Science.gov

Sample records for aberrant functional connectivity

  1. Functionally aberrant electrophysiological cortical connectivities in first episode medication-naive schizophrenics from three psychiatry centers

    PubMed Central

    Lehmann, Dietrich; Faber, Pascal L.; Pascual-Marqui, Roberto D.; Milz, Patricia; Herrmann, Werner M.; Koukkou, Martha; Saito, Naomi; Winterer, Georg; Kochi, Kieko

    2014-01-01

    Functional dissociation between brain processes is widely hypothesized to account for aberrations of thought and emotions in schizophrenic patients. The typically small groups of analyzed schizophrenic patients yielded different neurophysiological findings, probably because small patient groups are likely to comprise different schizophrenia subtypes. We analyzed multichannel eyes-closed resting EEG from three small groups of acutely ill, first episode productive schizophrenic patients before start of medication (from three centers: Bern N = 9; Osaka N = 9; Berlin N = 12) and their controls. Low resolution brain electromagnetic tomography (LORETA) was used to compute intracortical source model-based lagged functional connectivity not biased by volume conduction effects between 19 cortical regions of interest (ROIs). The connectivities were compared between controls and patients of each group. Conjunction analysis determined six aberrant cortical functional connectivities that were the same in the three patient groups. Four of these six concerned the facilitating EEG alpha-1 frequency activity; they were decreased in the patients. Another two of these six connectivities concerned the inhibiting EEG delta frequency activity; they were increased in the patients. The principal orientation of the six aberrant cortical functional connectivities was sagittal; five of them involved both hemispheres. In sum, activity in the posterior brain areas of preprocessing functions and the anterior brain areas of evaluation and behavior control functions were compromised by either decreased coupled activation or increased coupled inhibition, common across schizophrenia subtypes in the three patient groups. These results of the analyzed three independent groups of schizophrenics support the concept of functional dissociation. PMID:25191252

  2. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia.

    PubMed

    Wang, Xiangpeng; Zhang, Wenwen; Sun, Yujing; Hu, Min; Chen, Antao

    2016-12-01

    Aberrant functional interactions between several large-scale networks, especially the central executive network (CEN), the default mode network (DMN) and the salience network (SN), have been postulated as core pathophysiologic features of schizophrenia; however, the attributing factors of which remain unclear. The study employed resting-state fMRI with 77 participants (42 patients and 35 controls). We performed dynamic functional connectivity (DFC) and functional connectivity (FC) analyses to explore the connectivity patterns of these networks. Furthermore, we performed a structural equation model (SEM) analysis to explore the possible role of the SN in modulating network interactions. The results were as follows: (1) The inter-network connectivity showed decreased connectivity strength and increased time-varying instability in schizophrenia; (2) The SN manifested schizophrenic intra-network dysfunctions in both the FC and DFC patterns; (3) The connectivity properties of the SN were effective in discriminating controls from patients; (4) In patients, the dynamic intra-SN connectivity negatively predicted the inter-network FC, and this effect was mediated by intra-SN connectivity strength. These findings suggest that schizophrenia show systematic deficits in temporal stability of large-scale network connectivity. Furthermore, aberrant network interactions in schizophrenia could be attributed to instable intra-SN connectivity and the dysfunction of the SN may be an intrinsic biomarker of the disease.

  3. Resting-State Time-Varying Analysis Reveals Aberrant Variations of Functional Connectivity in Autism

    PubMed Central

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Zheng, Fang; Liu, Guangyao; Chen, Xuejiao; Zheng, Weihao

    2016-01-01

    Recently, studies based on time-varying functional connectivity have unveiled brain states diversity in some neuropsychiatric disorders, such as schizophrenia and major depressive disorder. However, time-varying functional connectivity analysis of resting-state functional Magnetic Resonance Imaging (fMRI) have been rarely performed on the Autism Spectrum Disorder (ASD). Hence, we performed time-varying connectivity analysis on resting-state fMRI data to investigate brain states mutation in ASD children. ASD showed an imbalance of connectivity state and aberrant ratio of connectivity with different strengths in the whole brain network, and decreased connectivity associated precuneus/posterior cingulate gyrus with medial prefrontal gyrus in default mode network. As compared to typical development children, weak relevance condition (the strength of a large number of connectivities in the state was less than means minus standard deviation of all connection strength) was maintained for a longer time between brain areas of ASD children, and ratios of weak connectivity in brain states varied dramatically in the ASD. In the ASD, the abnormal brain state might be related to repetitive behaviors and stereotypical interests, and macroscopically reflect disruption of gamma-aminobutyric acid at the cellular level. The detection of brain states based on time-varying functional connectivity analysis of resting-state fMRI might be conducive for diagnosis and early intervention of ASD before obvious clinical symptoms. PMID:27695408

  4. Resting-State Time-Varying Analysis Reveals Aberrant Variations of Functional Connectivity in Autism.

    PubMed

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Zheng, Fang; Liu, Guangyao; Chen, Xuejiao; Zheng, Weihao

    2016-01-01

    Recently, studies based on time-varying functional connectivity have unveiled brain states diversity in some neuropsychiatric disorders, such as schizophrenia and major depressive disorder. However, time-varying functional connectivity analysis of resting-state functional Magnetic Resonance Imaging (fMRI) have been rarely performed on the Autism Spectrum Disorder (ASD). Hence, we performed time-varying connectivity analysis on resting-state fMRI data to investigate brain states mutation in ASD children. ASD showed an imbalance of connectivity state and aberrant ratio of connectivity with different strengths in the whole brain network, and decreased connectivity associated precuneus/posterior cingulate gyrus with medial prefrontal gyrus in default mode network. As compared to typical development children, weak relevance condition (the strength of a large number of connectivities in the state was less than means minus standard deviation of all connection strength) was maintained for a longer time between brain areas of ASD children, and ratios of weak connectivity in brain states varied dramatically in the ASD. In the ASD, the abnormal brain state might be related to repetitive behaviors and stereotypical interests, and macroscopically reflect disruption of gamma-aminobutyric acid at the cellular level. The detection of brain states based on time-varying functional connectivity analysis of resting-state fMRI might be conducive for diagnosis and early intervention of ASD before obvious clinical symptoms.

  5. Aberrant Resting-State Functional Connectivity in the Salience Network of Adolescent Chronic Fatigue Syndrome

    PubMed Central

    Endestad, Tor; Melinder, Annika Maria D.; Øie, Merete Glenne; Sevenius, Andre; Bruun Wyller, Vegard

    2016-01-01

    Neural network investigations are currently absent in adolescent chronic fatigue syndrome (CFS). In this study, we examine whether the core intrinsic connectivity networks (ICNs) are altered in adolescent CFS patients. Eighteen adolescent patients with CFS and 18 aged matched healthy adolescent control subjects underwent resting-state functional magnetic resonance imaging (rfMRI). Data was analyzed using dual-regression independent components analysis, which is a data-driven approach for the identification of independent brain networks. Intrinsic connectivity was evaluated in the default mode network (DMN), salience network (SN), and central executive network (CEN). Associations between network characteristics and symptoms of CFS were also explored. Adolescent CFS patients displayed a significant decrease in SN functional connectivity to the right posterior insula compared to healthy comparison participants, which was related to fatigue symptoms. Additionally, there was an association between pain intensity and SN functional connectivity to the left middle insula and caudate that differed between adolescent patients and healthy comparison participants. Our findings of insula dysfunction and its association with fatigue severity and pain intensity in adolescent CFS demonstrate an aberration of the salience network which might play a role in CFS pathophysiology. PMID:27414048

  6. Normalization of aberrant resting state functional connectivity in fibromyalgia patients following a three month physical exercise therapy.

    PubMed

    Flodin, P; Martinsen, S; Mannerkorpi, K; Löfgren, M; Bileviciute-Ljungar, I; Kosek, E; Fransson, P

    2015-01-01

    Physical exercise is one of the most efficient interventions to mitigate chronic pain symptoms in fibromyalgia (FM). However, little is known about the neurophysiological mechanisms mediating these effects. In this study we investigated resting-state connectivity using functional magnetic resonance imaging (fMRI) before and after a 15 week standardized exercise program supervised by physical therapists. Our aim was to gain an understanding of how physical exercise influences previously shown aberrant patterns of intrinsic brain activity in FM. Fourteen FM patients and eleven healthy controls successfully completed the physical exercise treatment. We investigated post- versus pre-treatment changes of brain connectivity, as well as changes in clinical symptoms in the patient group. FM patients reported improvements in symptom severity. Although several brain regions showed a treatment-related change in connectivity, only the connectivity between the right anterior insula and the left primary sensorimotor area was significantly more affected by the physical exercise among the fibromyalgia patients compared to healthy controls. Our results suggest that previously observed aberrant intrinsic brain connectivity patterns in FM are partly normalized by the physical exercise therapy. However, none of the observed normalizations in intrinsic brain connectivity were significantly correlated with symptom changes. Further studies conducted in larger cohorts are warranted to investigate the precise relationship between improvements in fibromyalgia symptoms and changes in intrinsic brain activity.

  7. Aberrant long-range functional connectivity density in generalized tonic-clonic seizures.

    PubMed

    Zhu, Ling; Li, Yibo; Wang, Yifeng; Li, Rong; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2016-06-01

    Studies in generalized tonic-clonic seizures (GTCS) have reported both structural and functional alterations in the brain. However, changes in spontaneous neuronal functional organization in GTCS remain largely unknown.In this study, 70 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 70 age- and sex-matched healthy controls were recruited. Here, functional connectivity density (FCD) mapping, an ultrafast data-driven method based on functional magnetic resonance imaging (fMRI), was applied for the first time to investigate the changes of spontaneous functional brain activity caused by epilepsy.The results showed significantly decreased long-range FCD in the middle and inferior temporal, prefrontal, and inferior parietal cortices as well as increased long-range FCD in the cerebellum anterior lobe and sensorimotor areas. Negative correlation between duration of disease and reduced long-range FCD was found. In addition, most regions with reduced long-range FCD showed decreased resting-state functional connectivity (rsFC) within default mode network.Negative correlation between duration of disease and long-range FCD may reflect an adverse consequence eventually from original. Furthermore, the observed FCD and rsFC alterations have been speculated to be associated with the social-cognitive impairments as well as motor control. Our study provided novel evidences to look into neuro-pathophysiological mechanisms underlying GTCS.

  8. Aberrant regional neural fluctuations and functional connectivity in generalized anxiety disorder revealed by resting-state functional magnetic resonance imaging.

    PubMed

    Wang, Wei; Hou, Jingming; Qian, Shaowen; Liu, Kai; Li, Bo; Li, Min; Peng, Zhaohui; Xin, Kuolin; Sun, Gang

    2016-06-15

    The purpose of this study was to investigate the neural activity and functional connectivity in generalized anxiety disorder (GAD) during resting state, and how these alterations correlate to patients' symptoms. Twenty-eight GAD patients and 28 matched healthy controls underwent resting-state functional magnetic resonance (fMRI) scans. Amplitude of low-frequency fluctuation (ALFF) and seed-based resting-state functional connectivity (RSFC) were computed to explore regional activity and functional integration, and were compared between the two groups using the voxel-based two-sample t test. Pearson's correlation analyses were performed to examine the neural relationships with demographics and clinical symptoms scores. Compared to controls, GAD patients showed functional abnormalities: higher ALFF in the bilateral dorsomedial prefrontal cortex, bilateral dorsolateral prefrontal cortex and left precuneus/posterior cingulate cortex; lower connectivity in prefrontal gyrus; lower in prefrontal-limbic and cingulate RSFC and higher prefrontal-hippocampus RSFC were correlated with clinical symptoms severity, but these associations were unable to withstand correction for multiple testing. These findings may help facilitate further understanding of the potential neural substrate of GAD.

  9. Aberrant Functional Connectivity Architecture in Alzheimer's Disease and Mild Cognitive Impairment: A Whole-Brain, Data-Driven Analysis.

    PubMed

    Zhou, Bo; Yao, Hongxiang; Wang, Pan; Zhang, Zengqiang; Zhan, Yafeng; Ma, Jianhua; Xu, Kaibin; Wang, Luning; An, Ningyu; Liu, Yong; Zhang, Xi

    2015-01-01

    The purpose of our study was to investigate whether the whole-brain functional connectivity pattern exhibits disease severity-related alterations in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Resting-state functional magnetic resonance imaging data were acquired in 27 MCI subjects, 35 AD patients, and 27 age- and gender-matched subjects with normal cognition (NC). Interregional functional connectivity was assessed based on a predefined template which parcellated the brain into 90 regions. Altered whole-brain functional connectivity patterns were identified via connectivity comparisons between the AD and NC subjects. Finally, the relationship between functional connectivity strength and cognitive ability according to the mini-mental state examination (MMSE) was evaluated in the MCI and AD groups. Compared with the NC group, the AD group exhibited decreased functional connectivities throughout the brain. The most significantly affected regions included several important nodes of the default mode network and the temporal lobe. Moreover, changes in functional connectivity strength exhibited significant associations with disease severity-related alterations in the AD and MCI groups. The present study provides novel evidence and will facilitate meta-analysis of whole-brain analyses in AD and MCI, which will be critical to better understand the neural basis of AD.

  10. Aberrant Functional Connectivity of the Amygdala Complexes in PTSD during Conscious and Subconscious Processing of Trauma-Related Stimuli

    PubMed Central

    Rabellino, Daniela; Densmore, Maria; Frewen, Paul A.; Théberge, Jean; McKinnon, Margaret C.; Lanius, Ruth A.

    2016-01-01

    Post-traumatic stress disorder (PTSD) is characterized by altered functional connectivity of the amygdala complexes at rest. However, amygdala complex connectivity during conscious and subconscious threat processing remains to be elucidated. Here, we investigate specific connectivity of the centromedial amygdala (CMA) and basolateral amygdala (BLA) during conscious and subconscious processing of trauma-related words among individuals with PTSD (n = 26) as compared to non-trauma-exposed controls (n = 20). Psycho-physiological interaction analyses were performed using the right and left amygdala complexes as regions of interest during conscious and subconscious trauma word processing. These analyses revealed a differential, context-dependent responses by each amygdala seed during trauma processing in PTSD. Specifically, relative to controls, during subconscious processing, individuals with PTSD demonstrated increased connectivity of the CMA with the superior frontal gyrus, accompanied by a pattern of decreased connectivity between the BLA and the superior colliculus. During conscious processing, relative to controls, individuals with PTSD showed increased connectivity between the CMA and the pulvinar. These findings demonstrate alterations in amygdala subregion functional connectivity in PTSD and highlight the disruption of the innate alarm network during both conscious and subconscious trauma processing in this disorder. PMID:27631496

  11. Aberrant Brain Regional Homogeneity and Functional Connectivity in Middle-Aged T2DM Patients: A Resting-State Functional MRI Study

    PubMed Central

    Liu, Daihong; Duan, Shanshan; Zhang, Jiuquan; Zhou, Chaoyang; Liang, Minglong; Yin, Xuntao; Wei, Ping; Wang, Jian

    2016-01-01

    Type 2 diabetes mellitus (T2DM) has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo) and functional connectivity (FC) analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging (rs-fMRI) data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus (ACG) and lower ReHo in the right fusiform gyrus (FFG), right precentral gyrus (PreCG) and right medial orbit of the superior frontal gyrus (SFG). Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test (DST) forward scores revealed significant correlations with the ReHo values of the right PreCG (ρ = 0.527, p = 0.014) and FC between the right FFG and middle temporal gyrus (MTG; ρ = −0.437, p = 0.048). Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM

  12. Aberrant Orbitofrontal Connectivity in Marijuana Smoking Youths

    PubMed Central

    Lopez-Larson, Melissa Patricia; Rogowska, Jadwiga; Yurgelun-Todd, Deborah

    2015-01-01

    Introduction Orbitofrontal (OFC) circuits have been implicated in the pathophysiology of substance use disorders. The current study examined OFC functional connectivity differences in marijuana-using adolescents (MJ) and non-using healthy controls (HC). Methods Functional MRI resting-state data were obtained on a 3 Tesla MRI scanner on 31 HC and 43 heavy MJ smokers. Image analyses were performed between groups (MJ, HC) for the left and right OFC separately. Regression analyses between OFC functional connectivity and lifetime MJ use, age of first MJ use and impulsivity also were performed. Results Increased OFC functional connectivity to frontal and motor regions was observed in heavy MJ users compared to HC. Earlier age of first MJ use was associated with increased functional connectivity of the right OFC to motor regions. High lifetime MJ use was associated with increased OFC functional connectivity to posterior brain regions in MJ youth. Discussion Findings indicate atypical OFC functional connectivity patterns in attentional/executive, motor and reward networks in youths with heavy MJ use. These anomalies may be related to suboptimal decision making capacities and increased impulsivity. Results also suggest different OFC connectivity patterns may be present in adolescents with early onset of MJ use and high lifetime exposure to MJ. PMID:26296778

  13. Resting-State Magnetoencephalography Reveals Different Patterns of Aberrant Functional Connectivity in Combat-Related Mild Traumatic Brain Injury.

    PubMed

    Huang, Ming-Xiong; Harrington, Deborah L; Robb Swan, Ashley; Angeles Quinto, Annemarie; Nichols, Sharon; Drake, Angela; Song, Tao; Diwakar, Mithun; Huang, Charles W; Risbrough, Victoria B; Dale, Anders; Bartsch, Hauke; Matthews, Scott; Huang, Jeffrey W; Lee, Roland R; Baker, Dewleen G

    2017-04-01

    Blast mild traumatic brain injury (mTBI) is a leading cause of sustained impairment in military service members and veterans. However, the mechanism of persistent disability is not fully understood. The present study investigated disturbances in brain functioning in mTBI participants using a source-imaging-based approach to analyze functional connectivity (FC) from resting-state magnetoencephalography (rs-MEG). Study participants included 26 active-duty service members or veterans who had blast mTBI with persistent post-concussive symptoms, and 22 healthy control active-duty service members or veterans. The source time courses from regions of interest (ROIs) were used to compute ROI to whole-brain (ROI-global) FC for different frequency bands using two different measures: 1) time-lagged cross-correlation and 2) phase-lock synchrony. Compared with the controls, blast mTBI participants showed increased ROI-global FC in beta, gamma, and low-frequency bands, but not in the alpha band. Sources of abnormally increased FC included the: 1) prefrontal cortex (right ventromedial prefrontal cortex [vmPFC], right rostral anterior cingulate cortex [rACC]), and left ventrolateral and dorsolateral prefrontal cortex; 2) medial temporal lobe (bilateral parahippocampus, hippocampus, and amygdala); and 3) right putamen and cerebellum. In contrast, the blast mTBI group also showed decreased FC of the right frontal pole. Group differences were highly consistent across the two different FC measures. FC of the left ventrolateral prefrontal cortex correlated with executive functioning and processing speed in mTBI participants. Altogether, our findings of increased and decreased regionalpatterns of FC suggest that disturbances in intrinsic brain connectivity may be the result of multiple mechanisms, and are associated with cognitive sequelae of the injury.

  14. Aberrant Functional Connectivity between the Amygdala and the Temporal Pole in Drug-Free Generalized Anxiety Disorder

    PubMed Central

    Li, Wei; Cui, Huiru; Zhu, Zhipei; Kong, Li; Guo, Qian; Zhu, Yikang; Hu, Qiang; Zhang, Lanlan; Li, Hui; Li, Qingwei; Jiang, Jiangling; Meyers, Jordan; Li, Jianqi; Wang, Jijun; Yang, Zhi; Li, Chunbo

    2016-01-01

    The amygdala and the dorsolateral prefrontal cortex (DLPFC) play important roles in “emotion dysregulation,” which has a profound impact on etiologic research of generalized anxiety disorder (GAD). The present study analyzed both eyes-open and eyes-closed resting state functional MRI (rs-fMRI) of 43 subjects (21 GAD patients with medicine free and 22 matched healthy controls). The amygdala and the DLPFC were defined as regions of interest (ROI) to analyze functional connectivity (FC) in GAD patients compared with healthy controls. The main findings revealed GAD patients had increased FC between the amygdala and the temporal pole compared to healthy controls, which was found in both eyes-open and eyes-closed rs-fMRI. And altered FC between the ROIs and brain regions that mainly belonged to the default mode network (DMN) were found. These findings suggest that the abnormal FC between the amygdala and the temporal pole may contribute to the pathophysiology of GAD, and provide insights into the current understanding of the emotion dysregulation of anxiety disorders. PMID:27867352

  15. Aberrant Functional Connectivity between the Amygdala and the Temporal Pole in Drug-Free Generalized Anxiety Disorder.

    PubMed

    Li, Wei; Cui, Huiru; Zhu, Zhipei; Kong, Li; Guo, Qian; Zhu, Yikang; Hu, Qiang; Zhang, Lanlan; Li, Hui; Li, Qingwei; Jiang, Jiangling; Meyers, Jordan; Li, Jianqi; Wang, Jijun; Yang, Zhi; Li, Chunbo

    2016-01-01

    The amygdala and the dorsolateral prefrontal cortex (DLPFC) play important roles in "emotion dysregulation," which has a profound impact on etiologic research of generalized anxiety disorder (GAD). The present study analyzed both eyes-open and eyes-closed resting state functional MRI (rs-fMRI) of 43 subjects (21 GAD patients with medicine free and 22 matched healthy controls). The amygdala and the DLPFC were defined as regions of interest (ROI) to analyze functional connectivity (FC) in GAD patients compared with healthy controls. The main findings revealed GAD patients had increased FC between the amygdala and the temporal pole compared to healthy controls, which was found in both eyes-open and eyes-closed rs-fMRI. And altered FC between the ROIs and brain regions that mainly belonged to the default mode network (DMN) were found. These findings suggest that the abnormal FC between the amygdala and the temporal pole may contribute to the pathophysiology of GAD, and provide insights into the current understanding of the emotion dysregulation of anxiety disorders.

  16. Regional Specificity of Aberrant Thalamocortical Connectivity in Autism

    PubMed Central

    Nair, Aarti; Carper, Ruth A.; Abbott, Angela E.; Chen, Colleen P.; Solders, Seraphina; Nakutin, Sarah; Datko, Michael C.; Fishman, Inna; Müller, Ralph-Axel

    2016-01-01

    Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7–17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions. PMID:26493162

  17. Wave aberration function and its definition

    NASA Astrophysics Data System (ADS)

    Zverev, V. A.; Rytova, E. S.; Timoshchuk, I. N.

    2011-06-01

    A definition of a wave aberration as a phase shift upon composition of light waves in the image of a point is given using the concept of point eikonal. An expression that determines the total differential of a wave aberration function is obtained and the condition of its integrability is determined. The sequence of the wave aberration function definition at the known functions of the meridional and sagittal components of lateral aberration is presented.

  18. Aberrant Effective Connectivity in Schizophrenia Patients during Appetitive Conditioning

    PubMed Central

    Diaconescu, Andreea Oliviana; Jensen, Jimmy; Wang, Hongye; Willeit, Matthäus; Menon, Mahesh; Kapur, Shitij; McIntosh, Anthony R.

    2010-01-01

    It has recently been suggested that schizophrenia involves dysfunction in brain connectivity at a neural level, and a dysfunction in reward processing at a behavioral level. The purpose of the present study was to link these two levels of analyses by examining effective connectivity patterns between brain regions mediating reward learning in patients with schizophrenia and healthy, age-matched controls. To this aim, we used functional magnetic resonance imaging and galvanic skin recordings (GSR) while patients and controls performed an appetitive conditioning experiment with visual cues as the conditioned (CS) stimuli, and monetary reward as the appetitive unconditioned stimulus (US). Based on explicit stimulus contingency ratings, conditioning occurred in both groups; however, based on implicit, physiological GSR measures, patients failed to show differences between CS+ and CS− conditions. Healthy controls exhibited increased blood-oxygen-level dependent (BOLD) activity across striatal, hippocampal, and prefrontal regions and increased effective connectivity from the ventral striatum to the orbitofrontal cortex (OFC BA 11) in the CS+ compared to the CS− condition. Compared to controls, patients showed increased BOLD activity across a similar network of brain regions, and increased effective connectivity from the striatum to hippocampus and prefrontal regions in the CS− compared to the CS+ condition. The findings of increased BOLD activity and effective connectivity in response to the CS− in patients with schizophrenia offer insight into the aberrant assignment of motivational salience to non-reinforced stimuli during conditioning that is thought to accompany schizophrenia. PMID:21267430

  19. Aberrant network connectivity during error processing in patients with schizophrenia

    PubMed Central

    Voegler, Rolf; Becker, Michael P.I.; Nitsch, Alexander; Miltner, Wolfgang H.R.; Straube, Thomas

    2016-01-01

    Background Neuroimaging methods have pointed to deficits in the interaction of large-scale brain networks in patients with schizophrenia. Abnormal connectivity of the right anterior insula (AI), a central hub of the salience network, is frequently reported and may underlie patients’ deficits in adaptive salience processing and cognitive control. While most previous studies used resting state approaches, we examined right AI interactions in a task-based fMRI study. Methods Patients with schizophrenia and healthy controls performed an adaptive version of the Eriksen Flanker task that was specifically designed to ensure a comparable number of errors between groups. Results We included 27 patients with schizophrenia and 27 healthy controls in our study. The between-groups comparison replicated the classic finding of reduced activation in the midcingulate cortex (MCC) in patients with schizophrenia during the commission of errors while controlling for confounding factors, such as task performance and error frequency, which have been neglected in many previous studies. Subsequent psychophysiological interaction analysis revealed aberrant functional connectivity (FC) between the right AI and regions in the inferior frontal gyrus and temporoparietal junction. Additionally, FC between the MCC and the dorsolateral prefrontal cortex was reduced. Limitations As we examined a sample of medicated patients, effects of antipsychotic medication may have influenced our results. Conclusion Overall, it appears that schizophrenia is associated with impairment of networks associated with detection of errors, refocusing of attention, superordinate guiding of cognitive control and their respective coordination. PMID:26836622

  20. Aberrant functioning of the putamen links delusions, antipsychotic drug dose, and compromised connectivity in first episode psychosis--Preliminary fMRI findings.

    PubMed

    Raij, Tuukka T; Mäntylä, Teemu; Kieseppä, Tuula; Suvisaari, Jaana

    2015-08-30

    The dopamine theory proposes the relationship of delusions to aberrant signaling in striatal circuitries that can be normalized with dopamine D2 receptor-blocking drugs. Localization of such circuitries, as well as their upstream and downstream signaling, remains poorly known. We collected functional magnetic resonance images from first-episode psychosis patients and controls during an audiovisual movie. Final analyses included 20 patients and 20 controls; another sample of 10 patients and 10 controls was used to calculate a comparison signal-time course. We identified putamen circuitry in which the signal aberrance (poor correlation with the comparison signal time course) was predicted by the dopamine theory, being greater in patients than controls; correlating positively with delusion scores; and correlating negatively with antipsychotic-equivalent dosage. In Granger causality analysis, patients showed a compromised contribution of the cortical salience network to the putamen and compromised contribution of the putamen to the default mode network. Results were corrected for multiple comparisons at the cluster level with primary voxel-wise threshold p < 0.005 for the salience network contribution, but liberal primary threshold p < 0.05 was used in other group comparisons. If replicated in larger studies, these findings may help unify and extend current hypotheses on dopaminergic dysfunction, salience processing and pathogenesis of delusions.

  1. Aberrant pulvinar effective connectivity in generalized social anxiety disorder

    PubMed Central

    Tadayonnejad, Reza; Klumpp, Heide; Ajilore, Olusola; Leow, Alex; Phan, Kinh Luan

    2016-01-01

    Abstract Recent neuroimaging findings in general social anxiety disorder (gSAD) have extended our understanding of the neural mechanisms of gSAD beyond an amygdala-centric fear-based hyperactivity model to include other brain regions and networks relevant to salient cues. In particular, higher order areas compromising visual networks that process emotional and social information have been implicated. The pulvinar anchors this network and is a key regulatory node that mediates complex sensory inputs and the integration between limbic and frontal brain systems. However, the role of the pulvinar and specifically alteration of its effective connectivity with the rest of the brain has not been examined in the pathophysiology of gSAD, a disorder characterized by aberrant socio-emotional processing. The main aim of this study was to examine the pulvinar network effective connectivity in gSAD. In this study, we recruited 21 individuals with gSAD and 19 demographically matched healthy controls (HC), who performed an emotional face processing task while brain activity was recorded using functional magnetic resonance imaging (fMRI). To examine pulvinar-based network dynamics, Granger causality (GC) based effective connectivity (EC) analysis was applied on fMRI data to compare gSAD and HC. The EC analysis revealed heightened casual influential dynamics between pulvinar in higher order visual and frontal regions in gSAD. In conclusion, these preliminary data suggest a novel network-based cortico-pulvino-cortical neural mechanism in the pathophysiology of gSAD. PMID:27828859

  2. Functional Analysis and Treatment of Aberrant Behavior.

    ERIC Educational Resources Information Center

    Mace, F. Charles; And Others

    1991-01-01

    This article reviews general classes of variables which help to maintain aberrant behavior including attention seeking, sensory and perceptual consequences, and access to materials or activities. Suggestions for a methodology providing a comprehensive functional analysis are offered which include descriptive analysis, hypothesis forming,…

  3. Intrinsic Functional Connectivity in Salience and Default Mode Networks and Aberrant Social Processes in Youth at Ultra-High Risk for Psychosis.

    PubMed

    Pelletier-Baldelli, Andrea; Bernard, Jessica A; Mittal, Vijay A

    2015-01-01

    Social processes are key to navigating the world, and investigating their underlying mechanisms and cognitive architecture can aid in understanding disease states such as schizophrenia, where social processes are highly impacted. Evidence suggests that social processes are impaired in individuals at ultra high-risk for the development of psychosis (UHR). Understanding these phenomena in UHR youth may clarify disease etiology and social processes in a period that is characterized by significantly fewer confounds than schizophrenia. Furthermore, understanding social processing deficits in this population will help explain these processes in healthy individuals. The current study examined resting state connectivity of the salience (SN) and default mode networks (DMN) in association with facial emotion recognition (FER), an integral aspect of social processes, as well as broader social functioning (SF) in UHR individuals and healthy controls. Consistent with the existing literature, UHR youth were impaired in FER and SF when compared with controls. In the UHR group, we found increased connectivity between the SN and the medial prefrontal cortex, an area of the DMN relative to controls. In UHR youth, the DMN exhibited both positive and negative correlations with the somatosensory cortex/cerebellum and precuneus, respectively, which was linked with better FER performance. For SF, results showed that sensory processing links with the SN might be important in allowing for better SF for both groups, but especially in controls where sensory processing is likely to be unimpaired. These findings clarify how social processing deficits may manifest in psychosis, and underscore the importance of SN and DMN connectivity for social processing more generally.

  4. Aberrant functional brain connectome in people with antisocial personality disorder

    PubMed Central

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016–0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  5. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    PubMed

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients.

  6. Aberrant connectivity of areas for decoding degraded speech in patients with auditory verbal hallucinations.

    PubMed

    Clos, Mareike; Diederen, Kelly M J; Meijering, Anne Lotte; Sommer, Iris E; Eickhoff, Simon B

    2014-03-01

    Auditory verbal hallucinations (AVH) are a hallmark of psychotic experience. Various mechanisms including misattribution of inner speech and imbalance between bottom-up and top-down factors in auditory perception potentially due to aberrant connectivity between frontal and temporo-parietal areas have been suggested to underlie AVH. Experimental evidence for disturbed connectivity of networks sustaining auditory-verbal processing is, however, sparse. We compared functional resting-state connectivity in 49 psychotic patients with frequent AVH and 49 matched controls. The analysis was seeded from the left middle temporal gyrus (MTG), thalamus, angular gyrus (AG) and inferior frontal gyrus (IFG) as these regions are implicated in extracting meaning from impoverished speech-like sounds. Aberrant connectivity was found for all seeds. Decreased connectivity was observed between the left MTG and its right homotope, between the left AG and the surrounding inferior parietal cortex (IPC) and the left inferior temporal gyrus, between the left thalamus and the right cerebellum, as well as between the left IFG and left IPC, and dorsolateral and ventrolateral prefrontal cortex (DLPFC/VLPFC). Increased connectivity was observed between the left IFG and the supplementary motor area (SMA) and the left insula and between the left thalamus and the left fusiform gyrus/hippocampus. The predisposition to experience AVH might result from decoupling between the speech production system (IFG, insula and SMA) and the self-monitoring system (DLPFC, VLPFC, IPC) leading to misattribution of inner speech. Furthermore, decreased connectivity between nodes involved in speech processing (AG, MTG) and other regions implicated in auditory processing might reflect aberrant top-down influences in AVH.

  7. Aberrant topology of striatum's connectivity is associated with the number of episodes in depression.

    PubMed

    Meng, Chun; Brandl, Felix; Tahmasian, Masoud; Shao, Junming; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Bäuml, Josef; Förstl, Hans; Zimmer, Claus; Wohlschläger, Afra M; Riedl, Valentin; Sorg, Christian

    2014-02-01

    In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter

  8. Brain connectivity aberrations in anabolic-androgenic steroid users.

    PubMed

    Westlye, Lars T; Kaufmann, Tobias; Alnæs, Dag; Hullstein, Ingunn R; Bjørnebekk, Astrid

    2017-01-01

    Sustained anabolic-androgenic steroid (AAS) use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI) data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E) ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN) and between the dorsal attention network (DAN) and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG) and the anterior cingulate cortex (ACC), with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off).

  9. Functional connectivity hubs of the mouse brain.

    PubMed

    Liska, Adam; Galbusera, Alberto; Schwarz, Adam J; Gozzi, Alessandro

    2015-07-15

    Recent advances in functional connectivity methods have made it possible to identify brain hubs - a set of highly connected regions serving as integrators of distributed neuronal activity. The integrative role of hub nodes makes these areas points of high vulnerability to dysfunction in brain disorders, and abnormal hub connectivity profiles have been described for several neuropsychiatric disorders. The identification of analogous functional connectivity hubs in preclinical species like the mouse may provide critical insight into the elusive biological underpinnings of these connectional alterations. To spatially locate functional connectivity hubs in the mouse brain, here we applied a fully-weighted network analysis to map whole-brain intrinsic functional connectivity (i.e., the functional connectome) at a high-resolution voxel-scale. Analysis of a large resting-state functional magnetic resonance imaging (rsfMRI) dataset revealed the presence of six distinct functional modules related to known large-scale functional partitions of the brain, including a default-mode network (DMN). Consistent with human studies, highly-connected functional hubs were identified in several sub-regions of the DMN, including the anterior and posterior cingulate and prefrontal cortices, in the thalamus, and in small foci within well-known integrative cortical structures such as the insular and temporal association cortices. According to their integrative role, the identified hubs exhibited mutual preferential interconnections. These findings highlight the presence of evolutionarily-conserved, mutually-interconnected functional hubs in the mouse brain, and may guide future investigations of the biological foundations of aberrant rsfMRI hub connectivity associated with brain pathological states.

  10. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism.

    PubMed

    Pineda, J A; Juavinett, A; Datko, M

    2012-12-01

    Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies have been reported to ameliorate specific symptoms for some individuals, there is at present no cure for the condition. Nonetheless, among the many incompatible observations about aspects of the development, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by widespread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise compromised, may complicate healthy synchronization and communication among and within different neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life. It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connectivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in individuals with ASD. However, the nature of the brain's experience-dependent structural plasticity suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on operant conditioning that results in self-regulation of brain electrical oscillations, has shown promise in addressing marked abnormalities in functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant connections within and between neural circuits. NF exploits the brain's plasticity to normalize aberrant

  11. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  12. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  13. MATLAB toolbox for functional connectivity.

    PubMed

    Zhou, Dongli; Thompson, Wesley K; Siegle, Greg

    2009-10-01

    The term "functional connectivity" is used to denote correlations in activation among spatially-distinct brain regions, either in a resting state or when processing external stimuli. Functional connectivity has been extensively evaluated with several functional neuroimaging methods, particularly PET and fMRI. Yet these relationships have been quantified using very different measures and the extent to which they index the same constructs is unclear. We have implemented a variety of these functional connectivity measures in a new freely available MATLAB toolbox. These measures are categorized into two groups: whole time-series and trial-based approaches. We evaluate these measures via simulations with different patterns of functional connectivity and provide recommendations for their use. We also apply these measures to a previously published fMRI data set (Siegle, G.J., Thompson, W., Carter, C.S., Steinhauer, S.R., Thase, M.E., 2007. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol. Psychiatry 610 (2), 198-209) in which activity in dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (DLPFC) was evaluated in 32 control subjects during a digit sorting task. Though all implemented measures demonstrate functional connectivity between dACC and DLPFC activity during event-related tasks, different participants appeared to display qualitatively different relationships.

  14. Aberrant corticostriatal functional circuits in adolescents with Internet addiction disorder.

    PubMed

    Lin, Fuchun; Zhou, Yan; Du, Yasong; Zhao, Zhimin; Qin, Lindi; Xu, Jianrong; Lei, Hao

    2015-01-01

    Abnormal structure and function in the striatum and prefrontal cortex (PFC) have been revealed in Internet addiction disorder (IAD). However, little is known about alterations of corticostriatal functional circuits in IAD. The aim of this study was to investigate the integrity of corticostriatal functional circuits and their relations to neuropsychological measures in IAD by resting-state functional connectivity (FC). Fourteen IAD adolescents and 15 healthy controls underwent resting-state fMRI scans. Using six predefined bilateral striatal regions-of-interest, voxel-wise correlation maps were computed and compared between groups. Relationships between alterations of corticostriatal connectivity and clinical measurements were examined in the IAD group. Compared to controls, IAD subjects exhibited reduced connectivity between the inferior ventral striatum and bilateral caudate head, subgenual anterior cingulate cortex (ACC), and posterior cingulate cortex, and between the superior ventral striatum and bilateral dorsal/rostral ACC, ventral anterior thalamus, and putamen/pallidum/insula/inferior frontal gyrus (IFG), and between the dorsal caudate and dorsal/rostral ACC, thalamus, and IFG, and between the left ventral rostral putamen and right IFG. IAD subjects also showed increased connectivity between the left dorsal caudal putamen and bilateral caudal cigulate motor area. Moreover, altered cotricostriatal functional circuits were significantly correlated with neuropsychological measures. This study directly provides evidence that IAD is associated with alterations of corticostriatal functional circuits involved in the affective and motivation processing, and cognitive control. These findings emphasize that functional connections in the corticostriatal circuits are modulated by affective/motivational/cognitive states and further suggest that IAD may have abnormalities of such modulation in this network.

  15. Aberrant corticostriatal functional circuits in adolescents with Internet addiction disorder

    PubMed Central

    Lin, Fuchun; Zhou, Yan; Du, Yasong; Zhao, Zhimin; Qin, Lindi; Xu, Jianrong; Lei, Hao

    2015-01-01

    Abnormal structure and function in the striatum and prefrontal cortex (PFC) have been revealed in Internet addiction disorder (IAD). However, little is known about alterations of corticostriatal functional circuits in IAD. The aim of this study was to investigate the integrity of corticostriatal functional circuits and their relations to neuropsychological measures in IAD by resting-state functional connectivity (FC). Fourteen IAD adolescents and 15 healthy controls underwent resting-state fMRI scans. Using six predefined bilateral striatal regions-of-interest, voxel-wise correlation maps were computed and compared between groups. Relationships between alterations of corticostriatal connectivity and clinical measurements were examined in the IAD group. Compared to controls, IAD subjects exhibited reduced connectivity between the inferior ventral striatum and bilateral caudate head, subgenual anterior cingulate cortex (ACC), and posterior cingulate cortex, and between the superior ventral striatum and bilateral dorsal/rostral ACC, ventral anterior thalamus, and putamen/pallidum/insula/inferior frontal gyrus (IFG), and between the dorsal caudate and dorsal/rostral ACC, thalamus, and IFG, and between the left ventral rostral putamen and right IFG. IAD subjects also showed increased connectivity between the left dorsal caudal putamen and bilateral caudal cigulate motor area. Moreover, altered cotricostriatal functional circuits were significantly correlated with neuropsychological measures. This study directly provides evidence that IAD is associated with alterations of corticostriatal functional circuits involved in the affective and motivation processing, and cognitive control. These findings emphasize that functional connections in the corticostriatal circuits are modulated by affective/motivational/cognitive states and further suggest that IAD may have abnormalities of such modulation in this network. PMID:26136677

  16. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  17. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Fu, Yuegang; Liu, Zhiying; Zhang, Lei; Wang, Jiake; Zheng, Yang; Li, Yahong

    2017-03-01

    The polarization aberrations of a complex optical system with multi-element lens have been investigated using a 3D polarization aberration function. The 3D polarization ray-tracing matrix has been combined with the optical path difference to obtain a 3D polarization aberration function, which avoids the need for a complicated phase unwrapping process. The polarization aberrations of a microscope objective have been analyzed to include, the distributions of 3D polarization aberration functions, diattenuation aberration, retardance aberration, and polarization-dependent intensity on the exit pupil. Further, the aberrations created by the field of view and the coating on the distribution rules of 3D polarization aberration functions are discussed in detail. Finally a novel appropriate field of view and wavelength correction is proposed for a polarization aberration function which optimizes the image quality of a multi-element optical system.

  18. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Sarkar, S.; Pandejee, Grishma Mehta; Henderson, J. A.

    2014-07-01

    Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.

  19. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder

    PubMed Central

    Manoliu, Andrei; Meng, Chun; Brandl, Felix; Doll, Anselm; Tahmasian, Masoud; Scherr, Martin; Schwerthöffer, Dirk; Zimmer, Claus; Förstl, Hans; Bäuml, Josef; Riedl, Valentin; Wohlschläger, Afra M.; Sorg, Christian

    2014-01-01

    Major depressive disorder (MDD) is characterized by altered intrinsic functional connectivity within (intra-iFC) intrinsic connectivity networks (ICNs), such as the Default Mode- (DMN), Salience- (SN) and Central Executive Network (CEN). It has been proposed that aberrant switching between DMN-mediated self-referential and CEN-mediated goal-directed cognitive processes might contribute to MDD, possibly explaining patients' difficulties to disengage the processing of self-focused, often negatively biased thoughts. Recently, it has been shown that the right anterior insula (rAI) within the SN is modulating DMN/CEN interactions. Since structural and functional alterations within the AI have been frequently reported in MDD, we hypothesized that aberrant intra-iFC in the SN's rAI is associated with both aberrant iFC between DMN and CEN (inter-iFC) and severity of symptoms in MDD. Twenty-five patients with MDD and 25 healthy controls were assessed using resting-state fMRI (rs-fMRI) and psychometric examination. High-model-order independent component analysis (ICA) of rs-fMRI data was performed to identify ICNs including DMN, SN, and CEN. Intra-iFC within and inter-iFC between distinct subsystems of the DMN, SN, and CEN were calculated, compared between groups and correlated with the severity of symptoms. Patients with MDD showed (1) decreased intra-iFC within the SN's rAI, (2) decreased inter-iFC between the DMN and CEN, and (3) increased inter-iFC between the SN and DMN. Moreover, decreased intra-iFC in the SN's rAI was associated with severity of symptoms and aberrant DMN/CEN interactions, with the latter losing significance after correction for multiple comparisons. Our results provide evidence for a relationship between aberrant intra-iFC in the salience network's rAI, aberrant DMN/CEN interactions and severity of symptoms, suggesting a link between aberrant salience mapping, abnormal coordination of DMN/CEN based cognitive processes and psychopathology in MDD. PMID

  20. Abnormal Profiles of Local Functional Connectivity Proximal to Focal Cortical Dysplasias

    PubMed Central

    Besseling, René M. H.; Jansen, Jacobus F. A.; de Louw, Anton J. A.; Vlooswijk, Mariëlle C. G.; Hoeberigs, M. Christianne; Aldenkamp, Albert P.; Backes, Walter H.

    2016-01-01

    Introduction Focal cortical dysplasia (FCD) is a congenital malformation of cortical development that often leads to medically refractory epilepsy. Focal resection can be an effective treatment, but is challenging as the surgically relevant abnormality may exceed the MR-visible lesion. The aim of the current study is to develop methodology to characterize the profile of functional connectivity around FCDs using resting-state functional MRI and in the individual patient. The detection of aberrant connectivity may provide a means to more completely delineate the clinically relevant lesion. Materials and Methods Fifteen FCD patients (age, mean±SD: 31±11 years; 11 males) and 16 matched healthy controls (35±9 years; 7 males) underwent structural and functional imaging at 3 Tesla. The cortical surface was reconstructed from the T1-weighted scan and the registered functional MRI data was spatially normalized to a common anatomical standard space employing the gyral pattern. Seed-based functional connectivity was determined in all subjects for all dysplasia locations. A single patient was excluded based on an aberrant FCD seed time series. Functional connectivity as a function of geodesic distance (along the cortical surface) was compared between the individual patients and the homotopic normative connectivity profiles derived from the controls. Results In 12/14 patients, aberrant profiles of functional connectivity were found, which demonstrated both hyper- and hypoconnectivity as well as combinations. Abnormal functional connectivity was typically found (also) beyond the lesion visible on structural MRI, while functional connectivity profiles not related to a lesion appeared normal in patients. Conclusion This novel functional MRI technique has potential for delineating functionally aberrant from normal cortex beyond the structural lesion in FCD, which remains to be confirmed in future research. PMID:27861502

  1. Ectopic mineralization disorders of the extracellular matrix of connective tissue: molecular genetics and pathomechanisms of aberrant calcification.

    PubMed

    Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2014-01-01

    Ectopic mineralization of connective tissues is a complex process leading to deposition of calcium phosphate complexes in the extracellular matrix, particularly affecting the skin and the arterial blood vessels and common in age-associated disorders. A number of initiating and contributing metabolic and environmental factors are linked to aberrant mineralization in these diseases, making the identification of precise pathomechanistic pathways exceedingly difficult. However, there has been significant recent progress in understanding the ectopic mineralization processes through study of heritable single-gene disorders, which have allowed identification of discrete pathways and contributing factors leading to aberrant connective tissue mineralization. These studies have provided support for the concept of an intricate mineralization/anti-mineralization network present in peripheral connective tissues, providing a perspective to development of pharmacologic approaches to limit the phenotypic consequences of ectopic mineralization. This overview summarizes the current knowledge of ectopic heritable mineralization disorders, with accompanying animal models, focusing on pseudoxanthoma elasticum and generalized arterial calcification of infancy, two autosomal recessive diseases manifesting with extensive connective tissue mineralization in the skin and the cardiovascular system.

  2. Random geometric graphs with general connection functions

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  3. Detection of aberrant hippocampal mossy fiber connections: Ex vivo mesoscale diffusion MRI and microtractography with histological validation in a patient with uncontrolled temporal lobe epilepsy

    PubMed Central

    Hitchens, T. Kevin; Liu, Jessie R.; Richardson, R. Mark

    2015-01-01

    Abstract Understanding the neurobiology and functional connectivity of hippocampal structures is essential for improving the treatment of mesial temporal lobe epilepsy. At the macroscale, in vivo MRI often reveals hippocampal atrophy and decreased fractional anisotropy, whereas at the microscopic scale, there frequently is evidence of neuronal loss and gliosis. Mossy fiber sprouting in the dentate gyrus (DG), with evidence of glutamatergic synapses in the stratum moleculare (SM) putatively originating from granule cell neurons, may also be observed. This aberrant connection between the DG and SM could produce a reverberant excitatory circuit. However, this hypothesis cannot easily be evaluated using macroscopic or microscopic techniques. We here demonstrate that the ex vivo mesoscopic MRI of surgically excised hippocampi can bridge the explanatory and analytical gap between the macro‐ and microscopic scale. Specifically, diffusion‐ and T2‐weighted MRI can be integrated to visualize a cytoarchitecture that is akin to immunohistochemistry. An appropriate spatial resolution to discern individual cell layers can then be established. Processing of diffusion tensor images using tractography detects extra‐ and intrahippocampal connections, hence providing a unique systems view of the hippocampus and its connected regions. Here, this approach suggests that there is indeed an aberrant connection between the DG and SM, supporting the sprouting hypothesis of a reverberant excitatory network. Mesoscopic ex vivo MR imaging hence provides an exciting new avenue to study hippocampi from treatment‐resistant patients and allows exploration of existing hypotheses, as well as the development of new treatment strategies based on these novel insights. Hum Brain Mapp 37:780–795, 2016. © 2015 Wiley Periodicals, Inc. PMID:26611565

  4. Improving Synchronization and Functional Connectivity in Autism Spectrum Disorders Through Plasticity-Induced Rehabilitation

    DTIC Science & Technology

    2013-08-01

    suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on...functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant...training holds promise to support current treatments for this complex disorder. The proposed hypothesis specifically states that neurofeedback -induced

  5. Changes in Connectivity after Visual Cortical Brain Damage Underlie Altered Visual Function

    ERIC Educational Resources Information Center

    Bridge, Holly; Thomas, Owen; Jbabdi, Saad; Cowey, Alan

    2008-01-01

    The full extent of the brain's ability to compensate for damage or changed experience is yet to be established. One question particularly important for evaluating and understanding rehabilitation following brain damage is whether recovery involves new and aberrant neural connections or whether any change in function is due to the functional…

  6. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  7. The role of anxiety in stuttering: Evidence from functional connectivity.

    PubMed

    Yang, Yang; Jia, Fanlu; Siok, Wai Ting; Tan, Li Hai

    2017-03-27

    Persistent developmental stuttering is a neurologically based speech disorder associated with cognitive-linguistic, motor and emotional abnormalities. Previous studies investigating the relationship between anxiety and stuttering have yielded mixed results, but it has not yet been examined whether anxiety influences brain activity underlying stuttering. Here, using functional magnetic resonance imaging (fMRI), we investigated the functional connectivity associated with state anxiety in a syllable repetition task, and trait anxiety during rest in adults who stutter (N=19) and fluent controls (N=19). During the speech task, people who stutter (PWS) showed increased functional connectivity of the right amygdala with the prefrontal gyrus (the left ventromedial frontal gyrus and right middle frontal gyrus) and the left insula compared to controls. During rest, PWS showed stronger functional connectivity between the right hippocampus and the left orbital frontal gyrus, and between the left hippocampus and left motor areas than controls. Taken together, our results suggest aberrant bottom-up and/or top-down interactions for anxiety regulation, which might be responsible for the higher level of state anxiety during speech and for the anxiety-prone trait in PWS. To our knowledge, this is the first study to examine the neural underpinnings of anxiety in PWS, thus yielding new insight into the causes of stuttering which might aid strategies for the diagnosis and treatment of stuttering.

  8. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  9. Deep dreaming, aberrant salience and psychosis: Connecting the dots by artificial neural networks.

    PubMed

    Keshavan, Matcheri S; Sudarshan, Mukund

    2017-01-24

    Why some individuals, when presented with unstructured sensory inputs, develop altered perceptions not based in reality, is not well understood. Machine learning approaches can potentially help us understand how the brain normally interprets sensory inputs. Artificial neural networks (ANN) progressively extract higher and higher-level features of sensory input and identify the nature of an object based on a priori information. However, some ANNs which use algorithms such as the "deep-dreaming" developed by Google, allow the network to over-emphasize some objects it "thinks" it recognizes in those areas, and iteratively enhance such outputs leading to representations that appear farther and farther from "reality". We suggest that such "deep dreaming" ANNs may model aberrant salience, a mechanism suggested for pathogenesis of psychosis. Such models can generate testable predictions for psychosis.

  10. Development of hippocampal functional connectivity during childhood.

    PubMed

    Blankenship, Sarah L; Redcay, Elizabeth; Dougherty, Lea R; Riggins, Tracy

    2017-01-01

    The hippocampus is a medial temporal lobe structure involved in memory, spatial navigation, and regulation of stress responses, making it a structure critical to daily functioning. However, little is known about the functional development of the hippocampus during childhood due to methodological challenges of acquiring neuroimaging data in young participants. This is a critical gap given evidence that hippocampally-mediated behaviors (e.g., episodic memory) undergo rapid and important changes during childhood. To address this gap, the present investigation collected resting-state fMRI scans in 97, 4- to 10-year-old children. Whole brain seed-based analyses of anterior, posterior, and whole hippocampal connectivity were performed to identify regions demonstrating stable (i.e., age-controlled) connectivity profiles as well as age-related differences in connectivity. Results reveal that the hippocampus is a highly connected structure of the brain and that most of the major components of the adult network are evident during childhood, including both unique and overlapping connectivity between anterior and posterior regions. Despite widespread age-controlled connectivity, the strength of hippocampal connectivity with regions of lateral temporal lobes and the anterior cingulate increased throughout the studied age range. These findings have implications for future investigations of the development of hippocampally-mediated behaviors and methodological applications for the appropriateness of whole versus segmented hippocampal seeds in connectivity analyses. Hum Brain Mapp 38:182-201, 2017. © 2016 Wiley Periodicals, Inc.

  11. Multimodal evaluation of the amygdala's functional connectivity.

    PubMed

    Kerestes, Rebecca; Chase, Henry W; Phillips, Mary L; Ladouceur, Cecile D; Eickhoff, Simon B

    2017-01-09

    The amygdala is one of the most extensively studied human brain regions and undisputedly plays a central role in many psychiatric disorders. However, an outstanding question is whether connectivity of amygdala subregions, specifically the centromedial (CM), laterobasal (LB) and superficial (SF) nuclei, are modulated by brain state (i.e., task vs. rest). Here, using a multimodal approach, we directly compared meta-analytic connectivity modeling (MACM) and specific co-activation likelihood estimation (SCALE)-derived estimates of CM, LB and SF task-based co-activation to the functional connectivity of these nuclei as assessed by resting state fmri (rs-fmri). Finally, using a preexisting resting state functional connectivity-derived cortical parcellation, we examined both MACM and rs-fmri amygdala subregion connectivity with 17 large-scale networks, to explicitly address how the amygdala interacts with other large-scale neural networks. Analyses revealed strong differentiation of CM, LB and SF connectivity patterns with other brain regions, both in task-dependent and task-independent contexts. All three regions, however, showed convergent connectivity with the right ventrolateral prefrontal cortex (VLPFC) that was not driven by high base rate levels of activation. Similar patterns of connectivity across rs-fmri and MACM were observed for each subregion, suggesting a similar network architecture of amygdala connectivity with the rest of the brain across tasks and resting state for each subregion, that may be modified in the context of specific task demands. These findings support animal models that posit a parallel model of amygdala functioning, but importantly, also modify this position to suggest integrative processing in the amygdala.

  12. Multimodal Imaging of Dynamic Functional Connectivity

    PubMed Central

    Tagliazucchi, Enzo; Laufs, Helmut

    2015-01-01

    The study of large-scale functional interactions in the human brain with functional magnetic resonance imaging (fMRI) extends almost to the first applications of this technology. Due to historical reasons and preconceptions about the limitations of this brain imaging method, most studies have focused on assessing connectivity over extended periods of time. It is now clear that fMRI can resolve the temporal dynamics of functional connectivity, like other faster imaging techniques such as electroencephalography and magnetoencephalography (albeit on a different temporal scale). However, the indirect nature of fMRI measurements can hinder the interpretability of the results. After briefly summarizing recent advances in the field, we discuss how the simultaneous combination of fMRI with electrophysiological activity measurements can contribute to a better understanding of dynamic functional connectivity in humans both during rest and task, wakefulness, and other brain states. PMID:25762977

  13. The developmental cognitive neuroscience of functional connectivity.

    PubMed

    Stevens, Michael C

    2009-06-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of 'functional connectivity' among distributed brain regions believed to underlie cognition and behavioral control. Due to the recent availability of relatively easy-to-use tools for functional connectivity analysis, there has been a sharp upsurge of studies that seek to characterize normal and psychopathologically abnormal brain functional integration. However, relatively few studies have applied functional and effective connectivity analysis techniques to developmental cognitive neuroscience. Functional and effective connectivity analysis methods are ideally suited to advance our understanding of the neural substrates of cognitive development, particularly in understanding how and why changes in the functional 'wiring' of neural networks promotes optimal cognitive control throughout development. The purpose of this review is to summarize the central concepts, methods, and findings of functional integration neuroimaging research to discuss key questions in the field of developmental cognitive neuroscience. These ideas will be presented within a context that merges relevant concepts and proposals from different developmental theorists. The review will outline a few general predictions about likely relationships between typical 'executive' cognitive maturation and changes in brain network functional integration during adolescence. Although not exhaustive, this conceptual review also will showcase some of recent findings that have emerged to support these predictions.

  14. A systematic framework for functional connectivity measures

    PubMed Central

    Wang, Huifang E.; Bénar, Christian G.; Quilichini, Pascale P.; Friston, Karl J.; Jirsa, Viktor K.; Bernard, Christophe

    2014-01-01

    Various methods have been proposed to characterize the functional connectivity between nodes in a network measured with different modalities (electrophysiology, functional magnetic resonance imaging etc.). Since different measures of functional connectivity yield different results for the same dataset, it is important to assess when and how they can be used. In this work, we provide a systematic framework for evaluating the performance of a large range of functional connectivity measures—based upon a comprehensive portfolio of models generating measurable responses. Specifically, we benchmarked 42 methods using 10,000 simulated datasets from 5 different types of generative models with different connectivity structures. Since all functional connectivity methods require the setting of some parameters (window size and number, model order etc.), we first optimized these parameters using performance criteria based upon (threshold free) ROC analysis. We then evaluated the performance of the methods on data simulated with different types of models. Finally, we assessed the performance of the methods against different levels of signal-to-noise ratios and network configurations. A MATLAB toolbox is provided to perform such analyses using other methods and simulated datasets. PMID:25538556

  15. Altered Insular Function during Aberrant Salience Processing in Relation to the Severity of Psychotic Symptoms

    PubMed Central

    Walter, Anna; Suenderhauf, Claudia; Smieskova, Renata; Lenz, Claudia; Harrisberger, Fabienne; Schmidt, André; Vogel, Tobias; Lang, Undine E.; Riecher-Rössler, Anita; Eckert, Anne; Borgwardt, Stefan

    2016-01-01

    There is strong evidence for abnormal salience processing in patients with psychotic experiences. In particular, there are indications that the degree of aberrant salience processing increases with the severity of positive symptoms. The aim of the present study was to elucidate this relationship by means of brain imaging. Functional magnetic resonance imaging was acquired to assess hemodynamic responses during the Salience Attribution Test, a paradigm for reaction time that measures aberrant salience to irrelevant stimulus features. We included 42 patients who were diagnosed as having a psychotic disorder and divided them into two groups according to the severity of their positive symptoms. Whole brain analysis was performed using Statistical Parametric Mapping. We found no significant behavioral differences with respect to task performance. Patients with more positive symptoms showed increased hemodynamic responses in the left insula corresponding to aberrant salience than in patients with less positive symptoms. In addition, left insula activation correlated negatively with cumulative antipsychotic medication. Aberrant salience processing in the insula may be increased in psychosis, depending on the severity of positive symptoms. This study indicates that clinically similar psychosis manifestations share the same functional characteristics. In addition, our results suggest that antipsychotic medication can modulate insular function. PMID:27933003

  16. Functional Connectivity of the Posteromedial Cortex

    PubMed Central

    Cauda, Franco; Geminiani, Giuliano; D'Agata, Federico; Sacco, Katiuscia; Duca, Sergio; Bagshaw, Andrew P.; Cavanna, Andrea E.

    2010-01-01

    As different areas within the PMC have different connectivity patterns with various cortical and subcortical regions, we hypothesized that distinct functional modules may be present within the PMC. Because the PMC appears to be the most active region during resting state, it has been postulated to play a fundamental role in the control of baseline brain functioning within the default mode network (DMN). Therefore one goal of this study was to explore which components of the PMC are specifically involved in the DMN. In a sample of seventeen healthy volunteers, we performed an unsupervised voxelwise ROI-based clustering based on resting state functional connectivity. Our results showed four clusters with different network connectivity. Each cluster showed positive and negative correlations with cortical regions involved in the DMN. Progressive shifts in PMC functional connectivity emerged from anterior to posterior and from dorsal to ventral ROIs. Ventral posterior portions of PMC were found to be part of a network implicated in the visuo-spatial guidance of movements, whereas dorsal anterior portions of PMC were interlinked with areas involved in attentional control. Ventral retrosplenial PMC selectively correlated with a network showing considerable overlap with the DMN, indicating that it makes essential contributions in self-referential processing, including autobiographical memory processing. Finally, ventral posterior PMC was shown to be functionally connected with a visual network. The paper represents the first attempt to provide a systematic, unsupervised, voxelwise clustering of the human posteromedial cortex (PMC), using resting-state functional connectivity data. Moreover, a ROI-based parcellation was used to confirm the results. PMID:20927345

  17. Empirical validation of directed functional connectivity.

    PubMed

    Mill, Ravi D; Bagic, Anto; Bostan, Andreea; Schneider, Walter; Cole, Michael W

    2017-02-01

    Mapping directions of influence in the human brain connectome represents the next phase in understanding its functional architecture. However, a host of methodological uncertainties have impeded the application of directed connectivity methods, which have primarily been validated via "ground truth" connectivity patterns embedded in simulated functional MRI (fMRI) and magneto-/electro-encephalography (MEG/EEG) datasets. Such simulations rely on many generative assumptions, and we hence utilized a different strategy involving empirical data in which a ground truth directed connectivity pattern could be anticipated with confidence. Specifically, we exploited the established "sensory reactivation" effect in episodic memory, in which retrieval of sensory information reactivates regions involved in perceiving that sensory modality. Subjects performed a paired associate task in separate fMRI and MEG sessions, in which a ground truth reversal in directed connectivity between auditory and visual sensory regions was instantiated across task conditions. This directed connectivity reversal was successfully recovered across different algorithms, including Granger causality and Bayes network (IMAGES) approaches, and across fMRI ("raw" and deconvolved) and source-modeled MEG. These results extend simulation studies of directed connectivity, and offer practical guidelines for the use of such methods in clarifying causal mechanisms of neural processing.

  18. The Developmental Cognitive Neuroscience of Functional Connectivity

    ERIC Educational Resources Information Center

    Stevens, Michael C.

    2009-01-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of "functional connectivity" among distributed brain regions believed to underlie cognition and…

  19. Altered Functional Connectivity in Essential Tremor

    PubMed Central

    Benito-León, Julián; Louis, Elan D.; Romero, Juan Pablo; Hernández-Tamames, Juan Antonio; Manzanedo, Eva; Álvarez-Linera, Juan; Bermejo-Pareja, Félix; Posada, Ignacio; Rocon, Eduardo

    2015-01-01

    Abstract Essential tremor (ET) has been associated with a spectrum of clinical features, with both motor and nonmotor elements, including cognitive deficits. We employed resting-state functional magnetic resonance imaging (fMRI) to assess whether brain networks that might be involved in the pathogenesis of nonmotor manifestations associated with ET are altered, and the relationship between abnormal connectivity and ET severity and neuropsychological function. Resting-state fMRI data in 23 ET patients (12 women and 11 men) and 22 healthy controls (HC) (12 women and 10 men) were analyzed using independent component analysis, in combination with a “dual-regression” technique, to identify the group differences of resting-state networks (RSNs) (default mode network [DMN] and executive, frontoparietal, sensorimotor, cerebellar, auditory/language, and visual networks). All participants underwent a neuropsychological and neuroimaging session, where resting-state data were collected. Relative to HC, ET patients showed increased connectivity in RSNs involved in cognitive processes (DMN and frontoparietal networks) and decreased connectivity in the cerebellum and visual networks. Changes in network integrity were associated not only with ET severity (DMN) and ET duration (DMN and left frontoparietal network), but also with cognitive ability. Moreover, in at least 3 networks (DMN and frontoparietal networks), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, verbal memory, visual memory, and language) and depressive symptoms. Further, in the visual network, decreased connectivity was associated with worse performance on visuospatial ability. ET was associated with abnormal brain connectivity in major RSNs that might be involved in both motor and nonmotor symptoms. Our findings underscore the importance of examining RSNs in this population as a biomarker of disease. PMID:26656325

  20. Precentral gyrus functional connectivity signatures of autism

    PubMed Central

    Nebel, Mary Beth; Eloyan, Ani; Barber, Anita D.; Mostofsky, Stewart H.

    2014-01-01

    Motor impairments are prevalent in children with autism spectrum disorders (ASD) and are perhaps the earliest symptoms to develop. In addition, motor skills relate to the communicative/social deficits at the core of ASD diagnosis, and these behavioral deficits may reflect abnormal connectivity within brain networks underlying motor control and learning. Despite the fact that motor abnormalities in ASD are well-characterized, there remains a fundamental disconnect between the complexity of the clinical presentation of ASD and the underlying neurobiological mechanisms. In this study, we examined connectivity within and between functional subregions of a key component of the motor control network, the precentral gyrus, using resting state functional Magnetic Resonance Imaging data collected from a large, heterogeneous sample of individuals with ASD as well as neurotypical controls. We found that the strength of connectivity within and between distinct functional subregions of the precentral gyrus was related to ASD diagnosis and to the severity of ASD traits. In particular, connectivity involving the dorsomedial (lower limb/trunk) subregion was abnormal in ASD individuals as predicted by models using a dichotomous variable coding for the presence of ASD, as well as models using symptom severity ratings. These findings provide further support for a link between motor and social/communicative abilities in ASD. PMID:24860442

  1. Pattern Genes Suggest Functional Connectivity of Organs.

    PubMed

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-26

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose &gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  2. Pattern Genes Suggest Functional Connectivity of Organs

    NASA Astrophysics Data System (ADS)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  3. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder

    PubMed Central

    Tornador, Cristian; Falcón, Carles; López‐Solà, Marina; Hernández‐Ribas, Rosa; Pujol, Jesús; Menchón, José M.; Ritter, Petra; Cardoner, Narcis; Soriano‐Mas, Carles; Deco, Gustavo

    2016-01-01

    Abstract Resting‐state fMRI (RS‐fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS‐fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self‐referential thoughts and ruminations has made the use of the resting‐state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS‐fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918–2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  4. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    PubMed

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc.

  5. Dynamic functional network connectivity using distance correlation

    NASA Astrophysics Data System (ADS)

    Rudas, Jorge; Guaje, Javier; Demertzi, Athena; Heine, Lizette; Tshibanda, Luaba; Soddu, Andrea; Laureys, Steven; Gómez, Francisco

    2015-01-01

    Investigations about the intrinsic brain organization in resting-state are critical for the understanding of healthy, pathological and pharmacological cerebral states. Recent studies on fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, in the so called, Resting State Networks (RSNs). The assessment of the interactions among these functional networks plays an important role for the understanding of different brain pathologies. Current methods to quantify these interactions commonly assume that the underlying coordination mechanisms are stationary and linear through the whole recording of the resting state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do not consider possible non-linear relationships maybe linked to feed-back communication mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a windowed distance correlations computed on resting state time-courses extracted at single subject level. We showed that this strategy is complementary to the current approaches for dynamic functional connectivity and will help to enhance the discrimination capacity of patients with disorder of consciousness.

  6. Dynamic functional connectivity: Promise, issues, and interpretations

    PubMed Central

    Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie

    2013-01-01

    The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587

  7. Clinical applications of resting state functional connectivity.

    PubMed

    Fox, Michael D; Greicius, Michael

    2010-01-01

    During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm.

  8. Clinical Applications of Resting State Functional Connectivity

    PubMed Central

    Fox, Michael D.; Greicius, Michael

    2010-01-01

    During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951

  9. Neuropsychiatric symptoms in Alzheimer's disease are related to functional connectivity alterations in the salience network.

    PubMed

    Balthazar, Marcio L F; Pereira, Fabrício R S; Lopes, Tátila M; da Silva, Elvis L; Coan, Ana Carolina; Campos, Brunno M; Duncan, Niall W; Stella, Florindo; Northoff, Georg; Damasceno, Benito P; Cendes, Fernando

    2014-04-01

    Neuropsychiatric syndromes are highly prevalent in Alzheimer's disease (AD), but their neurobiology is not completely understood. New methods in functional magnetic resonance imaging, such as intrinsic functional connectivity or "resting-state" analysis, may help to clarify this issue. Using such approaches, alterations in the default-mode and salience networks (SNs) have been described in Alzheimer's, although their relationship with specific symptoms remains unclear. We therefore carried out resting-state functional connectivity analysis with 20 patients with mild to moderate AD, and correlated their scores on neuropsychiatric inventory syndromes (apathy, hyperactivity, affective syndrome, and psychosis) with maps of connectivity in the default mode network and SN. In addition, we compared network connectivity in these patients with that in 17 healthy elderly control subjects. All analyses were controlled for gray matter density and other potential confounds. Alzheimer's patients showed increased functional connectivity within the SN compared with controls (right anterior cingulate cortex and left medial frontal gyrus), along with reduced functional connectivity in the default-mode network (bilateral precuneus). A correlation between increased connectivity in anterior cingulate cortex and right insula areas of the SN and hyperactivity syndrome (agitation, irritability, aberrant motor behavior, euphoria, and disinhibition) was found. These findings demonstrate an association between specific network changes in AD and particular neuropsychiatric symptom types. This underlines the potential clinical significance of resting state alterations in future diagnosis and therapy.

  10. Assessing uncertainty in dynamic functional connectivity.

    PubMed

    Kudela, Maria; Harezlak, Jaroslaw; Lindquist, Martin A

    2017-04-01

    Functional connectivity (FC) - the study of the statistical association between time series from anatomically distinct regions (Friston, 1994, 2011) - has become one of the primary areas of research in the field surrounding resting state functional magnetic resonance imaging (rs-fMRI). Although for many years researchers have implicitly assumed that FC was stationary across time in rs-fMRI, it has recently become increasingly clear that this is not the case and the ability to assess dynamic changes in FC is critical for better understanding of the inner workings of the human brain (Hutchison et al., 2013; Chang and Glover, 2010). Currently, the most common strategy for estimating these dynamic changes is to use the sliding-window technique. However, its greatest shortcoming is the inherent variation present in the estimate, even for null data, which is easily confused with true time-varying changes in connectivity (Lindquist et al., 2014). This can have serious consequences as even spurious fluctuations caused by noise can easily be confused with an important signal. For these reasons, assessment of uncertainty in the sliding-window correlation estimates is of critical importance. Here we propose a new approach that combines the multivariate linear process bootstrap (MLPB) method and a sliding-window technique to assess the uncertainty in a dynamic FC estimate by providing its confidence bands. Both numerical results and an application to rs-fMRI study are presented, showing the efficacy of the proposed method.

  11. Global network influences on local functional connectivity

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.; Willis, Cory M.; Smith, Matthew A.

    2015-01-01

    A central neuroscientific pursuit is understanding neuronal interactions that support computations underlying cognition and behavior. Although neurons interact across disparate scales – from cortical columns to whole-brain networks – research has been restricted to one scale at a time. We measured local interactions through multi-neuronal recordings while accessing global networks using scalp EEG in rhesus macaques. We measured spike count correlation, an index of functional connectivity with computational relevance, and EEG oscillations, which have been linked to various cognitive functions. We found a surprising non-monotonic relationship between EEG oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct relationship. With a widely-used network model we replicated these findings by incorporating a private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. Finally, we report that spike count correlation explains nonlinearities in the relationship between EEG oscillations and response time in a spatial selective attention task. PMID:25799040

  12. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    PubMed

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    burden increased. These disturbances were often related to long-range connections involving peripheral nodes and interhemispheric connections. A strong association was found between weaker connectivity and decreased rich-club organization, indicating that whole-brain simple connectivity partially expressed disturbances in the communication of highly-connected hubs. However, network topology and network-based statistic connectivity metrics did not correlate with key markers of executive dysfunction (Stroop Test, Trail Making Test) in prodromal Huntington's disease, which instead were related to whole-brain connectivity disturbances in nodes (right inferior parietal, right thalamus, left anterior cingulate) that exhibited multiple aberrant connections and that mediate executive control. Altogether, our results show for the first time a largely disease burden-dependent functional reorganization of whole-brain networks in prodromal Huntington's disease. Both analytic approaches provided a unique window into brain reorganization that was not related to brain atrophy or motor symptoms. Longitudinal studies currently in progress will chart the course of functional changes to determine the most sensitive markers of disease progression.

  13. Diagnostic discontinuity in psychosis: a combined study of cortical gyrification and functional connectivity.

    PubMed

    Palaniyappan, Lena; Liddle, Peter F

    2014-05-01

    The point of rarity in brain structure and function that separates the 2 major psychotic disorders--schizophrenia and bipolar disorder--is presently unknown. The aim of this study is to combine surface anatomical and functional imaging modalities to quantify the integrity of cortical connectivity in pursuit of the neural basis of the Kraepelinian "line of divide." We tested the hypothesis that multimodal brain regions show overlapping abnormalities in both disorders, while schizophrenia-specific defects are likely to be localized to sensory processing regions. Cortical folding patterns (gyrification) and functional connectivity hub architecture (degree centrality) were studied in a sample of 39 subjects with established schizophrenia, 20 subjects with psychotic bipolar disorder, and 34 healthy controls. We observed a significant difference between the 2 groups in both gyrification and functional connectivity of the visual processing regions. Further, the aberrant functional connectivity of the visual processing regions predicted persistent symptom burden better than the diagnostic information. Using a spatial similarity analysis, we observed that the degree of overlap between the 2 disorders was small (25%) for changes in cortical gyrification and modest (51%) for changes in functional connectivity measured during a cognitive task (n-back). In conclusion, our results suggest that prominent unimodal sensory processing deficits are more likely to be present in schizophrenia than in bipolar disorder. Further, connectivity-based neuroimaging measures appear to be better indicators of diagnostic discontinuity than the symptom-based clinical information.

  14. Angular motion point spread function model considering aberrations and defocus effects.

    PubMed

    Klapp, Iftach; Yitzhaky, Yitzhak

    2006-08-01

    When motion blur is considered, the optics point spread function (PSF) is conventionally assumed to be fixed, and therefore cascading of the motion optical transfer function (OTF) with the optics OTF is allowed. However, in angular motion conditions, the image is distorted by space-variant effects of wavefront aberrations, defocus, and motion blur. The proposed model considers these effects and formulates a combined space-variant PSF obtained from the angle-dependent optics PSF and the motion PSF that acts as a weighting function. Results of comparison of the new angular-motion-dependent PSF and the traditional PSF show significant differences. To simplify the proposed model, an efficient approximation is suggested and evaluated.

  15. Diffraction efficiency and aberrations of diffractive elements obtained from orthogonal expansion of the point spread function

    NASA Astrophysics Data System (ADS)

    Schwiegerling, Jim

    2016-09-01

    The Point Spread Function (PSF) indirectly encodes the wavefront aberrations of an optical system and therefore is a metric of the system performance. Analysis of the PSF properties is useful in the case of diffractive optics where the wavefront emerging from the exit pupil is not necessarily continuous and consequently not well represented by traditional wavefront error descriptors such as Zernike polynomials. The discontinuities in the wavefront from diffractive optics occur in cases where step heights in the element are not multiples of the illumination wavelength. Examples include binary or N-step structures, multifocal elements where two or more foci are intentionally created or cases where other wavelengths besides the design wavelength are used. Here, a technique for expanding the electric field amplitude of the PSF into a series of orthogonal functions is explored. The expansion coefficients provide insight into the diffraction efficiency and aberration content of diffractive optical elements. Furthermore, this technique is more broadly applicable to elements with a finite number of diffractive zones, as well as decentered patterns.

  16. Resting state functional connectivity predicts neurofeedback response

    PubMed Central

    Scheinost, Dustin; Stoica, Teodora; Wasylink, Suzanne; Gruner, Patricia; Saksa, John; Pittenger, Christopher; Hampson, Michelle

    2014-01-01

    Tailoring treatments to the specific needs and biology of individual patients—personalized medicine—requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback protocol that can reduce contamination-related anxiety, a prominent symptom of many cases of obsessive-compulsive disorder (OCD). Individual response to this intervention is variable. Here we used patterns of brain functional connectivity, as measured by baseline resting-state fMRI (rs-fMRI), to predict improvements in contamination anxiety after neurofeedback training. Activity of a region of the orbitofrontal cortex (OFC) and anterior prefrontal cortex, Brodmann area (BA) 10, associated with contamination anxiety in each subject was measured in real time and presented as a neurofeedback signal, permitting subjects to learn to modulate this target brain region. We have previously reported both enhanced OFC/BA 10 control and improved anxiety in a group of subclinically anxious subjects after neurofeedback. Five individuals with contamination-related OCD who underwent the same protocol also showed improved clinical symptomatology. In both groups, these behavioral improvements were strongly correlated with baseline whole-brain connectivity in the OFC/BA 10, computed from rs-fMRI collected several days prior to neurofeedback training. These pilot data suggest that rs-fMRI can be used to identify individuals likely to benefit from rt-fMRI neurofeedback training to control contamination anxiety. PMID:25309375

  17. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  18. Differential Effects of Brain Disorders on Structural and Functional Connectivity

    PubMed Central

    Vega-Pons, Sandro; Olivetti, Emanuele; Avesani, Paolo; Dodero, Luca; Gozzi, Alessandro; Bifone, Angelo

    2017-01-01

    Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate. PMID:28119556

  19. Differential Effects of Brain Disorders on Structural and Functional Connectivity.

    PubMed

    Vega-Pons, Sandro; Olivetti, Emanuele; Avesani, Paolo; Dodero, Luca; Gozzi, Alessandro; Bifone, Angelo

    2016-01-01

    Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate.

  20. Strengthened Corticosubcortical Functional Connectivity during Muscle Fatigue

    PubMed Central

    Wang, Xiao-Feng; Yue, Guang H.

    2016-01-01

    The present study examined functional connectivity (FC) between functional MRI (fMRI) signals of the primary motor cortex (M1) and each of the three subcortical neural structures, cerebellum (CB), basal ganglia (BG), and thalamus (TL), during muscle fatigue using the quantile regression technique. Understanding activation relation between the subcortical structures and the M1 during prolonged motor performance should help delineate how central motor control network modulates acute perturbations at peripheral sensorimotor system such as muscle fatigue. Ten healthy subjects participated in the study and completed a 20-minute intermittent handgrip motor task at 50% of their maximal voluntary contraction (MVC) level. Quantile regression analyses were carried out to compare the FC between the contralateral (left) M1 and CB, BG, and TL in the minimal (beginning 100 s) versus significant (ending 100 s) fatigue stages. Widespread, statistically significant increases in FC were found in bilateral BG, CB, and TL with the left M1 during significant versus minimal fatigue stages. Our results imply that these subcortical nuclei are critical components in the motor control network and actively involved in modulating voluntary muscle fatigue, possibly, by working together with the M1 to strengthen the descending central command to prolong the motor performance. PMID:27830093

  1. Functioning of Circuits Connecting Thalamus and Cortex.

    PubMed

    Sherman, S Murray

    2017-03-16

    Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver, which carries the main information between cells, and modulator, which modifies how driver inputs function. Identifying driver inputs helps to reveal functional computational circuits, and one set of such circuits identified by this approach are cortico-thalamo-cortical (or transthalamic corticocortical) circuits. This, in turn, leads to the conclusion that there are two types of thalamic relay: first order nuclei (such as the lateral geniculate nucleus) that relay driver input from a subcortical source (i.e., retina), and higher order nuclei (such as the pulvinar) which are involved in these transthalamic pathways by relaying driver input from layer 5 of one cortical area to another. This thalamic division is also seen in other sensory pathways and beyond these so that most of thalamus by volume consists of higher-order relays. Many, and perhaps all, direct driver connections between cortical areas are paralleled by an indirect cortico-thalamo-cortical (transthalamic) driver route involving higher order thalamic relays. Such thalamic relays represent a heretofore unappreciated role in cortical functioning, and this assessment challenges and extends conventional views regarding both the role of thalamus and mechanisms of corticocortical communication. Finally, many and perhaps the vast majority of driver inputs relayed through thalamus arrive via branching axons, with extrathalamic targets often being subcortical motor centers. This raises the possibility that inputs relayed by thalamus to cortex also serve as efference copies, and this may represent an important feature of information relayed up the cortical hierarchy via transthalamic circuits. © 2017 American Physiological Society. Compr Physiol 7:713-739, 2017.

  2. Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2009-01-01

    A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.

  3. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  4. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces

    NASA Astrophysics Data System (ADS)

    Xu, He-Xiu; Ma, Shaojie; Luo, Weijie; Cai, Tong; Sun, Shulin; He, Qiong; Zhou, Lei

    2016-11-01

    Constructing a meta-lens with tunable meta-atoms with varactor diodes incorporated, we can precisely control the phase profile of the meta-lens by varying the external voltages imparted on the diodes, such that the dispersion-induced phase distortions at off-working frequencies can be rectified and the functionality of the meta-lens can be dynamically changed. As an illustration, we design and fabricate a tunable meta-lens in the microwave regime and employ both experiments and numerical simulations to demonstrate the aberration-free and dynamically switchable focusing performances of the meta-lens. Our approach paves the road to achieve dispersion-corrected and switchable manipulations of electromagnetic waves in the microwave regime.

  5. Connecting Functions in Geometry and Algebra

    ERIC Educational Resources Information Center

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  6. A new class of methods for functional connectivity estimation

    NASA Astrophysics Data System (ADS)

    Lin, Wutu

    Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.

  7. Aberrant Behaviour of Persons with Developmental Disabilities as a Function of the Characteristics of Training Tasks.

    ERIC Educational Resources Information Center

    Vause, Tricia; Martin, Garry L.; Yu, Dickie

    1999-01-01

    A study used the Assessment of Basic Learning Abilities to assess the abilities of three adults with mental retardation in order to reduce aberrant behavior. There was a higher frequency of aberrant responses during training sessions with training tasks above or below a participant's assessment level on the test. (Contains references.) (CR)

  8. The functional logic of corticostriatal connections.

    PubMed

    Shipp, Stewart

    2017-03-01

    Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination. The term 'disclosed loop' is introduced to describe this organisation: a closed circuit that is open to outside influence at the initial stage of cortical input. The closed circuit component of corticostriatal afferents is newly dubbed 'operative', as it is proposed to establish the bid for action selection on the part of an incipient cortical action plan; the broader set of converging corticostriatal afferents is described as contextual. A corollary of this proposal is that every unit of the striatal volume, including the long, C-shaped tail of the caudate nucleus, should receive a mandatory component of operative input, and hence include at least one area of BG-recipient cortex amongst the sources of its corticostriatal afferents. Individual operative afferents contact twin classes of GABAergic striatal projection neuron (SPN), distinguished by their neurochemical character, and onward circuitry. This is the basis of the classic direct and indirect pathway model of the cortico-BG loop. Each pathway utilises a serial chain of inhibition, with two such links, or three, providing positive and negative feedback, respectively. Operative co-activation of direct and indirect SPNs is, therefore, pictured to simultaneously promote action, and to restrain it. The balance of this rival activity is

  9. Changes in brain functional network connectivity after stroke

    PubMed Central

    Li, Wei; Li, Yapeng; Zhu, Wenzhen; Chen, Xi

    2014-01-01

    Studies have shown that functional network connection models can be used to study brain network changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlated to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke. PMID:25206743

  10. Joint Modeling of Anatomical and Functional Connectivity for Population Studies

    PubMed Central

    Rathi, Yogesh; Kubicki, Marek; Westin, Carl-Fredrik; Golland, Polina

    2015-01-01

    We propose a novel probabilistic framework to merge information from diffusion weighted imaging tractography and resting-state functional magnetic resonance imaging correlations to identify connectivity patterns in the brain. In particular, we model the interaction between latent anatomical and functional connectivity and present an intuitive extension to population studies. We employ the EM algorithm to estimate the model parameters by maximizing the data likelihood. The method simultaneously infers the templates of latent connectivity for each population and the differences in connectivity between the groups. We demonstrate our method on a schizophrenia study. Our model identifies significant increases in functional connectivity between the parietal/posterior cingulate region and the frontal lobe and reduced functional connectivity between the parietal/posterior cingulate region and the temporal lobe in schizophrenia. We further establish that our model learns predictive differences between the control and clinical populations, and that combining the two modalities yields better results than considering each one in isolation. PMID:21878411

  11. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals.

  12. Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling.

    PubMed

    Pons, A J; Cantero, Jose L; Atienza, Mercedes; Garcia-Ojalvo, Jordi

    2010-09-01

    The structural changes that arise as the brain ages influence its functionality. In many cases, the anatomical degradation simply leads to normal aging. In others, the neurodegeneration is large enough to cause neurological disorders (e.g. Alzheimer's disease). Structure and function can be both currently measured using noninvasive techniques, such as magnetic resonance imaging (MRI) and electroencephalography (EEG) respectively. However, a full theoretical scheme linking structural and functional degradation is still lacking. Here we present a neural mass model that aims to bridge both levels of description and that reproduces experimentally observed multichannel EEG recordings of alpha rhythm in young subjects, healthy elderly subjects, and patients with mild cognitive impairment. We focus our attention in the dominant frequency of the signals at different electrodes and in the correlation between specific electrode pairs, measured via the phase-lag index. Our model allows us to study the influence of different structural connectivity pathways, independently of each other, on the normal and aberrantly aging brain. In particular, we study in detail the effect of the thalamic input on specific cortical regions, the long-range connectivity between cortical regions, and the short-range coupling within the same cortical area. Once the influence of each type of connectivity is determined, we characterize the regions of parameter space compatible with the EEG recordings of the populations under study. Our results show that the different types of connectivity must be fine-tuned to maintain the brain in a healthy functioning state independently of its age and brain condition.

  13. Heredity characteristics of schizophrenia shown by dynamic functional connectivity analysis of resting-state functional MRI scans of unaffected siblings.

    PubMed

    Su, Jianpo; Shen, Hui; Zeng, Ling-Li; Qin, Jian; Liu, Zhening; Hu, Dewen

    2016-08-03

    Previous static resting-state functional connectivity (FC) MRI (rs-fcMRI) studies have suggested certain heredity characteristics of schizophrenia. Recently, dynamic rs-fcMRI analysis, which can better characterize the time-varying nature of intrinsic activity and connectivity and may therefore unveil the special connectivity patterns that are always lost in static FC analysis, has shown a potential neuroendophenotype of schizophrenia. In this study, we have extended previous static rs-fcMRI studies to a dynamic study by exploring whether healthy siblings share aberrant dynamic FC patterns with schizophrenic patients, which may imply a potential risk for siblings to develop schizophrenia. We utilized the dynamic rs-fcMRI method using a sliding window approach to evaluate FC discrepancies within transient states across schizophrenic patients, unaffected siblings, and matched healthy controls. Statistical analysis showed five trait-related connections that are related to cingulo-opercular, occipital, and default mode networks, reflecting the shared connectivity alterations between schizophrenic patients and their unaffected siblings. The findings suggested that schizophrenic patients and their unaffected siblings shared common transient functional disconnectivity, implying a potential risk for the healthy siblings of developing schizophrenia.

  14. Electrophysiological and functional connectivity of the human supplementary motor area.

    PubMed

    Narayana, Shalini; Laird, Angela R; Tandon, Nitin; Franklin, Crystal; Lancaster, Jack L; Fox, Peter T

    2012-08-01

    Neuro-imaging methods for detecting functional and structural inter-regional connectivity are in a rapid phase of development. While reports of regional connectivity patterns based on individual methods are becoming common, studies comparing the results of two or more connectivity-mapping methods remain rare. In this study, we applied transcranial magnetic stimulation during PET imaging (TMS/PET), a stimulation-based method, and meta-analytic connectivity modeling (MACM), a task-based method to map the connectivity patterns of the supplementary motor area (SMA). Further, we drew upon the behavioral domain meta-data of the BrainMap® database to characterize the behavioral domain specificity of two maps. Both MACM and TMS/PET detected multi-synaptic connectivity patterns, with the MACM-detected connections being more extensive. Both MACM and TMS/PET detected connections belonging to multiple behavioral domains, including action, cognition and perception. Finally, we show that the two connectivity-mapping methods are complementary in that, the MACM informed on the functional nature of SMA connections, while TMS/PET identified brain areas electrophysiologically connected with the SMA. Thus, we demonstrate that integrating multimodal database and imaging techniques can derive comprehensive connectivity maps of brain areas.

  15. Attentional load modulates large-scale functional brain connectivity beyond the core attention networks.

    PubMed

    Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Duff, Eugene P; Sneve, Markus H; Endestad, Tor; Nordvik, Jan Egil; Andreassen, Ole A; Smith, Stephen M; Westlye, Lars T

    2015-04-01

    In line with the notion of a continuously active and dynamic brain, functional networks identified during rest correspond with those revealed by task-fMRI. Characterizing the dynamic cross-talk between these network nodes is key to understanding the successful implementation of effortful cognitive processing in healthy individuals and its breakdown in a variety of conditions involving aberrant brain biology and cognitive dysfunction. We employed advanced network modeling on fMRI data collected during a task involving sustained attentive tracking of objects at two load levels and during rest. Using multivariate techniques, we demonstrate that attentional load levels can be significantly discriminated, and from a resting-state condition, the accuracy approaches 100%, by means of estimates of between-node functional connectivity. Several network edges were modulated during task engagement: The dorsal attention network increased connectivity with a visual node, while decreasing connectivity with motor and sensory nodes. Also, we observed a decoupling between left and right hemisphere dorsal visual streams. These results support the notion of dynamic network reconfigurations based on attentional effort. No simple correspondence between node signal amplitude change and node connectivity modulations was found, thus network modeling provides novel information beyond what is revealed by conventional task-fMRI analysis. The current decoding of attentional states confirms that edge connectivity contains highly predictive information about the mental state of the individual, and the approach shows promise for the utilization in clinical contexts.

  16. BASCO: a toolbox for task-related functional connectivity

    PubMed Central

    Göttlich, Martin; Beyer, Frederike; Krämer, Ulrike M.

    2015-01-01

    BASCO (BetA Series COrrelation) is a user-friendly MATLAB toolbox with a graphical user interface (GUI) which allows investigating functional connectivity in event-related functional magnetic resonance imaging (fMRI) data. Connectivity analyses extend and compliment univariate activation analyses since the actual interaction between brain regions involved in a task can be explored. BASCO supports seed-based functional connectivity as well as brain network analyses. Although there are a multitude of advanced toolboxes for investigating resting-state functional connectivity, BASCO is the first toolbox for evaluating task-related whole-brain functional connectivity employing a large number of network nodes. Thus, BASCO allows investigating task-specific rather than resting-state networks. Here, we summarize the main features of the toolbox and describe the methods and algorithms. PMID:26441558

  17. Detecting Functional Connectivity During Audiovisual Integration with MEG: A Comparison of Connectivity Metrics.

    PubMed

    Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard

    2015-08-01

    In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.

  18. Aberrant functional organization and maturation in early-onset psychosis: evidence from magnetoencephalography.

    PubMed

    Wilson, Tony W; Rojas, Donald C; Teale, Peter D; Hernandez, Olivia O; Asherin, Ryan M; Reite, Martin L

    2007-10-15

    Studies of the location of somatosensory and auditory cortical responses have shown anomalous hemispheric asymmetries in a variety of neurodevelopmental disorders. To date, abnormal asymmetries in the somatosensory region have shown greater specificity, being reported only in psychotic adults. This study examines the functional organization of the somatosensory cortices using magnetoencephalography in adolescents with childhood-onset psychotic disorders. Eighteen young outpatients with history of psychotic illness and 15 healthy adolescents participated. Both groups underwent stimulation of the index finger as magnetoencephalography was acquired from the contralateral hemisphere. Neural generators of the M50 somatosensory response were modeled using an equivalent current dipole for each hemisphere, and later investigated for systematic variation with diagnosis. Consistent with adult psychosis data, adolescent patients showed hemispheric symmetry in the anterior-posterior dimension. In controls, a reversed pattern of hemispheric asymmetry was observed relative to previous findings in normal adults [Reite, M., Teale, P., Rojas, D.C., Benkers, T.L., Carlson, J., 2003. Anomalous somatosensory cortical localization in schizophrenia. American Journal of Psychiatry 160, 2148-2153], but trend-level correlations suggested source location became more adult-like during the transition from adolescence to adulthood. Source parameters also exhibited robust inter-hemispheric correlations only in adolescent controls. In sum, source locations, patterns of cerebral lateralization, and inter-hemispheric correlations all distinguish patients from their normally developing cohort. These findings suggest aberrant maturation underlies the reduction in cerebral laterality associated with psychosis.

  19. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain.

    PubMed

    Seymour, Tracy; Twigger, Alecia-Jane; Kakulas, Foteini

    2015-11-13

    Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies.

  20. Aberrant positioning of a central venous dialysis catheter to reveal a left-sided partial anomalous pulmonary venous connection

    PubMed Central

    Chintu, Manohar R; Chinnappa, Shammikumar; Bhandari, Sunil

    2008-01-01

    We describe the identification of a rare, left-sided, partial anomalous pulmonary venous connection during routine central venous catheterization. To our knowledge, this is the first report in the literature to describe this anomaly in a hemodialysis patient. A young man had anomalous connection of the veins draining the upper lobe of the left lung and left innominate vein. Our case demonstrates the importance of routine fluoroscopy during insertion of central venous catheters to detect these anomalies and minimize complications. PMID:19183765

  1. Aberrant positioning of a central venous dialysis catheter to reveal a left-sided partial anomalous pulmonary venous connection.

    PubMed

    Chintu, Manohar R; Chinnappa, Shammikumar; Bhandari, Sunil

    2008-01-01

    We describe the identification of a rare, left-sided, partial anomalous pulmonary venous connection during routine central venous catheterization. To our knowledge, this is the first report in the literature to describe this anomaly in a hemodialysis patient. A young man had anomalous connection of the veins draining the upper lobe of the left lung and left innominate vein. Our case demonstrates the importance of routine fluoroscopy during insertion of central venous catheters to detect these anomalies and minimize complications.

  2. EEG functional connectivity is partially predicted by underlying white matter connectivity

    PubMed Central

    Chu, CJ; Tanaka, N; Diaz, J; Edlow, BL; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, SS; Kramer, MA.

    2015-01-01

    Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales. PMID:25534110

  3. EEG functional connectivity is partially predicted by underlying white matter connectivity.

    PubMed

    Chu, C J; Tanaka, N; Diaz, J; Edlow, B L; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, S S; Kramer, M A

    2015-03-01

    Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales.

  4. Upregulation of cortico-cerebellar functional connectivity after motor learning.

    PubMed

    Mehrkanoon, Saeid; Boonstra, Tjeerd W; Breakspear, Michael; Hinder, Mark; Summers, Jeffery J

    2016-03-01

    Interactions between the cerebellum and primary motor cortex are crucial for the acquisition of new motor skills. Recent neuroimaging studies indicate that learning motor skills is associated with subsequent modulation of resting-state functional connectivity in the cerebellar and cerebral cortices. The neuronal processes underlying the motor-learning-induced plasticity are not well understood. Here, we investigate changes in functional connectivity in source-reconstructed electroencephalography (EEG) following the performance of a single session of a dynamic force task in twenty young adults. Source activity was reconstructed in 112 regions of interest (ROIs) and the functional connectivity between all ROIs was estimated using the imaginary part of coherence. Significant changes in resting-state connectivity were assessed using partial least squares (PLS). We found that subjects adapted their motor performance during the training session and showed improved accuracy but with slower movement times. A number of connections were significantly upregulated after motor training, principally involving connections within the cerebellum and between the cerebellum and motor cortex. Increased connectivity was confined to specific frequency ranges in the mu- and beta-bands. Post hoc analysis of the phase spectra of these cerebellar and cortico-cerebellar connections revealed an increased phase lag between motor cortical and cerebellar activity following motor practice. These findings show a reorganization of intrinsic cortico-cerebellar connectivity related to motor adaptation and demonstrate the potential of EEG connectivity analysis in source space to reveal the neuronal processes that underpin neural plasticity.

  5. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses.

  6. Disturbed Interhemispheric Functional Connectivity Rather than Structural Connectivity in Irritable Bowel Syndrome

    PubMed Central

    Qi, Rongfeng; Liu, Chang; Weng, Yifei; Xu, Qiang; Chen, Liya; Wang, Fangyu; Zhang, Long J.; Lu, Guang M.

    2016-01-01

    Neuroimaging studies have demonstrated that irritable bowel syndrome (IBS)—a relapsing functional bowel disorder—presents with disrupted brain connections. However, little is known about the alterations of interhemispheric functional connectivity and underlying structural connectivity in IBS. This study combined resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) to investigate changes in interhemispheric coordination in IBS patients. Resting-state functional and structural magnetic resonance images were acquired from 65 IBS patients and 67 healthy controls (HCs; matched for age, sex and educational level). Interhemispheric voxel-mirrored homotopic connectivity (VMHC) was calculated and compared between groups. Homotopic regions showing abnormal VMHC in patients were targeted as regions of interest (ROIs) for analysis of DTI tractography. The fractional anisotropy (FA), fiber number and fiber length were compared between groups. Statistical analysis was also performed by including anxiety and depression as covariates to evaluate their effect. A Pearson correlation analysis between abnormal interhemispheric connectivity and clinical indices of IBS patients was performed. Compared to HCs, IBS patients had higher interhemispheric functional connectivity between bilateral thalami, cuneus, posterior cingulate cortices (PCC), lingual gyri and inferior occipital/cerebellum lobes, as well as lower interhemispheric functional connectivity between bilateral ventral anterior cingulate cortices (vACC) and inferior parietal lobules (IPL). The inclusion of anxiety and depression as covariates abolished VMHC difference in vACC. Microstructural features of white matter tracts connecting functionally abnormal regions did not reveal any differences between the groups. VMHC values in vACC negatively correlated with the quality of life (QOL) scores of patients. In conclusion, this study provides preliminary evidence of the disrupted

  7. Disturbed Interhemispheric Functional Connectivity Rather than Structural Connectivity in Irritable Bowel Syndrome.

    PubMed

    Qi, Rongfeng; Liu, Chang; Weng, Yifei; Xu, Qiang; Chen, Liya; Wang, Fangyu; Zhang, Long J; Lu, Guang M

    2016-01-01

    Neuroimaging studies have demonstrated that irritable bowel syndrome (IBS)-a relapsing functional bowel disorder-presents with disrupted brain connections. However, little is known about the alterations of interhemispheric functional connectivity and underlying structural connectivity in IBS. This study combined resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) to investigate changes in interhemispheric coordination in IBS patients. Resting-state functional and structural magnetic resonance images were acquired from 65 IBS patients and 67 healthy controls (HCs; matched for age, sex and educational level). Interhemispheric voxel-mirrored homotopic connectivity (VMHC) was calculated and compared between groups. Homotopic regions showing abnormal VMHC in patients were targeted as regions of interest (ROIs) for analysis of DTI tractography. The fractional anisotropy (FA), fiber number and fiber length were compared between groups. Statistical analysis was also performed by including anxiety and depression as covariates to evaluate their effect. A Pearson correlation analysis between abnormal interhemispheric connectivity and clinical indices of IBS patients was performed. Compared to HCs, IBS patients had higher interhemispheric functional connectivity between bilateral thalami, cuneus, posterior cingulate cortices (PCC), lingual gyri and inferior occipital/cerebellum lobes, as well as lower interhemispheric functional connectivity between bilateral ventral anterior cingulate cortices (vACC) and inferior parietal lobules (IPL). The inclusion of anxiety and depression as covariates abolished VMHC difference in vACC. Microstructural features of white matter tracts connecting functionally abnormal regions did not reveal any differences between the groups. VMHC values in vACC negatively correlated with the quality of life (QOL) scores of patients. In conclusion, this study provides preliminary evidence of the disrupted

  8. Altered default mode network functional connectivity in schizotypal personality disorder.

    PubMed

    Zhang, Qing; Shen, Jing; Wu, Jianlin; Yu, Xiao; Lou, Wutao; Fan, Hongyu; Shi, Lin; Wang, Defeng

    2014-12-01

    The default mode network (DMN) has been identified to play a critical role in many mental disorders, but such abnormalities have not yet been determined in patients with schizotypal personality disorder (SPD). The purpose of this study was to analyze the alteration of the DMN functional connectivity in subjects with (SPD) and compared it to healthy control subjects. Eighteen DSM-IV diagnosed SPD subjects (all male, average age: 19.7±0.9) from a pool of 3000 first year college students, and eighteen age and gender matched healthy control subjects were recruited (all male, average age: 20.3±0.9). Independent component analysis (ICA) was used to analyze the DMN functional connectivity alteration. Compared to the healthy control group, SPD subjects had significantly decreased functional connectivity in the frontal areas, including the superior and medial frontal gyrus, and greater functional connectivity in the bilateral superior temporal gyrus and sub-lobar regions, including the bilateral putamen and caudate. Compared to subjects with SPD, the healthy control group showed decreased functional connectivity in the bilateral posterior cingulate gyrus, but showed greater functional connectivity in the right transverse temporal gyrus and left middle temporal gyrus. The healthy control group also showed greater activation in the cerebellum compared to the SPD group. These findings suggest that DMN functional connectivity, particularly that involving cognitive or emotional regulation, is altered in SPD subjects, and thus may be helpful in studying schizophrenia.

  9. Network topology and functional connectivity disturbances precede the onset of Huntington’s disease

    PubMed Central

    Harrington, Deborah L.; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D.; Paulsen, Jane S.

    2015-01-01

    as disease burden increased. These disturbances were often related to long-range connections involving peripheral nodes and interhemispheric connections. A strong association was found between weaker connectivity and decreased rich-club organization, indicating that whole-brain simple connectivity partially expressed disturbances in the communication of highly-connected hubs. However, network topology and network-based statistic connectivity metrics did not correlate with key markers of executive dysfunction (Stroop Test, Trail Making Test) in prodromal Huntington’s disease, which instead were related to whole-brain connectivity disturbances in nodes (right inferior parietal, right thalamus, left anterior cingulate) that exhibited multiple aberrant connections and that mediate executive control. Altogether, our results show for the first time a largely disease burden-dependent functional reorganization of whole-brain networks in prodromal Huntington’s disease. Both analytic approaches provided a unique window into brain reorganization that was not related to brain atrophy or motor symptoms. Longitudinal studies currently in progress will chart the course of functional changes to determine the most sensitive markers of disease progression. PMID:26059655

  10. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  11. Meta-Analytic Connectivity Modeling Reveals Differential Functional Connectivity of the Medial and Lateral Orbitofrontal Cortex

    PubMed Central

    Zald, David H.; McHugo, Maureen; Ray, Kimberly L.; Glahn, David C.; Eickhoff, Simon B.; Laird, Angela R.

    2014-01-01

    The orbitofrontal cortex (OFC) is implicated in a broad range of behaviors and neuropsychiatric disorders. Anatomical tracing studies in nonhuman primates reveal differences in connectivity across subregions of the OFC, but data on the connectivity of the human OFC remain limited. We applied meta-analytic connectivity modeling in order to examine which brain regions are most frequently coactivated with the medial and lateral portions of the OFC in published functional neuroimaging studies. The analysis revealed a clear divergence in the pattern of connectivity for the medial OFC (mOFC) and lateral OFC (lOFC) regions. The lOFC showed coactivations with a network of prefrontal regions and areas involved in cognitive functions including language and memory. In contrast, the mOFC showed connectivity with default mode, autonomic, and limbic regions. Convergent patterns of coactivations were observed in the amygdala, hippocampus, striatum, and thalamus. A small number of regions showed connectivity specific to the anterior or posterior sectors of the OFC. Task domains involving memory, semantic processing, face processing, and reward were additionally analyzed in order to identify the different patterns of OFC functional connectivity associated with specific cognitive and affective processes. These data provide a framework for understanding the human OFC's position within widespread functional networks. PMID:23042731

  12. Multisite reliability of MR-based functional connectivity.

    PubMed

    Noble, Stephanie; Scheinost, Dustin; Finn, Emily S; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C; Bearden, Carrie E; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S; Mirzakhanian, Heline; Cornblatt, Barbara A; Olvet, Doreen M; Mathalon, Daniel H; McGlashan, Thomas H; Perkins, Diana O; Belger, Aysenil; Seidman, Larry J; Thermenos, Heidi; Tsuang, Ming T; van Erp, Theo G M; Walker, Elaine F; Hamann, Stephan; Woods, Scott W; Cannon, Tyrone D; Constable, R Todd

    2017-02-01

    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies provide an efficient way to accelerate data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach to assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60-80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5min scan, reliability across connectivity measures was poor (ICC=0

  13. Hyper-reactive human ventral tegmental area and aberrant mesocorticolimbic connectivity in overgeneralization of fear in generalized anxiety disorder.

    PubMed

    Cha, Jiook; Carlson, Joshua M; Dedora, Daniel J; Greenberg, Tsafrir; Proudfit, Greg H; Mujica-Parodi, Lilianne R

    2014-04-23

    The ventral tegmental area (VTA) has been primarily implicated in reward-motivated behavior. Recently, aberrant dopaminergic VTA signaling has also been implicated in anxiety-like behaviors in animal models. These findings, however, have yet to be extended to anxiety in humans. Here we hypothesized that clinical anxiety is linked to dysfunction of the mesocorticolimbic circuit during threat processing in humans; specifically, excessive or dysregulated activity of the mesocorticolimbic aversion circuit may be etiologically related to errors in distinguishing cues of threat versus safety, also known as "overgeneralization of fear." To test this, we recruited 32 females with generalized anxiety disorder and 25 age-matched healthy control females. We measured brain activity using fMRI while participants underwent a fear generalization task consisting of pseudo-randomly presented rectangles with systematically varying widths. A mid-sized rectangle served as a conditioned stimulus (CS; 50% electric shock probability) and rectangles with widths of CS ±20%, ±40%, and ±60% served as generalization stimuli (GS; never paired with electric shock). Healthy controls showed VTA reactivity proportional to the cue's perceptual similarity to CS (threat). In contrast, patients with generalized anxiety disorder showed heightened and less discriminating VTA reactivity to GS, a feature that was positively correlated with trait anxiety, as well as increased mesocortical and decreased mesohippocampal coupling. Our results suggest that the human VTA and the mesocorticolimbic system play a crucial role in threat processing, and that abnormalities in this system are implicated in maladaptive threat processing in clinical anxiety.

  14. fMRI alignment based on local functional connectivity patterns

    NASA Astrophysics Data System (ADS)

    Jiang, Di; Du, Yuhui; Cheng, Hewei; Jiang, Tianzi; Fan, Yong

    2012-02-01

    In functional neuroimaging studies, the inter-subject alignment of functional magnetic resonance imaging (fMRI) data is a necessary precursor to improve functional consistency across subjects. Traditional structural MRI based registration methods cannot achieve accurate inter-subject functional consistency in that functional units are not necessarily consistently located relative to anatomical structures due to functional variability across subjects. Although spatial smoothing commonly used in fMRI data preprocessing can reduce the inter-subject functional variability, it may blur the functional signals and thus lose the fine-grained information. In this paper we propose a novel functional signal based fMRI image registration method which aligns local functional connectivity patterns of different subjects to improve the inter-subject functional consistency. Particularly, the functional connectivity is measured using Pearson correlation. For each voxel of an fMRI image, its functional connectivity to every voxel in its local spatial neighborhood, referred to as its local functional connectivity pattern, is characterized by a rotation and shift invariant representation. Based on this representation, the spatial registration of two fMRI images is achieved by minimizing the difference between their corresponding voxels' local functional connectivity patterns using a deformable image registration model. Experiment results based on simulated fMRI data have demonstrated that the proposed method is more robust and reliable than the existing fMRI image registration methods, including maximizing functional correlations and minimizing difference of global connectivity matrices across different subjects. Experiment results based on real resting-state fMRI data have further demonstrated that the proposed fMRI registration method can statistically significantly improve functional consistency across subjects.

  15. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    SciTech Connect

    Tomasi, D.; Tomasi, D.; Volkow, N.D.; Wang, R.; Carrillo, J.; Maloney, T.; Alia-Klein, N.; Woicik, P.A.; Telang, F.; Goldstein, R.Z.

    2010-06-01

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and this was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.

  16. Reduced long-range functional connectivity in young children with autism spectrum disorder

    PubMed Central

    Yoshimura, Yuko; Hiraishi, Hirotoshi; Munesue, Toshio; Hashimoto, Takanori; Tsubokawa, Tsunehisa; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Minabe, Yoshio

    2015-01-01

    Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity. Although it is important to study the pathophysiology of ASD in the developing cortex, the functional connectivity in the brains of young children with ASD has not been well studied. In this study, brain activity was measured non-invasively during consciousness in 50 young human children with ASD and 50 age- and gender-matched typically developing human (TD) children. We employed a custom child-sized magnetoencephalography (MEG) system in which sensors were located as close to the brain as possible for optimal recording in young children. We focused on theta band oscillations because they are thought to be involved in long-range networks associated with higher cognitive processes. The ASD group showed significantly reduced connectivity between the left-anterior and the right-posterior areas, exhibiting a decrease in the coherence of theta band (6 Hz) oscillations compared with the TD group. This reduction in coherence was significantly correlated with clinical severity in right-handed children with ASD. This is the first study to demonstrate reduced long-range functional connectivity in conscious young children with ASD using a novel MEG approach. PMID:24652855

  17. Statistical technique for analysing functional connectivity of multiple spike trains.

    PubMed

    Masud, Mohammad Shahed; Borisyuk, Roman

    2011-03-15

    A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains.

  18. The effects of hemodynamic lag on functional connectivity and behavior after stroke.

    PubMed

    Siegel, Joshua S; Snyder, Abraham Z; Ramsey, Lenny; Shulman, Gordon L; Corbetta, Maurizio

    2016-12-01

    Stroke disrupts the brain's vascular supply, not only within but also outside areas of infarction. We investigated temporal delays (lag) in resting state functional magnetic resonance imaging signals in 130 stroke patients scanned two weeks, three months and 12 months post stroke onset. Thirty controls were scanned twice at an interval of three months. Hemodynamic lag was determined using cross-correlation with the global gray matter signal. Behavioral performance in multiple domains was assessed in all patients. Regional cerebral blood flow and carotid patency were assessed in subsets of the cohort using arterial spin labeling and carotid Doppler ultrasonography. Significant hemodynamic lag was observed in 30% of stroke patients sub-acutely. Approximately 10% of patients showed lag at one-year post-stroke. Hemodynamic lag corresponded to gross aberrancy in functional connectivity measures, performance deficits in multiple domains and local and global perfusion deficits. Correcting for lag partially normalized abnormalities in measured functional connectivity. Yet post-stroke FC-behavior relationships in the motor and attention systems persisted even after hemodynamic delays were corrected. Resting state fMRI can reliably identify areas of hemodynamic delay following stroke. Our data reveal that hemodynamic delay is common sub-acutely, alters functional connectivity, and may be of clinical importance.

  19. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    ERIC Educational Resources Information Center

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  20. Sustained deep-tissue pain alters functional brain connectivity.

    PubMed

    Kim, Jieun; Loggia, Marco L; Edwards, Robert R; Wasan, Ajay D; Gollub, Randy L; Napadow, Vitaly

    2013-08-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, frontoparietal control, and default mode networks: SMN, SLN, DAN, FCN, and DMN) was evaluated with functional-connectivity magnetic resonance imaging, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable, with no significant changes of subjects' pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula, and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to interindividual differences in pain sensitivity.

  1. Assessing Thalamocortical Functional Connectivity with Granger Causality

    PubMed Central

    Israel, David; Thakor, Nitish V.; Jia, Xiaofeng

    2014-01-01

    Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in-vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks (p<10−10, t-test). Next, we characterized the relationship between the “electrical synaptic strength” in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus (1.983±0.278 times higher, p=0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain. PMID:23864221

  2. Assessing thalamocortical functional connectivity with Granger causality.

    PubMed

    Chen, Cheng; Maybhate, Anil; Israel, David; Thakor, Nitish V; Jia, Xiaofeng

    2013-09-01

    Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks ( , t -test). Next, we characterized the relationship between the "electrical synaptic strength" in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus ( 1.983±0.278 times higher, p = 0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain.

  3. Prestimulus functional connectivity determines pain perception in humans.

    PubMed

    Ploner, Markus; Lee, Michael C; Wiech, Katja; Bingel, Ulrike; Tracey, Irene

    2010-01-05

    Pain is a highly subjective experience that can be substantially influenced by differences in individual susceptibility as well as personality. How susceptibility to pain and personality translate to brain activity is largely unknown. Here, we report that the functional connectivity of two key brain areas before a sensory event reflects the susceptibility to a subsequent noxious stimulus being perceived as painful. Specifically, the prestimulus connectivity among brain areas related to the subjective perception of the body and to the modulation of pain (anterior insular cortex and brainstem, respectively) determines whether a noxious event is perceived as painful. Further, these effects of prestimulus connectivity on pain perception covary with pain-relevant personality traits. More anxious and pain-attentive individuals display weaker descending connectivity to pain modulatory brain areas. We conclude that variations in functional connectivity underlie personality-related differences in individual susceptibility to pain.

  4. Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates

    PubMed Central

    Hinne, Max; Janssen, Ronald J.; Heskes, Tom; van Gerven, Marcel A.J.

    2015-01-01

    Functional connectivity concerns the correlated activity between neuronal populations in spatially segregated regions of the brain, which may be studied using functional magnetic resonance imaging (fMRI). This coupled activity is conveniently expressed using covariance, but this measure fails to distinguish between direct and indirect effects. A popular alternative that addresses this issue is partial correlation, which regresses out the signal of potentially confounding variables, resulting in a measure that reveals only direct connections. Importantly, provided the data are normally distributed, if two variables are conditionally independent given all other variables, their respective partial correlation is zero. In this paper, we propose a probabilistic generative model that allows us to estimate functional connectivity in terms of both partial correlations and a graph representing conditional independencies. Simulation results show that this methodology is able to outperform the graphical LASSO, which is the de facto standard for estimating partial correlations. Furthermore, we apply the model to estimate functional connectivity for twenty subjects using resting-state fMRI data. Results show that our model provides a richer representation of functional connectivity as compared to considering partial correlations alone. Finally, we demonstrate how our approach can be extended in several ways, for instance to achieve data fusion by informing the conditional independence graph with data from probabilistic tractography. As our Bayesian formulation of functional connectivity provides access to the posterior distribution instead of only to point estimates, we are able to quantify the uncertainty associated with our results. This reveals that while we are able to infer a clear backbone of connectivity in our empirical results, the data are not accurately described by simply looking at the mode of the distribution over connectivity. The implication of this is that

  5. EEG Signatures of Dynamic Functional Network Connectivity States.

    PubMed

    Allen, E A; Damaraju, E; Eichele, T; Wu, L; Calhoun, V D

    2017-02-22

    The human brain operates by dynamically modulating different neural populations to enable goal directed behavior. The synchrony or lack thereof between different brain regions is thought to correspond to observed functional connectivity dynamics in resting state brain imaging data. In a large sample of healthy human adult subjects and utilizing a sliding windowed correlation method on functional imaging data, earlier we demonstrated the presence of seven distinct functional connectivity states/patterns between different brain networks that reliably occur across time and subjects. Whether these connectivity states correspond to meaningful electrophysiological signatures was not clear. In this study, using a dataset with concurrent EEG and resting state functional imaging data acquired during eyes open and eyes closed states, we demonstrate the replicability of previous findings in an independent sample, and identify EEG spectral signatures associated with these functional network connectivity changes. Eyes open and eyes closed conditions show common and different connectivity patterns that are associated with distinct EEG spectral signatures. Certain connectivity states are more prevalent in the eyes open case and some occur only in eyes closed state. Both conditions exhibit a state of increased thalamocortical anticorrelation associated with reduced EEG spectral alpha power and increased delta and theta power possibly reflecting drowsiness. This state occurs more frequently in the eyes closed state. In summary, we find a link between dynamic connectivity in fMRI data and concurrently collected EEG data, including a large effect of vigilance on functional connectivity. As demonstrated with EEG and fMRI, the stationarity of connectivity cannot be assumed, even for relatively short periods.

  6. ToolConnect: A Functional Connectivity Toolbox for In vitro Networks

    PubMed Central

    Pastore, Vito Paolo; Poli, Daniele; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo

    2016-01-01

    Nowadays, the use of in vitro reduced models of neuronal networks to investigate the interplay between structural-functional connectivity and the emerging collective dynamics is a widely accepted approach. In this respect, a relevant advance for this kind of studies has been given by the recent introduction of high-density large-scale Micro-Electrode Arrays (MEAs) which have favored the mapping of functional connections and the recordings of the neuronal electrical activity. Although, several toolboxes have been implemented to characterize network dynamics and derive functional links, no specifically dedicated software for the management of huge amount of data and direct estimation of functional connectivity maps has been developed. toolconnect offers the implementation of up to date algorithms and a user-friendly Graphical User Interface (GUI) to analyze recorded data from large scale networks. It has been specifically conceived as a computationally efficient open-source software tailored to infer functional connectivity by analyzing the spike trains acquired from in vitro networks coupled to MEAs. In the current version, toolconnect implements correlation- (cross-correlation, partial-correlation) and information theory (joint entropy, transfer entropy) based core algorithms, as well as useful and practical add-ons to visualize functional connectivity graphs and extract some topological features. In this work, we present the software, its main features and capabilities together with some demonstrative applications on hippocampal recordings. PMID:27065841

  7. ToolConnect: A Functional Connectivity Toolbox for In vitro Networks.

    PubMed

    Pastore, Vito Paolo; Poli, Daniele; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo

    2016-01-01

    Nowadays, the use of in vitro reduced models of neuronal networks to investigate the interplay between structural-functional connectivity and the emerging collective dynamics is a widely accepted approach. In this respect, a relevant advance for this kind of studies has been given by the recent introduction of high-density large-scale Micro-Electrode Arrays (MEAs) which have favored the mapping of functional connections and the recordings of the neuronal electrical activity. Although, several toolboxes have been implemented to characterize network dynamics and derive functional links, no specifically dedicated software for the management of huge amount of data and direct estimation of functional connectivity maps has been developed. toolconnect offers the implementation of up to date algorithms and a user-friendly Graphical User Interface (GUI) to analyze recorded data from large scale networks. It has been specifically conceived as a computationally efficient open-source software tailored to infer functional connectivity by analyzing the spike trains acquired from in vitro networks coupled to MEAs. In the current version, toolconnect implements correlation- (cross-correlation, partial-correlation) and information theory (joint entropy, transfer entropy) based core algorithms, as well as useful and practical add-ons to visualize functional connectivity graphs and extract some topological features. In this work, we present the software, its main features and capabilities together with some demonstrative applications on hippocampal recordings.

  8. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Unterhuber, Angelika; Prieto, Pedro M.; Hermann, Boris; Drexler, Wolfgang; Artal, Pablo

    2005-01-01

    A compact mode-locked Ti:sapphire laser, emitting a broad spectrum of 277 nm bandwidth, centered at 790 nm, was used to measure the dependence of the aberrations of the human eye with wavelength in the near infrared region. The aberrations were systematically measured with a Hartmann-Shack wave-front sensor at the following wavelengths: 700, 730, 750, 780, 800, 850, 870 and 900 nm, in four normal subjects. During the measurements, the wavelengths were selected by using 10 nm band-pass filters. We found that monochromatic high order aberrations, beyond defocus, were nearly constant across 700 to 900 nm wavelength in the four subjects. The average chromatic difference in defocus was 0.4 diopters in the considered wavelength band. The predictions of a simple water-eye model were compared with the experimental results in the near infrared. These results have potential applications in those situations where defocus or higher order aberration correction in the near infrared is required. This is the case of many imaging techniques: scanning laser ophthalmoscope, flood illumination fundus camera, or optical coherence tomography.

  9. The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy.

    PubMed

    Lupini, Andrew R; de Jonge, Niels

    2011-10-01

    Aberration correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional (3D) imaging by depth sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three dimensions in an attempt to better understand the depth resolution in this mode. Examples are presented of how aberrations change the probe shape in three dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full-width at half-maximum approaches that of the aberration-corrected STEM with a standard aperture.

  10. Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity.

    PubMed

    Jaspers, Ellen; Balsters, Joshua H; Kassraian Fard, Pegah; Mantini, Dante; Wenderoth, Nicole

    2017-03-01

    Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc.

  11. Amygdala-based intrinsic functional connectivity and anxiety disorders in adolescents and young adults.

    PubMed

    Toazza, Rudineia; Franco, Alexandre Rosa; Buchweitz, Augusto; Molle, Roberta Dalle; Rodrigues, Danitsa Marcos; Reis, Roberta Sena; Mucellini, Amanda Brondani; Esper, Nathalia Bianchini; Aguzzoli, Cristiano; Silveira, Patrícia Pelufo; Salum, Giovanni Abrahão; Manfro, Gisele Gus

    2016-11-30

    Anxiety disorders (AD) are the most prevalent group of psychiatric disorders in adolescents and young adults. Nevertheless, the pathophysiology of anxiety disorders is still poorly understood. This study investigated differences in the functional connectivity of intrinsic amygdala-based networks of participants with and without AD. Resting state fMRI data were obtained from 18 participants with an AD and 19 healthy comparison individuals. Psychiatric diagnosis was assessed using standardized structured interviews. The comparison between groups was carried out using functional connectivity maps from six seed regions defined using probabilistic maps bilaterally within the amygdala (basolateral, superficial and centromedial amygdala). We found significant between-group differences in five clusters, which showed aberrant functional connectivity with the left basolateral amygdala: right precentral gyrus, right cingulate gyrus, bilateral precuneus, and right superior frontal gyrus in subjects with AD as compared with the comparison subjects. For the comparison subjects, the correlations between the amygdala and the five clusters were either non-significant, or negative. The present study suggests there is an intrinsic disruption in the communication between left basolateral amygdala and a network of brain regions involved with emotion regulation, and with the default mode network in adolescents and young adults with anxiety disorders.

  12. The structure of Airy's stress function in multiply connected regions

    NASA Technical Reports Server (NTRS)

    Grioli, Giusippe

    1951-01-01

    In solving two-dimensional problems using Airy's stress function for multiply connected regions, the form of the function depends on the dislocations and boundary forces present. The structure of Airy's function is shown to consist of a part expressible in terms of boundary forces and a part expressible in the manner of Poincare. Meanings of the constants occurring in Poincare's expression are discussed.

  13. Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives.

    PubMed

    Shine, James M; Koyejo, Oluwasanmi; Bell, Peter T; Gorgolewski, Krzysztof J; Gilat, Moran; Poldrack, Russell A

    2015-11-15

    Functional connectivity provides an informative and powerful framework for exploring brain organization. Despite this, few statistical methods are available for the accurate estimation of dynamic changes in functional network architecture. To date, the majority of existing statistical techniques have assumed that connectivity structure is stationary, which is in direct contrast to emerging data that suggests that the strength of connectivity between regions is variable over time. Therefore, the development of statistical methods that enable exploration of dynamic changes in functional connectivity is currently of great importance to the neuroscience community. In this paper, we introduce the 'Multiplication of Temporal Derivatives' (MTD) and then demonstrate the utility of this metric to: (i) detect dynamic changes in connectivity using data from a novel state-switching simulation; (ii) accurately estimate graph structure in a previously-described 'ground-truth' simulated dataset; and (iii) identify task-driven alterations in functional connectivity. We show that the MTD is more sensitive than existing sliding-window methods in detecting dynamic alterations in connectivity structure across a range of correlation strengths and window lengths in simulated data. In addition to the temporal precision offered by MTD, we demonstrate that the metric is also able to accurately estimate stationary network structure in both simulated and real task-based data, suggesting that the method may be used to identify dynamic changes in network structure as they evolve through time.

  14. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    PubMed

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  15. Predicting individual brain functional connectivity using a Bayesian hierarchical model.

    PubMed

    Dai, Tian; Guo, Ying

    2017-02-15

    Network-oriented analysis of functional magnetic resonance imaging (fMRI), especially resting-state fMRI, has revealed important association between abnormal connectivity and brain disorders such as schizophrenia, major depression and Alzheimer's disease. Imaging-based brain connectivity measures have become a useful tool for investigating the pathophysiology, progression and treatment response of psychiatric disorders and neurodegenerative diseases. Recent studies have started to explore the possibility of using functional neuroimaging to help predict disease progression and guide treatment selection for individual patients. These studies provide the impetus to develop statistical methodology that would help provide predictive information on disease progression-related or treatment-related changes in neural connectivity. To this end, we propose a prediction method based on Bayesian hierarchical model that uses individual's baseline fMRI scans, coupled with relevant subject characteristics, to predict the individual's future functional connectivity. A key advantage of the proposed method is that it can improve the accuracy of individualized prediction of connectivity by combining information from both group-level connectivity patterns that are common to subjects with similar characteristics as well as individual-level connectivity features that are particular to the specific subject. Furthermore, our method also offers statistical inference tools such as predictive intervals that help quantify the uncertainty or variability of the predicted outcomes. The proposed prediction method could be a useful approach to predict the changes in individual patient's brain connectivity with the progression of a disease. It can also be used to predict a patient's post-treatment brain connectivity after a specified treatment regimen. Another utility of the proposed method is that it can be applied to test-retest imaging data to develop a more reliable estimator for individual

  16. Linking Functional Connectivity and Structural Connectivity Quantitatively: A Comparison of Methods.

    PubMed

    Huang, Haiqing; Ding, Mingzhou

    2016-03-01

    Structural connectivity in the brain is the basis of functional connectivity. Quantitatively linking the two, however, remains a challenge. For a pair of regions of interest (ROIs), anatomical connections derived from diffusion-weighted imaging are often quantified by fractional anisotropy (FA) or edge weight, whereas functional connections, derived from resting-state functional magnetic resonance imaging, can be characterized by non-time-series measures such as zero-lag cross correlation and partial correlation, as well as by time-series measures such as coherence and Granger causality. In this study, we addressed the question of linking structural connectivity and functional connectivity quantitatively by considering two pairs of ROIs, one from the default mode network (DMN) and the other from the central executive network (CEN), using two different data sets. Selecting (1) posterior cingulate cortex and medial prefrontal cortex of the DMN as the first pair of ROIs and (2) left dorsal lateral prefrontal cortex and left inferior parietal lobule of the CEN as the second pair of ROIs, we show that (1) zero-lag cross correlation, partial correlation, and pairwise Granger causality were not significantly correlated with either mean FA or edge weight and (2) conditional Granger causality (CGC) was significantly correlated with edge weight but not with mean FA. These results suggest that (1) edge weight may be a more appropriate measure to quantify the strength of the anatomical connection between ROIs and (2) CGC, which statistically removes common input and the indirect influences between a given ROI pair, may be a more appropriate measure to quantify the strength of the functional interaction enabled by the fibers linking the two ROIs.

  17. Synthesis and functionalization of a triaryldiamine-base photoconductive/photorefractive composite, and its application to aberrated image restoration

    NASA Astrophysics Data System (ADS)

    Liang, Yichen

    Organic phoorefractive (PR) composites have recently emerged as an important class of materials for applications including high-density data storage, optical communication, and biomedical imaging. In an effort to further improve their performance, this study focused on the utilization of functionalized semiconductor nanocrystals to photosensitize triaryamine (TPD)-based PR composites, as well as the application of TPD-based PR composites in the restoration of aberrated optical information. A novel approach to functionalize CdSe quantum dot (QCdSe) was firstly introduced where the sulfonated triarydiamine (STPD) was used as charge-transporting ligand to passivate QCdSe. TPD-based photoconductive and PR composites were photosensitized with the STPD-passivated QCdSe (SQCdSe). Due to the charge-transporting capability of STPD, the composites photosensitized with STPD-capped QCdSe exhibited superior performance relative to composites employing more traditional photosensitizers (such as fullerene C60 and trioctylphosphine-capped QCdSe), with figures-of-merit including photoconductivities in excess of 60 pS/cm, two-beam coupling gain coefficients in excess of 110 cm-1, and PR response time of less than 30 ms. In addition, the ability of TPD-based PR composites to correct aberrations associated with a laser beam was described. Here, a severely aberrated laser beam was able to be restored to a nearly unaberrated condition through the PR process, and the potential of this technique for practical applications was well explained. Based on the current experimental geometry, a PR response time of 0.5 s was observed, which is the fastest PR response time reported for a PR composite operating under experimental conditions designed for the correction of optical aberrations.

  18. Functional connectivity networks for preoperative brain mapping in neurosurgery.

    PubMed

    Hart, Michael G; Price, Stephen J; Suckling, John

    2016-08-26

    OBJECTIVE Resection of focal brain lesions involves maximizing the resection while preserving brain function. Mapping brain function has entered a new era focusing on distributed connectivity networks at "rest," that is, in the absence of a specific task or stimulus, requiring minimal participant engagement. Central to this frame shift has been the development of methods for the rapid assessment of whole-brain connectivity with functional MRI (fMRI) involving blood oxygenation level-dependent imaging. The authors appraised the feasibility of fMRI-based mapping of a repertoire of functional connectivity networks in neurosurgical patients with focal lesions and the potential benefits of resting-state connectivity mapping for surgical planning. METHODS Resting-state fMRI sequences with a 3-T scanner and multiecho echo-planar imaging coupled to independent component analysis were acquired preoperatively from 5 study participants who had a right temporoparietooccipital glioblastoma. Seed-based functional connectivity analysis was performed with InstaCorr. Network identification focused on 7 major functional connectivity networks described in the literature and a putative language network centered on Broca's area. RESULTS All 8 functional connectivity networks were identified in each participant. Tumor-related topological changes to the default mode network were observed in all participants. In addition, each participant had at least 1 other abnormal network, and each network was abnormal in at least 1 participant. Individual patterns of network irregularities were identified with a qualitative approach and included local displacement due to mass effect, loss of a functional network component, and recruitment of new regions. CONCLUSIONS Resting-state fMRI can reliably and rapidly detect common functional connectivity networks in patients with glioblastoma and also has sufficient sensitivity for identifying patterns of network alterations. Mapping of functional

  19. Microstructural and functional connectivity in the developing preterm brain.

    PubMed

    Lubsen, Julia; Vohr, Betty; Myers, Eliza; Hampson, Michelle; Lacadie, Cheryl; Schneider, Karen C; Katz, Karol H; Constable, R Todd; Ment, Laura R

    2011-02-01

    Prematurely born children are at increased risk for cognitive deficits, but the neurobiological basis of these findings remains poorly understood. Because variations in neural circuitry may influence performance on cognitive tasks, recent investigations have explored the impact of preterm birth on connectivity in the developing brain. Diffusion tensor imaging studies demonstrate widespread alterations in fractional anisotropy, a measure of axonal integrity and microstructural connectivity, throughout the developing preterm brain. Functional connectivity studies report that preterm neonates, children and adolescents exhibit alterations in both resting state and task-based connectivity when compared with term control subjects. Taken together, these data suggest that neurodevelopmental impairment following preterm birth may represent a disease of neural connectivity.

  20. Hyper-connectivity of functional networks for brain disease diagnosis

    PubMed Central

    Jie, Biao; Wee, Chong-Yaw

    2017-01-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer’s disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also

  1. Online detection of low-frequency functional connectivity

    NASA Astrophysics Data System (ADS)

    Peltier, Scott J.; LaConte, Stephen M.; Hu, Xiaoping

    2004-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (<0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a pontential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states (such as cocaine injection). Thus, detection of these functional connectivity patterns may help to serve as a guage of normal brain activity. Currently, functional connectivity detection is applied only in offline post-processing analysis. Online detection methods have been applied to detect task activation in functional MRI. This allows real-time analysis of fMRI results, and could be important in detecting short-term changes in functional states. In this work, we develop an outline algorithm to detect low frequency resting state functional connectivity in real time. This will extend connectivity analysis to allow online detection of changes in "resting state" brain networks.

  2. Functional Connectivity of the Dorsal Striatum in Female Musicians

    PubMed Central

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective. PMID:27148025

  3. Cannabinoid Modulation of Functional Connectivity within Regions Processing Attentional Salience

    PubMed Central

    Bhattacharyya, Sagnik; Falkenberg, Irina; Martin-Santos, Rocio; Atakan, Zerrin; Crippa, Jose A; Giampietro, Vincent; Brammer, Mick; McGuire, Philip

    2015-01-01

    There is now considerable evidence to support the hypothesis that psychotic symptoms are the result of abnormal salience attribution, and that the attribution of salience is largely mediated through the prefrontal cortex, the striatum, and the hippocampus. Although these areas show differential activation under the influence of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), the two major derivatives of cannabis sativa, little is known about the effects of these cannabinoids on the functional connectivity between these regions. We investigated this in healthy occasional cannabis users by employing event-related functional magnetic resonance imaging (fMRI) following oral administration of delta-9-THC, CBD, or a placebo capsule. Employing a seed cluster-based functional connectivity analysis that involved using the average time series from each seed cluster for a whole-brain correlational analysis, we investigated the effect of drug condition on functional connectivity between the seed clusters and the rest of the brain during an oddball salience processing task. Relative to the placebo condition, delta-9-THC and CBD had opposite effects on the functional connectivity between the dorsal striatum, the prefrontal cortex, and the hippocampus. Delta-9-THC reduced fronto-striatal connectivity, which was related to its effect on task performance, whereas this connection was enhanced by CBD. Conversely, mediotemporal-prefrontal connectivity was enhanced by delta-9-THC and reduced by CBD. Our results suggest that the functional integration of brain regions involved in salience processing is differentially modulated by single doses of delta-9-THC and CBD and that this relates to the processing of salient stimuli. PMID:25249057

  4. Small-world topology of functional connectivity in randomly connected dynamical systems.

    PubMed

    Hlinka, J; Hartman, D; Paluš, M

    2012-09-01

    Characterization of real-world complex systems increasingly involves the study of their topological structure using graph theory. Among global network properties, small-world property, consisting in existence of relatively short paths together with high clustering of the network, is one of the most discussed and studied. When dealing with coupled dynamical systems, links among units of the system are commonly quantified by a measure of pairwise statistical dependence of observed time series (functional connectivity). We argue that the functional connectivity approach leads to upwardly biased estimates of small-world characteristics (with respect to commonly used random graph models) due to partial transitivity of the accepted functional connectivity measures such as the correlation coefficient. In particular, this may lead to observation of small-world characteristics in connectivity graphs estimated from generic randomly connected dynamical systems. The ubiquity and robustness of the phenomenon are documented by an extensive parameter study of its manifestation in a multivariate linear autoregressive process, with discussion of the potential relevance for nonlinear processes and measures.

  5. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  6. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p < 0.05). Similarly, when compared to extremely preterm neonates without exposure to prenatal stress, extremely preterm neonates with exposure to prenatal stress show significantly less connectivity between the left amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p < 0.05). Exploratory analysis of the combined cohorts suggests additive effects of prenatal stress on alterations in amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these

  7. BOLD signal and functional connectivity associated with loving kindness meditation.

    PubMed

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-05-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as "may all beings be happy," to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices.

  8. Changes in functional connectivity support conscious object recognition.

    PubMed

    Imamoglu, Fatma; Kahnt, Thorsten; Koch, Christof; Haynes, John-Dylan

    2012-12-01

    What are the brain mechanisms that mediate conscious object recognition? To investigate this question, it is essential to distinguish between brain processes that cause conscious recognition of a stimulus from other correlates of its sensory processing. Previous fMRI studies have identified large-scale brain activity ranging from striate to high-level sensory and prefrontal regions associated with conscious visual perception or recognition. However, the possible role of changes in connectivity during conscious perception between these regions has only rarely been studied. Here, we used fMRI and connectivity analyses, together with 120 custom-generated, two-tone, Mooney images to directly assess whether conscious recognition of an object is accompanied by a dynamical change in the functional coupling between extrastriate cortex and prefrontal areas. We compared recognizing an object versus not recognizing it in 19 naïve subjects using two different response modalities. We find that connectivity between the extrastriate cortex and the dorsolateral prefrontal cortex (DLPFC) increases when objects are consciously recognized. This interaction was independent of the response modality used to report conscious recognition. Furthermore, computing the difference in Granger causality between recognized and not recognized conditions reveals stronger feedforward connectivity than feedback connectivity when subjects recognized the objects. We suggest that frontal and visual brain regions are part of a functional network that supports conscious object recognition by changes in functional connectivity.

  9. Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex.

    PubMed

    Chen, Yu-Chen; Xia, Wenqing; Chen, Huiyou; Feng, Yuan; Xu, Jin-Jing; Gu, Jian-Ping; Salvi, Richard; Yin, Xindao

    2017-01-23

    The phantom sound of tinnitus is believed to be triggered by aberrant neural activity in the central auditory pathway, but since this debilitating condition is often associated with emotional distress and anxiety, these comorbidities likely arise from maladaptive functional connections to limbic structures such as the amygdala and hippocampus. To test this hypothesis, resting-state functional magnetic resonance imaging (fMRI) was used to identify aberrant effective connectivity of the amygdala and hippocampus in tinnitus patients and to determine the relationship with tinnitus characteristics. Chronic tinnitus patients (n = 26) and age-, sex-, and education-matched healthy controls (n = 23) were included. Both groups were comparable for hearing level. Granger causality analysis utilizing the amygdala and hippocampus as seed regions were used to investigate the directional connectivity and the relationship with tinnitus duration or distress. Relative to healthy controls, tinnitus patients demonstrated abnormal directional connectivity of the amygdala and hippocampus, including primary and association auditory cortex, and other non-auditory areas. Importantly, scores on the Tinnitus Handicap Questionnaires were positively correlated with increased connectivity from the left amygdala to left superior temporal gyrus (r = 0.570, P = 0.005), and from the right amygdala to right superior temporal gyrus (r = 0.487, P = 0.018). Moreover, enhanced effective connectivity from the right hippocampus to left transverse temporal gyrus was correlated with tinnitus duration (r = 0.452, P = 0.030). The results showed that tinnitus distress strongly correlates with enhanced effective connectivity that is directed from the amygdala to the auditory cortex. The longer the phantom sensation, the more likely acute tinnitus becomes permanently encoded by memory traces in the hippocampus. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  10. Parietal Hyper-Connectivity, Aberrant Brain Organization, and Circuit-Based Biomarkers in Children with Mathematical Disabilities

    ERIC Educational Resources Information Center

    Jolles, Dietsje; Ashkenazi, Sarit; Kochalka, John; Evans, Tanya; Richardson, Jennifer; Rosenberg-Lee, Miriam; Zhao, Hui; Supekar, Kaustubh; Chen, Tianwen; Menon, Vinod

    2016-01-01

    Mathematical disabilities (MD) have a negative life-long impact on professional success, employment, and health outcomes. Yet little is known about the intrinsic functional brain organization that contributes to poor math skills in affected children. It is now increasingly recognized that math cognition requires coordinated interaction within a…

  11. Mapping Functional Connectivity in Patients with Brain Lesions

    PubMed Central

    Guggisberg, Adrian G.; Honma, Susanne M.; Findlay, Anne M.; Dalal, Sarang S.; Kirsch, Heidi E.; Berger, Mitchel S.; Nagarajan, Srikantan S.

    2013-01-01

    OBJECTIVE Although electrophysiological measures of functional connectivity between brain areas are widely used, the spatial distribution of functional interactions as well as the disturbance introduced by focal brain lesions remains poorly understood. Based on the rationale that damaged brain tissue can be expected to be disconnected from the physiological interactions among healthy areas, this study aimed to map the functionality of brain areas according to their connectivity with other areas. METHODS Magnetoencephalographic (MEG) recordings of spontaneous cortical activity during resting state were obtained from 15 consecutive patients with focal brain lesions and from 14 healthy controls. Neural activity at each volume element (voxel) in the brain was estimated using an adaptive spatial filtering technique. For each brain voxel, the mean imaginary coherence of all its connections with other brain voxels was then caluculated as an index of functional connectivity, and the results compared across brain regions and between subjects. RESULTS The magnitude of the mean imaginary coherence of all voxels and subjects was greatest in the alpha frequency range corresponding to the human cortical idling rhythm. In healthy subjects, functionally critical brain areas such as the somatosensory and language cortices had the highest alpha coherence. When compared to healthy controls, all lesion patients had diffuse or scattered brain areas with decreased coherence. Patients with lesion-induced neurological deficits displayed decreased connectivity estimates in the corresponding brain area compared to intact contralateral regions. In tumor patients without preoperative neurological deficits, brain areas showing decreased coherence could be surgically resected without the occurrence of post-surgical deficits. CONCLUSION Resting state coherence measured with MEG is capable of mapping the functional connectivity of the brain, and can therefore offer valuable information for use in

  12. Functional Connectivity Disruption in Neonates with Prenatal Marijuana Exposure

    PubMed Central

    Grewen, Karen; Salzwedel, Andrew P.; Gao, Wei

    2015-01-01

    Prenatal marijuana exposure (PME) is linked to neurobehavioral and cognitive impairments; however, findings in childhood and adolescence are inconsistent. Type-1 cannabinoid receptors (CB1R) modulate fetal neurodevelopment, mediating PME effects on growth of functional circuitry sub-serving behaviors critical for academic and social success. The purpose of this study was to investigate the effects of prenatal marijuana on development of early brain functional circuitry prior to prolonged postnatal environmental influences. We measured resting state functional connectivity during unsedated sleep in infants at 2–6 weeks (+MJ: 20 with PME in combination with nicotine, alcohol, opiates, and/or selective serotonin reuptake inhibitors; −MJ: 23 exposed to the same other drugs without marijuana, CTR: 20 drug-free controls). Connectivity of subcortical seed regions with high fetal CB1R expression was examined. Marijuana-specific differences were observed in insula and three striatal connections: anterior insula–cerebellum, right caudate–cerebellum, right caudate–right fusiform gyrus/inferior occipital, left caudate–cerebellum. +MJ neonates had hypo-connectivity in all clusters compared with −MJ and CTR groups. Altered striatal connectivity to areas involved in visual spatial and motor learning, attention, and in fine-tuning of motor outputs involved in movement and language production may contribute to neurobehavioral deficits reported in this at-risk group. Disrupted anterior insula connectivity may contribute to altered integration of interoceptive signals with salience estimates, motivation, decision-making, and later drug use. Compared with CTRs, both +MJ and −MJ groups demonstrated hyper-connectivity of left amygdala seed with orbital frontal cortex and hypo-connectivity of posterior thalamus seed with hippocampus, suggesting vulnerability to multiple drugs in these circuits. PMID:26582983

  13. Functional connectivity changes in second language vocabulary learning.

    PubMed

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005).

  14. Multi-neuronal activity and functional connectivity in cell assemblies.

    PubMed

    Roudi, Yasser; Dunn, Benjamin; Hertz, John

    2015-06-01

    Our ability to collect large amounts of data from many cells has been paralleled by the development of powerful statistical models for extracting information from this data. Here we discuss how the activity of cell assemblies can be analyzed using these models, focusing on the generalized linear models and the maximum entropy models and describing a number of recent studies that employ these tools for analyzing multi-neuronal activity. We show results from simulations comparing inferred functional connectivity, pairwise correlations and the real synaptic connections in simulated networks demonstrating the power of statistical models in inferring functional connectivity. Further development of network reconstruction techniques based on statistical models should lead to more powerful methods of understanding functional anatomy of cell assemblies.

  15. Amygdala Functional Connectivity is Reduced After the Cold Pressor Task

    PubMed Central

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-01-01

    The amygdala forms a crucial link between central pain and stress systems. There is much evidence that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults’ resting-state amygdala functional connectivity following a cold pressor versus control task, with the stressor and control conditions conducted on different days. During the period of peak cortisol response to acute stress (approximately fifteen to thirty minutes after stressor onset), participants were asked to rest for six minutes with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex (VMPFC), which occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (dACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of post-stressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15–30 minutes after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback. PMID:23645370

  16. Amygdala functional connectivity is reduced after the cold pressor task.

    PubMed

    Clewett, David; Schoeke, Andrej; Mather, Mara

    2013-09-01

    The amygdala forms a crucial link between central pain and stress systems. Previous research indicates that psychological stress affects amygdala activity, but it is less clear how painful stressors influence subsequent amygdala functional connectivity. In the present study, we used pulsed arterial spin labeling (PASL) to investigate differences in healthy male adults' resting-state amygdala functional connectivity following a cold pressor versus a control task, with the stressor and control conditions being conducted on different days. During the period of peak cortisol response to acute stress (approximately 15-30 min after stressor onset), participants were asked to rest for 6 min with their eyes closed during a PASL scanning sequence. The cold pressor task led to reduced resting-state functional connectivity between the amygdalae and orbitofrontal cortex (OFC) and ventromedial prefrontal cortex, and this occurred irrespective of cortisol release. The stressor also induced greater inverse connectivity between the left amygdala and dorsal anterior cingulate cortex (ACC), a brain region implicated in the down-regulation of amygdala responsivity. Furthermore, the degree of poststressor left amygdala decoupling with the lateral OFC varied according to self-reported pain intensity during the cold pressor task. These findings indicate that the cold pressor task alters amygdala interactions with prefrontal and ACC regions 15-30 min after the stressor, and that these altered functional connectivity patterns are related to pain perception rather than cortisol feedback.

  17. The functional logic of cortico-pulvinar connections.

    PubMed

    Shipp, S

    2003-10-29

    The pulvinar is an 'associative' thalamic nucleus, meaning that most of its input and output relationships are formed with the cerebral cortex. The function of this circuitry is little understood and its anatomy, though much investigated, is notably recondite. This is because pulvinar connection patterns disrespect the architectural subunits (anterior, medial, lateral and inferior pulvinar nuclei) that have been the traditional reference system. This article presents a simplified, global model of the organization of cortico-pulvinar connections so as to pursue their structure-function relationships. Connections between the cortex and pulvinar are topographically organized, and as a result the pulvinar contains a 'map' of the cortical sheet. However, the topography is very blurred. Hence the pulvinar connection zones of nearby cortical areas overlap, allowing indirect transcortical communication via the pulvinar. A general observation is that indirect cortico-pulvino-cortical circuits tend to mimic direct cortico-cortical pathways: this is termed 'the replication principle'. It is equally apt for certain pairs (or groups) of nearby cortical areas that happen not to connect with each other. The 'replication' of this non-connection is achieved by discontinuities and dislocations of the cortical topography within the pulvinar, such that the associated pair of connection zones do not overlap. Certain of these deformations can be used to divide the global cortical topography into specific sub-domains, which form the natural units of a connectional subdivision of the pulvinar. A substantial part of the pulvinar also expresses visual topography, reflecting visual maps in occipital cortex. There are just two well-ordered visual maps in the pulvinar, that both receive projections from area V1, and several other occipital areas; the resulting duplication of cortical topography means that each visual map also acts as a separate connection domain. In summary, the model

  18. Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure.

    PubMed

    Liu, Feng; Wang, Yifeng; Li, Meiling; Wang, Wenqin; Li, Rong; Zhang, Zhiqiang; Lu, Guangming; Chen, Huafu

    2017-02-01

    Idiopathic generalized epilepsy (IGE) has been linked with disrupted intra-network connectivity of multiple resting-state networks (RSNs); however, whether impairment is present in inter-network interactions between RSNs, remains largely unclear. Here, 50 patients with IGE characterized by generalized tonic-clonic seizures (GTCS) and 50 demographically matched healthy controls underwent resting-state fMRI scans. A dynamic method was implemented to investigate functional network connectivity (FNC) in patients with IGE-GTCS. Specifically, independent component analysis was first carried out to extract RSNs, and then sliding window correlation approach was employed to obtain dynamic FNC patterns. Finally, k-mean clustering was performed to characterize six discrete functional connectivity states, and state analysis was conducted to explore the potential alterations in FNC and other dynamic metrics. Our results revealed that state-specific FNC disruptions were observed in IGE-GTCS and the majority of aberrant functional connectivity manifested itself in default mode network. In addition, temporal metrics derived from state transition vectors were altered in patients including the total number of transitions across states and the mean dwell time, the fraction of time spent and the number of subjects in specific FNC state. Furthermore, the alterations were significantly correlated with disease duration and seizure frequency. It was also found that dynamic FNC could distinguish patients with IGE-GTCS from controls with an accuracy of 77.91% (P < 0.001). Taken together, this study not only provided novel insights into the pathophysiological mechanisms of IGE-GTCS but also suggested that the dynamic FNC analysis was a promising avenue to deepen our understanding of this disease. Hum Brain Mapp 38:957-973, 2017. © 2016 Wiley Periodicals, Inc.

  19. Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder

    PubMed Central

    Chen, Shuo; Xing, Yishi; Kang, Jian

    2017-01-01

    Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD. PMID:28377688

  20. Functional connectivity when detecting rare visual targets in schizophrenia.

    PubMed

    Jimenez, Amy M; Lee, Junghee; Green, Michael F; Wynn, Jonathan K

    2017-03-30

    Individuals with schizophrenia demonstrate difficulties in attending to important stimuli (e.g., targets) and ignoring distractors (e.g., non-targets). We used a visual oddball task during fMRI to examine functional connectivity within and between the ventral and dorsal attention networks to determine the relative contribution of each network to detection of rare visual targets in schizophrenia. The sample comprised 25 schizophrenia patients and 27 healthy controls. Psychophysiological interaction analysis was used to examine whole-brain functional connectivity in response to targets. We used the right temporo parietal junction (TPJ) as the seed region for the ventral network and the right medial intraparietal sulcus (IPS) as the seed region for the dorsal network. We found that connectivity between right IPS and right anterior insula (AI; a component of the ventral network) was significantly greater in controls than patients. Expected patterns of within- and between-network connectivity for right TPJ were observed in controls, and not significantly different in patients. These findings indicate functional connectivity deficits between the dorsal and ventral attention networks in schizophrenia that may create problems in processing relevant versus irrelevant stimuli. Understanding the nature of network disruptions underlying cognitive deficits of schizophrenia may help shed light on the pathophysiology of this disorder.

  1. Bayesian network models in brain functional connectivity analysis

    PubMed Central

    Zhang, Sheng; Li, Chiang-shan R.

    2013-01-01

    Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and when expert prior knowledge is needed. However, little is done to explore the use of BN in connectivity analysis of fMRI data. In this paper, we present an up-to-date literature review and methodological details of connectivity analyses using BN, while highlighting caveats in a real-world application. We present a BN model of fMRI dataset obtained from sixty healthy subjects performing the stop-signal task (SST), a paradigm widely used to investigate response inhibition. Connectivity results are validated with the extant literature including our previous studies. By exploring the link strength of the learned BN’s and correlating them to behavioral performance measures, this novel use of BN in connectivity analysis provides new insights to the functional neural pathways underlying response inhibition. PMID:24319317

  2. Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism.

    PubMed

    Cooper, Rose A; Richter, Franziska R; Bays, Paul M; Plaisted-Grant, Kate C; Baron-Cohen, Simon; Simons, Jon S

    2017-02-01

    Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding-related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto-parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection-related retrieval deficits in this population.

  3. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    PubMed

    Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  4. Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving

    PubMed Central

    Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.

    2009-01-01

    Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354

  5. Methylphenidate Modulates Functional Network Connectivity to Enhance Attention

    PubMed Central

    Zhang, Sheng; Hsu, Wei-Ting; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Constable, R. Todd; Li, Chiang-Shan R.; Chun, Marvin M.

    2016-01-01

    Recent work has demonstrated that human whole-brain functional connectivity patterns measured with fMRI contain information about cognitive abilities, including sustained attention. To derive behavioral predictions from connectivity patterns, our group developed a connectome-based predictive modeling (CPM) approach (Finn et al., 2015; Rosenberg et al., 2016). Previously using CPM, we defined a high-attention network, comprising connections positively correlated with performance on a sustained attention task, and a low-attention network, comprising connections negatively correlated with performance. Validating the networks as generalizable biomarkers of attention, models based on network strength at rest predicted attention-deficit/hyperactivity disorder (ADHD) symptoms in an independent group of individuals (Rosenberg et al., 2016). To investigate whether these networks play a causal role in attention, here we examined their strength in healthy adults given methylphenidate (Ritalin), a common ADHD treatment, compared with unmedicated controls. As predicted, individuals given methylphenidate showed patterns of connectivity associated with better sustained attention: higher high-attention and lower low-attention network strength than controls. There was significant overlap between the high-attention network and a network with greater strength in the methylphenidate group, and between the low-attention network and a network with greater strength in the control group. Network strength also predicted behavior on a stop-signal task, such that participants with higher go response rates showed higher high-attention and lower low-attention network strength. These results suggest that methylphenidate acts by modulating functional brain networks related to sustained attention, and that changing whole-brain connectivity patterns may help improve attention. SIGNIFICANCE STATEMENT Recent work identified a promising neuromarker of sustained attention based on whole

  6. Adult Age Differences in Functional Connectivity during Executive Control

    PubMed Central

    Madden, David J.; Costello, Matthew C.; Dennis, Nancy A.; Davis, Simon W.; Shepler, Anne M.; Spaniol, Julia; Bucur, Barbara; Cabeza, Roberto

    2010-01-01

    Task switching requires executive control processes that undergo age-related decline. Previous neuroimaging studies have identified age-related differences in brain activation associated with global switching effects (dual-task blocks vs. single-task blocks), but age-related differences in activation during local switching effects (switch trials vs. repeat trials, within blocks) have not been investigated. This experiment used functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI), to examine adult age differences in task switching across adjacent trials (i.e., local task switching). During fMRI scanning, participants performed a cued, word categorization task. From interspersed cue-only trials, switch-related processing associated with the cue was estimated separately from the target. Activation associated with task switching, within a distributed frontoparietal network, differed for cue- and target-related processing. The magnitude of event-related activation for task switching was similar for younger adults (n = 20; 18-27 years) and older adults (n = 20; 60-85 years), although activation sustained throughout the on-tasks periods exhibited some age-related decline. Critically, the functional connectivity of switch-related regions, during cue processing, was higher for younger adults than for older adults, whereas functional connectivity during target processing was comparable across the age groups. Further, individual differences in cue-related functional connectivity shared a substantial portion of the age-related variability in the efficiency of target categorization response (drift rate). This age-related difference in functional connectivity, however, was independent of white matter integrity within task-relevant regions. These findings highlight the functional connectivity of frontoparietal activation as a potential source of age-related decline in executive control. PMID:20434565

  7. The contribution of electrophysiology to functional connectivity mapping

    PubMed Central

    Schölvinck, Marieke L; Leopold, David A; Brookes, Matthew J; Khader, Patrick H

    2014-01-01

    A powerful way to probe brain function is to assess the relationship between simultaneous changes in activity across different parts of the brain. In recent years, the temporal activity correlation between brain areas has frequently been taken as a measure of their functional connections. Evaluating ‘functional connectivity’ in this way is particularly popular in the fMRI community, but has also drawn interest among electrophysiologists. Like hemodynamic fluctuations observed with fMRI, electrophysiological signals display significant temporal fluctuations, even in the absence of a stimulus. These neural fluctuations exhibit correlational structure over a wide range of spatial and temporal scales. Initial evidence suggests that certain aspects of this correlational structure bear a high correspondence to so-called functional networks defined using fMRI. The growing family of methods to study activity covariation, combined with the diverse neural mechanisms that contribute to the spontaneous fluctuations, have somewhat blurred the operational concept of functional connectivity. What is clear is that spontaneous activity is a conspicuous, energy-consuming feature of the brain. Given its prominence and its practical applications for the functional connectivity mapping of brain networks, it is of increasing importance that we understand its neural origins as well as its contribution to normal brain function. PMID:23587686

  8. Functional Connectivity Homogeneity Correlates with Duration of Temporal Lobe Epilepsy

    PubMed Central

    Haneef, Zulfi; Chiang, Sharon; Yeh, Hsiang J.; Engel, Jerome; Stern, John M.

    2015-01-01

    Temporal lobe epilepsy (TLE) often is associated with progressive changes to seizures, memory, and mood during its clinical course. However, the cerebral changes related to this progression are not well understood. Because the changes may be related to changes in brain networks, we used functional connectivity MRI (fcMRI) to determine whether brain network parameters relate to the duration of TLE. Graph theory based analysis of the sites of reported regions of TLE abnormality, was performed on resting state fMRI data in 48 subjects: 24 controls, 13 patients with left TLE, and 11 patients with right TLE. Various network parameters were analyzed including betweenness centrality (BC), clustering coefficient (CC), path length (PL), small-world index (SWI), global efficiency (GE), connectivity strength (CS), and connectivity diversity (CD). These were compared for TLE as a group, compared to controls, and for left and right TLE separately. Association of changes in network parameters with epilepsy duration was also evaluated. We found that CC, CS and CD were decreased in TLE, compared to control subjects. Analyzed according to epilepsy duration, TLE showed a progressive reduction in CD. In conclusion, we found that several network parameters were decreased in TLE compared to controls, which suggested reduced connectivity in TLE. Reduction in CD associated with epilepsy duration suggests a homogenization of connections over time in TLE, indicating a reduction of the normal repertoire of stronger and weaker connections to other brain regions. PMID:25873437

  9. Functional Connectivity Changes in Second Language Vocabulary Learning

    ERIC Educational Resources Information Center

    Saidi, Ladan Ghazi; Perlbarg, Vincent; Marrelec, Guillaume; Pelegrini-Issac, Melani; Benali, Habib; Ansaldo, Ana-Ines

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec,…

  10. Dynamic functional connectivity shapes individual differences in associative learning.

    PubMed

    Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal

    2016-11-01

    Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc.

  11. Real-time estimation of dynamic functional connectivity networks.

    PubMed

    Monti, Ricardo Pio; Lorenz, Romy; Braga, Rodrigo M; Anagnostopoulos, Christoforos; Leech, Robert; Montana, Giovanni

    2017-01-01

    Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.

  12. The study of brain functional connectivity in Parkinson's disease.

    PubMed

    Gao, Lin-Lin; Wu, Tao

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder primarily affecting the aging population. The neurophysiological mechanisms underlying parkinsonian symptoms remain unclear. PD affects extensive neural networks and a more thorough understanding of network disruption will help bridge the gap between known pathological changes and observed clinical presentations in PD. Development of neuroimaging techniques, especially functional magnetic resonance imaging, allows for detection of the functional connectivity of neural networks in patients with PD. This review aims to provide an overview of current research involving functional network disruption in PD relating to motor and non-motor symptoms. Investigations into functional network connectivity will further our understanding of the mechanisms underlying the effectiveness of clinical interventions, such as levodopa and deep brain stimulation treatment. In addition, identification of PD-specific neural network patterns has the potential to aid in the development of a definitive diagnosis of PD.

  13. Quantification of neural functional connectivity during an active avoidance task.

    PubMed

    Silva, Catia S; Hazrati, Mehrnaz K; Keil, Andreas; Principe, Jose C; Silva, Catia S; Hazrati, Mehrnaz K; Keil, Andreas; Principe, Jose C; Keil, Andreas; Principe, Jose C; Hazrati, Mehrnaz K; Silva, Catia S

    2016-08-01

    Many behavioral and cognitive processes are associated with spatiotemporal dynamic communication between brain areas. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, brain functional network quantification from EEG recordings has been commonly used in a qualitative manner. In this paper, we consider pairwise dependence measures as random variables and estimate the pdf for each electrode of the arrangement. A metric imposed by the quadratic Cauchy-Schwartz Mutual Information quantifies these pdfs. We present the results by brain regions simplifying the analysis and visualization drastically. The proposed metric of functional connectivity quantification is addressed for temporal dependencies of the brain network that can be related to the task.

  14. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.

    PubMed

    Yeo, B T Thomas; Tandi, Jesisca; Chee, Michael W L

    2015-05-01

    Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during the well-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested state became less so following sleep deprivation, suggesting that highly segregated networks become less segregated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregated cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical-cortical connectivity was comparable across resilient and vulnerable groups despite prominent state-related changes in both groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible value in regressing whole brain signal in certain experimental contexts.

  15. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    PubMed Central

    Belcher, Annabelle M.; Yen, Cecil Chern-Chyi; Notardonato, Lucia; Ross, Thomas J.; Volkow, Nora D.; Yang, Yihong; Stein, Elliot A.; Silva, Afonso C.; Tomasi, Dardo

    2016-01-01

    In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or “hubs”, and we have recently proposed local functional connectivity density (lFCD) mapping to identify highly-connected nodes in the human brain. Here, we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains FC hubs. Ten adult common marmosets (Callithrix jacchus) were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2), higher-order visual association areas (A19M/V6[DM]), posterior parietal and posterior cingulate areas (PGM and A23b/A31), thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a). lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology. PMID:26973476

  16. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects.

    PubMed

    Park, Jong G; Tischfield, Max A; Nugent, Alicia A; Cheng, Long; Di Gioia, Silvio Alessandro; Chan, Wai-Man; Maconachie, Gail; Bosley, Thomas M; Summers, C Gail; Hunter, David G; Robson, Caroline D; Gottlob, Irene; Engle, Elizabeth C

    2016-06-02

    Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.

  17. A Preliminary Study of Functional Connectivity in Comorbid Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Gee, Dylan G.; Klimes-Dougan, Bonnie; Gabbay, Vilma; Hulvershorn, Leslie; Mueller, Bryon A.; Camchong, Jazmin; Bell, Christopher J.; Houri, Alaa; Kumra, Sanjiv; Lim, Kelvin O.; Castellanos, F. Xavier; Milham, Michael P.

    2009-01-01

    Major Depressive Disorder (MDD) begins frequently in adolescence and is associated with severe outcomes, but the developmental neurobiology of MDD is not well understood. Research in adults has implicated fronto-limbic neural networks in the pathophysiology of MDD, particularly in relation to the subgenual anterior cingulate cortex (ACC). Developmental changes in brain networks during adolescence highlight the need to examine MDD-related circuitry in teens separately from adults. Using resting state functional magnetic resonance imaging (fMRI), this study examined functional connectivity in adolescents with MDD (n=12) and healthy adolescents (n=14). Seed-based connectivity analysis revealed that adolescents with MDD have decreased functional connectivity in a subgenual ACC-based neural network that includes the supragenual ACC (BA 32), the right medial frontal cortex (BA 10), the left inferior (BA 47) and superior frontal cortex (BA 22), superior temporal gyrus (BA 22), and the insular cortex (BA 13). These preliminary data suggest that MDD in adolescence is associated with abnormal connectivity within neural circuits that mediate emotion processing. Future research in larger, un-medicated samples will be necessary to confirm this finding. We conclude that hypothesis-driven, seed-based analyses of resting state fMRI data hold promise for advancing our current understanding of abnormal development of neural circuitry in adolescents with MDD. PMID:19446602

  18. Functional connectivity of the rodent brain using optical imaging

    NASA Astrophysics Data System (ADS)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  19. Functional connectivity changes with concentration of sevoflurane anesthesia.

    PubMed

    Peltier, Scott J; Kerssens, Chantal; Hamann, Stephan B; Sebel, Peter S; Byas-Smith, Michael; Hu, Xiaoping

    2005-02-28

    Low-frequency oscillations (<0.08 Hz) have been detected in functional magnetic resonance imaging studies, and appear to be synchronized between functionally related areas. The effect of anesthetic agents on cortical activity is not completely characterized. This study assessed the effect of anesthesia on the temporal relations in activity in the motor cortices. Resting-state magnetic resonance data were acquired on six volunteers under different anesthetic states (using 0.0%, 2.0% and 1.0% stable end-tidal sevoflurane). Across all volunteers, the number of significant voxels (p<2.5 x 10) in the functional connectivity maps was reduced by 78% for light anesthesia and by 98% for deep anesthesia, compared with the awake state. Additionally, significant correlations in the connectivity maps were bilateral in the awake state but unilateral in the light anesthesia state.

  20. Decreased coherence and functional connectivity of electroencephalograph in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Wang, Ruofan; Wang, Jiang; Yu, Haitao; Wei, Xile; Yang, Chen; Deng, Bin

    2014-09-01

    In this paper, we investigate the abnormalities of electroencephalograph (EEG) signals in the Alzheimer's disease (AD) by analyzing 16-scalp electrodes EEG signals and make a comparison with the normal controls. Coherence is introduced to measure the pair-wise normalized linear synchrony and functional correlations between two EEG signals in different frequency domains, and graph analysis is further used to investigate the influence of AD on the functional connectivity of human brain. Data analysis results show that, compared with the control group, the pair-wise coherence of AD group is significantly decreased, especially for the theta and alpha frequency bands in the frontal and parieto-occipital regions. Furthermore, functional connectivity among different brain regions is reconstructed based on EEG, which exhibit obvious small-world properties. Graph analysis demonstrates that the local functional connections between regions for AD decrease. In addition, it is found that small-world properties of AD networks are largely weakened, by calculating its average path lengths, clustering coefficients, global efficiency, local efficiency, and small-worldness. The obtained results show that both pair-wise coherence and functional network can be taken as effective measures to distinguish AD patients from the normal, which may benefit our understanding of the disease.

  1. Default Mode Functional Connectivity Is Associated With Social Functioning in Schizophrenia.

    PubMed

    Fox, Jaclyn M; Abram, Samantha V; Reilly, James L; Eack, Shaun; Goldman, Morris B; Csernansky, John G; Wang, Lei; Smith, Matthew J

    2017-03-30

    Individuals with schizophrenia display notable deficits in social functioning. Research indicates that neural connectivity within the default mode network (DMN) is related to social cognition and social functioning in healthy and clinical populations. However, the association between DMN connectivity, social cognition, and social functioning has not been studied in schizophrenia. For the present study, the authors used resting-state neuroimaging data to evaluate connectivity between the main DMN hubs (i.e., the medial prefrontal cortex [mPFC] and the posterior cingulate cortex-anterior precuneus [PPC]) in individuals with schizophrenia (n = 28) and controls (n = 32). The authors also examined whether DMN connectivity was associated with social functioning via social attainment (measured by the Specific Levels of Functioning Scale) and social competence (measured by the Social Skills Performance Assessment), and if social cognition mediates the association between DMN connectivity and these measures of social functioning. Results revealed that DMN connectivity did not differ between individuals with schizophrenia and controls. However, connectivity between the mPFC and PCC hubs was significantly associated with social competence and social attainment in individuals with schizophrenia but not in controls as reflected by a significant group-by-connectivity interaction. Social cognition did not mediate the association between DMN connectivity and social functioning in individuals with schizophrenia. The findings suggest that fronto-parietal DMN connectivity in particular may be differentially associated with social functioning in schizophrenia and controls. As a result, DMN connectivity may be used as a neuroimaging marker to monitor treatment response or as a potential target for interventions that aim to enhance social functioning in schizophrenia. (PsycINFO Database Record

  2. Cortical functional connectivity under different auditory attentional efforts.

    PubMed

    Hong, Xiangfei; Tong, Shanbao

    2012-01-01

    Auditory attentional effort (AAE) could be tuned to different levels in a top-down manner, while its neural correlates are still poorly understood. In this paper, we investigate the cortical connectivity under different levels of AAE. Multichannel EEG signals were recorded from nine subjects (male/female=6=3) in an auditory discrimination task under low or high AAE. Behavioral results showed that subjects paid more attention under high AAE and detected the probe stimuli better than low AAE. Partial directed coherence (PDC) was used to study the cortical functional connectivity within the first 300 ms post-stimulus period which includes the N100 and P200 components in the event-related potential (ERP). Majority of the cortical connections were strengthened with the increase of AAE. The right hemispheric dominance of connectivity in maintaining auditory attention was found under low AAE, which disappeared when the AAE was increased, indicating that the right hemispheric dominance previously reported might be due to a relatively lower AAE. Besides, most cortical connections under high AAE were found to be from the parietal cortex to the prefrontal cortex, which suggested the initiative role of parietal cortex in maintaining a high AAE.

  3. Resting Functional Connectivity of Language Networks: Characterization and Reproducibility

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2011-01-01

    The neural basis of language comprehension and production has been associated with superior temporal (Wernicke’s) and inferior frontal (Broca’s) cortical areas respectively. However, recent resting state functional connectivity (RSFC) and lesion studies implicate a more extended network in language processing. Using a large RSFC dataset from 970 healthy subjects and seed regions in Broca’s and Wernicke’s we recapitulate this extended network that includes adjoining prefrontal, temporal and parietal regions but also bilateral caudate and left putamen/globus pallidus and subthalamic nucleus. We also show that the language network has predominance of short-range functional connectivity (except posterior Wernicke’s area that exhibited predominant long-range connectivity), which is consistent with reliance on local processing. Predominantly, the long-range connectivity was left lateralized (except anterior Wernicke’s area that exhibited rightward lateralization). The language network also exhibited anticorrelated activity with auditory (only for Wernickes’s area) and visual cortices that suggests integrated sequential activity with regions involved with listening or reading words. Assessment of the intra subject’s reproducibility of this network and its characterization in individuals with language dysfunction is needed to determine its potential as a biomarker for language disorders. PMID:22212597

  4. EEG functional connectivity, axon delays and white matter disease

    PubMed Central

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  5. Enhanced neural function in highly aberrated eyes following perceptual learning with adaptive optics.

    PubMed

    Sabesan, Ramkumar; Barbot, Antoine; Yoon, Geunyoung

    2017-03-01

    Highly aberrated keratoconic (KC) eyes do not elicit the expected visual advantage from customized optical corrections. This is attributed to the neural insensitivity arising from chronic visual experience with poor retinal image quality, dominated by low spatial frequencies. The goal of this study was to investigate if targeted perceptual learning with adaptive optics (AO) can stimulate neural plasticity in these highly aberrated eyes. The worse eye of 2 KC subjects was trained in a contrast threshold test under AO correction. Prior to training, tumbling 'E' visual acuity and contrast sensitivity at 4, 8, 12, 16, 20, 24 and 28 c/deg were measured in both the trained and untrained eyes of each subject with their routine prescription and with AO correction for a 6mm pupil. The high spatial frequency requiring 50% contrast for detection with AO correction was picked as the training frequency. Subjects were required to train on a contrast detection test with AO correction for 1h for 5 consecutive days. During each training session, threshold contrast measurement at the training frequency with AO was conducted. Pre-training measures were repeated after the 5 training sessions in both eyes (i.e., post-training). After training, contrast sensitivity under AO correction improved on average across spatial frequency by a factor of 1.91 (range: 1.77-2.04) and 1.75 (1.22-2.34) for the two subjects. This improvement in contrast sensitivity transferred to visual acuity with the two subjects improving by 1.5 and 1.3 lines respectively with AO following training. One of the two subjects denoted an interocular transfer of training and an improvement in performance with their routine prescription post-training. This training-induced visual benefit demonstrates the potential of AO as a tool for neural rehabilitation in patients with abnormal corneas. Moreover, it reveals a sufficient degree of neural plasticity in normally developed adults who have a long history of abnormal visual

  6. Multiple sclerosis impairs regional functional connectivity in the cerebellum.

    PubMed

    Dogonowski, Anne-Marie; Andersen, Kasper Winther; Madsen, Kristoffer Hougaard; Sørensen, Per Soelberg; Paulson, Olaf Bjarne; Blinkenberg, Morten; Siebner, Hartwig Roman

    2014-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to study changes in long-range functional brain connectivity in multiple sclerosis (MS). Yet little is known about how MS affects functional brain connectivity at the local level. Here we studied 42 patients with MS and 30 matched healthy controls with whole-brain rs-fMRI at 3 T to examine local functional connectivity. Using the Kendall's Coefficient of Concordance, regional homogeneity of blood-oxygen-level-dependent (BOLD)-signal fluctuations was calculated for each voxel and used as a measure of local connectivity. Patients with MS showed a decrease in regional homogeneity in the upper left cerebellar hemisphere in lobules V and VI relative to healthy controls. Similar trend changes in regional homogeneity were present in the right cerebellar hemisphere. The results indicate a disintegration of regional processing in the cerebellum in MS. This might be caused by a functional disruption of cortico-ponto-cerebellar and spino-cerebellar inputs, since patients with higher lesion load in the left cerebellar peduncles showed a stronger reduction in cerebellar homogeneity. In patients, two clusters in the left posterior cerebellum expressed a reduction in regional homogeneity with increasing global disability as reflected by the Expanded Disability Status Scale (EDSS) score or higher ataxia scores. The two clusters were mainly located in Crus I and extended into Crus II and the dentate nucleus but with little spatial overlap. These findings suggest a link between impaired regional integration in the cerebellum and general disability and ataxia.

  7. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  8. Variability in Cumulative Habitual Sleep Duration Predicts Waking Functional Connectivity

    PubMed Central

    Khalsa, Sakh; Mayhew, Stephen D.; Przezdzik, Izabela; Wilson, Rebecca; Hale, Joanne; Goldstone, Aimee; Bagary, Manny; Bagshaw, Andrew P.

    2016-01-01

    Study Objectives: We examined whether interindividual differences in habitual sleep patterns, quantified as the cumulative habitual total sleep time (cTST) over a 2-w period, were reflected in waking measurements of intranetwork and internetwork functional connectivity (FC) between major nodes of three intrinsically connected networks (ICNs): default mode network (DMN), salience network (SN), and central executive network (CEN). Methods: Resting state functional magnetic resonance imaging (fMRI) study using seed-based FC analysis combined with 14-d wrist actigraphy, sleep diaries, and subjective questionnaires (N = 33 healthy adults, mean age 34.3, standard deviation ± 11.6 y). Data were statistically analyzed using multiple linear regression. Fourteen consecutive days of wrist actigraphy in participant's home environment and fMRI scanning on day 14 at the Birmingham University Imaging Centre. Seed-based FC analysis on ICNs from resting-state fMRI data and multiple linear regression analysis performed for each ICN seed and target. cTST was used to predict FC (controlling for age). Results: cTST was specific predictor of intranetwork FC when the mesial prefrontal cortex (MPFC) region of the DMN was used as a seed for FC, with a positive correlation between FC and cTST observed. No significant relationship between FC and cTST was seen for any pair of nodes not including the MPFC. Internetwork FC between the DMN (MPFC) and SN (right anterior insula) was also predicted by cTST, with a negative correlation observed between FC and cTST. Conclusions: This study improves understanding of the relationship between intranetwork and internetwork functional connectivity of intrinsically connected networks (ICNs) in relation to habitual sleep quality and duration. The cumulative amount of sleep that participants achieved over a 14-d period was significantly predictive of intranetwork and inter-network functional connectivity of ICNs, an observation that may underlie the link

  9. Nonparaxial Fourier propagation tool for aberration analysis and point spread function calculation

    NASA Astrophysics Data System (ADS)

    Cain, Stephen C.; Watts, Tatsuki

    2016-08-01

    This paper describes a Fourier propagator for computing the impulse response of an optical system, while including terms ignored in Fresnel and Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula calculation from a distant point through the optical system to its image point predicted by geometric optics. The propagator then approximates the neighboring field points via the traditional binomial approximation of the Taylor series expansion around that field point. This technique results in a propagator that combines the speed of a Fourier transform operation with the accuracy of the Rayleigh-Sommerfeld diffraction formula calculation and extends Fourier optics to cases that are nonparaxial. The proposed propagator facilitates direct calculation of aberration coefficients, making it more versatile than the angular spectrum propagator. Bounds on the phase error introduced by the approximations are derived, which show that it should be more widely applicable than the Fresnel propagator. Guidance on how to sample the pupil and detector planes of a simulated imaging system is provided. This report concludes by showing examples of diffraction calculations for a laboratory setup and comparing them to measured diffraction patterns to demonstrate the utility of the propagator.

  10. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    PubMed

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  11. Changed crossmodal functional connectivity in older adults with hearing loss.

    PubMed

    Puschmann, Sebastian; Thiel, Christiane M

    2017-01-01

    Previous work compellingly demonstrates a crossmodal plastic reorganization of auditory cortex in deaf individuals, leading to increased neural responses to non-auditory sensory input. Recent data indicate that crossmodal adaptive plasticity is not restricted to severe hearing impairments, but may also occur as a result of high-frequency hearing loss in older adults and affect audiovisual processing in these subjects. We here used functional magnetic resonance imaging (fMRI) to study the effect of hearing loss in older adults on auditory cortex response patterns as well as on functional connectivity between auditory and visual cortex during audiovisual processing. Older participants with a varying degree of high frequency hearing loss performed an auditory stimulus categorization task, in which they had to categorize frequency-modulated (FM) tones presented alone or in the context of matching or non-matching visual motion. A motion only condition served as control for a visual take-over of auditory cortex. While the individual hearing status did not affect auditory cortex responses to auditory, visual, or audiovisual stimuli, we observed a significant hearing loss-related increase in functional connectivity between auditory cortex and the right motion-sensitive visual area MT+ when processing matching audiovisual input. Hearing loss also modulated resting state connectivity between right area MT+ and parts of the left auditory cortex, suggesting the existence of permanent, task-independent changes in coupling between visual and auditory sensory areas with an increasing degree of hearing loss. Our data thus indicate that hearing loss impacts on functional connectivity between sensory cortices in older adults.

  12. Cross-hemispheric functional connectivity in the human fetal brain.

    PubMed

    Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto

    2013-02-20

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.

  13. Cross-hemispheric functional connectivity in the human fetal brain

    PubMed Central

    Thomason, ME; Dassanayake, MT; Shen, S; Katkuri, Y; Alexis, M; Anderson, AL; Yeo, L; Mody, S; Hernandez-Andrade, E; Hassan, SS; Studholme, C; Jeong, JW; Romero, R

    2013-01-01

    Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC. PMID:23427244

  14. Functional and structural connectivity within a recently burned drainage basin

    NASA Astrophysics Data System (ADS)

    Wester, Thad; Wasklewicz, Thad; Staley, Dennis

    2014-02-01

    Studies examining post-wildfire sediment transport have often focused on changes to individual landscape compartments (planar slopes, rills, gullies, channels, or alluvial fans) or have captured coarse-scale hydrologic and sediment transport events at the drainage basin scale. We advance the understanding of functional and structural connectivity by quantifying changes of the morphodynamics of and sediment transport along seven rill-gully threads (RGTs) after two low intensity rainstorms in a burned basin from the 2008 Gap fire near Goleta, CA, USA. TLS surveys conducted within two months of the initial fire and three days after the rainfall events provide point clouds for high-resolution digital terrain models (DTMs). DTM differencing techniques and morphological sediment budgets from the RGTs showed discontinuous sediment transport along the extent of these two landscape compartments immediately after the rainfall. Surface runoff was unable to remove dry ravel deposits within the RGTs and implied a high degree of structural disconnectivity there. Dry ravel and runoff erosion from the contributing areas to the RGTs indicated functional and structural connectivity at this scale of analysis. The results provide clear evidence that small amounts of rainfall and gravity-induced erosion are interacting at different scales within the recently burned watershed to produce structural and functional disconnectivity along the RGTs. While the current system was transport-limited during the analyzed event, higher magnitude rainstorms may produce enhanced connectivity, resulting in the ability of surface runoff to remove the stored sediments and perhaps produce debris flows.

  15. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia.

    PubMed

    White, Tonya; Moeller, Steen; Schmidt, Marcus; Pardo, Jose V; Olman, Cheryl

    2012-08-01

    It has long been known that specific visual frequencies result in greater blood flow to the striate cortex. These peaks are thought to reflect synchrony of local neuronal firing that is reflective of local cortical networks. Since disrupted neural connectivity is a possible etiology for schizophrenia, our goal was to investigate whether localized connectivity, as measured by aberrant synchrony, is abnormal in children and adolescents with schizophrenia. Subjects included 25 children and adolescents with schizophrenia and 39 controls matched for age and gender. Subjects were scanned on a Siemens 3 Tesla Trio scanner while observing flashing checkerboard presented at either 1, 4, 8, or 12 Hz. Image processing included both a standard GLM model and a Fourier transform analysis. Patients had significantly smaller volume of activation in the occipital lobe compared to controls. There were no differences in the integral or percent signal change of the hemodynamic response function for each of the four frequencies. Occipital activation was stable during development between childhood and late adolescence. Finally, both patients and controls demonstrated an increased response between 4 and 8 Hz consistent with synchrony or entrainment in the neuronal response. Children and adolescents with schizophrenia had a significantly lower volume of activation in the occipital lobe in response to the flashing checkerboard task. However, features of intact local connectivity in patients, such as the hemodynamic response function and maximal response at 8 Hz, were normal. These results are consistent with abnormalities in regional connectivity with preserved local connectivity in early-onset schizophrenia.

  16. Functional connectivity of parietal cortex during temporal selective attention.

    PubMed

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients.

  17. Interoceptive awareness changes the posterior insula functional connectivity profile.

    PubMed

    Kuehn, Esther; Mueller, Karsten; Lohmann, Gabriele; Schuetz-Bosbach, Simone

    2016-04-01

    Interoceptive awareness describes the ability to consciously perceive inner bodily signals, such as one's own heartbeat. The right anterior insula is assumed to mediate this ability. The role of the posterior insula, particularly posterior-to-anterior insula signal flows is less clear in this respect. We scanned 27 healthy people with either high or low interoceptive awareness using 3T fMRI, while they either monitored their own heartbeats, or external tones, respectively. We used a combination of network centrality and bivariate connectivity analyses to characterize changes in cortical signal flows between the posterior insula and the anterior insula during interoceptive awareness or exteroceptive awareness, respectively. We show that heartbeat monitoring was accompanied by reduced network centrality of the right posterior insula, and decreased functional connectivity strengths between the right posterior insula and the right mid and anterior insula. In addition, decreased signal flows between the right posterior insula and the bilateral anterior cingulate cortices, and the bilateral orbitofrontal cortices were observed during interoceptive awareness. Functional connectivity changes were only shown by people with high interoceptive awareness, and occurred specifically within the low-frequency range (i.e., <0.1 Hz). Both groups did not differ in their functional connectivity profiles during rest. Our results show for the first time that interoceptive awareness changes intra-insula signal flows in the low-frequency range. We speculate that the selective inhibition of slow signal progression along the posterior-to-anterior insula pathway during interoceptive awareness allows the salient and noiseless detection of one's own heartbeat.

  18. Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism.

    PubMed

    Tyszka, J Michael; Kennedy, Daniel P; Paul, Lynn K; Adolphs, Ralph

    2014-07-01

    A leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, yet the majority of studies report effects that are either very weak, inconsistent across studies, or explain results incompletely. Here we apply multiple analytical approaches to resting-state BOLD-fMRI data at the whole-brain level. Neurotypical and high-functioning adults with autism displayed very similar patterns and strengths of resting-state connectivity. We found only limited evidence in autism for abnormal resting-state connectivity at the regional level and no evidence for altered connectivity at the whole-brain level. Regional abnormalities in functional connectivity in autism spectrum disorder were primarily in the frontal and temporal cortices. Within these regions, functional connectivity with other brain regions was almost exclusively lower in the autism group. Further examination showed that even small amounts of head motion during scanning have large effects on functional connectivity measures and must be controlled carefully. Consequently, we suggest caution in the interpretation of apparent positive findings until all possible confounding effects can be ruled out. Additionally, we do not rule out the possibility that abnormal connectivity in autism is evident at the microstructural synaptic level, which may not be reflected sensitively in hemodynamic changes measured with BOLD-fMRI.

  19. Resting-State Functional Connectivity Differences in Premature Children

    PubMed Central

    Damaraju, Eswar; Phillips, John R.; Lowe, Jean R.; Ohls, Robin; Calhoun, Vince D.; Caprihan, Arvind

    2010-01-01

    We examine the coherence in the spontaneous brain activity of sleeping children as measured by the blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signals. The results are described in terms of resting-state networks (RSN) and their properties. More specifically, in this study we examine the effect of severe prematurity on the spatial location of the visual, temporal, motor, basal ganglia, and the default mode networks, the temporal response properties of each of these networks, and the functional connectivity between them. Our results suggest that the anatomical locations of the RSNs are well developed by 18 months of age and their spatial locations are not distinguishable between premature and term born infants at 18 months or at 36 months, with the exception of small spatial differences noted in the basal ganglia area and the visual cortex. The two major differences between term and pre-term children were present at 36 but not 18 months and include: (1) increased spectral energy in the low frequency range (0.01–0.06 Hz) for pre-term children in the basal ganglia component, and (2) stronger connectivity between RSNs in term children. We speculate that children born very prematurely are vulnerable to injury resulting in weaker connectivity between resting-state networks by 36 months of age. Further work is required to determine whether this could be a clinically useful tool to identify children at risk of developmental delay related to premature birth. PMID:20725534

  20. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  1. Impact of language on functional connectivity for audiovisual speech integration

    PubMed Central

    Shinozaki, Jun; Hiroe, Nobuo; Sato, Masa-aki; Nagamine, Takashi; Sekiyama, Kaoru

    2016-01-01

    Visual information about lip and facial movements plays a role in audiovisual (AV) speech perception. Although this has been widely confirmed, previous behavioural studies have shown interlanguage differences, that is, native Japanese speakers do not integrate auditory and visual speech as closely as native English speakers. To elucidate the neural basis of such interlanguage differences, 22 native English speakers and 24 native Japanese speakers were examined in behavioural or functional Magnetic Resonance Imaging (fMRI) experiments while mono-syllabic speech was presented under AV, auditory-only, or visual-only conditions for speech identification. Behavioural results indicated that the English speakers identified visual speech more quickly than the Japanese speakers, and that the temporal facilitation effect of congruent visual speech was significant in the English speakers but not in the Japanese speakers. Using fMRI data, we examined the functional connectivity among brain regions important for auditory-visual interplay. The results indicated that the English speakers had significantly stronger connectivity between the visual motion area MT and the Heschl’s gyrus compared with the Japanese speakers, which may subserve lower-level visual influences on speech perception in English speakers in a multisensory environment. These results suggested that linguistic experience strongly affects neural connectivity involved in AV speech integration. PMID:27510407

  2. Cluster pair correlation function of simple fluids: energetic connectivity criteria.

    PubMed

    Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando

    2006-11-21

    We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.

  3. Cognition and Resting-State Functional Connectivity in Schizophrenia

    PubMed Central

    Sheffield, Julia M; Barch, Deanna M

    2015-01-01

    Individuals with schizophrenia consistently display deficits in a multitude of cognitive domains, but the neurobiological source of these cognitive impairments remains unclear. By analyzing the functional connectivity of resting-state functional magnetic resonance imaging (rs-fcMRI) data in clinical populations like schizophrenia, research groups have begun elucidating abnormalities in the intrinsic communication between specific brain regions, and assessing relationships between these abnormalities and cognitive performance in schizophrenia. Here we review studies that have reported analysis of these brain-behavior relationships. Through this systematic review we found that patients with schizophrenia display abnormalities within and between regions comprising 1) the cortico-cerebellar-striatal-thalamic loop and 2) task-positive and task-negative cortical networks. Importantly, we did not observe unique relationships between specific functional connectivity abnormalities and distinct cognitive domains, suggesting that the observed functional systems may underlie mechanisms that are shared across cognitive abilities, the disturbance of which could contribute to the “generalized” cognitive deficit found in schizophrenia. We also note several areas of methodological change that we believe will strengthen this literature. PMID:26698018

  4. Dynamic Resting-State Functional Connectivity in Major Depression.

    PubMed

    Kaiser, Roselinde H; Whitfield-Gabrieli, Susan; Dillon, Daniel G; Goer, Franziska; Beltzer, Miranda; Minkel, Jared; Smoski, Moria; Dichter, Gabriel; Pizzagalli, Diego A

    2016-06-01

    Major depressive disorder (MDD) is characterized by abnormal resting-state functional connectivity (RSFC), especially in medial prefrontal cortical (MPFC) regions of the default network. However, prior research in MDD has not examined dynamic changes in functional connectivity as networks form, interact, and dissolve over time. We compared unmedicated individuals with MDD (n=100) to control participants (n=109) on dynamic RSFC (operationalized as SD in RSFC over a series of sliding windows) of an MPFC seed region during a resting-state functional magnetic resonance imaging scan. Among participants with MDD, we also investigated the relationship between symptom severity and RSFC. Secondary analyses probed the association between dynamic RSFC and rumination. Results showed that individuals with MDD were characterized by decreased dynamic (less variable) RSFC between MPFC and regions of parahippocampal gyrus within the default network, a pattern related to sustained positive connectivity between these regions across sliding windows. In contrast, the MDD group exhibited increased dynamic (more variable) RSFC between MPFC and regions of insula, and higher severity of depression was related to increased dynamic RSFC between MPFC and dorsolateral prefrontal cortex. These patterns of highly variable RSFC were related to greater frequency of strong positive and negative correlations in activity across sliding windows. Secondary analyses indicated that increased dynamic RSFC between MPFC and insula was related to higher levels of recent rumination. These findings provide initial evidence that depression, and ruminative thinking in depression, are related to abnormal patterns of fluctuating communication among brain systems involved in regulating attention and self-referential thinking.

  5. Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity

    PubMed Central

    Salzwedel, Andrew P.; Vachet, Clement; Gerig, Guido; Lin, Weili

    2015-01-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  6. Defining Integrals Over Connections in the Discretized Gravitational Functional Integrals

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    Integration over connection type variables in the path integral for the discrete form of the first-order formulation of general relativity theory is studied. The result (a generalized function of the rest of variables of the type of tetrad or elementary areas) can be defined through its moments, i.e. integrals of it with the area tensor monomials. In our previous paper these moments have been defined by deforming integration contours in the complex plane as if we had passed to a Euclidean-like region. In this paper we define and evaluate the moments in the genuine Minkowski region. The distribution of interest resulting from these moments in this non-positively defined region contains the divergences. We prove that the latter contribute only to the singular (δ-function like) part of this distribution with support in the non-physical region of the complex plane of area tensors while in the physical region this distribution (usual function) confirms that defined in our previous paper which decays exponentially at large areas. Besides that, we evaluate the basic integrals over which the integral over connections in the general path integral can be expanded.

  7. Altered striatal intrinsic functional connectivity in pediatric anxiety

    PubMed Central

    Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique

    2016-01-01

    Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799

  8. Methylene blue modulates functional connectivity in the human brain.

    PubMed

    Rodriguez, Pavel; Singh, Amar P; Malloy, Kristen E; Zhou, Wei; Barrett, Douglas W; Franklin, Crystal G; Altmeyer, Wilson B; Gutierrez, Juan E; Li, Jinqi; Heyl, Betty L; Lancaster, Jack L; Gonzalez-Lima, F; Duong, Timothy Q

    2016-03-10

    Methylene blue USP (MB) is a FDA-grandfathered drug used in clinics to treat methemoglobinemia, carbon monoxide poisoning and cyanide poisoning that has been shown to increase fMRI evoked blood oxygenation level dependent (BOLD) response in rodents. Low dose MB also has memory enhancing effect in rodents and humans. However, the neural correlates of the effects of MB in the human brain are unknown. We tested the hypothesis that a single low oral dose of MB modulates the functional connectivity of neural networks in healthy adults. Task-based and task-free fMRI were performed before and one hour after MB or placebo administration utilizing a randomized, double-blinded, placebo-controlled design. MB administration was associated with a reduction in cerebral blood flow in a task-related network during a visuomotor task, and with stronger resting-state functional connectivity in multiple regions linking perception and memory functions. These findings demonstrate for the first time that low-dose MB can modulate task-related and resting-state neural networks in the human brain. These neuroimaging findings support further investigations in healthy and disease populations.

  9. Enhanced functional connectivity involving the ventromedial hypothalamus following methamphetamine exposure.

    PubMed

    Zuloaga, Damian G; Iancu, Ovidiu D; Weber, Sydney; Etzel, Desiree; Marzulla, Tessa; Stewart, Blair; Allen, Charles N; Raber, Jacob

    2015-01-01

    Methamphetamine (MA) consumption causes disruption of many biological rhythms including the sleep-wake cycle. This circadian effect is seen shortly following MA exposure and later in life following developmental MA exposure. MA phase shifts, entrains the circadian clock and can also alter the entraining effect of light by currently unknown mechanisms. We analyzed and compared immunoreactivity of the immediate early gene c-Fos, a marker of neuronal activity, to assess neuronal activation 2 h following MA exposure in the light and dark phases. We used network analyses of correlation patterns derived from global brain immunoreactivity patterns of c-Fos, to infer functional connectivity between brain regions. There were five distinct patterns of neuronal activation. In several brain areas, neuronal activation following exposure to MA was stronger in the light than the dark phase, highlighting the importance of considering circadian periods of increased effects of MA in defining experimental conditions and understanding the mechanisms underlying detrimental effects of MA exposure to brain function. Functional connectivity between the ventromedial hypothalamus (VMH) and other brain areas, including the paraventricular nucleus of the hypothalamus and basolateral and medial amygdala, was enhanced following MA exposure, suggesting a role for the VMH in the effects of MA on the brain.

  10. Cortical network functional connectivity in the descent to sleep.

    PubMed

    Larson-Prior, Linda J; Zempel, John M; Nolan, Tracy S; Prior, Fred W; Snyder, Abraham Z; Raichle, Marcus E

    2009-03-17

    Descent into sleep is accompanied by disengagement of the conscious brain from the external world. It follows that this process should be associated with reduced neural activity in regions of the brain known to mediate interaction with the environment. We examined blood oxygen dependent (BOLD) signal functional connectivity using conventional seed-based analyses in 3 primary sensory and 3 association networks as normal young adults transitioned from wakefulness to light sleep while lying immobile in the bore of a magnetic resonance imaging scanner. Functional connectivity was maintained in each network throughout all examined states of arousal. Indeed, correlations within the dorsal attention network modestly but significantly increased during light sleep compared to wakefulness. Moreover, our data suggest that neuronally mediated BOLD signal variance generally increases in light sleep. These results do not support the view that ongoing BOLD fluctuations primarily reflect unconstrained cognition. Rather, accumulating evidence supports the hypothesis that spontaneous BOLD fluctuations reflect processes that maintain the integrity of functional systems in the brain.

  11. Applications of random field theory to functional connectivity.

    PubMed

    Worsley, K J; Cao, J; Paus, T; Petrides, M; Evans, A C

    1998-01-01

    Functional connectivity between two voxels or regions of voxels can be measured by the correlation between voxel measurements from either PET CBF or BOLD fMRI images in 3D. We propose to look at the entire 6D matrix of correlations between all voxels and search for 6D local maxima. The main result is a new theoretical formula based on random field theory for the p-value of these local maxima, which distinguishes true correlations from background noise. This can be applied to crosscorrelations between two different sets of images--such as activations under two different tasks, as well as autocorrelations within the same set of images.

  12. Alterations in functional connectivity for language in prematurely born adolescents.

    PubMed

    Schafer, Robin J; Lacadie, Cheryl; Vohr, Betty; Kesler, Shelli R; Katz, Karol H; Schneider, Karen C; Pugh, Kenneth R; Makuch, Robert W; Reiss, Allan L; Constable, R Todd; Ment, Laura R

    2009-03-01

    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600-1250 g birth weight), without neonatal brain injury on neonatal cranial ultrasound, and 26 term control subjects were examined with a functional magnetic resonance imaging (fMRI) semantic association task, the Wechsler Intelligence Scale for Children-III (WISC-III) and the Clinical Evaluation of Language Fundamentals (CELF). In-magnet task accuracy and response times were calculated, and fMRI data were evaluated for the effect of group on blood oxygen level dependent (BOLD) activation, the correlation between task accuracy and activation and the functional connectivity between regions activating to task. Although there were differences in verbal IQ and CELF scores between the preterm (PT) and term control groups, there were no significant differences for either accuracy or response time for the in-magnet task. Both groups activated classic semantic processing areas including the left superior and middle temporal gyri and inferior frontal gyrus, and there was no significant difference in activation patterns between groups. Clear differences between the groups were observed in the correlation between task accuracy and activation to task at P < 0.01, corrected for multiple comparisons. Left inferior frontal gyrus correlated with accuracy only for term controls and left sensory motor areas correlated with accuracy only for PT subjects. Left middle temporal gyri correlated with task accuracy for both groups. Connectivity analyses at P < 0.001 revealed the importance of a circuit between left middle temporal gyri and inferior frontal gyrus for both groups. In addition, the PT subjects evidenced greater connectivity between traditional language areas and sensory motor areas but significantly

  13. Alterations in functional connectivity for language in prematurely born adolescents

    PubMed Central

    Lacadie, Cheryl; Vohr, Betty; Kesler, Shelli R.; Katz, Karol H.; Schneider, Karen C.; Pugh, Kenneth R.; Makuch, Robert. W.; Reiss, Allan L.; Constable, R. Todd; Ment, Laura R.

    2009-01-01

    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600–1250 g birth weight), without neonatal brain injury on neonatal cranial ultrasound, and 26 term control subjects were examined with a functional magnetic resonance imaging (fMRI) semantic association task, the Wechsler Intelligence Scale for Children-III (WISC-III) and the Clinical Evaluation of Language Fundamentals (CELF). In-magnet task accuracy and response times were calculated, and fMRI data were evaluated for the effect of group on blood oxygen level dependent (BOLD) activation, the correlation between task accuracy and activation and the functional connectivity between regions activating to task. Although there were differences in verbal IQ and CELF scores between the preterm (PT) and term control groups, there were no significant differences for either accuracy or response time for the in-magnet task. Both groups activated classic semantic processing areas including the left superior and middle temporal gyri and inferior frontal gyrus, and there was no significant difference in activation patterns between groups. Clear differences between the groups were observed in the correlation between task accuracy and activation to task at P < 0.01, corrected for multiple comparisons. Left inferior frontal gyrus correlated with accuracy only for term controls and left sensory motor areas correlated with accuracy only for PT subjects. Left middle temporal gyri correlated with task accuracy for both groups. Connectivity analyses at P < 0.001 revealed the importance of a circuit between left middle temporal gyri and inferior frontal gyrus for both groups. In addition, the PT subjects evidenced greater connectivity between traditional language areas and sensory motor areas but significantly

  14. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    PubMed Central

    Rutter, Lindsay; Nadar, Sreenivasan R.; Holroyd, Tom; Carver, Frederick W.; Apud, Jose; Weinberger, Daniel R.; Coppola, Richard

    2013-01-01

    Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear. PMID:23874288

  15. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    PubMed Central

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  16. The functional connectivity of the human caudate: an application of meta-analytic connectivity modeling with behavioral filtering.

    PubMed

    Robinson, Jennifer L; Laird, Angela R; Glahn, David C; Blangero, John; Sanghera, Manjit K; Pessoa, Luiz; Fox, P Mickle; Uecker, Angela; Friehs, Gerhard; Young, Keith A; Griffin, Jennifer L; Lovallo, William R; Fox, Peter T

    2012-03-01

    Meta-analysis based techniques are emerging as powerful, robust tools for developing models of connectivity in functional neuroimaging. Here, we apply meta-analytic connectivity modeling to the human caudate to 1) develop a model of functional connectivity, 2) determine if meta-analytic methods are sufficiently sensitive to detect behavioral domain specificity within region-specific functional connectivity networks, and 3) compare meta-analytic driven segmentation to structural connectivity parcellation using diffusion tensor imaging. Results demonstrate strong coherence between meta-analytic and data-driven methods. Specifically, we found that behavioral filtering resulted in cognition and emotion related structures and networks primarily localized to the head of the caudate nucleus, while perceptual and action specific regions localized to the body of the caudate, consistent with early models of nonhuman primate histological studies and postmortem studies in humans. Diffusion tensor imaging (DTI) revealed support for meta-analytic connectivity modeling's (MACM) utility in identifying both direct and indirect connectivity. Our results provide further validation of meta-analytic connectivity modeling, while also highlighting an additional potential, namely the extraction of behavioral domain specific functional connectivity.

  17. Integration Over Connections in the Discretized Gravitational Functional Integrals

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    The result of performing integrations over connection type variables in the path integral for the discrete field theory may be poorly defined in the case of non-compact gauge group with the Haar measure exponentially growing in some directions. This point is studied in the case of the discrete form of the first-order formulation of the Einstein gravity theory. Here the result of interest can be defined as generalized function (of the rest of variables of the type of tetrad or elementary areas), i.e. a functional on a set of probe functions. To define this functional, we calculate its values on the products of components of the area tensors, the so-called moments. The resulting distribution (in fact, probability distribution) has singular (δ-function-like) part with support in the nonphysical region of the complex plane of area tensors and regular part (usual function) which decays exponentially at large areas. As we discuss, this also provides suppression of large edge lengths which is important for internal consistency, if one asks whether gravity on short distances can be discrete. Some other features of the obtained probability distribution including occurrence of the local maxima at a number of the approximately equidistant values of area are also considered.

  18. Characterizing dynamic local functional connectivity in the human brain

    PubMed Central

    Deng, Lifu; Sun, Junfeng; Cheng, Lin; Tong, Shanbao

    2016-01-01

    Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding ‘noise’. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain’s functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future. PMID:27231194

  19. Connectivity

    ERIC Educational Resources Information Center

    Grush, Mary, Ed.

    2006-01-01

    Connectivity has dramatically changed the landscape of higher education IT. From "on-demand" services for net-gen students and advanced eLearning systems for faculty, to high-performance computing grid resources for researchers, IT now provides more networked services than ever to connect campus constituents to each other and to the world.…

  20. Abnormal Amygdala Resting-State Functional Connectivity in Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Westlund, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A.; Houri, Alaa; Eberly, Lynn E.; Lim, Kelvin O.

    2015-01-01

    Importance Major depressive disorder (MDD) frequently emerges during adolescence and can lead to persistent illness, disability and suicide. The maturational changes that take place in the brain during adolescence underscore the importance of examining neurobiological mechanisms during this time period of early illness. However, neural mechanisms of depression in adolescents have been understudied. Prior research has implicated the amygdala in emotion processing in mood disorders, and adult depression studies have suggested amygdala-frontal connectivity deficits. Resting-state functional magnetic resonance imaging (rsfMRI) is an advanced tool that can be used to probe neural networks and identify brain-behavior relationships. Objective To examine amygdala resting-state functional connectivity (RSFC) in adolescents with and without MDD using rsfMRI, and to examine how amygdala RSFC relates to a broad range of symptom dimensions. Design Cross-sectional rsfMRI study. Setting Depression research program at an academic medical center. Participants 41 girls and boys aged 12–19 years with MDD and 29 healthy adolescents (frequency matched on age and sex) with no psychiatric diagnoses. Main Outcome Measure Using a whole-brain functional connectivity approach, we examined correlation of spontaneous fluctuation of blood-oxygen-level-dependent (BOLD) signal of each voxel in the whole brain with that of the amygdala. Results Adolescents with MDD showed lower positive RSFC between amygdala and hippocampus, parahippocampus and brain stem; this connectivity was inversely correlated with general depression, dysphoria, and lassitude, and positively correlated with well-being. Patients also showed greater (positive) amygdala-precuneus RSFC (in contrast to negative amygdala-precuneus RSFC in controls.) Conclusion Impaired amygdala-hippocampal/brainstem and amygdala-precuneus RSFC has not previously been highlighted in depression and may be unique to adolescent MDD. These circuits

  1. Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia.

    PubMed

    Perez, S M; Lodge, D J

    2013-11-01

    Schizophrenia patients exhibit increased hippocampal activity that is correlated with positive symptoms. Although the cause of this hippocampal hyperactivity has not been demonstrated, it likely involves a decrease in GABAergic signaling. Thus, we posit that restoring GABAergic function may provide a novel therapeutic approach for the treatment of schizophrenia. It has been demonstrated that transplanted GABAergic precursor cells from the medial ganglionic eminence (MGE) can migrate and differentiate into mature interneurons. Here, we demonstrate that ventral hippocampal MGE transplants can restore hippocampal function and normalize downstream dopamine neuron activity in a rodent model of schizophrenia. Furthermore, MGE transplants also reverse the hyper-responsive locomotor response to amphetamine. Taken together, these data demonstrate that restoring interneuron function reverses neurophysiological and behavioral deficits in a rodent model of schizophrenia and moreover, demonstrate the feasibility of a neuronal transplant procedure as a potential novel therapeutic approach for the treatment of schizophrenia.

  2. Condition-dependent functional connectivity: syntax networks in bilinguals

    PubMed Central

    Dodel, Silke; Golestani, Narly; Pallier, Christophe; ElKouby, Vincent; Le Bihan, Denis; Poline, Jean-Baptiste

    2005-01-01

    This paper introduces a method to study the variation of brain functional connectivity networks with respect to experimental conditions in fMRI data. It is related to the psychophysiological interaction technique introduced by Friston et al. and extends to networks of correlation modulation (CM networks). Extended networks containing several dozens of nodes are determined in which the links correspond to consistent correlation modulation across subjects. In addition, we assess inter-subject variability and determine networks in which the condition-dependent functional interactions can be explained by a subject-dependent variable. We applied the technique to data from a study on syntactical production in bilinguals and analysed functional interactions differentially across tasks (word reading or sentence production) and across languages. We find an extended network of consistent functional interaction modulation across tasks, whereas the network comparing languages shows fewer links. Interestingly, there is evidence for a specific network in which the differences in functional interaction across subjects can be explained by differences in the subjects' syntactical proficiency. Specifically, we find that regions, including ones that have previously been shown to be involved in syntax and in language production, such as the left inferior frontal gyrus, putamen, insula, precentral gyrus, as well as the supplementary motor area, are more functionally linked during sentence production in the second, compared with the first, language in syntactically more proficient bilinguals than in syntactically less proficient ones. Our approach extends conventional activation analyses to the notion of networks, emphasizing functional interactions between regions independently of whether or not they are activated. On the one hand, it gives rise to testable hypotheses and allows an interpretation of the results in terms of the previous literature, and on the other hand, it provides a

  3. Network Analysis of Intrinsic Functional Brain Connectivity in Alzheimer's Disease

    PubMed Central

    Supekar, Kaustubh; Menon, Vinod; Rubin, Daniel; Musen, Mark; Greicius, Michael D.

    2008-01-01

    Functional brain networks detected in task-free (“resting-state”) functional magnetic resonance imaging (fMRI) have a small-world architecture that reflects a robust functional organization of the brain. Here, we examined whether this functional organization is disrupted in Alzheimer's disease (AD). Task-free fMRI data from 21 AD subjects and 18 age-matched controls were obtained. Wavelet analysis was applied to the fMRI data to compute frequency-dependent correlation matrices. Correlation matrices were thresholded to create 90-node undirected-graphs of functional brain networks. Small-world metrics (characteristic path length and clustering coefficient) were computed using graph analytical methods. In the low frequency interval 0.01 to 0.05 Hz, functional brain networks in controls showed small-world organization of brain activity, characterized by a high clustering coefficient and a low characteristic path length. In contrast, functional brain networks in AD showed loss of small-world properties, characterized by a significantly lower clustering coefficient (p<0.01), indicative of disrupted local connectivity. Clustering coefficients for the left and right hippocampus were significantly lower (p<0.01) in the AD group compared to the control group. Furthermore, the clustering coefficient distinguished AD participants from the controls with a sensitivity of 72% and specificity of 78%. Our study provides new evidence that there is disrupted organization of functional brain networks in AD. Small-world metrics can characterize the functional organization of the brain in AD, and our findings further suggest that these network measures may be useful as an imaging-based biomarker to distinguish AD from healthy aging. PMID:18584043

  4. Functional Connectivity Modulation by Acupuncture in Patients with Bell's Palsy

    PubMed Central

    He, Xiaoxuan; Hu, Sheng; Li, Chuanfu; Xu, Chunsheng; Kan, Hongxing; Xue, Qiuju; Qiu, Bensheng

    2016-01-01

    Bell's palsy (BP), an acute unilateral facial paralysis, is frequently treated with acupuncture in many countries. However, the mechanism of treatment is not clear so far. In order to explore the potential mechanism, 22 healthy volunteers and 17 BP patients with different clinical duration were recruited. The resting-state functional magnetic resonance imaging scans were conducted before and after acupuncture at LI4 (Hegu), respectively. By comparing BP-induced functional connectivity (FC) changes with acupuncture-induced FC changes in the patients, the abnormal increased FC that could be reduced by acupuncture was selected. The FC strength of the selected FC at various stages was analyzed subsequently. Our results show that FC modulation of acupuncture is specific and consistent with the tendency of recovery. Therefore, we propose that FC modulation by acupuncture may be beneficial to recovery from the disease. PMID:27293461

  5. Aberrant Topologies and Reconfiguration Pattern of Functional Brain Network in Children with Second Language Reading Impairment

    ERIC Educational Resources Information Center

    Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng

    2016-01-01

    Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption…

  6. Gene deletion of KLF9 in mice results in aberrant endometrial proliferation and myometrial function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Timely regulation of uterine function is critical for successful pregnancy. Our laboratory has previously identified Basic transcription element binding protein-1/Krüppel-like factor 9 (Bteb1/Klf9), a member of Sp/KLF family of transcription factor, as a progesterone receptor (Pgr) interacting prote...

  7. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  8. Functional connectivity and graph theory in preclinical Alzheimer's disease.

    PubMed

    Brier, Matthew R; Thomas, Jewell B; Fagan, Anne M; Hassenstab, Jason; Holtzman, David M; Benzinger, Tammie L; Morris, John C; Ances, Beau M

    2014-04-01

    Alzheimer's disease (AD) has a long preclinical phase in which amyloid and tau cerebral pathology accumulate without producing cognitive symptoms. Resting state functional connectivity magnetic resonance imaging has demonstrated that brain networks degrade during symptomatic AD. It is unclear to what extent these degradations exist before symptomatic onset. In this study, we investigated graph theory metrics of functional integration (path length), functional segregation (clustering coefficient), and functional distinctness (modularity) as a function of disease severity. Further, we assessed whether these graph metrics were affected in cognitively normal participants with cerebrospinal fluid evidence of preclinical AD. Clustering coefficient and modularity, but not path length, were reduced in AD. Cognitively normal participants who harbored AD biomarker pathology also showed reduced values in these graph measures, demonstrating brain changes similar to, but smaller than, symptomatic AD. Only modularity was significantly affected by age. We also demonstrate that AD has a particular effect on hub-like regions in the brain. We conclude that AD causes large-scale disconnection that is present before onset of symptoms.

  9. Aberrant topologies and reconfiguration pattern of functional brain network in children with second language reading impairment.

    PubMed

    Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng

    2016-07-01

    Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption also occurs at a large-scale brain network level. Using fMRI and graph theoretical analysis, we explored the topology of the whole-brain functional network during a phonological rhyming task and network reconfigurations across task and short resting phases in Chinese children with English reading impairment versus age-matched typically developing (TD) children. We found that, when completing the phonological task, the RI group exhibited higher local network efficiency and network modularity compared with the TD group. When switching between the phonological task and the short resting phase, the RI group showed difficulty with network reconfiguration, as reflected in fewer changes in the local efficiency and modularity properties and less rearrangement of the modular communities. These findings were reproducible after controlling for the effects of in-scanner accuracy, participant gender, and L1 reading performance. The results from the whole-brain network analyses were largely replicated in the task-activated network. These findings provide preliminary evidence supporting that RI in L2 is associated with not only abnormal functional network organization but also poor flexibility of the neural system in responding to changing cognitive demands.

  10. Functional Connectivity Anomalies in Adolescents with Psychotic Symptoms

    PubMed Central

    O’Hanlon, Erik; Kraft, Dominik; Oertel-Knöchel, Viola; Clarke, Mary; Kelleher, Ian; Higgins, Niamh; Coughlan, Helen; Creegan, Daniel; Heneghan, Mark; Power, Emmet; Power, Lucy; Ryan, Jessica; Frodl, Thomas; Cannon, Mary

    2017-01-01

    Background Previous magnetic resonance imaging (MRI) research suggests that, prior to the onset of psychosis, high risk youths already exhibit brain abnormalities similar to those present in patients with schizophrenia. Objectives The goal of the present study was to describe the functional organization of endogenous activation in young adolescents who report auditory verbal hallucinations (AVH) in view of the “distributed network” hypothesis of psychosis. We recruited 20 young people aged 13–16 years who reported AVHs and 20 healthy controls matched for age, gender and handedness from local schools. Methods Each participant underwent a semi-structured clinical interview and a resting state (RS) neuroimaging protocol. We explored functional connectivity (FC) involving three different networks: 1) default mode network (DMN) 2) salience network (SN) and 3) central executive network (CEN). In line with previous findings on the role of the auditory cortex in AVHs as reported by young adolescents, we also investigated FC anomalies involving both the primary and secondary auditory cortices (A1 and A2, respectively). Further, we explored between-group inter-hemispheric FC differences (laterality) for both A1 and A2. Compared to the healthy control group, the AVH group exhibited FC differences in all three networks investigated. Moreover, FC anomalies were found in a neural network including both A1 and A2. The laterality analysis revealed no between-group, inter-hemispheric differences. Conclusions The present study suggests that young adolescents with subclinical psychotic symptoms exhibit functional connectivity anomalies directly and indirectly involving the DMN, SN, CEN and also a neural network including both primary and secondary auditory cortical regions. PMID:28125578

  11. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  12. Dynamic resting state functional connectivity in awake and anesthetized rodents.

    PubMed

    Liang, Zhifeng; Liu, Xiao; Zhang, Nanyin

    2015-01-01

    Since its introduction, resting-state functional magnetic resonance imaging (rsfMRI) has been a powerful tool for investigating functional neural networks in both normal and pathological conditions. When measuring resting-state functional connectivity (RSFC), most rsfMRI approaches do not consider its temporal variations and thus only provide the averaged RSFC over the scan time. Recently, there has been a surge of interest to investigate the dynamic characteristics of RSFC in humans, and promising results have been yielded. However, our knowledge regarding the dynamic RSFC in animals remains sparse. In the present study we utilized the single-volume co-activation method to systematically study the dynamic properties of RSFC within the networks of infralimbic cortex (IL) and primary somatosensory cortex (S1) in both awake and anesthetized rats. Our data showed that both IL and S1 networks could be decomposed into several spatially reproducible but temporally changing co-activation patterns (CAPs), suggesting that dynamic RSFC was indeed a characteristic feature in rodents. In addition, we demonstrated that anesthesia profoundly impacted the dynamic RSFC of neural circuits subserving cognitive and emotional functions but had less effects on sensorimotor systems. Finally, we examined the temporal characteristics of each CAP, and found that individual CAPs exhibited consistent temporal evolution patterns. Together, these results suggest that dynamic RSFC might be a general phenomenon in vertebrate animals. In addition, this study has paved the way for further understanding the alterations of dynamic RSFC in animal models of brain disorders.

  13. Brain functional connectivity and the pathophysiology of schizophrenia.

    PubMed

    Angelopoulos, E

    2014-01-01

    In the last decade there is extensive evidence to suggest that cognitive functions depending on coordination of distributed neuronal responses are associated with synchronized oscillatory activity in various frequency ranges suggesting a functional mechanism of neural oscillations in cortical networks. In addition to their role in normal brain functioning, there is increasing evidence that altered oscillatory activity may be associated with certain neuropsychiatric disorders, such as schizophrenia. Consequently, disturbances in neural synchronization may represent the functional relationship of disordered connectivity of cortical networks underlying the characteristic fragmentation of mind and behavior in schizophrenia. In recent studies the synchronization of oscillatory activity in the experience of characteristic symptoms such as auditory verbal hallucinations and thought blocks have been studied in patients with schizophrenia. Studies involving analysis of EEG activity obtained from individuals in resting state (in cage Faraday, isolated from external influences and with eyes closed). In patients with schizophrenia and persistent auditory verbal hallucinations (AVHs) observed a temporary increase in the synchronization phase of α and high θ oscillations of the electroencephalogram (EEG) compared with those of healthy controls and patients without AVHs . This functional hyper-connection manifested in time windows corresponding to experience AVHs, as noted by the patients during the recording of EEG and observed in speech related cortical areas. In another study an interaction of theta and gamma oscillations engages in the production and experience of AVHs. The results showed increased phase coupling between theta and gamma EEG rhythms in the left temporal cortex during AVHs experiences. A more recent study, approaches the thought blocking experience in terms of functional brain connectivity. Thought blocks (TBs) are characterized by regular interruptions of

  14. Estimating Fast Neural Input Using Anatomical and Functional Connectivity

    PubMed Central

    Eriksson, David

    2016-01-01

    In the last 20 years there has been an increased interest in estimating signals that are sent between neurons and brain areas. During this time many new methods have appeared for measuring those signals. Here we review a wide range of methods for which connected neurons can be identified anatomically, by tracing axons that run between the cells, or functionally, by detecting if the activity of two neurons are correlated with a short lag. The signals that are sent between the neurons are represented by the activity in the neurons that are connected to the target population or by the activity at the corresponding synapses. The different methods not only differ in the accuracy of the signal measurement but they also differ in the type of signal being measured. For example, unselective recording of all neurons in the source population encompasses more indirect pathways to the target population than if one selectively record from the neurons that project to the target population. Infact, this degree of selectivity is similar to that of optogenetic perturbations; one can perturb selectively or unselectively. Thus it becomes possible to match a given signal measurement method with a signal perturbation method, something that allows for an exact input control to any neuronal population. PMID:28066189

  15. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer

    PubMed Central

    Ali, Hamad; Bitar, Milad S.; Al Madhoun, Ashraf; Marafie, Makia; Al-Mulla, Fahd

    2017-01-01

    Array-based comparative genomic hybridization (aCGH) emerged as a powerful technology for studying copy number variations at higher resolution in many cancers including colorectal cancer. However, the lack of standardized systematic protocols including bioinformatic algorithms to obtain and analyze genomic data resulted in significant variation in the reported copy number aberration (CNA) data. Here, we present genomic aCGH data obtained using highly stringent and functionally relevant statistical algorithms from 116 well-defined microsatellites instable (MSI) and microsatellite stable (MSS) colorectal cancers. We utilized aCGH to characterize genomic CNAs in 116 well-defined sets of colorectal cancer (CRC) cases. We further applied the significance testing for aberrant copy number (STAC) and Genomic Identification of Significant Targets in Cancer (GISTIC) algorithms to identify functionally relevant (nonrandom) chromosomal aberrations in the analyzed colorectal cancer samples. Our results produced high resolution genomic landscapes of both, MSI and MSS sporadic CRC. We found that CNAs in MSI and MSS CRCs are heterogeneous in nature but may be divided into 3 distinct genomic patterns. Moreover, we show that although CNAs in MSI and MSS CRCs differ with respect to their size, number and chromosomal distribution, the functional copy number aberrations obtained from MSI and MSS CRCs were in fact comparable but not identical. These unifying CNAs were verified by MLPA tumor-loss gene panel, which spans 15 different chromosomal locations and contains 50 probes for at least 20 tumor suppressor genes. Consistently, deletion/amplification in these frequently cancer altered genes were identical in MSS and MSI CRCs. Our results suggest that MSI and MSS copy number aberrations driving CRC may be functionally comparable. PMID:28231327

  16. Aberrant post-translational modifications compromise human myosin motor function in old age.

    PubMed

    Li, Meishan; Ogilvie, Hannah; Ochala, Julien; Artemenko, Konstantin; Iwamoto, Hiroyuki; Yagi, Naoto; Bergquist, Jonas; Larsson, Lars

    2015-04-01

    Novel experimental methods, including a modified single fiber in vitro motility assay, X-ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging-related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (P < 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force-generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X-ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age-specific myosin post-translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.

  17. Impaired Lipoprotein Processing in HIV Patients on Antiretroviral Therapy: Aberrant HDL Lipids, Stability, and Function

    PubMed Central

    Gillard, Baiba K.; Raya, Joe L.; Ruiz-Esponda, Raul; Iyer, Dinakar; Coraza, Ivonne; Balasubramanyam, Ashok; Pownall, Henry J.

    2014-01-01

    Objective HIV patients on antiretroviral therapy (HIV/ART) exhibit a unique atherogenic dyslipidemic profile with hypertriglyceridemia (HTG) and low plasma concentrations of high density lipoprotein-cholesterol (HDL-C). In the Heart Positive Study of HIV/ART patients, a hypolipidemic therapy of fenofibrate, niacin, diet, and exercise reduced HTG and plasma non-HDL-C concentrations and raised plasma HDL-C and adiponectin concentrations. We tested the hypothesis that HIV/ART HDL have abnormal structures and properties and are dysfunctional. Approach and Results Hypolipidemic therapy reduced the TG contents of LDL and HDL. At baseline, HIV/ART low density lipoproteins (LDL) were more triglyceride (TG)-rich and HDL were more TG- and cholesteryl ester (CE)-rich than the corresponding lipoproteins from normolipidemic (NL) subjects. Very low density lipoproteins, LDL and HDL were larger than the corresponding lipoproteins from NL subjects; HIV/ART HDL were less stable than NL HDL. HDL-[3H]CE uptake by Huh7 hepatocytes was used to assess HDL functionality. HIV/ART plasma were found to contain significantly less competitive inhibition activity for hepatocyte HDL-CE uptake than did NL plasma (p<0.001). Conclusion Compared to NL subjects, lipoproteins from HIV/ART patients are larger and more neutral lipid-rich, and their HDL are less stable and less receptor-competent. Based on this work and previous studies of lipase activity in HIV, we present a model in which plasma lipolytic activities and/or hepatic CE uptake are impaired in HIV/ART patients. These findings provide a rationale to determine whether the distinctive lipoprotein structure, properties and function of HIV/ART HDL predict atherosclerosis as assessed by carotid artery intimal medial thickness. PMID:23640486

  18. Link prediction boosted psychiatry disorder classification for functional connectivity network

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  19. [Functional characteristics of the basic internal system of hippocampal connections].

    PubMed

    Kichigina, V F; Bragin, A G

    1976-01-01

    Functional characteristics of two main intrahippocampal connections (dentate fascia-field CA3 and field CA3-field CA1) were studied in unanesthetized rabbits. Electrical stimulation of FD or CA3 was used during extracellular recording of the CA3 or CA1 neuronal activity, respectively. The system CA3-CA1 is a highly effective, with a very narrow threshold zone and wide range of active frequencies. The process of recruitment during continuous rhythmic stimulation is weak, any signs of prolonged potentiation are absent. The system FD-CA3 is characterized by low effeciency, a wide threshold zone, narrow range of active frequencies. It is able of gradual building up and prolonged preservation of potentiated state. The morphological reasons of these differences and possible role of these systems in the hippocampal activity are discussed.

  20. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo.

    PubMed

    Khayyat, Latifa; Essawy, Amina; Sorour, Jehan; Soffar, Ahmed

    2017-01-01

    Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water alone. The experimental group was administered orally with tartrazine (7.5 mg/kg, b.wt.). Our results showed a marked increase in the levels of ALT, AST, ALP, urea, uric acid, creatinine, MDA and NO, and a decreased level of total antioxidants in the serum of rats dosed with tartrazine compared to controls. On the other hand, administration of tartrazine was associated with severe histopathological and cellular alterations of rat liver and kidney tissues and induced DNA damage in leucocytes as detected by comet assay. Taken together, the results showed that tartrazine intake may lead to adverse health effects.

  1. Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions.

    PubMed

    Claycomb, Kumiko I; Winokur, Paige N; Johnson, Kasey M; Nicaise, Alexandra M; Giampetruzzi, Anthony W; Sacino, Anthony V; Snyder, Evan Y; Barbarese, Elisa; Bongarzone, Ernesto R; Crocker, Stephen J

    2014-10-01

    Globoid cell leukodystrophy (GLD), or Krabbe disease, is a rare and often fatal demyelinating disease caused by mutations in the galactocerebrosidase (galc) gene that result in accumulation of galactosylsphingosine (psychosine). We recently reported that the extracellular matrix (ECM) protease, matrix metalloproteinase-3, is elevated in GLD and that it regulates psychosine-induced microglial activation. Here, we examined central nervous system ECM component expression in human GLD patients and in the twitcher mouse model of GLD using immunohistochemistry. The influence of ECM proteins on primary murine microglial responses to psychosine was evaluated using ECM proteins as substrates and analyzed by quantitative real-time polymerase chain reaction, immunocytochemistry, and ELISA. Functional analysis of microglial cytotoxicity was performed on oligodendrocytes in coculture, and cell death was measured by lactose dehydrogenase assay. Tenascin-C (TnC) was expressed at higher levels in human GLD and in twitcher mice versus controls. Microglial responses to psychosine were enhanced by TnC, as determined by an increase in globoid-like cell formation, matrix metalloproteinase-3 mRNA expression, and higher toxicity toward oligodendrocytes in culture. These findings were consistent with a shift toward the M1 microglial phenotype in TnC-grown microglia. Thus, elevated TnC expression in GLD modified microglial responses to psychosine. These data offer a novel perspective and enhance understanding of the microglial contribution to GLD pathogenesis.

  2. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo

    PubMed Central

    Khayyat, Latifa; Sorour, Jehan; Soffar, Ahmed

    2017-01-01

    Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water alone. The experimental group was administered orally with tartrazine (7.5 mg/kg, b.wt.). Our results showed a marked increase in the levels of ALT, AST, ALP, urea, uric acid, creatinine, MDA and NO, and a decreased level of total antioxidants in the serum of rats dosed with tartrazine compared to controls. On the other hand, administration of tartrazine was associated with severe histopathological and cellular alterations of rat liver and kidney tissues and induced DNA damage in leucocytes as detected by comet assay. Taken together, the results showed that tartrazine intake may lead to adverse health effects. PMID:28243541

  3. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    PubMed

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  4. Functional connectivity of the striatum in experts of stenography

    PubMed Central

    Ito, Takehito; Matsuda, Tetsuya; Shimojo, Shinsuke

    2015-01-01

    Introduction Stenography, or shorthand, is a unique set of skills that involves intensive training which is nearly life-long and orchestrating various brain functional modules, including auditory, linguistic, cognitive, mnemonic, and motor. Stenography provides cognitive neuroscientists with a unique opportunity to investigate the neural mechanisms underlying the neural plasticity that enables such a high degree of expertise. However, shorthand is quickly being replaced with voice recognition technology. We took this nearly final opportunity to scan the brains of the last alive shorthand experts of the Japanese language. Methods Thirteen right-handed stenographers and fourteen right-handed controls participated in the functional magnetic resonance imaging (fMRI) study. Results The fMRI data revealed plastic reorganization of the neural circuits around the putamen. The acquisition of expert skills was accompanied by structural and functional changes in the area. The posterior putamen is known as the execution center of acquired sensorimotor skills. Compared to nonexperts, the posterior putamen in stenographers had high covariation with the cerebellum and midbrain.The stenographers' brain developed different neural circuits from those of the nonexpert brain. Conclusions The current data illustrate the vigorous plasticity in the putamen and in its connectivity to other relevant areas in the expert brain. This is a case of vigorous neural plastic reorganization in response to massive overtraining, which is rare especially considering that it occurred in adulthood. PMID:25874166

  5. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    PubMed Central

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the “universal” language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics. PMID:26881224

  6. Topographical functional connectivity patterns exist in the congenitally, prelingually deaf

    PubMed Central

    Striem-Amit, Ella; Almeida, Jorge; Belledonne, Mario; Chen, Quanjing; Fang, Yuxing; Han, Zaizhu; Caramazza, Alfonso; Bi, Yanchao

    2016-01-01

    Congenital deafness causes large changes in the auditory cortex structure and function, such that without early childhood cochlear-implant, profoundly deaf children do not develop intact, high-level, auditory functions. But how is auditory cortex organization affected by congenital, prelingual, and long standing deafness? Does the large-scale topographical organization of the auditory cortex develop in people deaf from birth? And is it retained despite cross-modal plasticity? We identified, using fMRI, topographic tonotopy-based functional connectivity (FC) structure in humans in the core auditory cortex, its extending tonotopic gradients in the belt and even beyond that. These regions show similar FC structure in the congenitally deaf throughout the auditory cortex, including in the language areas. The topographic FC pattern can be identified reliably in the vast majority of the deaf, at the single subject level, despite the absence of hearing-aid use and poor oral language skills. These findings suggest that large-scale tonotopic-based FC does not require sensory experience to develop, and is retained despite life-long auditory deprivation and cross-modal plasticity. Furthermore, as the topographic FC is retained to varying degrees among the deaf subjects, it may serve to predict the potential for auditory rehabilitation using cochlear implants in individual subjects. PMID:27427158

  7. Graph theoretical analysis of EEG functional connectivity during music perception.

    PubMed

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations.

  8. Aberrant frontoparietal function during recognition memory in schizophrenia: a multimodal neuroimaging investigation.

    PubMed

    Weiss, Anthony P; Ellis, Cameron B; Roffman, Joshua L; Stufflebeam, Steven; Hamalainen, Matti S; Duff, Margaret; Goff, Donald C; Schacter, Daniel L

    2009-09-09

    Prefrontal-parietal networks are essential to many cognitive processes, including the ability to differentiate new from previously presented items. As patients with schizophrenia exhibit structural abnormalities in these areas along with well documented decrements in recognition memory, we hypothesized that these patients would demonstrate memory-related abnormalities in prefrontal and parietal physiology as measured by both functional magnetic resonance imaging and magnetoencephalography (MEG). Medicated outpatients with schizophrenia (n = 18) and age-matched healthy control subjects (n = 18) performed an old-new recognition memory task while physiological data were obtained. Whereas controls exhibited strong, bilateral activation of prefrontal and posterior parietal regions during successful identification of old versus new items, patients exhibited greatly attenuated activation of the right prefrontal and parietal cortices. However, within the patient group, there was strong correlation between memory performance and activation of these right-sided regions as well as a tight correlation between old-new effect-related activations in frontal and parietal regions, a pattern not seen in control subjects. Using MEG, control subjects-but not patients-exhibited a sequential pattern of old > new activity in the left posterior parietal cortex and then right prefrontal cortex; however, patients uniquely exhibited old > new activity in right temporal cortex. Collectively, these findings point to markedly different distributions of regional specialization necessary to complete the old-new item recognition task in patients versus controls. Inefficient utilization of prefrontal-parietal networks, with compensatory activation in temporal regions, may thus contribute to deficient old-new item recognition in schizophrenia.

  9. Aberrant frontoparietal function during recognition memory in schizophrenia: a multimodal neuroimaging investigation

    PubMed Central

    Weiss, Anthony P.; Ellis, Cameron B.; Roffman, Joshua L.; Stufflebeam, Steven; Hamalainen, Matti S.; Duff, Margaret; Goff, Donald C.; Schacter, Daniel L.

    2009-01-01

    Prefrontal-parietal networks are essential to many cognitive processes, including the ability to differentiate new from previously presented items. As patients with schizophrenia exhibit structural abnormalities in these areas along with well-documented decrements in recognition memory, we hypothesized that these patients would demonstrate memory-related abnormalities in prefrontal and parietal physiology as measured by both functional magnetic resonance imaging (fMRI) and magnetoelectroencephalography (MEG). Medicated outpatients with schizophrenia (n=18) and age-matched healthy control subjects (n=18) performed an old-new recognition memory task while physiological data were obtained. Whereas controls exhibited strong, bilateral activation of prefrontal and posterior parietal regions during successful identification of old versus new items, patients exhibited greatly attenuated activation of the right prefrontal and parietal cortices. However, within the patient group there was strong correlation between memory performance and activation of these right-sided regions as well as a tight correlation between old-new effect-related activations in frontal and parietal regions; a pattern not seen in control subjects. Using MEG, control subjects - but not patients - exhibited a sequential pattern of old > new activity in the left posterior parietal cortex and then right prefrontal cortex; however, patients uniquely exhibited old > new activity in right temporal cortex. Collectively, these findings point to markedly different distributions of regional specialization necessary to complete the old-new item recognition task in patients versus controls. Inefficient utilization of prefrontal-parietal networks, with compensatory activation in temporal regions, may thus contribute to deficient old-new item recognition in schizophrenia. PMID:19741141

  10. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  11. Seidel aberrations of the Gabor superlens.

    PubMed

    Hamilton Shepard, R

    2014-02-10

    Equations are presented for the third-order Seidel aberrations of the Gabor superlens (GSL) as a function of microtelescope channel position within the aperture array. To reveal the origin and form of increasing aberration with channel height, Seidel coefficients are derived as a function of the accumulating pitch difference between the lens arrays and the aberrations present in the centered channel. Two- and three-element Gabor lenses are investigated and their aberrations are expressed as a function of first-order design parameters. The derived theory is then compared to a real ray trace simulation to demonstrate the accuracy of third-order aberration theory to predict GSL image quality.

  12. The Association between Resting Functional Connectivity and Visual Creativity

    PubMed Central

    Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang

    2016-01-01

    Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity. PMID:27138732

  13. The Vitamin D Connection to Pediatric Infections and Immune Function

    PubMed Central

    Walker, Valencia P; Modlin, Robert L.

    2009-01-01

    Over the past twenty years, a resurgence in vitamin D deficiency and nutritional rickets has been reported throughout the world, including the United States. Inadequate serum vitamin D concentrations have also been associated with complications from other health problems, including tuberculosis, cancer (prostate, breast and colon), multiple sclerosis and diabetes. These findings support the concept of vitamin D possessing important pleiotropic actions outside of calcium homeostasis and bone metabolism. In children, an association between nutritional rickets with respiratory compromise has long been recognized. Recent epidemiological studies clearly demonstrate the link between vitamin D deficiency and the increased incidence of respiratory infections. Further research has also elucidated the contribution of vitamin D in the host defense response to infection. However, the mechanism(s) by which vitamin D levels contribute to pediatric infections and immune function has yet to be determined. This knowledge is particularly relevant and timely, because infants and children appear more susceptible to viral rather than bacterial infections in the face of vitamin D deficiency. The connection between vitamin D, infections and immune function in the pediatric population indicates a possible role for vitamin D supplementation in potential interventions and adjuvant therapies. PMID:19190532

  14. The association between resting functional connectivity and creativity.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2012-12-01

    The analysis of functional connectivity at rest (rFC) enables us to know how brain regions within and between networks interact. In this study, we used resting-state functional magnetic resonance imaging and a creativity test of divergent thinking (DT) to investigate the relationship between creativity measured by DT and rFC. We took the medial prefrontal cortex (mPFC) to be the seed region and investigated correlations across subjects between the score of the DT test and the strength of rFC between the mPFC and other brain regions. Our results showed that the strength of rFC with the mPFC significantly and positively correlated with creativity as measured by the DT test in the posterior cingulate cortex (PCC). These results showed that higher creativity measured by DT is associated with rFC between the mPFC and the PCC, the key nodes of the default mode network (DMN). Increased rFC between these regions is completely opposite from that is generally expected from the association between higher creativity and reduced deactivation in DMN during an externally directed attention-demanding task shown in our previous study but is similar to the pattern seen in relatives of schizophrenia. These findings are comparable to the previously reported psychological associations between schizotypy and creativity.

  15. Reliability correction for functional connectivity: Theory and implementation.

    PubMed

    Mueller, Sophia; Wang, Danhong; Fox, Michael D; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L; Liu, Hesheng

    2015-11-01

    Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe's contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity.

  16. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only

  17. Highly adaptive tests for group differences in brain functional connectivity

    PubMed Central

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that “there is currently no unique solution, but a spectrum of related methods and analytical strategies” to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not

  18. Reorganization of functionally connected brain subnetworks in high-functioning autism.

    PubMed

    Glerean, Enrico; Pan, Raj K; Salmi, Juha; Kujala, Rainer; Lahnakoski, Juha M; Roine, Ulrika; Nummenmaa, Lauri; Leppämäki, Sami; Nieminen-von Wendt, Taina; Tani, Pekka; Saramäki, Jari; Sams, Mikko; Jääskeläinen, Iiro P

    2016-03-01

    Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie during functional magnetic resonance imaging. For each subject, we computed Pearson's correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-state database were included to test the reproducibility of the results. Between-group differences were observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity of symptom gravity measured with autism quotient. This correlation was observed also within the controls, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.

  19. Distinct Functional Connectivities Predict Clinical Response with Emotion Regulation Therapy

    PubMed Central

    Fresco, David M.; Roy, Amy K.; Adelsberg, Samantha; Seeley, Saren; García-Lesy, Emmanuel; Liston, Conor; Mennin, Douglas S.

    2017-01-01

    Despite the success of available medical and psychosocial treatments, a sizable subgroup of individuals with commonly co-occurring disorders, generalized anxiety disorder (GAD) and major depressive disorder (MDD), fail to make sufficient treatment gains thereby prolonging their deficits in life functioning and satisfaction. Clinically, these patients often display temperamental features reflecting heightened sensitivity to underlying motivational systems related to threat/safety and reward/loss (e.g., somatic anxiety) as well as inordinate negative self-referential processing (e.g., worry, rumination). This profile may reflect disruption in two important neural networks associated with emotional/motivational salience (e.g., salience network) and self-referentiality (e.g., default network, DN). Emotion Regulation Therapy (ERT) was developed to target this hypothesized profile and its neurobehavioral markers. In the present study, 22 GAD patients (with and without MDD) completed resting state MRI scans before receiving 16 sessions of ERT. To test study these hypotheses, we examined the associations between baseline patterns of intrinsic functional connectivity (iFC) of the insula and of hubs within the DN (anterior and dorsal medial prefrontal cortex [MPFC] and posterior cingulate cortex [PCC]) and treatment-related changes in worry, somatic anxiety symptoms and decentering. Results suggest that greater treatment linked reductions in worry were associated with iFC clusters in both the insular and parietal cortices. Greater treatment linked gains in decentering, a metacognitive process that involves the capacity to observe items that arise in the mind with healthy psychological distance that is targeted by ERT, was associated with iFC clusters in the anterior and posterior DN. The current study adds to the growing body of research implicating disruptions in the default and salience networks as promising targets of treatment for GAD with and without co-occurring MDD

  20. Distinct Functional Connectivities Predict Clinical Response with Emotion Regulation Therapy.

    PubMed

    Fresco, David M; Roy, Amy K; Adelsberg, Samantha; Seeley, Saren; García-Lesy, Emmanuel; Liston, Conor; Mennin, Douglas S

    2017-01-01

    Despite the success of available medical and psychosocial treatments, a sizable subgroup of individuals with commonly co-occurring disorders, generalized anxiety disorder (GAD) and major depressive disorder (MDD), fail to make sufficient treatment gains thereby prolonging their deficits in life functioning and satisfaction. Clinically, these patients often display temperamental features reflecting heightened sensitivity to underlying motivational systems related to threat/safety and reward/loss (e.g., somatic anxiety) as well as inordinate negative self-referential processing (e.g., worry, rumination). This profile may reflect disruption in two important neural networks associated with emotional/motivational salience (e.g., salience network) and self-referentiality (e.g., default network, DN). Emotion Regulation Therapy (ERT) was developed to target this hypothesized profile and its neurobehavioral markers. In the present study, 22 GAD patients (with and without MDD) completed resting state MRI scans before receiving 16 sessions of ERT. To test study these hypotheses, we examined the associations between baseline patterns of intrinsic functional connectivity (iFC) of the insula and of hubs within the DN (anterior and dorsal medial prefrontal cortex [MPFC] and posterior cingulate cortex [PCC]) and treatment-related changes in worry, somatic anxiety symptoms and decentering. Results suggest that greater treatment linked reductions in worry were associated with iFC clusters in both the insular and parietal cortices. Greater treatment linked gains in decentering, a metacognitive process that involves the capacity to observe items that arise in the mind with healthy psychological distance that is targeted by ERT, was associated with iFC clusters in the anterior and posterior DN. The current study adds to the growing body of research implicating disruptions in the default and salience networks as promising targets of treatment for GAD with and without co-occurring MDD.

  1. Sex and Age Effects of Functional Connectivity in Early Adulthood.

    PubMed

    Zhang, Chao; Cahill, Nathan D; Arbabshirani, Mohammad R; White, Tonya; Baum, Stefi A; Michael, Andrew M

    2016-11-01

    Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670 FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22-36 years) from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; [Formula: see text]). In 641 FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values for males and females were significantly different, FC values of males and females exhibited large overlap. (2) Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3) Although sex [Formula: see text] age interaction did not survive multiple comparison correction, FC in females exhibited a faster cross-sectional decline with age. (4) Male brains were more locally clustered in all lobes but the cerebellum; female brains had a higher clustering coefficient at the whole-brain level. Our results indicate that although both male and female brains show small-world network characteristics, male brains were more segregated and female brains were more integrated. Findings of this study further our understanding of FC in early adulthood and provide evidence to support that age and sex should be controlled for in FC studies of young adults.

  2. Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment

    PubMed Central

    Pineda-Pardo, José Angel; Bruña, Ricardo; Woolrich, Mark; Marcos, Alberto; Nobre, Anna C.; Maestú, Fernando; Vidaurre, Diego

    2014-01-01

    Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corresponding functional connections. We applied beamformer source reconstruction to the resting state MEG recordings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was obtained for each subject, and time series were assigned to each of the regions. The fiber densities between the regions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introducing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups. PMID:25111472

  3. Efficient Computation of Functional Brain Networks: toward Real-Time Functional Connectivity

    PubMed Central

    García-Prieto, Juan; Bajo, Ricardo; Pereda, Ernesto

    2017-01-01

    Functional Connectivity has demonstrated to be a key concept for unraveling how the brain balances functional segregation and integration properties while processing information. This work presents a set of open-source tools that significantly increase computational efficiency of some well-known connectivity indices and Graph-Theory measures. PLV, PLI, ImC, and wPLI as Phase Synchronization measures, Mutual Information as an information theory based measure, and Generalized Synchronization indices are computed much more efficiently than prior open-source available implementations. Furthermore, network theory related measures like Strength, Shortest Path Length, Clustering Coefficient, and Betweenness Centrality are also implemented showing computational times up to thousands of times faster than most well-known implementations. Altogether, this work significantly expands what can be computed in feasible times, even enabling whole-head real-time network analysis of brain function. PMID:28220071

  4. Efficient Computation of Functional Brain Networks: toward Real-Time Functional Connectivity.

    PubMed

    García-Prieto, Juan; Bajo, Ricardo; Pereda, Ernesto

    2017-01-01

    Functional Connectivity has demonstrated to be a key concept for unraveling how the brain balances functional segregation and integration properties while processing information. This work presents a set of open-source tools that significantly increase computational efficiency of some well-known connectivity indices and Graph-Theory measures. PLV, PLI, ImC, and wPLI as Phase Synchronization measures, Mutual Information as an information theory based measure, and Generalized Synchronization indices are computed much more efficiently than prior open-source available implementations. Furthermore, network theory related measures like Strength, Shortest Path Length, Clustering Coefficient, and Betweenness Centrality are also implemented showing computational times up to thousands of times faster than most well-known implementations. Altogether, this work significantly expands what can be computed in feasible times, even enabling whole-head real-time network analysis of brain function.

  5. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome

    PubMed Central

    Gilson, Matthieu; Moreno-Bote, Ruben; Ponce-Alvarez, Adrián; Ritter, Petra; Deco, Gustavo

    2016-01-01

    The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is governed by an interplay between the internal neural dynamics of cortical areas and their connectivity. Uncovering this complex relationship has raised much interest, both for theory and the interpretation of experimental data (e.g., fMRI recordings) using dynamical models. Here we focus on the so-called inverse problem: the inference of network parameters in a cortical model to reproduce empirically observed activity. Although it has received a lot of interest, recovering directed connectivity for large networks has been rather unsuccessful so far. The present study specifically addresses this point for a noise-diffusion network model. We develop a Lyapunov optimization that iteratively tunes the network connectivity in order to reproduce second-order moments of the node activity, or functional connectivity. We show theoretically and numerically that the use of covariances with both zero and non-zero time shifts is the key to infer directed connectivity. The first main theoretical finding is that an accurate estimation of the underlying network connectivity requires that the time shift for covariances is matched with the time constant of the dynamical system. In addition to the network connectivity, we also adjust the intrinsic noise received by each network node. The framework is applied to experimental fMRI data recorded for subjects at rest. Diffusion-weighted MRI data provide an estimate of anatomical connections, which is incorporated to constrain the cortical model. The empirical covariance structure is reproduced faithfully, especially its temporal component (i.e., time-shifted covariances) in addition to the spatial component that is usually the focus of studies. We find that the cortical interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In particular, hubs are either receptors or feeders: they do not exhibit both strong incoming

  6. Skew aberration: a form of polarization aberration.

    PubMed

    Yun, Garam; Crabtree, Karlton; Chipman, Russell A

    2011-10-15

    We define a new class of aberration, skew aberration, which is a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates, independent of coatings and interface polarization. Skew aberration in a radially symmetric system has the form of a circular retardance tilt plus coma aberration. Skew aberration causes undesired polarization distribution in the exit pupil. We demonstrate statistics on skew aberration of 2383 optical systems described in Code V's U.S. patent library [Code V Version 10.3 (Synopsys, 2011), pp. 22-24]; the mean skew aberration is 0.89° and the standard deviation is 1.37°. The maximum skew aberration found is 17.45° and the minimum is -11.33°. U.S. patent 2,896,506, which has ±7.01° of skew aberration, is analyzed in detail. Skew aberration should be of concern in microlithography optics and other high NA and large field of view optical systems.

  7. Dynamic modulation of rTMS on functional connectivity and functional network connectivity to children with cerebral palsy: a case report.

    PubMed

    Guo, Zhiwei; Xing, Guoqiang; He, Bin; Chen, Huaping; Ou, Jun; McClure, Morgan A; Liu, Hua; Wang, Yunfeng; Mu, Qiwen

    2016-03-02

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive treatment tool for the recovery of cerebral palsy (CP). This report describes the modulation effect of rTMS to functional connectivity, functional network connectivity, motor, and cognitive ability following treatment in a child with mild ataxia CP. After receiving 8 months of 0.5 Hz rTMS treatment over the right dorsolateral prefrontal cortex, the child showed a gradual improvement in motor and cognitive-related functional connectivity and functional network connectivity following treatment as well as improved motor, cognitive functions. These pilot results provide the first evidence of the efficiency of 0.5 Hz of rTMS on a child with CP. Further large sample studies are needed to verify and expand the present findings.

  8. Resting-State Functional Connectivity of the Nucleus Accumbens in Auditory and Visual Hallucinations in Schizophrenia

    PubMed Central

    Rolland, Benjamin; Amad, Ali; Poulet, Emmanuel; Bordet, Régis; Vignaud, Alexandre; Bation, Rémy; Delmaire, Christine; Thomas, Pierre; Cottencin, Olivier; Jardri, Renaud

    2015-01-01

    Both auditory hallucinations (AH) and visual hallucinations may occur in schizophrenia. One of the main hypotheses underlying their occurrence involves the increased activity of the mesolimbic pathway, which links the ventral tegmental area (VTA) and the nucleus accumbens (NAcc). However, the precise contribution of the mesolimbic pathway in hallucinations across various sensory modalities has not yet been explored. We compared the resting-state functional connectivity (rs-FC) of the NAcc among 16 schizophrenia patients with pure AH, 15 with both visuoauditory hallucinations (VAH), and 14 without hallucinations (NoH). A between-group comparison was performed using random-effects ANCOVA (rs-FC of the bilateral NAcc as the dependent variable, groups as the between-subjects factor, age and Positive and Negative Syndrome Scale scores as covariates; q(false discovery rate [FDR]) < .05). Compared to the NoH group, the AH group exhibited significantly enhanced NAcc rs-FC with the left temporal superior gyrus, the cingulate gyri, and the VTA, whereas the VAH group, compared to the AH group, exhibited significantly enhanced NAcc rs-FC with the bilateral insula, putamen, parahippocampal gyri, and VTA. The strength in rs-FC between the NAcc and the VTA appeared to be positively associated with the presence of hallucinations, but the NAcc FC patterns changed with the complexity of these experiences (ie, 0, 1, or 2 sensory modalities), rather than with severity. This might support the aberrant salience hypothesis of schizophrenia. Moreover, these findings suggest that future clinical and neurobiological studies of hallucinations should evaluate not only the global severity of symptoms but also their sensorial features. PMID:25053649

  9. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; Bloomberg, J.; Mulavara, A; Seidler, R.

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  10. The effects of hippocampal lesions on MRI measures of structural and functional connectivity.

    PubMed

    Henson, Richard N; Greve, Andrea; Cooper, Elisa; Gregori, Mariella; Simons, Jon S; Geerligs, Linda; Erzinçlioğlu, Sharon; Kapur, Narinder; Browne, Georgina

    2016-11-01

    Focal lesions can affect connectivity between distal brain regions (connectional diaschisis) and impact the graph-theoretic properties of major brain networks (connectomic diaschisis). Given its unique anatomy and diverse range of functions, the hippocampus has been claimed to be a critical "hub" in brain networks. We investigated the effects of hippocampal lesions on structural and functional connectivity in six patients with amnesia, using a range of magnetic resonance imaging (MRI) analyses. Neuropsychological assessment revealed marked episodic memory impairment and generally intact performance across other cognitive domains. The hippocampus was the only brain structure exhibiting reduced grey-matter volume that was consistent across patients, and the fornix was the only major white-matter tract to show altered structural connectivity according to both diffusion metrics. Nonetheless, functional MRI revealed both increases and decreases in functional connectivity. Analysis at the level of regions within the default-mode network revealed reduced functional connectivity, including between nonhippocampal regions (connectional diaschisis). Analysis at the level of functional networks revealed reduced connectivity between thalamic and precuneus networks, but increased connectivity between the default-mode network and frontal executive network. The overall functional connectome showed evidence of increased functional segregation in patients (connectomic diaschisis). Together, these results point to dynamic reorganization following hippocampal lesions, with both decreased and increased functional connectivity involving limbic-diencephalic structures and larger-scale networks. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  11. The effects of hippocampal lesions on MRI measures of structural and functional connectivity

    PubMed Central

    Greve, Andrea; Cooper, Elisa; Gregori, Mariella; Simons, Jon S.; Geerligs, Linda; Erzinçlioğlu, Sharon; Kapur, Narinder; Browne, Georgina

    2016-01-01

    ABSTRACT Focal lesions can affect connectivity between distal brain regions (connectional diaschisis) and impact the graph‐theoretic properties of major brain networks (connectomic diaschisis). Given its unique anatomy and diverse range of functions, the hippocampus has been claimed to be a critical “hub” in brain networks. We investigated the effects of hippocampal lesions on structural and functional connectivity in six patients with amnesia, using a range of magnetic resonance imaging (MRI) analyses. Neuropsychological assessment revealed marked episodic memory impairment and generally intact performance across other cognitive domains. The hippocampus was the only brain structure exhibiting reduced grey‐matter volume that was consistent across patients, and the fornix was the only major white‐matter tract to show altered structural connectivity according to both diffusion metrics. Nonetheless, functional MRI revealed both increases and decreases in functional connectivity. Analysis at the level of regions within the default‐mode network revealed reduced functional connectivity, including between nonhippocampal regions (connectional diaschisis). Analysis at the level of functional networks revealed reduced connectivity between thalamic and precuneus networks, but increased connectivity between the default‐mode network and frontal executive network. The overall functional connectome showed evidence of increased functional segregation in patients (connectomic diaschisis). Together, these results point to dynamic reorganization following hippocampal lesions, with both decreased and increased functional connectivity involving limbic‐diencephalic structures and larger‐scale networks. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27479794

  12. Structural and Functional Cortical Connectivity Mediating Cross Education of Motor Function

    PubMed Central

    Woolley, Daniel G.

    2017-01-01

    Cross-education (CE) is the process whereby training with one limb leads to subsequent improvement in performance by the opposite untrained limb. We used multimodal neuroimaging in humans to investigate the mediating neural mechanisms by relating quantitative estimates of functional and structural cortical connectivity to individual levels of interlimb transfer. Resting-state (rs)-fMRI and diffusion weighted imaging (DWI) scans were undertaken before unilateral ballistic wrist flexion training. The rs-fMRI sequence was repeated immediately afterward. The increase in performance of the untrained limb was 83.6% of that observed for the trained limb and significantly greater than that of a control group who undertook no training. Functional connectivity in the resting motor network between right and left supplementary motor areas (SMA) was elevated after training. These changes were not, however, correlated with individual levels of transfer. Analysis of the DWI data using constrained spherical deconvolution-based tractography indicated that fractional anisotropy and apparent fiber density in tracts connecting bilateral SMA were negatively correlated with and predictive of transfer. The findings suggest that interhemispheric interactions between bilateral SMA play an instrumental role in CE and that the structural integrity of the connecting white matter pathways influences the level of transfer. SIGNIFICANCE STATEMENT Strength or skill training with one limb also brings about improvements in the performance of the opposite, untrained limb. This phenomenon, termed cross-education (CE), has obvious potential for the rehabilitation of functional capacity that has been lost through brain insult or musculoskeletal injury. The neural mechanisms that give rise to CE are, however, poorly understood. We used a combination of neuroimaging methods to investigate the pathways in the human brain that mediate CE. We determined that the supplementary motor area (SMA) plays an

  13. Dynamic functional connectivity revealed by resting-state functional near-infrared spectroscopy

    PubMed Central

    Li, Zhen; Liu, Hanli; Liao, Xuhong; Xu, Jingping; Liu, Wenli; Tian, Fenghua; He, Yong; Niu, Haijing

    2015-01-01

    The brain is a complex network with time-varying functional connectivity (FC) and network organization. However, it remains largely unknown whether resting-state fNIRS measurements can be used to characterize dynamic characteristics of intrinsic brain organization. In this study, for the first time, we used the whole-cortical fNIRS time series and a sliding-window correlation approach to demonstrate that fNIRS measurement can be ultimately used to quantify the dynamic characteristics of resting-state brain connectivity. Our results reveal that the fNIRS-derived FC is time-varying, and the variability strength (Q) is correlated negatively with the time-averaged, static FC. Furthermore, the Q values also show significant differences in connectivity between different spatial locations (e.g., intrahemispheric and homotopic connections). The findings are reproducible across both sliding-window lengths and different brain scanning sessions, suggesting that the dynamic characteristics in fNIRS-derived cerebral functional correlation results from true cerebral fluctuation. PMID:26203365

  14. Multiple-region directed functional connectivity based on phase delays.

    PubMed

    Goelman, Gadi; Dan, Rotem

    2017-03-01

    Network analysis is increasingly advancing the field of neuroimaging. Neural networks are generally constructed from pairwise interactions with an assumption of linear relations between them. Here, a high-order statistical framework to calculate directed functional connectivity among multiple regions, using wavelet analysis and spectral coherence has been presented. The mathematical expression for 4 regions was derived and used to characterize a quartet of regions as a linear, combined (nonlinear), or disconnected network. Phase delays between regions were used to obtain network's temporal hierarchy and directionality. The validity of the mathematical derivation along with the effects of coupling strength and noise on its outcomes were studied by computer simulations of the Kuramoto model. The simulations demonstrated correct directionality for a large range of coupling strength and low sensitivity to Gaussian noise compared with pairwise coherences. The analysis was applied to resting-state fMRI data of 40 healthy young subjects to characterize the ventral visual system, motor system and default mode network (DMN). It was shown that the ventral visual system was predominantly composed of linear networks while the motor system and the DMN were composed of combined (nonlinear) networks. The ventral visual system exhibits its known temporal hierarchy, the motor system exhibits center ↔ out hierarchy and the DMN has dorsal ↔ ventral and anterior ↔ posterior organizations. The analysis can be applied in different disciplines such as seismology, or economy and in a variety of brain data including stimulus-driven fMRI, electrophysiology, EEG, and MEG, thus open new horizons in brain research. Hum Brain Mapp 38:1374-1386, 2017. © 2016 Wiley Periodicals, Inc.

  15. Salience Network Functional Connectivity Predicts Placebo Effects in Major Depression

    PubMed Central

    Sikora, Magdalena; Heffernan, Joseph; Avery, Erich T.; Mickey, Brian J.; Zubieta, Jon-Kar; Peciña, Marta

    2015-01-01

    Background Recent neuroimaging studies have demonstrated resting-state functional connectivity (rsFC) abnormalities among intrinsic brain networks in Major Depressive Disorder (MDD); however, their role as predictors of treatment response has not yet been explored. Here, we investigate whether network-based rsFC predicts antidepressant and placebo effects in MDD. Methods We performed a randomized controlled trial of two weeklong, identical placebos (described as having either “active” fast-acting, antidepressant effects or as “inactive”) followed by a ten-week open-label antidepressant medication treatment. Twenty-nine participants underwent a rsFC fMRI scan at the completion of each placebo condition. Networks were isolated from resting-state blood-oxygen-level-dependent signal fluctuations using independent component analysis. Baseline and placebo-induced changes in rsFC within the default-mode, salience, and executive networks were examined for associations with placebo and antidepressant treatment response. Results Increased baseline rsFC in the rostral anterior cingulate (rACC) within the salience network, a region classically implicated in the formation of placebo analgesia and the prediction of treatment response in MDD, was associated with greater response to one week of active placebo and ten weeks of antidepressant treatment. Machine learning further demonstrated that increased salience network rsFC, mainly within the rACC, significantly predicts individual responses to placebo administration. Conclusions These data demonstrate that baseline rsFC within the salience network is linked to clinical placebo responses. This information could be employed to identify patients who would benefit from lower doses of antidepressant medication or non-pharmacological approaches, or to develop biomarkers of placebo effects in clinical trials. PMID:26709390

  16. Resting-state functional connectivity of subthalamic nucleus in different Parkinson's disease phenotypes.

    PubMed

    Wang, Zhan; Chen, Huimin; Ma, Huizi; Ma, Lingyan; Wu, Tao; Feng, Tao

    2016-12-15

    Previous studies showed that the subthalamic nucleus (STN) plays a crucial role in Parkinson's disease (PD) pathophysiology. During rest, PD phenotypes exhibit different STN functional connectivity. STN functional connectivity was examined in 31 PD patients [12 tremor-dominant (TD) and 19 posture instability gait difficulty (PIGD)] and 22 healthy controls (HC). Compared with controls and PIGD patients, the TD patients exhibited higher functional connectivity between the bilateral STN and the left cerebellar anterior lobe. Compared with the TD and HC groups, in the PIGD subgroup functional connectivity was lower between the left putamen and the STN, as well as between the pons and the STN. In the PIGD subgroup, functional connectivity was greater between the STN and bilateral occipital lobe, which positively correlated with PIGD scores in PD patients. Additionally, STN-cerebellum connectivity positively correlated with the tremor score, and STN-putamen connectivity negatively correlated with the PIGD score in PD patients. PD subtypes with distinguished STN functional connectivity might explain the various pathophysiological mechanisms in tremor and gait disorders. Increased coupling between the STN and cerebellum might underlie the neural substrate of PD tremors. Lower functional connectivity between the STN and putamen might underpin PD gait and posture disturbances, while higher functional connectivity between the STN and visual cortex might play a compensatory role.

  17. Functional connectivity patterns reflect individual differences in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Wang, Ting; Chen, Zhencai; Hitchman, Glenn; Liu, Yijun; Chen, Antao

    2015-04-01

    Individuals differ in the ability to utilize previous conflict information to optimize current conflict resolution, which is termed the conflict adaptation effect. Previous studies have linked individual differences in conflict adaptation to distinct brain regions. However, the network-based neural mechanisms subserving the individual differences of the conflict adaptation effect have not been studied. The present study employed a psychophysiological interaction (PPI) analysis with a color-naming Stroop task to examine this issue. The main results were as follows: (1) the anterior cingulate cortex (ACC)-seeded PPI revealed the involvement of the salience network (SN) in conflict adaptation, while the posterior parietal cortex (PPC)-seeded PPI revealed the engagement of the central executive network (CEN). (2) Participants with high conflict adaptation effect showed higher intra-CEN connectivity and lower intra-SN connectivity; while those with low conflict adaptation effect showed higher intra-SN connectivity and lower intra-CEN connectivity. (3) The PPC-centered intra-CEN connectivity positively predicted the conflict adaptation effect; while the ACC-centered intra-SN connectivity had a negative correlation with this effect. In conclusion, our data demonstrated that conflict adaptation is likely supported by the CEN and the SN, providing a new perspective on studying individual differences in conflict adaptation on the basis of large-scale networks.

  18. Sex and Age Effects of Functional Connectivity in Early Adulthood

    PubMed Central

    Zhang, Chao; Cahill, Nathan D.; Arbabshirani, Mohammad R.; White, Tonya; Baum, Stefi A.

    2016-01-01

    Abstract Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670 FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22–36 years) from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document} $$p < 7.49{ \\rm{E}} - 6$$ \\end{document}). In 641 FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values for males and females were significantly different, FC values of males and females exhibited large overlap. (2) Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3) Although sex \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document} $$\\times

  19. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer’s disease patients

    PubMed Central

    Son, Seong-Jin; Kim, Jonghoon

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer’s disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint. PMID:28333946

  20. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol.

    PubMed

    Liu, Xiping; Pillay, Siveshigan; Li, Rupeng; Vizuete, Jeannette A; Pechman, Kimberly R; Schmainda, Kathleen M; Hudetz, Anthony G

    2013-12-01

    The dose-dependent effects of anesthetics on brain functional connectivity are incompletely understood. Resting-state functional magnetic resonance imaging (rsfMRI) is widely used to assess the functional connectivity in humans and animals. Propofol is an anesthetic agent with desirable characteristics for functional neuroimaging in animals but its dose-dependent effects on rsfMRI functional connectivity have not been determined. Here we tested the hypothesis that brain functional connectivity undergoes specific changes in distinct neural networks at anesthetic depths associated with loss of consciousness. We acquired spontaneous blood oxygen level-dependent (BOLD) signals simultaneously with electroencephalographic (EEG) signals from rats under steady-state, intravenously administered propofol at increasing doses from light sedation to deep anesthesia (20, 40, 60, 80, and 100 mg/kg/h IV). Power spectra and burst suppression ratio were calculated from the EEG to verify anesthetic depth. Functional connectivity was determined from the whole brain correlation of BOLD data in regions of interest followed by a segmentation of the correlation maps into anatomically defined regional connectivity. We found that propofol produced multiphasic, dose dependent changes in functional connectivity of various cortical and subcortical networks. Cluster analysis predicted segregation of connectivity into two cortical and two subcortical clusters. In one cortical cluster (somatosensory and parietal), the early reduction in connectivity was followed by transient reversal; in the other cluster (sensory, motor and cingulate/retrosplenial), this rebound was absent. The connectivity of the subcortical cluster (brainstem, hippocampal and caudate) was strongly reduced, whereas that of another (hypothalamus, medial thalamus and n. basalis) did not. Subcortical connectivity increased again in deep anesthesia associated with EEG burst suppression. Regional correlation analysis confirmed the

  1. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism

    PubMed Central

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L.; Kenworthy, Lauren; Martin, Alex

    2015-01-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome—adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement. PMID:26627261

  2. Resting-state functional connectivity predicts longitudinal change in autistic traits and adaptive functioning in autism.

    PubMed

    Plitt, Mark; Barnes, Kelly Anne; Wallace, Gregory L; Kenworthy, Lauren; Martin, Alex

    2015-12-01

    Although typically identified in early childhood, the social communication symptoms and adaptive behavior deficits that are characteristic of autism spectrum disorder (ASD) persist throughout the lifespan. Despite this persistence, even individuals without cooccurring intellectual disability show substantial heterogeneity in outcomes. Previous studies have found various behavioral assessments [such as intelligence quotient (IQ), early language ability, and baseline autistic traits and adaptive behavior scores] to be predictive of outcome, but most of the variance in functioning remains unexplained by such factors. In this study, we investigated to what extent functional brain connectivity measures obtained from resting-state functional connectivity MRI (rs-fcMRI) could predict the variance left unexplained by age and behavior (follow-up latency and baseline autistic traits and adaptive behavior scores) in two measures of outcome--adaptive behaviors and autistic traits at least 1 y postscan (mean follow-up latency = 2 y, 10 mo). We found that connectivity involving the so-called salience network (SN), default-mode network (DMN), and frontoparietal task control network (FPTCN) was highly predictive of future autistic traits and the change in autistic traits and adaptive behavior over the same time period. Furthermore, functional connectivity involving the SN, which is predominantly composed of the anterior insula and the dorsal anterior cingulate, predicted reliable improvement in adaptive behaviors with 100% sensitivity and 70.59% precision. From rs-fcMRI data, our study successfully predicted heterogeneity in outcomes for individuals with ASD that was unaccounted for by simple behavioral metrics and provides unique evidence for networks underlying long-term symptom abatement.

  3. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning.

  4. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis.

    PubMed

    Deslauriers, Johnathan; Ansado, Jennyfer; Marrelec, Guillaume; Provost, Jean-Sébastien; Joanette, Yves

    2017-02-15

    Multiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention. The aim of this study is to examine age-related changes within the VAN, focusing on connectivity between its regions. Here we report our findings on the analysis of 27 participants' (13 younger and 14 older healthy adults) BOLD signals as well as their performance on a letter-matching task. We identified the VAN independently for both groups using spatial independent component analysis. Three main findings emerged: First, younger adults were faster and more accurate on the task. Second, older adults had greater connectivity among posterior regions (right temporoparietal junction, right superior parietal lobule, right middle temporal gyrus and left cerebellum crus I) than younger adults but lower connectivity among anterior regions (right anterior insula, right medial superior frontal gyrus and right middle frontal gyrus). Older adults also had more connectivity between anterior and posterior regions than younger adults. Finally, correlations between connectivity and response time on the task showed a trend toward connectivity in posterior regions for the older group and in anterior regions for the younger group. Thus, this study shows that intrahemispheric neurofunctional changes in aging also affect the VAN. The results suggest that, in contexts of selective attention, posterior regions increased in importance for older adults, while anterior regions had reduced centrality.

  5. Intrinsic functional connectivity predicts individual differences in distractibility.

    PubMed

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability.

  6. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    PubMed

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc.

  7. Large-Scale Brain Networks of the Human Left Temporal Pole: A Functional Connectivity MRI Study

    PubMed Central

    Pascual, Belen; Masdeu, Joseph C.; Hollenbeck, Mark; Makris, Nikos; Insausti, Ricardo; Ding, Song-Lin; Dickerson, Bradford C.

    2015-01-01

    The most rostral portion of the human temporal cortex, the temporal pole (TP), has been described as “enigmatic” because its functional neuroanatomy remains unclear. Comparative anatomy studies are only partially helpful, because the human TP is larger and cytoarchitectonically more complex than in nonhuman primates. Considered by Brodmann as a single area (BA 38), the human TP has been recently parceled into an array of cytoarchitectonic subfields. In order to clarify the functional connectivity of subregions of the TP, we undertook a study of 172 healthy adults using resting-state functional connectivity MRI. Remarkably, a hierarchical cluster analysis performed to group the seeds into distinct subsystems according to their large-scale functional connectivity grouped 87.5% of the seeds according to the recently described cytoarchitectonic subregions of the TP. Based on large-scale functional connectivity, there appear to be 4 major subregions of the TP: 1) dorsal, with predominant connectivity to auditory/somatosensory and language networks; 2) ventromedial, predominantly connected to visual networks; 3) medial, connected to paralimbic structures; and 4) anterolateral, connected to the default-semantic network. The functional connectivity of the human TP, far more complex than its known anatomic connectivity in monkey, is concordant with its hypothesized role as a cortical convergence zone. PMID:24068551

  8. Chemotherapy Altered Brain Functional Connectivity in Women with Breast Cancer: A Pilot Study

    PubMed Central

    Dumas, Julie A.; Makarewicz, Jenna; Schaubhut, Geoffrey J.; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A.

    2013-01-01

    Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, one month after, and one year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity one month after chemotherapy that partially returned to baseline at one year in the dorsal attention network. Decreased connectivity was seen in the default mode network at one month and one year following chemotherapy. In addition, increased subjective memory complaints were noted at one month and one year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment. PMID:23852814

  9. Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles.

    PubMed

    Wang, Jiaojian; Zhang, Jinfeng; Rong, Menglin; Wei, Xuehu; Zheng, Dingchen; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2016-12-01

    The nature of the relationship between structure and function is a fundamental question in neuroscience, especially at the macroscopic neuroimaging level. Although mounting studies have revealed that functional connectivity reflects structural connectivity, whether similar structural and functional connectivity patterns can reveal corresponding similarities in the structural and functional topography remains an open problem. In our current study, we used the right inferior parietal lobule (RIPL), which has been demonstrated to have similar anatomical and functional connectivity patterns at the subregional level, to directly test the hypothesis that similar structural and functional connectivity patterns can inform the corresponding topography of this area. In addition, since the association between the RIPL regions and particular functions and networks is still largely unknown, post-hoc functional characterizations and connectivity analyses were performed to identify the main functions and cortical networks in which each subregion participated. Anatomical and functional connectivity-based parcellations of the RIPL have consistently identified five subregions. Our functional characterization using meta-analysis-based behavioral and connectivity analyses revealed that the two anterior subregions (Cl1 and Cl2) primarily participate in interoception and execution, respectively; whereas the posterior subregion (Cl3) in the SMG primarily participates in attention and action inhibition. The two posterior subregions (Cl4, Cl5) in the AG were primarily involved in social cognition and spatial cognition, respectively. These results indicated that similar anatomical and functional connectivity patterns of the RIPL are reflected in corresponding structural and functional topographies. The identified cortical connectivity and functional characterization of each subregion may facilitate RIPL-related clinical research. Hum Brain Mapp 37:4316-4332, 2016. © 2016 Wiley Periodicals

  10. Chromosome-wise Protein Interaction Patterns and Their Impact on Functional Implications of Large-Scale Genomic Aberrations.

    PubMed

    Kirk, Isa Kristina; Weinhold, Nils; Belling, Kirstine; Skakkebæk, Niels Erik; Jensen, Thomas Skøt; Leffers, Henrik; Juul, Anders; Brunak, Søren

    2017-03-22

    Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important neurological functions affecting the characteristic phenotypes for Down syndrome and have previously been validated in mouse knockout experiments. Our approach is general and applicable to other gene-dosage changes, such as arm-level amplifications in cancer.

  11. A phosphatase-independent gain-of-function mutation in PTEN triggers aberrant cell growth in astrocytes through an autocrine IGF-1 loop.

    PubMed

    Fernández, S; Genis, L; Torres-Alemán, I

    2014-08-07

    Loss-of-function mutations in the phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome10) contribute to aberrant cell growth in part through upregulation of the mitogenic IGF-1/PI3K/Akt pathway. In turn, this pathway exerts a homeostatic feedback over PTEN. Using mutagenesis analysis to explore a possible impact of this mutual control on astrocyte growth, we found that truncation of the C-terminal region of PTEN (Δ51) associates with a marked increase in NFκB activity, a transcription factor overactivated in astrocyte tumors. Whereas mutations of PTEN are considered to lead to a loss-of-function, PTENΔ51, a truncation that comprises a region frequently mutated in human gliomas, displayed a neomorphic (gain-of-function) activity that was independent of its phosphatase activity. This gain-of-function of PTENΔ51 includes stimulation of IGF-1 synthesis through protein kinase A activation of the IGF-1 promoter. Increased IGF-1 originates an autocrine loop that activates Akt and NFκB. Constitutive activation of NFκB in PTENΔ51-expressing astrocytes leads to aberrant cell growth; astrocytes expressing this mutant PTEN generate colonies in vitro and tumors in vivo. Mutations converting a tumor suppressor such as PTEN into a tumor promoter through a gain-of-function involving IGF-1 production may further our understanding of the role played by this growth factor in glioma growth and help us define druggable targets for personalized therapy.

  12. Default Mode Network Connectivity as a Function of Familial and Environmental Risk for Psychotic Disorder

    PubMed Central

    Peeters, Sanne C. T.; van de Ven, Vincent; Gronenschild, Ed H. B. M; Patel, Ameera X.; Habets, Petra; Goebel, Rainer; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Background Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN), is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC) seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk), group × environmental exposure (to cannabis, developmental trauma and urbanicity) and symptomatology. Results There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL), the precuneus (PCu) and the medial prefrontal cortex (MPFC). Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical) psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity. Discussion Increased functional connectivity in individuals with (increased risk for) psychotic disorder may reflect trait-related network alterations. The within-network “connectivity at rest” intermediate phenotype was not associated with (subclinical) psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure. PMID

  13. Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms.

    PubMed

    Wang, Jiahui; Ren, Yudan; Hu, Xintao; Nguyen, Vinh Thai; Guo, Lei; Han, Junwei; Guo, Christine Cong

    2017-01-17

    Functional connectivity analysis has become a powerful tool for probing the human brain function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting-state paradigm to examine functional connectivity networks in the brain, thanks to its low demand and high tolerance that are essential for clinical studies. However, the test-retest reliability of resting-state connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high ecological validity, could potentially improve the reliability of functional connectivity measures. To test this hypothesis, we characterized the test-retest reliability of functional connectivity measures during a natural viewing condition, and benchmarked it against resting-state connectivity measures acquired within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of connectivity and graph theoretical measures of brain networks is significantly improved during natural viewing conditions over resting-state conditions, with an average increase of almost 50% across various connectivity measures. Not only sensory networks for audio-visual processing become more reliable, higher order brain networks, such as default mode and attention networks, but also appear to show higher reliability during natural viewing. Our results support the use of natural viewing paradigms in estimating functional connectivity of brain networks, and have important implications for clinical application of fMRI. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  14. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach.

    PubMed

    Mishra, Arabinda; Rogers, Baxter P; Chen, Li Min; Gore, John C

    2014-04-01

    The overall goal of this work is to demonstrate how resting state functional magnetic resonance imaging (fMRI) signals may be used to objectively parcellate functionally heterogeneous subregions of the human amygdala into structures characterized by similar patterns of functional connectivity. We hypothesize that similarity of functional connectivity of subregions with other parts of the brain can be a potential basis to segment and cluster voxels using data driven approaches. In this work, self-organizing map (SOM) was implemented to cluster the connectivity maps associated with each voxel of the human amygdala, thereby defining distinct subregions. The functional separation was optimized by evaluating the overall differences in functional connectivity between the subregions at group level. Analysis of 25 resting state fMRI data sets suggests that SOM can successfully identify functionally independent nuclei based on differences in their inter subregional functional connectivity, evaluated statistically at various confidence levels. Although amygdala contains several nuclei whose distinct roles are implicated in various functions, our objective approach discerns at least two functionally distinct volumes comparable to previous parcellation results obtained using probabilistic tractography and cytoarchitectonic analysis. Association of these nuclei with various known functions and a quantitative evaluation of their differences in overall functional connectivity with lateral orbital frontal cortex and temporal pole confirms the functional diversity of amygdala. The data driven approach adopted here may be used as a powerful indicator of structure-function relationships in the amygdala and other functionally heterogeneous structures as well.

  15. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke.

    PubMed

    Baldassarre, Antonello; Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S; Metcalf, Nicholas V; Strube, Michael J; Snyder, Abraham Z; Corbetta, Maurizio; Shulman, Gordon L

    2016-07-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1-2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits.

  16. Individual variation in functional brain connectivity: implications for personalized approaches to psychiatric disease.

    PubMed

    Finn, Emily S; Todd Constable, R

    2016-09-01

    Functional brain connectivity measured with functional magnetic resonance imaging (fMRI) is a popular technique for investigating neural organization in both healthy subjects and patients with mental illness. Despite a rapidly growing body of literature, however, functional connectivity research has yet to deliver biomarkers that can aid psychiatric diagnosis or prognosis at the single-subject level. One impediment to developing such practical tools has been uncertainty regarding the ratio of intra- to interindividual variability in functional connectivity; in other words, how much variance is state- versus trait-related. Here, we review recent evidence that functional connectivity profiles are both reliable within subjects and unique across subjects, and that features of these profiles relate to behavioral phenotypes. Together, these results suggest the potential to discover reliable correlates of present and future illness and/or response to treatment in the strength of an individual's functional brain connections. Ultimately, this work could help develop personalized approaches to psychiatric illness.

  17. Individual variation in functional brain connectivity: implications for personalized approaches to psychiatric disease

    PubMed Central

    Finn, Emily S.; Todd Constable, R.

    2016-01-01

    Functional brain connectivity measured with functional magnetic resonance imaging (fMRI) is a popular technique for investigating neural organization in both healthy subjects and patients with mental illness. Despite a rapidly growing body of literature, however, functional connectivity research has yet to deliver biomarkers that can aid psychiatric diagnosis or prognosis at the single-subject level. One impediment to developing such practical tools has been uncertainty regarding the ratio of intra- to interindividual variability in functional connectivity; in other words, how much variance is state- versus trait-related. Here, we review recent evidence that functional connectivity profiles are both reliable within subjects and unique across subjects, and that features of these profiles relate to behavioral phenotypes. Together, these results suggest the potential to discover reliable correlates of present and future illness and/or response to treatment in the strength of an individual's functional brain connections. Ultimately, this work could help develop personalized approaches to psychiatric illness. PMID:27757062

  18. Functional and structural connectivity of frontostriatal circuitry in Autism Spectrum Disorder

    PubMed Central

    Delmonte, Sonja; Gallagher, Louise; O'Hanlon, Erik; McGrath, Jane; Balsters, Joshua H.

    2013-01-01

    Abnormalities in frontostriatal circuitry potentially underlie the two core deficits in Autism Spectrum Disorder (ASD); social interaction and communication difficulties and restricted interests and repetitive behaviors. Whilst a few studies have examined connectivity within this circuitry in ASD, no previous study has examined both functional and structural connectivity within the same population. The present study provides the first exploration of both functional and structural frontostriatal connectivity in ASD. Twenty-eight right-handed Caucasian male ASD (17.28 ± 3.57 years) and 27 right-handed male, age and IQ matched controls (17.15 ± 3.64 years) took part in the study. Resting state functional connectivity was carried out on 21 ASD and control participants, and tractography was carried out on 22 ASD and 24 control participants, after excluding subjects for excessive motion and poor data quality. Functional connectivity analysis was carried out between the frontal cortex and striatum after which tractography was performed between regions that showed significant group differences in functional connectivity. The ASD group showed increased functional connectivity between regions in the frontal cortex [anterior cingulate cortex (ACC), middle frontal gyrus (MFG), paracingulate gyrus (Pcg) and orbitofrontal cortex (OFC)], and striatum [nucleus accumbens (NAcc) and caudate]. Increased functional connectivity between ACC and caudate was associated with deactivation to social rewards in the caudate, as previously reported in the same participants. Greater connectivity between the right MFG and caudate was associated with higher restricted interests and repetitive behaviors and connectivity between the bilateral Pcg and NAcc, and the right OFC and NAcc, was negatively associated with social and communicative deficits. Although tracts were reliably constructed for each subject, there were no group differences in structural connectivity. Results are in keeping with

  19. Altered Resting-State Functional Connectivity in Cortical Networks in Psychopathy

    PubMed Central

    Pujara, Maia S.; Motzkin, Julian C.; Newman, Joseph; Kiehl, Kent A.

    2015-01-01

    Psychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network. To determine the specificity of our findings to these cortical networks, we also calculated functional connectivity using seeds from two comparison primary sensory networks: visual and auditory networks. Regression analyses related network connectivity to overall psychopathy scores and to subscores for the “factors” and “facets” of psychopathy: Factor 1, interpersonal/affective traits; Factor 2, lifestyle/antisocial traits; Facet 1, interpersonal; Facet 2, affective; Facet 3, lifestyle; Facet 4, antisocial. Overall psychopathy severity was associated with reduced functional connectivity between lateral parietal cortex and dorsal anterior cingulate cortex. The two factor scores exhibited contrasting relationships with functional connectivity: Factor 1 scores were associated with reduced functional connectivity in the three cortical networks, whereas Factor 2 scores were associated with heightened connectivity in the same networks. This dissociation was evident particularly in the functional connectivity between anterior insula and dorsal anterior cingulate cortex. The facet scores also demonstrated distinct patterns of connectivity. We found no associations between psychopathy scores and functional connectivity within visual or auditory networks. These findings provide novel evidence on the neural correlates of psychopathy and suggest that connectivity between cortical association hubs, such as the dorsal anterior cingulate cortex, may be a neurobiological marker of the disorder. PMID:25878280

  20. Default mode network functional and structural connectivity after traumatic brain injury.

    PubMed

    Sharp, David J; Beckmann, Christian F; Greenwood, Richard; Kinnunen, Kirsi M; Bonnelle, Valerie; De Boissezon, Xavier; Powell, Jane H; Counsell, Serena J; Patel, Maneesh C; Leech, Robert

    2011-08-01

    Traumatic brain injury often results in cognitive impairments that limit recovery. The underlying pathophysiology of these impairments is uncertain, which restricts clinical assessment and management. Here, we use magnetic resonance imaging to test the hypotheses that: (i) traumatic brain injury results in abnormalities of functional connectivity within key cognitive networks; (ii) these changes are correlated with cognitive performance; and (iii) functional connectivity within these networks is influenced by underlying changes in structural connectivity produced by diffuse axonal injury. We studied 20 patients in the chronic phase after traumatic brain injury compared with age-matched controls. Network function was investigated in detail using functional magnetic resonance imaging to analyse both regional brain activation, and the interaction of brain regions within a network (functional connectivity). We studied patients during performance of a simple choice-reaction task and at 'rest'. Since functional connectivity reflects underlying structural connectivity, diffusion tensor imaging was used to quantify axonal injury, and test whether structural damage correlated with functional change. The patient group showed typical impairments in information processing and attention, when compared with age-matched controls. Patients were able to perform the task accurately, but showed slow and variable responses. Brain regions activated by the task were similar between the groups, but patients showed greater deactivation within the default mode network, in keeping with an increased cognitive load. A multivariate analysis of 'resting' state functional magnetic resonance imaging was then used to investigate whether changes in network function were present in the absence of explicit task performance. Overall, default mode network functional connectivity was increased in the patient group. Patients with the highest functional connectivity had the least cognitive impairment. In

  1. Functional Anatomy of the Thalamus as a Model of Integrated Structural and Functional Connectivity of the Human Brain In Vivo.

    PubMed

    Mastropasqua, Chiara; Bozzali, Marco; Spanò, Barbara; Koch, Giacomo; Cercignani, Mara

    2015-07-01

    While methods of measuring non-invasively both, functional and structural brain connectivity are available, the degree of overlap between them is still unknown. In this paper this issue is addressed by investigating the connectivity pattern of a brain structure with many, well characterized structural connections, namely the thalamus. Diffusion-weighted and resting state (RS) functional MRI (fMRI) data were collected in a group of 38 healthy participants. Probabilistic tractography was performed to parcellate the thalamus into regions structurally connected to different cortical areas. The resulting regions were used as seeds for seed-based analysis of RS fMRI data. The tractographic parcellation was thus cross-validated against functional connectivity data by evaluating the overlap between the functional and structural thalamo-cortical connections originating from the parcellated regions. Our data show only a partial overall correspondence between structural and functional connections, in the same group of healthy individuals, thus suggesting that the two approaches provide complementary and not overlapping information. Future studies are warranted to extend the results we obtained in the thalamus to other structures, and to confirm that the mechanisms behind functional connectivity are more complex than just expressing structural connectivity.

  2. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.

    PubMed

    Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group

  3. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury

    PubMed Central

    Dimitriadis, Stavros I.; Zouridakis, George; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Papanicolaou, Andrew C.

    2015-01-01

    Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI. PMID:26640764

  4. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  5. Subthalamic nucleus - sensorimotor cortex functional connectivity in de novo and moderate Parkinson’s disease

    PubMed Central

    Kurani, A.S.; Seidler, R.D.; Burciu, R.G.; Comella, C.L.; Corcos, D.M.; Okun, M.S.; MacKinnon, C.D.; Vaillancourt, D.E.

    2014-01-01

    Previous research has indicated increased functional connectivity between subthalamic nucleus (STN) and sensorimotor cortex in off-medication Parkinson’s disease (PD) compared with control subjects. It is not clear if the increase in functional connectivity between STN and sensorimotor cortex occurs in de novo PD, which is prior to when patients begin dopamine therapy. Resting state functional magnetic resonance imaging was carried out in 20 de novo (drug-naïve) patients with PD (HY stage: I-II), 19 patients with moderate PD (HY stage: II-III), and 19 healthy controls. The functional connectivity analysis in de novo and moderate PD patients focused on the connectivity of the more affected STN and the sensorimotor cortex. Using resting state functional connectivity analysis, we provide new evidence that people with de novo PD and off-medicated moderate PD have increased functional connectivity between the more affected STN and different regions within the sensorimotor cortex. The overlapping sensorimotor cortex found in both de novo and moderate PD had functional connectivity values that correlated positively with the Unified Parkinson’s Disease Rating Scale part III. This key finding suggests that changes in functional connectivity between STN and sensorimotor cortex occur early in the disease following diagnosis and prior to dopamine therapy. PMID:25095723

  6. Subthalamic nucleus--sensorimotor cortex functional connectivity in de novo and moderate Parkinson's disease.

    PubMed

    Kurani, Ajay S; Seidler, Rachael D; Burciu, Roxana G; Comella, Cynthia L; Corcos, Daniel M; Okun, Michael S; MacKinnon, Colum D; Vaillancourt, David E

    2015-01-01

    Previous research has indicated increased functional connectivity between subthalamic nucleus (STN) and sensorimotor cortex in off-medication Parkinson's disease (PD) compared with control subjects. It is not clear if the increase in functional connectivity between STN and sensorimotor cortex occurs in de novo PD, which is before patients begin dopamine therapy. Resting-state functional magnetic resonance imaging was carried out in 20 de novo (drug naïve) patients with PD (Hoehn and Yahr stage: I-II), 19 patients with moderate PD (Hoehn and Yahr stage: II-III), and 19 healthy controls. The functional connectivity analysis in de novo and moderate PD patients focused on the connectivity of the more affected STN and the sensorimotor cortex. Using resting-state functional connectivity analysis, we provide new evidence that people with de novo PD and off-medicated moderate PD have increased functional connectivity between the more affected STN and different regions within the sensorimotor cortex. The overlapping sensorimotor cortex found in both de novo and moderate PD had functional connectivity values that correlated positively with the Unified Parkinson's Disease Rating Scale part III. This key finding suggests that changes in functional connectivity between STN and sensorimotor cortex occur early in the disease following diagnosis and before dopamine therapy.

  7. Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder

    PubMed Central

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Guo, Xiaonan; Chen, Huafu

    2016-01-01

    Abstract Post-traumatic stress disorder (PTSD) is suggested to be a structural and functional abnormality in the insula. The insula, which consists of distinct subregions with various patterns of connectivity, displays complex and diverse functions. However, whether these insular subregions have different patterns of connectivity in PTSD remains unclear. Investigating the abnormal functional connectivity of the insular subregions is crucial to reveal its potential effect on diseases specifically PTSD. This study uses a seed-based method to investigate the altered resting-state functional connectivity of insular subregions in PTSD. We found that patients with PTSD showed reduced functional connectivity compared with healthy controls (HCs) between the left ventral anterior insula and the anterior cingulate cortex. The patients with PTSD also exhibited decreased functional connectivity between the right posterior insula and left inferior parietal lobe, and the postcentral gyrus relative to HCs. These results suggest the involvement of altered functional connectivity of insular subregions in the abnormal regulation of emotion and processing of somatosensory information in patients with PTSD. Such impairments in functional connectivity patterns of the insular subregions may advance our understanding of the pathophysiological basis underlying PTSD. PMID:27399097

  8. Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Guo, Xiaonan; Chen, Huafu

    2016-07-01

    Post-traumatic stress disorder (PTSD) is suggested to be a structural and functional abnormality in the insula. The insula, which consists of distinct subregions with various patterns of connectivity, displays complex and diverse functions. However, whether these insular subregions have different patterns of connectivity in PTSD remains unclear. Investigating the abnormal functional connectivity of the insular subregions is crucial to reveal its potential effect on diseases specifically PTSD. This study uses a seed-based method to investigate the altered resting-state functional connectivity of insular subregions in PTSD. We found that patients with PTSD showed reduced functional connectivity compared with healthy controls (HCs) between the left ventral anterior insula and the anterior cingulate cortex. The patients with PTSD also exhibited decreased functional connectivity between the right posterior insula and left inferior parietal lobe, and the postcentral gyrus relative to HCs. These results suggest the involvement of altered functional connectivity of insular subregions in the abnormal regulation of emotion and processing of somatosensory information in patients with PTSD. Such impairments in functional connectivity patterns of the insular subregions may advance our understanding of the pathophysiological basis underlying PTSD.

  9. Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions.

    PubMed

    Dipasquale, O; Cercignani, Mara

    Non-invasive mapping of brain functional connectivity (FC) has played a fundamental role in neuroscience, and numerous scientists have been fascinated by its ability to reveal the brain's intricate morphology and functional properties. In recent years, two different techniques have been developed that are able to explore FC in pathophysiological conditions and to provide simple and non-invasive biomarkers for the detection of disease onset, severity and progression. These techniques are independent component analysis, which allows a network-based functional exploration of the brain, and graph theory, which provides a quantitative characterization of the whole-brain FC. In this paper we provide an overview of these two techniques and some examples of their clinical applications in the most common neurodegenerative disorders associated with cognitive decline, including mild cognitive impairment, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies and behavioral variant frontotemporal dementia.

  10. Network functional connectivity and whole-brain functional connectomics to investigate cognitive decline in neurodegenerative conditions

    PubMed Central

    Dipasquale, Ottavia; Cercignani, Mara

    2016-01-01

    Summary Non-invasive mapping of brain functional connectivity (FC) has played a fundamental role in neuroscience, and numerous scientists have been fascinated by its ability to reveal the brain’s intricate morphology and functional properties. In recent years, two different techniques have been developed that are able to explore FC in pathophysiological conditions and to provide simple and non-invasive biomarkers for the detection of disease onset, severity and progression. These techniques are independent component analysis, which allows a network-based functional exploration of the brain, and graph theory, which provides a quantitative characterization of the whole-brain FC. In this paper we provide an overview of these two techniques and some examples of their clinical applications in the most common neurodegenerative disorders associated with cognitive decline, including mild cognitive impairment, Alzheimer’s disease, Parkinson’s disease, dementia with Lewy Bodies and behavioral variant frontotemporal dementia. PMID:28072380

  11. Age-Related Increases in Long-Range Connectivity in Fetal Functional Neural Connectivity Networks In Utero

    PubMed Central

    Thomason, Moriah E.; Grove, Lauren E.; Lozon, Tim A.; Vila, Angela M.; Ye, Yongquan; Nye, Matthew J.; Manning, Janessa H.; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S.; Romero, Roberto

    2015-01-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development. PMID:25284273

  12. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero.

    PubMed

    Thomason, Moriah E; Grove, Lauren E; Lozon, Tim A; Vila, Angela M; Ye, Yongquan; Nye, Matthew J; Manning, Janessa H; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S; Romero, Roberto

    2015-02-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.

  13. State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State

    PubMed Central

    Rubinov, Mikail; Cam-CAN; Henson, Richard N.

    2015-01-01

    Resting-state functional connectivity, as measured by functional magnetic resonance imaging (fMRI), is often treated as a trait, used, for example, to draw inferences about individual differences in cognitive function, or differences between healthy or diseased populations. However, functional connectivity can also depend on the individual's mental state. In the present study, we examined the relative contribution of state and trait components in shaping an individual's functional architecture. We used fMRI data from a large, population-based human sample (N = 587, age 18–88 years), as part of the Cambridge Centre for Aging and Neuroscience (Cam-CAN), which were collected in three mental states: resting, performing a sensorimotor task, and watching a movie. Whereas previous studies have shown commonalities across mental states in the average functional connectivity across individuals, we focused on the effects of states on the pattern of individual differences in functional connectivity. We found that state effects were as important as trait effects in shaping individual functional connectivity patterns, each explaining an approximately equal amount of variance. This was true when we looked at aging, as one specific dimension of individual differences, as well as when we looked at generic aspects of individual variation. These results show that individual differences in functional connectivity consist of state-dependent aspects, as well as more stable, trait-like characteristics. Studying individual differences in functional connectivity across a wider range of mental states will therefore provide a more complete picture of the mechanisms underlying factors such as cognitive ability, aging, and disease. SIGNIFICANCE STATEMENT The brain's functional architecture is remarkably similar across different individuals and across different mental states, which is why many studies use functional connectivity as a trait measure. Despite these trait-like aspects, functional

  14. Hemispheric Asymmetry of Supplementary Motor Area Proper: A Functional Connectivity Study of the Motor Network.

    PubMed

    Dinomais, Mickael; Chinier, Eva; Richard, Isabelle; Ricalens, Emmanuel; Aubé, Christophe; N'Guyen The Tich, Sylvie; Ter Minassian, Aram

    2016-01-01

    Cerebral asymmetry is a common feature of human functions. However, there are discrepancies in the literature about functional hemispheric asymmetries in the supplementary motor area (SMA), specifically in the posterior part (SMA-proper). We used resting state functional connectivity MRI to investigate the left-right asymmetries of the functional networks associated with primary motor cortex (M1) and SMA-proper using a "seed"-based correlation analysis in 30 healthy right-handed subjects. We showed that left M1 was more connected with areas involved in the motor system than right M1, and that right SMA-proper had more functional connections than its left counterpart. Our results are in agreement with a leftward asymmetry for M1 connectivity, whereas there is a rightward asymmetry of the SMA-proper connectivity.

  15. Brain network analysis of EEG functional connectivity during imagery hand movements.

    PubMed

    Demuru, Matteo; Fara, Francesca; Fraschini, Matteo

    2013-12-01

    The characterization of human neural activity during imaginary movement tasks represent an important challenge in order to develop effective applications that allow the control of a machine. Yet methods based on brain network analysis of functional connectivity have been scarcely investigated. As a result we use graph theoretic methods to investigate the functional connectivity and brain network measures in order to characterize imagery hand movements in a set of healthy subjects. The results of the present study show that functional connectivity analysis and minimum spanning tree (MST) parameters allow to successfully discriminate between imagery hand movements (both right and left) and resting state conditions. In conclusion, this paper shows that brain network analysis of EEG functional connectivity could represent an efficient alternative to more classical local activation based approaches. Furthermore, it also suggests the shift toward methods based on the characterization of a limited set of fundamental functional connections that disclose salient network topological features.

  16. Considerations for resting state functional MRI and functional connectivity studies in rodents

    PubMed Central

    Pan, Wen-Ju; Billings, Jacob C. W.; Grooms, Joshua K.; Shakil, Sadia; Keilholz, Shella D.

    2015-01-01

    Resting state functional MRI (rs-fMRI) and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies. These types of interwoven human and animal experiments have a potentially large impact on neuroscience and clinical practice. However, impediments exist to the optimal application of rs-fMRI in small animals, some similar to those encountered in humans and some quite different. In this review we identify the most prominent of these barriers, discuss differences between rs-fMRI in rodents and in humans, highlight best practices for animal studies, and review selected applications of rs-fMRI in rodents. Our goal is to facilitate the integration of human and animal work to the benefit of both fields. PMID:26300718

  17. Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions.

    PubMed

    Nomi, Jason S; Farrant, Kristafor; Damaraju, Eswar; Rachakonda, Srinivas; Calhoun, Vince D; Uddin, Lucina Q

    2016-05-01

    The human insular cortex consists of functionally diverse subdivisions that engage during tasks ranging from interoception to cognitive control. The multiplicity of functions subserved by insular subdivisions calls for a nuanced investigation of their functional connectivity profiles. Four insula subdivisions (dorsal anterior, dAI; ventral, VI; posterior, PI; middle, MI) derived using a data-driven approach were subjected to static- and dynamic functional network connectivity (s-FNC and d-FNC) analyses. Static-FNC analyses replicated previous work demonstrating a cognition-emotion-interoception division of the insula, where the dAI is functionally connected to frontal areas, the VI to limbic areas, and the PI and MI to sensorimotor areas. Dynamic-FNC analyses consisted of k-means clustering of sliding windows to identify variable insula connectivity states. The d-FNC analysis revealed that the most frequently occurring dynamic state mirrored the cognition-emotion-interoception division observed from the s-FNC analysis, with less frequently occurring states showing overlapping and unique subdivision connectivity profiles. In two of the states, all subdivisions exhibited largely overlapping profiles, consisting of subcortical, sensory, motor, and frontal connections. Two other states showed the dAI exhibited a unique connectivity profile compared with other insula subdivisions. Additionally, the dAI exhibited the most variable functional connections across the s-FNC and d-FNC analyses, and was the only subdivision to exhibit dynamic functional connections with regions of the default mode network. These results highlight how a d-FNC approach can capture functional dynamics masked by s-FNC approaches, and reveal dynamic functional connections enabling the functional flexibility of the insula across time. Hum Brain Mapp 37:1770-1787, 2016. © 2016 Wiley Periodicals, Inc.

  18. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients.

    PubMed

    Mallela, Arka N; Peck, Kyung K; Petrovich-Brennan, Nicole M; Zhang, Zhigang; Lou, William; Holodny, Andrei I

    2016-08-22

    To examine the functional connectivity of the primary and supplementary motor areas (SMA) in glioma patients using resting-state functional MRI (rfMRI). To correlate rfMRI data with tumor characteristics and clinical information to characterize functional reorganization of resting-state networks (RSN) and the limitations of this method. This study was IRB approved and in compliance with Health Insurance Portability and Accountability Act. Informed consent was waived in this retrospective study. We analyzed rfMRI in 24 glioma patients and 12 age- and sex-matched controls. We compared global activation, interhemispheric connectivity, and functional connectivity in the hand motor RSNs using hemispheric voxel counts, pairwise Pearson correlation, and pairwise total spectral coherence. We explored the relationship between tumor grade, volume, location, and the patient's clinical status to functional connectivity. Global network activation and interhemispheric connectivity were reduced in gliomas (p < 0.05). Functional connectivity between the bilateral motor cortices and the SMA was reduced in gliomas (p < 0.01). High-grade gliomas had lower functional connectivity than low-grade gliomas (p < 0.05). Tumor volume and distance to ipsilateral motor cortex demonstrated no association with functional connectivity loss. Functional connectivity loss is associated with motor deficits in low-grade gliomas, but not in high-grade gliomas. Global reduction in resting-state connectivity in areas distal to tumor suggests that radiological tumor boundaries underestimate areas affected by glioma. Association between motor deficits and rfMRI suggests that rfMRI may accurately reflect functional changes in low-grade gliomas. Lack of association between rfMRI and clinical motor deficits implies decreased sensitivity of rfMRI in high-grade gliomas, possibly due to neurovascular uncoupling.

  19. A Winding Road: Alzheimer’s Disease Increases Circuitous Functional Connectivity Pathways

    PubMed Central

    Suckling, John; Simas, Tiago; Chattopadhyay, Shayanti; Tait, Roger; Su, Li; Williams, Guy; Rowe, James B.; O’Brien, John T.

    2015-01-01

    Neuroimaging has been successful in characterizing the pattern of cerebral atrophy that accompanies the progression of Alzheimer’s disease (AD). Examination of functional connectivity, the strength of signal synchronicity between brain regions, has gathered pace as another way of understanding changes to the brain that are associated with AD. It appears to have good sensitivity and detect effects that precede cognitive decline, and thus offers the possibility to understand the neurobiology of the disease in its earliest phases. However, functional connectivity analyzes to date generally consider only the strongest connections, with weaker links ignored. This proof-of-concept study compared patients with mild-to-moderate AD (N = 11) and matched control individuals (N = 12) based on functional connectivities derived from blood-oxygenation level dependent (BOLD) sensitive functional MRI acquired during resting wakefulness. All positive connectivities irrespective of their strength were included. Transitive closures of the resulting connectome were calculated that classified connections as either direct or indirect. Between-group differences in the proportion of indirect paths were observed. In AD, there was broadly increased indirect connectivity across greater spatial distances. Furthermore, the indirect pathways in AD had greater between-subject topological variance than controls. The prevailing characterization of AD as being a disconnection syndrome is refined by the observation that direct links between regions that are impaired are perhaps replaced by an increase in indirect functional pathways that is only detectable through inclusion of connections across the entire range of connection strengths. PMID:26635593

  20. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients

    PubMed Central

    Chiu, Yee; Nurmikko, Turo; Stancak, Andrej

    2016-01-01

    Fibromyalgia syndrome (FMS) patients show altered connectivity with the network maintaining ongoing resting brain activity, known as the default mode network (DMN). The connectivity patterns of DMN with the rest of the brain in FMS patients are poorly understood. This study employed seed-based functional connectivity analysis to investigate resting-state functional connectivity with DMN structures in FMS. Sixteen female FMS patients and 15 age-matched, healthy control subjects underwent T2-weighted resting-state MRI scanning and functional connectivity analyses using DMN network seed regions. FMS patients demonstrated alterations to connectivity between DMN structures and anterior midcingulate cortex, right parahippocampal gyrus, left superior parietal lobule and left inferior temporal gyrus. Correlation analysis showed that reduced functional connectivity between the DMN and the right parahippocampal gyrus was associated with longer duration of symptoms in FMS patients, whereas augmented connectivity between the anterior midcingulate and posterior cingulate cortices was associated with tenderness and depression scores. Our findings demonstrate alterations to functional connectivity between DMN regions and a variety of regions which are important for pain, cognitive and emotional processing in FMS patients, and which may contribute to the development or maintenance of chronic symptoms in FMS. PMID:27442504

  1. Functional connectivity among spike trains in neural assemblies during rat working memory task.

    PubMed

    Xie, Jiacun; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2014-11-01

    Working memory refers to a brain system that provides temporary storage to manipulate information for complex cognitive tasks. As the brain is a more complex, dynamic and interwoven network of connections and interactions, the questions raised here: how to investigate the mechanism of working memory from the view of functional connectivity in brain network? How to present most characteristic features of functional connectivity in a low-dimensional network? To address these questions, we recorded the spike trains in prefrontal cortex with multi-electrodes when rats performed a working memory task in Y-maze. The functional connectivity matrix among spike trains was calculated via maximum likelihood estimation (MLE). The average connectivity value Cc, mean of the matrix, was calculated and used to describe connectivity strength quantitatively. The spike network was constructed by the functional connectivity matrix. The information transfer efficiency Eglob was calculated and used to present the features of the network. In order to establish a low-dimensional spike network, the active neurons with higher firing rates than average rate were selected based on sparse coding. The results show that the connectivity Cc and the network transfer efficiency Eglob vaired with time during the task. The maximum values of Cc and Eglob were prior to the working memory behavior reference point. Comparing with the results in the original network, the feature network could present more characteristic features of functional connectivity.

  2. The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    PubMed Central

    Findlay, Anne M.; Honma, Susanne; Jeremy, Rita J.; Strominger, Zoe; Bukshpun, Polina; Wakahiro, Mari; Brown, Warren S.; Paul, Lynn K.; Barkovich, A. James; Mukherjee, Pratik; Nagarajan, Srikantan S.; Sherr, Elliott H.

    2012-01-01

    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step

  3. Regional functional connectivity predicts distinct cognitive impairments in Alzheimer's disease spectrum.

    PubMed

    Ranasinghe, Kamalini G; Hinkley, Leighton B; Beagle, Alexander J; Mizuiri, Danielle; Dowling, Anne F; Honma, Susanne M; Finucane, Mariel M; Scherling, Carole; Miller, Bruce L; Nagarajan, Srikantan S; Vossel, Keith A

    2014-01-01

    Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer's disease (AD), cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. We recorded resting-state functional connectivity of alpha-band activity in 27 patients with AD spectrum--22 patients with probable AD (5 logopenic variant primary progressive aphasia, 7 posterior cortical atrophy, and 10 early-onset amnestic/dysexecutive AD) and 5 patients with mild cognitive impairment due to AD. We used magnetoencephalographic imaging (MEGI) to perform an unbiased search for regions where patterns of functional connectivity correlated with disease severity and cognitive performance. Functional connectivity measured the strength of coherence between a given region and the rest of the brain. Decreased neural connectivity of multiple brain regions including the right posterior perisylvian region and left middle frontal cortex correlated with a higher degree of disease severity. Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.

  4. Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder

    PubMed Central

    Dong, Guangheng; Lin, Xiao; Potenza, Marc N.

    2015-01-01

    Background Resting brain spontaneous neural activities across cortical regions have been correlated with specific functional properties in psychiatric groups. Individuals with Internet gaming disorder (IGD) demonstrate impaired executive control. Thus, it is important to examine executive control networks (ECNs) during resting states and their relationships to executive control during task performance. Methods Thirty-five IGD and 36 healthy control participants underwent a resting-state fMRI scan and performed a Stroop task inside and outside of the MRI scanner. Correlations between Stroop effect and functional connectivity among ECN regions of interest (ROIs) were calculated within and between groups. Results IGD subjects show lower functional connectivity in ECNs than do HC participants during resting state; functional-connectivity measures in ECNs were negatively correlated with Stroop effect and positively correlated with brain activations in executive-control regions across groups. Within groups, negative trends were found between Stroop effect and functional connectivity in ECNs in IGD and HC groups, separately; positive trends were found between functional connectivity in ECNs and brain activations in Stroop task in IGD and HC groups, separately. Conclusions Higher functional connectivity in ECNs may underlie better executive control and may provide resilience with respect to IGD. Lower functional connectivity in ECNs may represent an important feature in understanding and treating IGD. PMID:25445475

  5. Difference of neural connectivity for motor function in chronic hemiparetic stroke patients with intracerebral hemorrhage.

    PubMed

    Jang, Sung Ho; Kwon, Yong Hyun; Lee, Mi Young; Lee, Dong Yeop; Hong, Ji Heon

    2012-12-07

    Difference of neural connectivity for motor function had been studied by observation of neural activity within gray matter and nucleus using functional neuroimaging techniques. Diffusion tensor imaging (DTI) by a probabilistic tracking is useful for exploration of structural connectivity in the brain. We attempted to investigate difference of neural connectivity for motor function of the affected hand in chronic hemiparetic patients with intracerebral hemorrhage (ICH). Forty-four patients with ICH and 31 normal control subjects were recruited. Diffusion tensor imaging was acquired using a sensitivity-encoding head coil at 1.5 T. Motor function was evaluated using the motricity index (MI) for hand and Modified Brunnstrom Classification (MBC). The presence or absence of a connection was confirmed between the precentral knob of the affected hemisphere and seven areas. Compared with healthy subjects, the patient group showed lower connectivity to the contralesional primary motor cortex, ipsilesional basal ganglia, ipsilesional thalamus, contralesional cerebellum, and ipsilesional medullary pyramid in the affected hemisphere (p<0.05). Connections to the ipsilesional basal ganglia, ipsilesional thalamus, and ipsilesional medullary pyramid showed positive correlation with MI and MBC (p<0.05). We found difference of neural connectivity for motor function between chronic hemiparetic patients with ICH and control subjects. Our results suggest that the motor function of the stroke patient is related to neural connectivity between the ipsilesional M1 and the ipsilesional medullary pyramid, ipsilesional basal ganglia, and ipsilesional thalamus.

  6. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy

    PubMed Central

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-01-01

    Abstract The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale. The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores. Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA. The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment. PMID:27442663

  7. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy.

    PubMed

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-07-01

    The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment.

  8. Potential Use and Challenges of Functional Connectivity Mapping in Intractable Epilepsy

    PubMed Central

    Constable, Robert Todd; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Hampson, Michelle; Winstanley, F. Scott; Spencer, Dennis D.; Papademetris, Xenophon

    2013-01-01

    This review focuses on the use of resting-state functional magnetic resonance imaging data to assess functional connectivity in the human brain and its application in intractable epilepsy. This approach has the potential to predict outcomes for a given surgical procedure based on the pre-surgical functional organization of the brain. Functional connectivity can also identify cortical regions that are organized differently in epilepsy patients either as a direct function of the disease or through indirect compensatory responses. Functional connectivity mapping may help identify epileptogenic tissue, whether this is a single focal location or a network of seizure-generating tissues. This review covers the basics of connectivity analysis and discusses particular issues associated with analyzing such data. These issues include how to define nodes, as well as differences between connectivity analyses of individual nodes, groups of nodes, and whole-brain assessment at the voxel level. The need for arbitrary thresholds in some connectivity analyses is discussed and a solution to this problem is reviewed. Overall, functional connectivity analysis is becoming an important tool for assessing functional brain organization in epilepsy. PMID:23734143

  9. White matter lesions relate to tract-specific reductions in functional connectivity.

    PubMed

    Langen, Carolyn D; Zonneveld, Hazel I; White, Tonya; Huizinga, Wyke; Cremers, Lotte G M; de Groot, Marius; Ikram, Mohammad Arfan; Niessen, Wiro J; Vernooij, Meike W

    2017-03-01

    White matter lesions play a role in cognitive decline and dementia. One presumed pathway is through disconnection of functional networks. Little is known about location-specific effects of lesions on functional connectivity. This study examined location-specific effects within anatomically-defined white matter tracts in 1584 participants of the Rotterdam Study, aged 50-95. Tracts were delineated from diffusion magnetic resonance images using probabilistic tractography. Lesions were segmented on fluid-attenuated inversion recovery images. Functional connectivity was defined across each tract on resting-state functional magnetic resonance images by using gray matter parcellations corresponding to the tract ends and calculating the correlation of the mean functional activity between the gray matter regions. A significant relationship between both local and brain-wide lesion load and tract-specific functional connectivity was found in several tracts using linear regressions, also after Bonferroni correction. Indirect connectivity analyses revealed that tract-specific functional connectivity is affected by lesions in several tracts simultaneously. These results suggest that local white matter lesions can decrease tract-specific functional connectivity, both in direct and indirect connections.

  10. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    PubMed

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories.

  11. Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy.

    PubMed

    Niu, Haijing; He, Yong

    2014-04-01

    Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain's low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.

  12. Altered resting-state functional connectivity in women with chronic fatigue syndrome.

    PubMed

    Kim, Byung-Hoon; Namkoong, Kee; Kim, Jae-Jin; Lee, Seojung; Yoon, Kang Joon; Choi, Moonjong; Jung, Young-Chul

    2015-12-30

    The biological underpinnings of the psychological factors characterizing chronic fatigue syndrome (CFS) have not been extensively studied. Our aim was to evaluate alterations of resting-state functional connectivity in CFS patients. Participants comprised 18 women with CFS and 18 age-matched female healthy controls who were recruited from the local community. Structural and functional magnetic resonance images were acquired during a 6-min passive-viewing block scan. Posterior cingulate cortex seeded resting-state functional connectivity was evaluated, and correlation analyses of connectivity strength were performed. Graph theory analysis of 90 nodes of the brain was conducted to compare the global and local efficiency of connectivity networks in CFS patients with that in healthy controls. The posterior cingulate cortex in CFS patients showed increased resting-state functional connectivity with the dorsal and rostral anterior cingulate cortex. Connectivity strength of the posterior cingulate cortex to the dorsal anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score, while the Beck Depression Inventory (BDI) score was controlled. Connectivity strength to the rostral anterior cingulate cortex significantly correlated with the Chalder Fatigue Scale score. Global efficiency of the posterior cingulate cortex was significantly lower in CFS patients, while local efficiency showed no difference from findings in healthy controls. The findings suggest that CFS patients show inefficient increments in resting-state functional connectivity that are linked to the psychological factors observed in the syndrome.

  13. Functional Connectivity of the Precuneus in Female University Students with Long-Term Musical Training

    PubMed Central

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    Conceiving concrete mental imagery is critical for skillful musical expression and performance. The precuneus, a core component of the default mode network (DMN), is a hub of mental image processing that participates in functions such as episodic memory retrieval and imagining future events. The precuneus connects with many brain regions in the frontal, parietal, temporal, and occipital cortices. The aim of this study was to examine the effects of long-term musical training on the resting-state functional connectivity of the precuneus. Our hypothesis was that the functional connectivity of the precuneus is altered in musicians. We analyzed the functional connectivity of the precuneus using resting-state functional magnetic resonance imaging (fMRI) data recorded in female university students majoring in music and nonmusic disciplines. The results show that the music students had higher functional connectivity of the precuneus with opercular/insular regions, which are associated with interoceptive and emotional processing; Heschl’s gyrus (HG) and the planum temporale (PT), which process complex tonal information; and the lateral occipital cortex (LOC), which processes visual information. Connectivity of the precuneus within the DMN did not differ between the two groups. Our finding suggests that functional connections between the precuneus and the regions outside of the DMN play an important role in musical performance. We propose that a neural network linking the precuneus with these regions contributes to translate mental imagery into information relevant to musical performance. PMID:27445765

  14. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    NASA Astrophysics Data System (ADS)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  15. Activation of mutant protein kinase C{gamma} leads to aberrant sequestration and impairment of its cellular function

    SciTech Connect

    Doran, Graeme; Davies, Kay E.; Talbot, Kevin

    2008-08-01

    Mutations in protein kinase C{gamma} (PKC{gamma}) cause the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14). In this study, expression of an extensive panel of known SCA14-associated PKC{gamma} mutations as fusion proteins in cell culture led to the consistent formation of cytoplasmic aggregates in response to purinoceptor stimulation. Aggregates co-stained with antibodies to phosphorylated PKC{gamma} and the early endosome marker EEA1 but failed to redistribute to the cell membrane under conditions of oxidative stress. These studies suggest that Purkinje cell damage in SCA14 may result from a reduction of PKC{gamma} activity due its aberrant sequestration in the early endosome compartment.

  16. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine

    PubMed Central

    de Tommaso, Marina; Trotta, Gabriele; Vecchio, Eleonora; Ricci, Katia; Van de Steen, Frederik; Montemurno, Anna; Lorenzo, Marta; Marinazzo, Daniele; Bellotti, Roberto; Stramaglia, Sebastiano

    2015-01-01

    In previous studies, migraine patients showed abnormalities in pain-related evoked responses, as reduced habituation to repetitive stimulation. In this study, we aimed to apply a novel analysis of EEG bands synchronization and directed dynamical influences under painful stimuli in migraine patients compared to non-migraine healthy volunteers. Thirty-one migraine without aura outpatients (MIGR) were evaluated and compared to 19 controls (CONT). The right hand was stimulated by means of 30 consecutive CO2 laser stimuli. EEG signal was examined by means of Morlet wavelet, synchronization entropy (SE), and Granger causality (GC), and the statistically validated results were mapped on the corresponding scalp locations. The vertex complex of averaged laser-evoked responses (LEPs) showed reduced habituation compared to CONT. In the prestimulus phase, enhanced SE in the 0, 5–30 Hz range was present in MIGR and CONT between the bilateral temporal–parietal and the frontal regions around the midline. Migraine patients showed an anticipation of EEG changes preceding the painful stimulation compared to CONT. In the poststimulus phase, the same cortical areas were more connected in MIGR vs CONT. In both groups of patients and CONT, the habituation index was negatively correlated with the GC scores. A different pattern of cortical activation after painful stimulation was present in migraine. The increase in cortical connections during repetitive painful stimulation may subtend the phenomenon of LEPs reduced habituation. Brain network analysis may give an aid in understanding subtle changes of pain processing under laser stimuli in migraine patients. PMID:26635589

  17. Task-dependent reorganization of functional connectivity networks during visual semantic decision making

    PubMed Central

    DeSalvo, Matthew N; Douw, Linda; Takaya, Shigetoshi; Liu, Hesheng; Stufflebeam, Steven M

    2014-01-01

    Introduction Functional MRI is widely used to study task-related changes in neuronal activity as well as resting-state functional connectivity. In this study, we explore task-related changes in functional connectivity networks using fMRI. Dynamic connectivity may represent a new measure of neural network robustness that would impact both clinical and research efforts. However, prior studies of task-related changes in functional connectivity have shown apparently conflicting results, leading to several competing hypotheses regarding the relationship between task-related and resting-state brain networks. Methods We used a graph theory-based network approach to compare functional connectivity in healthy subjects between the resting state and when performing a clinically used semantic decision task. We analyzed fMRI data from 21 healthy, right-handed subjects. Results While three nonoverlapping, highly intraconnected functional modules were observed in the resting state, an additional language-related module emerged during the semantic decision task. Both overall and within-module connectivity were greater in default mode network (DMN) and classical language areas during semantic decision making compared to rest, while between-module connectivity was diffusely greater at rest, revealing a more widely distributed pattern of functional connectivity at rest. Conclusions The results of this study suggest that there are differences in network topology between resting and task states. Specifically, semantic decision making is associated with a reduction in distributed connectivity through hub areas of the DMN as well as an increase in connectivity within both default and language networks. PMID:25365802

  18. Global and regional functional connectivity maps of neural oscillations in focal epilepsy

    PubMed Central

    Englot, Dario J.; Hinkley, Leighton B.; Kort, Naomi S.; Imber, Brandon S.; Mizuiri, Danielle; Honma, Susanne M.; Findlay, Anne M.; Garrett, Coleman; Cheung, Paige L.; Mantle, Mary; Tarapore, Phiroz E.; Knowlton, Robert C.; Chang, Edward F.; Nagarajan, Srikantan S.

    2015-01-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious

  19. Global and regional functional connectivity maps of neural oscillations in focal epilepsy.

    PubMed

    Englot, Dario J; Hinkley, Leighton B; Kort, Naomi S; Imber, Brandon S; Mizuiri, Danielle; Honma, Susanne M; Findlay, Anne M; Garrett, Coleman; Cheung, Paige L; Mantle, Mary; Tarapore, Phiroz E; Knowlton, Robert C; Chang, Edward F; Kirsch, Heidi E; Nagarajan, Srikantan S

    2015-08-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious

  20. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification.

    PubMed

    Jie, Biao; Zhang, Daoqiang; Wee, Chong-Yaw; Shen, Dinggang

    2014-07-01

    Recently, brain connectivity networks have been used for classification of Alzheimer's disease and mild cognitive impairment (MCI) from normal controls (NC). In typical connectivity-networks-based classification approaches, local measures of connectivity networks are first extracted from each region-of-interest as network features, which are then concatenated into a vector for subsequent feature selection and classification. However, some useful structural information of network, especially global topological information, may be lost in this type of approaches. To address this issue, in this article, we propose a connectivity-networks-based classification framework to identify accurately the MCI patients from NC. The core of the proposed method involves the use of a new graph-kernel-based approach to measure directly the topological similarity between connectivity networks. We evaluate our method on functional connectivity networks of 12 MCI and 25 NC subjects. The experimental results show that our proposed method achieves a classification accuracy of 91.9%, a sensitivity of 100.0%, a balanced accuracy of 94.0%, and an area under receiver operating characteristic curve of 0.94, demonstrating a great potential in MCI classification, based on connectivity networks. Further connectivity analysis indicates that the connectivity of the selected brain regions is different between MCI patients and NC, that is, MCI patients show reduced functional connectivity compared with NC, in line with the findings reported in the existing studies.

  1. Effects of acute tryptophan depletion on raphé functional connectivity in depression

    PubMed Central

    Weinstein, Jodi J.; Rogers, Baxter P.; Taylor, Warren D.; Boyd, Brian D.; Cowan, Ronald L.; Shelton, K. Maureen; Salomon, Ronald M.

    2015-01-01

    Depression remains a great societal burden and a major treatment challenge. Most antidepressant medications target serotonergic raphé nuclei. Acute tryptophan depletion (ATD) modulates serotonin function. To better understand the raphé's role in mood networks, we studied raphé functional connectivity in depression. Fifteen depressed patients were treated with sertraline for 12 weeks and scanned during ATD and sham conditions. Based on our previous findings in a separate cohort, resting state MRI functional connectivity between raphé and other depression-related regions (ROIs) was analyzed in narrow frequency bands. ATD decreased raphé functional connectivity with the bilateral thalamus within 0.025–0.05 Hz, and also decreased raphé functional connectivity with the right pregenual anterior cingulate cortex within 0.05–0.1 Hz. Using the control broadband filtlter 0.01–0.1 Hz, no significant differences in raphé-ROI functional connectivity were observed. Post-hoc analysis by remission status suggested increased raphé functional connectivity with left pregenual anterior cingulate cortex in remitters (n = 10) and decreased raphé functional connectivity with left thalamus in non-remitters (n = 5), both within 0.025–0.05 Hz. Reducing serotonin function appears to alter coordination of these mood-related networks in specific, low frequency ranges. For examination of effects of reduced serotonin function on mood-related networks, specific low frequency BOLD fMRI signals can identify regions implicated in neural circuitry and may enable clinically-relevant interpretation of functional connectivity measures. The biological significance of these low frequency signals detected in the raphé merits further study. PMID:26411798

  2. Integrating structural and functional connectivity to characterize sediment dynamics in a small Alpine catchment

    NASA Astrophysics Data System (ADS)

    Cavalli, Marco; Crema, Stefano; Blok, Michiel; Lucía, Ana; Comiti, Francesco; Marchi, Lorenzo; Keesstra, Saskia

    2016-04-01

    Sediment connectivity can be regarded as a descriptor of the internal linkages between different landscape components within a catchment. The recent focus of the scientific community on connectivity related topics, both concerning hydrological and sediment connectivity, stresses the importance of understanding the main active pathways for a better estimation of energy and matter transfer at catchment scale. This task can be addressed using topography-based indices that analyse the linkages between landscape units. This approach to characterize connectivity is known as structural connectivity. The main limitation of structural connectivity is that it does not account for the processes driving sediment and energy fluxes (i.e., functional connectivity). In this work the integration between structural and functional approaches is proposed for characterizing sediment connectivity in mountain catchments. The structural approach, based on a topography-based sediment connectivity index, was used for assessing hillslope-to-channel connectivity. Since field data on processes driving sediment transport along the channel network are available, a functional approach has been devised to estimate within-channel connectivity. An index of unit stream power computed from the hydraulic properties of the channel (i.e., discharge, slope and channel width) has been compared with the critical unit stream power computed from incipient motion thresholds derived from field data to identify the cells of the Digital Terrain Model (DTM) in which sediment can be mobilized under near-bankfull conditions. The index expressing the within-channel connectivity is given by the length of the reaches consisting of contiguous cells that exceed the critical unit stream power. During high-magnitude floods, when unit stream power values exceed the threshold for incipient motion, channels experience an increase in both hydrological and sediment connectivity. The proposed index characterizes those sections

  3. Chicago aberration correction work.

    PubMed

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  4. Latency-Related Development of Functional Connections in Cultured Cortical Networks

    PubMed Central

    le Feber, J.; van Pelt, J.; Rutten, W.L.C.

    2009-01-01

    Abstract To study plasticity, we cultured cortical networks on multielectrode arrays, enabling simultaneous recording from multiple neurons. We used conditional firing probabilities to describe functional network connections by their strength and latency. These are abstract representations of neuronal pathways and may arise from direct pathways between two neurons or from a common input. Functional connections based on direct pathways should reflect synaptic properties. Therefore, we searched for long-term potentiation (this mechanism occurs in vivo when presynaptic action potentials precede postsynaptic ones with interspike intervals up to ∼20 ms) in vitro. To investigate if the strength of functional connections showed a similar latency-related development, we selected periods of monotonously increasing or decreasing strength. We observed increased incidence of short latencies (5–30 ms) during strengthening, whereas these rarely occurred during weakening. Furthermore, we saw an increased incidence of 40–65 ms latencies during weakening. Conversely, functional connections tended to strengthen in periods with short latency, whereas strengthening was significantly less than average during long latency. Our data suggest that functional connections contain information about synaptic connections, that conditional firing probability analysis is sensitive enough to detect it and that a substantial fraction of all functional connections is based on direct pathways. PMID:19383487

  5. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    PubMed

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder.

  6. Mapping the relationship between subgenual cingulate cortex functional connectivity and depressive symptoms across adolescence

    PubMed Central

    Strikwerda-Brown, Cherie; Davey, Christopher G.; Whittle, Sarah; Allen, Nicholas B.; Byrne, Michelle L.; Schwartz, Orli S.; Simmons, Julian G.; Dwyer, Dominic

    2015-01-01

    Changes in the functional connectivity of the subgenual anterior cingulate cortex (SGC) have been linked with depressive symptoms. The aim of this study was to map this relationship across mid to late adolescence. Employing a longitudinal functional magnetic resonance imaging (fMRI) design, associations between patterns of resting-state SGC functional connectivity and symptoms of depression were examined at two time points in an initial sample of 72 adolescents. Using a region-of-interest approach, these associations were evaluated cross-sectionally and longitudinally. Cross-sectionally, weaker SGC functional connectivity with the posterior cingulate cortex (PCC), angular gyrus and dorsal prefrontal cortex at baseline, and weaker SGC connectivity with the dorsomedial prefrontal cortex (DMPFC) and ventromedial prefrontal cortex at follow-up, were associated with higher depressive symptoms. Longitudinally, a decrease in SGC functional connectivity with DMPFC, PCC, angular gyrus and middle temporal gyrus was associated with higher depressive symptoms at follow-up. The observation of weaker SGC connectivity predicting increased symptoms contrasts with the majority of resting-state fMRI studies in clinically depressed populations. Taken together with these past studies, our findings suggest depression-related changes in SGC functional connectivity may differ across developmental and illness stages. PMID:25416726

  7. Functional variomics and network perturbation: connecting genotype to phenotype in cancer.

    PubMed

    Yi, Song; Lin, Shengda; Li, Yongsheng; Zhao, Wei; Mills, Gordon B; Sahni, Nidhi

    2017-03-27

    Proteins interact with other macromolecules in complex cellular networks for signal transduction and biological function. In cancer, genetic aberrations have been traditionally thought to disrupt the entire gene function. It has been increasingly appreciated that each mutation of a gene could have a subtle but unique effect on protein function or network rewiring, contributing to diverse phenotypic consequences across cancer patient populations. In this Review, we discuss the current understanding of cancer genetic variants, including the broad spectrum of mutation classes and the wide range of mechanistic effects on gene function in the context of signalling networks. We highlight recent advances in computational and experimental strategies to study the diverse functional and phenotypic consequences of mutations at the base-pair resolution. Such information is crucial to understanding the complex pleiotropic effect of cancer genes and provides a possible link between genotype and phenotype in cancer.

  8. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    PubMed

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores.

  9. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    PubMed

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  10. The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity.

    PubMed

    Colon-Perez, Luis M; Tran, Kelvin; Thompson, Khalil; Pace, Michael C; Blum, Kenneth; Goldberger, Bruce A; Gold, Mark S; Bruijnzeel, Adriaan W; Setlow, Barry; Febo, Marcelo

    2016-08-01

    The abuse of 'bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks

  11. Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism

    ERIC Educational Resources Information Center

    Ghanbari, Yasser; Bloy, Luke; Edgar, J. Christopher; Blaskey, Lisa; Verma, Ragini; Roberts, Timothy P. L.

    2015-01-01

    Examination of resting state brain activity using electrophysiological measures like complexity as well as functional connectivity is of growing interest in the study of autism spectrum disorders (ASD). The present paper jointly examined complexity and connectivity to obtain a more detailed characterization of resting state brain activity in ASD.…

  12. Functional Connectivity of the Amygdala in Early-Childhood-Onset Depression

    ERIC Educational Resources Information Center

    Luking, Katherine R.; Repovs, Grega; Belden, Andy C.; Gaffrey, Michael S.; Botteron, Kelly N.; Luby, Joan L.; Barch, Deanna M.

    2011-01-01

    Objective: Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early-childhood-onset MDD. Method: A total of 51 children 7 through 11 years of age who had…

  13. Anterior cingulate cortex-related connectivity in first-episode schizophrenia: a spectral dynamic causal modeling study with functional magnetic resonance imaging

    PubMed Central

    Cui, Long-Biao; Liu, Jian; Wang, Liu-Xian; Li, Chen; Xi, Yi-Bin; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Liu, Wen-Ming; He, Hong; Tian, Ping; Yin, Hong; Lu, Hongbing

    2015-01-01

    Understanding the neural basis of schizophrenia (SZ) is important for shedding light on the neurobiological mechanisms underlying this mental disorder. Structural and functional alterations in the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), hippocampus, and medial prefrontal cortex (MPFC) have been implicated in the neurobiology of SZ. However, the effective connectivity among them in SZ remains unclear. The current study investigated how neuronal pathways involving these regions were affected in first-episode SZ using functional magnetic resonance imaging (fMRI). Forty-nine patients with a first-episode of psychosis and diagnosis of SZ—according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision—were studied. Fifty healthy controls (HCs) were included for comparison. All subjects underwent resting state fMRI. We used spectral dynamic causal modeling (DCM) to estimate directed connections among the bilateral ACC, DLPFC, hippocampus, and MPFC. We characterized the differences using Bayesian parameter averaging (BPA) in addition to classical inference (t-test). In addition to common effective connectivity in these two groups, HCs displayed widespread significant connections predominantly involved in ACC not detected in SZ patients, but SZ showed few connections. Based on BPA results, SZ patients exhibited anterior cingulate cortico-prefrontal-hippocampal hyperconnectivity, as well as ACC-related and hippocampal-dorsolateral prefrontal-medial prefrontal hypoconnectivity. In summary, spectral DCM revealed the pattern of effective connectivity involving ACC in patients with first-episode SZ. This study provides a potential link between SZ and dysfunction of ACC, creating an ideal situation to associate mechanisms behind SZ with aberrant connectivity among these cognition and emotion-related regions. PMID:26578933

  14. Chemotherapy altered brain functional connectivity in women with breast cancer: a pilot study.

    PubMed

    Dumas, Julie A; Makarewicz, Jenna; Schaubhut, Geoffrey J; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A

    2013-12-01

    Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, 1 month after, and 1 year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity 1 month after chemotherapy that partially returned to baseline at 1 year in the dorsal attention network. Decreased connectivity was seen in the default mode network at 1 month and 1 year following chemotherapy. In addition, increased subjective memory complaints were noted at 1 month and 1 year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment.

  15. Sensory functioning and intelligence in old age: a strong connection.

    PubMed

    Lindenberger, U; Baltes, P B

    1994-09-01

    Relations among age, sensory functioning (i.e., visual and auditory acuity), and intelligence were examined in a heterogeneous, age-stratified sample of old and very old individuals (N = 156, M age = 84.9 years, age range = 70-103). Intelligence was assessed with 14 tests measuring 5 cognitive abilities (speed, reasoning, memory, knowledge, and fluency). Together, visual and auditory acuity accounted for 49.2% of the total and 93.1% of the age-related reliable variance in intelligence. The data were consistent with structural models in which age differences in intelligence, including speed, are completely mediated by differences in vision and hearing. Results suggest that sensory functioning is a strong late-life predictor of individual differences in intellectual functioning. Explanations are discussed, including the possibility that visual and sensory acuity are indicators of the physiological integrity of the aging brain (common cause hypothesis).

  16. Hierarchical organization unveiled by functional connectivity in complex brain networks.

    PubMed

    Zhou, Changsong; Zemanová, Lucia; Zamora, Gorka; Hilgetag, Claus C; Kurths, Jürgen

    2006-12-08

    How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

  17. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia.

    PubMed

    Pujol, Jesus; Macià, Dídac; Garcia-Fontanals, Alba; Blanco-Hinojo, Laura; López-Solà, Marina; Garcia-Blanco, Susana; Poca-Dias, Violant; Harrison, Ben J; Contreras-Rodríguez, Oren; Monfort, Jordi; Garcia-Fructuoso, Ferran; Deus, Joan

    2014-08-01

    Fibromyalgia typically presents with spontaneous body pain with no apparent cause and is considered pathophysiologically to be a functional disorder of somatosensory processing. We have investigated potential associations between the degree of self-reported clinical pain and resting-state brain functional connectivity at different levels of putative somatosensory integration. Resting-state functional magnetic resonance imaging was obtained in 40 women with fibromyalgia and 36 control subjects. A combination of functional connectivity-based measurements were used to assess (1) the basic pain signal modulation system at the level of the periaqueductal gray (PAG); (2) the sensory cortex with an emphasis on the parietal operculum/secondary somatosensory cortex (SII); and (3) the connectivity of these regions with the self-referential "default mode" network. Compared with control subjects, a reduction of functional connectivity was identified across the 3 levels of neural processing, each showing a significant and complementary correlation with the degree of clinical pain. Specifically, self-reported pain in fibromyalgia patients correlated with (1) reduced connectivity between PAG and anterior insula; (2) reduced connectivity between SII and primary somatosensory, visual, and auditory cortices; and (3) increased connectivity between SII and the default mode network. The results confirm previous research demonstrating abnormal functional connectivity in fibromyalgia and show that alterations at different levels of sensory processing may contribute to account for clinical pain. Importantly, reduced functional connectivity extended beyond the somatosensory domain and implicated visual and auditory sensory modalities. Overall, this study suggests that a general weakening of sensory integration underlies clinical pain in fibromyalgia.

  18. The relation between structural and functional connectivity depends on age and on task goals

    PubMed Central

    Ford, Jaclyn H.; Kensinger, Elizabeth A.

    2014-01-01

    The last decade has seen an increase in neuroimaging studies examining structural (i.e., structural integrity of white matter tracts) and functional connectivity (e.g., correlations in neural activity throughout the brain). Although structural and functional connectivity changes have often been measured independently, examining the relation between these two measures is critical to understanding the specific function of neural networks and the ways they may differ across tasks and individuals. The current study addressed this question by examining the effect of age (treated as a continuous variable) and emotional valence on the relation between functional and structural connectivity. As prior studies have suggested that prefrontal regions may guide and regulate emotional memory search via functional connections with the amygdala, the current analysis focused on functional connectivity between the left amygdala and the left prefrontal cortex, and structural integrity of the uncinate fasciculus, a white matter tract connecting prefrontal and temporal regions. Participants took part in a scanned retrieval task in which they recalled positive, negative, and neutral images associated with neutral titles. Aging was associated with a significant increase in the relation between measures of structural integrity (specifically, fractional anisotropy, or FA) along the uncinate fasciculus and functional connectivity between the left ventral prefrontal cortex and amygdala during positive event retrieval, but not negative or neutral retrieval. Notably, during negative event retrieval, age was linked to stronger structure-function relations between the amygdala and the dorsal anterior cingulate cortex, such that increased structural integrity predicted stronger negative functional connectivity in older adults only. These findings suggest that young and older adults may utilize a structural pathway to engage different retrieval and regulatory strategies, even when structural

  19. Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia.

    PubMed

    Li, Tao; Wang, Qiang; Zhang, Jie; Rolls, Edmund T; Yang, Wei; Palaniyappan, Lena; Zhang, Lu; Cheng, Wei; Yao, Ye; Liu, Zhaowen; Gong, Xiaohong; Luo, Qiang; Tang, Yanqing; Crow, Timothy J; Broome, Matthew R; Xu, Ke; Li, Chunbo; Wang, Jijun; Liu, Zhening; Lu, Guangming; Wang, Fei; Feng, Jianfeng

    2016-07-21

    Published reports of functional abnormalities in schizophrenia remain divergent due to lack of staging point-of-view and whole-brain analysis. To identify key functional-connectivity differences of first-episode (FE) and chronic patients from controls using resting-state functional MRI, and determine changes that are specifically associated with disease onset, a clinical staging model is adopted. We analyze functional-connectivity differences in prodromal, FE (mostly drug naïve), and chronic patients from their matched controls from 6 independent datasets involving a total of 789 participants (343 patients). Brain-wide functional-connectivity analysis was performed in different datasets and the results from the datasets of the same stage were then integrated by meta-analysis, with Bonferroni correction for multiple comparisons. Prodromal patients differed from controls in their pattern of functional-connectivity involving the inferior frontal gyri (Broca's area). In FE patients, 90% of the functional-connectivity changes involved the frontal lobes, mostly the inferior frontal gyrus including Broca's area, and these changes were correlated with delusions/blunted affect. For chronic patients, functional-connectivity differences extended to wider areas of the brain, including reduced thalamo-frontal connectivity, and increased thalamo-temporal and thalamo-sensorimoter connectivity that were correlated with the positive, negative, and general symptoms, respectively. Thalamic changes became prominent at the chronic stage. These results provide evidence for distinct patterns of functional-dysconnectivity across FE and chronic stages of schizophrenia. Importantly, abnormalities in the frontal language networks appear early, at the time of disease onset. The identification of stage-specific pathological processes may help to understand the disease course of schizophrenia and identify neurobiological markers crucial for early diagnosis.

  20. Abnormal whole-brain functional connectivity in patients with primary insomnia

    PubMed Central

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson’s correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia. PMID:28243094

  1. Abnormal whole-brain functional connectivity in patients with primary insomnia.

    PubMed

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson's correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia.

  2. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest

    PubMed Central

    Johnen, Vanessa M; Neubert, Franz-Xaver; Buch, Ethan R; Verhagen, Lennart; O'Reilly, Jill X; Mars, Rogier B; Rushworth, Matthew F S

    2015-01-01

    Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity. DOI: http://dx.doi.org/10.7554/eLife.04585.001 PMID:25664941

  3. GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism.

    PubMed

    Nasrallah, Fatima A; Singh, Kavita Kaur D/O Ranjit; Yeow, Ling Yun; Chuang, Kai-Hsiang

    2017-01-21

    Resting state functional connectivity MRI measures synchronous activity among brain regions although the mechanisms governing the temporally coherent BOLD signals remain unclear. Recent studies suggest that γ-amino butyric acid (GABA) levels are correlated with functional connectivity. To understand whether changes in GABA transmission alter functional connectivity, we modulated the GABAergic activity by a GABAA receptor antagonist, bicuculline. Resting and evoked electrophysiology and BOLD signals were measured in isoflurane-anesthetized rats under infusion of low-dose bicuculline or vehicle individually. Both somatosensory BOLD activations and evoked potentials induced by forepaw stimulation were increased significantly under bicuculline compared to vehicle, indicating increased excitability. Gradually elevated resting BOLD correlation within and between the somatosensory and visual cortices, as well as between somatosensory and caudate putamen but not within subcortical areas were found with the infusion of bicuculline. Increased cerebral blood flow was observed throughout the cortical and subcortical areas where the receptor density is high, but it didn't correlate with BOLD connectivity except in the primary somatosensory cortex. Furthermore, resting EEG coherence in the alpha and beta bands exhibited consistent change with the BOLD correlation. The increased cortico-cortical and cortico-striatal connectivity without dependence on the receptor distribution indicate that the functional connectivity may be mediated by long-range projection via the cortical and striatal GABAergic inter-neurons. Our results indicate an important role of the GABAergic system on neural and hemodynamic oscillations, which further supports the neuronal basis of functional connectivity MRI and its correlation with neurotransmission.

  4. Connecting soil microbial communities to soil functioning and soil health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most important functions soils perform, is the capacity to buffer anthropogenic disturbances to sustain productivity while improving water and air quality. At the core of a healthy soil is a biological active and diverse community that provides internal nutrient cycling and is resilient t...

  5. Preschoolers' Free Play--Connections with Emotional and Social Functioning

    ERIC Educational Resources Information Center

    Veiga, Guida; Neto, Carlos; Rieffe, Carolien

    2016-01-01

    Play has an important role in various aspects of children's development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children's social functioning. The aims of this study are to examine whether children´s free play is…

  6. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    PubMed

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  7. Functional Connectivity of Primary Motor Cortex Is Dependent on Genetic Burden in Prodromal Huntington Disease

    PubMed Central

    Koenig, Katherine A.; Lowe, Mark J.; Harrington, Deborah L.; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S.

    2014-01-01

    Abstract Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive–motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis. PMID:25072408

  8. Functional connectivity among spikes in low dimensional space during working memory task in rat.

    PubMed

    Ouyang, Mei; Li, Shuangyan; Tian, Xin

    2014-01-01

    Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space.

  9. Functional Connectivity among Spikes in Low Dimensional Space during Working Memory Task in Rat

    PubMed Central

    Tian, Xin

    2014-01-01

    Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space. PMID:24658291

  10. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    PubMed

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals.

  11. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy

    PubMed Central

    Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.

    2016-01-01

    The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828

  12. Effects of acute electromagnetic fields exposure on the interhemispheric homotopic functional connectivity during resting state.

    PubMed

    Lv, Bin; Shao, Qing; Chen, Zhiye; Ma, Lin; Wu, Tongning

    2015-08-01

    In this paper, we aimed to investigate the possible effects of acute radiofrequency electromagnetic fields (EMF) on the interhemispheric homotopic functional connectivity with resting state functional magnetic resonance imaging (fMRI) technique. We designed a controllable LTE-related EMF exposure environment at 2.573 GHz and performed the 30 min real/sham exposure experiments on human brain under the safety limits. The resting state fMRI signals were collected before and after EMF exposure. Then voxel-mirrored homotopic connectivity method was utilized to evaluate the acute effects of LTE EMF exposure on the homotopic functional connectivity between two human hemispheres. Based on our previous research, we further demonstrated that the 30 min short-term LTE EMF exposure would modulate the interhemispheric homotopic functional connectivity in resting state around the medial frontal gyrus and the paracentral lobule during the real exposure.

  13. Weak functional connectivity in the human fetal brain prior to preterm birth.

    PubMed

    Thomason, Moriah E; Scheinost, Dustin; Manning, Janessa H; Grove, Lauren E; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S; Constable, R Todd; Ment, Laura R; Romero, Roberto

    2017-01-09

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero.

  14. Structural foundations of resting-state and task-based functional connectivity in the human brain.

    PubMed

    Hermundstad, Ann M; Bassett, Danielle S; Brown, Kevin S; Aminoff, Elissa M; Clewett, David; Freeman, Scott; Frithsen, Amy; Johnson, Arianne; Tipper, Christine M; Miller, Michael B; Grafton, Scott T; Carlson, Jean M

    2013-04-09

    Magnetic resonance imaging enables the noninvasive mapping of both anatomical white matter connectivity and dynamic patterns of neural activity in the human brain. We examine the relationship between the structural properties of white matter streamlines (structural connectivity) and the functional properties of correlations in neural activity (functional connectivity) within 84 healthy human subjects both at rest and during the performance of attention- and memory-demanding tasks. We show that structural properties, including the length, number, and spatial location of white matter streamlines, are indicative of and can be inferred from the strength of resting-state and task-based functional correlations between brain regions. These results, which are both representative of the entire set of subjects and consistently observed within individual subjects, uncover robust links between structural and functional connectivity in the human brain.

  15. Weak functional connectivity in the human fetal brain prior to preterm birth

    PubMed Central

    Thomason, Moriah E.; Scheinost, Dustin; Manning, Janessa H.; Grove, Lauren E.; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S.; Constable, R. Todd; Ment, Laura R.; Romero, Roberto

    2017-01-01

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero. PMID:28067865

  16. Motor network disruption in essential tremor: a functional and effective connectivity study.

    PubMed

    Buijink, Arthur W G; van der Stouwe, A M Madelein; Broersma, Marja; Sharifi, Sarvi; Groot, Paul F C; Speelman, Johannes D; Maurits, Natasha M; van Rootselaar, Anne-Fleur

    2015-10-01

    Although involvement of the cerebello-thalamo-cortical network has often been suggested in essential tremor, the source of oscillatory activity remains largely unknown. To elucidate mechanisms of tremor generation, it is of crucial importance to study the dynamics within the cerebello-thalamo-cortical network. Using a combination of electromyography and functional magnetic resonance imaging, it is possible to record the peripheral manifestation of tremor simultaneously with brain activity related to tremor generation. Our first aim was to study the intrinsic activity of regions within the cerebello-thalamo-cortical network using dynamic causal modelling to estimate effective connectivity driven by the concurrently recorded tremor signal. Our second aim was to objectify how the functional integrity of the cerebello-thalamo-cortical network is affected in essential tremor. We investigated the functional connectivity between cerebellar and cortical motor regions showing activations during a motor task. Twenty-two essential tremor patients and 22 healthy controls were analysed. For the effective connectivity analysis, a network of tremor-signal related regions was constructed, consisting of the left primary motor cortex, premotor cortex, supplementary motor area, left thalamus, and right cerebellar motor regions lobule V and lobule VIII. A measure of variation in tremor severity over time, derived from the electromyogram, was included as modulatory input on intrinsic connections and on the extrinsic cerebello-thalamic connections, giving a total of 128 models. Bayesian model selection and random effects Bayesian model averaging were used. Separate seed-based functional connectivity analyses for the left primary motor cortex, left supplementary motor area and right cerebellar lobules IV, V, VI and VIII were performed. We report two novel findings that support an important role for the cerebellar system in the pathophysiology of essential tremor. First, in the effective

  17. Functional segregation of the human cingulate cortex is confirmed by functional connectivity based neuroanatomical parcellation.

    PubMed

    Yu, Chunshui; Zhou, Yuan; Liu, Yong; Jiang, Tianzi; Dong, Haiwei; Zhang, Yunting; Walter, Martin

    2011-02-14

    The four-region model with 7 specified subregions represents a theoretical construct of functionally segregated divisions of the cingulate cortex based on integrated neurobiological assessments. Under this framework, we aimed to investigate the functional specialization of the human cingulate cortex by analyzing the resting-state functional connectivity (FC) of each subregion from a network perspective. In 20 healthy subjects we systematically investigated the FC patterns of the bilateral subgenual (sACC) and pregenual (pACC) anterior cingulate cortices, anterior (aMCC) and posterior (pMCC) midcingulate cortices, dorsal (dPCC) and ventral (vPCC) posterior cingulate cortices and retrosplenial cortices (RSC). We found that each cingulate subregion was specifically integrated in the predescribed functional networks and showed anti-correlated resting-state fluctuations. The sACC and pACC were involved in an affective network and anti-correlated with the sensorimotor and cognitive networks, while the pACC also correlated with the default-mode network and anti-correlated with the visual network. In the midcingulate cortex, however, the aMCC was correlated with the cognitive and sensorimotor networks and anti-correlated with the visual, affective and default-mode networks, whereas the pMCC only correlated with the sensorimotor network and anti-correlated with the cognitive and visual networks. The dPCC and vPCC involved in the default-mode network and anti-correlated with the sensorimotor, cognitive and visual networks, in contrast, the RSC was mainly correlated with the PCC and thalamus. Based on a strong hypothesis driven approach of anatomical partitions of the cingulate cortex, we could confirm their segregation in terms of functional neuroanatomy, as suggested earlier by task studies or exploratory multi-seed investigations.

  18. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function

    PubMed Central

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  19. Brain Functional Connectivity in MS: An EEG-NIRS Study

    DTIC Science & Technology

    2015-10-01

    will be available as we proceed and publish on the technological aspects of the work. Inventions, patent applications, and/or licenses Dr. Diamond ...is the inventor on one patent and one patent application for technology that is being used in this study: 1. Diamond , S.G. System, Optode and...Cap for Near-Infrared Diffuse-Optical Functional Neuroimaging. PCT/US09/41560 filed April 23, 2009, issued Sept. 23, 2013. 2. Diamond , S.G. and

  20. Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age

    PubMed Central

    Damaraju, E.; Caprihan, A.; Lowe, J.R.; Allen, E.A.; Calhoun, V.D.; Phillips, J.P.

    2013-01-01

    We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9 months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9 months. However at 9 months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. PMID:23994454

  1. Integrated strategy for improving functional connectivity mapping using multiecho fMRI

    PubMed Central

    Kundu, Prantik; Brenowitz, Noah D.; Voon, Valerie; Worbe, Yulia; Vértes, Petra E.; Inati, Souheil J.; Saad, Ziad S.; Bandettini, Peter A.; Bullmore, Edward T.

    2013-01-01

    Functional connectivity analysis of resting state blood oxygen level–dependent (BOLD) functional MRI is widely used for noninvasively studying brain functional networks. Recent findings have indicated, however, that even small (≤1 mm) amounts of head movement during scanning can disproportionately bias connectivity estimates, despite various preprocessing efforts. Further complications for interregional connectivity estimation from time domain signals include the unaccounted reduction in BOLD degrees of freedom related to sensitivity losses from high subject motion. To address these issues, we describe an integrated strategy for data acquisition, denoising, and connectivity estimation. This strategy builds on our previously published technique combining data acquisition with multiecho (ME) echo planar imaging and analysis with spatial independent component analysis (ICA), called ME-ICA, which distinguishes BOLD (neuronal) and non-BOLD (artifactual) components based on linear echo-time dependence of signals—a characteristic property of BOLD signal changes. Here we show for 32 control subjects that this method provides a physically principled and nearly operator-independent way of removing complex artifacts such as motion from resting state data. We then describe a robust estimator of functional connectivity based on interregional correlation of BOLD-independent component coefficients. This estimator, called independent components regression, considerably simplifies statistical inference for functional connectivity because degrees of freedom equals the number of independent coefficients. Compared with traditional connectivity estimation methods, the proposed strategy results in fourfold improvements in signal-to-noise ratio, functional connectivity analysis with improved specificity, and valid statistical inference with nominal control of type 1 error in contrasts of connectivity between groups with different levels of subject motion. PMID:24038744

  2. Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism

    PubMed Central

    Ghanbari, Yasser; Bloy, Luke; Edgar, J. Christopher; Blaskey, Lisa; Verma, Ragini

    2013-01-01

    Examination of resting state brain activity using electrophysiological measures like complexity as well as functional connectivity is of growing interest in the study of autism spectrum disorders (ASD). The present paper jointly examined complexity and connectivity to obtain a more detailed characterization of resting state brain activity in ASD. Multi-scale entropy was computed to quantify the signal complexity, and synchronization likelihood was used to evaluate functional connectivity (FC), with node strength values providing a sensor-level measure of connectivity to facilitate comparisons with complexity. Sensor level analysis of complexity and connectivity was performed at different frequency bands computed from resting state MEG from 26 children with ASD and 22 typically developing controls (TD). Analyses revealed band-specific group differences in each measure that agreed with other functional studies in fMRI and EEG: higher complexity in TD than ASD, in frontal regions in the delta band and occipital-parietal regions in the alpha band, and lower complexity in TD than in ASD in delta (parietal regions), theta (central and temporal regions) and gamma (frontal-central boundary regions); increased short-range connectivity in ASD in the frontal lobe in the delta band and long-range connectivity in the temporal, parietal and occipital lobes in the alpha band. Finally, and perhaps most strikingly, group differences between ASD and TD in complexity and FC appear spatially complementary, such that where FC was elevated in ASD, complexity was reduced (and vice versa). The correlation of regional average complexity and connectivity node strength with symptom severity scores of ASD subjects supported the overall complementarity (with opposing sign) of connectivity and complexity measures, pointing to either diminished connectivity leading to elevated entropy due to poor inhibitory regulation or chaotic signals prohibiting effective measure of connectivity. PMID

  3. Intrinsic Functional Connectivity in the Adult Brain and Success in Second-Language Learning.

    PubMed

    Chai, Xiaoqian J; Berken, Jonathan A; Barbeau, Elise B; Soles, Jennika; Callahan, Megan; Chen, Jen-Kai; Klein, Denise

    2016-01-20

    There is considerable variability in an individual's ability to acquire a second language (L2) during adulthood. Using resting-state fMRI data acquired before training in English speakers who underwent a 12 week intensive French immersion training course, we investigated whether individual differences in intrinsic resting-state functional connectivity relate to a person's ability to acquire an L2. We focused on two key aspects of language processing--lexical retrieval in spontaneous speech and reading speed--and computed whole-brain functional connectivity from two regions of interest in the language network, namely the left anterior insula/frontal operculum (AI/FO) and the visual word form area (VWFA). Connectivity between the left AI/FO and left posterior superior temporal gyrus (STG) and between the left AI/FO and dorsal anterior cingulate cortex correlated positively with improvement in L2 lexical retrieval in spontaneous speech. Connectivity between the VWFA and left mid-STG correlated positively with improvement in L2 reading speed. These findings are consistent with the different language functions subserved by subcomponents of the language network and suggest that the human capacity to learn an L2 can be predicted by an individual's intrinsic functional connectivity within the language network. Significance statement: There is considerable variability in second-language learning abilities during adulthood. We investigated whether individual differences in intrinsic functional connectivity in the adult brain relate to success in second-language learning, using resting-state functional magnetic resonance imaging in English speakers who underwent a 12 week intensive French immersion training course. We found that pretraining functional connectivity within two different language subnetworks correlated strongly with learning outcome in two different language skills: lexical retrieval in spontaneous speech and reading speed. Our results suggest that the human

  4. Machine-learning to characterise neonatal functional connectivity in the preterm brain

    PubMed Central

    Ball, G.; Aljabar, P.; Arichi, T.; Tusor, N.; Cox, D.; Merchant, N.; Nongena, P.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J.

    2016-01-01

    Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neurodevelopment disorders. Although functional MRI has revealed the relatively advanced organisational state of the neonatal brain, the full extent and nature of functional disruptions following preterm birth remain unclear. In this study, we apply machine-learning methods to compare whole-brain functional connectivity in preterm infants at term-equivalent age and healthy term-born neonates in order to test the hypothesis that preterm birth results in specific alterations to functional connectivity by term-equivalent age. Functional connectivity networks were estimated in 105 preterm infants and 26 term controls using group-independent component analysis and a graphical lasso model. A random forest–based feature selection method was used to identify discriminative edges within each network and a nonlinear support vector machine was used to classify subjects based on functional connectivity alone. We achieved 80% cross-validated classification accuracy informed by a small set of discriminative edges. These edges connected a number of functional nodes in subcortical and cortical grey matter, and most were stronger in term neonates compared to those born preterm. Half of the discriminative edges connected one or more nodes within the basal ganglia. These results demonstrate that functional connectivity in the preterm brain is significantly altered by term-equivalent age, confirming previous reports of altered connectivity between subcortical structures and higher-level association cortex following preterm birth. PMID:26341027

  5. Machine-learning to characterise neonatal functional connectivity in the preterm brain.

    PubMed

    Ball, G; Aljabar, P; Arichi, T; Tusor, N; Cox, D; Merchant, N; Nongena, P; Hajnal, J V; Edwards, A D; Counsell, S J

    2016-01-01

    Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neurodevelopment disorders. Although functional MRI has revealed the relatively advanced organisational state of the neonatal brain, the full extent and nature of functional disruptions following preterm birth remain unclear. In this study, we apply machine-learning methods to compare whole-brain functional connectivity in preterm infants at term-equivalent age and healthy term-born neonates in order to test the hypothesis that preterm birth results in specific alterations to functional connectivity by term-equivalent age. Functional connectivity networks were estimated in 105 preterm infants and 26 term controls using group-independent component analysis and a graphical lasso model. A random forest-based feature selection method was used to identify discriminative edges within each network and a nonlinear support vector machine was used to classify subjects based on functional connectivity alone. We achieved 80% cross-validated classification accuracy informed by a small set of discriminative edges. These edges connected a number of functional nodes in subcortical and cortical grey matter, and most were stronger in term neonates compared to those born preterm. Half of the discriminative edges connected one or more nodes within the basal ganglia. These results demonstrate that functional connectivity in the preterm brain is significantly altered by term-equivalent age, confirming previous reports of altered connectivity between subcortical structures and higher-level association cortex following preterm birth.

  6. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (p<0.05). And the functional connectivity networks of the normal subjects were t-tested as group network. From the result, we can know the semantic functional connectivity of stroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  7. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders.

    PubMed

    Han, Yvonne M Y; Chan, Agnes S

    2017-02-01

    The present study examined the executive function and cortical connectivity of children with autism spectrum disorders (ASD) and investigated whether the executive function deficits exhibited by these children were differentially affected and associated with the cortical connectivity. The present study compared high-functioning (HFA) and low-functioning (LFA) children with typically developing children (TDC) on their executive functions as measured by the Hong Kong List Learning Test, D2 Test of Concentration, Five Point Test, Children's Color Trail Test, Tower of California Test, and Go/No-Go task and neural connectivity as measured by theta coherence in the distributed fronto-parietal network. Thirty-eight children with ASD (19 HFA and 19 LFA) and 28 TDC children, aged 8-17 years, participated voluntarily in the study. The results on executive function showed that the LFA group demonstrated the poorest performance as exhibited by their Executive Composite and individual executive function scores, while the TDC group exhibited the highest. These results have extended the findings of previous studies in demonstrating that HFA and LFA children have significant differences in their degree of executive function deficits. The results on neural connectivity also showed that children with ASD demonstrated a different pattern of electroencephalography (EEG) coherence from TDC children, as demonstrated by the significantly elevated theta coherence in the fronto-parietal network, and that the severity of executive dysfunction between high- and low-functioning children with ASD was found to be associated with the disordered neural connectivity in these children.

  8. A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru

    1993-01-01

    A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.

  9. Combined Functional and Causal Connectivity Analyses of Language Networks in Children: A Feasibility Study

    ERIC Educational Resources Information Center

    Wilke, Marko; Lidzba, Karen; Krageloh-Mann, Ingeborg

    2009-01-01

    Instead of assessing activation in distinct brain regions, approaches to investigating the networks underlying distinct brain functions have come into the focus of neuroscience research. Here, we provide a completely data-driven framework for assessing functional and causal connectivity in functional magnetic resonance imaging (fMRI) data,…

  10. Association between heart rate variability and fluctuations in resting-state functional connectivity

    PubMed Central

    Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin

    2012-01-01

    Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859

  11. Functional connectivity of brain structures correlates with treatment outcome in major depressive disorder.

    PubMed

    Kozel, F Andrew; Rao, Uma; Lu, Hanzhang; Nakonezny, Paul A; Grannemann, Bruce; McGregor, Tamara; Croarkin, Paul E; Mapes, Kimberly S; Tamminga, Carol A; Trivedi, Madhukar H

    2011-01-01

    Identifying biosignatures to assess the probability of response to an antidepressant for patients with major depressive disorder (MDD) is critically needed. Functional connectivity MRI (fcMRI) offers the promise to provide such a measure. Previous work with fcMRI demonstrated that the correlation in signal from one region to another is a measure of functional connectivity. In this pilot work, a baseline non-task fcMRI was acquired in 14 adults with MDD who were free of all medications. Participants were then treated for 8 weeks with an antidepressant and then clinically re-evaluated. Probabilistic anatomic regions of interest (ROI) were defined for 16 brain regions (eight for each hemisphere) previously identified as being important in mood disorders. These ROIs were used to determine mean time courses for each individual's baseline non-task fcMRI. The correlations in time courses between 16 brain regions were calculated. These calculated correlations were considered to signify measures of functional connectivity. The degree of connectivity for each participant was correlated with treatment outcome. Among 13 participants with 8 weeks follow-up data, connectivity measures in several regions, especially the subcallosal cortex, were highly correlated with treatment outcome. These connectivity measures could provide a means to evaluate how likely a patient is to respond to an antidepressant treatment. Further work using larger samples is required to confirm these findings and to assess if measures of functional connectivity can be used to predict differential outcomes between antidepressant treatments.

  12. The effects of deefferentation without deafferentation on functional connectivity in patients with facial palsy.

    PubMed

    Klingner, Carsten M; Volk, Gerd F; Brodoehl, Stefan; Witte, Otto W; Guntinas-Lichius, Orlando

    2014-01-01

    Cerebral plasticity includes the adaptation of anatomical and functional connections between parts of the involved brain network. However, little is known about the network dynamics of these connectivity changes. This study investigates the impact of a pure deefferentation, without deafferentation or brain damage, on the functional connectivity of the brain. To investigate this issue, functional MRI was performed on 31 patients in the acute state of Bell's palsy (idiopathic peripheral facial nerve palsy). All of the patients performed a motor paradigm to identify seed regions involved in motor control. The functional connectivity of the resting state within this network of brain regions was compared to a healthy control group. We found decreased connectivity in patients, mainly in areas responsible for sensorimotor integration and supervision (SII, insula, thalamus and cerebellum). However, we did not find decreased connectivity in areas of the primary or secondary motor cortex. The decreased connectivity for the SII and the insula significantly correlated to the severity of the facial palsy. Our results indicate that a pure deefferentation leads the brain to adapt to the current compromised state during rest. The motor system did not make a major attempt to solve the sensorimotor discrepancy by modulating the motor program.

  13. Differences in graph theory functional connectivity in left and right temporal lobe epilepsy

    PubMed Central

    Chiang, Sharon; Stern, John M.; Engel, Jerome; Levin, Harvey S.; Haneef, Zulfi

    2016-01-01

    Summary Purpose To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Methods Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Results Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Conclusion Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. PMID:25445238

  14. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.

    PubMed

    Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris

    2015-11-01

    Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions.

  15. Tools of the trade: psychophysiological interactions and functional connectivity.

    PubMed

    O'Reilly, Jill X; Woolrich, Mark W; Behrens, Timothy E J; Smith, Stephen M; Johansen-Berg, Heidi

    2012-06-01

    Psychophysiological interactions (PPIs) analysis is a method for investigating task-specific changes in the relationship between activity in different brain areas, using functional magnetic resonance imaging (fMRI) data. Specifically, PPI analyses identify voxels in which activity is more related to activity in a seed region of interest (seed ROI) in a given psychological context, such as during attention or in the presence of emotive stimuli. In this tutorial, we aim to give a simple conceptual explanation of how PPI analysis works, in order to assist readers in planning and interpreting their own PPI experiments.

  16. Connectivity precedes function in the development of the visual word form area

    PubMed Central

    Saygin, Z.M.; Osher, D.E.; Norton, E.S.; Youssoufian, D.A.; Beach, S.D.; Feather, J.; Gaab, N.; Gabrieli, J.D.E.; Kanwisher, N.

    2016-01-01

    What determines the cortical location where a given functionally specific region will arise in development? Here we test the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploit the Visual Word Form Area (VWFA) as a test case, scanning children with diffusion and functional imaging at age five, before they learned to read, and at age 8, after they learned to read. We find the VWFA develops functionally in this interval and that its location in a particular child at age 8 can be predicted from that child’s connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development. PMID:27500407

  17. Connectivity precedes function in the development of the visual word form area.

    PubMed

    Saygin, Zeynep M; Osher, David E; Norton, Elizabeth S; Youssoufian, Deanna A; Beach, Sara D; Feather, Jenelle; Gaab, Nadine; Gabrieli, John D E; Kanwisher, Nancy

    2016-09-01

    What determines the cortical location at which a given functionally specific region will arise in development? We tested the hypothesis that functionally specific regions develop in their characteristic locations because of pre-existing differences in the extrinsic connectivity of that region to the rest of the brain. We exploited the visual word form area (VWFA) as a test case, scanning children with diffusion and functional imaging at age 5, before they learned to read, and at age 8, after they learned to read. We found the VWFA developed functionally in this interval and that its location in a particular child at age 8 could be predicted from that child's connectivity fingerprints (but not functional responses) at age 5. These results suggest that early connectivity instructs the functional development of the VWFA, possibly reflecting a general mechanism of cortical development.

  18. Resting-state functional connectivity in the Baboon Model of Genetic Generalized Epilepsy

    PubMed Central

    Salinas, Felipe S.; Szabó, C. Ákos

    2015-01-01

    Objective The baboon provides a natural model of genetic generalized epilepsy. This study compares the intrinsic connectivity networks of epileptic and healthy control baboons using resting-state fMRI and data-driven functional connectivity mapping. Methods Twenty baboons, matched for gender, age, and weight were classified into two groups (10 epileptic, 10 control) on the basis of scalp EEG findings. Each animal underwent one MRI session which acquired one 5-minute resting state fMRI scan and one anatomical MRI scan—used for registration and spatial normalization. Using independent component analysis, we identified 14 unique components/networks, which were then used to characterize each group’s functional connectivity maps of each brain network. Results The epileptic group demonstrated network-specific differences in functional connectivity when compared to the control animals. The sensitivity and specificity of the two groups’ functional connectivity maps were significantly different in the visual, motor, amygdala, insular, and default mode networks. Significant increases were found in the occipital gyri of the epileptic group’s functional connectivity map for the default mode, cingulate, intraparietal, motor, visual, amygdala, and thalamic regions. Significance This is the first study using resting-state fMRI to demonstrate intrinsic functional connectivity differences between epileptic and control non-human primates. These results are consistent with seed-based genetic generalized epilepsy studies in humans; however, our use of a data-driven approach expands the scope of functional connectivity mapping to include brain regions/networks comprising the whole brain. PMID:26290449

  19. Testing Group Differences in Brain Functional Connectivity: Using Correlations or Partial Correlations?

    PubMed Central

    Kim, Junghi; Wozniak, Jeffrey R.; Mueller, Bryon A.

    2015-01-01

    Abstract Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more

  20. Dynamic Changes in Brain Functional Connectivity during Concurrent Dual-Task Performance

    PubMed Central

    Cocchi, Luca; Zalesky, Andrew; Toepel, Ulrike; Whitford, Thomas J.; De-Lucia, Marzia; Murray, Micah M.; Carter, Olivia

    2011-01-01

    This study investigated the spatial, spectral, temporal and functional proprieties of functional brain connections involved in the concurrent execution of unrelated visual perception and working memory tasks. Electroencephalography data was analysed using a novel data-driven approach assessing source coherence at the whole-brain level. Three connections in the beta-band (18–24 Hz) and one in the gamma-band (30–40 Hz) were modulated by dual-task performance. Beta-coherence increased within two dorsofrontal-occipital connections in dual-task conditions compared to the single-task condition, with the highest coherence seen during low working memory load trials. In contrast, beta-coherence in a prefrontal-occipital functional connection and gamma-coherence in an inferior frontal-occipitoparietal connection was not affected by the addition of the second task and only showed elevated coherence under high working memory load. Analysis of coherence as a function of time suggested that the dorsofrontal-occipital beta-connections were relevant to working memory maintenance, while the prefrontal-occipital beta-connection and the inferior frontal-occipitoparietal gamma-connection were involved in top-down control of concurrent visual processing. The fact that increased coherence in the gamma-connection, from low to high working memory load, was negatively correlated with faster reaction time on the perception task supports this interpretation. Together, these results demonstrate that dual-task demands trigger non-linear changes in functional interactions between frontal-executive and occipitoparietal-perceptual cortices. PMID:22140572

  1. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation

    PubMed Central

    Fan, Yang-teng; Wu, Ching-yi; Liu, Ho-ling; Lin, Keh-chung; Wai, Yau-yau; Chen, Yao-liang

    2015-01-01

    Most neuroimaging research in stroke rehabilitation mainly focuses on the neural mechanisms underlying the natural history of post-stroke recovery. However, connectivity mapping from resting-state fMRI is well suited for different neurological conditions and provides a promising method to explore plastic changes for treatment-induced recovery from stroke. We examined the changes in resting-state functional connectivity (RS-FC) of the ipsilesional primary motor cortex (M1) in 10 post-acute stroke patients before and immediately after 4 weeks of robot-assisted bilateral arm therapy (RBAT). Motor performance, functional use of the affected arm, and daily function improved in all participants. Reduced interhemispheric RS-FC between the ipsilesional and contralesional M1 (M1-M1) and the contralesional-lateralized connections were noted before treatment. In contrast, greater M1-M1 functional connectivity and disturbed resting-state networks were observed after RBAT relative to pre-treatment. Increased changes in M1-M1 RS-FC after RBAT were coupled with better motor and functional improvements. Mediation analysis showed the pre-to-post difference in M1-M1 RS-FC was a significant mediator for the relationship between motor and functional recovery. These results show neuroplastic changes and functional recoveries induced by RBAT in post-acute stroke survivors and suggest that interhemispheric functional connectivity in the motor cortex may be a neurobiological marker for recovery after stroke rehabilitation. PMID:26557065

  2. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls

    PubMed Central

    Raichlen, David A.; Bharadwaj, Pradyumna K.; Fitzhugh, Megan C.; Haws, Kari A.; Torre, Gabrielle-Ann; Trouard, Theodore P.; Alexander, Gene E.

    2016-01-01

    Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between

  3. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls.

    PubMed

    Raichlen, David A; Bharadwaj, Pradyumna K; Fitzhugh, Megan C; Haws, Kari A; Torre, Gabrielle-Ann; Trouard, Theodore P; Alexander, Gene E

    2016-01-01

    Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between

  4. Functional Connectivity Changes and Executive and Social Problems in Neurofibromatosis Type I

    PubMed Central

    Huijbregts, Stephan C.J.; Veer, Ilya Milos; Swaab, Hanna S.; Van Buchem, Mark A.; Schmidt, Reinhold; Rombouts, Serge A.

    2015-01-01

    Abstract Neurofibromatosis type 1 (NF1) has regularly been associated with cognitive, social, and behavioral problems. The fact that many different cognitive and behavioral impairments have been observed in NF1 suggests that networks of brain regions are involved rather than specific brain regions. Here, we examined whether functional connectivity was different in NF1 and, if so, whether associations were present with cognitive, social, and behavioral outcomes. Fourteen NF1 patients (8 male, age: M=12.49, SD=2.65) and 30 healthy controls (HC; 23 male, age: M=12.30, SD=2.94; p=0.835) were included. Functional connectivity was assessed using functional resting-state scanning. We analyzed brain regions that have been associated with cognitive and social functions: the bilateral ventral anterior cingulate cortex (vACC), the bilateral amygdala, the bilateral orbitofrontal cortex (OFC), and the posterior cingulate cortex (PCC). For NF1 patients, connection strengths between brain regions showing HC-NF1 differences were correlated with parent reports of cognitive, social, and behavioral functioning. Compared to HC, patients showed differences in functional connectivity between the left vACC and the frontal cortex, insula, and subcortical areas (caudate, putamen), between the left amygdala and the frontal cortex, insula, supramarginal gyrus, and PCC/precuneus, and between the left OFC and frontal and subcortical areas (caudate, pallidum). In patients, indications were found for associations between increased frontofrontal and temporofrontal functional connectivity with cognitive, social, and behavioral deficits (r-range=0.536–0.851). NF1 patients showed differences in functional connectivity between areas associated with cognitive and social functioning when compared to controls. This, plus the fact that connectivity strengths in these networks were associated with worse cognitive, social, and behavioral outcomes, suggests a neuropathological basis for the widespread

  5. Functional Connectivity Changes and Executive and Social Problems in Neurofibromatosis Type I.

    PubMed

    Loitfelder, Marisa; Huijbregts, Stephan C J; Veer, Ilya Milos; Swaab, Hanna S; Van Buchem, Mark A; Schmidt, Reinhold; Rombouts, Serge A

    2015-06-01

    Neurofibromatosis type 1 (NF1) has regularly been associated with cognitive, social, and behavioral problems. The fact that many different cognitive and behavioral impairments have been observed in NF1 suggests that networks of brain regions are involved rather than specific brain regions. Here, we examined whether functional connectivity was different in NF1 and, if so, whether associations were present with cognitive, social, and behavioral outcomes. Fourteen NF1 patients (8 male, age: M=12.49, SD=2.65) and 30 healthy controls (HC; 23 male, age: M=12.30, SD=2.94; p=0.835) were included. Functional connectivity was assessed using functional resting-state scanning. We analyzed brain regions that have been associated with cognitive and social functions: the bilateral ventral anterior cingulate cortex (vACC), the bilateral amygdala, the bilateral orbitofrontal cortex (OFC), and the posterior cingulate cortex (PCC). For NF1 patients, connection strengths between brain regions showing HC-NF1 differences were correlated with parent reports of cognitive, social, and behavioral functioning. Compared to HC, patients showed differences in functional connectivity between the left vACC and the frontal cortex, insula, and subcortical areas (caudate, putamen), between the left amygdala and the frontal cortex, insula, supramarginal gyrus, and PCC/precuneus, and between the left OFC and frontal and subcortical areas (caudate, pallidum). In patients, indications were found for associations between increased frontofrontal and temporofrontal functional connectivity with cognitive, social, and behavioral deficits (r-range=0.536-0.851). NF1 patients showed differences in functional connectivity between areas associated with cognitive and social functioning when compared to controls. This, plus the fact that connectivity strengths in these networks were associated with worse cognitive, social, and behavioral outcomes, suggests a neuropathological basis for the widespread deficits

  6. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss

    PubMed Central

    Sabbah, Norman; Sanda, Nicolae; Authié, Colas N.; Mohand-Saïd, Saddek; Sahel, José-Alain; Habas, Christophe; Amedi, Amir; Safran, Avinoam B.

    2017-01-01

    Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies. PMID:28233790

  7. Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss.

    PubMed

    Sabbah, Norman; Sanda, Nicolae; Authié, Colas N; Mohand-Saïd, Saddek; Sahel, José-Alain; Habas, Christophe; Amedi, Amir; Safran, Avinoam B

    2017-02-24

    Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.

  8. Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies

    PubMed Central

    Zhu, Huilin; Fan, Yuebo; Guo, Huan; Huang, Dan; He, Sailing

    2014-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, which has been associated with atypical neural synchronization. In this study, functional near infrared spectroscopy (fNIRS) was used to study the differences in functional connectivity in bilateral inferior frontal cortices (IFC) and bilateral temporal cortices (TC) between ASD and typically developing (TD) children between 8 and 11 years of age. As the first report of fNIRS study on the resting state functional connectivity (RSFC) in children with ASD, ten children with ASD and ten TD children were recruited in this study for 8 minute resting state measurement. Compared to TD children, children with ASD showed reduced interhemispheric connectivity in TC. Children with ASD also showed significantly lower local connectivity in bilateral temporal cortices. In contrast to TD children, children with ASD did not show typical patterns of symmetry in functional connectivity in temporal cortex. These results support the feasibility of using the fNIRS method to assess atypical functional connectivity of cortical responses of ASD and its potential application in diagnosis. PMID:24761305

  9. Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is typically characterized by symptoms of inattention and hyperactivity/impulsivity, but there is increased recognition of a motivation deficit too. This neuropathology may reflect dysfunction of both attention and reward-motivation networks. Methods To test this hypothesis, we compared the functional connectivity density between 247 ADHD and 304 typically developing control children from a public magnetic resonance imaging database. We quantified short- and long-range functional connectivity density in the brain using an ultrafast data-driven approach. Results Children with ADHD had lower connectivity (short- and long-range) in regions of the dorsal attention (superior parietal cortex) and default-mode (precuneus) networks and in cerebellum and higher connectivity (short-range) in reward-motivation regions (ventral striatum and orbitofrontal cortex) than control subjects. In ADHD children, the orbitofrontal cortex (region involved in salience attribution) had higher connectivity with reward-motivation regions (striatum and anterior cingulate) and lower connectivity with superior parietal cortex (region involved in attention processing). Conclusions The enhanced connect