole chromosome/s or precise sub-region on chromosome/s. The method not only allows visualization of stable aberrations, but it can also allow detection of the chromosome/s or specific DNA sequence/s involved in a particular aberration formation. A variety of chromosome painting techniques are available in cytogenetics; here two highly sensitive methods, multiple fluorescence in situ hybridization (mFISH) and spectral karyotyping (SKY), are discussed to identify inter-chromosomal stable aberrations that form in the bone marrow cells of mice after exposure to total body irradiation. Although both techniques rely on fluorescent labeled DNA probes, the method of detection and the process of image acquisition of the fluorescent signals are different. These two techniques have been used in various research areas, such as radiation biology, cancer cytogenetics, retrospective radiation biodosimetry, clinical cytogenetics, evolutionary cytogenetics, and comparative cytogenetics.

  18. Genome-Wide Analysis of DNA Methylation before-and after Exercise in the Thoroughbred Horse with MeDIP-Seq

    PubMed Central

    Gim, Jeong-An; Hong, Chang Pyo; Kim, Dae-Soo; Moon, Jae-Woo; Choi, Yuri; Eo, Jungwoo; Kwon, Yun-Jeong; Lee, Ja-Rang; Jung, Yi-Deun; Bae, Jin-Han; Choi, Bong-Hwan; Ko, Junsu; Song, Sanghoon; Ahn, Kung; Ha, Hong-Seok; Yang, Young Mok; Lee, Hak-Kyo; Park, Kyung-Do; Do, Kyoung-Tag; Han, Kyudong; Yi, Joo Mi; Cha, Hee-Jae; Ayarpadikannan, Selvam; Cho, Byung-Wook; Bhak, Jong; Kim, Heui-Soo

    2015-01-01

    Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethylated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits. PMID:25666347

  19. Aberrant Recapitulation of Developmental Program: Novel Target in Scleroderma

    DTIC Science & Technology

    2015-12-01

    1 is downregulated in SSc skin (recently described hypermethylation of the DKK1 promoter may explain its decreased expression (3)). Despite the...seen in healthy controls (not shown). In order to clarify the significance of the above results, we examined DKK1 -4 and WIF1 in a larger series of...mediators (Wnt2 and DKK1 -4) as the soluble factors leading to increased Wnt activity in sera. Most importantly we have identified WIF1 as a strong

  20. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    PubMed Central

    Negraes, Priscilla D; Favaro, Francine P; Camargo, João Lauro V; Oliveira, Maria Luiza CS; Goldberg, José; Rainho, Cláudia A; Salvadori, Daisy MF

    2008-01-01

    Background Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. Methods A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. Results CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Conclusion Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and

  1. Phenotype prediction based on genome-wide DNA methylation data

    PubMed Central

    2014-01-01

    Background DNA methylation (DNAm) has important regulatory roles in many biological processes and diseases. It is the only epigenetic mark with a clear mechanism of mitotic inheritance and the only one easily available on a genome scale. Aberrant cytosine-phosphate-guanine (CpG) methylation has been discussed in the context of disease aetiology, especially cancer. CpG hypermethylation of promoter regions is often associated with silencing of tumour suppressor genes and hypomethylation with activation of oncogenes. Supervised principal component analysis (SPCA) is a popular machine learning method. However, in a recent application to phenotype prediction from DNAm data SPCA was inferior to the specific method EVORA. Results We present Model-Selection-SPCA (MS-SPCA), an enhanced version of SPCA. MS-SPCA applies several models that perform well in the training data to the test data and selects the very best models for final prediction based on parameters of the test data. We have applied MS-SPCA for phenotype prediction from genome-wide DNAm data. CpGs used for prediction are selected based on the quantification of three features of their methylation (average methylation difference, methylation variation difference and methylation-age-correlation). We analysed four independent case–control datasets that correspond to different stages of cervical cancer: (i) cases currently cytologically normal, but will later develop neoplastic transformations, (ii, iii) cases showing neoplastic transformations and (iv) cases with confirmed cancer. The first dataset was split into several smaller case–control datasets (samples either Human Papilloma Virus (HPV) positive or negative). We demonstrate that cytology normal HPV+ and HPV- samples contain DNAm patterns which are associated with later neoplastic transformations. We present evidence that DNAm patterns exist in cytology normal HPV- samples that (i) predispose to neoplastic transformations after HPV infection and (ii

  2. TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney | Office of Cancer Genomics

    Cancer.gov

    Clear Cell Sarcoma of the Kidney (CCSK) is a rare childhood tumor whose molecular pathogenesis remains poorly understood. We analyzed a discovery set of 13 CCSKs for changes in chromosome copy number, mutations, rearrangements, global gene expression and global DNA methylation. No recurrent segmental chromosomal copy number changes or somatic variants (single nucleotide or small insertion/deletion) were identified.

  3. Historical perspective on the DNA damage response.

    PubMed

    Hanawalt, Philip C

    2015-12-01

    The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality.

  4. Historical Perspective on the DNA Damage Response

    PubMed Central

    Hanawalt, Philip C.

    2015-01-01

    The DNA damage response (DDR) has been broadly defined as a complex network of cellular pathways that cooperate to sense and repair lesions in DNA. Multiple types of DNA damage, some natural DNA sequences, nucleotide pool deficiencies and collisions with transcription complexes can cause replication arrest to elicit the DDR. However, in practice, the term DDR as applied to eukaryotic/mammalian cells often refers more specifically to pathways involving the activation of the ATM (ataxia-telangiectasia mutated) and ATR (ATM-Rad3-related) kinases in response to double-strand breaks or arrested replication forks, respectively. Nevertheless, there are distinct responses to particular types of DNA damage that do not involve ATM or ATR. In addition, some of the aberrations that cause replication arrest and elicit the DDR cannot be categorized as direct DNA damage. These include nucleotide pool deficiencies, nucleotide sequences that can adopt non-canonical DNA structures, and collisions between replication forks and transcription complexes. The response to these aberrations can be called the genomic stress response (GSR), a term that is meant to encompass the sensing of all types of DNA aberrations together with the mechanisms involved in coping with them. In addition to fully functional cells, the consequences of processing genomic aberrations may include mutagenesis, genomic rearrangements and lethality. PMID:26507443

  5. Aberrantly Silenced Promoters Retain a Persistent Memory of the Silenced State After Long-Term Reactivation

    PubMed Central

    Oyer, Jon A.; Yates, Phillip A.; Godsey, Sarah; Turker, Mitchell S.

    2010-01-01

    A hallmark of aberrant DNA methylation-associated silencing is reversibility. However, long-term stability of reactivated promoters has not been explored. To examine this issue, spontaneous reactivant clones were isolated from mouse embryonal carcinoma cells bearing aberrantly silenced Aprt alleles and re-silencing frequencies were determined as long as three months after reactivation occurred. Despite continuous selection for expression of the reactivated Aprt alleles, exceptionally high spontaneous re-silencing frequencies were observed. A DNA methylation analysis demonstrated retention of sporadic methylation of CpG sites in a protected region of the Aprt promoter in many reactivant alleles suggesting a role for these methylated sites in the re-silencing process. In contrast, a chromatin immunoprecipitation (ChIP) analysis for methyl-H3K4, acetyl-H3K9, and dimethyl-H3K9 levels failed to reveal a specific histone modification that could explain high frequency re-silencing. These results demonstrate that aberrantly silenced and reactivated promoters retain a persistent memory of having undergone the silencing process and suggest the failure to eliminate all CpG methylation as a potential contributing mechanism. PMID:21035468

  6. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  7. Chromosomal aberrations in ISS crew members

    NASA Astrophysics Data System (ADS)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch