Science.gov

Sample records for aberrant epigenetic events

  1. Novel aberrant genetic and epigenetic events in Friedreich's ataxia.

    PubMed

    Quesada, Mari Paz; Jones, Jonathan; Rodríguez-Lozano, F J; Moraleda, Jose M; Martinez, Salvador

    2015-07-01

    It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone. PMID:25929520

  2. Growth rate of late passage sarcoma cells is independent of epigenetic events but dependent on the amount of chromosomal aberrations

    SciTech Connect

    Becerikli, Mustafa; Jacobsen, Frank; Rittig, Andrea; Köhne, Wiebke; Nambiar, Sandeep; Mirmohammadsadegh, Alireza; Stricker, Ingo; Tannapfel, Andrea; Wieczorek, Stefan; Epplen, Joerg Thomas; Tilkorn, Daniel; Steinstraesser, Lars

    2013-07-15

    Soft tissue sarcomas (STS) are characterized by co-participation of several epigenetic and genetic events during tumorigenesis. Having bypassed cellular senescence barriers during oncogenic transformation, the factors further affecting growth rate of STS cells remain poorly understood. Therefore, we investigated the role of gene silencing (DNA promoter methylation of LINE-1, PTEN), genetic aberrations (karyotype, KRAS and BRAF mutations) as well as their contribution to the proliferation rate and migratory potential that underlies “initial” and “final” passage sarcoma cells. Three different cell lines were used, SW982 (synovial sarcoma), U2197 (malignant fibrous histiocytoma (MFH)) and HT1080 (fibrosarcoma). Increased proliferative potential of final passage STS cells was not associated with significant differences in methylation (LINE-1, PTEN) and mutation status (KRAS, BRAF), but it was dependent on the amount of chromosomal aberrations. Collectively, our data demonstrate that these fairly differentiated/advanced cancer cell lines have still the potential to gain an additional spontaneous growth benefit without external influences and that maintenance of increased proliferative potential towards longevity of STS cells (having crossed senescence barriers) may be independent of overt epigenetic alterations. -- Highlights: Increased proliferative potential of late passage STS cells was: • Not associated with epigenetic changes (methylation changes at LINE-1, PTEN). • Not associated with mutation status of KRAS, BRAF. • Dependent on presence/absence of chromosomal aberrations.

  3. Aberrant epigenetic landscape in intellectual disability.

    PubMed

    Sanchez-Mut, J V; Huertas, D; Esteller, M

    2012-01-01

    In recent decades, epigenetics has emerged as a broad-ranging regulatory layer that modulates the whole genome and transcriptome. It largely determines the firing of transcription start sites, the splicing processes, and the binding of transcription factors, among many other processes. Its wide spectrum of action has provided us with the keys to new doors to investigate many diseases, including intellectual disability syndromes. The involvement of epigenetic factors in Rett syndrome is already well established, and its involvement in alpha-thalassemia/mental retardation-X-linked and Rubinstein-Taybi syndromes is also being elucidated. Down syndrome is not an exception, and the most recent reports suggest that epigenetic factors may play a crucial role in its etiology and also have the potential to provide new panels of biomarkers and tailored treatments. PMID:22541288

  4. Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia

    PubMed Central

    Cheung, Ngai; Fung, Tsz Kan; Zeisig, Bernd B.; Holmes, Katie; Rane, Jayant K.; Mowen, Kerri A.; Finn, Michael G.; Lenhard, Boris; Chan, Li Chong; So, Chi Wai Eric

    2016-01-01

    Summary Transcriptional deregulation plays a major role in acute myeloid leukemia, and therefore identification of epigenetic modifying enzymes essential for the maintenance of oncogenic transcription programs holds the key to better understanding of the biology and designing effective therapeutic strategies for the disease. Here we provide experimental evidence for the functional involvement and therapeutic potential of targeting PRMT1, an H4R3 methyltransferase, in various MLL and non-MLL leukemias. PRMT1 is necessary but not sufficient for leukemic transformation, which requires co-recruitment of KDM4C, an H3K9 demethylase, by chimeric transcription factors to mediate epigenetic reprogramming. Pharmacological inhibition of KDM4C/PRMT1 suppresses transcription and transformation ability of MLL fusions and MOZ-TIF2, revealing a tractable aberrant epigenetic circuitry mediated by KDM4C and PRMT1 in acute leukemia. PMID:26766589

  5. Targeting Aberrant Epigenetic Networks Mediated by PRMT1 and KDM4C in Acute Myeloid Leukemia.

    PubMed

    Cheung, Ngai; Fung, Tsz Kan; Zeisig, Bernd B; Holmes, Katie; Rane, Jayant K; Mowen, Kerri A; Finn, Michael G; Lenhard, Boris; Chan, Li Chong; So, Chi Wai Eric

    2016-01-11

    Transcriptional deregulation plays a major role in acute myeloid leukemia, and therefore identification of epigenetic modifying enzymes essential for the maintenance of oncogenic transcription programs holds the key to better understanding of the biology and designing effective therapeutic strategies for the disease. Here we provide experimental evidence for the functional involvement and therapeutic potential of targeting PRMT1, an H4R3 methyltransferase, in various MLL and non-MLL leukemias. PRMT1 is necessary but not sufficient for leukemic transformation, which requires co-recruitment of KDM4C, an H3K9 demethylase, by chimeric transcription factors to mediate epigenetic reprogramming. Pharmacological inhibition of KDM4C/PRMT1 suppresses transcription and transformation ability of MLL fusions and MOZ-TIF2, revealing a tractable aberrant epigenetic circuitry mediated by KDM4C and PRMT1 in acute leukemia. PMID:26766589

  6. Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming.

    PubMed

    Tiemann, Ulf; Wu, Guangming; Marthaler, Adele Gabriele; Schöler, Hans Robert; Tapia, Natalia

    2016-01-12

    Somatic cells can be reprogrammed to pluripotency using different methods. In comparison with pluripotent cells obtained through somatic nuclear transfer, induced pluripotent stem cells (iPSCs) exhibit a higher number of epigenetic errors. Furthermore, most of these abnormalities have been described to be intrinsic to the iPSC technology. Here, we investigate whether the aberrant epigenetic patterns detected in iPSCs are specific to transcription factor-mediated reprogramming. We used germline stem cells (GSCs), which are the only adult cell type that can be converted into pluripotent cells (gPSCs) under defined culture conditions, and compared GSC-derived iPSCs and gPSCs at the transcriptional and epigenetic level. Our results show that both reprogramming methods generate indistinguishable states of pluripotency. GSC-derived iPSCs and gPSCs retained similar levels of donor cell-type memory and exhibited comparable numbers of reprogramming errors. Therefore, our study demonstrates that the epigenetic abnormalities detected in iPSCs are not specific to transcription factor-mediated reprogramming. PMID:26711876

  7. Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aberrant epigenetic alterations in the genome such as DNA methylation and chromatin remodeling play a significant role in breast cancer development. Since epigenetic alterations are considered to be more easily reversible compared to genetic changes, epigenetic therapy is potentially very useful in ...

  8. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  9. Epigenetic inactivation and aberrant transcription of CSMD1 in squamous cell carcinoma cell lines

    PubMed Central

    Richter, Toni M; Tong, Benton D; Scholnick, Steven B

    2005-01-01

    Background The p23.2 region of human chromosome 8 is frequently deleted in several types of epithelial cancer and those deletions appear to be associated with poor prognosis. Cub and Sushi Multiple Domains 1 (CSMD1) was positionally cloned as a candidate for the 8p23 suppressor but point mutations in this gene are rare relative to the frequency of allelic loss. In an effort to identify alternative mechanisms of inactivation, we have characterized CSMD1 expression and epigenetic modifications in head and neck squamous cell carcinoma cell lines. Results Only one of the 20 cell lines examined appears to express a structurally normal CSMD1 transcript. The rest express transcripts which either lack internal exons, terminate abnormally or initiate at cryptic promoters. None of these truncated transcripts is predicted to encode a functional CSMD1 protein. Cell lines that express little or no CSMD1 RNA exhibit DNA methylation of a specific region of the CpG island surrounding CSMD1's first exon. Conclusion Correlating methylation patterns and expression suggests that it is modification of the genomic DNA preceding the first exon that is associated with gene silencing and that methylation of CpG dinucleotides further 3' does not contribute to inactivation of the gene. Taken together, the cell line data suggest that epigenetic silencing and aberrant splicing rather than point mutations may be contributing to the reduction in CSMD1 expression in squamous cancers. These mechanisms can now serve as a focus for further analysis of primary squamous cancers. PMID:16153303

  10. Epigenetic repression of ribosomal RNA transcription by ROCK-dependent aberrant cytoskeletal organization

    PubMed Central

    Wu, Tse-Hsiang; Kuo, Yuan-Yeh; Lee, Hsiao-Hui; Kuo, Jean-Cheng; Ou, Meng-Hsin; Chang, Zee-Fen

    2016-01-01

    It is known that ribosomal RNA (rRNA) synthesis is regulated by cellular energy and proliferation status. In this study, we investigated rRNA gene transcription in response to cytoskeletal stress. Our data revealed that the cell shape constrained by isotropic but not elongated micropatterns in HeLa cells led to a significant reduction in rRNA transcription dependent on ROCK. Expression of a dominant-active form of ROCK also repressed rRNA transcription. Isotropic constraint and ROCK over-activation led to different types of aberrant F-actin organization, but their suppression effects on rRNA transcription were similarly reversed by inhibition of histone deacetylase (HDAC) or overexpression of a dominant negative form of Nesprin, which shields the signal transmitted from actin filament to the nuclear interior. We further showed that the binding of HDAC1 to the active fraction of rDNA genes is increased by ROCK over-activation, thus reducing H3K9/14 acetylation and suppressing transcription. Our results demonstrate an epigenetic control of active rDNA genes that represses rRNA transcription in response to the cytoskeletal stress. PMID:27350000

  11. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations

    PubMed Central

    Dorrance, Adrienne M.; Liu, Shujun; Yuan, Weifeng; Becknell, Brian; Arnoczky, Kristy J.; Guimond, Martin; Strout, Matthew P.; Feng, Lan; Nakamura, Tatsuya; Yu, Li; Rush, Laura J.; Weinstein, Michael; Leone, Gustavo; Wu, Lizhao; Ferketich, Amy; Whitman, Susan P.; Marcucci, Guido; Caligiuri, Michael A.

    2006-01-01

    We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1, HRX, and HTRX1), consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene, occurring in approximately 4%–7% of patients with acute myeloid leukemia (AML) and normal cytogenetics, and associated with a poor prognosis. The mechanism by which the MLL PTD contributes to aberrant hematopoiesis and/or leukemia is unknown. To examine this, we generated a mouse knockin model in which exons 5 through 11 of the murine Mll gene were targeted to intron 4 of the endogenous Mll locus. MllPTD/WT mice exhibit an alteration in the boundaries of normal homeobox (Hox) gene expression during embryogenesis, resulting in axial skeletal defects and increased numbers of hematopoietic progenitor cells. MllPTD/WT mice overexpress Hoxa7, Hoxa9, and Hoxa10 in spleen, BM, and blood. An increase in histone H3/H4 acetylation and histone H3 lysine 4 (Lys4) methylation within the Hoxa7 and Hoxa9 promoters provides an epigenetic mechanism by which this overexpression occurs in vivo and an etiologic role for MLL PTD gain of function in the genesis of AML. PMID:16981007

  12. Epigenetic regulation of bud dormancy events in perennial plants

    PubMed Central

    Ríos, Gabino; Leida, Carmen; Conejero, Ana; Badenes, María Luisa

    2014-01-01

    Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of genome-wide epigenetic modifications related to dormancy events, and more specifically the epigenetic regulation of DAM-related genes in a similar way to FLOWERING LOCUS C, a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise the most relevant molecular and genomic contributions in the field of bud dormancy, and discuss the increasing evidence for chromatin modification involvement in the epigenetic regulation of seasonal dormancy cycles in perennial plants. PMID:24917873

  13. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer.

    PubMed

    Wu, Cheng-Shyong; Wei, Kuo-Liang; Chou, Jian-Liang; Lu, Chung-Kuang; Hsieh, Ching-Chuan; Lin, Jora M J; Deng, Yi-Fang; Hsu, Wan-Ting; Wang, Hui-Min David; Leung, Chung-Hang; Ma, Dik-Lung; Li, Chin; Chan, Michael W Y

    2016-01-01

    Aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2). Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60) of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation. PMID:27598141

  14. Aberrant epigenetic regulation in clear cell sarcoma of the kidney featuring distinct DNA hypermethylation and EZH2 overexpression

    PubMed Central

    Jansson, Caroline; O'Sullivan, Maureen J.; Mengelbier, Linda Holmquist; Gisselsson, David

    2016-01-01

    The global methylation profile and the mutational status of 633 specific epigenetic regulators were analyzed in the pediatric tumor clear cell sarcoma of the kidney (CCSK). Methylation array analyses of 30 CCSKs revealed CCSK tumor DNA to be globally hypermethylated compared to Wilms tumor, normal fetal kidney, and adult kidney. The aberrant methylation pattern of CCSKs was associated with activation of genes involved in embryonic processes and with silencing of genes linked to normal kidney function. No epigenetic regulator was recurrently mutated in our cohort, but a mutation in the key epigenetic regulator EZH2 was discovered in one case. EZH2 mRNA was significantly higher in CCSK compared to Wilms tumor and normal kidney, and the EZH2 protein was strongly expressed in more than 90 % of CCSK tumor cells in 9/9 tumors analyzed. This was in striking contrast to the lack of EZH2 protein expression in Wilms tumor stromal elements, indicating that EZH2 could be explored further as a diagnostic marker and a potential drug target for CCSK. PMID:26848979

  15. Time sequence of events leading to chromosomal aberration formation

    SciTech Connect

    Moore, R.C. ); Bender, M.A. )

    1993-01-01

    Investigations have been carried out which have measured the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single strand lesions are influential in aberration formation. The results indicate that: (1) There are two actions of polymerases in clastogenesis. One is in their involvement in a G2 repair system, in which the pair of chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second also operates in G1 and S, and is such that when repair is inhibited, further damage accrues. (2) The second action is affected by inhibiting polymerase but operates even when the repair enzymes are active. (3) The production of chromosomal exchanges involves a series of reactions, some of which are reversible. (4) The time span over which the reactions occur is much longer than has been envisaged previously (e.g., most of a cell cycle). 29 refs., 1 fig.

  16. Time sequence of events leading to chromosomal aberration formation

    SciTech Connect

    Moore, R.C. ); Bender, M.A. )

    1993-01-01

    Investigations have been carried out on the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single-strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single-strand lesions are influential in aberration formation. The results indicate that there are two actions of polymerases in clastogenesis. One is in their involvement in a G[sub 2] repair system, in which either of the two chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second is such that when repair is inhibited, further damage accrues. The second action is affected by inhibiting polymerase repair, but also operates even when the repair enzymes are active. The production of chromosomal exchanges involves a series of reactions, some of which are reversible. The time span over which the reactions occur is much longer than has been envisaged previously.

  17. Time sequence of events leading to chromosomal aberration formation

    SciTech Connect

    Moore, R.C.; Bender, M.A.

    1993-05-01

    Investigations have been carried out on the influence of the repair polymerases on the yield of different types of chromosomal aberrations. The studies were mainly concerned with the effect of inhibiting the polymerases on the yield of aberrations. The polymerases fill in single-strand regions, and the fact that their inhibition affects the yield of aberrations suggests that single-strand lesions are influential in aberration formation. The results indicate that there are two actions of polymerases in clastogenesis. One is in their involvement in a G{sub 2} repair system, in which either of the two chromatids is concerned, and which does not yield aberrations unless the inhibition is still operating when the cells enter mitosis. The second is such that when repair is inhibited, further damage accrues. The second action is affected by inhibiting polymerase repair, but also operates even when the repair enzymes are active. The production of chromosomal exchanges involves a series of reactions, some of which are reversible. The time span over which the reactions occur is much longer than has been envisaged previously.

  18. Epigenetics

    PubMed Central

    Tollervey, James; Lunyak, Victoria V.

    2012-01-01

    Emerging evidence is shedding light on a large and complex network of epigenetic modifications at play in human stem cells. This “epigenetic landscape” governs the fine-tuning and precision of gene expression programs that define the molecular basis of stem cell pluripotency, differentiation and reprogramming. This review will focus on recent progress in our understanding of the processes that govern this landscape in stem cells, such as histone modification, DNA methylation, alterations of chromatin structure due to chromatin remodeling and non-coding RNA activity. Further investigation into stem cell epigenetics promises to provide novel advances in the diagnosis and treatment of a wide array of human diseases. PMID:22805743

  19. Association of epigenetic alterations in the human C7orf24 gene with the aberrant gene expression in malignant cells.

    PubMed

    Ohno, Yuji; Hattori, Akira; Yoshiki, Tatsuhiro; Kakeya, Hideaki

    2013-10-01

    Human chromosome 7 open reading frame 24 (C7orf24)/γ-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics. PMID:23853312

  20. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer

    PubMed Central

    Kumegawa, Kohei; Maruyama, Reo; Yamamoto, Eiichiro; Ashida, Masami; Kitajima, Hiroshi; Tsuyada, Akihiro; Niinuma, Takeshi; Kai, Masahiro; Yamano, Hiro-o; Sugai, Tamotsu; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Suzuki, Hiromu

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA. PMID:27215978

  1. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer.

    PubMed

    Kumegawa, Kohei; Maruyama, Reo; Yamamoto, Eiichiro; Ashida, Masami; Kitajima, Hiroshi; Tsuyada, Akihiro; Niinuma, Takeshi; Kai, Masahiro; Yamano, Hiro-O; Sugai, Tamotsu; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Suzuki, Hiromu

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA. PMID:27215978

  2. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    PubMed Central

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-01-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis. PMID:27528092

  3. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer.

    PubMed

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M J; Huang, Yao-Ting; Ng, Enders K W; Cheng, Alfred S L; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W Y

    2016-01-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis. PMID:27528092

  4. Relationship of immunohistochemistry, copy number aberrations and epigenetic disorders with BRCAness pattern in hereditary and sporadic breast cancer.

    PubMed

    Murria Estal, Rosa; Palanca Suela, Sarai; de Juan Jiménez, Inmaculada; Alenda Gonzalez, Cristina; Egoavil Rojas, Cecilia; García-Casado, Zaida; López Guerrero, Jose Antonio; Juan Fita, María José; Sánchez Heras, Ana Beatriz; Segura Huerta, Ángel; Santaballa Bertrán, Ana; Chirivella González, Isabel; Llop García, Marta; Pérez Simó, Gema; Barragán González, Eva; Bolufer Gilabert, Pascual

    2016-04-01

    The study aims to identify the relevance of immunohistochemistry (IHC), copy number aberrations (CNA) and epigenetic disorders in BRCAness breast cancers (BCs). We studied 95 paraffin included BCs, of which 41 carried BRCA1/BRCA2 germline mutations and 54 were non hereditary (BRCAX/Sporadic). Samples were assessed for BRCA1ness and CNAs by Multiplex Ligation-dependent Probe Amplification (MLPA); promoter methylation (PM) was assessed by methylation-specific-MLPA and the expression of miR-4417, miR-423-3p, miR-590-5p and miR-187-3p by quantitative RT-PCR. IHC markers Ki67, ER, PR, HER2, CK5/6, EGFR and CK18 were detected with specific primary antibodies (DAKO, Denmark). BRCAness association with covariates was performed using multivariate binary logistic regression (stepwise backwards Wald option). BRCA1/2 mutational status (p = 0.027), large tumor size (p = 0.041) and advanced histological grade (p = 0.017) among clinic-pathological variables; ER (p < 0.001) among IHC markers; MYC (p < 0.001) among CNA; APC (p = 0.065), ATM (p = 0.014) and RASSF1 (p = 0.044) among PM; and miR-590-5p (p = 0.001), miR-4417 (p = 0.019) and miR-423 (p = 0.013) among microRNA expression, were the selected parameters significantly related with the BRCAness status. The logistic regression performed with all these parameters selected ER+ as linked with the lack of BRCAness (p = 0.001) and MYC CNA, APC PM and miR-590-5p expression with BRCAness (p = 0.014, 0.045 and 0.007, respectively). In conclusion, the parameters ER expression, APC PM, MYC CNA and miR-590-5p expression, allowed detection of most BRCAness BCs. The identification of BRCAness can help establish a personalized medicine addressed to predict the response to specific treatments. PMID:26723934

  5. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML. PMID:24944583

  6. Making memories of stressful events: a journey along epigenetic, gene transcription, and signaling pathways.

    PubMed

    Reul, Johannes M H M

    2014-01-01

    Strong psychologically stressful events are known to have a long-lasting impact on behavior. The consolidation of such, largely adaptive, behavioral responses to stressful events involves changes in gene expression in limbic brain regions such as the hippocampus and amygdala. However, the underlying molecular mechanisms were until recently unresolved. More than a decade ago, we started to investigate the role of these hormones in signaling and epigenetic mechanisms participating in the effects of stress on gene transcription in hippocampal neurons. We discovered a novel, rapid non-genomic mechanism in which glucocorticoids via glucocorticoid receptors facilitate signaling of the ERK-MAPK signaling pathway to the downstream nuclear kinases MSK1 and Elk-1 in dentate gyrus granule neurons. Activation of this signaling pathway results in serine10 (S10) phosphorylation and lysine14 (K14) acetylation at histone H3 (H3S10p-K14ac), leading to the induction of the immediate-early genes c-Fos and Egr-1. In addition, we found a role of the DNA methylation status of gene promoters. A series of studies showed that these molecular mechanisms play a critical role in the long-lasting consolidation of behavioral responses in the forced swim test and Morris water maze. Furthermore, an important role of GABA was found in controlling the epigenetic and gene transcriptional responses to psychological stress. Thus, psychologically stressful events evoke a long-term impact on behavior through changes in hippocampal function brought about by distinct glutamatergic and glucocorticoid-driven changes in epigenetic regulation of gene transcription, which are modulated by (local) GABAergic interneurons and limbic afferent inputs. These epigenetic processes may play an important role in the etiology of stress-related mental disorders such as major depressive and anxiety disorders like post-traumatic stress disorder. PMID:24478733

  7. Is epigenetics an important link between early life events and adult disease?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigenetic mechanisms provide one potential explanation for how environmental influences in early life cause long-term changes in chronic disease susceptibility. Whereas epigenetic dysregulation is increasingly implicated in various rare developmental syndromes and cancer, the role of epigenetics in...

  8. Identification of DNA Methylation-Independent Epigenetic Events Underlying Clear Cell Renal Cell Carcinoma.

    PubMed

    Becket, Elinne; Chopra, Sameer; Duymich, Christopher E; Lin, Justin J; You, Jueng Soo; Pandiyan, Kurinji; Nichols, Peter W; Siegmund, Kimberly D; Charlet, Jessica; Weisenberger, Daniel J; Jones, Peter A; Liang, Gangning

    2016-04-01

    Alterations in chromatin accessibility independent of DNA methylation can affect cancer-related gene expression, but are often overlooked in conventional epigenomic profiling approaches. In this study, we describe a cost-effective and computationally simple assay called AcceSssIble to simultaneously interrogate DNA methylation and chromatin accessibility alterations in primary human clear cell renal cell carcinomas (ccRCC). Our study revealed significant perturbations to the ccRCC epigenome and identified gene expression changes that were specifically attributed to the chromatin accessibility status whether or not DNA methylation was involved. Compared with commonly mutated genes in ccRCC, such as the von Hippel-Lindau (VHL) tumor suppressor, the genes identified by AcceSssIble comprised distinct pathways and more frequently underwent epigenetic changes, suggesting that genetic and epigenetic alterations could be independent events in ccRCC. Specifically, we found unique DNA methylation-independent promoter accessibility alterations in pathways mimicking VHL deficiency. Overall, this study provides a novel approach for identifying new epigenetic-based therapeutic targets, previously undetectable by DNA methylation studies alone, that may complement current genetic-based treatment strategies. Cancer Res; 76(7); 1954-64. ©2016 AACR. PMID:26759245

  9. Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors.

    PubMed

    Ye, Zhenqing; Chen, Zhong; Lan, Xun; Hara, Stephen; Sunkel, Benjamin; Huang, Tim H-M; Elnitski, Laura; Wang, Qianben; Jin, Victor X

    2014-03-01

    Alternative splicing (AS), in higher eukaryotes, is one of the mechanisms of post-transcriptional regulation that generate multiple transcripts from the same gene. One particular mode of AS is the skipping event where an exon may be alternatively excluded or constitutively included in the resulting mature mRNA. Both transcript isoforms from this skipping event site, i.e. in which the exon is either included (inclusion isoform) or excluded (skipping isoform), are typically present in one cell, and maintain a subtle balance that is vital to cellular function and dynamics. However, how the prevailing conditions dictate which isoform is expressed and what biological factors might influence the regulation of this process remain areas requiring further exploration. In this study, we have developed a novel computational method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the dominant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in GM12878 and K562 cells from the ENCODE consortium and experimentally validated several skipping site predictions by RT-PCR. Furthermore, we integrated other sequencing-based genomic data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modifications on splicing outcomes. Our computational analysis found that splice sites within the skipping-isoform-dominated group (SIDG) tended to exhibit weaker MaxEntScan-calculated splice site strength around middle, 'skipping', exons compared to those in the inclusion-isoform-dominated group (IIDG). We further showed the positional preference pattern of splicing factors, characterized by enrichment in the intronic splice sites immediately bordering middle exons. Finally, our analysis suggested that different epigenetic factors may introduce a variable obstacle in the

  10. Epigenetic Characterization of the FMR1 Gene and Aberrant Neurodevelopment in Human Induced Pluripotent Stem Cell Models of Fragile X Syndrome

    PubMed Central

    Reis, Surya A.; Zhou, Fen; Madison, Jon M.; Daheron, Laurence; Loring, Jeanne F.; Haggarty, Stephen J.

    2011-01-01

    Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5′ untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the

  11. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia

    PubMed Central

    Kuang, Shao-Qing; Bai, Hao; Fang, Zhi-Hong; Lopez, Gonzalo; Yang, Hui; Tong, Weigang; Wang, Zack Z.

    2010-01-01

    Eph receptors and their ephrin ligands are involved in normal hematopoietic development and tumorigenesis. Using methylated CpG island amplification/DNA promoter microarray, we identified several EPH receptor and EPHRIN genes as potential hypermethylation targets in acute lymphoblastic leukemia (ALL). We subsequently studied the DNA methylation status of the Eph/ephrin family by bisulfite pyrosequencing. Hypermethylation of EPHA2, -A4, -A5, -A6, -A7, -A10, EPHB1, -B2, -B3, -B4, EFNA1, -A3, -A5, and EFNB1 and -B2 genes was detected in leukemia cell lines and primary ALL bone marrow samples. Expression analysis of EPHB4, EFNB2, and EFNA5 genes demonstrated that DNA methylation was associated with gene silencing. We cloned the promoter region of EPHB4 and demonstrated that promoter hypermethylation can result in EPHB4 transcriptional silencing. Restoration of EPHB4 expression by lentiviral transduction resulted in reduced proliferation and apoptotic cell death in Raji cells in which EPHB4 is methylated and silenced. Finally, we demonstrated that phosphorylated Akt is down-regulated in Raji cells transduced with EPHB4. These results suggest that epigenetic silencing by hypermethylation of EPH/EPHRIN family genes contributes to ALL pathogenesis and that EPHB4 can function as a tumor suppressor in ALL. PMID:20061560

  12. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    SciTech Connect

    Duncan, Henry F.; Smith, Anthony J.; Fleming, Garry J.P.; Cooper, Paul R.

    2013-06-10

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increased by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.

  13. Epigenetics in the hematologic malignancies

    PubMed Central

    Fong, Chun Yew; Morison, Jessica; Dawson, Mark A.

    2014-01-01

    A wealth of genomic and epigenomic data has identified abnormal regulation of epigenetic processes as a prominent theme in hematologic malignancies. Recurrent somatic alterations in myeloid malignancies of key proteins involved in DNA methylation, post-translational histone modification and chromatin remodeling have highlighted the importance of epigenetic regulation of gene expression in the initiation and maintenance of various malignancies. The rational use of targeted epigenetic therapies requires a thorough understanding of the underlying mechanisms of malignant transformation driven by aberrant epigenetic regulators. In this review we provide an overview of the major protagonists in epigenetic regulation, their aberrant role in myeloid malignancies, prognostic significance and potential for therapeutic targeting. PMID:25472952

  14. Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations

    PubMed Central

    Cesana, Daniela; Sgualdino, Jacopo; Rudilosso, Laura; Merella, Stefania; Naldini, Luigi; Montini, Eugenio

    2012-01-01

    Gamma-retroviral/lentiviral vectors (γRV/LV) with self-inactivating (SIN) long terminal repeats (LTRs) and internal moderate cellular promoters pose a reduced risk of insertional mutagenesis when compared with vectors with active LTRs. Yet, in a recent LV-based clinical trial for β-thalassemia, vector integration within the HMGA2 gene induced the formation of an aberrantly spliced mRNA form that appeared to cause clonal dominance. Using a method that we developed, cDNA linear amplification-mediated PCR, in combination with high-throughput sequencing, we conducted a whole transcriptome analysis of chimeric LV-cellular fusion transcripts in transduced human lymphoblastoid cells and primary hematopoietic stem/progenitor cells. We observed a surprising abundance of read-through transcription originating outside and inside the provirus and identified the vector sequences contributing to the aberrant splicing process. We found that SIN LV has a sharply reduced propensity to engage in aberrant splicing compared with that of vectors carrying active LTRs. Moreover, by recoding the identified vector splice sites, we reduced residual read-through transcription and demonstrated an effective strategy for improving vectors. Characterization of the mechanisms and genetic features underlying vector-induced aberrant splicing will enable the generation of safer vectors, with low impact on the cellular transcriptome. PMID:22523064

  15. Epigenetic Mechanisms as an Interface Between the Environment and Genome.

    PubMed

    Herceg, Zdenko

    2016-01-01

    Recent advances in epigenetics have had tremendous impact on our thinking and understanding of biological phenomena and the impact of environmental stressors on complex diseases, notably cancer. Environmental and lifestyle factors are thought to be implicated in the development of a wide range of human cancers by eliciting epigenetic changes, however, the underlying mechanisms remain poorly understood. Epigenetic mechanisms can be viewed as an interface between the genome and environmental influence, therefore aberrant epigenetic events associated with environmental stressors and factors in the cell microenvironment are likely to play an important role in the onset and progression of different human malignancies. At the cellular level, aberrant epigenetic events influence critical cellular events (such as gene expression, carcinogen detoxification, DNA repair, and cell cycle), which are further modulated by risk factor exposures and thus may define the severity/subtype of cancer. This review summarizes recent progress in our understanding of the epigenetic mechanisms through which environmental stressors and endogenous factors may promote tumor development and progression. PMID:27343085

  16. A Comparative Analysis of Genetic and Epigenetic Events of Breast and Ovarian Cancer Related to Tumorigenesis

    PubMed Central

    Longacre, Mckenna; Snyder, Nicole A.; Housman, Genevieve; Leary, Meghan; Lapinska, Karolina; Heerboth, Sarah; Willbanks, Amber; Sarkar, Sibaji

    2016-01-01

    Breast cancer persists as the most common cause of cancer death in women worldwide. Ovarian cancer is also a significant source of morbidity and mortality, as the fifth leading cause of cancer death among women. This reflects the continued need for further understanding and innovation in cancer treatment. Though breast and ovarian cancer usually present as distinct clinical entities, the recent explosion of large-scale -omics research has uncovered many overlaps, particularly with respect to genetic and epigenetic alterations. We compared genetic, microenvironmental, stromal, and epigenetic changes common between breast and ovarian cancer cells, as well as the clinical relevance of these changes. Some of the most striking commonalities include genetic alterations of BRCA1 and 2, TP53, RB1, NF1, FAT3, MYC, PTEN, and PIK3CA; down regulation of miRNAs 9, 100, 125a, 125b, and 214; and epigenetic alterations such as H3K27me3, H3K9me2, H3K9me3, H4K20me3, and H3K4me. These parallels suggest shared features of pathogenesis. Furthermore, preliminary evidence suggests a shared epigenetic mechanism of oncogenesis. These similarities, warrant further investigation in order to ultimately inform development of more effective chemotherapeutics, as well as strategies to circumvent drug resistance. PMID:27213343

  17. Epigenetic Genes and Emotional Reactivity to Daily Life Events: A Multi-Step Gene-Environment Interaction Study

    PubMed Central

    Pishva, Ehsan; Drukker, Marjan; Viechtbauer, Wolfgang; Decoster, Jeroen; Collip, Dina; van Winkel, Ruud; Wichers, Marieke; Jacobs, Nele; Thiery, Evert; Derom, Catherine; Geschwind, Nicole; van den Hove, Daniel; Lataster, Tineke; Myin-Germeys, Inez; van Os, Jim

    2014-01-01

    Recent human and animal studies suggest that epigenetic mechanisms mediate the impact of environment on development of mental disorders. Therefore, we hypothesized that polymorphisms in epigenetic-regulatory genes impact stress-induced emotional changes. A multi-step, multi-sample gene-environment interaction analysis was conducted to test whether 31 single nucleotide polymorphisms (SNPs) in epigenetic-regulatory genes, i.e. three DNA methyltransferase genes DNMT1, DNMT3A, DNMT3B, and methylenetetrahydrofolate reductase (MTHFR), moderate emotional responses to stressful and pleasant stimuli in daily life as measured by Experience Sampling Methodology (ESM). In the first step, main and interactive effects were tested in a sample of 112 healthy individuals. Significant associations in this discovery sample were then investigated in a population-based sample of 434 individuals for replication. SNPs showing significant effects in both the discovery and replication samples were subsequently tested in three other samples of: (i) 85 unaffected siblings of patients with psychosis, (ii) 110 patients with psychotic disorders, and iii) 126 patients with a history of major depressive disorder. Multilevel linear regression analyses showed no significant association between SNPs and negative affect or positive affect. No SNPs moderated the effect of pleasant stimuli on positive affect. Three SNPs of DNMT3A (rs11683424, rs1465764, rs1465825) and 1 SNP of MTHFR (rs1801131) moderated the effect of stressful events on negative affect. Only rs11683424 of DNMT3A showed consistent directions of effect in the majority of the 5 samples. These data provide the first evidence that emotional responses to daily life stressors may be moderated by genetic variation in the genes involved in the epigenetic machinery. PMID:24967710

  18. Epigenetic events during the process of cell transformation induced by carcinogens (review).

    PubMed

    Nguyen-Ba, G; Vasseur, P

    1999-01-01

    Recent studies clearly demonstrate that several environmental carcinogens lack the ability to initially induce genetic damage. In that view, multistage chemical carcinogenesis may be processed under the control of a variety of epigenetic events in addition to genotoxic impacts. The understanding of this mechanism as reviewed in this report requires knowledge of early changes induced by carcinogens in target cells, biochemical, biological and molecular reactions closely related to both sides of the growth equation: cell proliferation and programmed death. Among several cell transformation models, the most suitable for carcinogen detection and mechanistic study is the Syrian hamster embryo (SHE) cell transformation assay. This closely mimics the multistage carcinogenesis and we can examine, in a relatively short time (8 days), the mechanisms by which genotoxic and non-genotoxic agents may increase the frequency of cell transformation as a preneoplastic end-point. The mode of action of hundred of compounds, carcinogens and non-carcinogens, has been explored so far using one-stage and two-stage treatment protocols. In general, with the two-stage protocol, all carcinogens, irrespective of their genotoxic or non-genotoxic potential, give unambiguous positive results. Since perturbations of cell proliferation and death are considered essential events in the process of carcinogenesis, studies have been conducted on the dysregulation of two specific parameters, the induction of ornithine decarboxylase (ODC) an enzyme related to cell proliferation, and the apoptosis rate, when SHE cells are exposed to carcinogens. In one-stage treatment (5 h-24 h), only the promoter TPA induces ODC activity, while other carcinogens do not increase this activity. Using the two-stage exposure protocol (1 h xenobiotic/5 h TPA), all carcinogens both genotoxic and non-genotoxic, are able to stimulate ODC activity above the level obtained with TPA alone. Based on the two-stage treatment with

  19. Do Epigenetic Events Take Place in the Vastus Lateralis of Patients with Mild Chronic Obstructive Pulmonary Disease?

    PubMed Central

    Puig-Vilanova, Ester; Ausin, Pilar; Martinez-Llorens, Juana; Gea, Joaquim; Barreiro, Esther

    2014-01-01

    Muscle dysfunction is a major comorbidity in Chronic Obstructive Pulmonary Disease (COPD). Several biological mechanisms including epigenetic events regulate muscle mass and function in models of muscle atrophy. Investigations conducted so far have focused on the elucidation of biological mechanisms involved in muscle dysfunction in advanced COPD. We assessed whether the epigenetic profile may be altered in the vastus lateralis of patients with mild COPD, normal body composition, and mildly impaired muscle function and exercise capacity. In vastus lateralis (VL) of mild COPD patients with well-preserved body composition and in healthy age-matched controls, expression of DNA methylation, muscle-enriched microRNAs, histone acetyltransferases (HTAs) and deacetylases (HDACs), protein acetylation, small ubiquitin-related modifier (SUMO) ligases, and muscle structure were explored. All subjects were clinically evaluated. Compared to healthy controls, in the VL of mild COPD patients, muscle function and exercise capacity were moderately reduced, DNA methylation levels did not differ, miR-1 expression levels were increased and positively correlated with both forced expiratory volume in one second (FEV1) and quadriceps force, HDAC4 protein levels were increased, and muscle fiber types and sizes were not different. Moderate skeletal muscle dysfunction is a relevant feature in patients with mild COPD and preserved body composition. Several epigenetic events are differentially expressed in the limb muscles of these patients, probably as an attempt to counterbalance the underlying mechanisms that alter muscle function and mass. The study of patients at early stages of their disease is of interest as they are a target for timely therapeutic interventions that may slow down the course of the disease and prevent the deleterious effects of major comorbidities. PMID:25013984

  20. Epigenetics: Principles and Practice

    PubMed Central

    Hamilton, James P.

    2011-01-01

    Epigenetics is defined as heritable changes in gene expression that are, unlike mutations, not attributable to alterations in the sequence of DNA. The predominant epigenetic mechanisms are DNA methylation, modifications to chromatin, loss of imprinting and non-coding RNA. Epigenetic regulation of gene expression appears to have long-term effects and wide-ranging effects on health. Diet and environmental exposures may potentially alter the level and scope of epigenetic regulation, thus interesting developments in the study of epigenetics might explain correlations that researchers have found between lifestyle and risk of disease. Aberrant epigenetic patterns have been linked to a number of digestive diseases including Barrett's esophagus, cirrhosis, inflammatory bowel disease, and numerous gastrointestinal malignancies. In fact, many exciting discoveries about epigenetics in general have been made by studying diseases of the gastrointestinal tract and hepatobiliary tree. Epigenetic modifications of DNA in cancer and precancerous lesions offer hope and the promise of novel biomarkers for early cancer detection, prediction, prognosis, and response to treatment. Furthermore, reversal of epigenetic changes represents a potential target of novel therapeutic strategies and medication design. In the future, it is anticipated that innovative diagnostic tests, treatment regimens, and even lifestyle modifications will be based on epigenetic mechanisms and be incorporated into the practice of medicine. PMID:21734376

  1. Epigenetic mechanisms in neurogenesis.

    PubMed

    Yao, Bing; Christian, Kimberly M; He, Chuan; Jin, Peng; Ming, Guo-Li; Song, Hongjun

    2016-09-01

    In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms - including DNA and histone modifications, as well as regulation by non-coding RNAs - have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs. PMID:27334043

  2. Hallucinatory experience as aberrant event memory formation: Implications for the pathophysiology of schizophrenia.

    PubMed

    Behrendt, Ralf-Peter

    2016-11-01

    If hallucinations are not fundamentally different from normal wakeful experiences, then the neural basis of hallucinations has to be essentially that of consciousness in general. The additional insight that consciousness reflects the formation (as opposed to consolidation) of event (episodic) memories links the pathophysiology of hallucinations to the hippocampus. Perceptions and misperceptions, insofar as they are consciously experienced, constitute contextualized and unitary phenomena (which are embedded as discrete events in the stream of consciousness); they are experiential manifestations of activity patters that recurrently emerge in the CA3 network of the hippocampus (and that are secondarily consolidated into retrievable and declarable memories). The hippocampus, forming allocentric representations of objects in their world context (event memories), is a point of convergence of neocortical sensory processing streams. Moreover, being extensively modulated by the organism's physiological state, the hippocampus embeds such representations in an emotional context and, through its output to the medial prefrontal cortex, guides decision-making and goal-selection processes. Although sensory and associative processing in the neocortex makes an important contribution to the formation of behaviourally adaptive representations in the hippocampus, it is becoming clearer that pattern formation in the hippocampus is in itself the neural correlate of consciousness and that disruptions in relational memory processing in the hippocampus can give rise to hallucinations. Neurobiological and neuroimaging findings in schizophrenia research can be integrated within the proposed conceptual framework. PMID:27492675

  3. Epigenetics and aging.

    PubMed

    Pal, Sangita; Tyler, Jessica K

    2016-07-01

    Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer. PMID:27482540

  4. [Epigenetics and cancer].

    PubMed

    Deltour, Sophie; Chopin, Valérie; Leprince, Dominique

    2005-04-01

    Epigenetics is defined as "the study of mitotically and/or meiotically heritable changes in gene expression that cannot be explained by changes in the DNA sequence". Setting up the epigenetic program is crucial for correct development and its stable inheritance throughout its lifespan is essential for the maintenance of the tissue- and cell-specific functions of the organism. For many years, the genetic causes of cancer have hold centre stage. However, the recent wealth of information about the molecular mechanisms which, by modulating the chromatin structure, can regulate gene expression has high-lighted the predominant role of epigenetic modifications in the initiation and progression of numerous pathologies, including cancer. The nucleosome is the major target of these epigenetic regulation mechanisms. They include a series of tightly interconnected steps which starting with the setting ("writing") of the epigenetic mark till its "reading" and interpretation will result in long-term gene regulation. The major epigenetic changes associated with tumorigenesis are aberrant DNA methylation of CpG islands located in the promoter region of tumor suppressor gene, global genomic hypomethylation and covalent modifications of histone N-terminal tails which are protruding out from the nucleosome core. In sharp contrast with genetic modifications, epigenetic modifications are highly dynamic and reversible. The characterization of specific inhibitors directed against some key epigenetic players has opened a new and promising therapeutic avenue, the epigenetic therapy, since some inhibitors are already used in clinical trials. PMID:15811306

  5. Epigenetics and aging

    PubMed Central

    Pal, Sangita; Tyler, Jessica K.

    2016-01-01

    Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer. PMID:27482540

  6. Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene.

    PubMed

    Xia, Bo; Pang, Li; Zhuang, Zhi-xiong; Liu, Jian-jun

    2016-01-22

    Environmental pollution and an unhealthy lifestyle result in direct exposure to dangerous chemicals that can modify endogenous pathways and induce malignant transformation of human cells. Although the molecular mechanisms of tumorigenesis are still not well understood, epigenetic alteration may be associated with exogenous chemical-induced carcinogenicity. Given the association between nutrition and cancer, nutrient supplementation may reduce aberrant epigenetic modifications induced by chemicals, thus decreasing carcinogenesis. This paper provides an overview of the epigenetic events caused by benzo[a]pyrene, a procarcinogenic and environmental pollutant, and biotin, an essential water-soluble vitamin, and investigates potential connections between them. This paper also discusses the potential inhibitory effect of biotin-related epigenetic modifications on the carcinogenicity of benzo[a]pyrene. The effect of nutritional supplementation on tumorigenesis involving epigenetic modifications is also discussed. PMID:26569572

  7. Insights into the Epigenetic Mechanisms Controlling Pancreatic Carcinogenesis

    PubMed Central

    McCleary-Wheeler, Angela L.; Lomberk, Gwen A.; Weiss, Frank U.; Schneider, Günter; Fabbri, Muller; Poshusta, Tara L.; Dusetti, Nelson J.; Baumgart, Sandra; Iovanna, Juan L.; Ellenrieder, Volker; Urrutia, Raul; Fernandez-Zapico, Martin E.

    2012-01-01

    During the last couple decades, we have significantly advanced our understanding of mechanisms underlying the development of pancreatic ductural adenocarcinoma (PDAC). In the late 1990s into the early 2000s, a model of PDAC development and progression was developed as a multi-step process associated with the accumulation of somatic mutations. The correlation and association of these particular genetic aberrations with the establishment and progression of PDAC has revolutionized our understanding of this process. However, this model leaves out other molecular events involved in PDAC pathogenesis that contribute to its development and maintenance, specifically those being epigenetic events. Thus, a new model considering the new scientific paradigms of epigenetics will provide a more comprehensive and useful framework for understanding the pathophysiological mechanisms underlying this disease. Epigenetics is defined as the type of inheritance not based on a particular DNA sequence but rather traits that are passed to the next generation via DNA and histone modifications as well as microRNA-dependent mechanisms. Key tumor suppressors that are well established to play a role in PDAC may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. A noteworthy characteristic of epigenetic-based inheritance is its reversibility, which is in contrast to the stable nature of DNA sequence-based alterations. Given this nature of epigenetic alterations, it becomes imperative that our understanding of epigenetic-based events promoting and maintain PDAC continues to grow. PMID:23073473

  8. Aberrant Vimentin Methylation Is Characteristic of Upper Gastrointestinal Pathologies

    PubMed Central

    Moinova, Helen; Leidner, Rom S.; Ravi, Lakshmeswari; Lutterbaugh, James; Barnholtz-Sloan, Jill S.; Chen, Yanwen; Chak, Amitabh; Markowitz, Sanford D.; Willis, Joseph E.

    2012-01-01

    Background We have previously established aberrant DNA methylation of Vimentin exon-1 (VIM methylation) as a common epigenetic event in colon cancer and as a biomarker for detecting colon neoplasia. We now examine VIM methylation in neoplasia of the upper gastrointestinal tract. Methods Using a quantitative real-time Methylation-Specific PCR assay we tested for VIM methylation in archival specimens of esophageal and gastric neoplasia. Results We find that acquisition of aberrant VIM methylation is highly common in these neoplasms, but largely absent in controls. The highest frequency of VIM methylation was detected in lesions of the distal esophagus, including 91% of Barrett’s esophagus (BE, n=11), 100% of high grade dysplasia (HGD, n=5), and 81% of esophageal adenocarcinoma (EAC, n=26), but absent in controls (n=9). VIM methylation similarly was detected in 87% of signet ring (n=15) and 53% of intestinal type gastric cancers (n=17). Moreover, in tests of cytology brushings VIM methylation proved detectable in 100% of BE cases (n=7), 100% of HGD cases (n=4), and 83% of EAC cases (n=18), but was absent in all controls (n=5). Conclusions These findings establish aberrant VIM methylation as a highly common epigenetic alteration in neoplasia of the upper gastrointestinal tract, and demonstrate that Barrett’s esophagus, even without dysplasia, already contains epigenetic alterations characteristic of adenocarcinoma. Impact These findings suggest VIM methylation as a biomarker of upper gastrointestinal neoplasia with potential for development as molecular cytology in esophageal screening. PMID:22315367

  9. An overview of epigenetics and chemoprevention.

    PubMed

    Huang, Yi-Wen; Kuo, Chieh-Ti; Stoner, Kristen; Huang, Tim H-Y; Wang, Li-Shu

    2011-07-01

    It is now appreciated that both genetic alteration, e.g. mutations, and aberrant epigenetic changes, e.g. DNA methylation, cause cancer. Epigenetic dysregulation is potentially reversible which makes it attractive as targets for cancer prevention. Synthetic drugs targeting enzymes, e.g. DNA methyltransferase and histone deacetylase, that regulate epigenetic patterns are active in clinical settings. In addition, dietary factors have been suggested to have potential to reverse aberrant epigenetic patterns. Uncovering the human epigenome can lead us to better understand the dynamics of DNA methylation in disease progression which can further assist in cancer prevention. PMID:21056563

  10. Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.

    PubMed

    Lu, Rui; Wang, Ping; Parton, Trevor; Zhou, Yang; Chrysovergis, Kaliopi; Rockowitz, Shira; Chen, Wei-Yi; Abdel-Wahab, Omar; Wade, Paul A; Zheng, Deyou; Wang, Gang Greg

    2016-07-11

    DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that the DNMT3A mutational hotspot at Arg882 (DNMT3A(R882H)) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A(R882H) directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1, and Hoxa gene cluster. DNMT3A(R882H) induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A(R882H)-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A(R882H)-induced gene-expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias. PMID:27344947

  11. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    PubMed

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development. PMID:27160443

  12. MuLV-related endogenous retroviral elements and Flt3 participate in aberrant end-joining events that promote B-cell leukemogenesis

    PubMed Central

    Johnson, Radia M.; Papp, Eniko; Grandal, Ildiko; Kowalski, Paul E.; Nutter, Lauryl; Wong, Raymond C.C.; Joseph-George, Ann M.; Danska, Jayne S.; Guidos, Cynthia J.

    2014-01-01

    During V(D)J recombination of immunoglobulin genes, p53 and nonhomologous end-joining (NHEJ) suppress aberrant rejoining of DNA double-strand breaks induced by recombinase-activating genes (Rags)-1/2, thus maintaining genomic stability and limiting malignant transformation during B-cell development. However, Rag deficiency does not prevent B-cell leukemogenesis in p53/NHEJ mutant mice, revealing that p53 and NHEJ also suppress Rag-independent mechanisms of B-cell leukemogenesis. Using several cytogenomic approaches, we identified a novel class of activating mutations in Fms-like tyrosine kinase 3 (Flt3), a receptor tyrosine kinase important for normal hematopoiesis in Rag/p53/NHEJ triple-mutant (TM) B-cell leukemias. These mutant Flt3 alleles were created by complex genomic rearrangements with Moloney leukemia virus (MuLV)-related endogenous retroviral (ERV) elements, generating ERV-Flt3 fusion genes encoding an N-terminally truncated mutant form of Flt3 (trFlt3) that was transcribed from ERV long terminal repeats. trFlt3 protein lacked most of the Flt3 extracellular domain and induced ligand-independent STAT5 phosphorylation and proliferation of hematopoietic progenitor cells. Furthermore, expression of trFlt3 in p53/NHEJ mutant hematopoietic progenitor cells promoted development of clinically aggressive B-cell leukemia. Thus, repetitive MuLV-related ERV sequences can participate in aberrant end-joining events that promote development of aggressive B-cell leukemia. PMID:24888589

  13. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development?

    PubMed

    Upchurch, Garland Michael; Haney, Staci L; Opavsky, Rene

    2016-01-01

    Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL. PMID:27563627

  14. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development?

    PubMed Central

    Upchurch, Garland Michael; Haney, Staci L.; Opavsky, Rene

    2016-01-01

    Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.

  15. Nutritional epigenetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter is intended to provide a timely overview of the current state of research at the intersection of nutrition and epigenetics. I begin by describing epigenetics and molecular mechanisms of eigenetic regulation, then highlight four classes of nutritional exposures currently being investiga...

  16. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  17. Deconstruction of DNA methylation patterns during myogenesis reveals specific epigenetic events in the establishment of the skeletal muscle lineage.

    PubMed

    Carrió, Elvira; Díez-Villanueva, Anna; Lois, Sergi; Mallona, Izaskun; Cases, Ildefonso; Forn, Marta; Peinado, Miguel A; Suelves, Mònica

    2015-06-01

    The progressive restriction of differentiation potential from pluripotent embryonic stem cells (ESCs) to tissue-specific stem cells involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Skeletal muscle stem cells are required for the growth, maintenance, and regeneration of skeletal muscle. To investigate the contribution of DNA methylation to the establishment of the myogenic program, we analyzed ESCs, skeletal muscle stem cells in proliferating (myoblasts) and differentiating conditions (myotubes), and mature myofibers. About 1.000 differentially methylated regions were identified during muscle-lineage determination and terminal differentiation, mainly located in gene bodies and intergenic regions. As a whole, myogenic stem cells showed a gain of DNA methylation, while muscle differentiation was accompanied by loss of DNA methylation in CpG-poor regions. Notably, the hypomethylated regions in myogenic stem cells were neighbored by enhancer-type chromatin, suggesting the involvement of DNA methylation in the regulation of cell-type specific enhancers. Interestingly, we demonstrated the hypomethylation of the muscle cell-identity Myf5 super-enhancer only in muscle cells. Furthermore, we observed that upstream stimulatory factor 1 binding to Myf5 super-enhancer occurs upon DNA demethylation in myogenic stem cells. Taken altogether, we characterized the unique DNA methylation signature of skeletal muscle stem cells and highlighted the importance of DNA methylation-mediated regulation of cell identity Myf5 super-enhancer during cellular differentiation. PMID:25801824

  18. Epigenetics and Autism

    PubMed Central

    Millis, Richard M.

    2013-01-01

    This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase Cβ1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs) associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies. PMID:24151554

  19. Epigenetic Mechanisms of Depression

    PubMed Central

    Nestler, Eric J.

    2014-01-01

    Growing evidence supports the hypothesis that epigenetics is a key mechanism through which environmental exposures interact with an individual’s genetic constitution to determine risk for depression throughout life.1 Epigenetics, in its broadest meaning, refers to stable changes in gene expression that are mediated via altered chromatin structure without modification of DNA sequence. According to this hypothesis, severe stress triggers changes—in vulnerable individuals—in chromatin structure at particular genomic loci in the brain’s limbic regions, which drive sustained changes in gene expression that contribute to episodes of depression. A corollary of this hypothesis is that such stress-induced epigenetic modifications also occur early in life and help determine an individual’s lifetime vulnerability or resistance to subsequent stressful events. PMID:24499927

  20. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    PubMed

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  1. Aberrant intermediate filament and synaptophysin expression is a frequent event in malignant melanoma: an immunohistochemical study of 73 cases.

    PubMed

    Romano, Ryan C; Carter, Jodi M; Folpe, Andrew L

    2015-08-01

    Malignant melanomas are known to express vimentin, among other intermediate filaments. Though anomalous keratin expression by malignant melanoma has been reported, its frequency is not well-established and this phenomenon is not well-known. We have seen in consultation a number of malignant melanomas with anomalous expression of keratin, other intermediate filaments, or synaptophysin, and therefore studied a large group of primary and metastatic melanomas to determine the frequency of these events. About 73 cases of malignant melanoma (22 primaries and 51 metastases) from 71 patients (51 male, 20 female; mean 59 years, range 17-87 years) were retrieved from our archives. Prior diagnoses were confirmed by re-review of hematoxylin and eosin sections and relevant (e.g., S100 protein, HMB45, Melan-A, and tyrosinase) immunohistochemical studies. Available sections were immunostained for keratin (OSCAR and AE1/AE3 antibodies), desmin, neurofilament protein, glial fibrillary acidic protein, synaptophysin, and chromogranin A. Not all cases could be tested for all markers. Cases were predominantly epithelioid (48/73, 66%) or spindle cell/desmoplastic (25/73, 34%). S100 protein, Melan-A, HMB45, and tyrosinase were positive in 60/65 (92%), 34/64 (53%), 30/60 (50%), 25/48 (52%) of cases, respectively. All five S100-protein-negative cases expressed at least one of the other melanocytic markers: Melan-A (two of four, 50%), HMB45 (two of three, 67%), and tyrosinase (one of two, 50%). All cases expressed at least one melanocytic marker. Cases were positive for keratin (OSCAR, 17/61, 28%; AE1/AE3, 16/40, 40%), desmin (11/47, 24%), neurofilament protein (5/31, 16%), glial fibrillary acidic protein (3/32, 9%), and synaptophysin (10/34, 29%), typically only in a minority of cells. Chromogranin was negative (0/32, 0%). Altogether 9/73 cases (12%) showed expression of >1 intermediate filament. All S100-protein-negative melanomas showed anomalous intermediate filament expression (keratin

  2. Design of small-molecule epigenetic modulators

    PubMed Central

    Pachaiyappan, Boobalan

    2013-01-01

    The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be catagorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described. PMID:24300735

  3. Epigenetic field cancerization in gastrointestinal cancers.

    PubMed

    Baba, Yoshifumi; Ishimoto, Takatsugu; Kurashige, Junji; Iwatsuki, Masaaki; Sakamoto, Yasuo; Yoshida, Naoya; Watanabe, Masayuki; Baba, Hideo

    2016-06-01

    Epigenetic alterations, including aberrant DNA methylation, play an important role in human cancer development. Importantly, epigenetic alterations are reversible and can be targets for therapy or chemoprevention for various types of human cancers. A field for cancerization, or a field defect, is formed by the accumulation of genetic and/or epigenetic alterations in normal-appearing tissues and can correlate with risk of cancer development. Thus, a better understanding of epigenetic field cancerization may represent a useful translational opportunity for cancer risk assessment, including previous history and exposure to carcinogenic factors, and for cancer prevention. In this article, we summarize current knowledge regarding epigenetic field cancerization and its clinical implications in gastrointestinal cancers, including colorectal cancer, gastric cancer and esophageal cancer. PMID:26971491

  4. Epigenetic mechanisms in heart development and disease.

    PubMed

    Martinez, Shannalee R; Gay, Maresha S; Zhang, Lubo

    2015-07-01

    Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed 'developmental origins of health and disease'. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease. PMID:25572405

  5. Epigenetic mechanisms in heart development and disease

    PubMed Central

    Martinez, Shannalee R.; Gay, Maresha S.; Zhang, Lubo

    2015-01-01

    Suboptimal intrauterine development has been linked to predisposition to cardiovascular disease in adulthood, a concept termed ‘developmental origins of health and disease’. Although the exact mechanisms underlying this developmental programming are unknown, a growing body of evidence supports the involvement of epigenetic regulation. Epigenetic mechanisms such as DNA methylation, histone modifications and micro-RNA confer added levels of gene regulation without altering DNA sequences. These modifications are relatively stable signals, offering possible insight into the mechanisms underlying developmental origins of health and disease. This review will discuss the role of epigenetic mechanisms in heart development as well as aberrant epigenetic regulation contributing to cardiovascular disease. Additionally, we will address recent advances targeting epigenetic mechanisms as potential therapeutic approaches to cardiovascular disease. PMID:25572405

  6. Is Glioblastoma an Epigenetic Malignancy?

    PubMed Central

    Maleszewska, Marta; Kaminska, Bozena

    2013-01-01

    Epigenetic modifications control gene expression by regulating the access of nuclear proteins to their target DNA and have been implicated in both normal cell differentiation and oncogenic transformation. Epigenetic abnormalities can occur both as a cause and as a consequence of cancer. Oncogenic transformation can deeply alter the epigenetic information enclosed in the pattern of DNA methylation or histone modifications. In addition, in some cancers epigenetic dysfunctions can drive oncogenic transformation. Growing evidence emphasizes the interplay between metabolic disturbances, epigenomic changes and cancer, i.e., mutations in the metabolic enzymes SDH, FH, and IDH may contribute to cancer development. Epigenetic-based mechanisms are reversible and the possibility of “resetting” the abnormal cancer epigenome by applying pharmacological or genetic strategies is an attractive, novel approach. Gliomas are incurable with all current therapeutic approaches and new strategies are urgently needed. Increasing evidence suggests the role of epigenetic events in development and/or progression of gliomas. In this review, we summarize current data on the occurrence and significance of mutations in the epigenetic and metabolic enzymes in pathobiology of gliomas. We discuss emerging therapies targeting specific epigenetic modifications or chromatin modifying enzymes either alone or in combination with other treatment regimens. PMID:24202337

  7. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field.

    PubMed

    Gallego-Durán, Rocío; Romero-Gómez, Manuel

    2015-10-28

    Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD. PMID:26523202

  8. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field

    PubMed Central

    Gallego-Durán, Rocío; Romero-Gómez, Manuel

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD. PMID:26523202

  9. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential.

    PubMed

    Kazanets, Anna; Shorstova, Tatiana; Hilmi, Khalid; Marques, Maud; Witcher, Michael

    2016-04-01

    Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes. PMID:27085853

  10. Epigenetics and Colorectal Cancer Pathogenesis

    PubMed Central

    Bardhan, Kankana; Liu, Kebin

    2013-01-01

    Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy. PMID:24216997

  11. Epigenetic Basis of Mental Illness.

    PubMed

    Nestler, Eric J; Peña, Catherine J; Kundakovic, Marija; Mitchell, Amanda; Akbarian, Schahram

    2016-10-01

    Psychiatric disorders are complex multifactorial illnesses involving chronic alterations in neural circuit structure and function as well as likely abnormalities in glial cells. While genetic factors are important in the etiology of most mental disorders, the relatively high rates of discordance among identical twins, particularly for depression and other stress-related syndromes, clearly indicate the importance of additional mechanisms. Environmental factors such as stress are known to play a role in the onset of these illnesses. Exposure to such environmental insults induces stable changes in gene expression, neural circuit function, and ultimately behavior, and these maladaptations appear distinct between developmental versus adult exposures. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and the aberrant epigenetic regulation that underlies this dysregulation is a unifying theme in psychiatric disorders. Here, we provide a progress report of epigenetic studies of the three major psychiatric syndromes, depression, schizophrenia, and bipolar disorder. We review the literature derived from animal models of these disorders as well as from studies of postmortem brain tissue from human patients. While epigenetic studies of mental illness remain at early stages, understanding how environmental factors recruit the epigenetic machinery within specific brain regions to cause lasting changes in disease susceptibility and pathophysiology is revealing new insight into the etiology and treatment of these conditions. PMID:26450593

  12. Epigenetics in Breast and Prostate Cancer

    PubMed Central

    Wu, Yanyuan; Sarkissyan, Marianna; Vadgama, Jaydutt V.

    2015-01-01

    SUMMARY Most recent investigations into cancer etiology have identified a key role played by epigenetics. Specifically, aberrant DNA and histone modifications which silence tumor suppressor genes or promote oncogenes have been demonstrated in multiple cancer models. While the role of epigenetics in several solid tumor cancers such as colorectal cancer are well established, there is emerging evidence that epigenetics also plays a critical role in breast and prostate cancer. In breast cancer, DNA methylation profiles have been linked to hormone receptor status and tumor progression. Similarly in prostate cancer, epigenetic patterns have been associated with androgen receptor status and response to therapy. The regulation of key receptor pathways and activities which affect clinical therapy treatment options by epigenetics renders this field high priority for elucidating mechanisms and potential targets. A new set of methylation arrays are now available to screen epigenetic changes and provide the cuttingedge tools needed to perform such investigations. The role of nutritional interventions affecting epigenetic changes particularly holds promise. Ultimately, determining the causes and outcomes from epigenetic changes will inform translational applications for utilization as biomarkers for risk and prognosis as well as candidates for therapy. PMID:25421674

  13. On the origin of sperm epigenetic heterogeneity.

    PubMed

    Laurentino, Sandra; Borgmann, Jennifer; Gromoll, Jörg

    2016-05-01

    The influence of epigenetic modifications on reproduction and on the function of male germ cells has been thoroughly demonstrated. In particular, aberrant DNA methylation levels in sperm have been associated with abnormal sperm parameters, lower fertilization rates and impaired embryo development. Recent reports have indicated that human sperm might be epigenetically heterogeneous and that abnormal DNA methylation levels found in the sperm of infertile men could be due to the presence of sperm populations with different epigenetic quality. However, the origin and the contribution of different germ cell types to this suspected heterogeneity remain unclear. In this review, we focus on sperm epigenetics at the DNA methylation level and its importance in reproduction. We take into account the latest developments and hypotheses concerning the functional significance of epigenetic heterogeneity coming from the field of stem cell and cancer biology and discuss the potential importance and consequences of sperm epigenetic heterogeneity for reproduction, male (in)fertility and assisted reproductive technologies (ART). Based on the current information, we propose a model in which spermatogonial stem cell variability, either intrinsic or due to external factors (such as endocrine action and environmental stimuli), can lead to epigenetic sperm heterogeneity, sperm epimutations and male infertility. The elucidation of the precise causes for epimutations, the conception of adequate therapeutic options and the development of sperm selection technologies based on epigenetic quality should be regarded as crucial to the improvement of ART outcome in the near future. PMID:26884419

  14. Dissecting the role of aberrant DNA methylation in human leukemia

    PubMed Central

    Amabile, Giovanni; Di Ruscio, Annalisa; Müller, Fabian; Welner, Robert S; Yang, Henry; Ebralidze, Alexander K; Zhang, Hong; Levantini, Elena; Qi, Lihua; Martinelli, Giovanni; Brummelkamp, Thijn; Le Beau, Michelle M; Figueroa, Maria E; Bock, Christoph; Tenen, Daniel G

    2015-01-01

    Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder characterized by the genetic translocation t(9;22)(q34;q11.2) encoding for the BCR-ABL fusion oncogene. However, many molecular mechanisms of the disease progression still remain poorly understood. A growing body of evidence suggests that epigenetic abnormalities are involved in tyrosine kinase resistance in CML, leading to leukemic clone escape and disease propagation. Here we show that, by applying cellular reprogramming to primary CML cells, aberrant DNA methylation contributes to the disease evolution. Importantly, using a BCR-ABL inducible murine model, we demonstrate that a single oncogenic lesion triggers DNA methylation changes which in turn act as a precipitating event in leukemia progression. PMID:25997600

  15. Potential of epigenetic therapies in the management of solid tumors

    PubMed Central

    Valdespino, Victor; Valdespino, Patricia M

    2015-01-01

    Cancer is a complex disease with both genetic and epigenetic origins. The growing field of epigenetics has contributed to our understanding of oncogenesis and tumor progression, and has allowed the development of novel therapeutic drugs. First-generation epigenetic inhibitor drugs have obtained modest clinical results in two types of hematological malignancy. Second-generation epigenetic inhibitors are in development, and have intrinsically greater selectivity for their molecular targets. Solid tumors are more genetic and epigenetically complex than hematological malignancies, but the transcriptome and epigenome biomarkers have been identified for many of these malignancies. This solid tumor molecular aberration profile may be modified using specific or quasi-specific epidrugs together with conventional and innovative anticancer treatments. In this critical review, we briefly analyze the strategies to select the targeted epigenetic changes, enumerate the second-generation epigenetic inhibitors, and describe the main signs indicating the potential of epigenetic therapies in the management of solid tumors. We also highlight the work of consortia or academic organizations that support the undertaking of human epigenetic therapeutic projects as well as some examples of transcriptome/epigenome profile determination in clinical assessment of cancer patients treated with epidrugs. There is a good chance that epigenetic therapies will be able to be used in patients with solid tumors in the future. This may happen soon through collaboration of diverse scientific groups, making the selection of targeted epigenetic aberration(s) more rapid, the design and probe of drug candidates, accelerating in vitro and in vivo assays, and undertaking new cancer epigenetic-therapy clinical trails. PMID:26346546

  16. Horizons of psychiatric genetics and epigenetics: where are we and where are we heading?

    PubMed

    Mostafavi Abdolmaleky, Hamid

    2014-01-01

    Today multinational studies using genome-wide association scan (GWAS) for >1000,000 polymorphisms on >100,000 cases with major psychiatric diseases versus controls, combined with next-generation sequencing have found ~100 genetic polymorphisms associated with schizophrenia (SCZ), bipolar disorder (BD), autism, attention deficit and hyperactivity disorder (ADHD), etc. However, the effect size of each genetic mutation has been generally low (<1%), and altogether could portray a tiny fraction of these mental diseases. Furthermore, none of these polymorphisms was specific to disease phenotypes indicating that they are simply genetic risk factors rather than causal mutations. The lack of identification of the major gene(s) in huge genetic studies increased the tendency for reexamining the roles of environmental factors in psychiatric and other complex diseases. However, this time at cellular/molecular levels mediated by epigenetic mechanisms that are heritable, but reversible while interacting with the environment. Now, gene-specific or whole-genome epigenetic analyses have introduced hundreds of aberrant epigenetic marks in the blood or brain of individuals with psychiatric diseases that include aberrations in DNA methylation, histone modifications and microRNA expression. Interestingly, most of the current psychiatric drugs such as valproate, lithium, antidepressants, antipsychotics and even electroconvulsive therapy (ECT) modulate epigenetic codes. The existing data indicate that, the impacts of environment/nurture, including the uterine milieu and early-life events might be more significant than genetic/nature in most psychiatric diseases. The lack of significant results in large-scale genetic studies led to revise the bolded roles of genetics and now we are at the turning point of genomics for reconsidering environmental factors that through epigenetic mechanisms may impact the brain development/functions causing disease phenotypes. PMID:25780369

  17. Epigenetics Advancing Personalized Nanomedicine in Cancer Therapy

    PubMed Central

    Liu, Shujun

    2012-01-01

    Personalized medicine aims to deliver the right drug to a right patient at the right time. It offers unique opportunities to integrate new technologies and concepts to disease prognosis, diagnosis and therapeutics. While selective personalized therapies are conceptually impressive, the majority of cancer therapies have dismal outcome. Such therapeutic failure could result from no response, drug resistance, disease relapse or severe side effect from improper drug delivery. Nanomedicine, the application of nanotechnology in medicine, has a potential to advance the identification of diagnostic and prognostic biomarkers and the delivery of right drug to disease sites. Epigenetic aberrations dynamically contribute to cancer pathogenesis. Given the individualized traits of epigenetic biomarkers, epigenetic considerations would significantly refine personalized nanomedicine. This review aims to dissect the interface of personalized medicine with nanomedicine and epigenetics. I will outline the progress and highlight challenges and areas that can be further explored perfecting the personalized health care. PMID:22921595

  18. Epigenetic Effects of Cannabis Exposure.

    PubMed

    Szutorisz, Henrietta; Hurd, Yasmin L

    2016-04-01

    The past decade has witnessed a number of societal and political changes that have raised critical questions about the long-term impact of marijuana (Cannabis sativa) that are especially important given the prevalence of its abuse and that potential long-term effects still largely lack scientific data. Disturbances of the epigenome have generally been hypothesized as the molecular machinery underlying the persistent, often tissue-specific transcriptional and behavioral effects of cannabinoids that have been observed within one's lifetime and even into the subsequent generation. Here, we provide an overview of the current published scientific literature that has examined epigenetic effects of cannabinoids. Though mechanistic insights about the epigenome remain sparse, accumulating data in humans and animal models have begun to reveal aberrant epigenetic modifications in brain and the periphery linked to cannabis exposure. Expansion of such knowledge and causal molecular relationships could help provide novel targets for future therapeutic interventions. PMID:26546076

  19. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease

    PubMed Central

    Cazaly, Emma; Charlesworth, Jac; Dickinson, Joanne L; Holloway, Adele F

    2015-01-01

    The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data. PMID:25822796

  20. Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives.

    PubMed

    Chelladurai, Prakash; Seeger, Werner; Pullamsetti, Soni Savai

    2016-06-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Thus, PAH pathogenesis evidently involves the interplay of a predisposed genetic background, epigenetic state and injurious events. Profiling the genome-wide alterations in the epigenetic mechanisms, such as DNA methylation or histone modification pattern in PAH vascular cells, may explain the great variability in susceptibility and disease severity that is frequently associated with pronounced remodelling and worse clinical outcome. Moreover, the influence of genetic predisposition and the acquisition of epigenetic alterations in response to environmental cues in PAH progression and establishment has largely been unexplored on a genome-wide scale. In order to gain insights into the molecular mechanisms leading to the development of PAH and to design novel therapeutic strategies, high-throughput approaches have to be adopted to facilitate systematic identification of the disease-specific networks using next-generation sequencing technologies, the application of these technologies in PAH has been relatively trivial to date. PMID:27246590

  1. Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune.

    PubMed

    van den Hurk, Karin; Niessen, Hanneke E C; Veeck, Jürgen; van den Oord, Joost J; van Steensel, Maurice A M; Zur Hausen, Axel; van Engeland, Manon; Winnepenninckx, Véronique J L

    2012-08-01

    Cutaneous malignant melanoma (CMM) is the most life-threatening neoplasm of the skin and is considered a major health problem as both incidence and mortality rates continue to rise. Once CMM has metastasized it becomes therapy-resistant and is an inevitably deadly disease. Understanding the molecular mechanisms that are involved in the initiation and progression of CMM is crucial for overcoming the commonly observed drug resistance as well as developing novel targeted treatment strategies. This molecular knowledge may further lead to the identification of clinically relevant biomarkers for early CMM detection, risk stratification, or prediction of response to therapy, altogether improving the clinical management of this disease. In this review we summarize the currently identified genetic and epigenetic alterations in CMM development. Although the genetic components underlying CMM are clearly emerging, a complete picture of the epigenetic alterations on DNA (DNA methylation), RNA (non-coding RNAs), and protein level (histone modifications, Polycomb group proteins, and chromatin remodeling) and the combinatorial interactions between these events is lacking. More detailed knowledge, however, is accumulating for genetic and epigenetic interactions in the aberrant regulation of the INK4b-ARF-INK4a and microphthalmia-associated transcription factor (MITF) loci. Importantly, we point out that it is this interplay of genetics and epigenetics that effectively leads to distorted gene expression patterns in CMM. PMID:22503822

  2. Epigenetic regulators and their impact on therapy in acute myeloid leukemia

    PubMed Central

    Pastore, Friederike; Levine, Ross L.

    2016-01-01

    Genomic studies of hematologic malignancies have identified a spectrum of recurrent somatic alterations that contribute to acute myeloid leukemia initiation and maintenance, and which confer sensitivities to molecularly targeted therapies. The majority of these genetic events are small, site-specific alterations in DNA sequence. In more than two thirds of patients with de novo acute myeloid leukemia mutations epigenetic modifiers are detected. Epigenetic modifiers encompass a large group of proteins that modify DNA at cytosine residues or cause post-translational histone modifications such as methylations or acetylations. Altered functions of these epigenetic modifiers disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression regulation found in acute myeloid leukemia. This review provides an overview of the epigenetic modifiers mutated in acute myeloid leukemia, their clinical relevance and how a deeper understanding of their biological function has led to the discovery of new specific targets, some of which are currently tested in mechanism-based clinical trials. PMID:26928248

  3. Epigenetic regulators and their impact on therapy in acute myeloid leukemia.

    PubMed

    Pastore, Friederike; Levine, Ross L

    2016-03-01

    Genomic studies of hematologic malignancies have identified a spectrum of recurrent somatic alterations that contribute to acute myeloid leukemia initiation and maintenance, and which confer sensitivities to molecularly targeted therapies. The majority of these genetic events are small, site-specific alterations in DNA sequence. In more than two thirds of patients with de novo acute myeloid leukemia mutations epigenetic modifiers are detected. Epigenetic modifiers encompass a large group of proteins that modify DNA at cytosine residues or cause post-translational histone modifications such as methylations or acetylations. Altered functions of these epigenetic modifiers disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression regulation found in acute myeloid leukemia. This review provides an overview of the epigenetic modifiers mutated in acute myeloid leukemia, their clinical relevance and how a deeper understanding of their biological function has led to the discovery of new specific targets, some of which are currently tested in mechanism-based clinical trials. PMID:26928248

  4. Use of Epigenetic Drugs in Disease: An Overview

    PubMed Central

    Heerboth, Sarah; Lapinska, Karolina; Snyder, Nicole; Leary, Meghan; Rollinson, Sarah; Sarkar, Sibaji

    2014-01-01

    Epigenetic changes such as DNA methylation and histone methylation and acetylation alter gene expression at the level of transcription by upregulating, downregulating, or silencing genes completely. Dysregulation of epigenetic events can be pathological, leading to cardiovascular disease, neurological disorders, metabolic disorders, and cancer development. Therefore, identifying drugs that inhibit these epigenetic changes are of great clinical interest. In this review, we summarize the epigenetic events associated with different disorders and diseases including cardiovascular, neurological, and metabolic disorders, and cancer. Knowledge of the specific epigenetic changes associated with these types of diseases facilitates the development of specific inhibitors, which can be used as epigenetic drugs. In this review, we discuss the major classes of epigenetic drugs currently in use, such as DNA methylation inhibiting drugs, bromodomain inhibitors, histone acetyl transferase inhibitors, histone deacetylase inhibitors, protein methyltransferase inhibitors, and histone methylation inhibitors and their role in reversing epigenetic changes and treating disease. PMID:25512710

  5. RNA epigenetics

    PubMed Central

    Liu, Nian; Pan, Tao

    2014-01-01

    Summary Mammalian messenger and long non-coding RNA contain tens of thousands of post-transcriptional chemical modifications. Among these, the N6-methyl-adenosine (m6A) modification is the most abundant and can be removed by specific mammalian enzymes. M6A modification is recognized by families of RNA binding proteins that affect many aspects of mRNA function. mRNA/lncRNA modification represents another layer of epigenetic regulation of gene expression, analogous to DNA methylation and histone modification. PMID:24768686

  6. Virtual screening in small molecule discovery for epigenetic targets.

    PubMed

    Li, Guo-Bo; Yang, Ling-Ling; Yuan, Yiming; Zou, Jun; Cao, Yu; Yang, Sheng-Yong; Xiang, Rong; Xiang, Mingli

    2015-01-01

    Epigenetic modifications are critical mechanisms that regulate many biological processes and establish normal cellular phenotypes. Aberrant epigenetic modifications are frequently linked to the development and maintenance of several diseases including cancer, inflammation and metabolic diseases and so on. The key proteins that mediate epigenetic modifications have been thus recognized as potential therapeutic targets for these diseases. Consequently, discovery of small molecule inhibitors for epigenetic targets has received considerable attention in recent years. Here, virtual screening methods and their applications in the discovery of epigenetic target inhibitors are the focus of this review. Newly emerging approaches or strategies including rescoring methods, docking pose filtering methods, machine learning methods and 3D molecular similarity methods were also underlined. They are expected to be employed for identifying novel inhibitors targeting epigenetic regulation more efficiently. PMID:25462557

  7. Epigenetic mechanisms involved in developmental nutritional programming

    PubMed Central

    Gabory, Anne; Attig, Linda; Junien, Claudine

    2011-01-01

    The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli, which result in modified gene expression patterns and phenotypes later in life, is a topic of considerable interest. This review focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, position and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects on a small number of epigenetic marks, at the global or individual gene level, of environmental stressors in humans and animal models. In parallel, increasing numbers of studies based on high-throughput technologies and focusing on humans and mice have revealed additional complexity in epigenetic processes, by highlighting the importance of crosstalk between the different epigenetic marks. A number of studies focusing on the developmental origin of health and disease and metabolic programming have identified links between early nutrition, epigenetic processes and long-term illness. The existence of a self-propagating epigenetic cycle has been demonstrated. Moreover, recent studies demonstrate an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, we are still far from understanding how, when and where environmental stressors disturb key epigenetic mechanisms. Thus, identifying the original key marks and their changes throughout development during an individual’s lifetime or over several generations remains a challenging issue. PMID:22010058

  8. Epigenetic Signaling in Psychiatric Disorders

    PubMed Central

    Peña, Catherine J; Bagot, Rosemary C; Labonté, Benoit; Nestler, Eric J

    2014-01-01

    Psychiatric disorders are complex multifactorial illnesses involving chronic alterations in neural circuit structure and function. While genetic factors are important in the etiology of disorders such as depression and addiction, relatively high rates of discordance among identical twins clearly indicate the importance of additional mechanisms. Environmental factors such as stress or prior drug exposure are known to play a role in the onset of these illnesses. Such exposure to environmental insults induces stable changes in gene expression, neural circuit function, and ultimately behavior, and these maladaptations appear distinct between developmental and adult exposures. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression and addiction can be modeled in animals by inducing disease-like states through environmental manipulations (e.g., chronic-stress, drug administration). Understanding how environmental factors recruit the epigenetic machinery in animal models is revealing new insight into disease mechanisms in humans. PMID:24709417

  9. Epigenetic signaling in psychiatric disorders.

    PubMed

    Peña, Catherine J; Bagot, Rosemary C; Labonté, Benoit; Nestler, Eric J

    2014-10-01

    Psychiatric disorders are complex multifactorial illnesses involving chronic alterations in neural circuit structure and function. While genetic factors are important in the etiology of disorders such as depression and addiction, relatively high rates of discordance among identical twins clearly indicate the importance of additional mechanisms. Environmental factors such as stress or prior drug exposure are known to play a role in the onset of these illnesses. Such exposure to environmental insults induces stable changes in gene expression, neural circuit function, and ultimately behavior, and these maladaptations appear distinct between developmental and adult exposures. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression and addiction can be modeled in animals by inducing disease-like states through environmental manipulations (e.g., chronic stress, drug administration). Understanding how environmental factors recruit the epigenetic machinery in animal models reveals new insight into disease mechanisms in humans. PMID:24709417

  10. Genomic Aberrations Drive Clonal Evolution of Neuroendocrine Tumors.

    PubMed

    Kaushik, Akash Kumar; Sreekumar, Arun

    2016-05-01

    Molecular features of castration-resistant neuroendocrine prostate cancer (CRPC-NE) are not well characterized. A recent study that investigated genomic aberrations of CRPC-NE tumors suggests their clonal evolution from CRPC adenocarcinoma. Furthermore, the existence of a distinct DNA methylation profile in CRPC-NE implicates a critical role for epigenetic modification in the development of CRPC-NE. PMID:27037211

  11. Epigenetic layers and players underlying neurodevelopment

    PubMed Central

    LaSalle, Janine M.; Powell, Weston T.; Yasui, Dag H.

    2013-01-01

    Since epigenetic mechanisms convey information above and beyond the sequence of DNA, they are predicted to be critical in the complex regulation of brain development and explain the long-lived effects of environmental cues on pre- and early post-natal brain development. Neurons have a complex epigenetic landscape, which changes dynamically with transcriptional activity in early life. Here we summarize progress on understanding the discrete layers of the dynamic methylome, chromatin proteome, noncoding RNAs, chromatin loops, and long-range interactions in neuronal development and maturation. Many neurodevelopmental disorders have genetic alterations in these epigenetic modifications or regulators, and these human genetics lessons have demonstrated the importance of these epigenetic players and the epigenetic layers that transcriptional events lay down in the early brain. PMID:23731492

  12. An epigenetic resolution of the lek paradox.

    PubMed

    Bonilla, Melvin M; Zeh, Jeanne A; Zeh, David W

    2016-04-01

    Female choice for traits signaling male genetic quality is expected to erode heritable variation in fitness, undermining the benefits of choice. Known as the lek paradox, this contradiction has motivated extensive population genetic theory, yet remains unresolved. Recent modeling by Bonduriansky and Day concludes that costly female preference is best maintained when male condition is determined by environmentally induced factors transmitted across single generations. Here, we reformulate their model in explicitly epigenetic terms, and review evidence that environmentally induced paternal effects are mediated through epigenetic changes in sperm. Noncoding RNA expression, DNA methylation and histone modifications are highly sensitive to diet, stress, toxicants and stochastic events. Epigenetic variation renews each generation and cannot be exhausted by selection. By choosing well-endowed males that produce gametes in epigenetically good states, females can increase their fitness directly through increased fertilization success or indirectly through epigenetic effects on the fitness of offspring and potentially subsequent generations. Also watch the video abstract. PMID:26928130

  13. Epigenetic memory in plants

    PubMed Central

    Iwasaki, Mayumi; Paszkowski, Jerzy

    2014-01-01

    Epigenetics refers to heritable changes in patterns of gene expression that occur without alterations in DNA sequence. The epigenetic mechanisms involve covalent modifications of DNA and histones, which affect transcriptional activity of chromatin. Since chromatin states can be propagated through mitotic and meiotic divisions, epigenetic mechanisms are thought to provide heritable ‘cellular memory’. Here, we review selected examples of epigenetic memory in plants and briefly discuss underlying mechanisms. PMID:25104823

  14. Epigenetics in pediatrics.

    PubMed

    Puumala, Susan E; Hoyme, H Eugene

    2015-01-01

    Epigenetic mechanisms are external modifications of DNA that cause changes in gene function and are involved in many diseases. Specific examples of pediatric diseases with a known or suspected epigenetic component include Beckwith-Wiedemann syndrome, childhood leukemia, allergies, asthma, fetal alcohol spectrum disorders, childhood obesity, and type 2 diabetes mellitus. Currently, epigenetically active treatments are being used to treat childhood leukemia. Potential epigenetically active treatments and preventive regimens are under study for other diseases. Pediatricians need to be aware of the epigenetic basis of disease to help inform clinical decision making in the future. PMID:25554107

  15. Prospects for Epigenetic Epidemiology

    PubMed Central

    Foley, Debra L.; Craig, Jeffrey M.; Morley, Ruth; Olsson, Craig J.; Dwyer, Terence; Smith, Katherine

    2009-01-01

    Epigenetic modification can mediate environmental influences on gene expression and can modulate the disease risk associated with genetic variation. Epigenetic analysis therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. The spatial and temporal variance in epigenetic profile is of particular relevance for developmental epidemiology and the study of aging, including the variable age at onset for many common diseases. This review serves as a general introduction to the topic by describing epigenetic mechanisms, with a focus on DNA methylation; genetic and environmental factors that influence DNA methylation; epigenetic influences on development, aging, and disease; and current methodology for measuring epigenetic profile. Methodological considerations for epidemiologic studies that seek to include epigenetic analysis are also discussed. PMID:19139055

  16. Cross-species epigenetics identifies a critical role for VAV1 in SHH subgroup medulloblastoma maintenance.

    PubMed

    Lindsey, J C; Kawauchi, D; Schwalbe, E C; Solecki, D J; Selby, M P; McKinnon, P J; Olson, J M; Hayden, J T; Grundy, R G; Ellison, D W; Williamson, D; Bailey, S; Roussel, M F; Clifford, S C

    2015-09-01

    The identification of key tumorigenic events in Sonic Hedgehog (SHH) subgroup medulloblastomas (MBSHH) will be essential for the development of individualized therapies and improved outcomes. However, beyond confirmation of characteristic SHH pathway mutations, recent genome-wide sequencing studies have not revealed commonly mutated genes with widespread relevance as potential therapeutic targets. We therefore examined any role for epigenetic DNA methylation events in MBSHH using a cross-species approach to candidate identification, prioritization and validation. MBSHH-associated DNA methylation events were first identified in 216 subgrouped human medulloblastomas (50 MBSHH, 28 Wnt/Wingless, 44 Group 3 and 94 Group 4) and their conservation then assessed in tumors arising from four independent murine models of Shh medulloblastoma, alongside any role in tumorigenesis using functional assessments in mouse and human models. This strategy identified widespread regional CpG hypo-methylation of VAV1, leading to its elevated expression, as a conserved aberrant epigenetic event, which characterizes the majority of MBSHH tumors in both species, and is associated with a poor outcome in MBSHH patients. Moreover, direct modulation of VAV1 in mouse and human models revealed a critical role in tumor maintenance, and its abrogation markedly reduced medulloblastoma growth. Further, Vav1 activity regulated granule neuron precursor germinal zone exit and migration initiation in an ex vivo model of early postnatal cerebellar development. These findings establish VAV1 as a critical epigenetically regulated oncogene with a key role in MBSHH maintenance, and highlight its potential as a validated therapeutic target and prognostic biomarker for the improved therapy of medulloblastoma. PMID:25531316

  17. Epigenetic alterations in sperm associated with male infertility.

    PubMed

    Kitamura, Akane; Miyauchi, Naoko; Hamada, Hirotaka; Hiura, Hitoshi; Chiba, Hatsune; Okae, Hiroaki; Sato, Akiko; John, Rosalind M; Arima, Takahiro

    2015-08-01

    The most common form of male infertility is a low sperm count, known as oligozoospermia. Studies suggest that oligozoospermia is associated with epigenetic alterations. Epigenetic alterations in sperm, which may arise due to the exposure of gametes to environmental factors or those that pre-exist in the sperm of infertile individuals, may contribute to the increased incidence of normally rare imprinting disorders in babies conceived after assisted reproductive technology using the sperm of infertile men. Genomic imprinting is an important developmental process whereby the allelic activity of certain genes is regulated by DNA methylation established during gametogenesis. The aberrant expression of several imprinted genes has been linked to various diseases, malignant tumors, lifestyle and mental disorders in humans. Understanding how infertility and environmental factors such as reproductive toxicants, certain foods, and drug exposures during gametogenesis contribute to the origins of these disorders via defects in sperm is of paramount importance. In this review, we discuss the association of epigenetic alterations with abnormal spermatogenesis and the evidence that epigenetic processes, including those required for genomic imprinting, may be sensitive to environmental exposures during gametogenesis, fertilization and early embryonic development. In addition, we review imprinting diseases and their relationships with environmental factors. While the plasticity of epigenetic marks may make these more susceptible to modification by the environment, this also suggests that aberrant epigenetic marks may be reversible. A greater understanding of this process and the function of epidrugs may lead to the development of new treatment methods for many adult diseases in the future. PMID:26212350

  18. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies.

    PubMed

    Urdinguio, Rocio G; Sanchez-Mut, Jose V; Esteller, Manel

    2009-11-01

    Epigenetic mechanisms such as DNA methylation and modifications to histone proteins regulate high-order DNA structure and gene expression. Aberrant epigenetic mechanisms are involved in the development of many diseases, including cancer. The neurological disorder most intensely studied with regard to epigenetic changes is Rett syndrome; patients with Rett syndrome have neurodevelopmental defects associated with mutations in MeCP2, which encodes the methyl CpG binding protein 2, that binds to methylated DNA. Other mental retardation disorders are also linked to the disruption of genes involved in epigenetic mechanisms; such disorders include alpha thalassaemia/mental retardation X-linked syndrome, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. Moreover, aberrant DNA methylation and histone modification profiles of discrete DNA sequences, and those at a genome-wide level, have just begun to be described for neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and in other neurological disorders such as multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis. In this Review, we describe epigenetic changes present in neurological diseases and discuss the therapeutic potential of epigenetic drugs, such as histone deacetylase inhibitors. PMID:19833297

  19. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  20. Epigenetic Mechanisms of Drug Addiction

    PubMed Central

    Nestler, Eric J.

    2013-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues, including brain. This has prompted recent research aimed at characterizing the influence of epigenetic regulatory events in mediating the lasting effects of drugs of abuse on the brain in animal models of drug addiction. This review provides a progress report of this still early work in the field. As will be seen, there is robust evidence that repeated exposure to drugs of abuse induces changes within the brain’s reward regions in three major modes of epigenetic regulation—histone modifications such as acetylation and methylation, DNA methylation, and non-coding RNAs. In several instances, it has been possible to demonstrate directly the contribution of such epigenetic changes to addiction-related behavioral abnormalities. Studies of epigenetic mechanisms of addiction are also providing an unprecedented view of the range of genes and non-genic regions that are affected by repeated drug exposure and the precise molecular basis of that regulation. Work is now needed to validate key aspects of this work in human addiction and evaluate the possibility of mining this information to develop new diagnostic tests and more effective treatments for addiction syndromes. PMID:23643695

  1. Epigenetic mechanisms of drug addiction.

    PubMed

    Nestler, Eric J

    2014-01-01

    Drug addiction involves potentially life-long behavioral abnormalities that are caused in vulnerable individuals by repeated exposure to a drug of abuse. The persistence of these behavioral changes suggests that long-lasting changes in gene expression, within particular regions of the brain, may contribute importantly to the addiction phenotype. Work over the past decade has demonstrated a crucial role for epigenetic mechanisms in driving lasting changes in gene expression in diverse tissues, including brain. This has prompted recent research aimed at characterizing the influence of epigenetic regulatory events in mediating the lasting effects of drugs of abuse on the brain in animal models of drug addiction. This review provides a progress report of this still early work in the field. As will be seen, there is robust evidence that repeated exposure to drugs of abuse induces changes within the brain's reward regions in three major modes of epigenetic regulation-histone modifications such as acetylation and methylation, DNA methylation, and non-coding RNAs. In several instances, it has been possible to demonstrate directly the contribution of such epigenetic changes to addiction-related behavioral abnormalities. Studies of epigenetic mechanisms of addiction are also providing an unprecedented view of the range of genes and non-genic regions that are affected by repeated drug exposure and the precise molecular basis of that regulation. Work is now needed to validate key aspects of this work in human addiction and evaluate the possibility of mining this information to develop new diagnostic tests and more effective treatments for addiction syndromes. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. PMID:23643695

  2. Epigenetic Alterations Induced by Bacterial Lipopolysaccharides.

    PubMed

    Chiariotti, Lorenzo; Coretti, Lorena; Pero, Raffaela; Lembo, Francesca

    2016-01-01

    Lipopolysaccharide (LPS) is one of the principal bacterial products known to elicit inflammation. Cells of myeloid lineage such as monocytes and macrophages, but also epithelial cells give rise to an inflammatory response upon LPS stimulation. This phenomenon implies reprogramming of cell specific gene expression that can occur through different mechanisms including epigenetic modifications. Given their intrinsic nature, epigenetic modifications may be involved both in the acute response to LPS and in the establishment of a preconditioned genomic state (epigenomic memory) that may potentially influence the host response to further contacts with microorganisms. Information has accumulated during the last years aimed at elucidating the epigenetic mechanisms which underlie the cellular LPS response. These findings, summarized in this chapter, will hopefully be a good basis for a definition of the complete cascade of LPS-induced epigenetic events and their biological significance in different cell types. PMID:26659265

  3. Epigenetic alterations in depression and antidepressant treatment

    PubMed Central

    Menke, Andreas; Binder, Elisabeth B.

    2014-01-01

    Epigenetic modifications control chromatin structure and function, and thus mediate changes in gene expression, ultimately influencing protein levels. Recent research indicates that environmental events can induce epigenetic changes and, by this, contribute to long-term changes in neural circuits and endocrine systems associated with altered risk for stress-related psychiatric disorders such as major depression. In this review, we describe recent approaches investigating epigenetic modifications associated with altered risk for major depression or response to antidepressant drugs, both on the candidate gene levels as well as the genome-wide level. In this review we focus on DNA methylation, as this is the most investigated epigenetic change in depression research. PMID:25364288

  4. Epigenetic inheritance: histone bookmarks across generations.

    PubMed

    Campos, Eric I; Stafford, James M; Reinberg, Danny

    2014-11-01

    Multiple circuitries ensure that cells respond correctly to the environmental cues within defined cellular programs. There is increasing evidence suggesting that cellular memory for these adaptive processes can be passed on through cell divisions and generations. However, the mechanisms by which this epigenetic information is transferred remain elusive, largely because it requires that such memory survive through gross chromatin remodeling events during DNA replication, mitosis, meiosis, and developmental reprogramming. Elucidating the processes by which epigenetic information survives and is transmitted is a central challenge in biology. In this review, we consider recent advances in understanding mechanisms of epigenetic inheritance with a focus on histone segregation at the replication fork, and how an epigenetic memory may get passed through the paternal lineage. PMID:25242115

  5. Epigenetic Inheritance: Histone Bookmarks Across Generations

    PubMed Central

    Campos, Eric I.; Stafford, James M.; Reinberg, Danny

    2014-01-01

    Multiple circuitries ensure that cells respond correctly to the environmental cues within defined cellular programs. There is increasing evidence suggesting that cellular memory for these adaptive processes can be passed on through cell divisions and generations. However, the mechanisms by which this epigenetic information is transferred remain elusive largely because it requires that such memory survive through gross chromatin remodeling events during DNA replication, mitosis, meiosis and developmental reprogramming. Elucidating the processes by which epigenetic information survives and is transmitted is a central challenge in biology. Here we consider recent advances in understanding mechanisms of epigenetic inheritance with a focus on histone segregation at the replication fork and how an epigenetic memory may get passed through the paternal lineage. PMID:25242115

  6. Identification of important long non-coding RNAs and highly recurrent aberrant alternative splicing events in hepatocellular carcinoma through integrative analysis of multiple RNA-Seq datasets.

    PubMed

    Zhang, Lu; Liu, Xiaoqiao; Zhang, Xuegong; Chen, Ronghua

    2016-06-01

    Hepatocellular carcinoma (HCC) is an aggressive and deadly cancer. The molecular pathogenesis of the disease remains poorly understood. To better understand HCC biology and explore potential biomarkers and therapeutic targets, we investigated the whole transcriptome of HCC. Considering the genetic heterogeneity of HCC, four datasets from four studies consisting of 15 pairs of HCC and adjacent normal samples were analyzed. We observed that the number of lncRNAs expressed in each HCC sample was consistently greater than the adjacent normal sample. Moreover, 15 lncRNAs were identified expressed in five to seven HCC tissues but were not detected in any adjacent normal tissue. Differential expression analysis detected 35 up- and 80 down-regulated lncRNAs in HCC samples compared with adjacent normal samples. In addition, five differentially expressed lncRNAs were predicted to play a role in oxidation and reduction process. With regard to splicing alterations, we identified nine highly recurrent differential splicing events belonging to eight genes USO1, RPS24, CCDC50, THNSL2, NUMB, FN1 (two events), SLC39A14 and NR1I3. Of them, splicing alterations of SLC39A14 and NR1I3 were reported for the association with HCC for the first time. The splicing dysregulation in HCC may be influenced by three splicing factors ESRP2, CELF2 and SRSF5 which were significantly down-regulated in HCC samples. This study revealed uncharacterized aspects of HCC transcriptome and identified important lncRNAs and splicing isoforms with the potential to serve as biomarkers and therapeutic targets for the disease. PMID:26711644

  7. Cancer type-specific epigenetic changes: gastric cancer.

    PubMed

    Calcagno, Danielle Queiroz; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodriguez

    2015-01-01

    Gastric cancer (GC) remains a major cause of mortality despite declining rate in the world. Epigenetic alterations contribute significantly to the development and progression of gastric tumors. Epigenetic refers to the number of modifications of the chromatin structure that affect gene expression without altering the primary sequence of DNA, and these changes lead to transcriptional activation or silencing of the gene. Over the years, the study of epigenetic processes has increased, and novel therapeutic approaches have emerged. This chapter summarizes the main epigenomic mechanisms described recently involved in gastric carcinogenesis, focusing on the roles that aberrant DNA methylation, histone modifications (histone acetylation and methylation), and miRNAs (oncogenic and tumor suppressor function of miRNA) play in the onset and progression of gastric tumors. Clinical implications of these epigenetic alterations in GC are also discussed. PMID:25421656

  8. Epigenetics and Vasculitis: a Comprehensive Review.

    PubMed

    Renauer, Paul; Coit, Patrick; Sawalha, Amr H

    2016-06-01

    Vasculitides represent a group of relatively rare systemic inflammatory diseases of the blood vessels. Despite recent progress in understanding the genetic basis and the underlying pathogenic mechanisms in vasculitis, the etiology and pathogenesis of vasculitis remain incompletely understood. Epigenetic dysregulation plays an important role in immune-mediated diseases, and the contribution of epigenetic aberrancies in vasculitis is increasingly being recognized. Histone modifications in the PR3 and MPO gene loci might be mechanistically involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Similarly, other studies revealed important epigenetic contribution to other vasculitides, including Kawasaki disease and IgA vasculitis. More recently, genome-wide epigenomic studies have been performed in several vasculitides. A recent genome-wide DNA methylation study uncovered an important role for epigenetic remodeling of cytoskeleton-related genes in the pathogenesis of Behçet's disease and suggested that reversal of some of these DNA methylation changes associates with disease remission. Genome-wide DNA methylation profiling characterized the inflammatory response in temporal artery tissue from patients with giant cell arteritis and showed increased activation of calcineurin/nuclear factor of activated T cells (NFAT) signaling, prompting the suggestion that a specific calcineurin/NFAT inhibitor that is well tolerated and with the added beneficial anti-platelet activity, such as dipyridamole, might be of therapeutic potential in giant cell arteritis. While epigenetic studies in systemic vasculitis are still in their infancy, currently available data clearly indicate that investigating the epigenetic mechanisms underlying these diseases will help to better understand the pathogenesis of vasculitis and provide novel targets for the development of disease biomarkers and new therapies. PMID:26093659

  9. Are Epigenetic Mechanisms Involved in Radiation-Induced Bystander Effects?

    PubMed Central

    Mothersill, Carmel; Seymour, Colin

    2012-01-01

    The “non-targeted effects” of ionizing radiation including bystander effects and genomic instability are unique in that no classic mutagenic event occurs in the cell showing the effect. In the case of bystander effects, cells which were not in the field affected by the radiation show high levels of mutations, chromosome aberrations, and membrane signaling changes leading to what is termed “horizontal transmission” of mutations and information which may be damaging while in the case of genomic instability, generations of cells derived from an irradiated progenitor appear normal but then lethal and non-lethal mutations appear in distant progeny. This is known as “vertical transmission.” In both situations high yields of non-clonal mutations leading to distant occurrence of mutation events both in space and time. This precludes a mutator phenotype or other conventional explanation and appears to indicate a generalized form of stress-induced mutagenesis which is well documented in bacteria. This review will discuss the phenomenology of what we term “non-targeted effects,” and will consider to what extent they challenge conventional ideas in genetics and epigenetics. PMID:22629281

  10. Epigenetics and Autoimmune Diseases

    PubMed Central

    Quintero-Ronderos, Paula; Montoya-Ortiz, Gladis

    2012-01-01

    Epigenetics is defined as the study of all inheritable and potentially reversible changes in genome function that do not alter the nucleotide sequence within the DNA. Epigenetic mechanisms such as DNA methylation, histone modification, nucleosome positioning, and microRNAs (miRNAs) are essential to carry out key functions in the regulation of gene expression. Therefore, the epigenetic mechanisms are a window to understanding the possible mechanisms involved in the pathogenesis of complex diseases such as autoimmune diseases. It is noteworthy that autoimmune diseases do not have the same epidemiology, pathology, or symptoms but do have a common origin that can be explained by the sharing of immunogenetic mechanisms. Currently, epigenetic research is looking for disruption in one or more epigenetic mechanisms to provide new insights into autoimmune diseases. The identification of cell-specific targets of epigenetic deregulation will serve us as clinical markers for diagnosis, disease progression, and therapy approaches. PMID:22536485

  11. [Epigenetics and colorectal cancer].

    PubMed

    Menéndez, Pablo; Villarejo, Pedro; Padilla, David; Menéndez, José María; Rodríguez Montes, José Antonio

    2012-05-01

    The epigenetic and physiological mechanisms that alter the structure of chromatin include the methylation of DNA, changes in the histones, and changes in RNA. A literature review has been carried out using PubMed on the evidence published on the association between epigenetics and colorectal cancer. The scientific literature shows that epigenetic changes, such as genetic modifications may be very significant in the origin of neoplastic disease, contributing both to the development and progression of the disease. PMID:22425513

  12. Environmental Epigenetic of Asthma – An update

    PubMed Central

    Ho, Shuk-Mei

    2013-01-01

    Asthma, a chronic inflammatory disorder of the airway, is influenced by interplay between genetic and environmental factors now known to be mediated by epigenetics. Aberrant DNA methylation, altered histone modifications, specific microRNA expression, and other chromatin alterations orchestrate a complex early-life reprogramming of immune T cell response, dendritic cell function, macrophage activation, and a breach of airway epithelial barrier that dictates asthma risk and severity in later life. Adult-onset asthma is under analogous regulation. The sharp increase in asthma prevalence over the past two or three decades and the large variations among populations of similar racial/ethnic background but different environmental exposures favors a strong contribution of environmental factors. This review addresses the fundamental question of whether environmental influences on asthma risk, severity, and steroid resistance are partly due to differential epigenetic modulations. Current knowledge on epigenetic effects of tobacco smoke, microbial allergens, oxidants, airborne particulate matter, diesel exhaust particles, dietary methyl donors and other nutritional factors, and dust mites is discussed. Exciting findings have been generated by rapid technological advances and well-designed experimental and population studies. The discovery and validation of epigenetic biomarkers linked to exposure and/or asthma may lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies. PMID:20816181

  13. Facioscapulohumeral Muscular Dystrophy As a Model for Epigenetic Regulation and Disease

    PubMed Central

    Himeda, Charis L.; Jones, Takako I.

    2015-01-01

    Abstract Significance: Aberrant epigenetic regulation is an integral aspect of many diseases and complex disorders. Facioscapulohumeral muscular dystrophy (FSHD), a progressive myopathy that afflicts individuals of all ages, is caused by disrupted genetic and epigenetic regulation of a macrosatellite repeat. FSHD provides a powerful model to investigate disease-relevant epigenetic modifiers and general mechanisms of epigenetic regulation that govern gene expression. Recent Advances: In the context of a genetically permissive allele, the one aspect of FSHD that is consistent across all known cases is the aberrant epigenetic state of the disease locus. In addition, certain mutations in the chromatin regulator SMCHD1 (structural maintenance of chromosomes hinge-domain protein 1) are sufficient to cause FSHD2 and enhance disease severity in FSHD1. Thus, there are multiple pathways to generate the epigenetic dysregulation required for FSHD. Critical Issues: Why do some individuals with the genetic requirements for FSHD develop disease pathology, while others remain asymptomatic? Similarly, disease progression is highly variable among individuals. What are the relative contributions of genetic background and environmental factors in determining disease manifestation, progression, and severity in FSHD? What is the interplay between epigenetic factors regulating the disease locus and which, if any, are viable therapeutic targets? Future Directions: Epigenetic regulation represents a potentially powerful therapeutic target for FSHD. Determining the epigenetic signatures that are predictive of disease severity and identifying the spectrum of disease modifiers in FSHD are vital to the development of effective therapies. Antioxid. Redox Signal. 22, 1463–1482. PMID:25336259

  14. Maintenance of Epigenetic Information.

    PubMed

    Almouzni, Geneviève; Cedar, Howard

    2016-01-01

    SUMMARYThe genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase. This involves the action of histone chaperones, nucleosome-remodeling enzymes, histone and DNA methylation binding proteins, and chromatin-modifying enzymes. Last, the timing of DNA replication is discussed, including the question of whether this constitutes an epigenetic mark that facilitates the propagation of epigenetic marks. PMID:27141050

  15. Genetic and epigenetic contributors to FSHD.

    PubMed

    Daxinger, Lucia; Tapscott, Stephen J; van der Maarel, Silvère M

    2015-08-01

    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscle disorder characterized by distinct chromatin changes including DNA hypomethylation of the D4Z4 macrosatellite repeat array on a disease-permissive 4qA allele and aberrant expression of the D4Z4-embedded DUX4 retrogene in skeletal muscle. Insufficient epigenetic repression of the D4Z4 repeat is the result of at least two different genetic mechanisms leading to two forms of disease, FSHD1 and FSHD2. In the case of FSHD1, a contraction of the D4Z4 repeat array is disease causing whereas FSHD2 is most often caused by mutations in the structural maintenance of chromosomes hinge domain 1 (SMCHD1) gene. Recent studies indicate that a combination of genetic and epigenetic factors that act on the D4Z4 repeat array determine the probability of DUX4 expression in skeletal muscle and disease penetrance and progression. PMID:26356006

  16. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma.

    PubMed

    Hoebeeck, Jasmien; Michels, Evi; Pattyn, Filip; Combaret, Valérie; Vermeulen, Joëlle; Yigit, Nurten; Hoyoux, Claire; Laureys, Geneviève; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2009-01-18

    CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers. PMID:18819746

  17. A Concise Review on Epigenetic Regulation: Insight into Molecular Mechanisms

    PubMed Central

    Golbabapour, Shahram; Abdulla, Mahmood Ameen; Hajrezaei, Maryam

    2011-01-01

    Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues. PMID:22272098

  18. Epigenetic mechanisms and gastrointestinal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review considers the hypothesis that nutrition during infancy affects developmental epigenetics in the gut, causing metabolic imprinting of gastrointestinal (GI) structure and function. Fundamentals of epigenetic gene regulation are reviewed, with an emphasis on the epigenetic mechanism of DNA ...

  19. BEYOND GENETICS: EPIGENETIC CODE IN CHRONIC KIDNEY DISEASE

    PubMed Central

    Dwivedi, Rama S.; Herman, James G.; McCaffrey, Timothy; Raj, Dominic SC

    2013-01-01

    Epigenetics refers to a heritable change in the pattern of gene expression that is mediated by a mechanism specifically not due to alterations in the primary nucleotide sequence. Well known epigenetic mechanisms encompass DNA methylation, chromatin remodeling (histone modifications) and RNA interference. Functionally, epigenetics provides an extra layer of transcriptional control and plays a crucial role in normal physiological development, as well as in pathological conditions. Aberrant DNA methylation is implicated in immune dysfunction, inflammation and insulin resistance. Epigenetic changes may be responsible for “metabolic memory” and development of micro- and macrovascular complications of diabetes. MicroRNAs are critical in the maintenance of glomerular homeostasis and hence RNA interference may be important in the progression of renal disease. Recent studies have shown that epigenetic modifications orchestrate the epithelial-mesenchymal transition and eventually fibrosis of the renal tissue. Oxidative stress, inflammation, hyperhomocysteinemia and uremic toxins could induce epimutations in chronic kidney disease. Epigenetic alterations are associated with inflammation and cardiovascular disease in patients with chronic kidney disease. Reversible nature of the epigenetic changes gives an unique opportunity to halt or even reverse the disease process through targeted therapeutic strategies. PMID:20881938

  20. Epigenetic programming and risk: the birthplace of cardiovascular disease?

    PubMed

    Vinci, Maria Cristina; Polvani, Gianluca; Pesce, Maurizio

    2013-06-01

    Epigenetics, through control of gene expression circuitries, plays important roles in various physiological processes such as stem cell differentiation and self renewal. This occurs during embryonic development, in different tissues, and in response to environmental stimuli. The language of epigenetic program is based on specific covalent modifications of DNA and chromatin. Thus, in addition to the individual identity, encoded by sequence of the four bases of the DNA, there is a cell type identity characterized by its positioning in the epigenetic "landscape". Aberrant changes in epigenetic marks induced by environmental cues may contribute to the development of abnormal phenotypes associated with different human diseases such as cancer, neurological disorders and inflammation. Most of the epigenetic studies have focused on embryonic development and cancer biology, while little has been done to explore the role of epigenetic mechanisms in the pathogenesis of cardiovascular disease. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodeling and histone modifications play key roles in the pathogenesis of cardiovascular disease through (re)programming of cardiovascular (stem) cells commitment, identity and function. PMID:22773406

  1. Epigenetic Therapy in Acute Myeloid Leukemia: Current and Future Directions.

    PubMed

    Kim, Tae Kon; Gore, Steven D; Zeidan, Amer M

    2015-07-01

    Epigenetic modifications affect gene expression without changes in the actual DNA sequence. Two of the most important mechanisms include DNA methylation and histone tail modifications (especially acetylation and methylation). Epigenetic modulation is a part of normal physiologic development; its dysregulation is an important mechanism of pathogenesis of some cancers, including acute myeloid leukemia (AML). Despite significant progress in understanding the pathogenesis of AML, therapeutic options remain quite limited. Technological advances have facilitated understanding of aberrant DNA methylation and histone methylation/acetylation as key elements in the development of AML and uncovered several recurrent mutations in genes important for epigenetic regulation. However, much remains to be learned about how to exploit this knowledge for epigenetic therapeutic targeting. Currently, no epigenetic therapy is approved for the treatment of AML, although two DNA methyltransferase inhibitors (azacitidine and decitabine) are commonly used in clinical practice. Among the other epigenetic modifiers undergoing research in AML, the histone deacetylase inhibitors are the most studied. Other promising drugs, such as inhibitors of histone methylation (eg, EZH2 and DOT1L inhibitors), inhibitors of histone demethylases (eg, LSD1 inhibitors), inhibitors of bromodomain-containing epigenetic "reader" BET proteins, and inhibitors of mutant isocitrate dehydrogenases, are at early stages of clinical evaluation. PMID:26111464

  2. Compendium of aberrant DNA methylation and histone modifications in cancer.

    PubMed

    Hattori, Naoko; Ushijima, Toshikazu

    2014-12-01

    Epigenetics now refers to the study or research field related to DNA methylation and histone modifications. Historically, global DNA hypomethylation was first revealed in 1983, and, after a decade, silencing of a tumor suppressor gene by regional DNA hypermethylation was reported. After the proposal of the histone code in the 2000s, alterations of histone methylation were also identified in cancers. Now, it is established that aberrant epigenetic alterations are involved in cancer development and progression, along with mutations and chromosomal losses. Recent cancer genome analyses have revealed a large number of mutations of epigenetic modifiers, supporting their important roles in cancer pathogenesis. Taking advantage of the reversibility of epigenetic alterations, drugs targeting epigenetic regulators and readers have been developed for restoration of normal pattern of the epigenome, and some have already demonstrated clinical benefits. In addition, DNA methylation of specific marker genes can be used as a biomarker for cancer diagnosis, including risk diagnosis, detection of cancers, and pathophysiological diagnosis. In this paper, we will summarize the major concepts of cancer epigenetics, placing emphasis on history. PMID:25194808

  3. Aberrant methylation during cervical carcinogenesis.

    PubMed

    Virmani, A K; Muller, C; Rathi, A; Zoechbauer-Mueller, S; Mathis, M; Gazdar, A F

    2001-03-01

    We studied the pattern of aberrant methylation during the multistage pathogenesis of cervical cancers. We analyzed a total of 73 patient samples and 10 cervical cancer cell lines. In addition, tissue samples [peripheral blood lymphocytes (n = 10) and buccal epithelial cells (n = 12)] were obtained from 22 healthy volunteers. On the basis of the results of preliminary analysis, the cervical samples were grouped into three categories: (a) nondysplasia/low-grade cervical intraepithelial neoplasia (CIN; n = 37); (b) high-grade CIN (n = 17); and (c) invasive cancer (n = 19). The methylation status of six genes was determined (p16, RARbeta, FHIT, GSTP1, MGMT, and hMLH1). Our main findings are as follows: (a) methylation was completely absent in control tissues; (b) the frequencies of methylation for all of the genes except hMLH1 were >20% in cervical cancers; (c) aberrant methylation commenced early during multistage pathogenesis and methylation of at least one gene was noted in 30% of the nondysplasia/low-grade CIN group; (d) an increasing trend for methylation was seen with increasing pathological change; (e) methylation of RARbeta and GSTP1 were early events, p16 and MGMT methylation were intermediate events, and FHIT methylation was a late, tumor-associated event; and (f) methylation occurred independently of other risk factors including papillomavirus infection, smoking history, or hormone use. Although our findings need to be extended to a larger series, they suggest that the pattern of aberrant methylation in women with or without dysplasia may help identify subgroups at increased risk for histological progression or cancer development. PMID:11297252

  4. Epigenetic perturbations in aging stem cells.

    PubMed

    Krauss, Sara Russo; de Haan, Gerald

    2016-08-01

    Stem cells maintain homeostasis in all regenerating tissues during the lifespan of an organism. Thus, age-related functional decline of such tissues is likely to be at least partially explained by molecular events occurring in the stem cell compartment. Some of these events involve epigenetic changes, which may dictate how an aging genome can lead to differential gene expression programs. Recent technological advances have made it now possible to assess the genome-wide distribution of an ever-increasing number of epigenetic marks. As a result, the hypothesis that there may be a causal role for an altered epigenome contributing to the functional decline of cells, tissues, and organs in aging organisms can now be explored. In this paper, we review recent developments in the field of epigenetic regulation of stem cells, and how this may contribute to aging. PMID:27229519

  5. The Aberration Corrected SEM

    SciTech Connect

    Joy, David C.

    2005-09-09

    The performance of the conventional low-energy CD-SEM is limited by the aberrations inherent in the probe forming lens. Multi-pole correctors are now available which can reduce or eliminate these aberrations. An SEM equipped with such a corrector offers higher spatial resolution and more probe current from a given electron source, and other aspects of the optical performance are also improved, but the much higher numerical aperture associated with an aberration corrected lens results in a reduction in imaging depth of field.

  6. Detecting independent and recurrent copy number aberrations using interval graphs

    PubMed Central

    Wu, Hsin-Ta; Hajirasouliha, Iman; Raphael, Benjamin J.

    2014-01-01

    Motivation: Somatic copy number aberrations (SCNAs) are frequent in cancer genomes, but many of these are random, passenger events. A common strategy to distinguish functional aberrations from passengers is to identify those aberrations that are recurrent across multiple samples. However, the extensive variability in the length and position of SCNAs makes the problem of identifying recurrent aberrations notoriously difficult. Results: We introduce a combinatorial approach to the problem of identifying independent and recurrent SCNAs, focusing on the key challenging of separating the overlaps in aberrations across individuals into independent events. We derive independent and recurrent SCNAs as maximal cliques in an interval graph constructed from overlaps between aberrations. We efficiently enumerate all such cliques, and derive a dynamic programming algorithm to find an optimal selection of non-overlapping cliques, resulting in a very fast algorithm, which we call RAIG (Recurrent Aberrations from Interval Graphs). We show that RAIG outperforms other methods on simulated data and also performs well on data from three cancer types from The Cancer Genome Atlas (TCGA). In contrast to existing approaches that employ various heuristics to select independent aberrations, RAIG optimizes a well-defined objective function. We show that this allows RAIG to identify rare aberrations that are likely functional, but are obscured by overlaps with larger passenger aberrations. Availability: http://compbio.cs.brown.edu/software. Contact: braphael@brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24931984

  7. Mitochondria: Masters of Epigenetics.

    PubMed

    Tatar, Marc; Sedivy, John M

    2016-05-19

    Accumulating evidence argues that aging exerts a profound influence on epigenetics, and vice versa. A pair of studies by Merkwirth et al. and Tian et al. now provide insights on how mitochondrial stress experienced by C. elegans larvae propagates a specific and persistent epigenetic response that protects adult cells and extends lifespan. PMID:27203109

  8. Perspectives on epigenetic-based immune intervention for rheumatic diseases

    PubMed Central

    2013-01-01

    Rheumatic disease can loosely be described as any painful condition affecting the loco-motor system, including joints, muscles, connective tissues, and soft tissues around the joints and bones. There is a wide spectrum of rheumatic diseases, many of which involve autoimmunity, including systemic lupus erythematosus and rheumatoid arthritis. A significant body of evidence now links aberrant epigenetic regulation of gene expression with rheumatic disease and points toward the use of epigenetic targeting agents as potential new treatment options, particularly for those conditions associated with an autoimmune element. In this perspective, I will briefly cover the current knowledge surrounding this area in the field of rheumatology. PMID:23510070

  9. Scrutinizing the epigenetics revolution.

    PubMed

    Meloni, Maurizio; Testa, Giuseppe

    2014-11-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as 'epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  10. Scrutinizing the epigenetics revolution

    PubMed Central

    Meloni, Maurizio; Testa, Giuseppe

    2014-01-01

    Epigenetics is one of the most rapidly expanding fields in the life sciences. Its rise is frequently framed as a revolutionary turn that heralds a new epoch both for gene-based epistemology and for the wider discourse on life that pervades knowledge-intensive societies of the molecular age. The fundamentals of this revolution remain however to be scrutinized, and indeed the very contours of what counts as ‘epigenetic' are often blurred. This is reflected also in the mounting discourse on the societal implications of epigenetics, in which vast expectations coexist with significant uncertainty about what aspects of this science are most relevant for politics or policy alike. This is therefore a suitable time to reflect on the directions that social theory could most productively take in the scrutiny of this revolution. Here we take this opportunity in both its scholarly and normative dimension, that is, proposing a roadmap for social theorizing on epigenetics that does not shy away from, and indeed hopefully guides, the framing of its most socially relevant outputs. To this end, we start with an epistemological reappraisal of epigenetic discourse that valorizes the blurring of meanings as a critical asset for the field and privileged analytical entry point. We then propose three paths of investigation. The first looks at the structuring elements of controversies and visions around epigenetics. The second probes the mutual constitution between the epigenetic reordering of living phenomena and the normative settlements that orient individual and collective responsibilities. The third highlights the material import of epigenetics and the molecularization of culture that it mediates. We suggest that these complementary strands provide both an epistemically and socially self-reflective framework to advance the study of epigenetics as a molecular juncture between nature and nurture and thus as the new critical frontier in the social studies of the life sciences. PMID

  11. Epigenetics meets endocrinology

    PubMed Central

    Zhang, Xiang; Ho, Shuk-Mei

    2014-01-01

    Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125

  12. Epigenetics: A possible answer to the undeciphered etiopathogenesis and behavior of oral lesions

    PubMed Central

    Singh, Narendra Nath; Peer, Aakanksha; Nair, Sherin; Chaturvedi, Rupesh K

    2016-01-01

    Much controversy has existed over the etiopathogenesis and management of oral lesions, especially oral malignancies. The knowledge of genetic basis is proving to be inadequate in the light of emerging new mechanisms termed epigenetic phenomena. The present review article aims to understand the role of epigenetic mechanisms in oral lesions. Epigenetics is the study of acquired changes in chromatin structure that arise independently of a change in the underlying deoxyribonucleic acid (DNA) nucleotide sequence. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNA). Epigenetics is a reversible system that can be affected by various environmental factors such as diet, drugs, mental stress, physical activity and addictive substances such as tobacco, nicotine and alcohol. Epigenetics may also play a role in explaining the etiopathogenesis of developmental anomalies, genetic defects, cancer as well as substance addiction (tobacco, cigarette and alcohol). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies. The literature in English language was searched and a structured scientific review and meta-analysis of scientific publications from the year 2000 to year 2015 was carried out from various journals. It was observed that epigenetic marks can prove to be novel markers for early diagnosis, prognosis and treatment of oral cancers as well as other oral diseases. PMID:27194874

  13. Epigenetics: A possible answer to the undeciphered etiopathogenesis and behavior of oral lesions.

    PubMed

    Singh, Narendra Nath; Peer, Aakanksha; Nair, Sherin; Chaturvedi, Rupesh K

    2016-01-01

    Much controversy has existed over the etiopathogenesis and management of oral lesions, especially oral malignancies. The knowledge of genetic basis is proving to be inadequate in the light of emerging new mechanisms termed epigenetic phenomena. The present review article aims to understand the role of epigenetic mechanisms in oral lesions. Epigenetics is the study of acquired changes in chromatin structure that arise independently of a change in the underlying deoxyribonucleic acid (DNA) nucleotide sequence. Key components involved in epigenetic regulation are DNA methylation, histone modifications and modifications in micro ribonucleic acids (miRNA). Epigenetics is a reversible system that can be affected by various environmental factors such as diet, drugs, mental stress, physical activity and addictive substances such as tobacco, nicotine and alcohol. Epigenetics may also play a role in explaining the etiopathogenesis of developmental anomalies, genetic defects, cancer as well as substance addiction (tobacco, cigarette and alcohol). Epigenetic modifications may contribute to aberrant epigenetic mechanisms seen in oral precancers and cancers. In the near future, epigenetic variations found in oral dysplastic cells can act as a molecular fingerprint for malignancies. The literature in English language was searched and a structured scientific review and meta-analysis of scientific publications from the year 2000 to year 2015 was carried out from various journals. It was observed that epigenetic marks can prove to be novel markers for early diagnosis, prognosis and treatment of oral cancers as well as other oral diseases. PMID:27194874

  14. Epigenetics and Cancer Metabolism

    PubMed Central

    Johnson, Christelle; Warmoes, Marc O.; Shen, Xiling; Locasale, Jason W.

    2013-01-01

    Cancer cells adapt their metabolism to support proliferation and survival. A hallmark of cancer, this alteration is characterized by dysfunctional metabolic enzymes, changes in nutrient availability, tumor microenvironment and oncogenic mutations. Metabolic rewiring in cancer is tightly connected to changes at the epigenetic level. Enzymes that mediate epigenetic status of cells catalyze posttranslational modifications of DNA and histones and influence metabolic gene expression. These enzymes require metabolites that are used as cofactors and substrates to carry out reactions. This interaction of epigenetics and metabolism constitutes a new avenue of cancer biology and could lead to new insights for the development of anti-cancer therapeutics. PMID:24125862

  15. Epigenetic changes in diabetes.

    PubMed

    Al-Haddad, Rami; Karnib, Nabil; Assaad, Rawad Abi; Bilen, Yara; Emmanuel, Nancy; Ghanem, Anthony; Younes, Joe; Zibara, Victor; Stephan, Joseph S; Sleiman, Sama F

    2016-06-20

    The incidence of diabetes is increasing worldwide. Diabetes is quickly becoming one of the leading causes of death. Diabetes is a genetic disease; however, the environment plays critical roles in its development and progression. Epigenetic changes often translate environmental stimuli to changes in gene expression. Changes in epigenetic marks and differential regulation of epigenetic modulators have been observed in different models of diabetes and its associated complications. In this minireview, we will focus DNA methylation, Histone acetylation and methylation and their roles in the pathogenesis of diabetes. PMID:27130819

  16. Epigenetic biomarkers in esophageal cancer.

    PubMed

    Kaz, Andrew M; Grady, William M

    2014-01-28

    The aberrant DNA methylation of tumor suppressor genes is well documented in esophageal cancer, including adenocarcinoma (EAC) and squamous cell carcinoma (ESCC) as well as in Barrett's esophagus (BE), a pre-malignant condition that is associated with chronic acid reflux. BE is a well-recognized risk factor for the development of EAC, and consequently the standard of care is for individuals with BE to be placed in endoscopic surveillance programs aimed at detecting early histologic changes that associate with an increased risk of developing EAC. Yet because the absolute risk of EAC in individuals with BE is minimal, a clinical need in the management of BE is the identification of additional risk markers that will indicate individuals who are at a significant absolute risk of EAC so that they may be subjected to more intensive surveillance. The best currently available risk marker is the degree of dysplasia in endoscopic biopsies from the esophagus; however, this marker is suboptimal for a variety of reasons. To date, there are no molecular biomarkers that have been translated to widespread clinical practice. The search for biomarkers, including hypermethylated genes, for either the diagnosis of BE, EAC, or ESCC or for risk stratification for the development of EAC in those with BE is currently an area of active research. In this review, we summarize the status of identified candidate epigenetic biomarkers for BE, EAC, and ESCC. Most of these aberrantly methylated genes have been described in the context of early detection or diagnostic markers; others might prove useful for estimating prognosis or predicting response to treatment. Finally, special attention will be paid to some of the challenges that must be overcome in order to develop clinically useful esophageal cancer biomarkers. PMID:22406828

  17. The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity?

    PubMed Central

    Millan, Mark J.

    2014-01-01

    Early-onset, familial Alzheimer's disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment. PMID:25364287

  18. Epigenetics of Aging

    PubMed Central

    Sierra, Marta I.; Fernández, Agustín F.; Fraga, Mario F.

    2015-01-01

    The best-known phenomenon exemplifying epigenetic drift (the alteration of epigenetic patterns during aging) is the gradual decrease of global DNA methylation. Aging cells, different tissue types, as well as a variety of human diseases possess their own distinct DNA methylation profiles, although the functional impact of these is not always clear. DNA methylation appears to be a dynamic tool of transcriptional regulation, with an extra layer of complexity due to the recent discovery of the conversion of 5-methylcytosine into 5-hydroxymethylcytosine. This age-related DNA demethylation is associated with changes in histone modification patterns and, furthermore, we now know that ncRNAs have evolved in eukaryotes as epigenetic regulators of gene expression. In this review, we will discuss current knowledge on how all these epigenetic phenomena are implicated in human aging, and their links with external, internal and stochastic factors which can affect human age-related diseases onset. PMID:27019618

  19. [Epigenetics in Parkinson's Disease].

    PubMed

    Wüllner, U

    2016-07-01

    The genetic information encoded in the DNA sequence provides a blueprint of the entire organism. The epigenetic modifications, in particular DNA methylation and histone modifications, determine how and when this information is made available and define the specific gene transcription pattern of a given cell. Epigenetic modifications determine the functional differences of genetically identical cells in multicellular organisms and are important factors in various processes from embryonic development to learning and memory consolidation. DNA methylation patterns are altered by environmental conditions and some alterations are preserved through mitosis and meiosis. Thus, DNA methylation can mediate environmental impact on health and disease, contributes to the severity of diseases and probably contributes to the effects and side effects of drugs. In addition to the classical monogenic epigenetic diseases such as Prader-Willi syndrome and Rett syndrome, recent data point to an epigenetic component also in sporadic neuro-psychiatric disorders. PMID:27299943

  20. [The meaning of epigenetics].

    PubMed

    Hu, Kai

    2002-11-01

    Epigenetics, the term was introduced by Conrad H.Waddington, in 1942,he said that to compare genetics with epigenetics, the study of the processes by which genotype gives rise to phenotype. In 1987, Robin Holliday redefined epigenetic as "Nuclear inheritance which is not based on differences in DNA sequence". The author of this paper introduced that in Science,10 August 2001,there was a special collection of review articles focused on the topic of epigenetics. The new "histone code" hypothesis states that the highly modifiable amino termini could carry their own combinatorial codes to help control phenotype,and that part of this code is heritable. And in light of this hypothesis,researchers are approaching further possibilities in human biology and types of cancer and other diseases. PMID:15979980

  1. [Epigenetics in atherosclerosis].

    PubMed

    Guardiola, Montse; Vallvé, Joan C; Zaina, Silvio; Ribalta, Josep

    2016-01-01

    The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis. PMID:26088002

  2. Epigenetics: Biology's Quantum Mechanics.

    PubMed

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  3. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  4. Epigenetics and addiction.

    PubMed

    Cadet, J L; McCoy, M T; Jayanthi, S

    2016-05-01

    Addictions are public health menaces. However, despite advances in addiction research, the cellular or molecular mechanisms that cause transition from recreational use to addiction remain to be elucidated. We have recently suggested that addiction may be secondary to long-term epigenetic modifications that determine the clinical course of substance use disorders. A better understanding of epigenetic mechanisms in animal models that mimic human conditions should help to usher in a new area of drug development against addiction. PMID:26841306

  5. Gestational diabetes mellitus, programing and epigenetics.

    PubMed

    Yan, Jie; Yang, Huixia

    2014-08-01

    Gestational diabetes mellitus (GDM) is a common medical complication in pregnancy. Offspring exposed to maternal hyperglycemia have a higher birth weight and are prone to develop metabolic disease in adult life. The intrauterine environmental or nutritional status seems to be involved in the fetal programing. The concept of "Developmental Origins of Health and Disease" (DOHaD) has been widely accepted and it brings new insights into the molecular pathogenesis of human diseases. The underlying mechanism is still under discussion and epigenetic mechanisms may provide an explanation for the phenomenon. The aim of this review is to illustrate the role of epigenetic modifications in the development of insulin resistance in metabolic diseases induced by adverse intrauterine exposures. Changes in epigenetic mechanism may be an early event in pathogenesis and progression of the metabolic disease in humans. Studies on epigenetic modifications contribute to our understanding of long-term effects of in utero exposure and shed light on the disease prevention and treatment by modulating epigenetic changes. PMID:24125565

  6. Oocyte ageing and epigenetics

    PubMed Central

    Ge, Zhao-Jia; Schatten, Heide; Zhang, Cui-Lian; Sun, Qing-Yuan

    2015-01-01

    It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions, aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations. In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms. PMID:25391845

  7. Epigenetics and pharmacology

    PubMed Central

    Stefanska, Barbara; MacEwan, David J

    2015-01-01

    Recent advances in the understanding of gene regulation have shown there to be much more regulation of the genome than first thought, through epigenetic mechanisms. These epigenetic mechanisms are systems that have evolved to either switch off gene activity altogether, or fine-tune any existing genetic activation. Such systems are present in all genes and include chromatin modifications and remodelling, DNA methylation (such as CpG island methylation rates) and histone covalent modifications (e.g. acetylation, methylation), RNA interference by short interfering RNAs (siRNAs) and long non-coding RNAs (ncRNAs). These systems regulate genomic activity ‘beyond’ simple transcriptional factor inducer or repressor function of genes to generate mRNA. Epigenetic regulation of gene activity has been shown to be important in maintaining normal phenotypic activity of cells, as well as having a role in development and diseases such as cancer and neurodegenerative disorders such as Alzheimer's. Newer classes of drugs regulate epigenetic mechanisms to counteract disease states in humans. The reports in this issue describe some advances in epigenetic understanding that relate to human disease, and our ability to control these mechanisms by pharmacological means. Increasingly the importance of epigenetics is being uncovered – it is pharmacology that will have to keep pace. PMID:25966315

  8. Targeting the Epigenome in Lung Cancer: Expanding Approaches to Epigenetic Therapy

    PubMed Central

    Jakopovic, Marko; Thomas, Anish; Balasubramaniam, Sanjeeve; Schrump, David; Giaccone, Giuseppe; Bates, Susan E.

    2013-01-01

    Epigenetic aberrations offer dynamic and reversible targets for cancer therapy; increasingly, alteration via overexpression, mutation, or rearrangement is found in genes that control the epigenome. Such alterations suggest a fundamental role in carcinogenesis. Here, we consider three epigenetic mechanisms: DNA methylation, histone tail modification and non-coding, microRNA regulation. Evidence for each of these in lung cancer origin or progression has been gathered, along with evidence that epigenetic alterations might be useful in early detection. DNA hypermethylation of tumor suppressor promoters has been observed, along with global hypomethylation and hypoacetylation, suggesting an important role for tumor suppressor gene silencing. These features have been linked as prognostic markers with poor outcome in lung cancer. Several lines of evidence have also suggested a role for miRNA in carcinogenesis and in outcome. Cigarette smoke downregulates miR-487b, which targets both RAS and MYC; RAS is also a target of miR-let-7, again downregulated in lung cancer. Together the evidence implicates epigenetic aberration in lung cancer and suggests that targeting these aberrations should be carefully explored. To date, DNA methyltransferase and histone deacetylase inhibitors have had minimal clinical activity. Explanations include the possibility that the agents are not sufficiently potent to invoke epigenetic reversion to a more normal state; that insufficient time elapses in most clinical trials to observe true epigenetic reversion; and that doses often used may provoke off-target effects such as DNA damage that prevent epigenetic reversion. Combinations of epigenetic therapies may address those problems. When epigenetic agents are used in combination with chemotherapy or targeted therapy it is hoped that downstream biological effects will provoke synergistic cytotoxicity. This review evaluates the challenges of exploiting the epigenome in the treatment of lung cancer

  9. The Epigenetics of Renal Cell Tumors: from Biology to Biomarkers

    PubMed Central

    Henrique, Rui; Luís, Ana Sílvia; Jerónimo, Carmen

    2012-01-01

    Renal cell tumors (RCT) collectively constitute the third most common type of genitourinary neoplasms, only surpassed by prostate and bladder cancer. They comprise a heterogeneous group of neoplasms with distinctive clinical, morphological, and genetic features. Epigenetic alterations are a hallmark of cancer cells and their role in renal tumorigenesis is starting to emerge. Aberrant DNA methylation, altered chromatin remodeling/histone onco-modifications and deregulated microRNA expression not only contribute to the emergence and progression of RCTs, but owing to their ubiquity, they also constitute a promising class of biomarkers tailored for disease detection, diagnosis, assessment of prognosis, and prediction of response to therapy. Moreover, due to their dynamic and reversible properties, those alterations represent a target for epigenetic-directed therapies. In this review, the current knowledge about epigenetic mechanisms and their altered status in RCT is summarized and their envisaged use in a clinical setting is also provided. PMID:22666228

  10. Linking epithelial-to-mesenchymal-transition and epigenetic modifications

    PubMed Central

    Stadler, Sonja C.; Allis, C. David

    2012-01-01

    Cancer, as well as other human disorders, has long been considered to result from the consequence of genetic mutations in key regulatory genes that reside in pathways controlling proliferation, cellular differentiation, DNA damage and repair. In the case of cancer, mutations are well documented to arise in key oncogenes and critically important tumor-suppressor genes as part of the disease progression process. In addition to more accepted, genetic mutations, a rapidly increasing body of evidence supports the general view that profound alterations also occur in ‘epigenes’, whose products serve to define the ‘epigenetic landscape’ of tumor cells. Aberrant changes in epigenetic mechanisms such as DNA methylation, histone modifications and expression of micro RNAs play an important role in cancer and contribute to malignant transitions. Here we review recent studies linking epigenetic mechanisms to epithelial-to-mesenchymal transition as defined in normal processes, as well as abnormal transitions that lead to oncogensis. PMID:22706095

  11. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.

    PubMed

    Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N

    2016-06-01

    Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade. PMID:27197539

  12. Implication of epigenetics in pancreas development and disease.

    PubMed

    Quilichini, Evans; Haumaitre, Cécile

    2015-12-01

    Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes. PMID:26696517

  13. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    PubMed Central

    Ballabio, Erica; Milne, Thomas A.

    2012-01-01

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis. PMID:24213472

  14. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  15. Heavy metals and epigenetic alterations in brain tumors.

    PubMed

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-12-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  16. Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

    PubMed Central

    Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella

    2012-01-01

    Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118

  17. Epigenetic regulation of gene expression in physiological and pathological brain processes.

    PubMed

    Gräff, Johannes; Kim, Dohoon; Dobbin, Matthew M; Tsai, Li-Huei

    2011-04-01

    Over the past decade, it has become increasingly obvious that epigenetic mechanisms are an integral part of a multitude of brain functions that range from the development of the nervous system over basic neuronal functions to higher order cognitive processes. At the same time, a substantial body of evidence has surfaced indicating that several neurodevelopmental, neurodegenerative, and neuropsychiatric disorders are in part caused by aberrant epigenetic modifications. Because of their inherent plasticity, such pathological epigenetic modifications are readily amenable to pharmacological interventions and have thus raised justified hopes that the epigenetic machinery provides a powerful new platform for therapeutic approaches against these diseases. In this review, we give a detailed overview of the implication of epigenetic mechanisms in both physiological and pathological brain processes and summarize the state-of-the-art of "epigenetic medicine" where applicable. Despite, or because of, these new and exciting findings, it is becoming apparent that the epigenetic machinery in the brain is highly complex and intertwined, which underscores the need for more refined studies to disentangle brain-region and cell-type specific epigenetic codes in a given environmental condition. Clearly, the brain contains an epigenetic "hotspot" with a unique potential to not only better understand its most complex functions, but also to treat its most vicious diseases. PMID:21527733

  18. Epigenetics in Cystic Fibrosis: Epigenetic Targeting of a Genetic Disease.

    PubMed

    Sirinupong, Nualpun; Yang, Zhe

    2015-01-01

    Cystic fibrosis (CF) is a deadly genetic disease that affects the lungs and digestive system. A mutation in the CF transmembrane conductance regulator (CFTR) gene is the cause of the disease. How epigenetics contributes to CFTR expression is still poorly understood. Epigenetics is a mechanism that alters gene expression without changing the underlying DNA sequence. Epigenetic mechanisms include DNA methylation and histone modification. Both mechanisms have been implicated in CFTR gene regulation. Here we review epigenetic regulation of CFTR transcription while discussing potential epigenetic targeting strategies including DNA methyltransferase, histone deacetylase, and histone methyltransferase and demethylase inhibition. Because of the reversibility of epigenetics, targeting epigenetic mechanisms has been an attractive therapeutic approach. However, epigenetic targeting of CF disease is still at its infant stage. PMID:25882215

  19. Epigenetics of Obesity.

    PubMed

    Lopomo, A; Burgio, E; Migliore, L

    2016-01-01

    Obesity is a metabolic disease, which is becoming an epidemic health problem: it has been recently defined in terms of Global Pandemic. Over the years, the approaches through family, twins and adoption studies led to the identification of some causal genes in monogenic forms of obesity but the origins of the pandemic of obesity cannot be considered essentially due to genetic factors, because human genome is not likely to change in just a few years. Epigenetic studies have offered in recent years valuable tools for the understanding of the worldwide spread of the pandemic of obesity. The involvement of epigenetic modifications-DNA methylation, histone tails, and miRNAs modifications-in the development of obesity is more and more evident. In the epigenetic literature, there are evidences that the entire embryo-fetal and perinatal period of development plays a key role in the programming of all human organs and tissues. Therefore, the molecular mechanisms involved in the epigenetic programming require a new and general pathogenic paradigm, the Developmental Origins of Health and Disease theory, to explain the current epidemiological transition, that is, the worldwide increase of chronic, degenerative, and inflammatory diseases such as obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer. Obesity and its related complications are more and more associated with environmental pollutants (obesogens), gut microbiota modifications and unbalanced food intake, which can induce, through epigenetic mechanisms, weight gain, and altered metabolic consequences. PMID:27288829

  20. The physics of epigenetics

    NASA Astrophysics Data System (ADS)

    Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc

    2016-04-01

    In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.

  1. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease

    PubMed Central

    Martos, Suzanne N.; Tang, Wan-yee; Wang, Zhibin

    2016-01-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. PMID:25792089

  2. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease.

    PubMed

    Martos, Suzanne N; Tang, Wan-Yee; Wang, Zhibin

    2015-07-01

    Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease. PMID:25792089

  3. Epigenetic Regulation of Hematopoietic Stem Cells

    PubMed Central

    Sharma, Shilpa; Gurudutta, Gangenahalli

    2016-01-01

    Hematopoietic stem cells are endowed with a distinct potential to bolster self-renewal and to generate progeny that differentiate into mature cells of myeloid and lymphoid lineages. Both hematopoietic stem cells and mature cells have the same genome, but their gene expression is controlled by an additional layer of epigenetics such as DNA methylation and post-translational histone modifications, enabling each cell-type to acquire various forms and functions. Until recently, several studies have largely focussed on the transcription factors andniche factors for the understanding of the molecular mechanisms by which hematopoietic cells replicate and differentiate. Several lines of emerging evidence suggest that epigenetic modifications eventually result in a defined chromatin structure and an “individual” gene expression pattern, which play an essential role in the regulation of hematopoietic stem cell self-renewal and differentiation. Distinct epigenetic marks decide which sets of genes may be expressed and which genes are kept silent. Epigenetic mechanisms are interdependent and ensure lifelong production of blood and bone marrow, thereby contributing to stem cell homeostasis. The epigenetic analysis of hematopoiesis raises the exciting possibility that chromatin structure is dynamic enough for regulated expression of genes. Though controlled chromatin accessibility plays an essential role in maintaining blood homeostasis; mutations in chromatin impacts on the regulation of genes critical to the development of leukemia. In this review, we explored the contribution of epigenetic machinery which has implications for the ramification of molecular details of hematopoietic self-renewal for normal development and underlying events that potentially co-operate to induce leukemia. PMID:27426084

  4. Epigenetic control of skin and hair regeneration after wounding

    PubMed Central

    Plikus, Maksim V.; Guerrero-Juarez, Christian Fernando; Treffeisen, Elsa; Gay, Denise L.

    2014-01-01

    Skin wound healing is a complex regenerative phenomenon that can result in hair follicle neogenesis. Skin regeneration requires significant contribution from the immune system and involves substantial remodeling of both epidermal and dermal compartments. In this viewpoint, we consider epigenetic regulation of reepithelialization, dermal restructuring and hair neogenesis. Because little is known about the epigenetic control of these events, we have drawn upon recent epigenetic mapping and functional studies of homeostatic skin maintenance, epithelial-mesenchymal transition in cancer, and new works on regenerative dermal cell lineages and the epigenetic events that may shape their conversion into myofibroblasts. Finally, we speculate on how these various healing components might converge for wound-induced hair follicle neogenesis. PMID:25039994

  5. Epigenetic control of skin and hair regeneration after wounding.

    PubMed

    Plikus, Maksim V; Guerrero-Juarez, Christian Fernando; Treffeisen, Elsa; Gay, Denise L

    2015-03-01

    Skin wound healing is a complex regenerative phenomenon that can result in hair follicle neogenesis. Skin regeneration requires significant contribution from the immune system and involves substantial remodelling of both epidermal and dermal compartments. In this viewpoint, we consider epigenetic regulation of reepithelialization, dermal restructuring and hair neogenesis. Because little is known about the epigenetic control of these events, we have drawn upon recent epigenetic mapping and functional studies of homeostatic skin maintenance, epithelial-mesenchymal transition in cancer, and new works on regenerative dermal cell lineages and the epigenetic events that may shape their conversion into myofibroblasts. Finally, we speculate on how these various healing components might converge for wound-induced hair follicle neogenesis. PMID:25039994

  6. Epigenetics and lifestyle

    PubMed Central

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2013-01-01

    The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and microRNA expression. Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress, and working on night shifts. Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. Here, we review current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms. PMID:22122337

  7. Epigenetic signaling in schizophrenia.

    PubMed

    Ibi, Daisuke; González-Maeso, Javier

    2015-10-01

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Psychiatric disorders such as schizophrenia and depression are complex and heterogeneous diseases with multiple and independent factors that may contribute to their pathophysiology, making challenging to find a link between specific elements and the underlying mechanisms responsible for the disorder and its treatment. Growing evidences suggest that epigenetic modifications in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychiatric conditions throughout life. This review focuses on recent advances that directly implicate epigenetic modifications in schizophrenia and antipsychotic drug action. PMID:26120009

  8. Natural Compounds: Role in Reversal of Epigenetic Changes.

    PubMed

    Aggarwal, Ruchi; Jha, Meenakshi; Shrivastava, Anju; Jha, Abhimanyu Kumar

    2015-08-01

    The hallmarks of carcinogenesis are characterized by alterations in the expression of multiple genes that occur via genetic and epigenetic alterations, leading to genome rearrangements and instability. The reversible process of epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression that alter phenotype without any change in the DNA sequence, is recognized as a key mechanism in cancer cell metabolism. Recent advancements in the rapidly evolving field of cancer epigenetics have shown the anticarcinogenic potential of natural compounds targeting epigenetic mechanism as a common molecular approach for cancer treatment. This review summarizes the potential of natural chemopreventive agents to reverse cancer-related epigenetic aberrations by regulating the activity of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. Furthermore, there is impetus for determining novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents that exhibit similar properties, for improving the therapeutic aspects of cancer. PMID:26547065

  9. [Epigenetic regulation in spermatogenesis].

    PubMed

    Xu, Chen; Song, Ning

    2014-05-01

    Spermatogenesis is a process consisting of spermatogonial proliferation, spermatocytic meiosis, and spermiogenesis, and is also considered to be a process in which heterochromatins gradually aggregate and finally reach a highly condensed formation in the sperm head. Recent studies show that epigenetic regulation plays a key role in spermatogenesis. This review discusses the mechanisms of epigenetic regulation in spermatogenesis in three aspects, DNA methylation, histone modification, and noncoding RNAs. These factors are essential for spermatogenesis, fertilization, and embryogenesis by mutual regulation as well as by gene expression regulation, transposon activation, sex chromosome inactivation, and genome imprinting. PMID:24908726

  10. Histone variants and epigenetics.

    PubMed

    Henikoff, Steven; Smith, M Mitchell

    2015-01-01

    Histones package and compact DNA by assembling into nucleosome core particles. Most histones are synthesized at S phase for rapid deposition behind replication forks. In addition, the replacement of histones deposited during S phase by variants that can be deposited independently of replication provide the most fundamental level of chromatin differentiation. Alternative mechanisms for depositing different variants can potentially establish and maintain epigenetic states. Variants have also evolved crucial roles in chromosome segregation, transcriptional regulation, DNA repair, and other processes. Investigations into the evolution, structure, and metabolism of histone variants provide a foundation for understanding the participation of chromatin in important cellular processes and in epigenetic memory. PMID:25561719

  11. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST).

    PubMed

    Balassiano, Karen; Lima, Sheila; Jenab, Mazda; Overvad, Kim; Tjonneland, Anne; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Françoise; Canzian, Federico; Kaaks, Rudolf; Boeing, Heiner; Meidtner, Karina; Trichopoulou, Antonia; Laglou, Pagona; Vineis, Paolo; Panico, Salvatore; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Lund, Eiliv; Bueno-de-Mesquita, H Bas; Numans, Mattjis E; Peeters, Petra H M; Ramon Quirós, J; Sánchez, María-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Hallmans, Göran; Stenling, Roger; Ehrnström, Roy; Regner, Sara; Allen, Naomi E; Travis, Ruth C; Khaw, Kay-Tee; Offerhaus, G Johan A; Sala, Nuria; Riboli, Elio; Hainaut, Pierre; Scoazec, Jean-Yves; Sylla, Bakary S; Gonzalez, Carlos A; Herceg, Zdenko

    2011-12-01

    Epigenetic events have emerged as key mechanisms in the regulation of critical biological processes and in the development of a wide variety of human malignancies, including gastric cancer (GC), however precise gene targets of aberrant DNA methylation in GC remain largely unknown. Here, we have combined pyrosequencing-based quantitative analysis of DNA methylation in 98 GC cases and 64 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and in cancer tissue and non-tumorigenic adjacent tissue of an independent series of GC samples. A panel of 10 cancer-associated genes (CHRNA3, DOK1, MGMT, RASSF1A, p14ARF, CDH1, MLH1, ALDH2, GNMT and MTHFR) and LINE-1 repetitive elements were included in the analysis and their association with clinicopathological characteristics (sex, age at diagnosis, anatomical sub-site, histological sub-type) was examined. Three out of the 10 genes analyzed exhibited a marked hypermethylation, whereas two genes (ALDH2 and MTHFR) showed significant hypomethylation, in gastric tumors. Among differentially methylated genes, we identified new genes (CHRNA3 and DOK1) as targets of aberrant hypermethylation in GC, suggesting that epigenetic deregulation of these genes and their corresponding cellular pathways may promote the development and progression of GC. We also found that global demethylation of tumor cell genomes occurs in GC, consistent with the notion that abnormal hypermethylation of specific genes occurs concomitantly with genome-wide hypomethylation. Age and gender had no significant influence on methylation states, but an association was observed between LINE-1 and MLH1 methylation levels with histological sub-type and anatomical sub-site. This study identifies aberrant methylation patters in specific genes in GC thus providing information that could be exploited as novel biomarkers in clinics and molecular epidemiology of GC. PMID:21831520

  12. The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer.

    PubMed

    Chaligné, Ronan; Popova, Tatiana; Mendoza-Parra, Marco-Antonio; Saleem, Mohamed-Ashick M; Gentien, David; Ban, Kristen; Piolot, Tristan; Leroy, Olivier; Mariani, Odette; Gronemeyer, Hinrich; Vincent-Salomon, Anne; Stern, Marc-Henri; Heard, Edith

    2015-04-01

    Disappearance of the Barr body is considered a hallmark of cancer, although whether this corresponds to genetic loss or to epigenetic instability and transcriptional reactivation is unclear. Here we show that breast tumors and cell lines frequently display major epigenetic instability of the inactive X chromosome, with highly abnormal 3D nuclear organization and global perturbations of heterochromatin, including gain of euchromatic marks and aberrant distributions of repressive marks such as H3K27me3 and promoter DNA methylation. Genome-wide profiling of chromatin and transcription reveal modified epigenomic landscapes in cancer cells and a significant degree of aberrant gene activity from the inactive X chromosome, including several genes involved in cancer promotion. We demonstrate that many of these genes are aberrantly reactivated in primary breast tumors, and we further demonstrate that epigenetic instability of the inactive X can lead to perturbed dosage of X-linked factors. Taken together, our study provides the first integrated analysis of the inactive X chromosome in the context of breast cancer and establishes that epigenetic erosion of the inactive X can lead to the disappearance of the Barr body in breast cancer cells. This work offers new insights and opens up the possibility of exploiting the inactive X chromosome as an epigenetic biomarker at the molecular and cytological levels in cancer. PMID:25653311

  13. Epigenetics and Future Generations.

    PubMed

    Del Savio, Lorenzo; Loi, Michele; Stupka, Elia

    2015-10-01

    Recent evidence of intergenerational epigenetic programming of disease risk broadens the scope of public health preventive interventions to future generations, i.e. non existing people. Due to the transmission of epigenetic predispositions, lifestyles such as smoking or unhealthy diet might affect the health of populations across several generations. While public policy for the health of future generations can be justified through impersonal considerations, such as maximizing aggregate well-being, in this article we explore whether there are rights-based obligations supervening on intergenerational epigenetic programming despite the non-identity argument, which challenges this rationale in case of policies that affect the number and identity of future people. We propose that rights based obligations grounded in the interests of non-existing people might fall upon existing people when generations overlap. In particular, if environmental exposure in F0 (i.e. existing people) will affect the health of F2 (i.e. non-existing people) through epigenetic programming, then F1 (i.e. existing and overlapping with both F0 and F2) might face increased costs to address F2's condition in the future: this might generate obligations upon F0 from various distributive principles, such as the principle of equal opportunity for well being. PMID:25644664

  14. Epigenetics and Osteoarthritis

    PubMed Central

    Zhang, Mingcai; Wang, Jinxi

    2015-01-01

    Osteoarthritis (OA) is the most common form of joint disease and the leading cause of chronic disability in middle-aged and older populations. The development of disease-modifying therapy for OA currently faces major obstacles largely because the regulatory mechanisms for the function of joint tissue cells remain unclear. Previous studies have found that the alterations in gene expression of specific transcription factors (TFs), pro- or anti-inflammatory cytokines, matrix proteinases and extracellular matrix (ECM) proteins in articular cartilage may be involved in the development of OA. However, the regulatory mechanisms for the expression of those genes in OA chondrocytes are largely unknown. The recent advances in epigenetic studies have shed lights on the importance of epigenetic regulation of gene expression in the development of OA. In this review, we summarize and discuss the recent studies on the regulatory roles of various epigenetic mechanisms in the expression of genes for specific TFs, cytokines, ECM proteins and matrix proteinases, as well the significance of these epigenetic mechanisms in the pathogenesis of OA. PMID:25961070

  15. Epigenetics, Darwin, and Lamarck

    PubMed Central

    Penny, David

    2015-01-01

    It is not really helpful to consider modern environmental epigenetics as neo-Lamarckian; and there is no evidence that Lamarck considered the idea original to himself. We must all keep learning about inheritance, but attributing modern ideas to early researchers is not helpful, and can be misleading. PMID:26026157

  16. Epigenetics and memigenetics.

    PubMed

    Mann, Jeffrey R

    2014-04-01

    The field of epigenetics is expanding rapidly, yet there is persistent uncertainty in the definition of the term. The word was coined in the mid-twentieth century as a descriptor of how intrinsic, yet largely unknown, forces act with genes to channel progenitor cells along pathways of differentiation. Near the end of the twentieth century, epigenetics was defined more specifically as the study of changes in gene activity states. In some definitions, only those activity states that are inherited across cell division were considered. Other definitions were broader, also including activity states that are transient, or occurring in non-dividing cells. The greatest point of disagreement in these current definitions, is if the term should concern only inherited activity states. To alleviate this disparity, an alternative term, 'memigenetics', could be used in place of epigenetics to describe inherited chromatin activity states. The advantage of this term is that it is self-defining, and would serve to emphasize the important concept of cell memory. It would also free the term epigenetics to be used in a broader sense in accord with the meaning of the prefix 'epi', that is, as a descriptor of what is 'over' DNA at any point in time. PMID:24445814

  17. Epigenetic Risk Factors in PTSD and Depression

    PubMed Central

    Raabe, Florian Joachim; Spengler, Dietmar

    2013-01-01

    Epidemiological and clinical studies have shown that children exposed to adverse experiences are at increased risk for the development of depression, anxiety disorders, and posttraumatic stress disorder (PTSD). A history of child abuse and maltreatment increases the likelihood of being subsequently exposed to traumatic events or of developing PTSD as an adult. The brain is highly plastic during early life and encodes acquired information into lasting memories that normally subserve adaptation. Translational studies in rodents showed that enduring sensitization of neuronal and neuroendocrine circuits in response to early life adversity are likely risk factors of life time vulnerability to stress. Hereby, the hypothalamic-pituitary-adrenal (HPA) axis integrates cognitive, behavioral, and emotional responses to early-life stress and can be epigenetically programed during sensitive windows of development. Epigenetic mechanisms, comprising reciprocal regulation of chromatin structure and DNA methylation, are important to establish and maintain sustained, yet potentially reversible, changes in gene transcription. The relevance of these findings for the development of PTSD requires further studies in humans where experience-dependent epigenetic programing can additionally depend on genetic variation in the underlying substrates which may protect from or advance disease development. Overall, identification of early-life stress-associated epigenetic risk markers informing on previous stress history can help to advance early diagnosis, personalized prevention, and timely therapeutic interventions, thus reducing long-term social and health costs. PMID:23966957

  18. Epigenetic alterations in gastric cancer (Review)

    PubMed Central

    FU, DU-GUAN

    2015-01-01

    Gastric cancer is one of the most common types of cancer and the second most common cause of cancer-related mortality worldwide. An increasing number of recent studies have confirmed that gastric cancer is a multistage pathological state that arises from environmental factors; dietary factors in particulary are considered to play an important role in the etiology of gastric cancer. Improper dietary habits are one of the primary concerns as they influence key molecular events associated with the onset of gastric carcinogenesis. In the field of genetics, anticancer research has mainly focused on the various genetic markers and genetic molecular mechanisms responsible for the development of this of this disease. Some of this research has proven to be very fruitful, providing insight into the possible mechamisms repsonsible for this disease and into possible treatment modalities. However, the mortality rate associated with gastric cancer remains relatively high. Thus, epigenetics has become a hot topic for research, whereby genetic markers are bypassed and this research is directed towards reversible epigenetic events, such as methylation and histone modifications that play a crucial role in carcinogenesis. The present review focuses on the epigenetic events which play an important role in the development and progression of this deadly disease, gastric cancer. PMID:25997695

  19. Aberration features in directional dark matter detection

    SciTech Connect

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu

    2012-08-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation.

  20. Epigenetic Alterations in Fanconi Anaemia: Role in Pathophysiology and Therapeutic Potential

    PubMed Central

    Belo, Hélio; Silva, Gabriela; Cardoso, Bruno A.; Porto, Beatriz; Minguillon, Jordi; Barbot, José; Coutinho, Jorge; Casado, Jose A.; Benedito, Manuela; Saturnino, Hema; Costa, Emília; Bueren, Juan A.; Surralles, Jordi; Almeida, Antonio

    2015-01-01

    Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population. PMID:26466379

  1. Metabolic defects provide a spark for the epigenetic switch in cancer

    PubMed Central

    Hitchler, Michael J; Domann, Frederick E

    2009-01-01

    Cancer is a pathology that is associated with aberrant gene expression and an altered metabolism. While changes in gene expression have historically been attributed to mutations, it has become apparent that epigenetic processes also play a critical role in controlling gene expression during carcinogenesis. Global changes in epigenetic processes including DNA methylation and histone modifications have been observed in cancer. These epigenetic alterations can aberrantly silence or activate gene expression during the formation of cancer; however, the process leading to this epigenetic switch in cancer remains unknown. Carcinogenesis is also associated with metabolic defects that increase mitochondrially derived reactive oxygen species, create an atypical redox state, and change the fundamental means by which cells produce energy. Here, we summarize the influence of these metabolic defects on epigenetic processes. Metabolic defects affect epigenetic enzymes by limiting availability of the cofactors like S-adenosylmethionine. Increased production of reactive oxygen species alters DNA methylation and histone modifications in tumor cells by oxidizing DNMTs and HMTs, or through direct oxidation of nucleotide bases. Lastly, the Warburg effect and increased glutamine consumption in cancer influences histone acetylation and methylation by affecting the activity of sirtuins and histone demethylases. PMID:19362589

  2. Epigenetic Regulation of Oxidative Stress in Ischemic Stroke

    PubMed Central

    Zhao, Haiping; Han, Ziping; Ji, Xunming; Luo, Yumin

    2016-01-01

    The prevalence and incidence of stroke rises with life expectancy. However, except for the use of recombinant tissue-type plasminogen activator, the translation of new therapies for acute stroke from animal models into humans has been relatively unsuccessful. Oxidative DNA and protein damage following stroke is typically associated with cell death. Cause-effect relationships between reactive oxygen species and epigenetic modifications have been established in aging, cancer, acute pancreatitis, and fatty liver disease. In addition, epigenetic regulatory mechanisms during stroke recovery have been reviewed, with focuses mainly on neural apoptosis, necrosis, and neuroplasticity. However, oxidative stress-induced epigenetic regulation in vascular neural networks following stroke has not been sufficiently explored. Improved understanding of the epigenetic regulatory network upon oxidative stress may provide effective antioxidant approaches for treating stroke. In this review, we summarize the epigenetic events, including DNA methylation, histone modification, and microRNAs, that result from oxidative stress following experimental stroke in animal and cell models, and the ways in which epigenetic changes and their crosstalk influence the redox state in neurons, glia, and vascular endothelial cells, helping us to understand the foregone and vicious epigenetic regulation of oxidative stress in the vascular neural network following stroke. PMID:27330844

  3. Link between Epigenomic Alterations and Genome-Wide Aberrant Transcriptional Response to Allergen in Dendritic Cells Conveying Maternal Asthma Risk

    PubMed Central

    Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V.

    2013-01-01

    We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes. PMID:23950928

  4. MicroRNA modulators of epigenetic regulation, the tumor microenvironment and the immune system in lung cancer.

    PubMed

    Rusek, Anna Maria; Abba, Mohammed; Eljaszewicz, Andrzej; Moniuszko, Marcin; Niklinski, Jacek; Allgayer, Heike

    2015-01-01

    Cancer is an exceedingly complex disease that is orchestrated and driven by a combination of multiple aberrantly regulated processes. The nature and depth of involvement of individual events vary between cancer types, and in lung cancer, the deregulation of the epigenetic machinery, the tumor microenvironment and the immune system appear to be especially relevant. The contribution of microRNAs to carcinogenesis and cancer progression is well established with many reports and investigations describing the involvement of microRNAs in lung cancer, however most of these studies have concentrated on single microRNA-target relations and have not adequately addressed the complexity of their interactions. In this review, we focus, in part, on the role of microRNAs in the epigenetic regulation of lung cancer where they act as active molecules modulating enzymes that take part in methylation-mediated silencing and chromatin remodeling. Additionally, we highlight their contribution in controlling and modulating the tumor microenvironment and finally, we describe their role in the critical alteration of essential molecules that influence the immune system in lung cancer development and progression. PMID:25743773

  5. Key Genetic and Epigenetic Mechanisms in Chemical Carcinogenesis.

    PubMed

    Ravegnini, Gloria; Sammarini, Gulia; Hrelia, Patrizia; Angelini, Sabrina

    2015-11-01

    DNA sequence and genetic factors alone cannot fully explain the many processes implicated in diseases initiation and development. It is now well understood that additional factors are involved in a final resulting phenotype. Epigenetic modifications, heritable changes not affecting the DNA sequence, are a key phenomenon at the basis of normal growth and differentiation. However, these can be defective leading to diseases, such as cancer. An increasing body of literature reports the environmental and occupational exposure to a mixture of natural and man-produced substances leading to epigenetic alterations. The identification of key genetic and/or epigenetic events involved in chemical carcinogenesis is an important step towards the discovery of biomarkers that can be used to evaluate the exposure, predict biological effects, and prevent adverse health consequences. Here, we focus on epidemiological studies to review the most recent advances in understanding genetic and epigenetic factors in relation to particulate matter, benzene and polycyclic aromatic hydrocarbons exposure. PMID:26500287

  6. Alzheimer's disease and epigenetic diet.

    PubMed

    Sezgin, Zeynep; Dincer, Yildiz

    2014-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease. Many efforts have been directed to prevent AD due to its rising prevalence and the lack of an effective curative treatment. Various epigenetic mechanisms are linked to pathogenesis of AD. Epigenetic alterations may occur through external factors and are known for their reversibility. Dietary factors can influence epigenetic mechanisms. Several neuroprotective nutrients have been shown to enhance cognition, memory and other impaired functions seen in AD. Within recent years neuroprotective nutrients have gained more attention in the field of epigenetic. A growing body of evidence suggest that epigenetic changes triggered by dietary nutrients have an important role in health and in prevention of some diseases, especially neurodegenerative disorders. Several studies have shown that folic acid, vitamin B12, choline, zinc, selenium, dietary polyphenols are capable of interacting with epigenetic mechanisms and ultimately gene expression. Epigenetic mechanisms resulting in neuronal dysfunction may be modified by diet. Therefore manipulation of epigenetic mechanisms via dietary nutrients may affect influence the vulnerability of neurons to degeneration which is seen in AD. The aim of this article is to provide a brief overview about the recent findings related to epigenetic alterations that are linked to AD pathogenesis, and to discuss the bioactive nutrients which can affect these epigenetic mechanisms. PMID:25290336

  7. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  8. Hypersexuality Addiction and Withdrawal: Phenomenology, Neurogenetics and Epigenetics.

    PubMed

    Blum, Kenneth; Badgaiyan, Rajendra D; Gold, Mark S

    2015-07-01

    Hypersexuality is now part of the DSM-V and has been defined as abnormally increased sexual activity. Epidemiological and clinical studies have shown that this non-paraphilic condition consists of "excessive" sexual behaviors and disorders accompanied by personal distress and social and medical morbidity. Hypersexual disorder is conceptualized as primarily a non-paraphilic sexual desire disorder with impulsivity. Pathophysiological perspectives include dysregulation of sexual arousal and desire, sexual impulsivity, sexual addiction, and sexual compulsivity. The nucleus accumbens, situated within the ventral striatum, mediates the reinforcing effects of drugs of abuse, such as cocaine, alcohol, nicotine, and food as well as music. Indeed, it is believed that this structure mandates behaviors elicited by incentive stimuli. These behaviors include natural rewards like feeding, drinking, sexual behavior, and exploratory locomotion. An essential rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. Here, we are hypothesizing that there is a common mechanism of action (MOA) for the powerful effects drugs, music, food, and sex have on human motivation. The human drive for the three necessary motivational behaviors "hunger, thirst, and sex" may all have common molecular genetic antecedents that, if impaired, lead to aberrant behaviors. We hypothesize that based on a plethora of scientific support hypersexual activity is indeed like drugs, food, and music that activate brain mesolimbic reward circuitry. Moreover, dopaminergic gene and possibly other candidate neurotransmitter-related gene polymorphisms affect both hedonic and anhedonic behavioral outcomes. There is little known about both the genetics and epigenetics of hypersexuality in the current literature. However, we anticipate that future studies based on assessments with clinical instruments combined with genotyping of sex addicts will provide

  9. Epigenetics: Tools and Technologies

    PubMed Central

    Janzen, William P.; Wigle, Tim J.; Jin, Jian; Frye, Stephen V.

    2010-01-01

    Epigenetics refers to heritable changes that control how the genome is accessed in different cell-types and during development and differentiation. Even though each cell contains essentially the same genetic code, epigenetic mechanisms permit specialization of function between cells. The state of chromatin, the complex of histone proteins, RNA and DNA that efficiently package the genome, is largely regulated by specific modifications to histone proteins and DNA, and the recognition of these marks by other proteins and protein complexes. The enzymes that produce these modifications (the ‘writers’), the proteins that recognize them (the ‘readers’), and the enzymes that remove them (the ‘erasers’) are critical targets for manipulation in order to further understand the histone code and its role in biology and human disease. PMID:21243036

  10. Theory of epigenetic coding.

    PubMed

    Elder, D

    1984-06-01

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward. PMID:6748695

  11. Metabolism, longevity and epigenetics.

    PubMed

    Cosentino, Claudia; Mostoslavsky, Raul

    2013-05-01

    Metabolic homeostasis and interventions that influence nutrient uptake are well-established means to influence lifespan even in higher eukaryotes. Until recently, the molecular mechanisms explaining such an effect remained scantily understood. Sirtuins are a group of protein deacetylases that depend on the metabolic intermediate NAD(+) as a cofactor for their function. For this reason they sense metabolic stress and in turn function at multiple levels to exert proper metabolic adaptation. Among other things, sirtuins can perform as histone deacetylases inducing epigenetic changes to modulate transcription and DNA repair. Recent studies have indicated that beyond sirtuins, the activity of other chromatin modifiers, such as histone acetyl transferases, might also be tightly linked to the availability of their intermediate metabolite acetyl-CoA. We summarize current knowledge of the emerging concepts indicating close crosstalk between the epigenetic machineries able to sense metabolic stress, their adaptive metabolic responses and their potential role in longevity. PMID:23467663

  12. Neurological and Epigenetic Implications of Nutritional Deficiencies on Psychopathology: Conceptualization and Review of Evidence

    PubMed Central

    Liu, Jianghong; Zhao, Sophie R.; Reyes, Teresa

    2015-01-01

    In recent years, a role for epigenetic modifications in the pathophysiology of disease has received significant attention. Many studies are now beginning to explore the gene–environment interactions, which may mediate early-life exposure to risk factors, such as nutritional deficiencies and later development of behavioral problems in children and adults. In this paper, we review the current literature on the role of epigenetics in the development of psychopathology, with a specific focus on the potential for epigenetic modifications to link nutrition and brain development. We propose a conceptual framework whereby epigenetic modifications (e.g., DNA methylation) mediate the link between micro- and macro-nutrient deficiency early in life and brain dysfunction (e.g., structural aberration, neurotransmitter perturbation), which has been linked to development of behavior problems later on in life. PMID:26251900

  13. Neurological and Epigenetic Implications of Nutritional Deficiencies on Psychopathology: Conceptualization and Review of Evidence.

    PubMed

    Liu, Jianghong; Zhao, Sophie R; Reyes, Teresa

    2015-01-01

    In recent years, a role for epigenetic modifications in the pathophysiology of disease has received significant attention. Many studies are now beginning to explore the gene-environment interactions, which may mediate early-life exposure to risk factors, such as nutritional deficiencies and later development of behavioral problems in children and adults. In this paper, we review the current literature on the role of epigenetics in the development of psychopathology, with a specific focus on the potential for epigenetic modifications to link nutrition and brain development. We propose a conceptual framework whereby epigenetic modifications (e.g., DNA methylation) mediate the link between micro- and macro-nutrient deficiency early in life and brain dysfunction (e.g., structural aberration, neurotransmitter perturbation), which has been linked to development of behavior problems later on in life. PMID:26251900

  14. Transgenerational epigenetic inheritance: More questions than answers

    PubMed Central

    Daxinger, Lucia; Whitelaw, Emma

    2010-01-01

    Epigenetic modifications are widely accepted as playing a critical role in the regulation of gene expression and thereby contributing to the determination of the phenotype of multicellular organisms. In general, these marks are cleared and re-established each generation, but there have been reports in a number of model organisms that at some loci in the genome this clearing is incomplete. This phenomenon is referred to as transgenerational epigenetic inheritance. Moreover, recent evidence shows that the environment can stably influence the establishment of the epigenome. Together, these findings suggest that an environmental event in one generation could affect the phenotype in subsequent generations, and these somewhat Lamarckian ideas are stimulating interest from a broad spectrum of biologists, from ecologists to health workers. PMID:21041414

  15. Genetic and epigenetic regulation of intestinal fibrosis

    PubMed Central

    Li, Chao

    2016-01-01

    Crohn’s disease affects those individuals with polygenic risk factors. The identified risk loci indicate that the genetic architecture of Crohn’s disease involves both innate and adaptive immunity and the response to the intestinal environment including the microbiome. Genetic risk alone, however, predicts only 25% of disease, indicating that other factors, including the intestinal environment, can shape the epigenome and also confer heritable risk to patients. Patients with Crohn’s disease can have purely inflammatory disease, penetrating disease or fibrostenosis. Analysis of the genetic risk combined with epigenetic marks of Crohn’s disease and other disease associated with organ fibrosis reveals common events are affecting the genes and pathways key to development of fibrosis. This review will focus on what is known about the mechanisms by which genetic and epigenetic risk factors determine development of fibrosis in Crohn’s disease and contrast that with other fibrotic conditions. PMID:27536359

  16. Genetic and epigenetic regulation of intestinal fibrosis.

    PubMed

    Li, Chao; Kuemmerle, John F

    2016-08-01

    Crohn's disease affects those individuals with polygenic risk factors. The identified risk loci indicate that the genetic architecture of Crohn's disease involves both innate and adaptive immunity and the response to the intestinal environment including the microbiome. Genetic risk alone, however, predicts only 25% of disease, indicating that other factors, including the intestinal environment, can shape the epigenome and also confer heritable risk to patients. Patients with Crohn's disease can have purely inflammatory disease, penetrating disease or fibrostenosis. Analysis of the genetic risk combined with epigenetic marks of Crohn's disease and other disease associated with organ fibrosis reveals common events are affecting the genes and pathways key to development of fibrosis. This review will focus on what is known about the mechanisms by which genetic and epigenetic risk factors determine development of fibrosis in Crohn's disease and contrast that with other fibrotic conditions. PMID:27536359

  17. Epigenetic dysregulation in cognitive disorders.

    PubMed

    Gräff, Johannes; Mansuy, Isabelle M

    2009-07-01

    Epigenetic mechanisms are not only essential for biological functions requiring stable molecular changes such as the establishment of cell identity and tissue formation, they also constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that both aspects of epigenetic mechanisms play a pivotal role in complex brain functions. Evidence from patients with neurodegenerative and neurodevelopmental disorders such as Alzheimer's disease and Rett syndrome indicated that epigenetic mechanisms and chromatin remodeling need to be tightly controlled for proper cognitive functions, and their dysregulation can have devastating consequences. However, because they are dynamic, epigenetic mechanisms are also potentially reversible and may provide powerful means for pharmacological intervention. This review outlines major cognitive disorders known to be associated with epigenetic dysregulation, and discusses the potential of 'epigenetic medicine' as a promising cure. PMID:19508697

  18. Paternal chronic colitis causes epigenetic inheritance of susceptibility to colitis.

    PubMed

    Tschurtschenthaler, Markus; Kachroo, Priyadarshini; Heinsen, Femke-Anouska; Adolph, Timon Erik; Rühlemann, Malte Christoph; Klughammer, Johanna; Offner, Felix Albert; Ammerpohl, Ole; Krueger, Felix; Smallwood, Sébastien; Szymczak, Silke; Kaser, Arthur; Franke, Andre

    2016-01-01

    Inflammatory bowel disease (IBD) arises by unknown environmental triggers in genetically susceptible individuals. Epigenetic regulation of gene expression may integrate internal and external influences and may thereby modulate disease susceptibility. Epigenetic modification may also affect the germ-line and in certain contexts can be inherited to offspring. This study investigates epigenetic alterations consequent to experimental murine colitis induced by dextran sodium sulphate (DSS), and their paternal transmission to offspring. Genome-wide methylome- and transcriptome-profiling of intestinal epithelial cells (IECs) and sperm cells of males of the F0 generation, which received either DSS and consequently developed colitis (F0(DSS)), or non-supplemented tap water (F0(Ctrl)) and hence remained healthy, and of their F1 offspring was performed using reduced representation bisulfite sequencing (RRBS) and RNA-sequencing (RNA-Seq), respectively. Offspring of F0(DSS) males exhibited aberrant methylation and expression patterns of multiple genes, including Igf1r and Nr4a2, which are involved in energy metabolism. Importantly, DSS colitis in F0(DSS) mice was associated with decreased body weight at baseline of their F1 offspring, and these F1 mice exhibited increased susceptibility to DSS-induced colitis compared to offspring from F0(Ctrl) males. This study hence demonstrates epigenetic transmissibility of metabolic and inflammatory traits resulting from experimental colitis. PMID:27538787

  19. Epigenetic signaling in psychiatric disorders: stress and depression.

    PubMed

    Bagot, Rosemary C; Labonté, Benoit; Peña, Catherine J; Nestler, Eric J

    2014-09-01

    Psychiatric disorders are complex multifactorial disorders involving chronic alterations in neural circuit structure and function. While genetic factors play a role in the etiology of disorders such as depression, addiction, and schizophrenia, relatively high rates of discordance among identical twins clearly point to the importance of additional factors. Environmental factors, such as stress, play a major role in the psychiatric disorders by inducing stable changes in gene expression, neural circuit function, and ultimately behavior. Insults at the developmental stage and in adulthood appear to induce distinct maladaptations. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression can be modeled in animals by inducing disease-like states through environmental manipulations, and these studies can provide a more general understanding of epigenetic mechanisms in psychiatric disorders. Understanding how environmental factors recruit the epigenetic machinery in animal models is providing new insights into disease mechanisms in humans. PMID:25364280

  20. Paternal chronic colitis causes epigenetic inheritance of susceptibility to colitis

    PubMed Central

    Tschurtschenthaler, Markus; Kachroo, Priyadarshini; Heinsen, Femke-Anouska; Adolph, Timon Erik; Rühlemann, Malte Christoph; Klughammer, Johanna; Offner, Felix Albert; Ammerpohl, Ole; Krueger, Felix; Smallwood, Sébastien; Szymczak, Silke; Kaser, Arthur; Franke, Andre

    2016-01-01

    Inflammatory bowel disease (IBD) arises by unknown environmental triggers in genetically susceptible individuals. Epigenetic regulation of gene expression may integrate internal and external influences and may thereby modulate disease susceptibility. Epigenetic modification may also affect the germ-line and in certain contexts can be inherited to offspring. This study investigates epigenetic alterations consequent to experimental murine colitis induced by dextran sodium sulphate (DSS), and their paternal transmission to offspring. Genome-wide methylome- and transcriptome-profiling of intestinal epithelial cells (IECs) and sperm cells of males of the F0 generation, which received either DSS and consequently developed colitis (F0DSS), or non-supplemented tap water (F0Ctrl) and hence remained healthy, and of their F1 offspring was performed using reduced representation bisulfite sequencing (RRBS) and RNA-sequencing (RNA-Seq), respectively. Offspring of F0DSS males exhibited aberrant methylation and expression patterns of multiple genes, including Igf1r and Nr4a2, which are involved in energy metabolism. Importantly, DSS colitis in F0DSS mice was associated with decreased body weight at baseline of their F1 offspring, and these F1 mice exhibited increased susceptibility to DSS-induced colitis compared to offspring from F0Ctrl males. This study hence demonstrates epigenetic transmissibility of metabolic and inflammatory traits resulting from experimental colitis. PMID:27538787

  1. Turning on the Radio: Epigenetic Inhibitors as Potential Radiopriming Agents.

    PubMed

    Oronsky, Bryan; Scicinski, Jan; Kim, Michelle M; Cabrales, Pedro; Salacz, Michael E; Carter, Corey A; Oronsky, Neil; Lybeck, Harry; Lybeck, Michelle; Larson, Christopher; Reid, Tony R; Oronsky, Arnold

    2016-01-01

    First introduced during the late 1800s, radiation therapy is fundamental to the treatment of cancer. In developed countries, approximately 60% of all patients receive radiation therapy (also known as the sixty percenters), which makes radioresistance in cancer an important and, to date, unsolved, clinical problem. Unfortunately, the therapeutic refractoriness of solid tumors is the rule not the exception, and the ubiquity of resistance also extends to standard chemotherapy, molecularly targeted therapy and immunotherapy. Based on extrapolation from recent clinical inroads with epigenetic agents to prime refractory tumors for maximum sensitivity to concurrent or subsequent therapies, the radioresistant phenotype is potentially reversible, since aberrant epigenetic mechanisms are critical contributors to the evolution of resistant subpopulations of malignant cells. Within the framework of a syllogism, this review explores the emerging link between epigenetics and the development of radioresistance and makes the case that a strategy of pre- or co-treatment with epigenetic agents has the potential to, not only derepress inappropriately silenced genes, but also increase reactive oxygen species production, resulting in the restoration of radiosensitivity. PMID:27384589

  2. Epigenetic deregulation of the COX pathway in cancer.

    PubMed

    Cebola, Inês; Peinado, Miguel A

    2012-10-01

    Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients. PMID:22580191

  3. Epigenetics: the neglected key to minimize learning and memory deficits in Down syndrome.

    PubMed

    Dekker, Alain D; De Deyn, Peter P; Rots, Marianne G

    2014-09-01

    Down syndrome (DS) is the most common genetic intellectual disability, caused by the triplication of the human chromosome 21 (HSA21). Although this would theoretically lead to a 1.5 fold increase in gene transcription, transcript levels of many genes significantly deviate. Surprisingly, the underlying cause of this gene expression variation has been largely neglected so far. Epigenetic mechanisms, including DNA methylation and post-translational histone modifications, regulate gene expression and as such might play a crucial role in the development of the cognitive deficits in DS. Various overexpressed HSA21 proteins affect epigenetic mechanisms and DS individuals are thus likely to present epigenetic aberrations. Importantly, epigenetic marks are reversible, offering a huge therapeutic potential to alleviate or cure certain genetic deficits. Current epigenetic therapies are already used for cancer and epilepsy, and might provide novel possibilities for cognition-enhancing treatment in DS as well. To that end, this review discusses the still limited knowledge on epigenetics in DS and describes the potential of epigenetic therapies to reverse dysregulated gene expression. PMID:24858130

  4. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain.

    PubMed

    Thomas, Jaya Mary; Surendran, Sumi; Abraham, Mathew; Rajavelu, Arumugam; Kartha, Chandrasekharan C

    2016-01-01

    Vascular malformations are developmental congenital abnormalities of the vascular system which may involve any segment of the vascular tree such as capillaries, veins, arteries, or lymphatics. Arteriovenous malformations (AVMs) are congenital vascular lesions, initially described as "erectile tumors," characterized by atypical aggregation of dilated arteries and veins. They may occur in any part of the body, including the brain, heart, liver, and skin. Severe clinical manifestations occur only in the brain. There is absence of normal vascular structure at the subarteriolar level and dearth of capillary bed resulting in aberrant arteriovenous shunting. The causative factor and pathogenic mechanisms of AVMs are unknown. Importantly, no marker proteins have been identified for AVM. AVM is a high flow vascular malformation and is considered to develop because of variability in the hemodynamic forces of blood flow. Altered local hemodynamics in the blood vessels can affect cellular metabolism and may trigger epigenetic factors of the endothelial cell. The genes that are recognized to be associated with AVM might be modulated by various epigenetic factors. We propose that AVMs result from a series of changes in the DNA methylation and histone modifications in the genes connected to vascular development. Aberrant epigenetic modifications in the genome of endothelial cells may drive the artery or vein to an aberrant phenotype. This review focuses on the molecular pathways of arterial and venous development and discusses the role of hemodynamic forces in the development of AVM and possible link between hemodynamic forces and epigenetic mechanisms in the pathogenesis of AVM. PMID:27453762

  5. The mechanisms of HSC activation and epigenetic regulation of HSCs phenotypes

    PubMed Central

    Page, Agata; Mann, Derek A.; Mann, Jelena

    2016-01-01

    Epigenetics is a dynamically expanding field of science entailing numerous regulatory mechanisms controlling changes of gene expression in response to environmental factors. Over the recent years there has been a great interest in epigenetic marks as a potential diagnostic and prognostic tool or future target for treatment of various human diseases. There is an increasing body of published research to suggest that epigenetic events regulate progression of chronic liver disease. Experimental manipulation of epigenetic signatures such as DNA methylation, histone acetylation / methylation and the activities of proteins that either annotate or interpret these epigenetic marks can have profound effects on the activation and phenotype of HSC, key cells responsible for onset and progression of liver fibrosis. This review presents recent advances in epigenetic alterations, which could provide mechanistic insight into the pathogenesis of chronic liver disease and provide novel clinical applications.

  6. Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction.

    PubMed

    Sakellariou, Despoina; Chiourea, Maria; Raftopoulou, Christina; Gagos, Sarantis

    2013-11-01

    Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth. PMID:24339742

  7. Protein Arginine Methylation and Citrullination in Epigenetic Regulation.

    PubMed

    Fuhrmann, Jakob; Thompson, Paul R

    2016-03-18

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  8. Protein Arginine Methylation and Citrullination in Epigenetic Regulation

    PubMed Central

    2015-01-01

    The post-translational modification of arginine residues represents a key mechanism for the epigenetic control of gene expression. Aberrant levels of histone arginine modifications have been linked to the development of several diseases including cancer. In recent years, great progress has been made in understanding the physiological role of individual arginine modifications and their effects on chromatin function. The present review aims to summarize the structural and functional aspects of histone arginine modifying enzymes and their impact on gene transcription. We will discuss the potential for targeting these proteins with small molecules in a variety of disease states. PMID:26686581

  9. Epigenetics of complex diseases: from general theory to laboratory experiments.

    PubMed

    Schumacher, A; Petronis, A

    2006-01-01

    Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases. PMID:16909908

  10. Maintaining Epigenetic Inheritance During DNA Replication in Plants

    PubMed Central

    Iglesias, Francisco M.; Cerdán, Pablo D.

    2016-01-01

    Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are “remembered” temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance). This “memory” effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants. PMID:26870059

  11. Epigenetic contributions to the developmental origins of adult lung disease.

    PubMed

    Joss-Moore, Lisa A; Lane, Robert H; Albertine, Kurt H

    2015-04-01

    Perinatal insults, including intrauterine growth restriction, preterm birth, maternal exposure to toxins, or dietary deficiencies produce deviations in the epigenome of lung cells. Occurrence of perinatal insults often coincides with the final stages of lung development. The result of epigenome disruptions in response to perinatal insults during lung development may be long-term structural and functional impairment of the lung and development of lung disease. Understanding the contribution of epigenetic mechanisms to life-long lung disease following perinatal insults is the focus of the developmental origins of adult lung disease field. DNA methylation, histone modifications, and microRNA changes are all observed in various forms of lung disease. However, the perinatal contribution to such epigenetic mechanisms is poorly understood. Here we discuss the developmental origins of adult lung disease, the interplay between perinatal events, lung development and disease, and the role that epigenetic mechanisms play in connecting these events. PMID:25493710

  12. Epigenetic Control of Immunity

    PubMed Central

    Busslinger, Meinrad; Tarakhovsky, Alexander

    2014-01-01

    Immunity relies on the heterogeneity of immune cells and their ability to respond to pathogen challenges. In the adaptive immune system, lymphocytes display a highly diverse antigen receptor repertoire that matches the vast diversity of pathogens. In the innate immune system, the cell's heterogeneity and phenotypic plasticity enable flexible responses to changes in tissue homeostasis caused by infection or damage. The immune responses are calibrated by the graded activity of immune cells that can vary from yeast-like proliferation to lifetime dormancy. This article describes key epigenetic processes that contribute to the function of immune cells during health and disease. PMID:24890513

  13. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  14. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    SciTech Connect

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  15. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  16. Epigenetic Alterations in Alzheimer's Disease.

    PubMed

    Sanchez-Mut, Jose V; Gräff, Johannes

    2015-01-01

    Alzheimer's disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD. PMID:26734709

  17. Epigenetic modifications in osteogenic differentiation and transformation.

    PubMed

    Thomas, David; Kansara, Maya

    2006-07-01

    Almost all tumors are characterized by both architectural and cellular abnormalities in differentiation. Osteoblast development is relatively well understood, making osteosarcoma a good model for understanding how tumorigenesis perturbs normal differentiation. We argue that there are two key transition points in normal cellular differentiation that are the focus of oncogenic events, in both of which epigenetic processes are critical. The first is the transition from an uncommitted pluripotent precursor (mesenchymal stem cell) to the 'transit-amplifying compartment' of the osteoblast lineage. This transition, normally exquisitely regulated in space and time, is abnormal in cancer. The second involves termination of lineage expansion, equally tightly regulated under normal circumstances. In cancer, the mechanisms that mandate eventual cessation of cell division are almost universally disrupted. This model predicts that key differentiation genes in bone, such as RUNX2, act in an oncogenic fashion to initiate entry into a proliferative phase of cell differentiation, and anti-oncogenically into the post-mitotic state, resulting in ambivalent roles in tumorigenesis. Polycomb genes exemplify epigenetic processes in the stem cell compartment and tumorigenesis, and are implicated in skeletal development in vivo. The epigenetic functions of the retinoblastoma protein, which plays a key role in tumorigenesis in bone, is discussed in the context of terminal cell cycle exit. PMID:16598744

  18. Significance of Epigenetic Landscape in Cartilage Regeneration from the Cartilage Development and Pathology Perspective

    PubMed Central

    Li, Jingting; Ohliger, James

    2014-01-01

    Regenerative therapies for cartilage defects have been greatly advanced by progress in both the stem cell biology and tissue engineering fields. Despite notable successes, significant barriers remain including shortage of autologous cell sources and generation of a stable chondrocyte phenotype using progenitor cells. Increasing demands for the treatment of degenerative diseases, such as osteoarthritis and rheumatoid arthritis, highlight the importance of epigenetic remodeling in cartilage regeneration. Epigenetic regulatory mechanisms, such as microRNAs, DNA methylation, and histone modifications, have been intensively studied due to their direct regulatory role on gene expression. However, a thorough understanding of the environmental factors that initiate these epigenetic events may provide greater insight into the prevention of degenerative diseases and improve the efficacy of treatments. In other words, if we could identify a specific factor from the environment and its downstream signaling events, then we could stop or retard degradation and enhance cartilage regeneration. A more operational definition of epigenetic remodeling has recently been proposed by categorizing the signals during the epigenetic process into epigenators, initiators, and maintainers. This review seeks to compile and reorganize the existing literature pertaining to epigenetic remodeling events placing emphasis on perceiving the landscape of epigenetic mechanisms during cartilage regeneration with the new operational definition, especially from the environmental factors' point of view. Progress in understanding epigenetic regulatory mechanisms could benefit cartilage regeneration and engineering on a larger scale and provide more promising therapeutic applications. PMID:24555773

  19. Aberrant splicing and drug resistance in AML.

    PubMed

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  20. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  1. Coating-induced wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Reiley, Daniel J.; Chipman, Russell A.

    1992-12-01

    The coatings which are used on telescope mirrors and other optical interfaces can have a profound effect on the image quality formed by an optical system. This paper evaluates the defocus and astigmatism which are caused by the s- and p-phase shifts of coatings. These coating-induced wavefront aberrations are usually insignificant, but can, under certain circumstances, overshadow the geometric wavefront aberrations of the system. The wavefront aberrations induced by reflection-enhanced coatings on an f/1.5 Cassegrain telescope are numerically evaluated as an example.

  2. The changing concept of epigenetics.

    PubMed

    Jablonka, Eva; Lamb, Marion J

    2002-12-01

    We discuss the changing use of epigenetics, a term coined by Conrad Waddington in the 1940s, and how the epigenetic approach to development differs from the genetic approach. Originally, epigenetics referred to the study of the way genes and their products bring the phenotype into being. Today, it is primarily concerned with the mechanisms through which cells become committed to a particular form or function and through which that functional or structural state is then transmitted in cell lineages. We argue that modern epigenetics is important not only because it has practical significance for medicine, agriculture, and species conservation, but also because it has implications for the way in which we should view heredity and evolution. In particular, recognizing that there are epigenetic inheritance systems through which non-DNA variations can be transmitted in cell and organismal lineages broadens the concept of heredity and challenges the widely accepted gene-centered neo-Darwinian version of Darwinism. PMID:12547675

  3. Epigenetic variation and environmental change.

    PubMed

    Meyer, Peter

    2015-06-01

    Environmental conditions can change the activity of plant genes via epigenetic effects that alter the competence of genetic information to be expressed. This may provide a powerful strategy for plants to adapt to environmental change. However, as epigenetic changes do not modify DNA sequences and are therefore reversible, only those epi-mutations that are transmitted through the germline can be expected to contribute to a long-term adaptive response. The major challenge for the investigation of epigenetic adaptation theories is therefore to identify genomic loci that undergo epigenetic changes in response to environmental conditions, which alter their expression in a heritable way and which improve the plant's ability to adapt to the inducing conditions. This review focuses on the role of DNA methylation as a prominent epigenetic mark that controls chromatin conformation, and on its potential in mediating expression changes in response to environmental signals. PMID:25694547

  4. Multitarget Drugs: an Epigenetic Epiphany.

    PubMed

    Ganesan, A

    2016-06-20

    Epigenetics refers to changes in a biological phenotype that are not due to an underlying change in genotype. In eukaryotes, epigenetics involves a set of chemical modifications of the DNA and the histone proteins in nucleosomes. These dynamic changes are carried out by enzymes and modulate protein-protein and protein-nucleic acid interactions to determine whether specific genes are expressed or silenced. Both the epigenetic enzymes and recognition domains are currently important drug discovery targets, particularly for the treatment of cancer. This review summarizes the progress of epigenetic targets that have reached a clinical stage: DNA methyltransferases, histone deacetylases, lysine methyltransferases, lysine demethylases, and bromodomains; this is followed by a comprehensive survey of multitarget drugs that have included an epigenetic target as one of their mechanisms of action. PMID:26891251

  5. Epigenetics in acute kidney injury

    PubMed Central

    Tang, Jinhua; Zhuang, Shougang

    2015-01-01

    Purpose of review Recent advances in epigenetics indicate the involvement of several epigenetic modifications in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to summarize our understanding of recent advances in epigenetic regulation of AKI and provide mechanistic insight into the role of acetylation, methylation, and microRNA expression in the pathological processes of AKI. Recent findings Enhancement of protein acetylation by pharmacological inhibition of histone deacetylases (HDACs) leads to more severe tubular injury and impairment of renal structural and functional recovery. The changes in promoter DNA methylation occur in the kidney with ischemia/reperfusion. microRNA expression is associated with regulation of both renal injury and regeneration after AKI. Summary Recent studies on epigenetic regulation indicate that acetylation, methylation, and microRNA expression are critically implicated in the pathogenesis of AKI. Strategies targeting epigenetic processes may hold a therapeutic potential for patients with AKI. PMID:26050122

  6. ENERGETICS, EPIGENETICS, MITOCHONDRIAL GENETICS

    PubMed Central

    Wallace, Douglas C.; Fan, Weiwei

    2011-01-01

    The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism’s energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), S-adenosyl-methionine (SAM), and reduced NAD+. When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylaton via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases. PMID:19796712

  7. Epigenetics and its implications for behavioral neuroendocrinology

    PubMed Central

    Crews, David

    2008-01-01

    Individuals vary in their sociosexual behaviors and reactivity. How the organism interacts with the environment to produce this variation has been a focus in psychology since its inception as a scientific discipline. There is now no question that cumulative experiences throughout life history interact with genetic predispositions to shape the individual’s behavior. Recent evidence suggests that events in past generations may also influence how an individual responds to events in their own life history. Epigenetics is the study of how the environment can affect the genome of the individual during its development as well as the development of its descendants, all without changing the DNA sequence. Several distinctions must be made if this research is to become a staple in behavioral neuroendocrinology. The first distinction concerns perspective, and the need to distinguish and appreciate, the differences between Molecular versus Molar epigenetics. Each has its own lineage of investigation, yet both appear to be unaware of one another. Second, it is important to distinguish the difference between Context-Dependent versus Germline-Dependent epigenetic modifications. In essence the difference is one of the mechanism of heritability or transmission within, as apposed to across, generations. This review illustrates these distinctions while describing several rodent models that have shown particular promise for unraveling the contribution of genetics and the environment on sociosexual behavior. The first focuses on genetically-modified mice and makes the point that the early litter environment alters subsequent brain activity and behavior. This work emphasizes the need to understand behavioral development when doing research with such animals. The second focuses on a new rat model in which the epigenome is permanently imprinted, an effect that crosses generations to impact the descendants without further exposure to the precipitating agent. This work raises the question

  8. Historical aspects of aberration correction.

    PubMed

    Rose, Harald H

    2009-06-01

    A brief history of the development of direct aberration correction in electron microscopy is outlined starting from the famous Scherzer theorem established in 1936. Aberration correction is the long story of many seemingly fruitless efforts to improve the resolution of electron microscopes by compensating for the unavoidable resolution-limiting aberrations of round electron lenses over a period of 50 years. The successful breakthrough, in 1997, can be considered as a quantum step in electron microscopy because it provides genuine atomic resolution approaching the size of the radius of the hydrogen atom. The additional realization of monochromators, aberration-free imaging energy filters and spectrometers has been leading to a new generation of analytical electron microscopes providing elemental and electronic information about the object on an atomic scale. PMID:19254915

  9. Frequent aberrant methylation of p16INK4a in primary rat lung tumors.

    PubMed Central

    Swafford, D S; Middleton, S K; Palmisano, W A; Nikula, K J; Tesfaigzi, J; Baylin, S B; Herman, J G; Belinsky, S A

    1997-01-01

    The p16INK4a (p16) tumor suppressor gene is frequently inactivated by homozygous deletion or methylation of the 5' CpG island in cell lines derived from human non-small-cell lung cancers. However, the frequency of dysfunction in primary tumors appears to be significantly lower than that in cell lines. This discordance could result from the occurrence or selection of p16 dysfunction during cell culture. Alternatively, techniques commonly used to examine tumors for genetic and epigenetic alterations may not be sensitive enough to detect all dysfunctions within the heterogeneous cell population present in primary tumors. If p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in cell lines. The present investigation addressed this issue in primary rat lung tumors and corresponding derived cell lines. A further goal was to determine whether the aberrant p16 gene methylation seen in human tumors is a conserved event in this animal model. The rat p16 gene was cloned and sequenced, and the predicted amino acid sequence of its product found to be 62% homologous to the amino acid sequence of the human analog. Homozygous deletion accounted for loss of p16 expression in 8 of 20 cell lines, while methylation of the CpG island extending throughout exon 1 was observed in 9 of 20 cell lines. 2-Deoxy-5-azacytidine treatment of cell lines with aberrant methylation restored gene expression. The methylated phenotype seen in cell lines showed an absolute correlation with detection of methylation in primary tumors. Aberrant methylation was also detected in four of eight primary tumors in which the derived cell line contained a deletion in p16. These results substantiate the primary tumor as the origin for dysfunction of the p16 gene and implicate CpG island methylation as the major mechanism for inactivating this gene in the rat lung tumors examined. Furthermore, rat

  10. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review.

    PubMed

    Chappell, Grace; Pogribny, Igor P; Guyton, Kathryn Z; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as "carcinogenic to humans" (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  11. Genome-wide methylome analyses reveal novel epigenetic regulation patterns in schizophrenia and bipolar disorder.

    PubMed

    Li, Yongsheng; Camarillo, Cynthia; Xu, Juan; Arana, Tania Bedard; Xiao, Yun; Zhao, Zheng; Chen, Hong; Ramirez, Mercedes; Zavala, Juan; Escamilla, Michael A; Armas, Regina; Mendoza, Ricardo; Ontiveros, Alfonso; Nicolini, Humberto; Magaña, Alvaro Antonio Jerez; Rubin, Lewis P; Li, Xia; Xu, Chun

    2015-01-01

    Schizophrenia (SZ) and bipolar disorder (BP) are complex genetic disorders. Their appearance is also likely informed by as yet only partially described epigenetic contributions. Using a sequencing-based method for genome-wide analysis, we quantitatively compared the blood DNA methylation landscapes in SZ and BP subjects to control, both in an understudied population, Hispanics along the US-Mexico border. Remarkably, we identified thousands of differentially methylated regions for SZ and BP preferentially located in promoters 3'-UTRs and 5'-UTRs of genes. Distinct patterns of aberrant methylation of promoter sequences were located surrounding transcription start sites. In these instances, aberrant methylation occurred in CpG islands (CGIs) as well as in flanking regions as well as in CGI sparse promoters. Pathway analysis of genes displaying these distinct aberrant promoter methylation patterns showed enhancement of epigenetic changes in numerous genes previously related to psychiatric disorders and neurodevelopment. Integration of gene expression data further suggests that in SZ aberrant promoter methylation is significantly associated with altered gene transcription. In particular, we found significant associations between (1) promoter CGIs hypermethylation with gene repression and (2) CGI 3'-shore hypomethylation with increased gene expression. Finally, we constructed a specific methylation analysis platform that facilitates viewing and comparing aberrant genome methylation in human neuropsychiatric disorders. PMID:25734057

  12. Epigenetics in preimplantation mammalian development.

    PubMed

    Canovas, Sebastian; Ross, Pablo Juan

    2016-07-01

    Fertilization is a very dynamic period of comprehensive chromatin remodeling, from which two specialized cells result in a totipotent zygote. The formation of a totipotent cell requires extensive epigenetic remodeling that, although independent of modifications in the DNA sequence, still entails a profound cell-fate change, supported by transcriptional profile modifications. As a result of finely tuned interactions between numerous mechanisms, the goal of fertilization is to form a full healthy new individual. To avoid the persistence of alterations in epigenetic marks, the epigenetic information contained in each gamete is reset during early embryogenesis. Covalent modification of DNA by methylation, as well as posttranslational modifications of histone proteins and noncoding RNAs, appears to be the main epigenetic mechanisms that control gene expression. These allow different cells in an organism to express different transcription profiles, despite each cell containing the same DNA sequence. In the context of replacement of spermatic protamine with histones from the oocyte, active cell division, and specification of different lineages, active and passive mechanisms of epigenetic remodeling have been revealed as critical for editing the epigenetic profile of the early embryo. Importantly, redundant factors and mechanisms are likely in place, and only a few have been reported as critical for fertilization or embryo survival by the use of knockout models. The aim of this review is to highlight the main mechanisms of epigenetic remodeling that ensue after fertilization in mammals. PMID:27165992

  13. Epigenetics and nutritional environmental signals.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2014-07-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses. PMID:24861811

  14. Epigenetics and Nutritional Environmental Signals

    PubMed Central

    Mazzio, Elizabeth A.; Soliman, Karam F. A.

    2014-01-01

    All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific “epi-nutrients” can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based “epi-bioactive” constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses. PMID:24861811

  15. Complex disease, gender and epigenetics.

    PubMed

    Kaminsky, Zachary; Wang, Sun-Chong; Petronis, Arturas

    2006-01-01

    Gender differences in susceptibility to complex disease such as asthma, diabetes, lupus, autism and major depression, among numerous other disorders, represent one of the hallmarks of non-Mendelian biology. It has been generally accepted that endocrinological differences are involved in the sexual dimorphism of complex disease; however, specific molecular mechanisms of such hormonal effects have not been elucidated yet. This paper will review evidence that sex hormone action may be mediated via gene-specific epigenetic modifications of DNA and histones. The epigenetic modifications can explain sex effects at DNA sequence polymorphisms and haplotypes identified in gender-stratified genetic linkage and association studies. Hormone-induced DNA methylation and histone modification changes at specific gene regulatory regions may increase or reduce the risk of a disease. The epigenetic interpretation of sexual dimorphism fits well into the epigenetic theory of complex disease, which argues for the primary pathogenic role of inherited and/or acquired epigenetic misregulation rather than DNA sequence variation. The new experimental strategies, especially the high throughput microarray-based epigenetic profiling, can be used for testing the epigenetic hypothesis of gender effects in complex diseases. PMID:17438668

  16. Epigenetic Virtues of Chromodomains

    PubMed Central

    Blus, Bartlomiej J; Wiggins, Kimberly; Khorasanizadeh, Sepideh

    2011-01-01

    The chromatin organization modifier domain (chromodomain) was first identified as a motif associated with chromatin silencing in Drosophila. There is growing evidence that chromodomains are evolutionary conserved across different eukaryotic species to control diverse aspects of epigenetic regulation. Although originally reported as histone H3 methyllysine readers, the chromodomain functions have now expanded to recognition of other histone and non-histone partners as well as interaction with nucleic acids. Chromodomain binding to a diverse group of targets is mediated by a conserved substructure called the chromobox homology region. This motif can be used to predict methyllysine binding and distinguish chromodomains from related Tudor “Royal” family members. In this review, we discuss and classify various chromodomains according to their context, structure and the mechanism of target recognition. PMID:22023491

  17. Chromatin, epigenetics and stem cells.

    PubMed

    Roloff, Tim C; Nuber, Ulrike A

    2005-03-01

    Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. PMID:15819395

  18. Epigenetic Mechanisms of Drug Addiction

    PubMed Central

    Feng, Jian; Nestler, Eric J.

    2013-01-01

    Epigenetic regulation can mediate long-lasting changes in gene expression, which makes it an attractive mechanism for the stable behavioral abnormalities that characterize drug addiction. Recent research has unveiled numerous types of epigenetic modifications within the brain’s reward circuitry in animal models of drug addiction. In this review, we summarize the latest advances in the field, focusing on histone modifications, DNA methylation, and non-coding RNAs. We also highlight several areas for future research. Unraveling the highly complex epigenetic mechanisms of addiction is adding to our understanding of this syndrome and has the potential to trigger novel approaches for better diagnosis and therapy. PMID:23374537

  19. Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins

    PubMed Central

    Ballabio, Erica; Milne, Thomas A

    2014-01-01

    Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers. PMID:27308325

  20. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes

    PubMed Central

    Mar, Daniel; Gharib, Sina A.; Zager, Richard A.; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-01-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). Since epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study twenty key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1 and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS) and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, but also had major ischemia/reperfusion vs. endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome. PMID:26061546

  1. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes.

    PubMed

    Mar, Daniel; Gharib, Sina A; Zager, Richard A; Johnson, Ali; Denisenko, Oleg; Bomsztyk, Karol

    2015-10-01

    Aberrant gene expression is a molecular hallmark of acute kidney injury (AKI). As epigenetic processes control gene expression in a cell- and environment-defined manner, understanding the epigenetic pathways that regulate genes altered by AKI may open vital new insights into the complexities of disease pathogenesis and identify possible therapeutic targets. Here we used matrix chromatin immunoprecipitation and integrative analysis to study 20 key permissive and repressive epigenetic histone marks at transcriptionally induced Tnf, Ngal, Kim-1, and Icam-1 genes in mouse models of AKI; unilateral renal ischemia/reperfusion, lipopolysaccharide (LPS), and their synergistically injurious combination. Results revealed unexpected heterogeneity of transcriptional and epigenetic responses. Tnf and Ngal were transcriptionally upregulated in response to both treatments individually, and to combination treatment. Kim-1 was induced by ischemia/reperfusion and Icam-1 by LPS only. Epigenetic alterations at these genes exhibited distinct time-dependent changes that shared some similarities, such as reduction in repressive histone modifications, and also had major ischemia/reperfusion versus endotoxin differences. Thus, diversity of changes at AKI genes in response to different insults indicates involvement of several epigenetic pathways. This could be exploited pharmacologically through rational-drug design to alter the course and improve clinical outcomes of this syndrome. PMID:26061546

  2. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders

    PubMed Central

    Nardone, Stefano; Elliott, Evan

    2016-01-01

    Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism. PMID:27462204

  3. Epigenetic activities of flavonoids in the prevention and treatment of cancer.

    PubMed

    Busch, Christian; Burkard, Markus; Leischner, Christian; Lauer, Ulrich M; Frank, Jan; Venturelli, Sascha

    2015-01-01

    Aberrant epigenetic modifications are described in an increasing number of pathological conditions, including neurodegenerative diseases, cardiovascular diseases, diabetes mellitus type 2, obesity and cancer. The general reversibility of epigenetic changes makes them an attractive and promising target e.g. in the treatment of cancer. Thus, a growing number of epigenetically active compounds are currently tested in clinical trials for their therapeutic potential. Interestingly, many phytochemicals present in plant foods, particularly flavonoids, are suggested to be able to alter epigenetic cellular mechanisms. Flavonoids are natural phenol compounds that form a large group of secondary plant metabolites with interesting biological activities. They can be categorized into six major subclasses, which display diverse properties affecting the two best characterized epigenetic mechanisms: modulation of the DNA methylation status and histone acetylation. High dietary flavonoid intake has strongly been suggested to reduce the risk of numerous cancer entities in a large body of epidemiological studies. Established health-promoting effects of diets rich in fruit and vegetables are faced by efforts to use purified flavonoids as supplements or pharmaceuticals, whereupon data on the latter applications remain controversial. The purpose of this review is to give an overview of current research on flavonoids to further elucidate their potential in cancer prevention and therapy, thereby focusing on their distinct epigenetic activities. PMID:26161152

  4. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders.

    PubMed

    Nardone, Stefano; Elliott, Evan

    2016-01-01

    Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism. PMID:27462204

  5. Prediction of epigenetically regulated genes in breast cancer cell lines

    SciTech Connect

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  6. Metabolic Mechanisms of Epigenetic Regulation

    PubMed Central

    Meier, Jordan L.

    2014-01-01

    Chromatin modifications have been well-established to play a critical role in the regulation of genome function. Many of these modifications are introduced and removed by enzymes that utilize cofactors derived from primary metabolism. Recently, it has been shown that endogenous cofactors and metabolites can regulate the activity of chromatin-modifying enzymes, providing a direct link between the metabolic state of the cell and epigenetics. Here we review metabolic mechanisms of epigenetic regulation with an emphasis on their role in cancer. Focusing on three core mechanisms, we detail and draw parallels between metabolic and chemical strategies to modulate epigenetic signaling, and highlight opportunities for chemical biologists to help shape our knowledge of this emerging phenomenon. Continuing to integrate our understanding of metabolic and genomic regulatory mechanisms may help elucidate the role of nutrition in diseases such as cancer, while also providing a basis for new approaches to modulate epigenetic signaling for therapeutic benefit. PMID:24228614

  7. Epigenetic memory: the Lamarckian brain

    PubMed Central

    Fischer, Andre

    2014-01-01

    Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level. PMID:24719207

  8. Targeting epigenetic regulations in cancer.

    PubMed

    Ning, Bo; Li, Wenyuan; Zhao, Wei; Wang, Rongfu

    2016-01-01

    Epigenetic regulation of gene expression is a dynamic and reversible process with DNA methylation, histone modifications, and chromatin remodeling. Recently, groundbreaking studies have demonstrated the importance of DNA and chromatin regulatory proteins from different aspects, including stem cell, development, and tumor genesis. Abnormal epigenetic regulation is frequently associated with diseases and drugs targeting DNA methylation and histone acetylation have been approved for cancer therapy. Although the network of epigenetic regulation is more complex than people expect, new potential druggable chromatin-associated proteins are being discovered and tested for clinical application. Here we review the key proteins that mediate epigenetic regulations through DNA methylation, the acetylation and methylation of histones, and the reader proteins that bind to modified histones. We also discuss cancer associations and recent progress of pharmacological development of these proteins. PMID:26508480

  9. Epigenetics of Sleep and Chronobiology

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2014-01-01

    The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging. PMID:24477387

  10. Restoring totipotency through epigenetic reprogramming

    PubMed Central

    Wasson, Jadiel A.; Ruppersburg, Chelsey C.

    2013-01-01

    Epigenetic modifications are implicated in the maintenance and regulation of transcriptional memory by marking genes that were previously transcribed to facilitate transmission of these expression patterns through cell division. During germline specification and maintenance, extensive epigenetic modifications are acquired. Yet somehow at fertilization, the fusion of the highly differentiated sperm and egg results in formation of the totipotent zygote. This massive change in cell fate implies that the selective erasure and maintenance of epigenetic modifications at fertilization may be critical for the re-establishment of totipotency. In this review, we discuss recent studies that provide insight into the extensive epigenetic reprogramming that occurs around fertilization and the mechanisms that may be involved in the re-establishment of totipotency in the embryo. PMID:23117862

  11. Chromatin fiber allostery and the epigenetic code

    NASA Astrophysics Data System (ADS)

    Lesne, Annick; Foray, Nicolas; Cathala, Guy; Forné, Thierry; Wong, Hua; Victor, Jean-Marc

    2015-02-01

    The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an ‘epigenetic code’, by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.

  12. Sexual aberration or instinctual vicissitude? Revisiting freud's "the sexual aberrations".

    PubMed

    Phillips, Sidney H

    2014-04-01

    The author reconsiders Freud's "The Sexual Aberrations," the first of his Three Essays on the Theory of Sexuality (1905), in light of contemporary psychoanalytic theory. Are the concepts of sexual aberration and norm still viable? The author argues that they are necessary but insufficient elements in current theory. He then presents a competing model in which sexuality can be reduced to a more elemental level of disturbance and wish, where it is an expression of a nonsexual wish--for example, to possess or control the object to eliminate separateness. The author presents clinical material to demonstrate this alternative model. PMID:24777366

  13. Aberrations in asymmetrical electron lenses.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-08-01

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. PMID:22206603

  14. Epigenetic regulation of persistent pain

    PubMed Central

    Bai, Guang; Ren, Ke; Dubner, Ronald

    2014-01-01

    Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development/maintenance of persistent pain and, possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain. PMID:24948399

  15. Clinical implications of epigenetic regulation in oral cancer.

    PubMed

    D'Souza, Wendy; Saranath, Dhananjaya

    2015-12-01

    Oral cancer is a high incidence cancer which is of major public health concern in India being the most common cancer in males and fifth most common cancer in females in India, contributing to 26% of the global oral cancer burden. The major risk factors of oral cancer are tobacco, alcohol and high risk Human Papilloma Virus type 16/18. However, only 3-12% of the high risk individuals with dysplasia develop oral cancer. Thus, individual genomic variants representing the genomic constitution and epigenetic alterations play a critical role in the development of oral cancer. Extensive epigenetic studies on the molecular lesions including oncogenes, tumor suppressor genes, genes associated with apoptosis, DNA damage repair have been reported. The current review highlights epigenetic regulation with a focus on molecular biomarkers and epidrug therapy in oral cancer. Epigenetic regulation by hypermethylation, histone modifications and specific microRNAs are often associated with early events and advanced stages in oral cancer, and thus indicate epidrug therapy for intervention. The presence of epigenetic marks in oral lesions, cancers and tumor associated mucosa emphasizes indications as biomarkers and epidrugs with therapeutic potential for better patient management. PMID:26421863

  16. The genetics of insomnia--evidence for epigenetic mechanisms?

    PubMed

    Palagini, Laura; Biber, Knut; Riemann, Dieter

    2014-06-01

    Sleep is a complex physiological process and still remains one of the great mysteries of science. Over the past 10 y, genetic research has provided a new avenue to address the regulation and function of sleep. Gene loci that contribute quantitatively to sleep characteristics and variability have already been identified. However, up to now, a genetic basis has been established only for a few sleep disorders. Little is yet known about the genetic background of insomnia, one of the most common sleep disorders. According to the conceptualisation of the 3P model of insomnia, predisposing, precipitating and perpetuating factors contribute to the development and maintenance of insomnia. Growing evidence from studies of predisposing factors suggests a certain degree of heritability for insomnia and for a reactivity of sleep patterns to stressful events, explaining the emergence of insomnia in response to stressful life events. While a genetic susceptibility may modulate the impact of stress on the brain, this finding does not provide us with a complete understanding of the capacity of stress to produce long-lasting perturbations of brain and behaviour. Epigenetic gene-environment interactions have been identified just recently and may provide a more complex understanding of the genetic control of sleep and its disorders. It was recently hypothesised that stress-response-related brain plasticity might be epigenetically controlled and, moreover, several epigenetic mechanisms have been assumed to be involved in the regulation of sleep. Hence, it might be postulated that insomnia may be influenced by an epigenetic control process of both sleep mechanisms and stress-response-related gene-environment interactions having an impact on brain plasticity. This paper reviews the evidence for the genetic basis of insomnia and recent theories about epigenetic mechanisms involved in both sleep regulation and brain-stress response, leading to the hypothesis of an involvement of epigenetic

  17. Epigenetic modifications and diabetic retinopathy.

    PubMed

    Kowluru, Renu A; Santos, Julia M; Mishra, Manish

    2013-01-01

    Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s) responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2) and matrix metalloproteinase-9 (MMP-9) are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1), and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease. PMID:24286082

  18. Epigenetic Mechanisms in Penile Carcinoma

    PubMed Central

    Kuasne, Hellen; Marchi, Fabio Albuquerque; Rogatto, Silvia Regina; de Syllos Cólus, Ilce Mara

    2013-01-01

    Penile carcinoma (PeCa) represents an important public health problem in poor and developing countries. Despite its unpredictable behavior and aggressive treatment, there have only been a few reports regarding its molecular data, especially epigenetic mechanisms. The functional diversity in different cell types is acquired by chromatin modifications, which are established by epigenetic regulatory mechanisms involving DNA methylation, histone acetylation, and miRNAs. Recent evidence indicates that the dysregulation in these processes can result in the development of several diseases, including cancer. Epigenetic alterations, such as the methylation of CpGs islands, may reveal candidates for the development of specific markers for cancer detection, diagnosis and prognosis. There are a few reports on the epigenetic alterations in PeCa, and most of these studies have only focused on alterations in specific genes in a limited number of cases. This review aims to provide an overview of the current knowledge of the epigenetic alterations in PeCa and the promising results in this field. The identification of epigenetically altered genes in PeCa is an important step in understanding the mechanisms involved in this unexplored disease. PMID:23702847

  19. Epigenetics in the perioperative period

    PubMed Central

    Lirk, P; Fiegl, H; Weber, N C; Hollmann, M W

    2015-01-01

    The perioperative period is characterized by profound changes in the body's homoeostatic processes. This review seeks to address whether epigenetic mechanisms may influence an individual's reaction to surgery and anaesthesia. Evidence from animal and human studies suggests that epigenetic mechanisms can explain many facets of susceptibility to acute and chronic pain, making them potential therapeutic targets. Modern pain management is still based upon opiates, and both the developmental expression of opioid receptors and opioid-induced hyperalgesia have been linked to epigenetic mechanisms. In general, opiates seem to increase global DNA methylation levels. This is in contrast to local anaesthetics, which have been ascribed a global demethylating effect. Even though no direct investigations have been carried out, the potential influence of epigenetics on the inflammatory response that follows surgery seems a promising area for research. There is a considerable body of evidence that supports the involvement of epigenetics in the complex process of wound healing. Epigenetics is an important emerging research topic in perioperative medicine, with a huge potential to positively influence patient outcome. PMID:25073649

  20. Epigenetics across the human lifespan

    PubMed Central

    Kanherkar, Riya R.; Bhatia-Dey, Naina; Csoka, Antonei B.

    2014-01-01

    Epigenetics has the potential to explain various biological phenomena that have heretofore defied complete explication. This review describes the various types of endogenous human developmental milestones such as birth, puberty, and menopause, as well as the diverse exogenous environmental factors that influence human health, in a chronological epigenetic context. We describe the entire course of human life from periconception to death and chronologically note all of the potential internal timepoints and external factors that influence the human epigenome. Ultimately, the environment presents these various factors to the individual that influence the epigenome, and the unique epigenetic and genetic profile of each individual also modulates the specific response to these factors. During the course of human life, we are exposed to an environment that abounds with a potent and dynamic milieu capable of triggering chemical changes that activate or silence genes. There is constant interaction between the external and internal environments that is required for normal development and health maintenance as well as for influencing disease load and resistance. For example, exposure to pharmaceutical and toxic chemicals, diet, stress, exercise, and other environmental factors are capable of eliciting positive or negative epigenetic modifications with lasting effects on development, metabolism and health. These can impact the body so profoundly as to permanently alter the epigenetic profile of an individual. We also present a comprehensive new hypothesis of how these diverse environmental factors cause both direct and indirect epigenetic changes and how this knowledge can ultimately be used to improve personalized medicine. PMID:25364756

  1. Diet, Nutrition, and Cancer Epigenetics.

    PubMed

    Sapienza, Carmen; Issa, Jean-Pierre

    2016-07-17

    The search for a connection between diet and human cancer has a long history in cancer research, as has interest in the mechanisms by which dietary factors might increase or decrease cancer risk. The realization that altering diet can alter the epigenetic state of genes and that these epigenetic alterations might increase or decrease cancer risk is a more modern notion, driven largely by studies in animal models. The connections between diet and epigenetic alterations, on the one hand, and between epigenetic alterations and cancer, on the other, are supported by both observational studies in humans as well as animal models. However, the conclusion that diet is linked directly to epigenetic alterations and that these epigenetic alterations directly increase or decrease the risk of human cancer is much less certain. We suggest that true and measurable effects of diet or dietary supplements on epigenotype and cancer risk are most likely to be observed in longitudinal studies and at the extremes of the intersection of dietary risk factors and human population variability. Careful analysis of such outlier populations is most likely to shed light on the molecular mechanisms by which suspected environmental risk factors drive the process of carcinogenesis. PMID:27022771

  2. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas.

    PubMed

    Lomas, Jesus; Bello, M Josefa; Arjona, Dolores; Alonso, M Eva; Martinez-Glez, Victor; Lopez-Marin, Isabel; Amiñoso, Cinthia; de Campos, Jose M; Isla, Alberto; Vaquero, Jesus; Rey, Juan A

    2005-03-01

    The role of the NF2 gene in the development of meningiomas has recently been documented; inactivating mutations plus allelic loss at 22q, the site of this gene (at 22q12), have been identified in both sporadic and neurofibromatosis type 2-associated tumors. Although epigenetic inactivation through aberrant CpG island methylation of the NF2 5' flanking region has been documented in schwannoma (another NF2-associated neoplasm), data on participation of this epigenetic modification in meningiomas are not yet widely available. Using methylation-specific PCR (MSP) plus sequencing, we assessed the presence of aberrant promoter NF2 methylation in a series of 88 meningiomas (61 grade I, 24 grade II, and 3 grade III), in which the allelic constitution at 22q and the NF2 mutational status also were determined by RFLP/microsatellite and PCR-SSCP analyses. Chromosome 22 allelic loss, NF2 gene mutation, and aberrant NF2 promoter methylation were detected in 49%, 24%, and 26% of cases, respectively. Aberrant NF2 methylation with loss of heterozygosity (LOH) at 22q was found in five cases, and aberrant methylation with NF2 mutation in another; LOH 22q and the mutation were found in 16 samples. The aberrant methylation of the NF2 gene also was the sole alteration in 15 samples, most of which were from grade I tumors. These results indicate that aberrant NF2 hypermethylation may participate in the development of a significant proportion of sporadic meningiomas, primarily those of grade I. PMID:15609345

  3. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study

    PubMed Central

    Imani, Saber; Panahi, Yunes; Salimian, Jafar; Fu, Junjiang; Ghanei, Mostafa

    2015-01-01

    Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD) and compared with mustard lung. PMID:26557960

  4. Epigenetic: A missing paradigm in cellular and molecular pathways of sulfur mustard lung: a prospective and comparative study.

    PubMed

    Imani, Saber; Panahi, Yunes; Salimian, Jafar; Fu, Junjiang; Ghanei, Mostafa

    2015-08-01

    Sulfur mustard (SM, bis- (2-chloroethyl) sulphide) is a chemical warfare agent that causes DNA alkylation, protein modification and membrane damage. SM can trigger several molecular pathways involved in inflammation and oxidative stress, which cause cell necrosis and apoptosis, and loss of cells integrity and function. Epigenetic regulation of gene expression is a growing research topic and is addressed by DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs expression. It seems SM can induce the epigenetic modifications that are translated into change in gene expression. Classification of epigenetic modifications long after exposure to SM would clarify its mechanism and paves a better strategy for the treatment of SM-affected patients. In this study, we review the key aberrant epigenetic modifications that have important roles in chronic obstructive pulmonary disease (COPD) and compared with mustard lung. PMID:26557960

  5. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  6. Chromosome Aberrations by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  7. Epigenetic regulation of adaptive responses of forest tree species to the environment

    PubMed Central

    Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa

    2013-01-01

    Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802

  8. Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility.

    PubMed

    Hou, Hsin-An; Tien, Hwei-Fang

    2016-05-01

    Recent studies have identified recurrent mutations in genes that encode proteins crucial in the epigenetic regulation of gene transcription in hematologic malignancies. Somatic mutations in epigenetic modifiers, including IDH1, IDH2, TET2, DNAMT3A, ASXL1, MLL and EZH2 are enriched in patients with acute myeloid leukemia (AML), especially those with intermediate-risk cytogenetics. Here we describe the clinic-biologic features of AML patients with these mutations, their prognostic relevance and potential as therapeutic targets. The epigenetic alterations are present as the early pre-leukemic events and usually remain stable during disease evolution, implying the potential to be biomarkers for minimal residual disease monitoring. The high frequency of mutations in epigenetic modifiers and their prognostic implications shed light on the development of epigenetic therapy. PMID:26789100

  9. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis

    PubMed Central

    Hlady, Ryan A.; Tiedemann, Rochelle L.; Puszyk, William; Zendejas, Ivan; Roberts, Lewis R.; Choi, Jeong-Hyeon; Liu, Chen; Robertson, Keith D.

    2014-01-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer deaths worldwide. Deregulated DNA methylation landscapes are ubiquitous in human cancers. Interpretation of epigenetic aberrations in HCC is confounded by multiple etiologic drivers and underlying cirrhosis. We globally profiled the DNA methylome of 34 normal and 122 liver disease tissues arising in settings of hepatitis B (HBV) or C (HCV) viral infection, alcoholism (EtOH), and other causes to examine how these environmental agents impact DNA methylation in a manner that contributes to liver disease. Our results demonstrate that each ‘exposure’ leaves unique and overlapping signatures on the methylome. CpGs aberrantly methylated in cirrhosis-HCV and conserved in HCC were enriched for cancer driver genes, suggesting a pathogenic role for HCV-induced methylation changes. Additionally, large genomic regions displaying stepwise hypermethylation or hypomethylation during disease progression were identified. HCC-HCV/EtOH methylomes overlap highly with cryptogenic HCC, suggesting shared epigenetically deregulated pathways for hepatocarcinogenesis. Finally, overlapping methylation abnormalities between primary and cultured tumors unveil conserved epigenetic signatures in HCC. Taken together, this study reveals profound epigenome deregulation in HCC beginning during cirrhosis and influenced by common environmental agents. These results lay the foundation for defining epigenetic drivers and clinically useful methylation markers for HCC. PMID:25294808

  10. Introduction to the Special Section on Epigenetics

    PubMed Central

    Lester, Barry M.; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. PMID:26822440

  11. Introduction to the Special Section on Epigenetics.

    PubMed

    Lester, Barry M; Conradt, Elisabeth; Marsit, Carmen

    2016-01-01

    Epigenetics provides the opportunity to revolutionize our understanding of the role of genetics and the environment in explaining human behavior, although the use of epigenetics to study human behavior is just beginning. In this introduction, the authors present the basics of epigenetics in a way that is designed to make this exciting field accessible to a wide readership. The authors describe the history of human behavioral epigenetic research in the context of other disciplines and graphically illustrate the burgeoning of research in the application of epigenetic methods and principles to the study of human behavior. The role of epigenetics in normal embryonic development and the influence of biological and environmental factors altering behavior through epigenetic mechanisms and developmental programming are discussed. Some basic approaches to the study of epigenetics are reviewed. The authors conclude with a discussion of challenges and opportunities, including intervention, as the field of human behavioral epigenetics continue to grow. PMID:26822440

  12. Readout of Epigenetic Modifications

    PubMed Central

    Patel, Dinshaw J.; Wang, Zhanxin

    2015-01-01

    This review focuses on a structure-based analysis of histone posttranslational modification (PTM) readout, where the PTMs serve as docking sites for reader modules as part of larger complexes displaying chromatin modifier and remodeling activities, with the capacity to alter chromatin architecture and templated processes. Individual topics addressed include the diversity of reader-binding pocket architectures and common principles underlying readout of methyl-lysine and methyl-arginine marks, their unmodified counterparts, as well as acetyl-lysine and phosphoserine marks. The review also discusses the impact of multivalent readout of combinations of PTMs localized at specific genomic sites by linked binding modules on processes ranging from gene transcription to repair. Additional topics include cross talk between histone PTMs, histone mimics, epigenetic-based diseases, and drug-based therapeutic intervention. The review ends by highlighting new initiatives and advances, as well as future challenges, toward the promise of enhancing our structural and mechanistic understanding of the readout of histone PTMs at the nucleosomal level. PMID:23642229

  13. Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary.

    PubMed

    Witcher, Michael; Emerson, Beverly M

    2009-05-15

    The p16(INK4a) tumor suppressor gene is a frequent target of epigenetic inactivation in human cancers, which is an early event in breast carcinogenesis. We describe the existence of a chromatin boundary upstream of the p16 gene that is lost when this gene is aberrantly silenced. We show that the multifunctional protein CTCF associates in the vicinity of this boundary and absence of binding strongly coincides with p16 silencing in multiple types of cancer cells. CTCF binding also correlates with RASSF1A and CDH1 gene activation, and CTCF interaction is absent when these genes are methylated and silenced. Interestingly, defective poly(ADP-ribosyl)ation of CTCF and dissociation from the molecular chaperone Nucleolin occur in p16-silenced cells, abrogating its proper function. Thus, destabilization of specific chromosomal boundaries through aberrant crosstalk between CTCF, poly(ADP-ribosyl)ation, and DNA methylation may be a general mechanism to inactivate tumor suppressor genes and initiate tumorigenesis in numerous forms of human cancers. PMID:19450526

  14. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone

    PubMed Central

    2014-01-01

    Background Growing evidence exists that the neoplastic stromal cell population (GCTSC) within giant cell tumors (GCT) originates from mesenchymal stem cells (MSC). In a previous study we identified a microRNA signature that differentiates between these cell types. Five differentially expressed microRNAs are located within the Dlk1-Dio3 region on chromosome 14. Aberrant regulation within this region is known to influence cell growth, differentiation and the development of cancer. The aim of this study was to elucidate the involvement of deregulations within the Dlk1-Dio3 region in GCT pathogenesis. Methods Quantitative gene and microRNA expression analyses were performed on GCTSCs and MSCs with or without treatment with epigenetic modifiers. Methylation analysis of differentially methylated regions was performed by bisulfite sequencing. Results In addition to microRNA silencing we detected a significant downregulation of Dlk1, Meg3 and Meg8 in GCTSCs compared to MSCs. DNA methylation analyses of the Meg3-DMR and IG-DMR revealed a frequent hypermethylation within the IG-DMR in GCTs. Epigenetic modification could restore expression of some but not all analyzed genes and microRNAs suggesting further regulatory mechanisms. Conclusion Epigenetic silencing of genes and microRNAs within the Dlk1-Dio3 region is a common event in GCTSCs, in part mediated by hypermethylation within the IG-DMR. The identified genes, micro RNAs and microRNA target genes might be valuable targets for the development of improved strategies for GCT diagnosis and therapy. PMID:25005035

  15. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions

    PubMed Central

    2012-01-01

    Background Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. Results Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. Conclusions Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. PMID:23034163

  16. Hypersexuality Addiction and Withdrawal: Phenomenology, Neurogenetics and Epigenetics

    PubMed Central

    Badgaiyan, Rajendra D; Gold, Mark S

    2015-01-01

    Hypersexuality has been defined as abnormally increased sexual activity. Epidemiological and clinical studies have shown that this non-paraphilic condition consists of "excessive" sexual behaviors and disorders accompanied by personal distress and social and medical morbidity. It is a very controversial and political topic in terms of how best to categorize it as similar or not similar to addictive behaviors including substance abuse. Hypersexual disorder is conceptualized as a non-paraphilic sexual desire disorder with impulsivity. Pathophysiological perspectives include dysregulation of sexual arousal and desire, sexual impulsivity, and sexual compulsivity. The nucleus accumbens, situated within the ventral striatum, mediates the reinforcing effects of drugs of abuse, such as cocaine, alcohol, nicotine, and food as well as music. Indeed, it is believed that this structure mandates behaviors elicited by incentive stimuli. These behaviors include natural rewards like feeding, drinking, sexual behavior, and exploratory locomotion. An essential rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. Here, we are hypothesizing that there is a common mechanism of action (MOA) for the powerful effects drugs, music, food, and sex have on human motivation. The human drive for the three necessary motivational behaviors "hunger, thirst, and sex" may all have common molecular genetic antecedents that, if impaired, lead to aberrant behaviors. We hypothesize that based on a plethora of scientific support hypersexual activity is indeed like drugs, food, and music that activate brain mesolimbic reward circuitry. Moreover, dopaminergic gene and possibly other candidate neurotransmitter-related gene polymorphisms affect both hedonic and anhedonic behavioral outcomes. There is little known about both the genetics and epigenetics of hypersexuality in the current literature. However, we anticipate that future

  17. Hypersexuality Addiction and Withdrawal: Phenomenology, Neurogenetics and Epigenetics.

    PubMed

    Blum, Kenneth; Badgaiyan, Rajendra D; Gold, Mark S

    2015-01-01

    Hypersexuality has been defined as abnormally increased sexual activity. Epidemiological and clinical studies have shown that this non-paraphilic condition consists of "excessive" sexual behaviors and disorders accompanied by personal distress and social and medical morbidity. It is a very controversial and political topic in terms of how best to categorize it as similar or not similar to addictive behaviors including substance abuse. Hypersexual disorder is conceptualized as a non-paraphilic sexual desire disorder with impulsivity. Pathophysiological perspectives include dysregulation of sexual arousal and desire, sexual impulsivity, and sexual compulsivity. The nucleus accumbens, situated within the ventral striatum, mediates the reinforcing effects of drugs of abuse, such as cocaine, alcohol, nicotine, and food as well as music. Indeed, it is believed that this structure mandates behaviors elicited by incentive stimuli. These behaviors include natural rewards like feeding, drinking, sexual behavior, and exploratory locomotion. An essential rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. Here, we are hypothesizing that there is a common mechanism of action (MOA) for the powerful effects drugs, music, food, and sex have on human motivation. The human drive for the three necessary motivational behaviors "hunger, thirst, and sex" may all have common molecular genetic antecedents that, if impaired, lead to aberrant behaviors. We hypothesize that based on a plethora of scientific support hypersexual activity is indeed like drugs, food, and music that activate brain mesolimbic reward circuitry. Moreover, dopaminergic gene and possibly other candidate neurotransmitter-related gene polymorphisms affect both hedonic and anhedonic behavioral outcomes. There is little known about both the genetics and epigenetics of hypersexuality in the current literature. However, we anticipate that future

  18. Hypersexuality Addiction and Withdrawal: Phenomenology, Neurogenetics and Epigenetics

    PubMed Central

    Badgaiyan, Rajendra D; Gold, Mark S

    2015-01-01

    Hypersexuality is now part of the DSM-V and has been defined as abnormally increased sexual activity. Epidemiological and clinical studies have shown that this non-paraphilic condition consists of “excessive” sexual behaviors and disorders accompanied by personal distress and social and medical morbidity. Hypersexual disorder is conceptualized as primarily a non-paraphilic sexual desire disorder with impulsivity. Pathophysiological perspectives include dysregulation of sexual arousal and desire, sexual impulsivity, sexual addiction, and sexual compulsivity. The nucleus accumbens, situated within the ventral striatum, mediates the reinforcing effects of drugs of abuse, such as cocaine, alcohol, nicotine, and food as well as music. Indeed, it is believed that this structure mandates behaviors elicited by incentive stimuli. These behaviors include natural rewards like feeding, drinking, sexual behavior, and exploratory locomotion. An essential rule of positive reinforcement is that motor responses will increase in magnitude and vigor if followed by a rewarding event. Here, we are hypothesizing that there is a common mechanism of action (MOA) for the powerful effects drugs, music, food, and sex have on human motivation. The human drive for the three necessary motivational behaviors “hunger, thirst, and sex” may all have common molecular genetic antecedents that, if impaired, lead to aberrant behaviors. We hypothesize that based on a plethora of scientific support hypersexual activity is indeed like drugs, food, and music that activate brain mesolimbic reward circuitry. Moreover, dopaminergic gene and possibly other candidate neurotransmitter-related gene polymorphisms affect both hedonic and anhedonic behavioral outcomes. There is little known about both the genetics and epigenetics of hypersexuality in the current literature. However, we anticipate that future studies based on assessments with clinical instruments combined with genotyping of sex addicts will

  19. Lymphocyte chromosomal aberration assay in radiation biodosimetry

    PubMed Central

    Agrawala, Paban K.; Adhikari, J. S.; Chaudhury, N. K.

    2010-01-01

    Exposure to ionizing radiations, whether medical, occupational or accidental, leads to deleterious biological consequences like mortality or carcinogenesis. It is considered that no dose of ionizing radiation exposure is safe. However, once the accurate absorbed dose is estimated, one can be given appropriate medical care and the severe consequences can be minimized. Though several accurate physical dose estimation modalities exist, it is essential to estimate the absorbed dose in biological system taking into account the individual variation in radiation response, so as to plan suitable medical care. Over the last several decades, lots of efforts have been taken to design a rapid and easy biological dosimeter requiring minimum invasive procedures. The metaphase chromosomal aberration assay in human lymphocytes, though is labor intensive and requires skilled individuals, still remains the gold standard for radiation biodosimetry. The current review aims at discussing the human lymphocyte metaphase chromosomal aberration assay and recent developments involving the application of molecular cytogenetic approaches and other technological advancements to make the assay more authentic and simple to use even in the events of mass radiation casualties. PMID:21829315

  20. Nature, nurture and epigenetics.

    PubMed

    Crews, David; Gillette, Ross; Miller-Crews, Isaac; Gore, Andrea C; Skinner, Michael K

    2014-12-01

    Real life by definition combines heritability (e.g., the legacy of exposures) and experience (e.g. stress during sensitive or 'critical' periods), but how to study or even model this interaction has proven difficult. The hoary concept of evaluating traits according to nature versus nurture continues to persist despite repeated demonstrations that it retards, rather than advances, our understanding of biological processes. Behavioral genetics has proven the obvious, that genes influence behavior and, vice versa, that behavior influences genes. The concept of Genes X Environment (G X E) and its modern variants was viewed as an improvement on nature-nurture but has proven that, except in rare instances, it is not possible to fractionate phenotypes into these constituent elements. The entanglement inherent in terms such as nature-nurture or G X E is a Gordian knot that cannot be dissected or even split. Given that the world today is not what it was less than a century ago, yet the arbitrator (differential survival and reproduction) has stayed constant, de novo principles and practices are needed to better predict what the future holds. Put simply, the transformation that is now occurring within and between individuals as a product of global endocrine disruption is quite independent of what has been regarded as evolution by selection. This new perspective should focus on how epigenetic modifications might revise approaches to understand how the phenotype and, in particular its components, is shaped. In this review we summarize the literature in this developing area, focusing on our research on the fungicide vinclozolin. PMID:25102229

  1. Epigenetics and assisted reproductive technologies.

    PubMed

    Pinborg, Anja; Loft, Anne; Romundstad, Liv B; Wennerholm, Ulla-Britt; Söderström-Anttila, Viveca; Bergh, Christina; Aittomäki, Kristiina

    2016-01-01

    Epigenetic modification controls gene activity without changes in the DNA sequence. The genome undergoes several phases of epigenetic programming during gametogenesis and early embryo development, coinciding with assisted reproductive technologies (ART) treatments. Imprinting disorders have been associated with ART techniques, but disentangling the influence of the ART procedures per se from the effect of the reproductive disease of the parents is a challenge. Epidemiological human studies have shown altered birthweight profiles in ART compared with spontaneously conceived singletons. Conception with cryopreserved/thawed embryos results in a higher risk of large-for-gestational-age babies, which may be due to epigenetic modification. Further animal studies have shown altered gene expression profiles in offspring conceived by ART related to altered glucose metabolism. It is controversial whether human adolescents conceived by ART have altered lipid and glucose profiles and thereby a higher long-term risk of cardiovascular disease and diabetes. This commentary describes the basic concepts of epigenetics and gives a short overview of the existing literature on the association between imprinting disorders, epigenetic modification and ART. PMID:26458360

  2. Epigenetic Modifications in Essential Hypertension

    PubMed Central

    Wise, Ingrid A.; Charchar, Fadi J.

    2016-01-01

    Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development. PMID:27023534

  3. Aberrant methylation patterns in cancer: a clinical view

    PubMed Central

    Paska, Alja Videtic; Hudler, Petra

    2015-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets. PMID:26110029

  4. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  5. Structural diversity of the epigenetics pocketome.

    PubMed

    Cabaye, Alexandre; Nguyen, Kong T; Liu, Lihua; Pande, Vineet; Schapira, Matthieu

    2015-07-01

    Protein families involved in chromatin-templated events are emerging as novel target classes in oncology and other disease areas. The ability to discover selective inhibitors against chromatin factors depends on the presence of structural features that are unique to the targeted sites. To evaluate challenges and opportunities toward the development of selective inhibitors, we calculated all pair wise structural distances between 575 structures from the protein databank representing 163 unique binding pockets found in protein domains that write, read or erase post-translational modifications on histones, DNA, and RNA. We find that the structural similarity of binding sites does not always follow the sequence similarity of protein domains. Our analysis reveals increased risks of activity across target-class for compounds competing with the cofactor of protein arginine methyltransferases, lysine acetyltransferases, and sirtuins, while exploiting the conformational plasticity of a protein target is a path toward selective inhibition. The structural diversity landscape of the epigenetics pocketome can be explored via an open-access graphic user interface at thesgc.org/epigenetics_pocketome. PMID:25974248

  6. Molecular epigenetic switches in neurodevelopment in health and disease

    PubMed Central

    Hoffmann, Anke; Zimmermann, Christoph A.; Spengler, Dietmar

    2015-01-01

    Epigenetic mechanisms encode information above and beyond DNA sequence and play a critical role in brain development and the long-lived effects of environmental cues on the pre- and postnatal brain. Switch-like, rather than graded changes, illustrate par excellence how epigenetic events perpetuate altered activity states in the absence of the initial cue. They occur from early neural development to maturation and can give rise to distinct diseases upon deregulation. Many neurodevelopmental genes harbor bivalently marked chromatin domains, states of balanced inhibition, which guide dynamic “ON or OFF” decisions once the balance is tilted in response to developmental or environmental cues. Examples discussed in this review include neuronal differentiation of embryonic stem cells (ESC) into progenitors and beyond, activation of Kiss1 at puberty onset, and early experience-dependent programming of Avp, a major stress gene. At the genome-scale, genomic imprinting can be epigenetically switched on or off at select genes in a tightly controlled temporospatial manner and provides a versatile mechanism for dosage regulation of genes with important roles in stem cell quiescence or differentiation. Moreover, retrotransposition in neural progenitors provides an intriguing example of an epigenetic-like switch, which is stimulated by bivalently marked neurodevelopmental genes and possibly results in increased genomic flexibility regarding unprecedented challenge. Overall, we propose that molecular epigenetic switches illuminate the catalyzing function of epigenetic mechanisms in guiding dynamic changes in gene expression underpinning robust transitions in cellular and organismal phenotypes as well as in the mediation between dynamically changing environments and the static genetic blueprint. PMID:26029068

  7. Epigenetic control of mobile DNA as an interface between experience and genome change

    PubMed Central

    Shapiro, James A.

    2014-01-01

    Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration. PMID:24795749

  8. Waddington, Dynamic Systems, and Epigenetics

    PubMed Central

    Tronick, Ed; Hunter, Richard G.

    2016-01-01

    Waddington coined the term “epigenetic” to attempt to explain the complex, dynamic interactions between the developmental environment and the genome that led to the production of phenotype. Waddington's thoughts on the importance of both adaptability and canalization of phenotypic development are worth recalling as well, as they emphasize the available range for epigenetic action and the importance of environmental feedback (or lack thereof) in the development of complex traits. We suggest that a dynamic systems view fits well with Waddington's conception of epigenetics in the developmental context, as well as shedding light on the study of the molecular epigenetic effects of the environment on brain and behavior. Further, the dynamic systems view emphasizes the importance of the multi-directional interchange between the organism, the genome and various aspects of the environment to the ultimate phenotype. PMID:27375447

  9. Epigenetics in heart failure phenotypes.

    PubMed

    Berezin, Alexander

    2016-12-01

    Chronic heart failure (HF) is a leading clinical and public problem posing a higher risk of morbidity and mortality in different populations. HF appears to be in both phenotypic forms: HF with reduced left ventricular ejection fraction (HFrEF) and HF with preserved left ventricular ejection fraction (HFpEF). Although both HF phenotypes can be distinguished through clinical features, co-morbidity status, prediction score, and treatment, the clinical outcomes in patients with HFrEF and HFpEF are similar. In this context, investigation of various molecular and cellular mechanisms leading to the development and progression of both HF phenotypes is very important. There is emerging evidence that epigenetic regulation may have a clue in the pathogenesis of HF. This review represents current available evidence regarding the implication of epigenetic modifications in the development of different HF phenotypes and perspectives of epigenetic-based therapies of HF. PMID:27335803

  10. Epigenetic alterations underlying autoimmune diseases.

    PubMed

    Aslani, Saeed; Mahmoudi, Mahdi; Karami, Jafar; Jamshidi, Ahmad Reza; Malekshahi, Zahra; Nicknam, Mohammad Hossein

    2016-03-01

    Recent breakthroughs in genetic explorations have extended our understanding through discovery of genetic patterns subjected to autoimmune diseases (AID). Genetics, on the contrary, has not answered all the conundrums to describe a comprehensive explanation of causal mechanisms of disease etiopathology with regard to the function of environment, sex, or aging. The other side of the coin, epigenetics which is defined by gene manifestation modification without DNA sequence alteration, reportedly has come in to provide new insights towards disease apprehension through bridging the genetics and environmental factors. New investigations in genetic and environmental contributing factors for autoimmunity provide new explanation whereby the interactions between genetic elements and epigenetic modifications signed by environmental agents may be responsible for autoimmune disease initiation and perpetuation. It is aimed through this article to review recent progress attempting to reveal how epigenetics associates with the pathogenesis of autoimmune diseases. PMID:26761426

  11. Epigenetic Mechanisms of Serotonin Signaling.

    PubMed

    Holloway, Terrell; González-Maeso, Javier

    2015-07-15

    Histone modifications and DNA methylation represent central dynamic and reversible processes that regulate gene expression and contribute to cellular phenotypes. These epigenetic marks have been shown to play fundamental roles in a diverse set of signaling and behavioral outcomes. Serotonin is a monoamine that regulates numerous physiological responses including those in the central nervous system. The cardinal signal transduction mechanisms via serotonin and its receptors are well established, but fundamental questions regarding complex interactions between the serotonin system and heritable epigenetic modifications that exert control on gene function remain a topic of intense research and debate. This review focuses on recent advances and contributions to our understanding of epigenetic mechanisms of serotonin receptor-dependent signaling, with focus on psychiatric disorders such as schizophrenia and depression. PMID:25734378

  12. T2DM: Why Epigenetics?

    PubMed Central

    Fradin, Delphine; Bougnères, Pierre

    2011-01-01

    Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder influenced by interactions between genetic and environmental factors. Epigenetics conveys specific environmental influences into phenotypic traits through a variety of mechanisms that are often installed in early life, then persist in differentiated tissues with the power to modulate the expression of many genes, although undergoing time-dependent alterations. There is still no evidence that epigenetics contributes significantly to the causes or transmission of T2DM from one generation to another, thus, to the current environment-driven epidemics, but it has become so likely, as pointed out in this paper, that one can expect an efflorescence of epigenetic knowledge about T2DM in times to come. PMID:22132323

  13. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts.

    PubMed

    Bernstein, Diana L; Le Lay, John E; Ruano, Elena G; Kaestner, Klaus H

    2015-05-01

    Current strategies to alter disease-associated epigenetic modifications target ubiquitously expressed epigenetic regulators. This approach does not allow specific genes to be controlled in specific cell types; therefore, tools to selectively target epigenetic modifications in the desired cell type and strategies to more efficiently correct aberrant gene expression in disease are needed. Here, we have developed a method for directing DNA methylation to specific gene loci by conjugating catalytic domains of DNA methyltransferases (DNMTs) to engineered transcription activator-like effectors (TALEs). We demonstrated that these TALE-DNMTs direct DNA methylation specifically to the targeted gene locus in human cells. Further, we determined that minimizing direct nucleotide sequence repeats within the TALE moiety permits efficient lentivirus transduction, allowing easy targeting of primary cell types. Finally, we demonstrated that directed DNA methylation with a TALE-DNMT targeting the CDKN2A locus, which encodes the cyclin-dependent kinase inhibitor p16, decreased CDKN2A expression and increased replication of primary human fibroblasts, as intended. Moreover, overexpression of p16 in these cells reversed the proliferative phenotype, demonstrating the specificity of our epigenetic targeting. Together, our results demonstrate that TALE-DNMTs can selectively target specific genes and suggest that this strategy has potential application for the development of locus-specific epigenetic therapeutics. PMID:25866970

  14. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    SciTech Connect

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  15. Using geometric algebra to study optical aberrations

    SciTech Connect

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  16. Environmental epigenetics in metal exposure

    PubMed Central

    Martinez-Zamudio, Ricardo

    2011-01-01

    Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis. PMID:21610324

  17. Epigenetic regulation in cardiac fibrosis

    PubMed Central

    Yu, Li-Ming; Xu, Yong

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this mini-review, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs. PMID:26635926

  18. Unlocking epigenetic codes in neurogenesis

    PubMed Central

    Yao, Bing; Jin, Peng

    2014-01-01

    During embryonic and adult neurogenesis, neuronal stem cells follow a highly conserved path of differentiation to give rise to functional neurons at various developmental stages. Epigenetic regulation—including DNA modifications, histone modifications, and noncoding regulatory RNAs, such as microRNA (miRNA) and long noncoding RNA (lncRNA)—plays a pivotal role in embryonic and adult neurogenesis. Here we review the latest in our understanding of the epigenetic regulation in neurogenesis, with a particular focus on newly identified cytosine modifications and their dynamics, along with our perspective for future studies. PMID:24939932

  19. Epigenetics: a new frontier in dentistry.

    PubMed

    Williams, S D; Hughes, T E; Adler, C J; Brook, A H; Townsend, G C

    2014-06-01

    In 2007, only four years after the completion of the Human Genome Project, the journal Science announced that epigenetics was the 'breakthrough of the year'. Time magazine placed it second in the top 10 discoveries of 2009. While our genetic code (i.e. our DNA) contains all of the information to produce the elements we require to function, our epigenetic code determines when and where genes in the genetic code are expressed. Without the epigenetic code, the genetic code is like an orchestra without a conductor. Although there is now a substantial amount of published research on epigenetics in medicine and biology, epigenetics in dental research is in its infancy. However, epigenetics promises to become increasingly relevant to dentistry because of the role it plays in gene expression during development and subsequently potentially influencing oral disease susceptibility. This paper provides a review of the field of epigenetics aimed specifically at oral health professionals. It defines epigenetics, addresses the underlying concepts and provides details about specific epigenetic molecular mechanisms. Further, we discuss some of the key areas where epigenetics is implicated, and review the literature on epigenetics research in dentistry, including its relevance to clinical disciplines. This review considers some implications of epigenetics for the future of dental practice, including a 'personalized medicine' approach to the management of common oral diseases. PMID:24611746

  20. Epigenetic Case Studies in Agricultural Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many biological processes, the regulation of gene expression involves epigenetic mechanisms. An altered pattern of epigenetic modification is central to many animal diseases. Using animal disease models, we have studied one of the major epigenetic components: DNA methylation. We characterized the...

  1. Identification of Epigenetic Biomarkers of Lung Adenocarcinoma through Multi-Omics Data Analysis

    PubMed Central

    Kikutake, Chie; Yahara, Koji

    2016-01-01

    Epigenetic mechanisms such as DNA methylation or histone modifications are essential for the regulation of gene expression and development of tissues. Alteration of epigenetic modifications can be used as an epigenetic biomarker for diagnosis and as promising targets for epigenetic therapy. A recent study explored cancer-cell specific epigenetic biomarkers by examining different types of epigenetic modifications simultaneously. However, it was based on microarrays and reported biomarkers that were also present in normal cells at a low frequency. Here, we first analyzed multi-omics data (including ChIP-Seq data of six types of histone modifications: H3K27ac, H3K4me1, H3K9me3, H3K36me3, H3K27me3, and H3K4me3) obtained from 26 lung adenocarcinoma cell lines and a normal cell line. We identified six genes with both H3K27ac and H3K4me3 histone modifications in their promoter regions, which were not present in the normal cell line, but present in ≥85% (22 out of 26) and ≤96% (25 out of 26) of the lung adenocarcinoma cell lines. Of these genes, NUP210 (encoding a main component of the nuclear pore complex) was the only gene in which the two modifications were not detected in another normal cell line. RNA-Seq analysis revealed that NUP210 was aberrantly overexpressed among the 26 lung adenocarcinoma cell lines, although the frequency of NUP210 overexpression was lower (19.3%) in 57 lung adenocarcinoma tissue samples studied and stored in another database. This study provides a basis to discover epigenetic biomarkers highly specific to a certain cancer, based on multi-omics data at the cell population level. PMID:27042856

  2. Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD

    PubMed Central

    Zovkic, Iva B.; Meadows, Jarrod P.; Kaas, Garrett A.; Sweatt, J. David

    2013-01-01

    Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by intrusive and persistent memories of a psychologically traumatic event that leads to significant functional and social impairment in affected individuals. The molecular bases underlying persistent outcomes of a transient traumatic event have remained elusive for many years, but recent studies in rodents have implicated epigenetic modifications of chromatin structure and DNA methylation as fundamental mechanisms for the induction and stabilization of fear memory. In addition to mediating adaptations to traumatic events that ultimately cause PTSD, epigenetic mechanisms are also involved in establishing individual differences in PTSD risk and resilience by mediating long-lasting effects of genes and early environment on adult function and behavior. In this review, we discuss the current evidence for epigenetic regulation of PTSD in human studies and in animal models and comment on ways in which these models can be expanded. In addition, we identify key outstanding questions in the study of epigenetic mechanisms of PTSD in the context of rapidly evolving technologies that are constantly updating and adjusting our understanding of epigenetic modifications and their functional roles. Finally, we discuss the potential application of epigenetic approaches in identifying markers of risk and resilience that can be utilized to promote early intervention and develop therapeutic strategies to combat PTSD after symptom onset. PMID:23805109

  3. Malaria parasite epigenetics: when virulence and romance collide.

    PubMed

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events. PMID:25121742

  4. Twin methodology in epigenetic studies.

    PubMed

    Tan, Qihua; Christiansen, Lene; von Bornemann Hjelmborg, Jacob; Christensen, Kaare

    2015-01-01

    Since the final decades of the last century, twin studies have made a remarkable contribution to the genetics of human complex traits and diseases. With the recent rapid development in modern biotechnology of high-throughput genetic and genomic analyses, twin modelling is expanding from analysis of diseases to molecular phenotypes in functional genomics especially in epigenetics, a thriving field of research that concerns the environmental regulation of gene expression through DNA methylation, histone modification, microRNA and long non-coding RNA expression, etc. The application of the twin method to molecular phenotypes offers new opportunities to study the genetic (nature) and environmental (nurture) contributions to epigenetic regulation of gene activity during developmental, ageing and disease processes. Besides the classical twin model, the case co-twin design using identical twins discordant for a trait or disease is becoming a popular and powerful design for epigenome-wide association study in linking environmental exposure to differential epigenetic regulation and to disease status while controlling for individual genetic make-up. It can be expected that novel uses of twin methods in epigenetic studies are going to help with efficiently unravelling the genetic and environmental basis of epigenomics in human complex diseases. PMID:25568460

  5. Epigenetics and Peripheral Artery Disease.

    PubMed

    Golledge, Jonathan; Biros, Erik; Bingley, John; Iyer, Vikram; Krishna, Smriti M

    2016-04-01

    The term epigenetics is usually used to describe inheritable changes in gene function which do not involve changes in the DNA sequence. These typically include non-coding RNAs, DNA methylation and histone modifications. Smoking and older age are recognised risk factors for peripheral artery diseases, such as occlusive lower limb artery disease and abdominal aortic aneurysm, and have been implicated in promoting epigenetic changes. This brief review describes studies that have associated epigenetic factors with peripheral artery diseases and investigations which have examined the effect of epigenetic modifications on the outcome of peripheral artery diseases in mouse models. Investigations have largely focused on microRNAs and have identified a number of circulating microRNAs associated with human peripheral artery diseases. Upregulating or antagonising a number of microRNAs has also been reported to limit aortic aneurysm development and hind limb ischemia in mouse models. The importance of DNA methylation and histone modifications in peripheral artery disease has been relatively little studied. Whether circulating microRNAs can be used to assist identification of patients with peripheral artery diseases and be modified in order to improve the outcome of peripheral artery disease will require further investigation. PMID:26888065

  6. Mitochondrial Epigenetics and Environmental Exposure.

    PubMed

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  7. Epigenetic Placental Programming of Preeclampsia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preeclampsia (PE) affects 8-10% of women in the US and long-term consequences include subsequent development of maternal hypertension and hypertension in offspring. As methylation patterns are established during fetal life, we focused on epigenetic alterations in DNA methylation as a plausible expla...

  8. Epigenetics mechanisms in renal development.

    PubMed

    Hilliard, Sylvia A; El-Dahr, Samir S

    2016-07-01

    Appreciation for the role of epigenetic modifications in the diagnosis and treatment of diseases is fast gaining attention. Treatment of chronic kidney disease stemming from diabetes or hypertension as well as Wilms tumor will all profit from knowledge of the changes in the epigenomic landscapes. To do so, it is essential to characterize the epigenomic modifiers and their modifications under normal physiological conditions. The transcription factor Pax2 was identified as a major epigenetic player in the early specification of the kidney. Notably, the progenitors of all nephrons that reside in the cap mesenchyme display a unique bivalent histone signature (expressing repressive epigenetic marks alongside activation marks) on lineage-specific genes. These cells are deemed poised for differentiation and commitment to the nephrogenic lineage. In response to the appropriate inducing signal, these genes lose their repressive histone marks, which allow for their expression in nascent nephron precursors. Such knowledge of the epigenetic landscape and the resultant cell fate or behavior in the developing kidney will greatly improve the overall success in designing regenerative strategies and tissue reprogramming methodologies from pluripotent cells. PMID:26493068

  9. Nutritional regulation of epigenetic changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The "Nutritional Regulation of Epigenetic Changes" Symposium was held in San Diego on April 25 in conjunction with the 2012 Annual Meetings of the American Society of Nutrition. The symposium was co-chaired by Drs. Romagnoo and Ziegler. In his opening remarks, Dr. Zeigler highlighted salient aspec...

  10. Autism Spectrum Disorders and Epigenetics

    ERIC Educational Resources Information Center

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  11. Epigenetic silencing in transgenic plants

    PubMed Central

    Rajeevkumar, Sarma; Anunanthini, Pushpanathan; Sathishkumar, Ramalingam

    2015-01-01

    Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review. PMID:26442010

  12. Serotonin transporter gene: will epigenetics prove less depressing than genetics?

    PubMed

    de Geus, Eco J C; Middeldorp, Christel M

    2013-01-01

    The serotonin transporter gene has been hypothesized to influence, possibly in interaction with environmental factors, the vulnerability for depression. So far, genetic studies have tested the association of the repeat polymorphism (5-HTTLPR) with depression and whether it is moderated by exposure to stressful events. This has not yielded unequivocal results, even across meta-analyses. However, environmental factors may induce epigenetic changes in the structure of DNA that can influence gene expression. These epigenetic effects may be independent of the genetic polymorphisms in the gene region. This editorial reviews an article in this issue that compared the intrapair differences in depressive symptoms in monozygotic twin pairs with the intrapair differences of methylation at cytosine-guanine dinucleotide sites in the promoter region of the serotonin transporter gene. Differences in depressive symptoms were correlated with differences in methylation status, such that higher methylation, which, in this sample of identical twins, must be environmental in origin, is associated with more depressive symptoms. Noteworthy is the fact that the epigenetic effects were independent of the 5-HTTLPR. These results should encourage genome-wide testing of the contribution of epigenetic effects to depression. PMID:23788696

  13. PET Imaging of Epigenetic Influences on Alzheimer's Disease

    PubMed Central

    Couto, Paul J.; Millis, Richard M.

    2015-01-01

    The precise role of environment-gene interactions (epigenetics) in the development and progression of Alzheimer's disease (AD) is unclear. This review focuses on the premise that radiotracer-specific PET imaging allows clinicians to visualize epigenetically influenced events and that such imaging may provide new, valuable insights for preventing, diagnosing, and treating AD. Current understanding of the role of epigenetics in AD and the principles underlying the use of PET radiotracers for in vivo diagnosis are reviewed. The relative efficacies of various PET radiotracers for visualizing the epigenetic influences on AD and their use for diagnosis are discussed. For example, [18F]FAHA demonstrates sites of differential HDAC activity, [18F]FDG indirectly illuminates sites of neuronal hypomethylation, and the carbon-11 isotope-containing Pittsburgh compound B ([11C]PiB) images amyloid-beta plaque deposits. A definitive AD diagnosis is currently achievable only by postmortem histological observation of amyloid-beta plaques and tau neurofibrillary tangles. Therefore, reliable in vivo neuroimaging techniques could provide opportunities for early diagnosis and treatment of AD. PMID:26600964

  14. Epigenetics of Stress, Addiction, and Resilience: Therapeutic Implications.

    PubMed

    Cadet, Jean Lud

    2016-01-01

    Substance use disorders (SUDs) are highly prevalent. SUDs involve vicious cycles of binges followed by occasional periods of abstinence with recurrent relapses despite treatment and adverse medical and psychosocial consequences. There is convincing evidence that early and adult stressful life events are risks factors for the development of addiction and serve as cues that trigger relapses. Nevertheless, the fact that not all individuals who face traumatic events develop addiction to licit or illicit drugs suggests the existence of individual and/or familial resilient factors that protect these mentally healthy individuals. Here, I give a brief overview of the epigenetic bases of responses to stressful events and of epigenetic changes associated with the administration of drugs of abuse. I also discuss the psychobiology of resilience and alterations in epigenetic markers that have been observed in models of resilience. Finally, I suggest the possibility that treatment of addiction should involve cognitive and pharmacological approaches that enhance resilience in at risk individuals. Similar approaches should also be used with patients who have already succumbed to the nefarious effects of addictive substances. PMID:25502297

  15. An update on the epigenetics of glioblastomas.

    PubMed

    Ferreira, Wallax Augusto Silva; Pinheiro, Danilo do Rosário; Costa Junior, Carlos Antonio da; Rodrigues-Antunes, Symara; Araújo, Mariana Diniz; Leão Barros, Mariceli Baia; Teixeira, Adriana Corrêa de Souza; Faro, Thamirys Aline Silva; Burbano, Rommel Rodriguez; Oliveira, Edivaldo Herculano Correa de; Harada, Maria Lúcia; Borges, Bárbara do Nascimento

    2016-09-01

    Glioblastomas, also known as glioblastoma multiforme (GBM), are the most aggressive and malignant type of primary brain tumor in adults, exhibiting notable variability at the histopathological, genetic and epigenetic levels. Recently, epigenetic alterations have emerged as a common hallmark of many tumors, including GBM. Considering that a deeper understanding of the epigenetic modifications that occur in GBM may increase the knowledge regarding the tumorigenesis, progression and recurrence of this disease, in this review we discuss the recent major advances in GBM epigenetics research involving histone modification, glioblastoma stem cells, DNA methylation, noncoding RNAs expression, including their main alterations and the use of epigenetic therapy as a valid option for GBM treatment. PMID:27585647

  16. Genetics and Epigenetics of the Skin Meet Deep Sequence

    PubMed Central

    Cheng, Jeffrey B.; Cho, Raymond J.

    2014-01-01

    Rapid advances in next-generation sequencing technology are revolutionizing approaches to genomic and epigenomic studies of skin. Deep sequencing of cutaneous malignancies reveals heavily mutagenized genomes with large numbers of low-prevalence mutations and multiple resistance mechanisms to targeted therapies. Next-generation sequencing approaches have already paid rich dividends in identifying the genetic causes of dermatologic disease, both in heritable mutations and the somatic aberrations that underlie cutaneous mosaicism. Although epigenetic alterations clearly influence tumorigenesis, pluripotent stem cell biology, and epidermal cell lineage decisions, labor and cost-intensive approaches long delayed a genome-scale perspective. New insights into epigenomic mechanisms in skin disease should arise from the accelerating assessment of histone modification, DNA methylation, and related gene expression signatures. PMID:22237701

  17. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond

    PubMed Central

    Luzhna, Lidiya; Kathiria, Palak; Kovalchuk, Olga

    2013-01-01

    Micronuclei (MN) are extra-nuclear bodies that contain damaged chromosome fragments and/or whole chromosomes that were not incorporated into the nucleus after cell division. MN can be induced by defects in the cell repair machinery and accumulation of DNA damages and chromosomal aberrations. A variety of genotoxic agents may induce MN formation leading to cell death, genomic instability, or cancer development. In this review, the genetic and epigenetic mechanisms of MN formation after various clastogenic and aneugenic effects on cell division and cell cycle are described. The knowledge accumulated in literature on cytotoxicity of various genotoxins is precisely reflected and individual sensitivity to MN formation due to single gene polymorphisms is discussed. The importance of rapid MN scoring with respect to the cytokinesis-block micronucleus assay is also evaluated. PMID:23874352

  18. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  19. Stemming Epigenetics in Marine Stramenopiles

    PubMed Central

    Maumus, Florian; Rabinowicz, Pablo; Bowler, Chris; Rivarola, Maximo

    2011-01-01

    Epigenetics include DNA methylation, the modification of histone tails that affect chromatin states, and small RNAs that are involved in the setting and maintenance of chromatin modifications. Marine stramenopiles (MAS), which are a diverse assemblage of algae that acquired photosynthesis from secondary endosymbiosis, include single-celled organisms such as diatoms as well as multicellular forms such as brown algae. The recent publication of two diatom genomes that diverged ~90 million years ago (mya), as well as the one of a brown algae that diverged from diatoms ~250 Mya, provide a great system of related, yet diverged set of organisms to compare epigenetic marks and their relationships. For example, putative DNA methyltransferase homologues were found in diatoms while none could be identified in the brown algal genome. On the other hand, no canonical DICER-like protein was found in diatoms in contrast to what is observed in brown algae. A key interest relies in understanding the adaptive nature of epigenetics and its inheritability. In contrast to yeast that lack DNA methylation, homogeneous cultures of diatoms constitute an attractive system to study epigenetic changes in response to environmental conditions such as nutrient-rich to nutrient-poor transitions which is especially relevant because of their ecological importance. P. tricornutum is also of outstanding interest because it is observed as three different morphotypes and thus constitutes a simple and promising model for the study of the epigenetic phenomena that accompany cellular differentiation. In this review we focus on the insights obtained from MAS comparative genomics and epigenomic analyses. PMID:22294878

  20. Environmental Epigenetics: From Novelty to Scientific Discipline

    PubMed Central

    Burris, Heather H.; Baccarelli, Andrea A.

    2013-01-01

    Epigenetic phenomena have sparked much interest resulting in an exponential increase in scientific investigation in the last two decades. While growing, the field of environmental epigenetics remains small when compared to other areas of epigenetic inquiry such as cancer research. In this commentary, our objective is to describe the status of the field of environmental epigenetics and lay out our vision for its future. While environmental epigenetic studies represent fewer than 5% of all epigenetic publications, the National Institute of Environmental Health Sciences ranks second in proportion of dollars spent on epigenetics of all NIH Institutes. Such investment highlights the hypothesis that epigenetic marks are modified by environmental exposures and the hope that interventions targeted at epigenetic mechanisms may ultimately lead to improved health outcomes. The road to achieve this vision will require 1) attention to tissue specificity, 2) focused interventional studies, 3) collaboration among cohorts, 4) inclusion of environmental exposures in new large-scale epigenomic studies, and 5) understanding of multiple mechanisms beyond DNA methylation and histone modifications. The investment in environmental epigenetic inquiry will lead to great rewards if we can understand the biology of how phenotype results from environmental stimuli and genetic code. Understanding the epigenetic implications of our actions and exposures may benefit generations to come. PMID:23836446

  1. The ambiguous nature of epigenetic responsibility.

    PubMed

    Dupras, Charles; Ravitsky, Vardit

    2016-08-01

    Over the past decade, epigenetic studies have been providing further evidence of the molecular interplay between gene expression and its health outcomes on one hand, and the physical and social environments in which individuals are conceived, born and live on the other. As knowledge of epigenetic programming expands, a growing body of literature in social sciences and humanities is exploring the implications of this new field of study for contemporary societies. Epigenetics has been mobilised to support political claims, for instance, with regard to collective obligations to address socio-environmental determinants of health. The idea of a moral 'epigenetic responsibility' has been proposed, meaning that individuals and/or governments should be accountable for the epigenetic programming of children and/or citizens. However, these discussions have largely overlooked important biological nuances and ambiguities inherent in the field of epigenetics. In this paper, we argue that the identification and assignment of moral epigenetic responsibilities should reflect the rich diversity and complexity of epigenetic mechanisms, and not rely solely on a gross comparison between epigenetics and genetics. More specifically, we explore how further investigation of the ambiguous notions of epigenetic normality and epigenetic plasticity should play a role in shaping this emerging debate. PMID:27015741

  2. Epigenetic Determinism in Science and Society

    PubMed Central

    Waggoner, Miranda R.; Uller, Tobias

    2015-01-01

    The epigenetic “revolution” in science cuts across many disciplines, and it is now one of the fastest growing research areas in biology. Increasingly, claims are made that epigenetics research represents a move away from the genetic determinism that has been prominent both in biological research and in understandings of the impact of biology on society. We discuss to what extent an epigenetic framework actually supports these claims. We show that, in contrast to the received view, epigenetics research is often couched in language as deterministic as genetics research in both science and the popular press. We engage the rapidly emerging conversation about the impact of epigenetics on public discourse and scientific practice, and we contend that the notion of epigenetic determinism – or the belief that epigenetic mechanisms determine the expression of human traits and behaviors – matters for understandings of the influence of biology and society on population health. PMID:26217167

  3. A repetitive elements perspective in Polycomb epigenetics

    PubMed Central

    Casa, Valentina; Gabellini, Davide

    2012-01-01

    Repetitive elements comprise over two-thirds of the human genome. For a long time, these elements have received little attention since they were considered non-functional. On the contrary, recent evidence indicates that they play central roles in genome integrity, gene expression, and disease. Indeed, repeats display meiotic instability associated with disease and are located within common fragile sites, which are hotspots of chromosome re-arrangements in tumors. Moreover, a variety of diseases have been associated with aberrant transcription of repetitive elements. Overall this indicates that appropriate regulation of repetitive elements’ activity is fundamental. Polycomb group (PcG) proteins are epigenetic regulators that are essential for the normal development of multicellular organisms. Mammalian PcG proteins are involved in fundamental processes, such as cellular memory, cell proliferation, genomic imprinting, X-inactivation, and cancer development. PcG proteins can convey their activity through long-distance interactions also on different chromosomes. This indicates that the 3D organization of PcG proteins contributes significantly to their function. However, it is still unclear how these complex mechanisms are orchestrated and which role PcG proteins play in the multi-level organization of gene regulation. Intriguingly, the greatest proportion of Polycomb-mediated chromatin modifications is located in genomic repeats and it has been suggested that they could provide a binding platform for Polycomb proteins. Here, these lines of evidence are woven together to discuss how repetitive elements could contribute to chromatin organization in the 3D nuclear space. PMID:23060903

  4. Epigenetics of Posttraumatic Stress Disorder: Current Evidence, Challenges, and Future Directions.

    PubMed

    Zannas, Anthony S; Provençal, Nadine; Binder, Elisabeth B

    2015-09-01

    Posttraumatic stress disorder (PTSD) is a stress-related psychiatric disorder that is thought to emerge from complex interactions among traumatic events and multiple genetic factors. Epigenetic regulation lies at the heart of these interactions and mediates the lasting effects of the environment on gene regulation. An increasing body of evidence in human subjects with PTSD supports a role for epigenetic regulation of distinct genes and pathways in the pathogenesis of PTSD. The role of epigenetic regulation is further supported by studies examining fear conditioning in rodent models. Although this line of research offers an exciting outlook for future epigenetic research in PTSD, important limitations include the tissue specificity of epigenetic modifications, the phenomenologic definition of the disorder, and the challenge of translating molecular evidence across species. These limitations call for studies that combine data from postmortem human brain tissue and animal models, assess longitudinal epigenetic changes in living subjects, and examine dimensional phenotypes in addition to diagnoses. Moreover, examining the environmental, genetic, and epigenetic factors that promote resilience to trauma may lead to important advances in the field. PMID:25979620

  5. Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer.

    PubMed

    Zhao, Ran; Choi, Bu Young; Lee, Mee-Hyun; Bode, Ann M; Dong, Zigang

    2016-06-01

    Aberrant gene silencing is highly associated with altered cell cycle regulation during carcinogenesis. In particular, silencing of the CDKN2A tumor suppressor gene, which encodes the p16(INK4a) protein, has a causal link with several different types of cancers. The p16(INK4a) protein plays an executional role in cell cycle and senescence through the regulation of the cyclin-dependent kinase (CDK) 4/6 and cyclin D complexes. Several genetic and epigenetic aberrations of CDKN2A lead to enhanced tumorigenesis and metastasis with recurrence of cancer and poor prognosis. In these cases, the restoration of genetic and epigenetic reactivation of CDKN2A is a practical approach for the prevention and therapy of cancer. This review highlights the genetic status of CDKN2A as a prognostic and predictive biomarker in various cancers. PMID:27428416

  6. Chromosome aberrations induced by zebularine in triticale.

    PubMed

    Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun

    2016-07-01

    Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation. PMID:27334255

  7. Epigenetic changes in the rat livers induced by pyrazinamide treatment

    SciTech Connect

    Kovalenko, V.M.; Bagnyukova, T.V.; Sergienko, O.V.; Bondarenko, L.B.; Shayakhmetova, G.M.; Matvienko, A.V.; Pogribny, I.P.

    2007-12-15

    Drug-induced liver injury, including drug-induced hepatotoxicity during the treatment of tuberculosis infection, is a major health problem with increasingly significant challenges to modern hepatology. Therefore, the assessment and monitoring of the hepatotoxicity of antituberculosis drugs for prevention of liver injury are great concerns during disease treatment. The recently emerged data showing the ability of toxicants, including pharmaceutical agents, to alter cellular epigenetic status, open a unique opportunity for early detection of drug hepatotoxicity. Here we report that treatment of male Wistar rats with antituberculosis drug pyrazinamide at doses of 250, 500 or 1000 mg/kg/day body weight for 45 days leads to an early and sustained decrease in cytosine DNA methylation, progressive hypomethylation of long interspersed nucleotide elements (LINE-1), and aberrant promoter hypermethylation of placental form glutathione-S-transferase (GSTP) and p16{sup INK4A} genes in livers of pyrazinamide-treated rats, while serum levels of bilirubin and activity of aminotransferases changed modestly. The early occurrence of these epigenetic alterations and their association with progression of liver injury specific pathological changes indicate that alterations in DNA methylation may be useful predictive markers for the assessment of drug hepatotoxicity.

  8. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  9. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  10. Epigenetic regulation of inflammatory cytokines and associated genes in human malignancies.

    PubMed

    Yasmin, Rehana; Siraj, Sami; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  11. Epigenetic Regulation of Inflammatory Cytokines and Associated Genes in Human Malignancies

    PubMed Central

    Yasmin, Rehana; Hassan, Amjad; Khan, Abdul Rehman; Abbasi, Rashda; Ahmad, Nafees

    2015-01-01

    Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies. PMID:25814785

  12. Correcting aberration in aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Khan, A. N.; Rauf, A.; Gul, A.

    2014-06-01

    New technique eases aspheric lens fabrication and overcome traditional limitation. An aspheric lens has been designed by using optical designing software to replace the achromat (Doublet) lens of eyepiece assembly of telescope. The devised physical parameters of aspheric lens have been incorporated into the CNC Aspheric machine to fabricate the lens. The antireflection coating for visible region has been carried out on lens by employing PVD technique. In this report diminished aberration effects due to non-spherical surface profile and comparison of optical parameters of achromat (doublet) and aspheric lens is presented.

  13. Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia.

    PubMed

    Wilhelm, Thomas; Lipka, Daniel B; Witte, Tania; Wierzbinska, Justyna A; Fluhr, Silvia; Helf, Monika; Mücke, Oliver; Claus, Rainer; Konermann, Carolin; Nöllke, Peter; Niemeyer, Charlotte M; Flotho, Christian; Plass, Christoph

    2016-02-01

    A-kinase anchor protein 12 (AKAP12) is a regulator of protein kinase A and protein kinase C signaling, acting downstream of RAS. Epigenetic silencing of AKAP12 has been demonstrated in different cancer entities and this has been linked to the process of tumorigenesis. Here, we used quantitative high-resolution DNA methylation measurement by MassARRAY to investigate epigenetic regulation of all three AKAP12 promoters (i.e., α, β, and γ) within a large cohort of juvenile myelomonocytic leukemia (JMML) patient samples. The AKAP12α promoter shows DNA hypermethylation in JMML samples, which is associated with decreased AKAP12α expression. Promoter methylation of AKAP12α correlates with older age at diagnosis, elevated levels of fetal hemoglobin and poor prognosis. In silico screening for transcription factor binding motifs around the sites of most pronounced methylation changes in the AKAP12α promoter revealed highly significant scores for GATA-2/-1 sequence motifs. Both transcription factors are known to be involved in the haematopoietic differentiation process. Methylation of a reporter construct containing this region resulted in strong suppression of AKAP12 promoter activity, suggesting that DNA methylation might be involved in the aberrant silencing of the AKAP12 promoter in JMML. Exposure to DNMT- and HDAC-inhibitors reactivates AKAP12α expression in vitro, which could potentially be a mechanism underlying clinical treatment responses upon demethylating therapy. Together, these data provide evidence for epigenetic silencing of AKAP12α in JMML and further emphasize the importance of dysregulated RAS signaling in JMML pathogenesis. PMID:26891149

  14. The danger of epigenetics misconceptions (epigenetics and stuff…).

    PubMed

    Georgel, Philippe T

    2015-12-01

    Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the "Epigenetics" building). The fusion and convergence of these complementary fields is now often simply referred to as "Epigenetics". During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short "opinion" piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned. PMID:26492160

  15. Epigenetic Biomarkers for the Early Detection of Gastrointestinal Cancer

    PubMed Central

    Chen, Hui-Min; Fang, Jing-Yuan

    2014-01-01

    Background Gastric cancer and colorectal cancer, the two most frequent cancers within the gastrointestinal tract, account for a large proportion of human malignancies worldwide. The initiation and progression of gastrointestinal cancer (GIC) is controlled by both genetic and epigenetic events. Epigenetic alterations, including changes in DNA methylation, specific histone modifications, chromatin remodeling and noncoding RNA-mediated gene silencing, are potentially reversible and heritable. Summary In this article, we summarize the current advances in epigenetic biomarkers as potential substrates for GIC detection. The combined screening of a panel of methylated genes, hyperacetylated histones, microRNAs or other noncoding RNAs is currently under evaluation to improve sensitivity. Key Message Current studies concentrated on the development of cost-effective epigenetic diagnostic biomarkers for GIC based on noninvasive blood or stool samples. The combined blood or stool test with a relatively high sensitivity could be a cost-effective screening tool for the detection of patients with asymptomatic cancers who could therefore choose whether or not to go for further examinations, such as endoscopy or colonoscopy. Practical Implications A better understanding of epigenetic mechanisms has not only offered new insights into a deeper understanding of the underlying mechanisms of carcinogenesis, but has also allowed identification of clinically relevant putative biomarkers for the early detection, disease monitoring, prognosis and risk assessment of GIC. In particular, noninvasive biomarkers in serum or fecal samples for the detection of GIC could have potential for better compliance and can be incorporated into routine clinical practice in the foreseeable future, pending their validation in large-scale prospective trials. PMID:26674521

  16. RNA Expression Microarray Analysis in Mouse Prospermatogonia: Identification of Candidate Epigenetic Modifiers

    PubMed Central

    Lefèvre, Christophe; Mann, Jeffrey R.

    2011-01-01

    The mammalian totipotent and pluripotent lineage exhibits genome-wide dynamics in respect to DNA methylation content. The first phase of global DNA demethylation and de novo remethylation occurs during preimplantation development and gastrulation, respectively, while the second phase occurs in primordial germ cells and primary oocytes/prospermatogonia, respectively. These dynamics are indicative of a comprehensive epigenetic resetting or reprogramming of the genome in preparation for major differentiation events. To gain further insight into the mechanisms driving DNA methylation dynamics and other types of epigenetic modification, we performed an RNA expression microarray analysis of fetal prospermatogonia at the stage when they are undergoing rapid de novo DNA remethylation. We have identified a number of highly or specifically expressed genes which could be important for determining epigenetic change in prospermatogonia. These data provide a useful resource in the discovery of molecular pathways involved in epigenetic reprogramming in the mammalian germ line. PMID:18330932

  17. A systems view of epigenetic networks regulating pancreas development and β-cell function

    PubMed Central

    Xie, Ruiyu; Carrano, Andrea C.; Sander, Maike

    2015-01-01

    The development of the pancreas and determination of endocrine cell fate are controlled by a highly complex interplay of signaling events and transcriptional networks. It is now known that an interconnected epigenetic program is also required to drive these processes. Recent studies using genome-wide approaches have implicated epigenetic regulators, such as DNA and histone-modifying enzymes and non-coding RNAs, to play critical roles in pancreas development and the maintenance of cell identity and function. Furthermore, genome-wide analyses have implicated epigenetic changes as a casual factor in the pathogenesis of diabetes. In the future, genomic approaches to further our understanding of the role of epigenetics in endocrine cell development and function will be useful for devising strategies to produce or manipulate β-cells for therapies of diabetes. PMID:25644779

  18. A twin approach to unraveling epigenetics

    PubMed Central

    Bell, Jordana T.; Spector, Tim D.

    2011-01-01

    The regulation of gene expression plays a pivotal role in complex phenotypes, and epigenetic mechanisms such as DNA methylation are essential to this process. The availability of next-generation sequencing technologies allows us to study epigenetic variation at an unprecedented level of resolution. Even so, our understanding of the underlying sources of epigenetic variability remains limited. Twin studies have played an essential role in estimating phenotypic heritability, and these now offer an opportunity to study epigenetic variation as a dynamic quantitative trait. High monozygotic twin discordance rates for common diseases suggest that unexplained environmental or epigenetic factors could be involved. Recent genome-wide epigenetic studies in disease-discordant monozygotic twins emphasize the power of this design to successfully identify epigenetic changes associated with complex traits. We describe how large-scale epigenetic studies of twins can improve our understanding of how genetic, environmental and stochastic factors impact upon epigenetics, and how such studies can provide a comprehensive understanding of how epigenetic variation affects complex traits. PMID:21257220

  19. Epigenetic regulation of asthma and allergic disease

    PubMed Central

    2014-01-01

    Epigenetics of asthma and allergic disease is a field that has expanded greatly in the last decade. Previously thought only in terms of cell differentiation, it is now evident the epigenetics regulate many processes. With T cell activation, commitment toward an allergic phenotype is tightly regulated by DNA methylation and histone modifications at the Th2 locus control region. When normal epigenetic control is disturbed, either experimentally or by environmental exposures, Th1/Th2 balance can be affected. Epigenetic marks are not only transferred to daughter cells with cell replication but they can also be inherited through generations. In animal models, with constant environmental pressure, epigenetically determined phenotypes are amplified through generations and can last up to 2 generations after the environment is back to normal. In this review on the epigenetic regulation of asthma and allergic diseases we review basic epigenetic mechanisms and discuss the epigenetic control of Th2 cells. We then cover the transgenerational inheritance model of epigenetic traits and discuss how this could relate the amplification of asthma and allergic disease prevalence and severity through the last decades. Finally, we discuss recent epigenetic association studies for allergic phenotypes and related environmental risk factors as well as potential underlying mechanisms for these associations. PMID:24932182

  20. Epigenetic variation in asexually reproducing organisms.

    PubMed

    Verhoeven, Koen J F; Preite, Veronica

    2014-03-01

    The role that epigenetic inheritance can play in adaptation may differ between sexuals and asexuals because (1) the dynamics of adaptation differ under sexual and asexual reproduction and the opportunities offered by epigenetic inheritance may affect these dynamics differently; and (2) in asexual reproduction epigenetic reprogramming mechanisms that are associated with meiosis can be bypassed, which could promote the buildup of epigenetic variation in asexuals. Here, we evaluate current evidence for an epigenetic contribution to adaptation in asexuals. We argue that two aspects of epigenetic variation should have particular relevance for asexuals, namely epigenetics-mediated phenotypic plasticity within and between generations, and heritable variation via stochastic epimutations. An evaluation of epigenetic reprogramming mechanisms suggests that some, but not all, forms of asexual reproduction enhance the likelihood of stable transmission of epigenetic marks across generations compared to sexual reproduction. However, direct tests of these predicted sexual-asexual differences are virtually lacking. Stable transmission of DNA methylation, transcriptomes, and phenotypes from parent to clonal offspring are demonstrated in various asexual species, and clonal genotypes from natural populations show habitat-specific DNA methylation. We discuss how these initial observations can be extended to demonstrate an epigenetic contribution to adaptation. PMID:24274255

  1. Critical Link Between Epigenetics and Transcription Factors in the Induction of Autoimmunity: a Comprehensive Review.

    PubMed

    Wu, Haijing; Zhao, Ming; Yoshimura, Akihiko; Chang, Christopher; Lu, Qianjin

    2016-06-01

    Autoimmune diseases occur when the immune system loses tolerance to self-antigens, inducing inflammation and tissue damage. The pathogenesis of autoimmune diseases has not been elucidated. A growing mountain of evidence suggests the involvement of genetic and epigenetic factors in the development of these disorders. Genetic mapping has identified several candidate variants in autoimmune conditions. However, autoimmune diseases cannot be explained by genetic susceptibility alone. The fact that there is only 20 % of concordance for systemic lupus erythematosus (SLE) in homozygotic twins is an indication that epigenetics and environment may also play significant roles. Epigenetics refer to inheritable and potentially reversible changes in DNA and chromatin that regulate gene expression without altering the DNA sequence. The primary mechanisms of epigenetic regulation include DNA methylation, histone modification, and non-coding RNA-mediated regulation. The regulation on gene expression by epigenetics is similar to that by transcription factors (TFs), and the normal execution of biological event is controlled by a combination of epigenetic modifications and TFs. These two mechanisms share similar regulatory logistics and cooperate in part by influencing activity of the binding sites of target genes. In addition, the promoters of TFs have been found themselves to be modified by epigenetic regulators and TFs can also induce epigenetic changes. There is a two-way street in which interplay between epigenetic regulation and TFs plays a role in the pathogenesis of SLE, rheumatoid arthritis, type 1 diabetes, systemic sclerosis, and multiple sclerosis. Understanding of pathogenesis of these autoimmune diseases will help define potential targets for therapeutic strategies. PMID:26969025

  2. Epigenetic Dynamics During Preimplantation Development

    PubMed Central

    Marcho, Chelsea; Cui, Wei; Mager, Jesse

    2015-01-01

    Successful mammalian development requires descendants of single-cell zygotes to differentiate into diverse cell types even though they contain the same genetic material. Preimplantation dynamics are first driven by the necessity of reprogramming haploid parental epigenomes to reach a totipotent state. This process requires extensive erasure of epigenetic marks shortly after fertilization. During the few short days after formation of the zygote, epigenetic programs are established and are essential for the first lineage decisions and differentiation. Here we review the current understanding of DNA methylation and histone modification dynamics responsible for these early changes during mammalian preimplantation development. In particular we highlight insights that have been gained through next generation sequencing technologies comparing human embryos to other models as well as the recent discoveries of active DNA demethylation mechanisms at play during preimplantation. PMID:26031750

  3. Fetal epigenetic programming of adipokines.

    PubMed

    Houde, Andrée-Anne; Hivert, Marie-France; Bouchard, Luigi

    2013-01-01

    Epigenetics generates a considerable interest in the field of research on complex traits, including obesity and diabetes. Recently, we reported a number of epipolymorphisms in the placental leptin and adiponectin genes associated with maternal hyperglycemia during pregnancy. Our results suggest that DNA methylation could partly explain the link between early exposure to a detrimental fetal environment and an increased risk to develop obesity and diabetes later in life. This brief report discusses the potential importance of adipokine epigenetic changes in fetal metabolic programming. Additionally, preliminary data showing similarities between methylation variations of different tissues and cell types will be presented along with the challenges and future perspectives of this emerging field of research. PMID:23700551

  4. Lifestyle, pregnancy and epigenetic effects.

    PubMed

    Barua, Subit; Junaid, Mohammed A

    2015-01-01

    Rapidly growing evidences link maternal lifestyle and prenatal factors with serious health consequences and diseases later in life. Extensive epidemiological studies have identified a number of factors such as diet, stress, gestational diabetes, exposure to tobacco and alcohol during gestation as influencing normal fetal development. In light of recent discoveries, epigenetic mechanisms such as alteration of DNA methylation, chromatin modifications and modulation of gene expression during gestation are believed to possibly account for various types of plasticity such as neural tube defects, autism spectrum disorder, congenital heart defects, oral clefts, allergies and cancer. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations. To support these associations, we highlighted laboratory studies of rodents and epidemiological studies of human based on sampling population cohorts. PMID:25687469

  5. Longevity: epigenetic and biomolecular aspects.

    PubMed

    Taormina, Giusi; Mirisola, Mario G

    2015-04-01

    Many aging theories and their related molecular mechanisms have been proposed. Simple model organisms such as yeasts, worms, fruit flies and others have massively contributed to their clarification, and many genes and pathways have been associated with longevity regulation. Among them, insulin/IGF-1 plays a key and evolutionary conserved role. Interestingly, dietary interventions can modulate this pathway. Calorie restriction (CR), intermittent fasting, and protein and amino acid restriction prolong the lifespan of mammals by IGF-1 regulation. However, some recent findings support the hypothesis that the long-term effects of diet also involve epigenetic mechanisms. In this review, we describe the best characterized aging pathways and highlight the role of epigenetics in diet-mediated longevity. PMID:25883209

  6. Environmental signals and transgenerational epigenetics

    PubMed Central

    Skinner, Michael K; Guerrero-Bosagna, Carlos

    2010-01-01

    The ability of an environmental factor or toxicant to promote a phenotype or disease state not only in the individual exposed, but also in subsequent progeny for multiple generations, is termed transgenerational inheritance. The majority of environmental agents do not promote genetic mutations or alterations in DNA sequence, but do have the capacity to alter the epigenome. Although most environmental exposures will influence somatic cells and not allow the transgenerational transmission of a phenotype, the ability of an environmental factor to reprogram the germline epigenome can promote a transgenerational inheritance of phenotypes and disease states. A limited number of critical developmental periods exist when environmental signals can produce a significant epigenetic reprogramming of the germline. In this review, the ability of environmental factors or toxicants to promote epigenetic transgenerational phenotypes is reviewed. PMID:20563319

  7. Epigenetic disruptions of histone signatures for the trophectoderm and inner cell mass in mouse parthenogenetic embryos.

    PubMed

    Chen, Yi-Hui; Yu, John

    2015-03-01

    Epigenetic asymmetry has been shown to be associated with the first lineage allocation event in preimplantation development, that is, the formation of the trophectoderm (TE) and inner cell mass (ICM) lineages in the blastocyst. Since parthenogenesis causes aberrant segregation between the TE and ICM lineages, we examined several development-associated histone modifications in parthenotes, including those involved in (i) transcriptional activation [acetylated histone H3 lysine 9 (H3K9Ac) and lysine 14 (H3K14Ac), trimethylated histone H3 lysine 4 (H3K4Me3), and dimethylated histone H3 arginine 26 (H3R26Me2)] and (ii) transcriptional repression [trimethylated histone H3 lysine 9 (H3K9Me3) and lysine 27 (H3K27Me3), and mono-ubiquitinated histone H2A lysine 119 (H2AK119u1)]. Here, we report that in parthenotes, H3R26Me2 expression decreased from the morula stage, while expression patterns and levels of H3K9Ac, H3K27Me3, and H2AK119u1 were unchanged until the blastocyst stage; whereas H3K14Ac, H3K4Me3, and H3K9Me3 showed normal patterns and levels of expressions. Relative to the decrease of H3K9Ac in the ICM and increase in the TE of parthenotes, we detected reduced expression of TAT-interactive protein 60 acetyltransferase and histone deacetylase 1 deacetylase in the ICM and TE of parthenotes, respectively. Relative to the decrease of H3R26Me2, we also observed decreased expression of coactivator-associated arginine methyltransferase 1 methyltransferase and increased expression of the Wnt effector transcription factor 7L2 and miR-181c microRNA in parthenotes. Furthermore, relative to the decrease in H3K27Me3 and H2AK119u1, we found increased phosphorylation of Akt1 and enhancer of zeste homolog 2 in parthenogenetic TE. Therefore, our findings that histone signatures are impaired in parthenotes provide a mechanistic explanation for aberrant lineage segregation and TE defects. PMID:25315067

  8. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  9. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  10. Adaption by Rewiring Epigenetic Landscapes

    PubMed Central

    Liu, Yifei; Xiao, Andrew

    2016-01-01

    Embryonic stem cells (ESCs) generally rely on repressive histone modifications to silence retrotransposons, rather than DNA methylation as in differentiated cells. In this issue of Cell Stem Cell, He et al. (2015) show that Daxx/Atrx repress transposons in ESCs devoid of 5mC, demonstrating dynamic reorganization of epigenetic networks and crosstalk between distinct repressive mechanisms to maintain transposon silencing. PMID:26340521

  11. Epigenetics of Early Child Development

    PubMed Central

    Murgatroyd, Chris; Spengler, Dietmar

    2011-01-01

    Comprehensive clinical studies show that adverse conditions in early life can severely impact the developing brain and increase vulnerability to mood disorders later in life. During early postnatal life the brain exhibits high plasticity which allows environmental signals to alter the trajectories of rapidly developing circuits. Adversity in early life is able to shape the experience-dependent maturation of stress-regulating pathways underlying emotional functions and endocrine responses to stress, such as the hypothalamo–pituitary–adrenal (HPA) system, leading to long-lasting altered stress responsivity during adulthood. To date, the study of gene–environment interactions in the human population has been dominated by epidemiology. However, recent research in the neuroscience field is now advancing clinical studies by addressing specifically the mechanisms by which gene–environment interactions can predispose individuals toward psychopathology. To this end, appropriate animal models are being developed in which early environmental factors can be manipulated in a controlled manner. Here we will review recent studies performed with the common aim of understanding the effects of the early environment in shaping brain development and discuss the newly developing role of epigenetic mechanisms in translating early life conditions into long-lasting changes in gene expression underpinning brain functions. Particularly, we argue that epigenetic mechanisms can mediate the gene–environment dialog in early life and give rise to persistent epigenetic programming of adult physiology and dysfunction eventually resulting in disease. Understanding how early life experiences can give rise to lasting epigenetic marks conferring increased risk for mental disorders, how they are maintained and how they could be reversed, is increasingly becoming a focus of modern psychiatry and should pave new guidelines for timely therapeutic interventions. PMID:21647402

  12. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  13. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts.

    PubMed

    Vizoso, Miguel; Puig, Marta; Carmona, F Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-12-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  14. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence. PMID:20134811

  15. Epigenetic regulation of chronic pain.

    PubMed

    Liang, Lingli; Lutz, Brianna Marie; Bekker, Alex; Tao, Yuan-Xiang

    2015-01-01

    Chronic pain arising from peripheral inflammation and tissue or nerve injury is a common clinical symptom. Although intensive research on the neurobiological mechanisms of chronic pain has been carried out during previous decades, this disorder is still poorly managed by current drugs such as opioids and nonsteroidal anti-inflammatory drugs. Inflammation, tissue injury and/or nerve injury-induced changes in gene expression in sensory neurons of the dorsal root ganglion, spinal cord dorsal horn and pain-associated brain regions are thought to participate in chronic pain genesis; however, how these changes occur is still elusive. Epigenetic modifications including DNA methylation and covalent histone modifications control gene expression. Recent studies have shown that peripheral noxious stimulation changes DNA methylation and histone modifications and that these changes may be related to the induction of pain hypersensitivity under chronic pain conditions. This review summarizes the current knowledge and progress in epigenetic research in chronic pain and discusses the potential role of epigenetic modifications as therapeutic antinociceptive targets in this disorder. PMID:25942533

  16. Imbalanced Class Learning in Epigenetics

    PubMed Central

    Haque, M. Muksitul; Holder, Lawrence B.

    2014-01-01

    Abstract In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset. PMID:24798423

  17. Influence of aberrations in microholographic recording

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuichi

    2015-11-01

    The influence of various types of aberrations (spherical, coma, and astigmatic) of recording and readout beams on the readout signal in a microholographic recording was investigated through a numerical simulation. The simulation conditions were that the wavelength of the laser was 405 nm and the numerical aperture of the objective lenses was 0.85. The tolerance of the root-mean-square (RMS) wavefront aberrations was defined as the aberration when the normalized signal level decreased to 0.8. Among the three types of aberrations, the influence of the spherical aberration was the most significant. When both the recording and readout beams were aberrated and the signs of the aberrations were in the worst case, the tolerance of the RMS wavefront aberrations was less than half of the Maréchal's criterion. Moreover, when the RMS wavefront aberrations of the recording and readout beams were within the above tolerance, the bit intervals of 0.13 and 0.65 μm in the inplane and vertical directions, respectively, which correspond to the recording density of 91 bit/μm3 (recording capacity of 16 TB for a 120-mm-diameter optical disk having a 300-μm-thick recording layer), were shown to be feasible for confocal detection with an allowable signal-to-noise ratio.

  18. Protein and DNA Modifications: Evolutionary Imprints of Bacterial Biochemical Diversification and Geochemistry on the Provenance of Eukaryotic Epigenetics

    PubMed Central

    Aravind, L.; Burroughs, A. Maxwell; Zhang, Dapeng; Iyer, Lakshminarayan M.

    2014-01-01

    Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth’s history. PMID:24984775

  19. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics.

    PubMed

    Aravind, L; Burroughs, A Maxwell; Zhang, Dapeng; Iyer, Lakshminarayan M

    2014-07-01

    Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth's history. PMID:24984775

  20. The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms

    PubMed Central

    Haag, Tanja; Herkt, Christina E.; Walesch, Sara K.; Richter, Antje M.; Dammann, Reinhard H.

    2014-01-01

    Epigenetic gene inactivation through promoter hypermethylation is an important aberration involved in the silencing of tumor-associated genes in cancer. Here we identified the apoptosis associated tyrosine kinase (AATK) as an epigenetically downregulated tumor related gene. We analyzed the epigenetic regulation of AATK in several human cancer cell lines and normal tissues by methylation and expression analysis. Hypermethylation of AATK was also analyzed in 25 primary lung tumors, 30 breast cancers and 24 matching breast tissues. In normal tissues the AATK CpG island promoter was unmethylated and AATK was expressed. Hypermethylation of AATK occurred frequently in 13 out of 14 (93%) human cancer cell lines. Methylation was reversed by 5-aza-2′-deoxycytidine treatment leading to re-expression of AATK in cancer cell lines. Aberrant methylation of AATK was also revealed in primary lung (40%) and breast (53%) cancers, but was found to be significantly less methylated in matching normal breast tissues (17%; p<0.01). In addition, we observed that AATK is epigenetically reactivated through the chromatin regulator CTCF. We further show that overexpression of Aatk significantly suppresses colony formation in cancer cell lines. Our findings suggest that the apoptosis associated tyrosine kinase is frequently inactivated in human cancers and acts as a tumor suppressive gene. PMID:25352953

  1. What Role Do Epigenetics and Developmental Epigenetics Play in Health and Disease?

    MedlinePlus

    ... diseases. Simmons, D. (2008). Epigenetic influences and disease. Nature Education, 1 (1). Retrieved July 24, 2012, from http://www.nature.com/scitable/topicpage/epigenetic-influences-and-disease-895 [ ...

  2. Genetics and Epigenetics in Adult Neurogenesis.

    PubMed

    Hsieh, Jenny; Zhao, Xinyu

    2016-01-01

    The cellular basis of adult neurogenesis is neural stem cells residing in restricted areas of the adult brain. These cells self-renew and are multipotent. The maintenance of "stemness" and commitment to differentiation are tightly controlled by intricate molecular networks. Epigenetic mechanisms, including chromatin remodeling, DNA methylation, and noncoding RNAs (ncRNAs), have profound regulatory roles in mammalian gene expression. Significant advances have been made regarding the dynamic roles of epigenetic modulation and function. It has become evident that epigenetic regulators are key players in neural-stem-cell self-renewal, fate specification, and final maturation of new neurons, therefore, adult neurogenesis. Altered epigenetic regulation can result in a number of neurological and neurodevelopmental disorders. Here, we review recent discoveries that advance our knowledge in epigenetic regulation of mammalian neural stem cells and neurogenesis. Insights from studies of epigenetic gene regulation in neurogenesis may lead to new therapies for the treatment of neurodevelopmental disorders. PMID:27143699

  3. Orchestrating epigenetic roles targeting ocular tumors

    PubMed Central

    Wen, Xuyang; Lu, Linna; He, Zhang; Fan, Xianqun

    2016-01-01

    Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized. PMID:27013893

  4. Targeting DNA Methylation for Epigenetic Therapy

    PubMed Central

    Yang, Xiaojing; Lay, Fides; Han, Han; Jones, Peter A.

    2010-01-01

    DNA methylation patterns are established during embryonic development and faithfully copied through somatic cell divisions. Based on our understanding of DNA methylation and other interrelated epigenetic modifications, a comprehensive view of the epigenetic landscape and cancer epigenome is evolving. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. During the last few decades, an increasing number of drugs targeting DNA methylation have been developed in an effort to increase efficacy, stability and to decrease toxicity. The earliest and the most successful epigenetic drug to date, 5-Azacytidine, is currently recommended as the first-line treatment for high risk myelodysplastic syndromes (MDS) patients. Encouraging results from clinical trials have prompted further efforts to elucidate epigenetic alterations in cancer and subsequently develop new epigenetic therapies. This review delineates the latest cancer epigenetic models, recent discovery of hypomethylation agents and their application in the clinic. PMID:20846732

  5. Epigenetics and microRNAs in Preeclampsia

    PubMed Central

    Choudhury, Mahua; Friedman, Jacob E.

    2012-01-01

    Strong evidence suggests a potential link among epigenetics, microRNAs (miRNAs), and pregnancy complications. Much research still needs to be carried out to determine whether epigenetic factors are predictive in the pathogenesis of preeclampsia (PE), a life-threatening disease during pregnancy. Recently, the importance of maternal epigenetic features, including DNA methylation, histone modifications, epigenetically regulated miRNA, and the effect of imprinted or non-imprinted genes on trophoblast growth, invasion, as well as fetal development and hypertension in pregnancy, has been demonstrated in a series of articles. This article discusses the current evidence of this complicated network of miRNA and epigenetic factors as potential mechanisms that may underlie the theories of disease for PE. Translating these basic epigenetic findings to clinical practice could potentially serve as prognostic biomarkers for diagnosis in its early stages and could help in the development of prophylactic strategies. PMID:22468840

  6. Orchestrating epigenetic roles targeting ocular tumors.

    PubMed

    Wen, Xuyang; Lu, Linna; He, Zhang; Fan, Xianqun

    2016-01-01

    Epigenetics is currently one of the most promising areas of study in the field of biomedical research. Scientists have dedicated their efforts to studying epigenetic mechanisms in cancer for centuries. Additionally, the field has expanded from simply studying DNA methylation to other areas, such as histone modification, non-coding RNA, histone variation, nucleosome location, and chromosome remodeling. In ocular tumors, a large amount of epigenetic exploration has expanded from single genes to the genome-wide level. Most importantly, because epigenetic changes are reversible, several epigenetic drugs have been developed for the treatment of cancer. Herein, we review the current understanding of epigenetic mechanisms in ocular tumors, including but not limited to retinoblastoma and uveal melanoma. Furthermore, the development of new pharmacological strategies is summarized. PMID:27013893

  7. Epigenetic medicine and fetal alcohol spectrum disorders

    PubMed Central

    Resendiz, Marisol; Chen, Yuanyuan; Öztürk, Nail C; Zhou, Feng C

    2013-01-01

    Epigenetic medicine is still in its infancy. To date, only a handful of diseases have documented epigenetic correlates upstream of gene regulation including cancer, developmental syndromes and late-onset diseases. The finding that epigenetic markers are dynamic and heterogeneous at tissue and cellular levels, combined with recent identification of a new form of functionally distinct DNA methylation has opened a wider window for investigators to pry into the epigenetic world. It is anticipated that many diseases will be elucidated through this epigenetic inquiry. In this review, we discuss the normal course of DNA methylation during development, taking alcohol as a demonstrator of the epigenetic impact of environmental factors in disease etiology, particularly the growth retardation and neurodevelopmental deficits of fetal alcohol spectrum disorders. PMID:23414322

  8. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  9. Epigenetic silencing of the kinase tumor suppressor WNK2 is tumor-type and tumor-grade specific

    PubMed Central

    Jun, Peter; Hong, Chibo; Lal, Anita; Wong, Judith M.; McDermott, Michael W.; Bollen, Andrew W.; Plass, Christoph; Held, William A.; Smiraglia, Dominic J.; Costello, Joseph F.

    2009-01-01

    Both genetic and epigenetic mechanisms contribute to meningioma development by altering gene expression and protein function. To determine the relative contribution of each mechanism to meningioma development, we used an integrative approach measuring copy number and DNA methylation changes genomewide. We found that genetic alterations affected 1.9%, 7.4%, and 13.3% of the 691 loci studied, whereas epigenetic mechanisms affected 5.4%, 9.9%, and 10.3% of these loci in grade I, II, and III meningiomas, respectively. Genetic and epigenetic mechanisms rarely involved the same locus in any given tumor. The predilection for epigenetic rather than genetic silencing was exemplified at the 5′ CpG island of WNK2, a serine-threonine kinase gene on chromosome 9q22.31. WNK2 is known to negatively regulate epidermal growth factor receptor signaling via inhibition of MEK1 (mitogen-activated protein kinase kinase 1), and point mutations have been reported in WNK1, WNK2, WNK3, and WNK4. In meningiomas, WNK2 was aberrantly methylated in 83% and 71% of grade II and III meningiomas, respectively, but rarely in a total of 209 tumors from 13 other tumor types. Aberrant methylation of the CpG island was associated with decreased expression in primary tumors. WNK2 could be reactivated with a methylation inhibitor in IOMM-Lee, a meningioma cell line with a densely methylated WNK2 CpG island and lack of WNK2 expression. Expression of exogenous WNK2 inhibited colony formation, implicating it as a potential cell growth suppressor. These findings indicate that epigenetic mechanisms are common across meningiomas of all grades and that for specific genes such as WNK2, epigenetic alteration may be the dominant, grade-specific mechanism of gene inactivation. PMID:19001526

  10. Fetal environment, epigenetics, and pediatric renal disease.

    PubMed

    Woroniecki, Robert; Gaikwad, Anil Bhanudas; Susztak, Katalin

    2011-05-01

    The notion that some adult diseases may have their origins in utero has recently captured scientists' attention. Some of these effects persist across generations and may involve epigenetic mechanisms. Epigenetic modifications, DNA methylation together with covalent modifications of histones, alter chromatin density and accessibility of DNA to cellular machinery, modulating the transcriptional potential of the underlying DNA sequence. Here, we will discuss the different epigenetic modifications and their potential role in and contribution to renal disease development. PMID:21174217

  11. [Relationship between epigenetics of sperm and embryogenesis].

    PubMed

    He, Yan-Fang; Ma, Jie-Hua; Pan, Lian-Jun; Huang, Yu-Feng

    2014-08-01

    Epigenetics comprises the modifications made in gene expressions without changing the DNA sequence itself. Significant epigenetic changes take place during spermatogenesis and fertilization and exert direct influences on embryogenesis. This article provides an overview of the latest researches on epigenetics of male germ cells and a brief discussion on the correlation of sperm with embryogenesis in four aspects: DNA methylation, histone modification, regulation of non-coding RNAs, and genomic imprinting. PMID:25195372

  12. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle

    PubMed Central

    Urrego, Rodrigo; Rodriguez-Osorio, Nélida; Niemann, Heiner

    2014-01-01

    The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders. PMID:24709985

  13. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    PubMed Central

    2010-01-01

    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects. PMID:20540720

  14. Epigenetic disorders and altered gene expression after use of Assisted Reproductive Technologies in domestic cattle.

    PubMed

    Urrego, Rodrigo; Rodriguez-Osorio, Nélida; Niemann, Heiner

    2014-06-01

    The use of Assisted Reproductive Technologies (ARTs) in modern cattle breeding is an important tool for improving the production of dairy and beef cattle. A frequently employed ART in the cattle industry is in vitro production of embryos. However, bovine in vitro produced embryos differ greatly from their in vivo produced counterparts in many facets, including developmental competence. The lower developmental capacity of these embryos could be due to the stress to which the gametes and/or embryos are exposed during in vitro embryo production, specifically ovarian hormonal stimulation, follicular aspiration, oocyte in vitro maturation in hormone supplemented medium, sperm handling, gamete cryopreservation, and culture of embryos. The negative effects of some ARTs on embryo development could, at least partially, be explained by disruption of the physiological epigenetic profile of the gametes and/or embryos. Here, we review the current literature with regard to the putative link between ARTs used in bovine reproduction and epigenetic disorders and changes in the expression profile of embryonic genes. Information on the relationship between reproductive biotechnologies and epigenetic disorders and aberrant gene expression in bovine embryos is limited and novel approaches are needed to explore ways in which ARTs can be improved to avoid epigenetic disorders. PMID:24709985

  15. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells

    PubMed Central

    Karlic, Heidrun; Thaler, Roman; Gerner, Christopher; Grunt, Thomas; Proestling, Katharina; Haider, Florian; Varga, Franz

    2015-01-01

    The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates. PMID:25978957

  16. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging

    PubMed Central

    Kim, Kyong-chol; Friso, Simonetta; Choi, Sang-Woon

    2009-01-01

    Experimental studies demonstrated that maternal exposure to certain environmental and dietary factors during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism by which maternal nutrients affect the phenotype of their offspring in both honeybee and agouti mouse models. Phenotypic changes through DNA methylation can be linked to folate metabolism by the knowledge that folate, a coenzyme of one-carbon metabolism, is directly involved in methyl group transfer for DNA methylation. During the fetal period, organ-specific DNA methylation patterns are established through epigenetic reprogramming. However, established DNA methylation patterns are not immutable and can be modified during our life time by the environment. Aberrant changes in DNA methylation with diet may lead to the development of age-associated diseases including cancer. It is also known that the aging process by itself is accompanied by alterations in DNA methylation. Diminished activity of DNA methyltransferases (Dnmts) can be a potential mechanism for the decreased genomic DNA methylation during aging, along with reduced folate intake and altered folate metabolism. Progressive hypermethylation in promoter regions of certain genes is observed throughout aging and repression of tumor suppressors induced by this epigenetic mechanism appears to be associated with cancer development. In this review we address the effect of folate on early development and aging through an epigenetic mechanism, DNA methylation. PMID:19733471

  17. Reversibility of Aberrant Global DNA and Estrogen Receptor-α Gene Methylation Distinguishes Colorectal Precancer from Cancer

    PubMed Central

    Shen, Rulong; Tao, Lianhui; Xu, Yiqing; Chang, Shi; Van Brocklyn, James; Gao, Jian-Xin

    2009-01-01

    Alterations in the global methylation of DNA and in specific regulatory genes are two epigenetic alterations found in cancer. However, the significance of epigenetic changes for diagnosis and/or prognosis of colorectal cancer have not been established, although it has been extensively investigated. Recently we have identified a new type of cancer cell called precancerous stem cells (pCSCs) and proposed that cancer may arise from a lengthy development process of tumor initiating cells (TICs) → pCSCs → cancer stem cells (CSCs) → cancer, which is in parallel to histological changes of hyperplasia (TICs) → precancer (pCSCs) → carcinoma (CSCs/cancer cells), accompanied by clonal evolutionary epigenetic and genetic alterations. In this study, we investigated whether aberrant DNA methylation can be used as a biomarker for the differentiation between premalignant and malignant lesions in the colorectum. The profile of global DNA and estrogen receptor (ER)-α gene methylation during cancer development was determined by analysis of 5-methylcytosine (5-MeC) using immunohistochemical (IHC) staining, dot blot analysis or a quantitative gene methylation assay (QGMA). Herein we show that global DNA hypomethylation and ER-α gene hypermethylation are progressively enhanced from hyperplastic polyps (HPs) → adenomatous polyps (APs) → adenomatous carcinoma (AdCa). The aberrant methylation can be completely reversed in APs, but not in AdCa by a nonsteroidal anti-inflammatory drug (NSAID) celecoxib, which is a selective inhibitor of cyclooxygenase-2 (Cox-2), suggesting that the epigenetic alterations between colorectal precancer (AP) and cancer (AdCa) are fundamentally different in response to anti-cancer therapy. In normal colorectal mucosa, while global DNA methylation was not affected by aging, ER-α gene methylation was significantly increased with aging. However, this increase did not reach the level observed in colorectal APs. Taken together, reversibility of

  18. Epigenetic Inheritance of Disease and Disease Risk

    PubMed Central

    Bohacek, Johannes; Mansuy, Isabelle M

    2013-01-01

    Epigenetic marks in an organism can be altered by environmental factors throughout life. Although changes in the epigenetic code can be positive, some are associated with severe diseases, in particular, cancer and neuropsychiatric disorders. Recent evidence has indicated that certain epigenetic marks can be inherited, and reshape developmental and cellular features over generations. This review examines the challenging possibility that epigenetic changes induced by environmental factors can contribute to some of the inheritance of disease and disease risk. This concept has immense implications for the understanding of biological functions and disease etiology, and provides potential novel strategies for diagnosis and treatment. Examples of epigenetic inheritance relevant to human disease, such as the detrimental effects of traumatic stress or drug/toxic exposure on brain functions, are reviewed. Different possible routes of transmission of epigenetic information involving the germline or germline-independent transfer are discussed, and different mechanisms for the maintenance and transmission of epigenetic information like chromatin remodeling and small noncoding RNAs are considered. Future research directions and remaining major challenges in this field are also outlined. Finally, the adaptive value of epigenetic inheritance, and the cost and benefit of allowing acquired epigenetic marks to persist across generations is critically evaluated. PMID:22781843

  19. Epigenetic regulator RBP2 is critical for breast cancer progression and metastasis

    PubMed Central

    Cao, Jian; Liu, Zongzhi; Cheung, William K.C.; Zhao, Minghui; Chen, Sophia Y.; Chan, Siew Wee; Booth, Carmen J.; Nguyen, Don X.; Yan, Qin

    2014-01-01

    Summary Metastasis is a major clinical challenge for cancer treatment. Emerging evidence suggests that epigenetic aberrations contribute significantly to tumor formation and progression. However, the drivers and roles of such epigenetic changes in tumor metastasis are still poorly understood. Using bioinformatic analysis of human breast cancer gene expression datasets, we identified histone demethylase RBP2 as a putative mediator of metastatic progression. By using both human breast cancer cells and genetically engineered mice, we demonstrated that RBP2 is critical for breast cancer metastasis to the lung in multiple in vivo models. Mechanistically, RBP2 promotes metastasis as a pleiotropic positive regulator of many metastasis genes. In addition, RBP2 loss suppresses tumor formation in the MMTV-neu transgenic mice. These results suggest that therapeutically targeting RBP2 is a potential strategy to inhibit tumor progression and metastasis. PMID:24582965

  20. Epigenetics of renal cell carcinoma: the path towards new diagnostics and therapeutics

    PubMed Central

    2010-01-01

    Aberrant DNA methylation, in particular promoter hypermethylation and transcriptional silencing of tumor suppressor genes, has an important role in the development of many human cancers, including renal cell carcinoma (RCC). Indeed, apart from mutations in the well studied von Hippel-Lindau gene (VHL), the mutation frequency rates of known tumor suppressor genes in RCC are generally low, but the number of genes found to show frequent inactivation by promoter methylation in RCC continues to grow. Here, we review the genes identified as epigenetically silenced in RCC and their relationship to pathways of tumor development. Increased understanding of RCC epigenetics provides new insights into the molecular pathogenesis of RCC and opportunities for developing novel strategies for the diagnosis, prognosis and management of RCC. PMID:20815920

  1. Epigenetic Regulation by Lysine Demethylase 5 (KDM5) Enzymes in Cancer.

    PubMed

    Blair, Lauren P; Cao, Jian; Zou, Mike Ran; Sayegh, Joyce; Yan, Qin

    2011-03-01

    Similar to genetic alterations, epigenetic aberrations contribute significantly to tumor initiation and progression. In many cases, these changes are caused by activation or inactivation of the regulators that maintain epigenetic states. Here we review our current knowledge on the KDM5/JARID1 family of histone demethylases. This family of enzymes contains a JmjC domain and is capable of removing tri- and di- methyl marks from lysine 4 on histone H3. Among these proteins, RBP2 mediates drug resistance while JARID1B is required for melanoma maintenance. Preclinical studies suggest inhibition of these enzymes can suppress tumorigenesis and provide strong rationale for development of their inhibitors for use in cancer therapy. PMID:21544224

  2. The Epigenetics of Germ-line Immortality: Lessons from an Elegant Model System

    PubMed Central

    Furuhashi, Hirofumi; Kelly, William G.

    2014-01-01

    Epigenetic mechanisms are thought to help regulate the unique transcription program that is established in germ cell development. During the germline cycle of many organisms, the epigenome undergoes waves of extensive resetting events, while a part of epigenetic modification remains faithful to specific loci. Little is known about the mechanisms underlying these events, how loci are selected for, or avoid, reprogramming, or even why these events are required. In particular, although the significance of genomic imprinting phenomena involving DNA methylation in mammals is now well accepted, the role of histone modification as a transgenerational epigenetic mechanism has been the subject of debate. Such epigenetic mechanisms may help regulate transcription programs and / or the pluripotent status conferred on germ cells, and contribute to germ line continuity across generations. Recent studies provide new evidence for heritability of histone modifications through germ line cells and its potential effects on transcription regulation both in the soma and germ line of subsequent generations. Unraveling transgenerational epigenetic mechanisms involving highly conserved histone modifications in elegant model systems will accelerate the generation of new paradigms and inspire research in a wide variety of fields, including basic developmental studies and clinical stem cell research. PMID:20646025

  3. Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors.

    PubMed

    Planello, Aline C; Ji, Junfeng; Sharma, Vivek; Singhania, Rajat; Mbabaali, Faridah; Müller, Fabian; Alfaro, Javier A; Bock, Christoph; De Carvalho, Daniel D; Batada, Nizar N

    2014-01-01

    The conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs) differs from that of embryonic stem cells (ESCs). Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown. In order to help resolve this critical question, we generated human iPSCs from a common fibroblast cell source using either the Yamanaka factors (OCT4, SOX2, KLF4 and cMYC) or the Thomson factors (OCT4, SOX2, NANOG and LIN28), and determined their genome-wide DNA methylation profiles. In addition to shared DNA methylation aberrations present in all our iPSCs, we identified Yamanaka-iPSC (Y-iPSC)-specific and Thomson-iPSC (T-iPSC)-specific recurrent aberrations. Strikingly, not only were the genomic locations of the aberrations different but also their types: reprogramming with Yamanaka factors mainly resulted in failure to demethylate CpGs, whereas reprogramming with Thomson factors mainly resulted in failure to methylate CpGs. Differences in the level of transcripts encoding DNMT3b and TET3 between Y-iPSCs and T-iPSCs may contribute partially to the distinct types of aberrations. Finally, de novo aberrantly methylated genes in Y-iPSCs were enriched for NANOG targets that are also aberrantly methylated in some cancers. Our study thus reveals that the choice of reprogramming factors influences the amount, location, and class of DNA methylation aberrations in iPSCs. These findings may provide clues into how to produce human iPSCs with fewer DNA methylation abnormalities. PMID:25408883

  4. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  5. DCB - DNA and Chromosome Aberrations Research

    Cancer.gov

    Part of NCI's Division of Cancer Biology's research portfolio, this research area is focused on making clear the genetic and epigenetic mechanisms of tumorigenesis and mechanisms of chemical and physical carcinogenesis.

  6. Epigenetics in non-small cell lung cancer: from basics to therapeutics

    PubMed Central

    Ansari, Junaid; El-Osta, Hazem

    2016-01-01

    Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer. PMID:27186511

  7. Epigenetics in non-small cell lung cancer: from basics to therapeutics.

    PubMed

    Ansari, Junaid; Shackelford, Rodney E; El-Osta, Hazem

    2016-04-01

    Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer. PMID:27186511

  8. Genome-Wide DNA Methylation as an Epigenetic Consequence of Epstein-Barr Virus Infection of Immortalized Keratinocytes

    PubMed Central

    Birdwell, Christine E.; Queen, Krista J.; Kilgore, Phillip C. S. R.; Rollyson, Phoebe; Trutschl, Marjan; Cvek, Urska

    2014-01-01

    ABSTRACT The oral cavity is a persistent reservoir for Epstein-Barr virus (EBV) with lifelong infection of resident epithelial and B cells. Infection of these cell types results in distinct EBV gene expression patterns regulated by epigenetic modifications involving DNA methylation and chromatin structure. Regulation of EBV gene expression relies on viral manipulation of the host epigenetic machinery that may result in long-lasting host epigenetic reprogramming. To identify epigenetic events following EBV infection, a transient infection model was established to map epigenetic changes in telomerase-immortalized oral keratinocytes. EBV-infected oral keratinocytes exhibited a predominantly latent viral gene expression program with some lytic or abortive replication. Calcium and methylcellulose-induced differentiation was delayed in EBV-positive clones and in clones that lost EBV compared to uninfected controls, indicating a functional consequence of EBV epigenetic modifications. Analysis of global cellular DNA methylation identified over 13,000 differentially methylated CpG residues in cells exposed to EBV compared to uninfected controls, with CpG island hypermethylation observed at several cellular genes. Although the vast majority of the DNA methylation changes were silent, 65 cellular genes that acquired CpG methylation showed altered transcript levels. Genes with increased transcript levels frequently acquired DNA methylation within the gene body while those with decreased transcript levels acquired DNA methylation near the transcription start site. Treatment with the DNA methyltransferase inhibitor, decitabine, restored expression of some hypermethylated genes in EBV-infected and EBV-negative transiently infected clones. Overall, these observations suggested that EBV infection of keratinocytes leaves a lasting epigenetic imprint that can enhance the tumorigenic phenotype of infected cells. IMPORTANCE Here, we show that EBV infection of oral keratinocytes led to

  9. Some Useful Correspondences In Aberration Theory

    NASA Astrophysics Data System (ADS)

    Shafer, David

    1986-10-01

    There are many correspondences between the behavior of monochromatic aberrations and chromatic aberrations. Usually the behavior of the chromatic aberrations is of a lower order than the corresponding monochromatic behavior. The cause of the 5th-order mono-chromatic astigmatism, for example, is similar in type to the cause of the chromatic variation of 3rd-order astigmatism. The stop-shift behavior of 3rd-order monochromatic coma is similar to that of first-order lateral color, and so on. These correspondences are interesting for two reasons. One is that they have not been commented on much before, despite the value of one's being aware of these relationships. Methods used to control a monochromatic aberration may also apply to the corresponding chromatic aberration, and vice-versa, for example. The other benefit to studying this topic is that the chromatic aberrations, which are of a lower order than their monochro-matic correspondences, are much easier to understand and visualize. A simple diagram can illustrate the stop-shift behavior of lateral color much more easily than trying to do the same thing with 3rd-order coma. Finally, the very important distinction between intrinsic and induced aberrations can be best illustrated with chromatic aberrations, because of their lower order.

  10. Rooting Out Aberrant Behavior in Training.

    ERIC Educational Resources Information Center

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  11. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  12. Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma

    PubMed Central

    Jia, Songwei; Chen, Luonan

    2016-01-01

    As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of differentially methylated genes. By integrating gene expression and DNA methylation data, a pipeline combined with the differential network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data and DNA methylation data. PMID:27610367

  13. Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma.

    PubMed

    Zhang, Xindong; Gao, Lin; Liu, Zhi-Ping; Jia, Songwei; Chen, Luonan

    2016-01-01

    As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of differentially methylated genes. By integrating gene expression and DNA methylation data, a pipeline combined with the differential network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data and DNA methylation data. PMID:27610367

  14. Aberrant Radial Artery Causing Carpal Tunnel Syndrome

    PubMed Central

    Kokkalis, Zinon T.; Tolis, Konstantinos E.; Megaloikonomos, Panayiotis D.; Panagopoulos, Georgios N.; Igoumenou, Vasilios G.; Mavrogenis, Andreas F.

    2016-01-01

    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic. PMID:27517078

  15. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  16. Aberrant Radial Artery Causing Carpal Tunnel Syndrome.

    PubMed

    Kokkalis, Zinon T; Tolis, Konstantinos E; Megaloikonomos, Panayiotis D; Panagopoulos, Georgios N; Igoumenou, Vasilios G; Mavrogenis, Andreas F

    2016-06-01

    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic. PMID:27517078

  17. Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models

    PubMed Central

    2016-01-01

    Epigenetic mechanisms play a role in human disease but their involvement in pathologies from the central nervous system has been hampered by the complexity of the brain together with its unique cellular architecture and diversity. Until recently, disease targeted neural types were only available as postmortem materials after many years of disease evolution. Current in vitro systems of induced pluripotent stem cells (iPSCs) generated by cell reprogramming of somatic cells from patients have provided valuable disease models recapitulating key pathological molecular events. Yet whether cell reprogramming on itself implies a truly epigenetic reprogramming, the epigenetic mechanisms governing this process are only partially understood. Moreover, elucidating epigenetic regulation using patient-specific iPSC-derived neural models is expected to have a great impact to unravel the pathophysiology of neurodegenerative diseases and to hopefully expand future therapeutic possibilities. Here we will critically review current knowledge of epigenetic involvement in neurodegenerative disorders focusing on the potential of iPSCs as a promising tool for epigenetic research of these diseases. PMID:26697081

  18. Environmental Epigenetics and Its Implication on Disease Risk and Health Outcomes

    PubMed Central

    Ho, Shuk-Mei; Johnson, Abby; Tarapore, Pheruza; Janakiram, Vinothini; Zhang, Xiang; Leung, Yuet-Kin

    2012-01-01

    This review focuses on how environmental factors through epigenetics modify disease risk and health outcomes. Major epigenetic events, such as histone modifications, DNA methylation, and microRNA expression, are described. The function of dose, duration, composition, and window of exposure in remodeling the individual's epigenetic terrain and disease susceptibility are addressed. The ideas of lifelong editing of early-life epigenetic memories, transgenerational effects through germline transmission, and the potential role of hydroxylmethylation of cytosine in developmental reprogramming are discussed. Finally, the epigenetic effects of several major classes of environmental factors are reviewed in the context of pathogenesis of disease. These include endocrine disruptors, tobacco smoke, polycyclic aromatic hydrocarbons, infectious pathogens, particulate matter, diesel exhaust particles, dust mites, fungi, heavy metals, and other indoor and outdoor pollutants. We conclude that the summation of epigenetic modifications induced by multiple environmental exposures, accumulated over time, represented as broad or narrow, acute or chronic, developmental or lifelong, may provide a more precise assessment of risk and consequences. Future investigations may focus on their use as readouts or biomarkers of the totality of past exposure for the prediction of future disease risk and the prescription of effective countermeasures. PMID:23744968

  19. Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum

    PubMed Central

    Cara, Nicolás; Marfil, Carlos F; Masuelli, Ricardo W

    2013-01-01

    Interspecific hybridization is known for triggering genetic and epigenetic changes, such as modifications on DNA methylation patterns and impact on phenotypic plasticity and ecological adaptation. Wild potatoes (Solanum, section Petota) are adapted to multiple habitats along the Andes, and natural hybridizations have proven to be a common feature among species of this group. Solanum × rechei, a recently formed hybrid that grows sympatrically with the parental species S. kurtzianum and S. microdontum, represents an ideal model for studying the ecologically and evolutionary importance of hybridization in generating of epigenetic variability. Genetic and epigenetic variability and their correlation with morphological variation were investigated in wild and ex situ conserved populations of these three wild potato species using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) techniques. We observed that novel methylation patterns doubled the number of novel genetic patterns in the hybrid and that the morphological variability measured on 30 characters had a higher correlation with the epigenetic than with the genetic variability. Statistical comparison of methylation levels suggested that the interspecific hybridization induces genome demethylation in the hybrids. A Bayesian analysis of the genetic data reveled the hybrid nature of S. × rechei, with genotypes displaying high levels of admixture with the parental species, while the epigenetic information assigned S. × rechei to its own cluster with low admixture. These findings suggested that after the hybridization event, a novel epigenetic pattern was rapidly established, which might influence the phenotypic plasticity and adaptation of the hybrid to new environments. PMID:24198938

  20. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis.

    PubMed

    Ding, Guo-Lian; Liu, Ye; Liu, Miao-E; Pan, Jie-Xue; Guo, Meng-Xi; Sheng, Jian-Zhong; Huang, He-Feng

    2015-01-01

    The effects of diabetes mellitus include long-term damages, dysfunctions, and failures of various organs. An important complication of diabetes is the disturbance in the male reproductive system. Glucose metabolism is an important event in spermatogenesis. Moreover, glucose metabolism is also important for maintaining basic cell activity, as well as specific functions, such as motility and fertilization ability in mature sperm. Diabetic disease and experimentally induced diabetes both demonstrated that either type 1 diabetes or type 2 diabetes could have detrimental effects on male fertility, especially on sperm quality, such as sperm motility, sperm DNA integrity, and ingredients of seminal plasma. Epigenetic modifications are essential during spermatogenesis. The epigenetic regulation represents chromatin modifications including DNA methylation, histone modifications, remodeling of nucleosomes and the higher-order chromatin reorganization and noncoding RNAs. If spermatogenesis is affected during the critical developmental window, embryonic gonadal development, and germline differentiation, environmentally-induced epigenetic modifications may become permanent in the germ line epigenome and have a potential impact on subsequent generations through epigenetic transgenerational inheritance. Diabetes may influence the epigenetic modification during sperm spermatogenesis and that these epigenetic dysregulation may be inherited through the male germ line and passed onto more than one generation, which in turn may increase the risk of diabetes in offspring. PMID:25814158

  1. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis

    PubMed Central

    Ding, Guo-Lian; Liu, Ye; Liu, Miao-E; Pan, Jie-Xue; Guo, Meng-Xi; Sheng, Jian-Zhong; Huang, He-Feng

    2015-01-01

    The effects of diabetes mellitus include long-term damages, dysfunctions, and failures of various organs. An important complication of diabetes is the disturbance in the male reproductive system. Glucose metabolism is an important event in spermatogenesis. Moreover, glucose metabolism is also important for maintaining basic cell activity, as well as specific functions, such as motility and fertilization ability in mature sperm. Diabetic disease and experimentally induced diabetes both demonstrated that either type 1 diabetes or type 2 diabetes could have detrimental effects on male fertility, especially on sperm quality, such as sperm motility, sperm DNA integrity, and ingredients of seminal plasma. Epigenetic modifications are essential during spermatogenesis. The epigenetic regulation represents chromatin modifications including DNA methylation, histone modifications, remodeling of nucleosomes and the higher-order chromatin reorganization and noncoding RNAs. If spermatogenesis is affected during the critical developmental window, embryonic gonadal development, and germline differentiation, environmentally-induced epigenetic modifications may become permanent in the germ line epigenome and have a potential impact on subsequent generations through epigenetic transgenerational inheritance. Diabetes may influence the epigenetic modification during sperm spermatogenesis and that these epigenetic dysregulation may be inherited through the male germ line and passed onto more than one generation, which in turn may increase the risk of diabetes in offspring. PMID:25814158

  2. Lung cancer and its association with chronic obstructive pulmonary disease: update on nexus of epigenetics

    PubMed Central

    Sundar, Isaac K.; Mullapudi, Nandita; Yao, Hongwei; Spivack, Simon D.; Rahman, Irfan

    2013-01-01

    Purpose of review Chronic obstructive pulmonary disease (COPD) and lung cancer are the leading causes of morbidity and mortality worldwide. The current research is focused on identifying the common and disparate events involved in epigenetic modifications that concurrently occur during the pathogenesis of COPD and lung cancer. The purpose of this review is to describe the current knowledge and understanding of epigenetic modifications in pathogenesis of COPD and lung cancer. Recent findings This review provides an update on advances of how epigenetic modifications are linked to COPD and lung cancer, and their commonalities and disparities. The key epigenetic modification enzymes (e.g. DNA methyltransferases – CpG methylation, histone acetylases/deacetylases and histone methyltransferases/demethylases) that are identified to play an important role in COPD and lung tumorigenesis and progression are described in this review. Summary Distinct DNA methyltransferases and histone modification enzymes are differentially involved in pathogenesis of lung cancer and COPD, although some of the modifications are common. Understanding the epigenetic modifications involved in pathogenesis of lung cancer or COPD with respect to common and disparate mechanisms will lead to targeting of epigenetic therapies against these disorders. PMID:21537190

  3. Nutrition, Epigenetics, and Metabolic Syndrome

    PubMed Central

    Wang, Junjun; Wu, Zhenlong; Li, Defa; Li, Ning; Dindot, Scott V.; Satterfield, M. Carey; Bazer, Fuller W.

    2012-01-01

    Significance: Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. Recent Advances: DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. Critical Issues: Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. Future Directions: Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition. Antioxid. Redox Signal. 17, 282–301. PMID

  4. Implications of epigenetic mechanisms in the development and treatment of personality disorders.

    PubMed

    Lorea-Conde, Iñaki; Molero, Patricio

    2015-01-01

    Epigenetics deals with the genic expression processes that do not involve modifications of the DNA sequence, that is, focuses on the different trajectories of a given genotype throughout the organism’s lifespan. These processes are involved in basic biological functions such as the cellular differentiation or sexual selection, in the development of complex diseases such as Rett’s syndrome and in psychiatric disorders such as schizophrenia and depression among others. Epigenetic studies are yielding evidence that environmental events and psychosocial factors can modify the epigenome. This work reviews studies analyzing the influence of environmental factors involved in the pathogenesis of behavioral features and phenotypic expression of personality disorder’s symptomatic domains, such as late onset affective symptoms related with early adverse events in childhood and dysfunction of stress modulation mechanisms. In addition, the knowledge of these epigenetic mechanisms may contribute to the identification of novel both psychotherapeutic and pharmacological therapeutic targets for the treatment of personality disorders. PMID:25812541

  5. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia

    PubMed Central

    Sakaguchi, Hirotoshi; Muramatsu, Hideki; Okuno, Yusuke; Makishima, Hideki; Xu, Yinyan; Furukawa-Hibi, Yoko; Wang, Xinan; Narita, Atsushi; Yoshida, Kenichi; Shiraishi, Yuichi; Doisaki, Sayoko; Yoshida, Nao; Hama, Asahito; Takahashi, Yoshiyuki; Yamada, Kiyofumi; Miyano, Satoru; Ogawa, Seishi; Maciejewski, Jaroslaw P.; Kojima, Seiji

    2015-01-01

    Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic / myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1–2, or 3–4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1–2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3–4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3–4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options. PMID:26720758

  6. Reversal of Aberrant Cancer Methylome and Transcriptome upon Direct Reprogramming of Lung Cancer Cells

    PubMed Central

    Mahalingam, Dashayini; Kong, Chiou Mee; Lai, Jason; Tay, Ling Lee; Yang, Henry; Wang, Xueying

    2012-01-01

    Recent reports on direct reprogramming of cancer cells (iPCs) which results in reduced tumorigenic potential has attributed the importance of epigenetics in tumorigenesis, but lacked genome-wide analysis. Here we describe successful generation of iPCs from non-small cell lung cancer (NSCLC) cell lines. Following reprogramming, they resembled embryonic stem and induced pluripotent stem cells in pluripotency markers expression, gene expression patterns and in vitro differentiation ability. Genome-wide methylation analysis revealed that aberrantly methylated promoters which were mostly developmental-associated genes and tumor suppressors; as well as commonly upregulated genes in NSCLC i.e. KRT19 and S100P were reversed in iPCs upon reprogramming. Also, the reversal of oncogenes and tumor suppressors status were partially explainable by DNA methylation. These findings suggest that DNA methylation patterns explain the downstream transcriptional effects, which potentially caused the reduced tumorigenicity in iPCs, thus providing evidence that reprogramming reverses the aberrantly dysregulated genes in NSCLC both epigenetically and transcriptionally. PMID:22912920

  7. A Brief History of Epigenetics

    PubMed Central

    Felsenfeld, Gary

    2014-01-01

    The term “epigenetics” was originally used to denote the poorly understood processes by which a fertilized zygote developed into a mature, complex organism. With the understanding that all cells of an organism carry the same DNA, and with increased knowledge of mechanisms of gene expression, the definition was changed to focus on ways in which heritable traits can be associated not with changes in nucleotide sequence, but with chemical modifications of DNA, or of the structural and regulatory proteins bound to it. Recent discoveries about the role of these mechanisms in early development may make it desirable to return to the original definition of epigenetics. PMID:24384572

  8. The Epigenetic Regulation of Wound Healing.

    PubMed

    Lewis, Christopher J; Mardaryev, Andrei N; Sharov, Andrey A; Fessing, Michael Y; Botchkarev, Vladimir A

    2014-07-01

    Significance: Epigenetic regulatory mechanisms are essential for epidermal homeostasis and contribute to the pathogenesis of many skin diseases, including skin cancer and psoriasis. However, while the epigenetic regulation of epidermal homeostasis is now becoming active area of research, the epigenetic mechanisms controlling the wound healing response remain relatively untouched. Recent Advances: Substantial progress achieved within the last two decades in understanding epigenetic mechanisms controlling gene expression allowed defining several levels, including covalent DNA and histone modifications, ATP-dependent and higher-order chromatin chromatin remodeling, as well as noncoding RNA- and microRNA-dependent regulation. Research pertained over the last few years suggests that epigenetic regulatory mechanisms play a pivotal role in the regulation of skin regeneration and control an execution of reparative gene expression programs in both skin epithelium and mesenchyme. Critical Issues: Epigenetic regulators appear to be inherently involved in the processes of skin repair, and are able to dynamically regulate keratinocyte proliferation, differentiation, and migration, together with influencing dermal regeneration and neoangiogenesis. This is achieved through a series of complex regulatory mechanisms that are able to both stimulate and repress gene activation to transiently alter cellular phenotype and behavior, and interact with growth factor activity. Future Directions: Understanding the molecular basis of epigenetic regulation is a priority as it represents potential therapeutic targets for the treatment of both acute and chronic skin conditions. Future research is, therefore, imperative to help distinguish epigenetic modulating drugs that can be used to improve wound healing. PMID:25032066

  9. Epigenetic Alterations in Alzheimer’s Disease

    PubMed Central

    Sanchez-Mut, Jose V.; Gräff, Johannes

    2015-01-01

    Alzheimer’s disease (AD) is the major cause of dementia in Western societies. It progresses asymptomatically during decades before being belatedly diagnosed when therapeutic strategies have become unviable. Although several genetic alterations have been associated with AD, the vast majority of AD cases do not show strong genetic underpinnings and are thus considered a consequence of non-genetic factors. Epigenetic mechanisms allow for the integration of long-lasting non-genetic inputs on specific genetic backgrounds, and recently, a growing number of epigenetic alterations in AD have been described. For instance, an accumulation of dysregulated epigenetic mechanisms in aging, the predominant risk factor of AD, might facilitate the onset of the disease. Likewise, mutations in several enzymes of the epigenetic machinery have been associated with neurodegenerative processes that are altered in AD such as impaired learning and memory formation. Genome-wide and locus-specific epigenetic alterations have also been reported, and several epigenetically dysregulated genes validated by independent groups. From these studies, a picture emerges of AD as being associated with DNA hypermethylation and histone deacetylation, suggesting a general repressed chromatin state and epigenetically reduced plasticity in AD. Here we review these recent findings and discuss several technical and methodological considerations that are imperative for their correct interpretation. We also pay particular focus on potential implementations and theoretical frameworks that we expect will help to better direct future studies aimed to unravel the epigenetic participation in AD. PMID:26734709

  10. Epigenetic Contribution to Covariance Between Relatives

    PubMed Central

    Tal, Omri; Kisdi, Eva; Jablonka, Eva

    2010-01-01

    Recent research has pointed to the ubiquity and abundance of between-generation epigenetic inheritance. This research has implications for assessing disease risk and the responses to ecological stresses and also for understanding evolutionary dynamics. An important step toward a general evaluation of these implications is the identification and estimation of the amount of heritable, epigenetic variation in populations. While methods for modeling the phenotypic heritable variance contributed by culture have already been developed, there are no comparable methods for nonbehavioral epigenetic inheritance systems. By introducing a model that takes epigenetic transmissibility (the probability of transmission of ancestral phenotypes) and environmental induction into account, we provide novel expressions for covariances between relatives. We have combined a classical quantitative genetics approach with information about the number of opportunities for epigenetic reset between generations and assumptions about environmental induction to estimate the heritable epigenetic variance and epigenetic transmissibility for both asexual and sexual populations. This assists us in the identification of phenotypes and populations in which epigenetic transmission occurs and enables a preliminary quantification of their transmissibility, which could then be followed by genomewide association and QTL studies. PMID:20100941

  11. Epigenetics in mammary gland biology and cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the post genome era, the focus has shifted to understanding the mechanisms that regulate the interpretation of the genetic code. "Epigenetics" as a research field is taking center stage. Epigenetics is a term which is now being used throughout the scientific community in different contexts from p...

  12. Epigenetics and environmental impacts in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews the major advances in the field of epigenetics as well as the environmental impacts of cattle. Many findings from our own research endeavors related to the topic of this chapter are also introduced. The phenotypic characterization of an animal can be changed through epigenetic ...

  13. Epigenetic gene silencing in cancer: the DNA hypermethylome.

    PubMed

    Esteller, Manel

    2007-04-15

    Epigenetic gene inactivation in transformed cells involves many 'belts of silencing'. One of the best-known lesions of the malignant cell is the transcriptional repression of tumor-suppressor genes by promoter CpG island hypermethylation. We are in the process of completing the molecular dissection of the entire epigenetic machinery involved in methylation-associated silencing, such as DNA methyltransferases, methyl-CpG binding domain proteins, histone deacetylases, histone methyltransferases, histone demethylases and Polycomb proteins. The first indications are also starting to emerge about how the combination of cellular selection and targeted pathways leads to abnormal DNA methylation. One thing is certain already, promoter CpG island hypermethylation of tumor-suppressor genes is a common hallmark of all human cancers. It affects all cellular pathways with a tumor-type specific profile, and in addition to classical tumor-suppressor and DNA repair genes, it includes genes involved in premature aging and microRNAs with growth inhibitory functions. The importance of hypermethylation events is already in evidence at the bedside of cancer patients in the form of cancer detection markers and chemotherapy predictors, and in the approval of epigenetic drugs for the treatment of hematological malignancies. In the very near future, the synergy of candidate gene approaches and large-scale epigenomic technologies, such as methyl-DIP, will yield the complete DNA hypermethylome of cancer cells. PMID:17613547

  14. Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver

    PubMed Central

    Chen, Wei-Dong; Fu, Xianghui; Dong, Bingning; Wang, Yan-Dong; Shiah, Steven; Moore, David D.; Huang, Wendong

    2012-01-01

    Aberrant epigenetic alterations during development may result in long-term epigenetic memory and have a permanent effect on the health of subjects. Constitutive androstane receptor (CAR; NR1I3) is a central regulator of drug/xenobiotic metabolism. Here, we report that transient neonatal activation of CAR results in epigenetic memory and a permanent change of liver drug metabolism. CAR activation by neonatal exposure to a CAR-specific ligand, 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) led to persistently induced expression of the CAR target genes Cyp2B10 and Cyp2C37 throughout the life of exposed mice. These mice showed a permanent reduction in sensitivity to zoxazolamine treatment as adults. Compared with control groups, the induction of Cyp2B10 and Cyp2C37 in hepatocytes isolated from these mice was more sensitive to low concentrations of the CAR agonist TCPOBOP. Accordingly, neonatal activation of CAR led to a permanent increase of histone 3 lysine 4 (H3K4) mono-, di- and trimethylation and decrease of H3K9 trimethylation within the Cyp2B10 locus. Transcriptional coactivator ASC-2 and histone demethylase JMJD2d participated in this CAR-dependent epigenetic switch. Conclusion Neonatal activation of CAR results in epigenetic memory and a permanent change of liver drug metabolism. PMID:22488010

  15. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response

    PubMed Central

    Zan, Hong; Casali, Paolo

    2015-01-01

    Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial

  16. Epigenetic regulation of skeletal muscle metabolism.

    PubMed

    Howlett, Kirsten F; McGee, Sean L

    2016-07-01

    Normal skeletal muscle metabolism is essential for whole body metabolic homoeostasis and disruptions in muscle metabolism are associated with a number of chronic diseases. Transcriptional control of metabolic enzyme expression is a major regulatory mechanism for muscle metabolic processes. Substantial evidence is emerging that highlights the importance of epigenetic mechanisms in this process. This review will examine the importance of epigenetics in the regulation of muscle metabolism, with a particular emphasis on DNA methylation and histone acetylation as epigenetic control points. The emerging cross-talk between metabolism and epigenetics in the context of health and disease will also be examined. The concept of inheritance of skeletal muscle metabolic phenotypes will be discussed, in addition to emerging epigenetic therapies that could be used to alter muscle metabolism in chronic disease states. PMID:27215678

  17. Review-Epigenetic therapy for cancer.

    PubMed

    Saleem, Mohammad; Abbas, Khizar; Manan, Maria; Ijaz, Hira; Ahmed, Bilal; Ali, Muhammad; Hanif, Muhammad; Farooqi, Ammad Ahmad; Qadir, Muhammad Imran

    2015-05-01

    Epigenetics means the study of alterations in the genetic material that affect the phenotype but does not affect the genotype. Epigenetics cause alterations in cell properties, which are inherited; but it does not cause alterations in DNA sequence. Epigenetic mediated silencing of gene is of four types, which are DNA methylation, histone deacetylation, RNA associated silencing and Genomic imprinting. Other factors (environmental and xenobiotics) can also cause gene silencing but DNA methytlation and changes in histones of chromatin are two important changes, which are responsible for malignant diseases. Two groups of drugs are under development, which corrects the epigenetic alterations. These are histone deacetylation (HDAC) inhibitors and DNA methytransferase (DNMT) inhibitors. These drugs may be used in cancer because in cancer, hypermethylation of cancer suppressor gene causes gene silencing. Epigenetic therapy scope is likely to increase in future. PMID:26004710

  18. The role of epigenetics in tuberculosis infection.

    PubMed

    Kathirvel, Maruthai; Mahadevan, Subramanian

    2016-04-01

    Epigenetic mechanisms are pivotal in regulating gene expression during cellular response to extracellular stimuli. Bacterial infections have a profound effect on the host epigenome, which triggers susceptibility to diseases. Recent studies suggest that Mycobacterium tuberculosis (Mtb) can alter the host epigenome to modulate the transcriptional machinery and plays a major role in immunomodulation of the host immune response. However, the mechanism of epigenetic alterations during Mtb infection has not yet been fully understood. Thus, Mtb-induced epigenetic changes may affect the host cell by either activation or suppression of key immune genes involved in immune response or pathogen persistence. In this review, we discuss the principles of epigenetics, recent advances in Mtb-induced alterations in the host epigenetic landscape and their role in the host immune response. PMID:27035266

  19. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. PMID:26236020

  20. Epigenetic Inheritance: A Contributor to Species Differentiation?

    PubMed Central

    Boffelli, Dario

    2012-01-01

    Multiple epigenetic states can be associated with the same genome, and transmitted through the germline for generations, to create the phenomenon of epigenetic inheritance. This form of inheritance is mediated by complex and highly diverse components of the chromosome that associate with DNA, control its transcription, and are inherited alongside it. But, how extensive, and how stable, is the information carried in the germline by the epigenome? Several known examples of epigenetic inheritance demonstrate that it has the ability to create selectable traits, and thus to mediate Darwinian evolution. Here we discuss the possibility that epigenetic inheritance is responsible for some stable characteristics of species, focusing on a recent comparison of the human and chimpanzee methylomes which reveals that somatic methylation states are related to methylation states in the germline. Interpretation of this finding highlights the potential significance of germline epigenetic states, as well as the challenge of investigating a form of inheritance with complex and unfamiliar rules. PMID:22966965

  1. Epigenetics in the Human Brain

    PubMed Central

    Houston, Isaac; Peter, Cyril J; Mitchell, Amanda; Straubhaar, Juerg; Rogaev, Evgeny; Akbarian, Schahram

    2013-01-01

    Many cellular constituents in the human brain permanently exit from the cell cycle during pre- or early postnatal development, but little is known about epigenetic regulation of neuronal and glial epigenomes during maturation and aging, including changes in mood and psychosis spectrum disorders and other cognitive or emotional disease. Here, we summarize the current knowledge base as it pertains to genome organization in the human brain, including the regulation of DNA cytosine methylation and hydroxymethylation, and a subset of (altogether >100) residue-specific histone modifications associated with gene expression, and silencing and various other functional chromatin states. We propose that high-resolution mapping of epigenetic markings in postmortem brain tissue or neural cultures derived from induced pluripotent cells (iPS), in conjunction with transcriptome profiling and whole-genome sequencing, will increasingly be used to define the molecular pathology of specific cases diagnosed with depression, schizophrenia, autism, or other major psychiatric disease. We predict that these highly integrative explorations of genome organization and function will provide an important alternative to conventional approaches in human brain studies, which mainly are aimed at uncovering group effects by diagnosis but generally face limitations because of cohort size. PMID:22643929

  2. Epigenetic heredity of human height

    PubMed Central

    Simeone, Pasquale; Alberti, Saverio

    2014-01-01

    Abstract Genome‐wide SNP analyses have identified genomic variants associated with adult human height. However, these only explain a fraction of human height variation, suggesting that significant information might have been systematically missed by SNP sequencing analysis. A candidate for such non‐SNP‐linked information is DNA methylation. Regulation by DNA methylation requires the presence of CpG islands in the promoter region of candidate genes. Seventy two of 87 (82.8%), height‐associated genes were indeed found to contain CpG islands upstream of the transcription start site (USC CpG island searcher; validation: UCSC Genome Browser), which were shown to correlate with gene regulation. Consistent with this, DNA hypermethylation modules were detected in 42 height‐associated genes, versus 1.5% of control genes (P = 8.0199e−17), as were dynamic methylation changes and gene imprinting. Epigenetic heredity thus appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation are candidate to mediate environmental influence on epigenetic traits. This may help to explain progressive height changes over multiple generations, through trans‐generational heredity of progressive DNA methylation patterns. PMID:24963031

  3. Estrogen treatment induces MLL aberrations in human lymphoblastoid cells

    PubMed Central

    Schnyder, Sabine; Du, Nga T.; Le, Hongan B.; Singh, Sheetal; Loredo, Grace A.; Vaughan, Andrew T.

    2009-01-01

    Epidemiological data indicates increased risk of infant acute leukemia involving MLL gene aberrations with use of oral contraceptives. To determine whether estrogens might be implicated, we examined the effect of estradiol (E2) or 4-OH-E2 in an in vitro model of translocation susceptibility. Genomic DNA from the TK6 human lymphoblastoid cell line was screened by ligation mediated PCR and inverse PCR at a rearrangement hot spot within the MLL breakpoint cluster region to detect DNA aberrations. An increase in DNA double strand breaks was observed within this region after exposure to either E2 or 4-OH-E2. An increase in the frequency of MLL translocations was only found after exposure to E2. Induction of cleavage due to increased activation of apoptotic nucleases was excluded by pre-treatment with the pancaspase inhibitor, zVAD.fmk. We conclude that concentrations of E2 and 4-OH-E2 that may occur during pregnancy, or during use of oral contraceptives, can cause aberrations of the MLL gene and could thus be a factor in the early events of leukemogenesis occurring in utero. PMID:19264358

  4. Quantitative analysis of radiation-induced chromosome aberrations.

    PubMed

    Sachs, R K; Levy, D; Hahnfeldt, P; Hlatky, L

    2004-01-01

    We review chromosome aberration modeling and its applications, especially to biodosimetry and to characterizing chromosome geometry. Standard results on aberration formation pathways, randomness, dose-response, proximity effects, transmissibility, kinetics, and relations to other radiobiological endpoints are summarized. We also outline recent work on graph-theoretical descriptions of aberrations, Monte-Carlo computer simulations of aberration spectra, software for quantifying aberration complexity, and systematic links of apparently incomplete with complete or truly incomplete aberrations. PMID:15162028

  5. Image-based EUVL aberration metrology

    NASA Astrophysics Data System (ADS)

    Fenger, Germain Louis

    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. As resolution of nanolithography systems increases, effects of wavefront aberrations on aerial image become more influential. The tolerance of such aberrations is governed by the requirements of features that are being imaged, often requiring lenses that can be corrected with a high degree of accuracy and precision. Resolution of lithographic systems is driven by scaling wavelength down and numerical aperture (NA) up. However, aberrations are also affected from the changes in wavelength and NA. Reduction in wavelength or increase in NA result in greater impact of aberrations, where the latter shows a quadratic dependence. Current demands in semiconductor manufacturing are constantly pushing lithographic systems to operate at the diffraction limit; hence, prompting a need to reduce all degrading effects on image properties to achieve maximum performance. Therefore, the need for highly accurate in-situ aberration measurement and correction is paramount. In this work, an approach has been developed in which several targets including phase wheel, phase disk, phase edges, and binary structures are used to generate optical images to detect and monitor aberrations in extreme ultraviolet (EUV) lithographic systems. The benefit of using printed patterns as opposed to other techniques is that the lithography system is tested under standard operating conditions. Mathematical models in conjunction with iterative lithographic simulations are used to determine pupil phase wavefront errors and describe them as combinations of Zernike polynomials.

  6. Mosaic epigenetic dysregulation of ectodermal cells in autism spectrum disorder.

    PubMed

    Berko, Esther R; Suzuki, Masako; Beren, Faygel; Lemetre, Christophe; Alaimo, Christine M; Calder, R Brent; Ballaban-Gil, Karen; Gounder, Batya; Kampf, Kaylee; Kirschen, Jill; Maqbool, Shahina B; Momin, Zeineen; Reynolds, David M; Russo, Natalie; Shulman, Lisa; Stasiek, Edyta; Tozour, Jessica; Valicenti-McDermott, Maria; Wang, Shenglong; Abrahams, Brett S; Hargitai, Joseph; Inbar, Dov; Zhang, Zhengdong; Buxbaum, Joseph D; Molholm, Sophie; Foxe, John J; Marion, Robert W; Auton, Adam; Greally, John M

    2014-01-01

    DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact

  7. Mosaic Epigenetic Dysregulation of Ectodermal Cells in Autism Spectrum Disorder

    PubMed Central

    Berko, Esther R.; Suzuki, Masako; Beren, Faygel; Lemetre, Christophe; Alaimo, Christine M.; Calder, R. Brent; Ballaban-Gil, Karen; Gounder, Batya; Kampf, Kaylee; Kirschen, Jill; Maqbool, Shahina B.; Momin, Zeineen; Reynolds, David M.; Russo, Natalie; Shulman, Lisa; Stasiek, Edyta; Tozour, Jessica; Valicenti-McDermott, Maria; Wang, Shenglong; Abrahams, Brett S.; Hargitai, Joseph; Inbar, Dov; Zhang, Zhengdong; Buxbaum, Joseph D.; Molholm, Sophie; Foxe, John J.; Marion, Robert W.; Auton, Adam; Greally, John M.

    2014-01-01

    DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically developing (TD) controls born to mothers of ≥35 years, using a quantitative genome-wide DNA methylation assay. We show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact

  8. Novel Epigenetic Target Therapy for Prostate Cancer: A Preclinical Study

    PubMed Central

    Gherardini, Lisa; Pelosi, Gualtiero; Viglione, Federica; Grimaldi, Settimio; Pani, Luca; Cinti, Caterina

    2014-01-01

    Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours. PMID:24851905

  9. Aberration correction past and present.

    PubMed

    Hawkes, P W

    2009-09-28

    Electron lenses are extremely poor: if glass lenses were as bad, we should see as well with the naked eye as with a microscope! The demonstration by Otto Scherzer in 1936 that skillful lens design could never eliminate the spherical and chromatic aberrations of rotationally symmetric electron lenses was therefore most unwelcome and the other great electron optician of those years, Walter Glaser, never ceased striving to find a loophole in Scherzer's proof. In the wartime and early post-war years, the first proposals for correcting C(s) were made and in 1947, in a second milestone paper, Scherzer listed these and other ways of correcting lenses; soon after, Dennis Gabor invented holography for the same purpose. These approaches will be briefly summarized and the work that led to the successful implementation of quadupole-octopole and sextupole correctors in the 1990 s will be analysed. In conclusion, the elegant role of image algebra in describing image formation and processing and, above all, in developing new methods will be mentioned. PMID:19687058

  10. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  11. Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: structure-function relationship.

    PubMed Central

    Upham, B L; Weis, L M; Trosko, J E

    1998-01-01

    Cancer is a multistage multimechanism process involving gene and/or chromosomal mutations (genotoxic events), altered gene expression at the transcriptional, translational, and post-translational levels (epigenetic events), and altered cell survival (proliferation and apoptosis or necrosis), resulting in an imbalance of the organism's homeostasis. Maintenance of the organism's homeostasis depends on the intricate coordination of genetic and metabolic events between cells via extracellular and intercellular communication mechanisms. The release of a quiescent cell, whether normal or premalignant, from the suppressing effects of communicating neighbors requires the downregulation of intercellular communication via gap junctions, thereby allowing factors that control intracellular events to exceed a critical mass necessary for the cell to either proliferate or undergo apoptosis. Therefore, determining the role an environmental pollutant must play in the multistage carcinogenic process includes mechanisms of epigenetic toxicity such as the effects of a compound on gap junctional intercellular communication (GJIC). A classic example of a class of compounds in which determination of carcinogenicity focused on genotoxic events and ignored epigenetic events is polycyclic aromatic hydrocarbons (PAHs). The study of structure-activity relationships of PAHs has focused exclusively on the genotoxic and tumor-initiating properties of the compound. We report on the structure-activity relationships of two- to four-ringed PAHs on GJIC in a rat liver epithelial cell line. PAHs containing a bay or baylike region were more potent inhibitors of GJIC than the linear PAHs that do not contain these regions. These are some of the first studies of determine the epigenetic toxicity of PAHs at the epigenetic level. Images Figure 1 PMID:9703481

  12. Effect of aberrations in vortex spatial filtering

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, P.

    2012-11-01

    Edge enhancement is a very important operation in image processing and a spiral phase plate can be used as a radial Hilbert mask for isotropic edge enhancement. In this paper we analyze the effect of various Seidel aberrations on the performance of radial Hilbert mask or the vortex phase mask. The aberrated vortex phase mask is implemented optically with the help of a high resolution, spatial light modulator (SLM). It has also been shown that out of various aberrations astigmatism can introduce anisotropy in the Hilbert mask which causes selective edge enhancement.

  13. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-01

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis. PMID:27245242

  14. Gender Differences in Neurodevelopment and Epigenetics

    PubMed Central

    Chung, Wilson C.J.; Auger, Anthony P.

    2013-01-01

    Summary The concept that the brain differs in make-up between males and females is not new. For example, it is well-established that anatomists in the nineteenth century found sex differences in human brain weight. The importance of sex differences in the organization of the brain cannot be overstated as they may directly affect cognitive functions, such as verbal skills and visio-spatial tasks in a sex-dependent fashion. Moreover, the incidence of neurological and psychiatric diseases is also highly dependent on sex. These clinical observations reiterate the importance that gender must be taken into account as a relevant possible contributing factor in order to understand the pathogenesis of neurological and psychiatric disorders. Gender-dependent differentiation of the brain has been detected at every levels of organization: morphological, neurochemical, and functional, and have been shown to be primarily controlled by sex differences in gonadal steroid hormone levels during perinatal development. In this review, we discuss how the gonadal steroid hormone testosterone and its metabolites, affect downstream signaling cascades, including gonadal steroid receptor activation, and epigenetic events in order to differentiate the brain in a gender-dependent fashion. PMID:23503727

  15. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    SciTech Connect

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.

  16. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    PubMed Central

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10−9), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10−3). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. PMID:25924914

  17. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes

    PubMed Central

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined DNA sequences are uniquely suited to answer such questions and could provide potent (bio)medical tools. Toward the goal of gene-specific GEM by overwriting epigenetic marks (Epigenetic Editing, EGE), instructive epigenetic marks need to be identified and their writers/erasers should then be fused to gene-specific DNA binding domains. The appropriate epigenetic mark(s) to change in order to efficiently modulate gene expression might have to be validated for any given chromatin context and should be (mitotically) stable. Various insights in such issues have been obtained by sequence-specific targeting of epigenetic enzymes, as is presented in this review. Features of such studies provide critical aspects for further improving EGE. An example of this is the direct effect of the edited mark versus the indirect effect of recruited secondary proteins by targeting epigenetic enzymes (or their domains). Proof-of-concept of expression modulation of an endogenous target gene is emerging from the few EGE studies reported. Apart from its promise in correcting disease-associated epi-mutations, EGE represents a powerful tool to address fundamental epigenetic questions. PMID:23002135

  18. Epigenetic Inheritance in Rice Plants

    PubMed Central

    Akimoto, Keiko; Katakami, Hatsue; Kim, Hyun-Jung; Ogawa, Emiko; Sano, Cecile M.; Wada, Yuko; Sano, Hiroshi

    2007-01-01

    Background and Aims Epigenetics is defined as mechanisms that regulate gene expression without base sequence alteration. One molecular basis is considered to be DNA cytosine methylation, which reversibly modifies DNA or chromatin structures. Although its correlation with epigenetic inheritance over generations has been circumstantially shown, evidence at the gene level has been limited. The present study aims to find genes whose methylation status directly correlates with inheritance of phenotypic changes. Methods DNA methylation in vivo was artificially reduced by treating rice (Oryza sativa ssp. japonica) seeds with 5-azadeoxycytidine, and the progeny were cultivated in the field for > 10 years. Genomic regions with changed methylation status were screened by the methylation-sensitive amplified polymorphysm (MSAP) method, and cytosine methylation was directly scanned by the bisulfite mapping method. Pathogen infection with Xanthomonas oryzae pv. oryzae, race PR2 was performed by the scissors-dip method on mature leaf blades. Key Results The majority of seedlings were lethal, but some survived to maturity. One line designated as Line-2 showed a clear marker phenotype of dwarfism, which was stably inherited by the progeny over nine generations. MSAP screening identified six fragments, among which two were further characterized by DNA blot hybridization and direct methylation mapping. One clone encoding a retrotransposon gag–pol polyprotein showed a complete erasure of 5-methylcytosines in Line-2, but neither translocation nor expression of this region was detectable. The other clone encoded an Xa21-like protein, Xa21G. In wild-type plants, all cytosines were methylated within the promoter region, whereas in Line-2, corresponding methylation was completely erased throughout generations. Expression of Xa21G was not detectable in wild type but was constitutive in Line-2. When infected with X. oryzae pv. oryzae, against which Xa21 confers resistance in a gene

  19. Image Ellipticity from Atmospheric Aberrations

    SciTech Connect

    de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-03-06

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.

  20. Prostate cancer epigenetics and its clinical implications.

    PubMed

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy. PMID:27212125

  1. The value of twins in epigenetic epidemiology.

    PubMed

    Bell, Jordana T; Saffery, Richard

    2012-02-01

    During past decades, twin studies have played an important role in genetic epidemiology studies of complex traits. The strength of twin studies lies in the ability to disentangle genetic and environmental factors that contribute to a phenotype, by comparing genetically identical monozygotic twins to dizygotic twins, who share on average 50% of genetic variants. Twin studies now offer the opportunity to study epigenetic variation across the genome with two aims. First, twin studies can improve our understanding of the factors regulating epigenetic variability by assessing the heritability of epigenetic variants. Secondly, the use of twins in epigenetic research is increasingly recognized as an important approach to help unravel the complexities associated with human development and disease. The strategic use of identical twins discordant for complex disease has revealed the importance of linking epigenetic disruption to the disease-associated risk in humans. Lastly, we also discuss the possibility that epigenetic effects on disease may in part explain some of the missing heritability in genome-wide association studies. The study of human epigenetic factors in twins can inform the role of genetics, as well as in utero and postnatal environments to the establishment, maintenance and functional consequences of human epigenome variation. PMID:22253312

  2. Environmental chemical exposures and human epigenetics

    PubMed Central

    Hou, Lifang; Zhang, Xiao; Wang, Dong; Baccarelli, Andrea

    2012-01-01

    Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes. PMID:22253299

  3. Prostate cancer epigenetics and its clinical implications

    PubMed Central

    Yegnasubramanian, Srinivasan

    2016-01-01

    Normal cells have a level of epigenetic programming that is superimposed on the genetic code to establish and maintain their cell identity and phenotypes. This epigenetic programming can be thought as the architecture, a sort of cityscape, that is built upon the underlying genetic landscape. The epigenetic programming is encoded by a complex set of chemical marks on DNA, on histone proteins in nucleosomes, and by numerous context-specific DNA, RNA, protein interactions that all regulate the structure, organization, and function of the genome in a given cell. It is becoming increasingly evident that abnormalities in both the genetic landscape and epigenetic cityscape can cooperate to drive carcinogenesis and disease progression. Large-scale cancer genome sequencing studies have revealed that mutations in genes encoding the enzymatic machinery for shaping the epigenetic cityscape are among the most common mutations observed in human cancers, including prostate cancer. Interestingly, although the constellation of genetic mutations in a given cancer can be quite heterogeneous from person to person, there are numerous epigenetic alterations that appear to be highly recurrent, and nearly universal in a given cancer type, including in prostate cancer. The highly recurrent nature of these alterations can be exploited for development of biomarkers for cancer detection and risk stratification and as targets for therapeutic intervention. Here, we explore the basic principles of epigenetic processes in normal cells and prostate cancer cells and discuss the potential clinical implications with regards to prostate cancer biomarker development and therapy. PMID:27212125

  4. Transverse chromatic aberration after corneal refractive surgery

    NASA Astrophysics Data System (ADS)

    Anera, R. G.; Jiménez, J. R.; Jiménez del Barco, L.; Hita, E.

    2005-05-01

    An expression has been deduced theoretically from a schematic-eye model, for the transverse or lateral chromatic aberration (TCA) after refractive surgery. The aim was to investigate analytically how chromatic aberration varies after the emmetropization process. These changes in the TCA have been characterized from changes in corneal asphericity. The results indicate that TCA after refractive surgery diminishes as the degree of myopia increases, a trend contrary to that occurring with monochromatic aberrations, such as spherical or coma. These results can explain the fact that the real deterioration of the visual function under photopic conditions detected in those operated on for myopia is less than expected when only monochromatic aberrations are taken into account.

  5. Spherical aberration in electrically thin flat lenses.

    PubMed

    Ruphuy, Miguel; Ramahi, Omar M

    2016-08-01

    We analyze the spherical aberration of a new generation of lenses made of flat electrically thin inhomogeneous media. For such lenses, spherical aberration is analyzed quantitatively and qualitatively, and comparison is made to the classical gradient index rod. Both flat thin and thick lenses are made of gradient index materials, but the physical mechanisms and design equations are different. Using full-wave three-dimensional numerical simulation, we evaluate the spherical aberrations using the Maréchal criterion and show that the thin lens gives significantly better performance than the thick lens (rod). Additionally, based on ray tracing formulation, third-order analysis for longitudinal aberration and optical path difference are presented, showing strong overall performance of thin lenses in comparison to classical rod lenses. PMID:27505651

  6. Aberrations of a horizontal-vertical depolarizer

    NASA Technical Reports Server (NTRS)

    Mcclain, Stephen C.; Chipman, Russell A.; Hillman, Lloyd W.

    1992-01-01

    Ray-trace equations for uniaxial birefringent materials are used here to derive third-order estimates for aberrations that are produced in imaging through uniaxial plates and horizontal-vertical (HV) depolarizers. An HV depolarizer is a spatial pseudodepolarizer; it converts a uniform input polarization state into a continuum of spatially varying polarization states in an output beam. An HV depolarizer consists of two birefringent wedges whose crystal axes are crossed at 90 deg. The interface between the wedges is included, which leads to a spatially varying retardance that provides the spatial pseudodepolarization. In HV depolarizers, spherical aberration, astigmatism, and image doubling are the principal aberrations for on-axis objects. Only spherical aberration occurs in isotropic plates, while the presence of birefringent wedges introduces astigmatism and image doubling. It is shown that image separation is proportional to the magnitude of the retardance variation.

  7. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  8. Sensing Phase Aberrations behind Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  9. Prediction of Visual Acuity from Wavefront Aberrations

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2013-01-01

    A method for generating a visual acuity metric, based on wavefront aberrations (WFAs), associated with a test subject and representing classes of imperfections, such as defocus, astigmatism, coma and spherical aberrations, of the subject's visual system. The metric allows choices of different image template, can predict acuity for different target probabilities, can incorporate different and possibly subject-specific neural transfer functions, can predict acuity for different subject templates, and incorporates a model of the optotype identification task.

  10. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  11. Nongenetic inheritance and transgenerational epigenetics.

    PubMed

    Szyf, Moshe

    2015-02-01

    The idea that inherited genotypes define phenotypes has been paramount in modern biology. The question remains, however, whether stable phenotypes could be also inherited from parents independently of the genetic sequence per se. Recent data suggest that parental experiences can be transmitted behaviorally, through in utero exposure of the developing fetus to the maternal environment, or through either the male or female germline. The challenge is to delineate a plausible mechanism. In the past decade it has been proposed that epigenetic mechanisms are involved in multigenerational transmission of phenotypes and transgenerational inheritance. The prospect that ancestral experiences are written in our epigenome has immense implications for our understanding of human behavior, health, and disease. PMID:25601643

  12. The Epigenetic Mechanisms of Amphetamine

    PubMed Central

    McCowan, Talus J.; Dhasarathy, Archana; Carvelli, Lucia

    2015-01-01

    Amphetamine (AMPH) is a psychostimulant and the most prescribed drug to treat attention deficit hyperactive disorder (ADHD). Although therapeutically used doses are generally well tolerated, numerous side effects are still known to occur, such as jitteriness, loss of appetite and psychosis. Moreover, AMPH is liable to be abused by users looking for increased alertness, weight loss or athletic performance. A growing body of evidence indicates that drugs of abuse, including AMPH, control gene expression through chromatin modifications. However, while numerous studies have investigated the molecular mechanisms of AMPH action, only a small number of studies have explored changes in gene expression caused by AMPH. This review examines the epigenetic changes induced by chronic and acute treatments with AMPH and includes, where relevant, data obtained with other psychostimulants such as methamphetamine and cocaine.

  13. Accommodation to Wavefront Vergence and Chromatic Aberration

    PubMed Central

    Wang, Yinan; Kruger, Philip B.; Li, James S.; Lin, Peter L.; Stark, Lawrence R.

    2011-01-01

    Purpose Longitudinal chromatic aberration (LCA) provides a cue to accommodation with small pupils. However, large pupils increase monochromatic aberrations, which may obscure chromatic blur. In the present study, we examined the effect of pupil size and LCA on accommodation. Methods Accommodation was recorded by infrared optometer while observers (nine normal trichromats) viewed a sinusoidally moving Maltese cross target in a Badal stimulus system. There were two illumination conditions: white (3000 K; 20 cd/m2) and monochromatic (550 nm with 10 nm bandwidth; 20 cd/m2) and two artificial pupil conditions (3 mm and 5.7 mm). Separately, static measurements of wavefront aberration were made with the eye accommodating to targets between 0 and 4 D (COAS, Wavefront Sciences). Results Large individual differences in accommodation to wavefront vergence and to LCA are a hallmark of accommodation. LCA continues to provide a signal at large pupil sizes despite higher levels of monochromatic aberrations. Conclusions Monochromatic aberrations may defend against chromatic blur at high spatial frequencies, but accommodation responds best to optical vergence and to LCA at 3 c/deg where blur from higher order aberrations is less. PMID:21317666

  14. Erwin Schroedinger, Francis Crick and epigenetic stability

    PubMed Central

    Ogryzko, Vasily V

    2008-01-01

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order. PMID:18419815

  15. Epigenetic Mechanisms of Longevity and Aging.

    PubMed

    Sen, Payel; Shah, Parisha P; Nativio, Raffaella; Berger, Shelley L

    2016-08-11

    Aging is an inevitable outcome of life, characterized by progressive decline in tissue and organ function and increased risk of mortality. Accumulating evidence links aging to genetic and epigenetic alterations. Given the reversible nature of epigenetic mechanisms, these pathways provide promising avenues for therapeutics against age-related decline and disease. In this review, we provide a comprehensive overview of epigenetic studies from invertebrate organisms, vertebrate models, tissues, and in vitro systems. We establish links between common operative aging pathways and hallmark chromatin signatures that can be used to identify "druggable" targets to counter human aging and age-related disease. PMID:27518561

  16. Chromatin insulators: regulatory mechanisms and epigenetic inheritance

    PubMed Central

    Bushey, Ashley M.; Dorman, Elizabeth R.; Corces, Victor G.

    2008-01-01

    Enhancer-blocking insulators are DNA elements that disrupt the communication between a regulatory sequence, such as an enhancer or a silencer, and a promoter. Insulators participate in both transcriptional regulation and global nuclear organization, two features of chromatin that are thought to be maintained from one generation to the next through epigenetic mechanisms. Furthermore, there are many regulatory mechanisms in place that enhance or hinder insulator activity. These modes of regulation could be used to establish cell-type specific insulator activity that is epigenetically inherited along a cell and/or organismal lineage. This review will discuss the evidence for epigenetic inheritance and regulation of insulator function. PMID:18851828

  17. Epigenetic Regulation of Mammalian Stem Cells

    PubMed Central

    Li, Xuekun

    2008-01-01

    Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their “stemness” state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells. PMID:18393635

  18. Erwin Schroedinger, Francis Crick and epigenetic stability.

    PubMed

    Ogryzko, Vasily V

    2008-01-01

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order. PMID:18419815

  19. Epigenetic reprogramming in plant sexual reproduction.

    PubMed

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation. PMID:25048170

  20. Mechanisms of epigenetic memory and addiction

    PubMed Central

    Tuesta, Luis M; Zhang, Yi

    2014-01-01

    Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction. PMID:24778453

  1. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer.

    PubMed

    Lamy, Aude; Sesboüé, Richard; Bourguignon, Jeannette; Dautréaux, Brigitte; Métayer, Josette; Frébourg, Thierry; Thiberville, Luc

    2002-07-10

    Among the identified factors involved in malignant transformation, abnormal methylation of the CDKN2A/p16(INK4a) gene promoter has been described as an early event, particularly in bronchial cell cancerization. Precancerous bronchial lesions (n = 70) prospectively sampled during fluorescence endoscopy in a series of 37 patients at high risk for lung cancer were studied with respect to the methylation status of the CDKN2A gene. Methylation-specific polymerase chain reaction was performed on DNA extracted from pure bronchial cell populations derived from biopsies and detection of p16 protein was studied by immunohistochemistry on contiguous parallel biopsies. Aberrant methylation of the CDKN2A gene promoter was found in 19% of preinvasive lesions and its frequency increased with the histologic grade of the lesions. Methylation in at least 1 bronchial site was significantly more frequent in patients with cancer history, although there was no difference in the outcome of patients with or without methylation in bronchial epithelium. The other risk factors studied (tobacco and asbestos exposure) did not influence the methylation status. There was no relationship between CDKN2A methylation and the evolutionary character of the lesions. Our results confirm that abnormal methylation of the CDKN2A gene promoter is an early event in bronchial cell cancerization, which can persist for several years after carcinogen exposure cessation, and show that this epigenetic alteration cannot predict the evolution of precancerous lesions within a 2-year follow-up. PMID:12115568

  2. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology.

    PubMed

    Kyzar, Evan J; Floreani, Christina; Teppen, Tara L; Pandey, Subhash C

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  3. Adolescent Alcohol Exposure: Burden of Epigenetic Reprogramming, Synaptic Remodeling, and Adult Psychopathology

    PubMed Central

    Kyzar, Evan J.; Floreani, Christina; Teppen, Tara L.; Pandey, Subhash C.

    2016-01-01

    Adolescence represents a crucial phase of synaptic maturation characterized by molecular changes in the developing brain that shape normal behavioral patterns. Epigenetic mechanisms play an important role in these neuromaturation processes. Perturbations of normal epigenetic programming during adolescence by ethanol can disrupt these molecular events, leading to synaptic remodeling and abnormal adult behaviors. Repeated exposure to binge levels of alcohol increases the risk for alcohol use disorder (AUD) and comorbid psychopathology including anxiety in adulthood. Recent studies in the field clearly suggest that adolescent alcohol exposure causes widespread and persistent changes in epigenetic, neurotrophic, and neuroimmune pathways in the brain. These changes are manifested by altered synaptic remodeling and neurogenesis in key brain regions leading to adult psychopathology such as anxiety and alcoholism. This review details the molecular mechanisms underlying adolescent alcohol exposure-induced changes in synaptic plasticity and the development of alcohol addiction-related phenotypes in adulthood. PMID:27303256

  4. Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention

    PubMed Central

    Atwell, Lauren L.; Beaver, Laura M.; Shannon, Jackilen; Williams, David E.; Dashwood, Roderick H.; Ho, Emily

    2015-01-01

    Sulforaphane (SFN) is a phytochemical derived from cruciferous vegetables that has multiple molecular targets and anti-cancer properties. Researchers have demonstrated several chemopreventive benefits of SFN consumption, such as reductions in tumor growth, increases in cancer cell apoptosis, and disruption of signaling within tumor microenvironments both in vitro and in vivo. Emerging evidence indicates that SFN exerts several of its chemopreventive effects by altering epigenetic mechanisms. This review summarizes evidence of the impact of SFN on epigenetic events and how they relate to the chemopreventive effects of SFN observed in preclinical and clinical studies of breast and prostate cancers. Specific areas of focus include the role of SFN in the regulation of cell cycle, apoptosis, inflammation, antioxidant defense, and cancer cell signaling and their relationships to epigenetic mechanisms. Finally, remaining challenges and research needs for translating mechanistic work with SFN into human studies and clinical intervention trials are discussed. PMID:26042194

  5. The epigenetic paradigm in periodontitis pathogenesis

    PubMed Central

    Lavu, Vamsi; Venkatesan, Vettriselvi; Rao, Suresh Ranga

    2015-01-01

    Epigenome refers to “epi” meaning outside the “genome.” Epigenetics is the field of study of the epigenome. Epigenetic modifications include changes in the promoter CpG Islands, modifications of histone protein structure, posttranslational repression by micro-RNA which contributes to the alteration of gene expression. Epigenetics provides an understanding of the role of gene-environment interactions on disease phenotype especially in complex multifactorial diseases. Periodontitis is a chronic inflammatory disorder that affects the supporting structures of the tooth. The role of the genome (in terms of genetic polymorphisms) in periodontitis pathogenesis has been examined in numerous studies, and chronic periodontitis has been established as a polygenic disorder. The potential role of epigenetic modifications in the various facets of pathogenesis of periodontitis is discussed in this paper based on the available literature. PMID:26015662

  6. Epigenetics knocks on synthetic biology's door

    PubMed Central

    Rodriguez-Escamilla, Zuemy; Martínez-Núñez, Mario A.; Merino, Enrique

    2016-01-01

    Epigenetics is the study of heritable changes in gene expression without concomitant changes in DNA sequence. Due to its relevance in development, differentiation and human health, epigenetics has recently become an emerging area of science with regard to eukaryotic organisms and has shown enormous potential in synthetic biology. However, significant examples of epigenetic regulation in bacterial synthetic biology have not yet been reported. In the current study, we present the first model of such an epigenetic circuit. We termed the circuit the alternator circuit because parental cells carrying this circuit and their progeny alternate between distinct and heritable cellular fates without undergoing changes in genome sequence. Furthermore, we demonstrated that the alternator circuit exhibits hysteresis because its output depends not only on its present state but also on its previous states. PMID:27521262

  7. Epigenetics knocks on synthetic biology's door

    PubMed Central

    Rodriguez-Escamilla, Zuemy; Martínez-Núñez, Mario A.; Merino, Enrique

    2016-01-01

    Epigenetics is the study of heritable changes in gene expression without concomitant changes in DNA sequence. Due to its relevance in development, differentiation and human health, epigenetics has recently become an emerging area of science with regard to eukaryotic organisms and has shown enormous potential in synthetic biology. However, significant examples of epigenetic regulation in bacterial synthetic biology have not yet been reported. In the current study, we present the first model of such an epigenetic circuit. We termed the circuit the alternator circuit because parental cells carrying this circuit and their progeny alternate between distinct and heritable cellular fates without undergoing changes in genome sequence. Furthermore, we demonstrated that the alternator circuit exhibits hysteresis because its output depends not only on its present state but also on its previous states.

  8. Dissecting Epigenetic Dysregulation of Primary Antibody Deficiencies.

    PubMed

    Rodríguez-Cortez, Virginia C; Del Pino-Molina, Lucia; Rodríguez-Ubreva, Javier; López-Granados, Eduardo; Ballestar, Esteban

    2016-05-01

    Primary antibody deficiencies (PADs), the most prevalent inherited primary immunodeficiencies (PIDs), are associated with a wide range of genetic alterations (both monogenic or polygenic) in B cell-specific genes. However, correlations between the genotype and clinical manifestations are not evident in all cases indicating that genetic interactions, environmental and epigenetic factors may have a role in PAD pathogenesis. The recent identification of key defects in DNA methylation in common variable immunodeficiency as well as the multiple evidences on the role of epigenetic control during B cell differentiation, activation and during antibody formation highlight the importance of investing research efforts in dissecting the participation of epigenetic defects in this group of diseases. This review focuses on the role of epigenetic control in B cell biology which can provide clues for the study of potential novel pathogenic defects involved in PADs. PMID:26984849

  9. Understanding the Complexity of Epigenetic Target Space.

    PubMed

    Pande, Vineet

    2016-02-25

    The purpose of this review is to provide an overview of the complexity of the epigenetic target space. Chemical modifications of histones and nucleic acids constitute a key epigenetic mechanism. Whereas modifications such as methylation and acetylation are well-known, there are many additional, less explored modifications described here. The writers, readers and erasers of such diverse modifications, which constitute a major portion of the potential epigenetic target space, are discussed, in addition to the various other protein families that do not fall under these three categories. Finally, disease relevance and druggability of epigenetic targets are discussed with concluding remarks about the richness and diversity they will provide for future targeted therapies. PMID:26796965

  10. Developmental origins of epigenetic transgenerational inheritance

    PubMed Central

    Hanson, Mark A.; Skinner, Michael K.

    2016-01-01

    Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective. PMID:27390622

  11. Epigenetic Effects of Di(2-ethylhexyl) Phthalate

    EPA Science Inventory

    Epidemiological and laboratory investigations suggest that, in addition to genetic changes, environmental pollutants can affect human health through altering epigenetic mechanisms including DNA methylation, histone modification, and microRNA expression. There is evidence in anima...

  12. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis.

    PubMed

    Tian, Yuan; Mok, Myth T S; Yang, Pengyuan; Cheng, Alfred S L

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients. PMID:27556491

  13. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer

    PubMed Central

    Krakowsky, Rosanna H. E.; Tollefsbol, Trygve O.

    2015-01-01

    Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level. PMID:26075205

  14. Epigenetic mechanisms underlying cognitive impairment and Alzheimer disease hallmarks in 5XFAD mice

    PubMed Central

    Griñán-Ferré, Christian; Sarroca, Sara; Ivanova, Aleksandra; Puigoriol-Illamola, Dolors; Aguado, Fernando; Camins, Antoni; Sanfeliu, Coral; Pallàs, Mercè

    2016-01-01

    5XFAD is an early-onset mouse transgenic model of Alzheimer disease (AD). Up to now there are no studies that focus on the epigenetic changes produced as a result of Aβ-42 accumulation and the possible involvement in the different expression of related AD-genes. Under several behavioral and cognition test, we found impairment in memory and psychoemotional changes in female 5XFAD mice in reference to wild type that worsens with age. Cognitive changes correlated with alterations on protein level analysis and gene expression of markers related with tau aberrant phosphorylation, amyloidogenic pathway (APP, BACE1), Oxidative Stress (iNOS, Aldh2) and inflammation (astrogliosis, TNF-α and IL-6); no changes were found in non-amyloidogenic pathway indicators such as ADAM10. Epigenetics changes as higher CpG methylation and transcriptional changes in DNA methyltransferases (DNMTs) family were found. Dnmt1 increases in younger 5XFAD and Dnmt3a and b high levels in the oldest transgenic mice. Similar pattern was found with histone methyltransferases such as Jarid1a and G9a. Histone deacetylase 2 (Hdac2) or Sirt6., both related with cognition and memory, presented a similar pattern. Taken together, these hallmarks presented by the 5XFAD model prompted its use in assessing different potential therapeutic interventions based on epigenetic targets after earlier amyloid deposition. PMID:27013617

  15. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries.

    PubMed

    Wongtrakoongate, Patompon

    2015-01-26

    Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2'-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their "malignant memory". PMID:25621113

  16. Epigenetic heterogeneity of developmentally important genes in human sperm: Implications for assisted reproduction outcome

    PubMed Central

    Kuhtz, Juliane; Schneider, Eberhard; El Hajj, Nady; Zimmermann, Lena; Fust, Olga; Linek, Bartosz; Seufert, Rudolf; Hahn, Thomas; Schorsch, Martin; Haaf, Thomas

    2014-01-01

    The molecular basis of male infertility is poorly understood, the majority of cases remaining unsolved. The association of aberrant sperm DNA methylation patterns and compromised semen parameters suggests that disturbances in male germline epigenetic reprogramming contribute to this problem. So far there are only few data on the epigenetic heterogeneity of sperm within a given sample and how to select the best sperm for successful infertility treatment. Limiting dilution bisulfite sequencing of small pools of sperm from fertile donors did not reveal significant differences in the occurrence of abnormal methylation imprints between sperm with and without morphological abnormalities. Intracytoplasmic morphologically selected sperm injection was not associated with an improved epigenetic quality, compared to standard intracytoplasmatic sperm injection. Deep bisulfite sequencing (DBS) of 2 imprinted and 2 pluripotency genes in sperm from men attending a fertility center showed that in both samples with normozoospermia and oligoasthenoteratozoospermia (OAT) the vast majority of sperm alleles was normally (de)methylated and the percentage of epimutations (allele methylation errors) was generally low (<1%). However, DBS allowed one to identify and quantify these rare epimutations with high accuracy. Sperm samples not leading to a pregnancy, in particular in the OAT group, had significantly more epimutations in the paternally methylated GTL2 gene than samples leading to a live birth. All 13 normozoospermic and 13 OAT samples leading to a child had <1% GTL2 epimutations, whereas one (7%) of 14 normozoospermic and 7 (50%) of 14 OAT samples without pregnancy displayed 1–14% GTL2 epimutations. PMID:25625849

  17. Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress.

    PubMed

    Erturk, Filiz Aygun; Agar, Guleray; Arslan, Esra; Nardemir, Gokce

    2015-07-01

    Conditions of environmental stress are known to lead genetic and epigenetic variability in plants. DNA methylation is one of the important epigenetic mechanisms and plays a critical role in epigenetic control of gene expression. Thus, the aim of the study was to investigate the alteration of genome methylation induced by zinc stress by using coupled restriction enzyme digestion-random amplification (CRED-RA) technique in maize (Zea mays L.) seedlings. In addition, to determine the effect of zinc on mitotic activity and phytohormone level, high-pressure liquid chromatography (HPLC) and mitotic index analysis were utilized. According to the results, mitotic index decreased in all concentrations of zinc except for 5 mM dose and chromosome aberrations such as c-mitosis, stickiness, and anaphase bridges were determined. It was also observed that increasing concentrations of zinc caused an increase in methylation patterns and decrease in gibberellic acid (GA), zeatin (ZA), and indole acetic acid (IAA) levels in contrast to abscisic acid (ABA) level. Especially increasing of ABA levels under zinc stress may be a part of the defense system against heavy metal accumulation in plants. PMID:25703614

  18. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation.

    PubMed

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  19. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis

    PubMed Central

    Tian, Yuan; Mok, Myth T.S.; Yang, Pengyuan; Cheng, Alfred S.L.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD), characterized by fat accumulation in liver, is closely associated with central obesity, over-nutrition and other features of metabolic syndrome, which elevate the risk of developing hepatocellular carcinoma (HCC). The Wnt/β-catenin signaling pathway plays a significant role in the physiology and pathology of liver. Up to half of HCC patients have activation of Wnt/β-catenin signaling. However, the mutation frequencies of CTNNB1 (encoding β-catenin protein) or other antagonists targeting Wnt/β-catenin signaling are low in HCC patients, suggesting that genetic mutations are not the major factor driving abnormal β-catenin activities in HCC. Emerging evidence has demonstrated that obesity-induced metabolic pathways can deregulate chromatin modifiers such as histone deacetylase 8 to trigger undesired global epigenetic changes, thereby modifying gene expression program which contributes to oncogenic signaling. This review focuses on the aberrant epigenetic activation of Wnt/β-catenin in the development of NAFLD-associated HCC. A deeper understanding of the molecular mechanisms underlying such deregulation may shed light on the identification of novel druggable epigenetic targets for the prevention and/or treatment of HCC in obese and diabetic patients. PMID:27556491

  20. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    PubMed Central

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  1. Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma.

    PubMed

    Kanda, Mitsuro; Sugimoto, Hiroyuki; Kodera, Yasuhiro

    2015-10-01

    Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominant in developing countries and is responsible for nearly 600000 deaths each year worldwide. Similar to many other tumors, the development of HCC must be understood as a multistep process involving the accumulation of genetic and epigenetic alterations in regulatory genes, leading to the activation of oncogenes and the inactivation or loss of tumor suppressor genes. Extensive research over the past decade has identified a number of molecular biomarkers, including aberrant expression of HCC-related genes and microRNAs. The challenge facing HCC research and clinical care at this time is to address the heterogeneity and complexity of these genetic and epigenetic alterations and to use this information to direct rational diagnosis and treatment strategies. The multikinase inhibitor sorafenib was the first molecularly targeted drug for HCC to show some extent of survival benefits in patients with advanced tumors. Although the results obtained using sorafenib support the importance of molecular therapies in the treatment of HCC, there is still room for improvement. In addition, no molecular markers for drug sensitivity, recurrence and prognosis are currently clinically available. In this review, we provide an overview of recently published articles addressing HCC-related genes and microRNAs to update what is currently known regarding genetic and epigenetic aspects of the pathogenesis of HCC and propose novel promising candidates for use as diagnostic and therapeutic targets in HCC. PMID:26457018

  2. Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma

    PubMed Central

    Kanda, Mitsuro; Sugimoto, Hiroyuki; Kodera, Yasuhiro

    2015-01-01

    Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominant in developing countries and is responsible for nearly 600000 deaths each year worldwide. Similar to many other tumors, the development of HCC must be understood as a multistep process involving the accumulation of genetic and epigenetic alterations in regulatory genes, leading to the activation of oncogenes and the inactivation or loss of tumor suppressor genes. Extensive research over the past decade has identified a number of molecular biomarkers, including aberrant expression of HCC-related genes and microRNAs. The challenge facing HCC research and clinical care at this time is to address the heterogeneity and complexity of these genetic and epigenetic alterations and to use this information to direct rational diagnosis and treatment strategies. The multikinase inhibitor sorafenib was the first molecularly targeted drug for HCC to show some extent of survival benefits in patients with advanced tumors. Although the results obtained using sorafenib support the importance of molecular therapies in the treatment of HCC, there is still room for improvement. In addition, no molecular markers for drug sensitivity, recurrence and prognosis are currently clinically available. In this review, we provide an overview of recently published articles addressing HCC-related genes and microRNAs to update what is currently known regarding genetic and epigenetic aspects of the pathogenesis of HCC and propose novel promising candidates for use as diagnostic and therapeutic targets in HCC. PMID:26457018

  3. Epigenetics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  4. Epigenetic effects of early developmental experiences.

    PubMed

    Gudsnuk, Kathryn M A; Champagne, Frances A

    2011-12-01

    Early-life adversity can affect brain development and behavior. Emerging evidence from studies on both humans and rodents suggests that epigenetic mechanisms may play a critical role in shaping our biology in response to the quality of the environment. This article highlights the research findings suggesting that prenatal maternal stress, postnatal maternal care, and infant neglect/abuse can lead to epigenetic variation, which may have long-term effects on stress responsivity, neuronal plasticity, and behavior. PMID:22107899

  5. Epigenetics of multiple sclerosis: an updated review.

    PubMed

    Küçükali, Cem İsmail; Kürtüncü, Murat; Çoban, Arzu; Çebi, Merve; Tüzün, Erdem

    2015-06-01

    Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized with autoimmune response against myelin proteins and progressive axonal loss. The heterogeneity of the clinical course and low concordance rates in monozygotic twins have indicated the involvement of complex heritable and environmental factors in MS pathogenesis. MS is more often transmitted to the next generation by mothers than fathers suggesting an epigenetic influence. One of the possible reasons of this parent-of-origin effect might be the human leukocyte antigen-DRB1*15 allele, which is the major risk factor for MS and regulated by epigenetic mechanisms such as DNA methylation and histone deacetylation. Moreover, major environmental risk factors for MS, vitamin D deficiency, smoking and Ebstein-Barr virus are all known to exert epigenetic changes. In the last few decades, compelling evidence implicating the role of epigenetics in MS has accumulated. Increased or decreased acetylation, methylation and citrullination of genes regulating the expression of inflammation and myelination factors appear to be particularly involved in the epigenetics of MS. Although much less is known about epigenetic factors causing neurodegeneration, epigenetic mechanisms regulating axonal loss, apoptosis and mitochondrial dysfunction in MS are in the process of identification. Additionally, expression levels of several microRNAs (miRNAs) (e.g., miR-155 and miR-326) are increased in MS brains and potential mechanisms by which these factors might influence MS pathogenesis have been described. Certain miRNAs may also be potentially used as diagnostic biomarkers in MS. Several reagents, especially histone deacetylase inhibitors have been shown to ameliorate the symptoms of experimental allergic encephalomyelitis. Ongoing efforts in this field are expected to result in characterization of epigenetic factors that can be used in prediction of treatment responsive MS patients, diagnostic screening panels

  6. Identification of Tumor Suppressors and Oncogenes from Genomic and Epigenetic Features in Ovarian Cancer

    PubMed Central

    Wrzeszczynski, Kazimierz O.; Varadan, Vinay; Byrnes, James; Lum, Elena; Kamalakaran, Sitharthan; Levine, Douglas A.; Dimitrova, Nevenka; Zhang, Michael Q.; Lucito, Robert

    2011-01-01

    The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates. PMID

  7. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance

    PubMed Central

    Campoli, Michael; Ferrone, Soldano

    2009-01-01

    Changes in classical and non-classical HLA class I as well as HLA class II antigens have been identified in malignant lesions. These changes which are described in this paper are believed to play a major role in the clinical course of the disease since both HLA class I and class II antigens are critical to the interaction between tumor cells and components of both innate and adaptive immune system. Abnormalities in HLA antigen expression in malignant cells, which range in frequency from 0-90%, are caused by distinct mechanisms. They include defects in β2-microglobulin (β2m) synthesis, loss of the gene(s) encoding HLA antigen heavy chain(s), mutations which inhibit HLA antigen heavy chain transcription or translation, defects in the regulatory mechanisms which control HLA antigen expression and/or abnormalities in one or more of the antigen processing machinery (APM) components. More recently, epigenetic events associated with tumor development and progression have been found to underlie changes in HLA antigen, APM component, co-stimulatory molecule and TA expression in malignant cells. The types of epigenetic modifications that may occur in normal and malignant cells as well as their role underlying changes in HLA expression by malignant cells have been reviewed. The epigenetic events associated with alterations in HLA antigen expression may be clinically relevant since, in some case, they have been shown to impair the recognition of tumor cells by components of the adaptive immune system. The functional relevance and potential clinical significance of these epigenetic alterations have been addressed. Lastly, unlike genetic alterations, epigenetic modifications can, in some cases, be reversed with pharmacologic agents that induce DNA hypomethylation or inhibit histone deacetylation. Therefore strategies to overcome epigenetic modifications underlying changes in HLA expression in malignant cells have been discussed. PMID:18836468

  8. Epigenetic regulation of hematopoietic stem cell aging

    SciTech Connect

    Beerman, Isabel

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  9. Child health, developmental plasticity, and epigenetic programming.

    PubMed

    Hochberg, Z; Feil, R; Constancia, M; Fraga, M; Junien, C; Carel, J-C; Boileau, P; Le Bouc, Y; Deal, C L; Lillycrop, K; Scharfmann, R; Sheppard, A; Skinner, M; Szyf, M; Waterland, R A; Waxman, D J; Whitelaw, E; Ong, K; Albertsson-Wikland, K

    2011-04-01

    Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs. PMID:20971919

  10. The Role of Epigenetics in Arterial Calcification

    PubMed Central

    Wu, Shan-Shan; Lin, Xiao; Yuan, Ling-Qing; Liao, Er-Yuan

    2015-01-01

    Arterial calcification is highly prevalent and correlated with cardiovascular mortality, especially in patients with ESRD or diabetes. The pathogenesis of arterial calcification is multifactorial, with both genetic and environmental factors being implicated. In recent years, several mechanisms contributing to arterial calcification have been proposed. However, these can only explain a small proportion of the variability in arterial calcification, which is a major obstacle for its prevention and management. Epigenetics has emerged as one of the most promising areas that may fill in some of the gaps in our current knowledge of the interaction between the environmental insults with gene regulation in the development of diseases. Epigenetics refers to heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Well-known components of epigenetic regulation include DNA methylation, histone modifications, and microRNAs. Epigenetics research in the regulation of arterial calcification has only recently been elucidated. In this review, we will summarise recent progress in epigenetic pathways involved in arterial calcification and discuss potential therapeutic interventions based on epigenetic mechanisms. PMID:26221588

  11. Epigenetic Mechanisms of the Aging Human Retina

    PubMed Central

    Pennington, Katie L.; DeAngelis, Margaret M.

    2015-01-01

    Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions. PMID:26966390

  12. Child Health, Developmental Plasticity, and Epigenetic Programming

    PubMed Central

    Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.-C.; Boileau, P.; Le Bouc, Y.; Deal, C. L.; Lillycrop, K.; Scharfmann, R.; Sheppard, A.; Skinner, M.; Szyf, M.; Waterland, R. A.; Waxman, D. J.; Whitelaw, E.; Ong, K.; Albertsson-Wikland, K.

    2011-01-01

    Plasticity in developmental programming has evolved in order to provide the best chances of survival and reproductive success to the organism under changing environments. Environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Developmental origins of health and disease and life-history transitions are purported to use placental, nutritional, and endocrine cues for setting long-term biological, mental, and behavioral strategies in response to local ecological and/or social conditions. The window of developmental plasticity extends from preconception to early childhood and involves epigenetic responses to environmental changes, which exert their effects during life-history phase transitions. These epigenetic responses influence development, cell- and tissue-specific gene expression, and sexual dimorphism, and, in exceptional cases, could be transmitted transgenerationally. Translational epigenetic research in child health is a reiterative process that ranges from research in the basic sciences, preclinical research, and pediatric clinical research. Identifying the epigenetic consequences of fetal programming creates potential applications in clinical practice: the development of epigenetic biomarkers for early diagnosis of disease, the ability to identify susceptible individuals at risk for adult diseases, and the development of novel preventive and curative measures that are based on diet and/or novel epigenetic drugs. PMID:20971919

  13. Conference scene: Select Biosciences Epigenetics Europe 2010.

    PubMed

    Razvi, Enal S

    2011-02-01

    The field of epigenetics is now on a geometric rise, driven in a large part by the realization that modifiers of chromatin are key regulators of biological processes in vivo. The three major classes of epigenetic effectors are DNA methylation, histone post-translational modifications (such as acetylation, methylation or phosphorylation) and small noncoding RNAs (most notably microRNAs). In this article, I report from Select Biosciences Epigenetics Europe 2010 industry conference held on 14-15 September 2010 at The Burlington Hotel, Dublin, Ireland. This industry conference was extremely well attended with a global pool of delegates representing the academic research community, biotechnology companies and pharmaceutical companies, as well as the technology/tool developers. This conference represented the current state of the epigenetics community with cancer/oncology as a key driver. In fact, it has been estimated that approximately 45% of epigenetic researchers today identify cancer/oncology as their main area of focus vis-à-vis their epigenetic research efforts. PMID:22126149

  14. Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    PubMed Central

    Gonzalo, Victoria; Lozano, Juan José; Muñoz, Jenifer; Balaguer, Francesc; Pellisé, Maria; de Miguel, Cristina Rodríguez; Andreu, Montserrat; Jover, Rodrigo; Llor, Xavier; Giráldez, M. Dolores; Ocaña, Teresa; Serradesanferm, Anna; Alonso-Espinaco, Virginia; Jimeno, Mireya; Cuatrecasas, Miriam; Sendino, Oriol; Castellví-Bel, Sergi; Castells, Antoni

    2010-01-01

    Background Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. Methodology/Principal Findings We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple

  15. Multiple aberrant hormone receptors in Cushing's syndrome.

    PubMed

    El Ghorayeb, Nada; Bourdeau, Isabelle; Lacroix, André

    2015-10-01

    The mechanisms regulating cortisol production when ACTH of pituitary origin is suppressed in primary adrenal causes of Cushing's syndrome (CS) include diverse genetic and molecular mechanisms. These can lead either to constitutive activation of the cAMP system and steroidogenesis or to its regulation exerted by the aberrant adrenal expression of several hormone receptors, particularly G-protein coupled hormone receptors (GPCR) and their ligands. Screening for aberrant expression of GPCR in bilateral macronodular adrenal hyperplasia (BMAH) and unilateral adrenal tumors of patients with overt or subclinical CS demonstrates the frequent co-expression of several receptors. Aberrant hormone receptors can also exert their activity by regulating the paracrine secretion of ACTH or other ligands for those receptors in BMAH or unilateral tumors. The aberrant expression of hormone receptors is not limited to adrenal CS but can be implicated in other endocrine tumors including primary aldosteronism and Cushing's disease. Targeted therapies to block the aberrant receptors or their ligands could become useful in the future. PMID:25971648

  16. Aberration in proper motions for Galactic stars

    NASA Astrophysics Data System (ADS)

    Liu, J.-C.; Xie, Y.; Zhu, Z.

    2014-12-01

    Accelerations of both the solar system barycenter (SSB) and stars in the MilkyWay cause a systematic observational effect on the stellar proper motions, which was first studied by J. Kovalevsky (2003). This paper intends to extend that work and aims to estimate the magnitude and significance of the aberration in proper motions of stars, especially in the region near the Galactic center (GC). We adopt two models for the Galactic rotation curve to evaluate the aberrational effect on the Galactic plane. We show that the effect of aberration in proper motions depends on the galactocentric distance of stars; it is dominated by the acceleration of stars in the central region of the Galaxy. Then we investigate the applicability of the theoretical expressions: if the orbital period of stars is only a fraction of the light time from the star to the SSB, the expression with approximation proposed by Kovalevsky is not appropriate. With a more suitable formulation, we found that the aberration has no effect on the determination of the stellar orbits on the celestial sphere. In the future this aberrational effect under consideration should be considered with high-accurate astrometry, particularly in constructing the Gaia celestial reference system realized by Galactic stars.

  17. Pathway modulations and epigenetic alterations in ovarian tumorbiogenesis

    PubMed Central

    Saldanha, Sabita N.; Tollefsbol, Trygve O.

    2013-01-01

    Cellular pathways are numerous and are highly integrated in function in the control of cellular systems. They collectively regulate cell division, proliferation, survival and apoptosis of cells and mutagenesis of key genes that control these pathways can initiate neoplastic transformations. Understanding these pathways is crucial to future therapeutic and preventive strategies of the disease. Ovarian cancers are of three major types; epithelial, germ-cell and stromal. However, ovarian cancers of epithelial origin, arising from the mesothelium, are the predominant form. Of the subtypes of ovarian cancer, the high-grade serous tumors are fatal, with low survival rate due to late detection and poor response to treatments. Close examination of preserved ovarian tissues and in vitro studies have provided insights into the mechanistic changes occurring in cells mediated by a few key genes. This review will focus on pathways and key genes of the pathways that are mutated or have aberrant functions in the pathology of ovarian cancer. Non-genetic mechanisms that are gaining prominence in the pathology of ovarian cancer, miRNAs and epigenetics, will also be discussed in the review. PMID:24105793

  18. Integrative Discovery of Epigenetically Derepressed Cancer Testis Antigens in NSCLC

    PubMed Central

    Glazer, Chad A.; Smith, Ian M.; Ochs, Michael F.; Begum, Shahnaz; Westra, William; Chang, Steven S.; Sun, Wenyue; Bhan, Sheetal; Khan, Zubair; Ahrendt, Steven; Califano, Joseph A.

    2009-01-01

    Background Cancer/testis antigens (CTAs) were first discovered as immunogenic targets normally expressed in germline cells, but differentially expressed in a variety of human cancers. In this study, we used an integrative epigenetic screening approach to identify coordinately expressed genes in human non-small cell lung cancer (NSCLC) whose transcription is driven by promoter demethylation. Methodology/Principal Findings Our screening approach found 290 significant genes from the over 47,000 transcripts incorporated in the Affymetrix Human Genome U133 Plus 2.0 expression array. Of the top 55 candidates, 10 showed both differential overexpression and promoter region hypomethylation in NSCLC. Surprisingly, 6 of the 10 genes discovered by this approach were CTAs. Using a separate cohort of primary tumor and normal tissue, we validated NSCLC promoter hypomethylation and increased expression by quantitative RT-PCR for all 10 genes. We noted significant, coordinated coexpression of multiple target genes, as well as coordinated promoter demethylation, in a large set of individual tumors that was associated with the SCC subtype of NSCLC. In addition, we identified 2 novel target genes that exhibited growth-promoting effects in multiple cell lines. Conclusions/Significance Coordinated promoter demethylation in NSCLC is associated with aberrant expression of CTAs and potential, novel candidate protooncogenes that can be identified using integrative discovery techniques. These findings have significant implications for discovery of novel CTAs and CT antigen directed immunotherapy. PMID:19997593

  19. Genetics, epigenetics and pharmaco-(epi)genomics in angiogenesis

    PubMed Central

    Buysschaert, Ian; Schmidt, Thomas; Roncal, Carmen; Carmeliet, Peter; Lambrechts, Diether

    2008-01-01

    Angiogenesis is controlled by a balance between pro- and anti-angiogenic factors. Studies in mice and human beings have shown that this balance, as well as the general sensitivity of the endothelium to these factors, is genetically pre-determined. In an effort to dissect this genetic basis, different types of genetic variability have emerged: mutations and translocations in angiogenic factors have been linked to several vascular malformations and haemangiomas, whereas SNPs have been associated with complex genetic disorders, such as cancer, neurodegeneration and diabetes. In addition, copy number alterations of angiogenic factors have been reported in several tumours. More recently, epigenetic changes caused by aberrant DNA methylation or histone acetylation of anti-angiogenic molecules have been shown to determine angiogenesis as well. Initial studies also revealed a crucial role for microRNAs in stimulating or reducing angiogenesis. So far, most of these genetic studies have focused on tumour angiogenesis, but future research is expected to improve our understanding of how genetic variants determine angiogenesis in other diseases. Importantly, these genetic insights might also be of important clinical relevance for the use of anti-angiogenic strategies in cancer or macular degeneration. PMID:19210754

  20. Gut indigenous microbiota and epigenetics

    PubMed Central

    Shenderov, Boris Arkadievich

    2012-01-01

    This review introduces and discusses data regarding fundamental and applied investigations in mammalian epigenomics and gut microbiota received over the last 10 years. Analysis of these data enabled us first to come to the conclusion that the multiple low-molecular-weight substances of indigenous gut microbiota origin should be considered one of the main endogenous factors actively participating in epigenomic mechanisms that are responsible for the mammalian genome reprograming and post-translated modifications. Gut microecological imbalance caused by various biogenic and abiogenic agents and factors can produce different epigenetic abnormalities and the onset and progression of metabolic diseases associated. The authors substantiate the necessity to create an international project ‘Human Gut Microbiota and Epigenomics’ that facilitates interdisciplinary collaborations among scientists and clinicians engaged in host microbial ecology, nutrition, metagenomics, epigenomics, and metabolomics investigations as well as in disease prevention and treatment. Some priority scientific and applied directions in the current omic technologies coupled with gnotobiological approaches are suggested that can open a new era in characterizing the role of the symbiotic microbiota small metabolic and signal molecules in the host epigenomics. Although the discussed subject is only at an early stage its validation can open novel approaches in drug discovery studies. PMID:23990811