Science.gov

Sample records for aberrant ras signaling

  1. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  2. Genomic profiling of malignant phyllodes tumors reveals aberrations in FGFR1 and PI-3 kinase/RAS signaling pathways and provides insights into intratumoral heterogeneity.

    PubMed

    Liu, Su-Yang; Joseph, Nancy M; Ravindranathan, Ajay; Stohr, Bradley A; Greenland, Nancy Y; Vohra, Poonam; Hosfield, Elizabeth; Yeh, Iwei; Talevich, Eric; Onodera, Courtney; Van Ziffle, Jessica A; Grenert, James P; Bastian, Boris C; Chen, Yunn-Yi; Krings, Gregor

    2016-09-01

    Malignant phyllodes tumors of the breast are poorly understood rare neoplasms with potential for aggressive behavior. Few efficacious treatment options exist for progressed or metastatic disease. The molecular features of malignant phyllodes tumors are poorly defined, and a deeper understanding of the genetics of these tumors may shed light on pathogenesis and progression and potentially identify novel treatment approaches. We sequenced 510 cancer-related genes in 10 malignant phyllodes tumors, including 5 tumors with liposarcomatous differentiation and 1 with myxoid chondrosarcoma-like differentiation. Intratumoral heterogeneity was assessed by sequencing two separate areas in 7 tumors, including non-heterologous and heterologous components of tumors with heterologous differentiation. Activating hotspot mutations in FGFR1 were identified in 2 tumors. Additional recurrently mutated genes included TERT promoter (6/10), TP53 (4/10), PIK3CA (3/10), MED12 (3/10), SETD2 (2/10) and KMT2D (2/10). Together, genomic aberrations in FGFR/EGFR PI-3 kinase and RAS pathways were identified in 8 (80%) tumors and included mutually exclusive and potentially actionable activating FGFR1, PIK3CA and BRAF V600E mutations, inactivating TSC2 mutation, EGFR amplification and PTEN loss. Seven (70%) malignant phyllodes tumors harbored TERT aberrations (six promoter mutations, one amplification). For comparison, TERT promoter mutations were identified by Sanger sequencing in 33% borderline (n=12) and no (0%, n=8) benign phyllodes tumors (P=0.391 and P=0.013 vs malignant tumors, respectively). Genetic features specific to liposarcoma, including CDK4/MDM2 amplification, were not identified. Copy number analysis revealed intratumoral heterogeneity and evidence for divergent tumor evolution in malignant phyllodes tumors with and without heterologous differentiation. Tumors with liposarcomatous differentiation revealed more chromosomal aberrations in non-heterologous components compared with

  3. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  4. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes.

    PubMed

    Lerner, E C; Qian, Y; Blaskovich, M A; Fossum, R D; Vogt, A; Sun, J; Cox, A D; Der, C J; Hamilton, A D; Sebti, S M

    1995-11-10

    Ras-induced malignant transformation requires Ras farnesylation, a lipid posttranslational modification catalyzed by farnesyltransferase (FTase). Inhibitors of this enzyme have been shown to block Ras-dependent transformation, but the mechanism by which this occurs remains largely unknown. We have designed FTI-276, a peptide mimetic of the COOH-terminal Cys-Val-Ile-Met of K-Ras4B that inhibited potently FTase in vitro (IC50 = 500 pM) and was highly selective for FTase over geranylgeranyltransferase I (GGTase I) (IC50 = 50 nM). FTI-277, the methyl ester derivative of FTI-276, was extremely potent (IC50 = 100 nM) at inhibiting H-Ras, but not the geranylgeranylated Rap1A processing in whole cells. Treatment of H-Ras oncogene-transformed NIH 3T3 cells with FTI-277 blocked recruitment to the plasma membrane and subsequent activation of the serine/threonine kinase c-Raf-1 in cells transformed by farnesylated Ras (H-RasF), but not geranylgeranylated, Ras (H-RasGG). FTI-277 induced accumulation of cytoplasmic non-farnesylated H-Ras that was able to bind Raf and form cytoplasmic Ras/Raf complexes in which Raf kinase was not activated. Furthermore, FTI-277 blocked constitutive activation of mitogen-activated protein kinase (MAPK) in H-RasF, but not H-RasGG, or Raf-transformed cells. FTI-277 also inhibited oncogenic K-Ras4B processing and constitutive activation of MAPK, but the concentrations required were 100-fold higher than those needed for H-Ras inhibition. The results demonstrate that FTI-277 blocks Ras oncogenic signaling by accumulating inactive Ras/Raf complexes in the cytoplasm, hence preventing constitutive activation of the MAPK cascade.

  5. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.

  6. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins. PMID:27396271

  7. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling.

    PubMed

    Athuluri-Divakar, Sai Krishna; Vasquez-Del Carpio, Rodrigo; Dutta, Kaushik; Baker, Stacey J; Cosenza, Stephen C; Basu, Indranil; Gupta, Yogesh K; Reddy, M V Ramana; Ueno, Lynn; Hart, Jonathan R; Vogt, Peter K; Mulholland, David; Guha, Chandan; Aggarwal, Aneel K; Reddy, E Premkumar

    2016-04-21

    Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling. PMID:27104980

  8. Endogenous K-ras signaling in erythroid differentiation.

    PubMed

    Zhang, Jing; Lodish, Harvey F

    2007-08-15

    K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.

  9. ASPP1 and ASPP2 bind active RAS, potentiate RAS signalling and enhance p53 activity in cancer cells

    PubMed Central

    Wang, Y; Godin-Heymann, N; Dan Wang, X; Bergamaschi, D; Llanos, S; Lu, X

    2013-01-01

    RAS mutations occur frequently in human cancer and activated RAS signalling contributes to tumour development and progression. Apart from its oncogenic effects on cell growth, active RAS has tumour-suppressive functions via its ability to induce cellular senescence and apoptosis. RAS is known to induce p53-dependent cell cycle arrest, yet its effect on p53-dependent apoptosis remains unclear. We report here that apoptosis-stimulating protein of p53 (ASPP) 1 and 2, two activators of p53, preferentially bind active RAS via their N-terminal RAS-association domains (RAD). Additionally, ASPP2 colocalises with and contributes to RAS cellular membrane localisation and potentiates RAS signalling. In cancer cells, ASPP1 and ASPP2 cooperate with oncogenic RAS to enhance the transcription and apoptotic function of p53. Thus, loss of ASPP1 and ASPP2 in human cancer cells may contribute to the full transforming property of RAS oncogene. PMID:23392125

  10. Canonical RTK-Ras-ERK signaling and related alternative pathways

    PubMed Central

    Sundaram, Meera V.

    2013-01-01

    Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway. PMID:23908058

  11. Interferon-β Signaling Contributes to Ras Transformation

    PubMed Central

    Tsai, Yu-Chen; Pestka, Sidney; Wang, Lu-Hai; Runnels, Loren W.; Wan, Shan; Lyu, Yi Lisa; Liu, Leroy F.

    2011-01-01

    Increasing evidence has pointed to activated type I interferon signaling in tumors. However, the molecular basis for such activation and its role in tumorigenesis remain unclear. In the current studies, we report that activation of type I interferon (IFN) signaling in tumor cells is primarily due to elevated secretion of the type I interferon, IFN-β. Studies in oncogene-transformed cells suggest that oncogenes such as Ras and Src can activate IFN-β signaling. Significantly, elevated IFN-β signaling in Ras-transformed mammary epithelial MCF-10A cells was shown to contribute to Ras transformation as evidenced by morphological changes, anchorage-independent growth, and migratory properties. Our results demonstrate for the first time that the type I IFN, IFN-β, contributes to Ras transformation and support the notion that oncogene-induced cytokines play important roles in oncogene transformation. PMID:21897875

  12. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  13. TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation.

    PubMed

    Boufaied, Nadia; Wioland, My-Anh; Falardeau, Pierre; Gourdeau, Henriette

    2010-06-01

    TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed. Downstream Ras signaling events, Raf-1, MEK, and ERK1/2 phosphorylation in MCF7 cells were evaluated by western blot analysis. TLN-4601 prevented epidermal growth factor-induced phosphorylation of Raf-1, MEK, and ERK1/2. This effect was time-dependent and dose-dependent with complete inhibition of protein phosphorylation within 4-6 h at 10 micromol/l. The inhibition of Ras signaling was not mediated by the inhibition of protein prenylation, documented by the lack of effect TLN-4601 on the prenylation of HDJ2 (specific substrate of farnesyltransferase), RAP1A (specific substrate of geranylgeranyl transferase-1), or Ras. As TLN-4601 did not inhibit EGFR, Raf-1, MEK or ERK1/2 kinase activities, the inhibitory effect of TLN-4601 on Ras signaling is not mediated by direct kinase inhibition. Using an Elk-1 trans-activation reporter assay, we found that TLN-4601 inhibits the MEK/ERK pathway at the level of Raf-1. Interestingly, TLN-4601 induces Raf-1 proteasomal-dependent degradation. These data indicate that TLN-4601 may inhibit the Ras-mitogen-activated protein kinase-signaling pathway by depleting the Raf-1 protein.

  14. Aberrant Wnt Signaling in Leukemia.

    PubMed

    Staal, Frank J T; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  15. Aberrant Wnt Signaling in Leukemia

    PubMed Central

    Staal, Frank J. T.; Famili, Farbod; Garcia Perez, Laura; Pike-Overzet, Karin

    2016-01-01

    The Wnt signaling pathway is essential in the development and homeostasis of blood and immune cells, but its exact role is still controversial and is the subject of intense research. The malignant counterpart of normal hematopoietic cells, leukemic (stem) cells, have hijacked the Wnt pathway for their self-renewal and proliferation. Here we review the multiple ways dysregulated Wnt signaling can contribute to leukemogenesis, both cell autonomously as well as by changes in the microenvironment. PMID:27571104

  16. Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling.

    PubMed

    Villalonga, P; López-Alcalá, C; Bosch, M; Chiloeches, A; Rocamora, N; Gil, J; Marais, R; Marshall, C J; Bachs, O; Agell, N

    2001-11-01

    Activation of Ras induces a variety of cellular responses depending on the specific effector activated and the intensity and amplitude of this activation. We have previously shown that calmodulin is an essential molecule in the down-regulation of the Ras/Raf/MEK/extracellularly regulated kinase (ERK) pathway in cultured fibroblasts and that this is due at least in part to an inhibitory effect of calmodulin on Ras activation. Here we show that inhibition of calmodulin synergizes with diverse stimuli (epidermal growth factor, platelet-derived growth factor, bombesin, or fetal bovine serum) to induce ERK activation. Moreover, even in the absence of any added stimuli, activation of Ras by calmodulin inhibition was observed. To identify the calmodulin-binding protein involved in this process, calmodulin affinity chromatography was performed. We show that Ras and Raf from cellular lysates were able to bind to calmodulin. Furthermore, Ras binding to calmodulin was favored in lysates with large amounts of GTP-bound Ras, and it was Raf independent. Interestingly, only one of the Ras isoforms, K-RasB, was able to bind to calmodulin. Furthermore, calmodulin inhibition preferentially activated K-Ras. Interaction between calmodulin and K-RasB is direct and is inhibited by the calmodulin kinase II calmodulin-binding domain. Thus, GTP-bound K-RasB is a calmodulin-binding protein, and we suggest that this binding may be a key element in the modulation of Ras signaling.

  17. Chaperone-mediated specificity in Ras and Rap signaling.

    PubMed

    Azoulay-Alfaguter, Inbar; Strazza, Marianne; Mor, Adam

    2015-01-01

    Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.

  18. Chemical biology tools for regulating RAS signaling complexity in space and time.

    PubMed

    van Hattum, Hilde; Waldmann, Herbert

    2014-09-18

    Rat sarcoma (RAS) family members are small GTPases that control a number of signaling pathways important for normal cellular proliferation. Therefore, it is no surprise that a significant portion of human tumors express constitutively active mutated RAS proteins, which leads to deregulation of RAS signaling pathways, resulting in pathological perturbations of cell growth and death. Although the molecular details of RAS signaling cascades are well understood, there is still a largely unmet need for small molecule probes to control RAS signaling in space and time. More broadly, given the prevalence of mutated RAS in cancer, the need to translate the insights obtained from using small molecule probes into clinically useful drugs is also significant. In this review, we introduce RAS proteins and the signaling pathways they are involved in, and discuss some of the innovative chemical biology approaches to regulate RAS signaling, which include the exploitation of newly identified binding pockets, covalent inhibitors for mutated RAS, and RAS localization impairment.

  19. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling.

    PubMed

    Song, Shumei; Ji, Baoan; Ramachandran, Vijaya; Wang, Huamin; Hafley, Margarete; Logsdon, Craig; Bresalier, Robert S

    2012-01-01

    Pancreatic cancer (PDAC) is a lethal disease with a five-year survival of 3-5%. Mutations in K-Ras are found in nearly all cases, but K-Ras mutations alone are not sufficient for the development of PDAC. Additional factors contribute to activation of Ras signaling and lead to tumor formation. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed in PDAC. We therefore investigated the functional role of Gal-3 in pancreatic cancer progression and its relationship to Ras signaling. Expression of Gal-3 was determined by immunohistochemistry, Q-PCR and immunoblot. Functional studies were performed using pancreatic cell lines genetically engineered to express high or low levels of Gal-3. Ras activity was examined by Raf pull-down assays. Co-immunoprecipitation and immunofluorescence were used to assess protein-protein interactions. In this study, we demonstrate that Gal-3 was highly up-regulated in human tumors and in a mutant K-Ras mouse model of PDAC. Down-regulation of Gal-3 by lentivirus shRNA decreased PDAC cell proliferation and invasion in vitro and reduced tumor volume and size in an orthotopic mouse model. Gal-3 bound Ras and maintained Ras activity; down-regulation of Gal-3 decreased Ras activity as well as Ras down-stream signaling including phosphorylation of ERK and AKT and Ral A activity. Transfection of Gal-3 cDNA into PDAC cells with low-level Gal-3 augmented Ras activity and its down-stream signaling. These results suggest that Gal-3 contributes to pancreatic cancer progression, in part, by binding Ras and activating Ras signaling. Gal-3 may therefore be a potential novel target for this deadly disease. PMID:22900040

  20. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells.

    PubMed

    Fey, Dirk; Matallanas, David; Rauch, Jens; Rukhlenko, Oleksii S; Kholodenko, Boris N

    2016-10-01

    The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed. PMID:27350026

  1. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation

    PubMed Central

    Kikuchi, Yasuko; Tsuji, Eiichi; Yagi, Koichi; Matsusaka, Keisuke; Tsuji, Shingo; Kurebayashi, Junichi; Ogawa, Toshihisa; Aburatani, Hiroyuki; Kaneda, Atsushi

    2013-01-01

    Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7) was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2′-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P = 0.04, Fisher's exact test). Thus, we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer. PMID:24367375

  2. Signal integration by lipid-mediated spatial cross talk between Ras nanoclusters.

    PubMed

    Zhou, Yong; Liang, Hong; Rodkey, Travis; Ariotti, Nicholas; Parton, Robert G; Hancock, John F

    2014-03-01

    Lipid-anchored Ras GTPases form transient, spatially segregated nanoclusters on the plasma membrane that are essential for high-fidelity signal transmission. The lipid composition of Ras nanoclusters, however, has not previously been investigated. High-resolution spatial mapping shows that different Ras nanoclusters have distinct lipid compositions, indicating that Ras proteins engage in isoform-selective lipid sorting and accounting for different signal outputs from different Ras isoforms. Phosphatidylserine is a common constituent of all Ras nanoclusters but is only an obligate structural component of K-Ras nanoclusters. Segregation of K-Ras and H-Ras into spatially and compositionally distinct lipid assemblies is exquisitely sensitive to plasma membrane phosphatidylserine levels. Phosphatidylserine spatial organization is also modified by Ras nanocluster formation. In consequence, Ras nanoclusters engage in remote lipid-mediated communication, whereby activated H-Ras disrupts the assembly and operation of spatially segregated K-Ras nanoclusters. Computational modeling and experimentation reveal that complex effects of caveolin and cortical actin on Ras nanoclustering are similarly mediated through regulation of phosphatidylserine spatiotemporal dynamics. We conclude that phosphatidylserine maintains the lateral segregation of diverse lipid-based assemblies on the plasma membrane and that lateral connectivity between spatially remote lipid assemblies offers important previously unexplored opportunities for signal integration and signal processing.

  3. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome

    PubMed Central

    Rooney, Gemma E.; Goodwin, Alice F.; Depeille, Philippe; Sharir, Amnon; Schofield, Claude M.; Yeh, Erika; Roose, Jeroen P.; Klein, Ophir D.; Rauen, Katherine A.; Weiss, Lauren A.

    2016-01-01

    Increasing evidence implicates abnormal Ras signaling as a major contributor in neurodevelopmental disorders, yet how such signaling causes cortical pathogenesis is unknown. We examined the consequences of aberrant Ras signaling in the developing mouse brain and uncovered several critical phenotypes, including increased production of cortical neurons and morphological deficits. To determine whether these phenotypes are recapitulated in humans, we generated induced pluripotent stem (iPS) cell lines from patients with Costello syndrome (CS), a developmental disorder caused by abnormal Ras signaling and characterized by neurodevelopmental abnormalities, such as cognitive impairment and autism. Directed differentiation toward a neuroectodermal fate revealed an extended progenitor phase and subsequent increased production of cortical neurons. Morphological analysis of mature neurons revealed significantly altered neurite length and soma size in CS patients. This study demonstrates the synergy between mouse and human models and validates the use of iPS cells as a platform to study the underlying cellular pathologies resulting from signaling deficits. SIGNIFICANCE STATEMENT Increasing evidence implicates Ras signaling dysfunction as a major contributor in psychiatric and neurodevelopmental disorders, such as cognitive impairment and autism, but the underlying cortical cellular pathogenesis remains unclear. This study is the first to reveal human neuronal pathogenesis resulting from abnormal Ras signaling and provides insights into how these phenotypic abnormalities likely contribute to neurodevelopmental disorders. We also demonstrate the synergy between mouse and human models, thereby validating the use of iPS cells as a platform to study underlying cellular pathologies resulting from signaling deficits. Recapitulating human cellular pathologies in vitro facilitates the future high throughput screening of potential therapeutic agents that may reverse phenotypic and

  4. Nucleophosmin and Nucleolin Regulate K-Ras Plasma Membrane Interactions and MAPK Signal Transduction*

    PubMed Central

    Inder, Kerry L.; Lau, Chiyan; Loo, Dorothy; Chaudhary, Natasha; Goodall, Andrew; Martin, Sally; Jones, Alun; van der Hoeven, Dharini; Parton, Robert G.; Hill, Michelle M.; Hancock, John F.

    2009-01-01

    The spatial organization of Ras proteins into nanoclusters on the inner leaflet of the plasma membrane is essential for high fidelity signaling through the MAPK pathway. Here we identify two selective regulators of K-Ras nanoclustering from a proteomic screen for K-Ras interacting proteins. Nucleophosmin (NPM) and nucleolin are predominantly localized to the nucleolus but also have extranuclear functions. We show that a subset of NPM and nucleolin localizes to the inner leaflet of plasma membrane and forms specific complexes with K-Ras but not other Ras isoforms. Active GTP-loaded and inactive GDP-loaded K-Ras both interact with NPM, although NPM-K-Ras binding is increased by growth factor receptor activation. NPM and nucleolin both stabilize K-Ras levels on the plasma membrane, but NPM concurrently increases the clustered fraction of GTP-K-Ras. The increase in nanoclustered GTP-K-Ras in turn enhances signal gain in the MAPK pathway. In summary these results reveal novel extranucleolar functions for NPM and nucleolin as regulators of K-Ras nanocluster formation and activation of the MAPK pathway. The study also identifies a new class of K-Ras nanocluster regulator that operates independently of the structural scaffold galectin-3. PMID:19661056

  5. Delineation of the Roles Played by RasG and RasC in cAMP-dependent Signal Transduction during the Early Development of Dictyostelium discoideum

    PubMed Central

    Bolourani, Parvin; Spiegelman, George B.

    2006-01-01

    On starvation, the cellular slime mold Dictyostelium discoideum initiates a program of development leading to formation of multicellular structures. The initial cell aggregation requires chemotaxis to cyclic AMP (cAMP) and relay of the cAMP signal by the activation of adenylyl cyclase (ACA), and it has been shown previously that the Ras protein RasC is involved in both processes. Insertional inactivation of the rasG gene resulted in delayed aggregation and a partial inhibition of early gene expression, suggesting that RasG also has a role in early development. Both chemotaxis and ACA activation were reduced in the rasG− cells, but the effect on chemotaxis was more pronounced. When the responses of rasG− cells to cAMP were compared with the responses of rasC− and rasC−rasG− strains, generated in otherwise isogenic backgrounds, these studies revealed that signal transduction through RasG is more important in chemotaxis and early gene expression, but that signal transduction through RasC is more important in ACA activation. Because the loss of either of the two Ras proteins alone did not result in a total loss of signal output down either of the branches of the cAMP signal-response pathway, there appears to be some overlap of function. PMID:16885420

  6. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.

    PubMed Central

    Benn, J; Schneider, R J

    1994-01-01

    Hepatitis B virus produces a small (154-amino acid) transcriptional transactivating protein, HBx, which is required for viral infection and has been implicated in virus-mediated liver oncogenesis. However, the molecular mechanism for HBx activity and its possible influence on cell proliferation have remained obscure. A number of studies suggest that HBx may stimulate transcription by indirectly activating transcription factors, possibly by influencing cell signaling pathways. We now present biochemical evidence that HBx activates Ras and rapidly induces a cytoplasmic signaling cascade linking Ras, Raf, and mitogen-activated protein kinase (MAP kinase), leading to transcriptional transactivation. HBx strongly elevates levels of GTP-bound Ras, activated and phosphorylated Raf, and tyrosine-phosphorylated and activated MAP kinase. Transactivation of transcription factor AP-1 by HBx is blocked by inhibition of Ras or Raf activities but not by inhibition of Ca(2+)- and diacylglycerol-dependent protein kinase C. HBx was also found to stimulate DNA synthesis in serum-starved cells. The hepatitis B virus HBx protein therefore stimulates Ras-GTP complex formation and promotes downstream signaling through Raf and MAP kinases, and may influence cell proliferation. Images PMID:7937954

  7. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. PMID:26765565

  8. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts.

    PubMed

    Irani, K; Xia, Y; Zweier, J L; Sollott, S J; Der, C J; Fearon, E R; Sundaresan, M; Finkel, T; Goldschmidt-Clermont, P J

    1997-03-14

    NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.

  9. K-Ras Promotes Tumorigenicity through Suppression of Non-canonical Wnt Signaling.

    PubMed

    Wang, Man-Tzu; Holderfield, Matthew; Galeas, Jacqueline; Delrosario, Reyno; To, Minh D; Balmain, Allan; McCormick, Frank

    2015-11-19

    K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.

  10. Notch-1 expression levels in 3T3-L1 cells influence ras signaling and transformation by oncogenic ras.

    PubMed

    Ruiz-Hidalgo, M J; Garcés, C; Laborda, J

    1999-04-01

    Notch proteins participate in interactions between several cell types involved on the specification of numerous cell fates during development. We previously showed that enforced downregulation of Notch-1 expression prevented adipogenesis of 3T3-L1 cells. Since adipogenesis of 3T3-L1 cells can be induced by oncogenic ras, we studied whether this was also the case in 3T3-L1 cells with decreased levels of Notch-1 expression. We found that oncogenic ras induces transformation and not differentiation of 3T3-L1 cells with diminished levels of Notch-1. This result suggests that Notch-1 is implicated in the interpretation of signals leading to activation of p21 Ras.

  11. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation.

    PubMed

    Li, Yanping; Takahashi, Maho; Stork, Philip J S

    2013-09-20

    The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.

  12. Rasputin, the Drosophila homologue of the RasGAP SH3 binding protein, functions in ras- and Rho-mediated signaling.

    PubMed

    Pazman, C; Mayes, C A; Fanto, M; Haynes, S R; Mlodzik, M

    2000-04-01

    The small GTPase Ras plays an important role in many cellular signaling processes. Ras activity is negatively regulated by GTPase activating proteins (GAPs). It has been proposed that RasGAP may also function as an effector of Ras activity. We have identified and characterized the Drosophila homologue of the RasGAP-binding protein G3BP encoded by rasputin (rin). rin mutants are viable and display defects in photoreceptor recruitment and ommatidial polarity in the eye. Mutations in rin/G3BP genetically interact with components of the Ras signaling pathway that function at the level of Ras and above, but not with Raf/MAPK pathway components. These interactions suggest that Rin is required as an effector in Ras signaling during eye development, supporting an effector role for RasGAP. The ommatidial polarity phenotypes of rin are similar to those of RhoA and the polarity genes, e.g. fz and dsh. Although rin/G3BP interacts genetically with RhoA, affecting both photoreceptor differentiation and polarity, it does not interact with the gain-of-function genotypes of fz and dsh. These data suggest that Rin is not a general component of polarity generation, but serves a function specific to Ras and RhoA signaling pathways.

  13. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains.

    PubMed

    Michael, J V; Wurtzel, J G T; Goldfinger, L E

    2016-05-30

    In this study, we assessed the contributions of plasma membrane (PM) microdomain targeting to the functions of H-Ras and R-Ras. These paralogs have identical effector-binding regions, but variant C-terminal targeting domains (tDs) which are responsible for lateral microdomain distribution: activated H-Ras targets to lipid ordered/disordered (Lo/Ld) domain borders, and R-Ras to Lo domains (rafts). We hypothesized that PM distribution regulates Ras-effector interactions and downstream signaling. We used tD swap mutants, and assessed effects on signal transduction, cell proliferation, transformation and tumorigenesis. R-Ras harboring the H-Ras tD (R-Ras-tH) interacted with Raf, and induced Raf and ERK phosphorylation similar to H-Ras. R-Ras-tH stimulated proliferation and transformation in vitro, and these effects were blocked by both MEK and PI3K inhibition. Conversely, the R-Ras tD suppressed H-Ras-mediated Raf activation and ERK phosphorylation, proliferation and transformation. Thus, Ras access to Raf at the PM is sufficient for MAPK activation and is a principal component of Ras mitogenesis and transformation. Fusion of the R-Ras extended N-terminal domain to H-Ras had no effect on proliferation, but inhibited transformation and tumor progression, indicating that the R-Ras N-terminus also contributes negative regulation to these Ras functions. PI3K activation was tD independent; however, H-Ras was a stronger activator of PI3K than R-Ras, with either tD. PI3K inhibition nearly ablated transformation by R-Ras-tH, H-Ras and H-Ras-tR, whereas MEK inhibition had a modest effect on Ras-tH-driven transformation but no effect on H-Ras-tR transformation. R-Ras-tH supported tumor initiation, but not tumor progression. While H-Ras-tR-induced transformation was reduced relative to H-Ras, tumor progression was robust and similar to H-Ras. H-Ras tumor growth was moderately suppressed by MEK inhibition, which had no effect on H-Ras-tR tumor growth. In contrast, PI3K inhibition

  14. Muscarinic receptors transform NIH 3T3 cells through a Ras-dependent signalling pathway inhibited by the Ras-GTPase-activating protein SH3 domain.

    PubMed Central

    Mattingly, R R; Sorisky, A; Brann, M R; Macara, I G

    1994-01-01

    Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected. Images PMID:7969134

  15. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility.

    PubMed

    Sahai, E; Olson, M F; Marshall, C J

    2001-02-15

    Transformation by oncogenic Ras requires the function of the Rho family GTPases. We find that Ras-transformed cells have elevated levels of RhoA-GTP, which functions to inhibit the expression of the cell cycle inhibitor p21/Waf1. These high levels of Rho-GTP are not a direct consequence of Ras signalling but are selected for in response to sustained ERK-MAP kinase signalling. While the elevated levels of Rho-GTP control the level of p21/Waf, they no longer regulate the formation of actin stress fibres in transformed cells. We show that the sustained ERK-MAP kinase signalling resulting from transformation by oncogenic Ras down-regulates ROCK1 and Rho-kinase, two Rho effectors required for actin stress fibre formation. The repression of Rho- dependent stress fibre formation by ERK-MAP kinase signalling contributes to the increased motility of Ras-transformed fibroblasts. Overexpression of the ROCK target LIM kinase restores actin stress fibres and inhibits the motility of Ras-transformed fibroblasts. We propose a model in which Ras and Rho signalling pathways cross-talk to promote signalling pathways favouring transformation.

  16. Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic.

    PubMed

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Xu, Yuanyuan; Waalkes, Michael P

    2014-04-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants.

  17. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways

    PubMed Central

    Padavano, Julianna; Henkhaus, Rebecca S; Chen, Hwudaurw; Skovan, Bethany A; Cui, Haiyan; Ignatenko, Natalia A

    2015-01-01

    Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RASG12C oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis. PMID:26512205

  18. Fibronectin-induced proliferation in thyroid cells is mediated by alphavbeta3 integrin through Ras/Raf-1/MEK/ERK and calcium/CaMKII signals.

    PubMed

    Illario, Maddalena; Cavallo, Anna Lina; Monaco, Sara; Di Vito, Ennio; Mueller, Frank; Marzano, Luigi A; Troncone, Giancarlo; Fenzi, Gianfranco; Rossi, Guido; Vitale, Mario

    2005-05-01

    We recently demonstrated in an immortalized thyroid cell line that integrin stimulation by fibronectin (FN) simultaneously activates two signaling pathways: Ras/Raf/MAPK kinase (Mek)/Erk and calcium Ca2+/calcium calmodulin-dependent kinase II (CaMKII). Both signals are necessary to stimulate Erk phosphorylation because CaMKII modulates Ras-induced Raf-1 activity. In this study we present evidence that extends these findings to normal human thyroid cells in primary culture, demonstrating its biological significance in a more physiological cell model. In normal thyroid cells, immobilized FN-induced activation of p21Ras and Erk phosphorylation. This pathway was responsible for FN-induced cell proliferation. Concurrent increase of intracellular Ca2+ concentration and CaMKII activation was observed. Both induction of p21Ras activity and increase of intracellular Ca2+ concentration were mediated by FN binding to alphavbeta3 integrin. Inhibition of the Ca2+/CaMKII signal pathway by calmodulin or CaMKII inhibitors completely abolished the FN-induced Erk phosphorylation. Binding to FN induced Raf-1 and CaMKII to form a protein complex, indicating that intersection between Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways occurred at Raf-1 level. Interruption of the Ca2+/CaMKII signal pathway arrested cell proliferation induced by FN. We also analyzed thyroid tumor cell lines that displayed concomitant aberrant integrin expression and signal transduction. These data confirm that integrin activation by FN in normal thyroid cells generates Ras/Raf/Mek/Erk and Ca2+/CaMKII signaling pathways and that both are necessary to stimulate cell proliferation, whereas in thyroid tumors integrin signaling is altered.

  19. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity

    PubMed Central

    Slack, Cathy; Alic, Nazif; Foley, Andrea; Cabecinha, Melissa; Hoddinott, Matthew P.; Partridge, Linda

    2015-01-01

    Summary Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals. Video Abstract PMID:26119340

  20. The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity.

    PubMed

    Slack, Cathy; Alic, Nazif; Foley, Andrea; Cabecinha, Melissa; Hoddinott, Matthew P; Partridge, Linda

    2015-07-01

    Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals.

  1. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    PubMed Central

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  2. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms

    PubMed Central

    Tartaglia, Marco; Gelb, Bruce D.

    2010-01-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade, mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Signaling through the RAS-MAPK cascade is tightly controlled, and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging towards the dysregulation of this signaling cascade, and major genotype-phenotype correlations. PMID:20958325

  3. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  4. The PDZ Protein Canoe/AF-6 Links Ras-MAPK, Notch and Wingless/Wnt Signaling Pathways by Directly Interacting with Ras, Notch and Dishevelled

    PubMed Central

    Carmena, Ana; Speicher, Stephan; Baylies, Mary

    2006-01-01

    Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification. PMID:17183697

  5. Domain contributions to signaling specificity differences between Ras-guanine nucleotide releasing factor (Ras-GRF) 1 and Ras-GRF2.

    PubMed

    Jin, Shan-Xue; Bartolome, Christopher; Arai, Junko A; Hoffman, Laurel; Uzturk, B Gizem; Kumar-Singh, Rajendra; Waxham, M Neal; Feig, Larry A

    2014-06-01

    Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of similar calcium sensors that regulate synaptic plasticity. They are both guanine exchange factors that contain a very similar set of functional domains, including N-terminal pleckstrin homology, coiled-coil, and calmodulin-binding IQ domains and C-terminal Dbl homology Rac-activating domains, Ras-exchange motifs, and CDC25 Ras-activating domains. Nevertheless, they regulate different forms of synaptic plasticity. Although both GRF proteins transduce calcium signals emanating from NMDA-type glutamate receptors in the CA1 region of the hippocampus, GRF1 promotes LTD, whereas GRF2 promotes θ-burst stimulation-induced LTP (TBS-LTP). GRF1 can also mediate high frequency stimulation-induced LTP (HFS-LTP) in mice over 2-months of age, which involves calcium-permeable AMPA-type glutamate receptors. To add to our understanding of how proteins with similar domains can have different functions, WT and various chimeras between GRF1 and GRF2 proteins were tested for their abilities to reconstitute defective LTP and/or LTD in the CA1 hippocampus of Grf1/Grf2 double knock-out mice. These studies revealed a critical role for the GRF2 CDC25 domain in the induction of TBS-LTP by GRF proteins. In contrast, the N-terminal pleckstrin homology and/or coiled-coil domains of GRF1 are key to the induction of HFS-LTP by GRF proteins. Finally, the IQ motif of GRF1 determines whether a GRF protein can induce LTD. Overall, these findings show that for the three forms of synaptic plasticity that are regulated by GRF proteins in the CA1 hippocampus, specificity is encoded in only one or two domains, and a different set of domains for each form of synaptic plasticity.

  6. Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans.

    PubMed

    Phillips, Andrew J; Crowe, Jonathan D; Ramsdale, Mark

    2006-01-17

    A better understanding of the molecular basis of programmed cell death (PCD) in fungi could provide information that is useful in the design of antifungal drugs that combat life-threatening fungal infections. Harsh environmental stresses, such as acetic acid or hydrogen peroxide, have been shown to induce PCD in the pathogenic fungus Candida albicans. In this study, we show that dying cells progress from an apoptotic state to a secondary necrotic state and that the rate at which this change occurs is proportional to the intensity of the stimulus. Also, we found that the temporal response is modulated by Ras-cAMP-PKA signals. Mutations that block Ras-cAMP-PKA signaling (ras1Delta, cdc35Delta, tpk1Delta, and tpk2Delta) suppress or delay the apoptotic response, whereas mutations that stimulate signaling (RAS1(val13) and pde2Delta) accelerate the rate of entry of cells into apoptosis. Pharmacological stimulation or inhibition of Ras signaling reinforces these findings. Transient increases in endogenous cAMP occur under conditions that stimulate apoptosis but not growth arrest. Death-specific changes in the abundance of different isoforms of the PKA regulatory subunit, Bcy1p, are also observed. Activation of Ras signals may regulate PCD of C. albicans, either by inhibiting antiapoptotic functions (such as stress responses) or by activating proapoptotic functions. PMID:16407097

  7. Up-regulation of IGF-1R by mutant RAS in leukemia and potentiation of RAS signaling inhibitors by small molecule inhibition of IGF-1R

    PubMed Central

    Weisberg, Ellen; Nonami, Atsushi; Chen, Zhao; Nelson, Erik; Chen, Yongfei; Liu, Feiyang; Cho, Haeyeon; Zhang, Jianming; Sattler, Martin; Mitsiades, Constantine; Wong, Kwok-Kin; Liu, Qingsong; Gray, Nathanael; Griffin, James D.

    2014-01-01

    Purpose Activating mutations in the RAS oncogene occur frequently in human leukemias. Direct targeting of RAS has proven to be challenging, although targeting of downstream RAS mediators, such as MEK, is currently being tested clinically. Given the complexity of RAS signaling, it is likely that combinations of targeted agents will be more effective than single agents. Experimental Design A chemical screen using RAS-dependent leukemia cells was developed to identify compounds with unanticipated activity in the presence of a MEK inhibitor, and led to identification of inhibitors of IGF-1R. Results were validated using cell-based proliferation assays and apoptosis, cell cycle, and gene knockdown assays, immunoprecipitation and immunoblotting, and a non-invasive in vivo bioluminescence model of acute myeloid leukemia (AML). Results Mechanistically, IGF-1R protein expression/activity was substantially increased in mutant RAS-expressing cells, and suppression of RAS led to decreases in IGF-1R. Synergy between MEK and IGF-1R inhibitors correlated with induction of apoptosis, inhibition of cell cycle progression, and decreased phospho-S6 and phospho-4E-BP1. In vivo, NSG mice tail vein-injected with OCI-AML3-luc+ cells showed significantly lower tumor burden following one week of daily oral administration of 50 mg/kg NVP-AEW541 (IGF-1R inhibitor) combined with 25 mg/kg AZD6244 (MEK inhibitor), as compared to mice treated with either agent alone. Drug combination effects observed in cell-based assays were generalized to additional mutant RAS-positive neoplasms. Conclusions The finding that downstream inhibitors of RAS signaling and IGF-1R inhibitors have synergistic activity warrants further clinical investigation of IGF-1R and RAS signaling inhibition as a potential treatment strategy for RAS-driven malignancies. PMID:25186968

  8. Plant farnesyltransferase can restore yeast Ras signaling and mating

    SciTech Connect

    Yalovsky, S.; Callan, K.L.; Narita, J.O.

    1997-04-01

    Farnesyltransferase (FTase) is a heterodimeric enzyme that modifies a group of proteins, including Ras, in mammals and yeasts. Plant FTase {alpha} and {beta} subunits were cloned from tomato and expressed in the yeast Saccharomyces cerevisiae to assess their functional conservation in farnesylating Ras and a-factor proteins, which are important for cell growth and mating. The tomato FTase {beta} subunit (LeFTB) alone was unable to complement the growth defect of ram1{del} mutant yeast strains in which the chromosomal FTase {beta} subunit gene was deleted, but coexpression of LeFTB with the plant {alpha} subunit gene (LeFTA) restored normal growth, Ras membrane association, and mating. LeFTB contains a novel 66-amino-acid sequence domain whose deletion reduces the efficiency of tomato FTase to restore normal growth to yeast ram1{del} strains. Coexpression of LeFTA and LeFTB in either yeast or insect cells yielded a functional enzyme that correctly farnesylated CaaX-motif-containing peptides. Despite their low degree of sequence homology, yeast and plant FTases shared similar in vivo and in vitro substrate specificities, demonstrating that this enzymatic modification of proteins with intermediates from the isoprenoid biosynthesis pathway is conserved in evolutionarily divergent eukaryotes. 56 refs., 7 figs., 1 tab.

  9. Adaptive and aberrant reward prediction signals in the human brain.

    PubMed

    Roiser, Jonathan P; Stephan, Klaas E; den Ouden, Hanneke E M; Friston, Karl J; Joyce, Eileen M

    2010-04-01

    Theories of the positive symptoms of schizophrenia hypothesize a role for aberrant reinforcement signaling driven by dysregulated dopamine transmission. Recently, we provided evidence of aberrant reward learning in symptomatic, but not asymptomatic patients with schizophrenia, using a novel paradigm, the Salience Attribution Test (SAT). The SAT is a probabilistic reward learning game that employs cues that vary across task-relevant and task-irrelevant dimensions; it provides behavioral indices of adaptive and aberrant reward learning. As an initial step prior to future clinical studies, here we used functional magnetic resonance imaging to examine the neural basis of adaptive and aberrant reward learning during the SAT in healthy volunteers. As expected, cues associated with high relative to low reward probabilities elicited robust hemodynamic responses in a network of structures previously implicated in motivational salience; the midbrain, in the vicinity of the ventral tegmental area, and regions targeted by its dopaminergic projections, i.e. medial dorsal thalamus, ventral striatum and prefrontal cortex (PFC). Responses in the medial dorsal thalamus and polar PFC were strongly correlated with the degree of adaptive reward learning across participants. Finally, and most importantly, differential dorsolateral PFC and middle temporal gyrus (MTG) responses to cues with identical reward probabilities were very strongly correlated with the degree of aberrant reward learning. Participants who showed greater aberrant learning exhibited greater dorsolateral PFC responses, and reduced MTG responses, to cues erroneously inferred to be less strongly associated with reward. The results are discussed in terms of their implications for different theories of associative learning. PMID:19969090

  10. p21ras initiates Rac-1 but not phosphatidyl inositol 3 kinase/PKB, mediated signaling pathways in T lymphocytes.

    PubMed

    Genot, E; Reif, K; Beach, S; Kramer, I; Cantrell, D

    1998-10-01

    p21ras is activated by the T cell antigen receptor (TCR) and then co-ordinates important signaling pathways for T lymphocyte activation. Effector pathways for this guanine nucleotide binding protein in T cells are mediated by the serine/threonine kinase Raf-1 and the Ras-related GTPase Rac-1. In fibroblasts, an important effector for the Ras oncogene is Phosphatidylinositol 3-kinase (PtdIns 3-kinase). Activation of this lipid kinase is able to induce critical Rac-1 signaling pathways and can couple p21ras to cell survival mechanisms via the serine/threonine kinase Akt/PKB. The role of PtdIns 3-kinase in Ras signaling in T cells has not been explored. In the present study, we examined the ability of PtdIns 3-kinase to initiate the Rac-1 signaling pathways important for T cell activation. We also examined the possibility that Akt/PKB is regulated by Ras signaling pathways in T lymphocytes. The results show that Ras can initiate a Rac-1 mediated pathway that regulates the transcriptional function of AP-1 complexes. PtdIns 3-kinase signals cannot mimic p21ras and induce the Rac mediated responses of AP-1 transcriptional activation. Moreover, neither TCR or Ras activation of AP-1 is dependent on PtdIns 3-kinase. PKB is activated in response to triggering of the T cell antigen receptor; PtdIns 3-kinase activity is both required and sufficient for this TCR response. In contrast, p21ras signals are unable to induce Akt/PKB activity in T cell nor is Ras function required for Akt/PKB activation in response to the TCR. The present data thus highlight that PtdIns 3-kinase and Akt/PKB are not universal Ras effector molecules. Ras can initiate Rac-1 regulated signaling pathways in the context of T cell antigen receptor function independently of PtdIns 3-kinase activity.

  11. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  12. Aberrant regulation of Wnt signaling in hepatocellular carcinoma.

    PubMed

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-09-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as "canonical") and CTNNB1-independent (often referred to as "non-canonical") pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca(2+) pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  13. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    PubMed Central

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC.

  14. 1H, 15N and 13C backbone assignments of GDP-bound human H-Ras mutant G12V.

    PubMed

    Amin, Nader; Chiarparin, Elisabetta; Coyle, Joe; Nietlispach, Daniel; Williams, Glyn

    2016-04-01

    Harvey Ras (H-Ras) is a membrane-associated GTPase with critical functions in cell proliferation and differentiation. The G12V mutant of H-Ras is one of the most commonly encountered oncoproteins in human cancer. This mutation disrupts the GTPase activity of H-Ras, leading to constitutive activation and aberrant downstream signalling. Here we report the backbone resonance assignments of human H-Ras mutant G12V lacking the C-terminal membrane attachment domain.

  15. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA

    PubMed Central

    Schmid, Tobias; Snoek, L. Basten; Fröhli, Erika; van der Bent, M. Leontien; Kammenga, Jan; Hajnal, Alex

    2015-01-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling. PMID:25978500

  16. Nf1 regulates hematopoietic progenitor cell growth and ras signaling in response to multiple cytokines.

    PubMed

    Zhang, Y Y; Vik, T A; Ryder, J W; Srour, E F; Jacks, T; Shannon, K; Clapp, D W

    1998-06-01

    Neurofibromin, the protein encoded by the NF1 tumor-suppressor gene, negatively regulates the output of p21(ras) (Ras) proteins by accelerating the hydrolysis of active Ras-guanosine triphosphate to inactive Ras-guanosine diphosphate. Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile chronic myelogenous leukemia (JCML) and other malignant myeloid disorders, and heterozygous Nf1 knockout mice spontaneously develop a myeloid disorder that resembles JCML. Both human and murine leukemias show loss of the normal allele. JCML cells and Nf1-/- hematopoietic cells isolated from fetal livers selectively form abnormally high numbers of colonies derived from granulocyte-macrophage progenitors in cultures supplemented with low concentrations of granulocyte-macrophage colony stimulating factor (GM-CSF). Taken together, these data suggest that neurofibromin is required to downregulate Ras activation in myeloid cells exposed to GM-CSF. We have investigated the growth and proliferation of purified populations of hematopoietic progenitor cells isolated from Nf1 knockout mice in response to the cytokines interleukin (IL)-3 and stem cell factor (SCF), as well as to GM-CSF. We found abnormal proliferation of both immature and lineage-restricted progenitor populations, and we observed increased synergy between SCF and either IL-3 or GM-CSF in Nf1-/- progenitors. Nf1-/- fetal livers also showed an absolute increase in the numbers of immature progenitors. We further demonstrate constitutive activation of the Ras-Raf-MAP (mitogen-activated protein) kinase signaling pathway in primary c-kit+ Nf1-/- progenitors and hyperactivation of MAP kinase after growth factor stimulation. The results of these experiments in primary hematopoietic cells implicate Nf1 as playing a central role in regulating the proliferation and survival of primitive and lineage-restricted myeloid progenitors in response to multiple cytokines by modulating Ras output.

  17. H-Ras Increases Urokinase Expression and Cell Invasion in Genetically Modified Human Astrocytes Through Ras/Raf/MEK Signaling Pathway

    PubMed Central

    ZHAO, YUNGE; XIAO, AIZHEN; DIPIERRO, CHARLES G.; ABDEL-FATTAH, RANA; AMOS, SAMSON; REDPATH, GERARD T.; CARPENTER, JOAN E.; PIEPER, RUSSELL O.; HUSSAINI, ISA M.

    2008-01-01

    Previous study reported that the activation of Ras pathway cooperated with E6/E7-mediated inactivation of p53/pRb to transform immortalized normal human astrocytes (NHA/hTERT) into intracranial tumors strongly resembling human astrocytomas. The mechanism of how H-Ras contributes to astrocytoma formation is unclear. Using genetically modified NHA cells (E6/E7/hTERT and E6/E7/hTERT/Ras cells) as models, we investigated the mechanism of Ras-induced tumorigenesis. The overexpression of constitutively active H-RasV12 in E6/E7/hTERT cells robustly increased the levels of urokinase plasminogen activator (uPA) mRNA, protein, activity and invasive capacity of the E6/E7/hTERT/Ras cells. However, the expressions of MMP-9 and MMP-2 did not significantly change in the E6/E7/hTERT and E6/E7/hTERT/Ras cells. Furthermore, E6/E7/hTERT/Ras cells also displayed higher level of uPA activity and were more invasive than E6/E7/hTERT cells in 3D culture, and formed an intracranial tumor mass in a NOD-SCID mouse model. uPA specific inhibitor (B428) and uPA neutralizing antibody decreased uPA activity and invasion in E6/E7/hTERT/Ras cells. uPA-deficient U-1242 glioblastoma cells were less invasive in vitro and exhibited reduced tumor growth and infiltration into normal brain in xenograft mouse model. Inhibitors of Ras (FTA), Raf (Bay 54−9085) and MEK (UO126), but not of phosphatidylinositol 3-kinase (PI3K) (LY294002) and of protein kinase C (BIM) pathways, inhibited uPA activity and cell invasion. Our results suggest that H-Ras increased uPA expression and activity via the Ras/Raf/MEK signaling pathway leading to enhanced cell invasion and this may contribute to increased invasive growth properties of astrocytomas. PMID:18383343

  18. CHMP6 and VPS4A mediate recycling of Ras to the plasma membrane to promote growth factor signaling

    PubMed Central

    Zheng, Ze-Yi; Cheng, Chiang-Min; Fu, Xin-Rong; Chen, Liuh-Yow; Xu, Lizhong; Terrillon, Sonia; Wong, Stephen T.; Bar-Sagi, Dafna; Songyang, Zhou; Chang, Eric C.

    2011-01-01

    While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling. PMID:22231449

  19. Ras moves to stay in place.

    PubMed

    Schmick, Malte; Kraemer, Astrid; Bastiaens, Philippe I H

    2015-04-01

    Ras is a major intracellular signaling hub. This elevated position comes at a precarious cost: a single point mutation can cause aberrant signaling. The capacity of Ras for signaling is inextricably linked to its enrichment at the plasma membrane (PM). This PM localization is dynamically maintained by three essential elements: alteration of membrane affinities via lipidation and membrane-interaction motifs; trapping on specific membranes coupled with unidirectional vesicular transport to the PM; and regulation of diffusion via interaction with a solubilization factor. This system constitutes a cycle that primarily corrects for the entropic equilibration of Ras to all membranes that dilutes its signaling capacity. We illuminate how this reaction-diffusion system maintains an out-of-equilibrium localization of Ras GTPases and thereby confers signaling functionality to the PM.

  20. Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans.

    PubMed

    Inglis, Diane O; Sherlock, Gavin

    2013-10-01

    Candida albicans is an opportunistic fungal pathogen that can cause disseminated infection in patients with indwelling catheters or other implanted medical devices. A common resident of the human microbiome, C. albicans responds to environmental signals, such as cell contact with catheter materials and exposure to serum or CO2, by triggering the expression of a variety of traits, some of which are known to contribute to its pathogenic lifestyle. Such traits include adhesion, biofilm formation, filamentation, white-to-opaque (W-O) switching, and two recently described phenotypes, finger and tentacle formation. Under distinct sets of environmental conditions and in specific cell types (mating type-like a [MTLa]/alpha cells, MTL homozygotes, or daughter cells), C. albicans utilizes (or reutilizes) a single signal transduction pathway-the Ras pathway-to affect these phenotypes. Ras1, Cyr1, Tpk2, and Pde2, the proteins of the Ras signaling pathway, are the only nontranscriptional regulatory proteins that are known to be essential for regulating all of these processes. How does C. albicans utilize this one pathway to regulate all of these phenotypes? The regulation of distinct and yet related processes by a single, evolutionarily conserved pathway is accomplished through the use of downstream transcription factors that are active under specific environmental conditions and in different cell types. In this minireview, we discuss the role of Ras signaling pathway components and Ras pathway-regulated transcription factors as well as the transcriptional regulatory networks that fine-tune gene expression in diverse biological contexts to generate specific phenotypes that impact the virulence of C. albicans.

  1. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing

    PubMed Central

    Prober, David A.; Edgar, Bruce A.

    2002-01-01

    The Ras GTPase links extracellular signals to intracellular mechanisms that control cell growth, the cell cycle, and cell identity. An activated form of Drosophila Ras (RasV12) promotes these processes in the developing wing, but the effector pathways involved are unclear. Here, we present evidence indicating that RasV12 promotes cell growth and G1/S progression by increasing dMyc protein levels and activating dPI3K signaling, and that it does so via separate effector pathways. We also show that endogenous Ras is required to maintain normal levels of dMyc, but not dPI3K signaling during wing development. Finally, we show that induction of dMyc and regulation of cell identity are separable effects of Raf/MAPK signaling. These results suggest that Ras may only affect PI3K signaling when mutationally activated, such as in RasV12-transformed cells, and provide a basis for understanding the synergy between Ras and other growth-promoting oncogenes in cancer. PMID:12208851

  2. Aberrant insulin signaling in Alzheimer's disease: current knowledge

    PubMed Central

    Bedse, Gaurav; Di Domenico, Fabio; Serviddio, Gaetano; Cassano, Tommaso

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting elderly people. AD is a multifaceted pathology characterized by accumulation of extracellular neuritic plaques, intracellular neurofibrillary tangles (NFTs) and neuronal loss mainly in the cortex and hippocampus. AD etiology appears to be linked to a multitude of mechanisms that have not been yet completely elucidated. For long time, it was considered that insulin signaling has only peripheral actions but now it is widely accepted that insulin has neuromodulatory actions in the brain. Insulin signaling is involved in numerous brain functions including cognition and memory that are impaired in AD. Recent studies suggest that AD may be linked to brain insulin resistance and patients with diabetes have an increased risk of developing AD compared to healthy individuals. Indeed insulin resistance, increased inflammation and impaired metabolism are key pathological features of both AD and diabetes. However, the precise mechanisms involved in the development of AD in patients with diabetes are not yet fully understood. In this review we will discuss the role played by aberrant brain insulin signaling in AD. In detail, we will focus on the role of insulin signaling in the deposition of neuritic plaques and intracellular NFTs. Considering that insulin mitigates beta-amyloid deposition and phosphorylation of tau, pharmacological strategies restoring brain insulin signaling, such as intranasal delivery of insulin, could have significant therapeutic potential in AD treatment. PMID:26136647

  3. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs.

  4. Ras-Guanine Nucleotide-Releasing Factor 1 (Ras-GRF1) Controls Activation of Extracellular Signal-Regulated Kinase (ERK) Signaling in the Striatum and Long-Term Behavioral Responses to Cocaine

    PubMed Central

    Fasano, Stefania; D’Antoni, Angela; Orban, Paul C.; Valjent, Emmanuel; Putignano, Elena; Vara, Hugo; Pizzorusso, Tommaso; Giustetto, Maurizio; Yoon, Bongjune; Soloway, Paul; Maldonado, Rafael; Caboche, Jocelyne; Brambilla, Riccardo

    2010-01-01

    Background Ras-extracellular signal-regulated kinase (Ras-ERK) signaling is central to the molecular machinery underlying cognitive functions. In the striatum, ERK1/2 kinases are co-activated by glutamate and dopamine D1/5 receptors, but the mechanisms providing such signaling integration are still unknown. The Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal specific activator of Ras-ERK signaling, is a likely candidate for coupling these neurotransmitter signals to ERK kinases in the striatonigral medium spiny neurons (MSN) and for modulating behavioral responses to drug abuse such as cocaine. Methods We used genetically modified mouse mutants for Ras-GRF1 as a source of primary MSN cultures and organotypic slices, to perform both immunoblot and immunofluorescence studies in response to glutamate and dopamine receptor agonists. Mice were also subjected to behavioral and immunohistochemical investigations upon treatment with cocaine. Results Phosphorylation of ERK1/2 in response to glutamate, dopamine D1 agonist, or both stimuli simultaneously is impaired in Ras-GRF1– deficient striatal cells and organotypic slices of the striatonigral MSN compartment. Consistently, behavioral responses to cocaine are also affected in mice deficient for Ras-GRF1 or overexpressing it. Both locomotor sensitization and conditioned place preference are significantly attenuated in Ras-GRF1– deficient mice, whereas a robust facilitation is observed in overexpressing transgenic animals. Finally, we found corresponding changes in ERK1/2 activation and in accumulation of FosB/ΔFosB, a well-characterized marker for long-term responses to cocaine, in MSN from these animals. Conclusions These results strongly implicate Ras-GRF1 in the integration of the two main neurotransmitter inputs to the striatum and in the maladaptive modulation of striatal networks in response to cocaine. PMID:19446794

  5. Ras-activated Dsor1 promotes Wnt signaling in Drosophila development.

    PubMed

    Hall, Eric T; Verheyen, Esther M

    2015-12-15

    Wnt/Wingless (Wg) and Ras-MAPK signaling both play fundamental roles in growth and cell fate determination, and when dysregulated, can lead to tumorigenesis. Several conflicting modes of interaction between Ras-MAPK and Wnt signaling have been identified in specific cellular contexts, causing synergistic or antagonistic effects on target genes. We find novel evidence that the Drosophila homolog of the dual specificity kinases MEK1/2 (also known as MAP2K1/2), Downstream of Raf1 (Dsor1), is required for Wnt signaling. Knockdown of Dsor1 results in loss of Wg target gene expression, as well as reductions in stabilized Armadillo (Arm; Drosophila β-catenin). We identify a close physical interaction between Dsor1 and Arm, and find that catalytically inactive Dsor1 causes a reduction in active Arm. These results suggest that Dsor1 normally counteracts the Axin-mediated destruction of Arm. We find that Ras-Dsor1 activity is independent of upstream activation by EGFR, and instead it appears to be activated by the insulin-like growth factor receptor to promote Wg signaling. Taken together, our results suggest that there is a new crosstalk pathway between insulin and Wg signaling that is mediated by Dsor1. PMID:26542023

  6. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  7. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  8. TLN-4601 suppresses growth and induces apoptosis of pancreatic carcinoma cells through inhibition of Ras-ERK MAPK signaling

    PubMed Central

    2010-01-01

    Background TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered using Thallion's proprietary DECIPHER® technology, a genomics and bioinformatics platform that predicts the chemical structures of secondary metabolites based on gene sequences obtained by scanning bacterial genomes. Our recent studies suggest that TLN-4601 inhibits the Ras-ERK MAPK pathway post Ras prenylation and prior to MEK activation. The Ras-ERK MAPK signaling pathway is a well-validated oncogenic cascade based on its central role in regulating the growth and survival of cells from a broad spectrum of human tumors. Furthermore, RAS isoforms are the most frequently mutated oncogenes, occurring in approximately 30% of all human cancers, and KRAS is the most commonly mutated RAS gene, with a greater than 90% incidence of mutation in pancreatic cancer. Results To evaluate whether TLN-4601 interferes with K-Ras signaling, we utilized human pancreatic epithelial cells and demonstrate that TLN-4601 treatment resulted in a dose- and time-dependent inhibition of Ras-ERK MAPK signaling. The compound also reduced Ras-GTP levels and induced apoptosis. Finally, treatment of MIA PaCa-2 tumor-bearing mice with TLN-4601 resulted in antitumor activity and decreased tumor Raf-1 protein levels. Conclusion These data, together with phase I/II clinical data showing tolerability of TLN-4601, support conducting a clinical trial in advanced pancreatic cancer patients. PMID:21044336

  9. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  10. Small Molecule APY606 Displays Extensive Antitumor Activity in Pancreatic Cancer via Impairing Ras-MAPK Signaling

    PubMed Central

    Guo, Na; Liu, Zuojia; Zhao, Wenjing; Wang, Erkang; Wang, Jin

    2016-01-01

    Pancreatic cancer has been found with abnormal expression or mutation in Ras proteins. Oncogenic Ras activation exploits their extensive signaling reach to affect multiple cellular processes, in which the mitogen-activated protein kinase (MAPK) signaling exerts important roles in tumorigenesis. Therapies targeted Ras are thus of major benefit for pancreatic cancer. Although small molecule APY606 has been successfully picked out by virtual drug screening based on Ras target receptor, its in-depth mechanism remains to be elucidated. We herein assessed the antitumor activity of APY606 against human pancreatic cancer Capan-1 and SW1990 cell lines and explored the effect of Ras-MAPK and apoptosis-related signaling pathway on the activity of APY606. APY606 treatment resulted in a dose- and time-dependent inhibition of cancer cell viability. Additionally, APY606 exhibited strong antitumor activity, as evidenced not only by reduction in tumor cell invasion, migration and mitochondrial membrane potential but also by alteration in several apoptotic indexes. Furthermore, APY606 treatment directly inhibited Ras-GTP and the downstream activation of MAPK, which resulted in the down-regulation of anti-apoptotic protein Bcl-2, leading to the up-regulation of mitochondrial apoptosis pathway-related proteins (Bax, cytosolic Cytochrome c and Caspase 3) and of cyclin-dependent kinase 2 and Cyclin A, E. These data suggest that impairing Ras-MAPK signaling is a novel mechanism of action for APY606 during therapeutic intervention in pancreatic cancer. PMID:27223122

  11. EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers

    PubMed Central

    Doma, Eszter; Rupp, Christian; Baccarini, Manuela

    2013-01-01

    The mammalian skin is the largest organ of the body and its outermost layer, the epidermis, undergoes dynamic lifetime renewal through the activity of somatic stem cell populations. The EGFR-Ras-Raf pathway has a well-described role in skin development and tumor formation. While research mainly focuses on its role in cutaneous tumor initiation and maintenance, much less is known about Ras signaling in the epidermal stem cells, which are the main targets of skin carcinogenesis. In this review, we briefly discuss the properties of the epidermal stem cells and review the role of EGFR-Ras-Raf signaling in keratinocyte stem cells during homeostatic and pathological conditions. PMID:24071938

  12. EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila

    PubMed Central

    Jiang, Huaqi; Grenley, Marc O.; Bravo, Maria-Jose; Blumhagen, Rachel Z.; Edgar, Bruce A.

    2010-01-01

    Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thus maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration following enteric infection by the bacterium, Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis. PMID:21167805

  13. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis.

    PubMed

    Winter, Peter S; Sarosiek, Kristopher A; Lin, Kevin H; Meggendorfer, Manja; Schnittger, Susanne; Letai, Anthony; Wood, Kris C

    2014-12-23

    Myeloproliferative neoplasms (MPNs) frequently have an activating mutation in the gene encoding Janus kinase 2 (JAK2). Thus, targeting the pathway mediated by JAK and its downstream substrate, signal transducer and activator of transcription (STAT), may yield clinical benefit for patients with MPNs containing the JAK2(V617F) mutation. Although JAK inhibitor therapy reduces splenomegaly and improves systemic symptoms in patients, this treatment does not appreciably reduce the number of neoplastic cells. To identify potential mechanisms underlying this inherent resistance phenomenon, we performed pathway-centric, gain-of-function screens in JAK2(V617F) hematopoietic cells and found that the activation of the guanosine triphosphatase (GTPase) RAS or its effector pathways [mediated by the kinases AKT and ERK (extracellular signal-regulated kinase)] renders cells insensitive to JAK inhibition. Resistant MPN cells became sensitized to JAK inhibitors when also exposed to inhibitors of the AKT or ERK pathways. Mechanistically, in JAK2(V617F) cells, a JAK2-mediated inactivating phosphorylation of the proapoptotic protein BAD [B cell lymphoma 2 (BCL-2)-associated death promoter] promoted cell survival. In sensitive cells, exposure to a JAK inhibitor resulted in dephosphorylation of BAD, enabling BAD to bind and sequester the prosurvival protein BCL-XL (BCL-2-like 1), thereby triggering apoptosis. In resistant cells, RAS effector pathways maintained BAD phosphorylation in the presence of JAK inhibitors, yielding a specific dependence on BCL-XL for survival. In patients with MPNs, activating mutations in RAS co-occur with the JAK2(V617F) mutation in the malignant cells, suggesting that RAS effector pathways likely play an important role in clinically observed resistance.

  14. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

    PubMed Central

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-01-01

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370

  15. [RAS/MAPK signal transduction pathway and its role in the pathogenesis of Noonan syndrome].

    PubMed

    Gos, Monika; Leszkiewicz, Monika; Abramowicz, Anna

    2012-01-01

    Noonan syndrome (NS) is one of the most frequent dysmorphic syndromes in children with a frequency of 1/1000-1/2500 of newborns. Noonan syndrome is a multi-organ disease with a broad spectrum of clinical symptoms. The most characteristic features of NS are: craniofacial dysmorphy, short stature, cardiovascular defects, bone and skeletal defects and delayed puberty (cryptorchidism in males). Noonan syndrome has a genetic background and is inherited in autosomal dominant manner. The recent studies have shown that it is due to the presence of mutation in one of the genes encoding proteins of RAS/MAPK signalling pathway responsible for cell proliferation and differentiation. Till now, NS causing mutations were identified in PTPN11, SOS1, RAF1, KRAS, BRAF, SHOC2 and NRAS genes, and this may partially explain the broad phenotypic spectrum observed in patients. Noonan syndrome is one of the RAS-opathies, therefore the molecular analysis of RAS/ MAPK genes might be a very useful tool in clinical differentiation of the disease.

  16. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

    PubMed Central

    Melillo, Rosa Marina; Castellone, Maria Domenica; Guarino, Valentina; De Falco, Valentina; Cirafici, Anna Maria; Salvatore, Giuliana; Caiazzo, Fiorina; Basolo, Fulvio; Giannini, Riccardo; Kruhoffer, Mogens; Orntoft, Torben; Fusco, Alfredo; Santoro, Massimo

    2005-01-01

    In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade. PMID:15761501

  17. Ras history

    PubMed Central

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  18. The novel plant homeodomain protein rhinoceros antagonizes Ras signaling in the Drosophila eye.

    PubMed Central

    Voas, Matthew G; Rebay, Ilaria

    2003-01-01

    The sequential specification of cell fates in the Drosophila eye requires repeated activation of the epidermal growth factor receptor (EGFR)/Ras/MAP kinase (MAPK) pathway. Equally important are the multiple layers of inhibitory regulation that prevent excessive or inappropriate signaling. Here we describe the molecular and genetic analysis of a previously uncharacterized gene, rhinoceros (rno), that we propose functions to restrict EGFR signaling in the eye. Loss of rno results in the overproduction of photoreceptors, cone cells, and pigment cells and a corresponding reduction in programmed cell death, all phenotypes characteristic of hyperactivated EGFR signaling. Genetic interactions between rno and multiple EGFR pathway components support this hypothesis. rno encodes a novel but evolutionarily conserved nuclear protein with a PHD zinc-finger domain, a motif commonly found in chromatin-remodeling factors. Future analyses of rno will help to elucidate the regulatory strategies that modulate EGFR signaling in the fly eye. PMID:14704181

  19. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  20. RAS - Screens & Assays

    Cancer.gov

    A primary goal of the RAS Initiative is to develop assays for RAS activity, localization, and signaling and adapt those assays so they can be used for finding new drug candidates. Explore the work leading to highly validated screening protocols.

  1. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH

    SciTech Connect

    Kim, Hwa-Ryeon; Roe, Jae-Seok; Lee, Ji-Eun; Hwang, In-Young; Cho, Eun-Jung; Youn, Hong-Duk

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer p53 downregulates IMPDH. Black-Right-Pointing-Pointer p53-dependent miR-34a transactivation inhibits IMPDH transcription. Black-Right-Pointing-Pointer miR-34a-mediated inhibition of IMPDH downregulates GTP-dependent Ras signal. -- Abstract: p53 is a well-known transcription factor that controls cell cycle arrest and cell death in response to a wide range of stresses. Moreover, p53 regulates glucose metabolism and its mutation results in the metabolic switch to the Warburg effect found in cancer cells. Nucleotide biosynthesis is also critical for cell proliferation and the cell division cycle. Nonetheless, little is known about whether p53 regulates nucleotide biosynthesis. Here we demonstrated that p53-inducible microRNA-34a (miR-34a) repressed inosine 5 Prime -monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme of de novo GTP biosynthesis. Treatment with anti-miR-34a inhibitor relieved the expression of IMPDH upon DNA damage. Ultimately, miR-34a-mediated inhibition of IMPDH resulted in repressed activation of the GTP-dependent Ras signaling pathway. In summary, we suggest that p53 has a novel function in regulating purine biosynthesis, aided by miR-34a-dependent IMPDH repression.

  2. A Functional Screen Reveals an Extensive Layer of Transcriptional and Splicing Control Underlying RAS/MAPK Signaling in Drosophila

    PubMed Central

    Ashton-Beaucage, Dariel; Udell, Christian M.; Gendron, Patrick; Sahmi, Malha; Lefrançois, Martin; Baril, Caroline; Guenier, Anne-Sophie; Duchaine, Jean; Lamarre, Daniel; Lemieux, Sébastien; Therrien, Marc

    2014-01-01

    The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also

  3. Modulation of the Ras/MAPK signalling pathway by the redox function of selenoproteins in Drosophila melanogaster.

    PubMed

    Morey, M; Serras, F; Baguñà, J; Hafen, E; Corominas, M

    2001-10-01

    Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.

  4. The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2

    PubMed Central

    Zeng, X; Shaikh, FY; Harrison, MK; Adon, AM; Trimboli, AJ; Carroll, KA; Sharma, N; Timmers, C; Chodosh, LA; Leone, G; Saavedra, HI

    2010-01-01

    Centrosome amplification (CA) contributes to carcinogenesis by generating aneuploidy. Elevated frequencies of CA in most benign breast lesions and primary tumors suggest a causative role for CA in breast cancers. Clearly, identifying which and how altered signal transduction pathways contribute to CA is crucial to breast cancer control. Although a causative and cooperative role for c-Myc and Ras in mammary tumorigenesis is well documented, their ability to generate CA during mammary tumor initiation remains unexplored. To answer that question, K-RasG12D and c-Myc were induced in mouse mammary glands. Although CA was observed in mammary tumors initiated by c-Myc or K-RasG12D, it was detected only in premalignant mammary lesions expressing K-RasG12D. CA, both in vivo and in vitro, was associated with increased expression of the centrosome-regulatory proteins, cyclin D1 and Nek2. Abolishing the expression of cyclin D1, Cdk4 or Nek2 in MCF10A human mammary epithelial cells expressing H-RasG12V abrogated Ras-induced CA, whereas silencing cyclin E1 or B2 had no effect. Thus, we conclude that CA precedes mammary tumorigenesis, and interfering with centrosome-regulatory targets suppresses CA. PMID:20581865

  5. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-01

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  6. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes.

    PubMed

    Jin, Yinhua; Ha, Nati; Forés, Marta; Xiang, Jinyi; Gläßer, Christine; Maldera, Julieta; Jiménez, Gerardo; Edgar, Bruce A

    2015-12-01

    Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs). Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR) in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic), mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25), Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt). pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.

  7. Disentangling information flow in the Ras-cAMP signaling network.

    PubMed

    Carter, Gregory W; Rupp, Steffen; Fink, Gerald R; Galitski, Timothy

    2006-04-01

    The perturbation of signal-transduction molecules elicits genomic-expression effects that are typically neither restricted to a small set of genes nor uniform. Instead there are broad, varied, and complex changes in expression across the genome. These observations suggest that signal transduction is not mediated by isolated pathways of information flow to distinct groups of genes in the genome. Rather, multiple entangled paths of information flow influence overlapping sets of genes. Using the Ras-cAMP pathway in Saccharomyces cerevisiae as a model system, we perturbed key pathway elements and collected genomic-expression data. Singular value decomposition was applied to separate the genome-wide transcriptional response into weighted expression components exhibited by overlapping groups of genes. Molecular interaction data were integrated to connect gene groups to perturbed signaling elements. The resulting series of linked subnetworks maps multiple putative pathways of information flow through a dense signaling network, and provides a set of testable hypotheses for complex gene-expression effects across the genome.

  8. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    PubMed

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-09-26

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P < 0.05). These results indicate that ACN can cause immune toxicity by damaging lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways.

  9. Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways.

    PubMed

    Li, X J; Li, B; Huang, J S; Shi, J M; Wang, P; Fan, W; Zhou, Y L

    2014-01-01

    Acrylonitrile (ACN) is a widely used chemical in the production of plastics, resins, nitriles, acrylic fibers, and synthetic rubber. Previous epidemiological investigations and animal studies have confirmed that ACN affects the lymphocytes and spleen. However, the immune toxicity mechanism is unknown. Lipid rafts are cell membrane structures that are rich in cholesterol and involved in cell signal transduction. The B cell lymophoma-10 (Bcl10) protein is a joint protein that is important in lymphocyte development and signal pathways. This study was conducted to examine the in vitro effects of ACN. We separated lipid rafts, and analyzed Bcl10 protein and caveolin. Western blotting was used to detect mitogen-activated protein kinase (MAPK) and phosphorylated MAPK levels. The results indicated that with increasing ACN concentration, the total amount of Bcl10 remained stable, but was concentrated mainly in part 4 to part 11 in electrophoretic band district which is high density in gradient centrifugation. Caveolin-1 was evaluated as a lipid raft marker protein; caveolin-1 content and position were relatively unchanged. Western blotting showed that in a certain range, MAPK protein was secreted at a higher level. At some ACN exposure levels, MAPK protein secretion was significantly decreased compared to the control group (P < 0.05). These results indicate that ACN can cause immune toxicity by damaging lipid raft structures, causing Bcl10 protein and lipid raft separation and restraining Ras-Raf-MAPK-extracellular signal-regulated kinase signaling pathways. PMID:25299088

  10. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  11. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions.

  12. First Step of Glycosylphosphatidylinositol (GPI) Biosynthesis Cross-talks with Ergosterol Biosynthesis and Ras Signaling in Candida albicans*

    PubMed Central

    Yadav, Bhawna; Bhatnagar, Shilpi; Ahmad, Mohammad Faiz; Jain, Priyanka; Pratyusha, Vavilala A.; Kumar, Pravin; Komath, Sneha Sudha

    2014-01-01

    Candida albicans is a leading cause of fungal infections worldwide. It has several glycosylphosphatidylinositol (GPI)-anchored virulence factors. Inhibiting GPI biosynthesis attenuates its virulence. Building on our previous work, we explore the interaction of GPI biosynthesis in C. albicans with ergosterol biosynthesis and hyphal morphogenesis. This study is also the first report of transcriptional co-regulation existing between two subunits of the multisubunit enzyme complex, GPI-N-acetylglucosaminyltransferase (GPI-GnT), involved in the first step of GPI anchor biosynthesis in eukaryotes. Using mutational analysis, we show that the accessory subunits, GPI2 and GPI19, of GPI-GnT exhibit opposite effects on ergosterol biosynthesis and Ras signaling (which determines hyphal morphogenesis). This is because the two subunits negatively regulate one another; GPI19 mutants show up-regulation of GPI2, whereas GPI2 mutants show up-regulation of GPI19. Two different models were examined as follows. First, the two GPI-GnT subunits independently interact with ergosterol biosynthesis and Ras signaling. Second, the two subunits mutually regulate one another and thereby regulate sterol levels and Ras signaling. Analysis of double mutants of these subunits indicates that GPI19 controls ergosterol biosynthesis through ERG11 levels, whereas GPI2 determines the filamentation by cross-talk with Ras1 signaling. Taken together, this suggests that the first step of GPI biosynthesis talks to and regulates two very important pathways in C. albicans. This could have implications for designing new antifungal strategies. PMID:24356967

  13. GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling

    PubMed Central

    Ayroldi, Emira; Zollo, Ornella; Bastianelli, Alessandra; Marchetti, Cristina; Agostini, Massimiliano; Di Virgilio, Rosa; Riccardi, Carlo

    2007-01-01

    Tsc22d3 coding for glucocorticoid-induced leucine zipper (GILZ) was initially identified as a dexamethasone-responsive gene involved in the control of T lymphocyte activation and apoptosis. However, the physiological role of this molecule and its function in the biological activity of glucocorticoids (GCs) has not been clarified. Here, we demonstrate that GILZ interacts directly with Ras in vitro and in vivo as shown by GILZ and Ras coimmunoprecipitation and colocalization upon PMA activation in primary mouse spleen T lymphocytes and thymus cells. The analysis of GILZ mutants showed that they bound Ras through the tuberous sclerosis complex box (TSC) and, depending on the Ras activation level, formed a trimeric complex with Ras and Raf, which we previously identified as a GILZ binder. As a consequence of these interactions, GILZ diminished the activation of Ras and Raf downstream targets including ERK1/2, AKT/PKB serine/threonine kinase, and retinoblastoma (Rb) phosphorylation and cyclin D1 expression, leading to inhibition of Ras- and Raf-dependent cell proliferation and Ras-induced NIH-3T3 transformation. GILZ silencing resulted in an increase in concanavalin A–induced T cell proliferation and, most notably, inhibition of dexamethasone antiproliferative effects. Together, these findings indicate that GILZ serves as a negative regulator of Ras- and Raf-induced proliferation and is an important mediator of the antiproliferative effect of GCs. PMID:17492054

  14. Epidermal growth factor and Ras regulate gene expression in GH4 pituitary cells by separate, antagonistic signal transduction pathways.

    PubMed Central

    Pickett, C A; Gutierrez-Hartmann, A

    1995-01-01

    regions on the proximal rPRL promoter. One region maps between -255 and -212, near the Ras response element, and a second maps between -125 and -54. The latter region appears to involve footprint 2, a previously identified repressor site on the rPRL promoter. Neither footprint 1 nor 3, known GHF-1 binding sites, appears to be crucial to RGF-mediated rPRL promoter activation. The results of these studies indicate that in GH4 neuroendocrine cells, rPRL gene regulation by EGF is mediated by a signal transduction pathway that is separate and antagonistic to the Ras pathway. Hence, the functional role of the Ras/Raf/MAP kinase pathway in mediating transcriptional responses to EGF and other receptor tyrosine kinase may differ in highly specialized cell types. PMID:8524243

  15. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis.

    PubMed

    Ramocki, M B; Johnson, S E; White, M A; Ashendel, C L; Konieczny, S F; Taparowsky, E J

    1997-07-01

    The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V.

  16. Expression of oncogenic K-ras from its endogenous promoter leads to a partial block of erythroid differentiation and hyperactivation of cytokine-dependent signaling pathways.

    PubMed

    Zhang, Jing; Liu, Yangang; Beard, Caroline; Tuveson, David A; Jaenisch, Rudolf; Jacks, Tyler E; Lodish, Harvey F

    2007-06-15

    When overexpressed in primary erythroid progenitors, oncogenic Ras leads to the constitutive activation of its downstream signaling pathways, severe block of terminal erythroid differentiation, and cytokine-independent growth of primary erythroid progenitors. However, whether high-level expression of oncogenic Ras is required for these phenotypes is unknown. To address this issue, we expressed oncogenic K-ras (K-ras(G12D)) from its endogenous promoter using a tetracycline-inducible system. We show that endogenous K-ras(G12D) leads to a partial block of terminal erythroid differentiation in vivo. In contrast to results obtained when oncogenic Ras was overexpressed from retroviral vectors, endogenous levels of K-ras(G12D) fail to constitutively activate but rather hyperactivate cytokine-dependent signaling pathways, including Stat5, Akt, and p44/42 MAPK, in primary erythroid progenitors. This explains previous observations that hematopoietic progenitors expressing endogenous K-ras(G12D) display hypersensitivity to cytokine stimulation in various colony assays. Our results support efforts to modulate Ras signaling for treating hematopoietic malignancies.

  17. Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles.

    PubMed

    Flax, S W; O'Donnell, M

    1988-01-01

    Methods for correction of phase aberrations induced by near-field variations in the index of refraction are explored. Using signals obtained from a sampled aperture (i.e. transducer array), phase aberrations can be accurately measured with a correlation approach similar to methods used in adaptive optics and radar. However, the method presented here has no need for a beacon or an ideal point reflector to act as a source for estimating phase errors. It uses signals from random collections of scatterers to determine phase aberrations accurately. Because there is no longer a need for a beacon signal, the method is directly applicable not only to medical ultrasound imaging but also to any coherent imaging system with a sampled aperture, such as radar and sonar.

  18. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    PubMed

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  19. MAF mediates crosstalk between Ras-MAPK and mTOR signaling in NF1

    PubMed Central

    Brundage, Meghan E.; Tandon, Preeti; Eaves, David W.; Williams, Jon P.; Miller, Shyra J.; Hennigan, Robert H.; Jegga, Anil; Cripe, Timothy P.; Ratner, Nancy

    2014-01-01

    Mutations in the neurofibromatosis type 1 (NF1 tumor suppressor gene are common in cancer, and can cause resistance to therapy. Using transcriptome analysis we identified MAF as an NF1 regulated transcription factor, and verified MAF regulation through RAS/MAPK/AP-1 signaling in malignant peripheral nerve sheath tumor (MPNST) cell lines. MAF was also downregulated in human MPNST. Acute re-expression of MAF promoted expression of glial differentiation markers in MPNST cells in vitro, decreased self-renewal of embryonic precursors and transiently affected tumor cell phenotypes in vitro by increasing MPNST cell death and reducing metabolic activity and anchorage independent growth. Paradoxically, chronic MAF overexpression enhanced MPNST cell tumor growth in vivo, correlating with elevated pS6 in vitro and in vivo. RAD001 blocked MAF-mediated tumor growth, and MAF regulated the mTOR pathway through DEPTOR. MAPK inhibition with NF1 loss of function is predicted to show limited efficacy due to reactivation of mTOR signaling via MAF. PMID:24509877

  20. Photochemical Modulation of Ras-Mediated Signal Transduction using Caged Farnesyltransferase Inhibitors: Activation via One- and Two-Photon Excitation

    PubMed Central

    Abate-Pella, Daniel; Zeliadt, Nicholette A.; Ochocki, Joshua D.; Warmka, Janel K.; Dore, Timothy M.; Blank, David A.; Wattenberg, Elizabeth V.; Distefano, Mark D.

    2012-01-01

    The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates, and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase, Bhc-FTI, is described. The inhibitor was caged by alkylation of a critical thiol functional group with a Bhc moiety; while Bhc is well established as a protecting group for carboxylates and phosphates, it has not been extensively used to cage sulfhydryls. The resulting caged molecule, Bhc-FTI, can be photolyzed with UV light to release the inhibitor (FTI) that prevents Ras farnesylation, Ras membrane localization and downstream signaling. Finally, it is shown that Bhc-FTI can be uncaged by two-photon excitation to produce FTI at levels sufficient to inhibit Ras localization and alter cell morphology. Given the widespread involvement of Ras proteins in signal transduction pathways, this caged inhibitor should be useful in a plethora of studies. PMID:22492666

  1. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  2. Cytodifferentiation potentiates aFGF-induced p21(ras)/Erk signaling pathway in rat cultured astrocytes.

    PubMed

    Asada, S; Kasuya, Y; Hama, H; Masaki, T; Goto, K

    1999-07-01

    MBP kinase detection assay revealed that acidic FGF (aFGF) augmented MBP kinase activity in a dose-dependent manner in astrocytes (AC). The molar potency of this action of aFGF in dibutyryl cyclic AMP (DBcAMP)-treated AC was significantly higher than that in quiescent AC. Consistently, the molar potency of accumulation of p21(ras)-GTP by aFGF was significantly higher in DBcAMP-treated AC than in quiescent AC. However, binding study showed that B(max) and K(D) for [(125)I]aFGF in DBcAMP-treated AC were quite similar to those in quiescent AC. Furthermore, the expression levels of Grb2, SOS, and p21(ras) were not changed by treatment of AC with DBcAMP. These results suggest that cytodifferentiation potentiates the p21(ras)/Erk signaling pathway in AC in response to aFGF without changing the expression levels of signaling molecules mediating from the FGF receptor to p21(ras).

  3. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Stueckle, Todd A.; Park, Jino; Tse, William; Dinu, Cerasela-Zoica; Rojanasakul, Yon

    2014-01-01

    Rapid development and deployment of engineered nanomaterials such as carbon nanotubes (CNTs) in various commercial and biomedical applications have raised concerns about their potential adverse health effects, especially their long-term effects which have not been well addressed. We demonstrated here that prolonged exposure of human mesothelial cells to single-walled CNT (SWCNT) induced neoplastic-like transformation as indicated by anchorage-independent cell growth and increased cell invasiveness. Such transformation was associated with an up-regulation of H-Ras and activation of ERK1/2. Downregulation of H-Ras by siRNA or inactivation of ERK by chemical inhibitor effectively inhibited the aggressive phenotype of SWCNT-exposed cells. Integrin alpha V and cortactin, but not epithelial-mesenchymal transition (EMT) transcriptional regulators, were up-regulated in the SWCNT-exposed cells, suggesting their role in the aggressive phenotype. Cortactin expression was shown to be controlled by the H-Ras/ERK signaling. Thus, our results indicate a novel role of H-Ras/ERK signaling and cortactin in the aggressive transformation of human mesothelial cells by SWCNT. PMID:24971065

  4. The Rho-GTPase Rnd1 Suppresses Mammary Tumorigenesis and EMT by Restraining Ras-MAPK signaling

    PubMed Central

    Okada, Tomoyo; Sinha, Surajit; Esposito, Ilaria; Schiavon, Gaia; López-Lago, Miguel A.; Su, Wenjing; Pratilas, Christine A.; Abele, Cristina; Hernandez, Jonathan M.; Ohara, Masahiro; Okada, Morihito; Viale, Agnes; Heguy, Adriana; Socci, Nicholas D.; Sapino, Anna; Seshan, Venkatraman E.; Long, Stephen; Inghirami, Giorgio; Rosen, Neal; Giancotti, Filippo G.

    2015-01-01

    SUMMARY We identified the Rho-GTPase Rnd1 as a candidate metastasis suppressor through bioinformatics analysis and showed that its depletion disrupt epithelial adhesion and polarity, induced Epithelial-to-Mesenchymal Transition (EMT), and cooperated with deregulated expression of c-Myc or loss of p53 to cause neoplastic conversion. Mechanistic studies revealed that Rnd1 suppresses Ras signalling by activating the GAP domain of Plexin B1, which inhibits Rap1. Rap1 inhibition in turn led to derepression of p120-RasGAP, which was able to inhibit Ras. Inactivation of Rnd1 in mammary epithelial cells induced highly undifferentiated and invasive tumors in mice. Conversely, Rnd1 expression inhibited spontaneous and experimental lung colonization in mouse models of metastasis. Genomic studies indicated that gene deletion in combination with epigenetic silencing or, more rarely, point mutation inactivates RND1 in human breast cancer. These results reveal a previously unappreciated mechanism through which Rnd1 restrains activation of Ras-MAPK signaling and breast tumor initiation and progression. PMID:25531777

  5. YES oncogenic activity is specified by its SH4 domain and regulates RAS/MAPK signaling in colon carcinoma cells.

    PubMed

    Dubois, Fanny; Leroy, Cédric; Simon, Valérie; Benistant, Christine; Roche, Serge

    2015-01-01

    Members of the SRC family of tyrosine kinases (SFK) display important functions in human cancer, but their specific role in tumorigenesis remains unclear. We previously demonstrated that YES regulates a unique oncogenic signaling important for colorectal cancer (CRC) progression that is not shared with SRC. Here, we addressed the underlying mechanism involved in this process. We show that YES oncogenic signaling relies on palmitoylation of its SH4 domain that controls YES localization in cholesterol-enriched membrane micro-domains. Specifically, deletion of the palmitoylation site compromised YES transforming activity, while addition of a palmitoylation site in the SH4 domain of SRC was sufficient for SRC to restore the transforming properties of cells in which YES had been silenced. Subsequently, SILAC phosphoproteomic analysis revealed that micro-domain-associated cell adhesive components and receptor tyrosine kinases are major YES substrates. YES also phosphorylates upstream regulators of RAS/MAPK signaling, including EGFR, SHC and SHP2, which were not targeted by SRC due to the absence of palmitoylation. Accordingly, EGFR-induced MAPK activity was attenuated by YES down-regulation, while increased RAS activity significantly restored cell transformation that was lost upon YES silencing. Collectively, these results uncover a critical role for the SH4 domain in the specification of SFK oncogenic activity and a selective role for YES in the induction of RAS/MAPK signaling in CRC cells.

  6. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  7. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  8. The NPM-ALK tyrosine kinase mimics TCR signalling pathways, inducing NFAT and AP-1 by RAS-dependent mechanisms.

    PubMed

    Turner, Suzanne D; Yeung, Debra; Hadfield, Kathryn; Cook, Simon J; Alexander, Denis R

    2007-04-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) expression is associated with the lymphoid malignancy anaplastic large cell lymphoma (ALCL) and results from a t(2;5) chromosomal translocation. We show that NPM-ALK induces Ras activation and phosphorylation of the ERK MAP Kinase consistent with activation of the Ras-MAP Kinase pathway. Furthermore, we demonstrate that activation of Ras is necessary for inducing transcription via NFAT/AP-1 composite transcriptional binding sites. This activity is dependent on NPM-ALK forming complexes with proteins that bind to autophosphorylated tyrosine residues at positions 156, 567 and 664, associated with binding to IRS-1, Shc and PLCgamma, respectively. Specifically, NPM-ALK activates transcription from the TRE promoter element, an AP-1 binding region, an activity dependent on both Ras and Shc activity. Our results show that NPM-ALK mimics activated T-cell receptor signalling by inducing pathways associated with the activation of NFAT/AP-1 transcription factors that bind to promoter elements found in a broad array of cytokine genes.

  9. Basic Calcium Phosphate Crystals Activate c-fos Expression Through a Ras/ERK Dependent Signaling Mechanism

    PubMed Central

    Major, Michael L.; Cheung, Herman S.; Misra, Ravi P.

    2007-01-01

    Diseases caused by calcium pyrophosphate dihydrate (CPPD) and basic calcium phosphate (BCP) crystals occur frequently in osteoarthritic joints. Both crystals induce mitogenesis, metalloproteinase synthesis and secretion by fibroblasts and chondrocytes, promoting degradation of articular tissue. We investigated the mechanism by which BCP activates the c-fos proto-oncogene, which has been shown to activate various matrix metalloproteinases (MMPs). We demonstrate that BCP crystals induce c-fos expression primarily through a Ras/ERK dependent signaling mechanism targeting two highly conserved regulatory binding sites, the serum response element (SRE) and the cAMP response element (CRE). These results establish a calcium crystal induced, calcium/Calmodulin independent, signaling pathway in which BCP crystals activate Ras/MAPK, which can directly target an SRF-containing transcription factor complex, to induce fibroblasts to secrete metalloproteinases. PMID:17307136

  10. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  11. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS.

    PubMed

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y; Wiedemeyer, W Ruprecht

    2015-01-20

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  12. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS

    PubMed Central

    Taylor-Harding, Barbie; Aspuria, Paul-Joseph; Agadjanian, Hasmik; Cheon, Dong-Joo; Mizuno, Takako; Greenberg, Danielle; Allen, Jenieke R.; Spurka, Lindsay; Funari, Vincent; Spiteri, Elizabeth; Wang, Qiang; Orsulic, Sandra; Walsh, Christine; Karlan, Beth Y.; Wiedemeyer, W. Ruprecht

    2015-01-01

    High-grade serous ovarian cancers (HGSOC) are genomically complex, heterogeneous cancers with a high mortality rate, due to acquired chemoresistance and lack of targeted therapy options. Cyclin-dependent kinase inhibitors (CDKi) target the retinoblastoma (RB) signaling network, and have been successfully incorporated into treatment regimens for breast and other cancers. Here, we have compared mechanisms of response and resistance to three CDKi that target either CDK4/6 or CDK2 and abrogate E2F target gene expression. We identify CCNE1 gain and RB1 loss as mechanisms of resistance to CDK4/6 inhibition, whereas receptor tyrosine kinase (RTK) and RAS signaling is associated with CDK2 inhibitor resistance. Mechanistically, we show that ETS factors are mediators of RTK/RAS signaling that cooperate with E2F in cell cycle progression. Consequently, CDK2 inhibition sensitizes cyclin E1-driven but not RAS-driven ovarian cancer cells to platinum-based chemotherapy. In summary, this study outlines a rational approach for incorporating CDKi into treatment regimens for HGSOC. PMID:25557169

  13. Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub.

    PubMed

    Csermely, Peter; Korcsmáros, Tamás; Nussinov, Ruth

    2016-10-01

    Cancer initiation and development are increasingly perceived as systems-level phenomena, where intra- and inter-cellular signaling networks of the ecosystem of cancer and stromal cells offer efficient methodologies for outcome prediction and intervention design. Within this framework, RAS emerges as a 'contextual signaling hub', i.e. the final result of RAS activation or inhibition is determined by the signaling network context. Current therapies often 'train' cancer cells shifting them to a novel attractor, which has increased metastatic potential and drug resistance. The few therapy-surviving cancer cells are surrounded by massive cell death triggering a primordial adaptive and reparative general wound healing response. Overall, dynamic analysis of patient- and disease-stage specific intracellular and intercellular signaling networks may open new areas of anticancer therapy using multitarget drugs, drugs combinations, edgetic drugs, as well as help design 'gentler', differentiation and maintenance therapies. PMID:27395026

  14. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    SciTech Connect

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun; Kim, In-Ae; Seung Ko, Jea; Chung, Chong-Pyoung; Kim, Hyun-Man . E-mail: hyunmkim@plaza.snu.ac.kr

    2005-02-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growth factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.

  15. Ras regulation of DNA-methylation and cancer

    SciTech Connect

    Patra, Samir Kumar

    2008-04-01

    Genome wide hypomethylation and regional hypermethylation of cancer cells and tissues remain a paradox, though it has received a convincing confirmation that epigenetic switching systems, including DNA-methylation represent a fundamental regulatory mechanism that has an impact on genome maintenance and gene transcription. Methylated cytosine residues of vertebrate DNA are transmitted by clonal inheritance through the strong preference of DNA methyltransferase, DNMT1, for hemimethylated-DNA. Maintenance of methylation patterns is necessary for normal development of mice, and aberrant methylation patterns are associated with many human tumours. DNMT1 interacts with many proteins during cell cycle progression, including PCNA, p53, EZH2 and HP1. Ras family of GTPases promotes cell proliferation by its oncogenic nature, which transmits signals by multiple pathways in both lipid raft dependent and independent fashion. DNA-methylation-mediated repression of DNA-repair protein O6-methylguanine DNA methyltransferase (MGMT) gene and increased rate of K-Ras mutation at codon for amino acids 12 and 13 have been correlated with a secondary role for Ras-effector homologues (RASSFs) in tumourigenesis. Lines of evidence suggest that DNA-methylation associated repression of tumour suppressors and apoptotic genes and ceaseless proliferation of tumour cells are regulated in part by Ras-signaling. Control of Ras GTPase signaling might reduce the aberrant methylation and accordingly may reduce the risk of cancer development.

  16. Involvement of aberrant calcium signalling in herpetic neuralgia.

    PubMed

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia. PMID:26684187

  17. Involvement of aberrant calcium signalling in herpetic neuralgia.

    PubMed

    Warwick, Rebekah A; Hanani, Menachem

    2016-03-01

    Alpha-herpesviruses, herpes simplex viruses (HSV) and varicella zoster virus (VZV), are pathogens of the peripheral nervous system. After primary infection, these viruses establish latency within sensory ganglia, while retaining the ability to reactivate. Reactivation of VZV results in herpes zoster, a condition characterized by skin lesions that leads to post-herpetic neuralgia. Recurrent reactivations of HSV, which cause mucocutaneous lesions, may also result in neuralgia. During reactivation of alpha-herpesviruses, satellite glial cells (SGCs), which surround neurons in sensory ganglia, become infected with the replicating virus. SGCs are known to contribute to neuropathic pain in a variety of animal pain models. Here we investigated how infection of short-term cultures of mouse trigeminal ganglia with HSV-1 affects communication between SGCs and neurons, and how this altered communication may increase neuronal excitability, thus contributing to herpetic neuralgia. Mechanical stimulation of single neurons or SGCs resulted in intercellular calcium waves, which were larger in cultures infected with HSV-1. Two differences were observed between control and HSV-1 infected cultures that could account for this augmentation. Firstly, HSV-1 infection induced cell fusion among SGCs and neurons, which would facilitate the spread of calcium signals over farther distances. Secondly, using calcium imaging and intracellular electrical recordings, we found that neurons in the HSV-1 infected cultures exhibited augmented influx of calcium upon depolarization. These virally induced changes may not only cause more neurons in the sensory ganglia to fire action potentials, but may also increase neurotransmitter release at the presynaptic terminals in the spinal cord. They are therefore likely to be contributing factors to herpetic neuralgia.

  18. Activated Ras Signals Developmental Progression of Recombinase-activating Gene (RAG)-deficient Pro-B Lymphocytes

    PubMed Central

    Shaw, Albert C.; Swat, Wojciech; Ferrini, Roger; Davidson, Laurie; Alt, Frederick W.

    1999-01-01

    To elucidate the intracellular pathways that mediate early B cell development, we directed expression of activated Ras to the B cell lineage in the context of the recombination-activating gene 1 (RAG1)-deficient background (referred to as Ras–RAG). Similar to the effects of an immunoglobulin (Ig) μ heavy chain (HC) transgene, activated Ras caused progression of RAG1–deficient progenitor (pro)-B cells to cells that shared many characteristics with precursor (pre)-B cells, including downregulation of surface CD43 expression plus expression of λ5, RAG2, and germline κ locus transcripts. However, these Ras–RAG pre-B cells also upregulated surface markers characteristic of more mature B cell stages and populated peripheral lymphoid tissues, with an overall phenotype reminiscent of B lineage cells generated in a RAG- deficient background as a result of expression of an Ig μ HC together with a Bcl-2 transgene. Taken together, these findings suggest that activated Ras signaling in pro-B cells induces developmental progression by activating both differentiation and survival signals. PMID:9874569

  19. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells

    PubMed Central

    Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G.; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C.

    2015-01-01

    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM. PMID:26630652

  20. Combination of a Selective HSP90α/β Inhibitor and a RAS-RAF-MEK-ERK Signaling Pathway Inhibitor Triggers Synergistic Cytotoxicity in Multiple Myeloma Cells.

    PubMed

    Suzuki, Rikio; Kikuchi, Shohei; Harada, Takeshi; Mimura, Naoya; Minami, Jiro; Ohguchi, Hiroto; Yoshida, Yasuhiro; Sagawa, Morihiko; Gorgun, Gullu; Cirstea, Diana; Cottini, Francesca; Jakubikova, Jana; Tai, Yu-Tzu; Chauhan, Dharminder; Richardson, Paul G; Munshi, Nikhil; Ando, Kiyoshi; Utsugi, Teruhiro; Hideshima, Teru; Anderson, Kenneth C

    2015-01-01

    Heat shock protein (HSP)90 inhibitors have shown significant anti-tumor activities in preclinical settings in both solid and hematological tumors. We previously reported that the novel, orally available HSP90α/β inhibitor TAS-116 shows significant anti-MM activities. In this study, we further examined the combination effect of TAS-116 with a RAS-RAF-MEK-ERK signaling pathway inhibitor in RAS- or BRAF-mutated MM cell lines. TAS-116 monotherapy significantly inhibited growth of RAS-mutated MM cell lines and was associated with decreased expression of downstream target proteins of the RAS-RAF-MEK-ERK signaling pathway. Moreover, TAS-116 showed synergistic growth inhibitory effects with the farnesyltransferase inhibitor tipifarnib, the BRAF inhibitor dabrafenib, and the MEK inhibitor selumetinib. Importantly, treatment with these inhibitors paradoxically enhanced p-C-Raf, p-MEK, and p-ERK activity, which was abrogated by TAS-116. TAS-116 also enhanced dabrafenib-induced MM cytotoxicity associated with mitochondrial damage-induced apoptosis, even in the BRAF-mutated U266 MM cell line. This enhanced apoptosis in RAS-mutated MM triggered by combination treatment was observed even in the presence of bone marrow stromal cells. Taken together, our results provide the rationale for novel combination treatment with HSP90α/β inhibitor and RAS-RAF-MEK-ERK signaling pathway inhibitors to improve outcomes in patients with in RAS- or BRAF-mutated MM.

  1. Cytokine signal transduction in P19 embryonal carcinoma cells: regulation of Stat3-mediated transactivation occurs independently of p21ras-Erk signaling.

    PubMed

    van Puijenbroek, A A; van der Saag, P T; Coffer, P J

    1999-09-15

    Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are members of a subfamily of related cytokines that share gp130 as common signal-transducing receptor component. CNTF has recently been demonstrated to induce increased survival and neuronal differentiation of P19 embryonal carcinoma (EC) cells; however, the molecular mechanisms underlying these effects are still elusive. Here we report that CNTF and LIF, but not interleukin-6, activated signal transducers and activators of transcription (STAT)-reporter constructs in P19 EC cells. Supershift analysis revealed that the STAT-element binding complex contained the transcription factor Stat3. Binding of Stat3 was inhibited by protein tyrosine kinase inhibitors, but not by the broad serine/threonine protein kinase inhibitor, H7. However, H7 inhibited CNTF-induced Stat3 transactivation. Using a dominant-negative p21ras construct and a specific inhibitor of mitogen-activated protein kinase kinase (MEK; PD098059) we demonstrated that CNTF-induced Stat3 transactivation was independent of the p21ras-mitogen-activated protein kinase (MAPK) pathway, while CNTF-induced MAPK activation was p21ras- and MEK-dependent. Taken together, our results demonstrate the activation of the p21ras-MAPK and STAT signal transduction pathways in response to CNTF and LIF in P19 EC cells and reveal that there is no modulating crosstalk between these pathways. Furthermore, our data suggest that CNTF- and LIF-induced Stat3 activation in P19 EC cells involves an H7-sensitive p21ras/MAPK- and Ca(2+)-independent kinase.

  2. Ras transformation results in cleavage of reticulon protein Nogo-B that is associated with impairment of IFN response

    PubMed Central

    Ahn, Dae-Gyun; Sharif, Tanveer; Chisholm, Kenneth; Pinto, Devanand M; Gujar, Shashi A; Lee, Patrick WK

    2015-01-01

    Dysregulation of Ras signaling is the major cause of various cancers. Aberrant Ras signaling, however, provides a favorable environment for many viruses, making them suitable candidates as cancer-killing therapeutic agents. Susceptibility of cancer cells to such viruses is mainly due to impaired type I interferon (IFN) response, often as a result of activated Ras/ERK signaling in these cells. In this study, we searched for cellular factors modulated by Ras signaling and their potential involvement in promoting viral oncolysis. We found that upon Ras transformation of NIH-3T3 cells, the N-terminus of Nogo-B (reticulon 4) was proteolytically cleaved. Interestingly, Nogo knockdown (KD) in non-transformed and Ras-transformed cells both enhanced virus-induced IFN response, suggesting that both cleaved and uncleaved Nogo can suppress IFN response. However, pharmacological blockade of Nogo cleavage in Ras-transformed cells significantly enhanced virus-induced IFN response, suggesting that cleaved Nogo contributes to enhanced IFN suppression in these cells. We further showed that IFN suppression associated with Ras-induced Nogo-B cleavage was distinct from but synergistic with that associated with an activated Ras/ERK pathway. Our study therefore reveals an important and novel role of Nogo-B and its cleavage in the suppression of anti-viral immune responses by oncogenic Ras transformation. PMID:25946643

  3. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs).

    PubMed

    Kidger, Andrew M; Keyse, Stephen M

    2016-02-01

    Dual-specificity MAP kinase (MAPK) phosphatases (MKPs or DUSPs) are well-established negative regulators of MAPK signalling in mammalian cells and tissues. By virtue of their differential subcellular localisation and ability to specifically recognise, dephosphorylate and inactivate different MAPK isoforms, they are key spatiotemporal regulators of pathway activity. Furthermore, as they are transcriptionally regulated as downstream targets of MAPK signalling they can either act as classical negative feedback regulators or mediate cross talk between distinct MAPK pathways. Because MAPKs and particularly Ras/ERK signalling are implicated in cancer initiation and development, the observation that MKPs are abnormally regulated in human tumours has been interpreted as evidence that these enzymes can either suppress or promote carcinogenesis. However, definitive evidence of such roles has been lacking. Here we review recent work based on the use of mouse models, biochemical studies and clinical data that demonstrate key roles for MKPs in modulating the oncogenic potential of Ras/ERK signalling and also indicate that these enzymes may play a role in the response of tumours to certain anticancer drugs. Overall, this work reinforces the importance of negative regulatory mechanisms in modulating the activity of oncogenic MAPK signalling and indicates that MKPs may provide novel targets for therapeutic intervention in cancer. PMID:26791049

  4. Induction of p27Kip1 degradation and anchorage independence by Ras through the MAP kinase signaling pathway.

    PubMed

    Kawada, M; Yamagoe, S; Murakami, Y; Suzuki, K; Mizuno, S; Uehara, Y

    1997-08-01

    While most untransformed cells require substrate attachment for growth (anchorage dependence), the oncogenic transformed cells lack this requirement (anchorage independence) and are often tumorigenic. However, the mechanism of loss of anchorage dependence is not fully understood. When rat normal fibroblasts were cultured in suspension without substrate attachment, the cell cycle arrested in G1 phase and the cyclin-dependent kinase inhibitor p27Kip1 protein and its mRNA accumulated. Conditional expression of oncogenic Ras induced the G1-S transition of the cell cycle and significantly shortened the half-life of p27Kip1 protein without altering its mRNA level. Inhibition of the activation of mitogen-activated protein (MAP) kinase by cyclic AMP-elevating agents and a MEK inhibitor prevented the oncogenic Ras-induced degradation of p27Kip1. These results suggest that the loss of substrate attachment induces the cell cycle arrest through the up-regulation of p27Kip1 mRNA, but the oncogenic Ras confers anchorage independence by accelerating p27Kip1 degradation through the activation of the MAP kinase signaling pathway. Furthermore, we have found that p27Kip1 is phosphorylated by MAP kinase in vitro and the phosphorylated p27Kip1 cannot bind to and inhibit cdk2.

  5. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    SciTech Connect

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.

  6. The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae.

    PubMed Central

    Howard, Susie C; Hester, Arelis; Herman, Paul K

    2003-01-01

    The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription. PMID:14668364

  7. Lipopolysaccharide signals activation of tumor necrosis factor biosynthesis through the ras/raf-1/MEK/MAPK pathway.

    PubMed Central

    Geppert, T. D.; Whitehurst, C. E.; Thompson, P.; Beutler, B.

    1994-01-01

    BACKGROUND: Lipopolysaccharide (LPS) is known to activate macrophages, causing the release of toxic cytokines that may provoke inflammation and shock. One of the most important and best studied of these cytokines is tumor necrosis factor (TNF). Details of the signaling pathway leading to TNF biosynthesis remain unclear. The pathway is branched in the sense that TNF gene transcription and TNF mRNA translation are both strongly stimulated by LPS. Recent evidence has indicated that MAP kinase homologs become phosphorylated in LPS-stimulated cells, suggesting their possible involvement in signal transduction. We sought to test this hypothesis. MATERIALS AND METHODS: Measurements of LPS-induced MEK and ERK2 activity were undertaken in LPS-sensitive and LPS-insensitive cells. Transfection studies, in which dominant inhibitors of ras and raf-1 were used to block signaling to the level of MAP kinase, were carried out in order to judge whether the TNF gene transcription and TNF mRNA translation are modulated through this pathway. RESULTS: In RAW 264.7 mouse macrophages, both ERK2 and MEK1 activity are induced by LPS treatment. In the same cell line, dominant negative inhibitors of ras and raf-1 block LPS-induced activation of the TNF promoter, as well as derepression of the translational blockade normally imposed by the TNF 3'-untranslated region. A constitutively active form of raf-1 (raf-BXB) was found to augment, but not replace, the LPS signal. In LPS-insensitive cells (RAW 264.7 x NIH 3T3 fusion hybrid cells and primary macrophages derived from C3H/HeJ mice), ERK2 activity was found to be refractory to induction by LPS. CONCLUSIONS: The ras/raf-1/MEK/MAPK pathway is chiefly responsible for transduction of the LPS signal to the level of the TNF gene and mRNA. raf and raf-1 lie upstream from (or actually represent) the physical branchpoints of the transcriptional and translation activation signals generated by LPS. The lesions that prevent LPS signaling in macrophages

  8. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program.

    PubMed

    Vasilaki, Eleftheria; Morikawa, Masato; Koinuma, Daizo; Mizutani, Anna; Hirano, Yudai; Ehata, Shogo; Sundqvist, Anders; Kawasaki, Natsumi; Cedervall, Jessica; Olsson, Anna-Karin; Aburatani, Hiroyuki; Moustakas, Aristidis; Miyazono, Kohei; Heldin, Carl-Henrik

    2016-01-01

    The p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin. In HaCaT keratinocytes, which have mutant p53 and ΔNp63, we found that mutant p53 antagonized ΔNp63 transcriptional activity but that activation of Ras or transforming growth factor-β (TGF-β) signaling pathways reduced the abundance of mutant p53 and strengthened target gene binding and activity of ΔNp63. Among the products of ΔNp63-induced genes was dual-specificity phosphatase 6 (DUSP6), which promoted the degradation of mutant p53, likely by dephosphorylating p53. Knocking down all forms of p63 or DUSP6 and DUSP7 (DUSP6/7) inhibited the basal or TGF-β-induced or epidermal growth factor (which activates Ras)-induced migration and invasion in cultures of p53-mutant breast cancer and squamous skin cancer cells. Alternatively, overexpressing ΔNp63 in the breast cancer cells increased their capacity to colonize various tissues upon intracardiac injection in mice, and this was inhibited by knocking down DUSP6/7 in these ΔNp63-overexpressing cells. High abundance of ΔNp63 in various tumors correlated with poor prognosis in patients, and this correlation was stronger in patients whose tumors also had a mutation in the gene encoding p53. Thus, oncogenic Ras and TGF-β signaling stimulate cancer progression through activation of the ΔNp63 transcriptional program. PMID:27555661

  9. Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development.

    PubMed

    Xu, Dongdong; Cao, Fujiang; Sun, Shiwei; Liu, Tao; Feng, Shiqing

    2016-08-01

    The Ras/Raf/ERK1/2 signaling pathway plays an important role in central and peripheral neurons in functions such as dendritic arborization, neuronal polarity, and axon assembly. However, emerging evidence also shows that up-regulation of this signaling pathway may lead to the development of spinal cord injury. The present study aimed to determine the effects of Ras/Raf/ERK1/2 signaling pathway inhibition on properties of spinal cord-injured neurons. First, neurons from spinal cord-injured C57BL/6 J mouse pups and sham-operated C57BL/6 J mouse pups were harvested. Then, immunofluorescence, western blotting, cell adhesion and cell migration assays, and DiI labeling were employed to investigate the effect of Ras/Raf/ERK1/2 signaling pathway inhibition on spinal cord-injured neurons. Immunofluorescence results of synapse formation indicated that the experimental spinal cord injury model was successfully established. Western blot results identified upregulated Erk phosphorylation in the spinal cord-injured neurons, and also showed that U0126 inhibited phosphorylation of Erk, which is a downstream kinase in the Ras/Raf signaling pathway. Additionally, cell migration and adhesion was significantly increased in the spinal cord-injured neurons. DiI labeling results also showed an increased formation of mature spines after inhibition of Ras/Raf/ERK1/2 signaling. Taken together, these results suggested that the Ras/Raf/ERK1/2 signaling pathway could serve as an effective treatment target for spinal cord injury.

  10. Nobiletin induces inhibitions of Ras activity and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling to suppress cell proliferation in C6 rat glioma cells.

    PubMed

    Aoki, Koichi; Yokosuka, Akihito; Mimaki, Yoshihiro; Fukunaga, Kohji; Yamakuni, Tohru

    2013-01-01

    Ras, a small G-protein, physiologically directs cell proliferation and cell cycle via regulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade. Dysregulation of Ras/MEK/ERK signaling has been reported to cause tumorigenesis and gliomas. Nobiletin, a citrus flavonoid, has been shown to have anti-tumor cells action. However, it remains elusive whether nobiletin could affect Ras activity. In this study, we provide the first evidence that nobiletin suppresses the proliferation by inhibiting Ras activity in C6 glioma cells, a rat glioma cell line. First, Ras pull-down assay showed that nobiletin inhibits Ras activity in a concentration-dependent manner in C6 cells. Second, farnesyltransferase inhibitor I, a Ras inhibitor, and U0126, a MEK inhibitor, induced an inhibition of the cell proliferation in C6 cells, while the cell proliferation was inhibited by nobiletin as well. Third, western blotting revealed that nobiletin showed inhibitory effects on MEK and ERK phopsphorylation levels in a concentration-dependent manner. Finally, such an inhibitory effect on the level of ERK phosphorylation by nobiletin was appreciably prevented by Gö6976, a selective inhibitor of conventional protein kinase Cs (PKCs) showing Ca(2+)-sensitivity, while GF109203X, a general inhibitor for PKCs, and BAPTA, a cell-permeable Ca(2+) chelator, to a lesser extent, suppressed a reduction of the phosphorylation. These findings suggest that the proliferation of C6 cells is Ras- and MEK/ERK signaling-dependent, and that nobiletin suppresses the cell proliferation by inhibiting Ras activity and MEK/ERK signaling cascade probably via a Ca(2+)-sensitive PKC-dependent mechanism. Thus, the natural compound has potential to be a therapeutic agent for glioma.

  11. The ζ isoform of diacylglycerol kinase plays a predominant role in regulatory T cell development and TCR-mediated ras signaling.

    PubMed

    Joshi, Rohan P; Schmidt, Amanda M; Das, Jayajit; Pytel, Dariusz; Riese, Matthew J; Lester, Melissa; Diehl, J Alan; Behrens, Edward M; Kambayashi, Taku; Koretzky, Gary A

    2013-11-26

    Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)-stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (T(reg)) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating T(reg) cell development.

  12. The ζ Isoform of Diacylglycerol Kinase Plays a Predominant Role in Regulatory T Cell Development and TCR-Mediated Ras Signaling

    PubMed Central

    Joshi, Rohan P.; Schmidt, Amanda M.; Das, Jayajit; Pytel, Dariusz; Riese, Matthew J.; Lester, Melissa; Diehl, J. Alan; Behrens, Edward M.; Kambayashi, Taku; Koretzky, Gary A.

    2014-01-01

    Diacylglycerol (DAG) is a critical second messenger that mediates T cell receptor (TCR)–stimulated signaling. The abundance of DAG is reduced by the diacylglycerol kinases (DGKs), which catalyze the conversion of DAG to phosphatidic acid (PA) and thus inhibit DAG-mediated signaling. In T cells, the predominant DGK isoforms are DGKα and DGKζ, and deletion of the genes encoding either isoform enhances DAG-mediated signaling. We found that DGKζ, but not DGKα, suppressed the development of natural regulatory T (Treg) cells and predominantly mediated Ras and Akt signaling downstream of the TCR. The differential functions of DGKα and DGKζ were not attributable to differences in protein abundance in T cells or in their localization to the contact sites between T cells and antigen-presenting cells. RasGRP1, a key DAG-mediated activator of Ras signaling, associated to a greater extent with DGKζ than with DGKα; however, in silico modeling of TCR-stimulated Ras activation suggested that a difference in RasGRP1 binding affinity was not sufficient to cause differences in the functions of each DGK isoform. Rather, the model suggested that a greater catalytic rate for DGKζ than for DGKα might lead to DGKζ exhibiting increased suppression of Ras-mediated signals compared to DGKα. Consistent with this notion, experimental studies demonstrated that DGKζ was more effective than DGKα at catalyzing the metabolism of DAG to PA after TCR stimulation. The enhanced effective enzymatic production of PA by DGKζ is therefore one possible mechanism underlying the dominant functions of DGKζ in modulating Treg cell development. PMID:24280043

  13. Protective Effects of Gallic Acid Against NiSO4-Induced Toxicity Through Down-Regulation of the Ras/ERK Signaling Pathway in Beas-2B Cells

    PubMed Central

    An, Xuejun; Zhou, Aijia; Yang, Yue; Wang, Yue; Xin, Rui; Tian, Chao; Wu, Yonghui

    2016-01-01

    Background This study aimed to explore the preventive effects of gallic acid (GA) on the toxicity induced by NiSO4 in Beas-2B cells. Material/Methods Beas-2B cell viability was measured by MTT assay. The degree of oxidative stress was detected by measuring the levels of reactive oxygen species (ROS) and lipid peroxide (LPO). The rate of apoptosis was measured by flow cytometry. Ras/ERK-related protein levels were analyzed by Western blot analysis, which including Ras, ERK, c-Myc, PARP, and PARP cleavage. Results MTT assay showed that NiSO4 induced cytotoxicity, while GA had a protective role against toxicity. Additionally, GA could reduce the apoptotic cell number and the level of ROS in Beas-2B cells induced by NiSO4. Western blot analysis demonstrated that NiSO4 could up-regulate the related protein in the Ras/ERK signaling pathway. Furthermore, we observed that GA could alleviate the toxicity of NiSO4 through regulating protein changes in the Ras/ERK signaling pathway. Conclusions Preventive effects of GA on NiSO4-induced cytotoxicity in Beas-2B cells may be through the Ras/ERK signaling pathways. PMID:27676106

  14. Lysine-acetylation as a fundamental regulator of Ran function: Implications for signaling of proteins of the Ras-superfamily

    PubMed Central

    Knyphausen, Philipp; Kuhlmann, Nora; de Boor, Susanne; Lammers, Michael

    2015-01-01

    The small GTP-binding protein Ran is involved in the regulation of essential cellular processes in interphase but also in mitotic cells: Ran controls the nucleocytoplasmic transport of proteins and RNA, it regulates mitotic spindle formation and nuclear envelope assembly. Deregulations in Ran dependent processes were implicated in the development of severe diseases such as cancer and neurodegenerative disorders. To understand how Ran-function is regulated is therefore of highest importance. Recently, several lysine-acetylation sites in Ran were identified by quantitative mass-spectrometry, some being located in highly important regions such as the P-loop, switch I, switch II and the G5/SAK motif. We recently reported that lysine-acetylation regulates nearly all aspects of Ran-function such as RCC1 catalyzed nucleotide exchange, intrinsic nucleotide hydrolysis, its interaction with NTF2 and the formation of import- and export-complexes. As a hint for its biological importance, we identified Ran-specific lysine-deacetylases (KDACs) and -acetyltransferases (KATs). Also for other small GTPases such as Ras, Rho, Cdc42, and for many effectors and regulators thereof, lysine-acetylation sites were discovered. However, the functional impact of lysine-acetylation as a regulator of protein function has only been marginally investigated so far. We will discuss recent findings of lysine-acetylation as a novel modification to regulate Ras-protein signaling. PMID:26507377

  15. Ocular albinism type 1-induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway.

    PubMed

    Bai, Jun; Xie, Xin; Lei, Yun; An, Gaili; He, Li; Lv, Xiaopeng

    2014-07-01

    Malignant melanoma has the highest risk of mortality among all types of skin cancer due to its highly metastatic potential. The ocular albinism type 1 (OA1) protein is a pigment cell‑specific glycoprotein, which shares significant structural and functional features with G protein‑coupled receptors. However, the role of OA1 in melanoma has yet to be elucidated. The present study aimed to investigate whether OA1 is involved in melanoma cell migration. OA1 was found to stimulate cell migration in a dose‑dependent manner in cultured human melanoma cells. Furthermore, knockdown of OA1 using small interfering RNA was observed to significantly inhibit melanoma cell migration. In addition, the mechanism underlying OA1‑induced melanoma cell migration was investigated. Stimulation of the RAS/RAF/mitogen activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) pathway using growth factors enhanced OA1 expression and melanoma cell migration, whereas inhibition of this pathway using U0126 was observed to markedly decrease OA1 expression and the number of migrated cells. These findings indicate that OA1 is involved in melanoma cell migration and that OA1‑induced melanoma cell migration is mediated through the RAS/RAF/MEK/ERK signaling pathway. Therefore, OA1 may serve as a novel therapeutic target for melanoma. PMID:24736838

  16. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    PubMed

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  17. The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

    PubMed Central

    Park, Jong-In; Strock, Christopher J.; Ball, Douglas W.; Nelkin, Barry D.

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for “fail-safe” induction and maintenance of cell cycle arrest. PMID:12509453

  18. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells.

    PubMed

    Liu, Wei; Ning, Rui; Chen, Rui-Ni; Huang, Xue-Feng; Dai, Qin-Sheng; Hu, Jin-Hua; Wang, Yu-Wen; Wu, Li-Li; Xiong, Jing; Hu, Gang; Guo, Qing-Long; Yang, Jian; Wang, Hao

    2016-05-01

    We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC.

  19. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells.

    PubMed

    Liu, Wei; Ning, Rui; Chen, Rui-Ni; Huang, Xue-Feng; Dai, Qin-Sheng; Hu, Jin-Hua; Wang, Yu-Wen; Wu, Li-Li; Xiong, Jing; Hu, Gang; Guo, Qing-Long; Yang, Jian; Wang, Hao

    2016-05-01

    We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC. PMID:25683703

  20. Laser microdissection and microarray analysis of the hippocampus of Ras-GRF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning.

    PubMed

    Fernández-Medarde, A; Porteros, A; de las Rivas, J; Núñez, A; Fuster, J J; Santos, E

    2007-04-25

    We used manual macrodissection or laser capture microdissection (LCM) to isolate tissue sections of the hippocampus area of Ras-GRF1 wild type and knockout mice brains, and analyzed their transcriptional patterns using commercial oligonucleotide microarrays. Comparison between the transcriptomes of macrodissected and microdissected samples showed that the LCM samples allowed detection of significantly higher numbers of differentially expressed genes, with higher statistical rates of significance. These results validate LCM as a reliable technique for in vivo genomic studies in the brain hippocampus, where contamination by surrounding areas (not expressing Ras-GRF1) increases background noise and impairs identification of differentially expressed genes. Comparison between wild type and knockout LCM hippocampus samples revealed that Ras-GRF1 elimination caused significant gene expression changes, mostly affecting signal transduction and related neural processes. The list of 36 most differentially expressed genes included loci concerned mainly with Ras/G protein signaling and cytoskeletal organization (i.e. 14-3-3gamma/zeta, Kcnj6, Clasp2) or related, cross-talking pathways (i.e. jag2, decorin, strap). Consistent with the phenotypes shown by Ras-GRF1 knockout mice, many of these differentially expressed genes play functional roles in processes such as sensory development and function (i.e. Sptlc1, antiquitin, jag2) and/or neurological development/neurodegeneration processes affecting memory and learning. Indeed, potential links to neurodegenerative diseases such as Alzheimer disease (AD) or Creutzfeldt-Jacobs disease (CJD), have been reported for a number of differentially expressed genes identified in this study (Ptma, Aebp2, Clasp2, Hebp1, 14-3-3gamma/zeta, Csnk1delta, etc.). These data, together with the previously described role of IRS and insulin (known Ras-GRF1 activators) in AD, warrant further investigation of a potential functional link of Ras-GRF1 to

  1. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling

    PubMed Central

    Nesvick, Cody L.; Feldman, Michael J.; Sizdahkhani, Saman; Liu, Huailei; Chu, Huiying; Yang, Fengxu; Tang, Ling; Tian, Jing; Zhao, Shiguang; Li, Guohui; Heiss, John D.; Liu, Yang; Zhuang, Zhengping; Xu, Guowang

    2016-01-01

    Metabolomics has shown significant potential in identifying small molecules specific to tumor phenotypes. In this study we analyzed resected tissue metabolites using capillary electrophoresis-mass spectrometry and found that tissue hypotaurine levels strongly and positively correlated with glioma grade. In vitro studies were conducted to show that hypotaurine activates hypoxia signaling through the competitive inhibition of prolyl hydroxylase domain-2. This leads to the activation of hypoxia signaling as well as to the enhancement of glioma cell proliferation and invasion. In contrast, taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and resulted in glioma cell growth arrest. Lastly, a glioblastoma xenograft mice model was supplemented with taurine feed and exhibited impaired tumor growth. Taken together, these findings suggest that hypotaurine is an aberrantly produced oncometabolite, mediating tumor molecular pathophysiology and progression. The hypotaurine metabolic pathway may provide a potentially new target for glioblastoma diagnosis and therapy. PMID:26934654

  2. Attenuation of TGF-β signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells

    PubMed Central

    Lin, Shu; Yang, Junhua; Elkahloun, Abdel G.; Bandyopadhyay, Abhik; Wang, Long; Cornell, John E.; Yeh, I-Tien; Agyin, Joseph; Tomlinson, Gail; Sun, Lu-Zhe

    2012-01-01

    The molecular mechanisms that drive triple-negative, basal-like breast cancer progression are elusive. Few molecular targets have been identified for the prevention or treatment of this disease. Here we developed a series of isogenic basal-like human mammary epithelial cells (HMECs) with altered transforming growth factor-β (TGF-β) sensitivity and different malignancy, resembling a full spectrum of basal-like breast carcinogenesis, and determined the molecular mechanisms that contribute to oncogene-induced transformation of basal-like HMECs when TGF-β signaling is attenuated. We found that expression of a dominant-negative type II receptor (DNRII) of TGF-β abrogated autocrine TGF-β signaling in telomerase-immortalized HMECs and suppressed H-Ras-V12–induced senescence-like growth arrest (SLGA). Furthermore, coexpression of DNRII and H-Ras-V12 rendered HMECs highly tumorigenic and metastatic in vivo in comparison with H-Ras-V12–transformed HMECs that spontaneously escaped H-Ras-V12–induced SLGA. Microarray analysis revealed that p21 was the major player mediating Ras-induced SLGA, and attenuated or loss of p21 expression contributed to the escape from SLGA when autocrine TGF-β signaling was blocked in HMECs. Furthermore, knockdown of p21 also suppressed H-Ras-V12–induced SLGA. Our results identify that autocrine TGF-β signaling is an integral part of the cellular anti-transformation network by suppressing the expression of a host of genes, including p21-regulated genes, that mediate oncogene-induced transformation in basal-like breast cancer. PMID:22357622

  3. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness.

    PubMed

    Gong, X; Yi, J; Carmon, K S; Crumbley, C A; Xiong, W; Thomas, A; Fan, X; Guo, S; An, Z; Chang, J T; Liu, Q J

    2015-09-01

    The four R-spondins (RSPO1-4) and their three related receptors LGR4, 5 and 6 (LGR4-6) have emerged as a major ligand-receptor system with critical roles in development and stem cell survival through modulation of Wnt signaling. Recurrent, gain-of-expression gene fusions of RSPO2 (to EIF3E) and RSPO3 (to PTPRK) occur in a subset of human colorectal cancer. However, the exact roles and mechanisms of the RSPO-LGR system in oncogenesis remain largely unknown. We found that RSPO3 is aberrantly expressed at high levels in approximately half of Keap1-mutated lung adenocarcinomas (ADs). This high RSPO3 expression is driven by a combination of demethylation of its own promoter region and deficiency in Keap1 instead of gene fusion as in colon cancer. Patients with RSPO3-high tumors (~9%, 36/412) displayed much poorer survival than the rest of the cohort (median survival of 28 vs 163 months, log-rank test P<0.0001). Knockdown (KD) of RSPO3, LGR4 or their signaling mediator IQGAP1 in lung cancer cell lines with Keap1 deficiency and high RSPO3-LGR4 expression led to reduction in cell proliferation and migration in vitro, and KD of LGR4 or IQGAP1 resulted in decrease in tumor growth and metastasis in vivo. These findings suggest that aberrant RSPO3-LGR4 signaling potentially acts as a driving mechanism in the aggressiveness of Keap1-deficient lung ADs.

  4. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness

    PubMed Central

    Gong, Xing; Yi, Jing; Carmon, Kendra S.; Crumbley, Christine A.; Xiong, Wei; Thomas, Anthony; Fan, Xuejun; Guo, Shan; An, Zhiqiang; Chang, Jeffrey T.; Liu, Qingyun J.

    2015-01-01

    The four R-spondins (RSPO1-4) and their three related receptors LGR4, 5 and 6 (LGR4-6) have emerged as a major ligand-receptor system with critical roles in development and stem cell survival through modulation of Wnt signaling. Recurrent, gain-of-expression gene fusions of RSPO2 (to EIF3E) and RSPO3 (to PTPRK) occur in a subset of human colorectal cancer. However, the exact roles and mechanisms of the RSPO-LGR system in oncogenesis remain largely unknown. We found that RSPO3 is aberrantly expressed at high levels in approximately half of the Keap1-mutated lung adenocarcinomas. This high RSPO3 expression is driven by a combination of demethylation of its own promoter region and deficiency in Keap1 instead of gene fusion as in colon cancer. Patients with RSPO3-high tumors (~9%, 36/412) displayed much poorer survival than the rest of the cohorts (median survival of 28 vs. 163 months, logrank test p < 0.0001). Knockdown of RSPO3, LGR4, or their signaling mediator IQGAP1 in lung cancer cell lines with Keap1 deficiency and high RSPO3-LGR4 expression led to reduction in cell proliferation and migration in vitro, and knockdown of LGR4 or IQGAP1 resulted in decrease in tumor growth and metastasis in vivo. These findings suggest that aberrant RSPO3-LGR4 signaling potentially acts as a driving mechanism in the aggressiveness of Keap1-deficient lung adenocarcinomas. PMID:25531322

  5. Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling.

    PubMed

    Channavajhala, Padma L; Wu, Leeying; Cuozzo, John W; Hall, J Perry; Liu, Wei; Lin, Lih-Ling; Zhang, Yuhua

    2003-11-21

    Kinase suppressor of Ras (KSR) is an integral and conserved component of the Ras signaling pathway. Although KSR is a positive regulator of the Ras/mitogen-activated protein (MAP) kinase pathway, the role of KSR in Cot-mediated MAPK activation has not been identified. The serine/threonine kinase Cot (also known as Tpl2) is a member of the MAP kinase kinase kinase (MAP3K) family that is known to regulate oncogenic and inflammatory pathways; however, the mechanism(s) of its regulation are not precisely known. In this report, we identify an 830-amino acid novel human KSR, designated hKSR-2, using predictions from genomic data base mining based on the structural profile of the KSR kinase domain. We show that, similar to the known human KSR, hKSR-2 co-immunoprecipitates with many signaling components of the Ras/MAPK pathway, including Ras, Raf, MEK-1, and ERK-1/2. In addition, we demonstrate that hKSR-2 co-immunoprecipitates with Cot and that co-expression of hKSR-2 with Cot significantly reduces Cot-mediated MAPK and NF-kappaB activation. This inhibition is specific to Cot, because Ras-induced ERK and IkappaB kinase-induced NF-kappaB activation are not significantly affected by hKSR-2 co-expression. Moreover, Cot-induced interleukin-8 production in HeLa cells is almost completely inhibited by the concurrent expression of hKSR-2, whereas transforming growth factor beta-activated kinase 1 (TAK1)/TAK1-binding protein 1 (TAB1)-induced interleukin-8 production is not affected by hKSR-2 co-expression. Taken together, these results indicate that hKSR-2, a new member of the KSR family, negatively regulates Cot-mediated MAP kinase and NF-kappaB pathway signaling. PMID:12975377

  6. Aberrant activation of Sonic hedgehog signaling in chronic cholecystitis and gallbladder carcinoma.

    PubMed

    Xie, Fang; Xu, Xiaoping; Xu, Angao; Liu, Cuiping; Liang, Fenfen; Xue, Minmin; Bai, Lan

    2014-03-01

    Sonic hedgehog (Shh) signaling has been extensively studied and is implicated in various inflammatory diseases and malignant tumors. We summarized the clinicopathological features and performed immunohistochemistry assays to examine expression of Shh signaling proteins in 10 normal mucosa, 32 gallbladder carcinoma (GBC), and 95 chronic cholecystitis (CC) specimens. The CC specimens were classified into three groups according to degree of inflammation. Compared with normal mucosa, CC, and GBC specimens exhibited increased expression of Shh. The immunoreactive score of Shh in the GBC group was higher than that in the mild to moderate CC groups but lower than that in the severe CC group (P < .05). Expression of Patched (Ptch) and Gli1 gradually increased from non-malignant cholecystitis to malignant tumors. Compared with CC specimens, GBC specimens showed higher cytoplasmic and membranous expression for Ptch (P < .05). Gli1 staining showed cytoplasmic expression of Gli1 in both CC (60% for mild, 77% for moderate, and 84% for severe) and GBC specimens (97%). Nuclear expression of Gli1 was detected in 16% of severe CC specimens with moderate to poor atypical hyperplasia, and in 62.5% of GBC specimens. Shh expression strongly correlated with expression of Ptch and Gli1. Furthermore, patients with strongly positive Gli1 staining had significantly lower survival rates than those with weakly positive staining. Our data indicate that the Shh signaling pathway is aberrantly activated in CC and GBC, and altered Shh signaling may be involved in the course of development from CC to gallbladder carcinogenesis.

  7. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  8. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    SciTech Connect

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.; Yang, J.-L.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction of Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.

  9. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    PubMed

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding. PMID:26446020

  10. Effects of RAF inhibitors on PI3K/AKT signalling depend on mutational status of the RAS/RAF signalling axis

    PubMed Central

    Fritsche-Guenther, Raphaela; Witzel, Franziska; Kempa, Stefan; Brummer, Tilman; Sers, Christine; Blüthgen, Nils

    2016-01-01

    Targeted therapies within the RAS/RAF/MEK/ERK signalling axis become increasingly popular, yet cross-talk and feedbacks in the signalling network lead to unexpected effects. Here we look systematically into how inhibiting RAF and MEK with clinically relevant inhibitors result in changes in PI3K/AKT activation. We measure the signalling response using a bead-based ELISA, and use a panel of three cell lines, and isogenic cell lines that express mutant forms of the oncogenes KRAS and BRAF to interrogate the effects of the MEK and RAF inhibitors on signalling. We find that treatment with the RAF inhibitors have opposing effects on AKT phosphorylation depending on the mutational status of two important oncogenes, KRAS and BRAF. If these two genes are in wildtype configuration, RAF inhibitors reduce AKT phosphorylation. In contrast, if BRAF or KRAS are mutant, RAF inhibitors will leave AKT phosphorylation unaffected or lead to an increase of AKT phosphorylation. Down-regulation of phospho-AKT by RAF inhibitors also extends to downstream transcription factors, and correlates with apoptosis induction. Our results show that oncogenes rewire signalling such that targeted therapies can have opposing effects on parallel pathways, which depend on the mutational status of the cell. PMID:26799289

  11. Aberrant Salience Is Related to Reduced Reinforcement Learning Signals and Elevated Dopamine Synthesis Capacity in Healthy Adults.

    PubMed

    Boehme, Rebecca; Deserno, Lorenz; Gleich, Tobias; Katthagen, Teresa; Pankow, Anne; Behr, Joachim; Buchert, Ralph; Roiser, Jonathan P; Heinz, Andreas; Schlagenhauf, Florian

    2015-07-15

    The striatum is known to play a key role in reinforcement learning, specifically in the encoding of teaching signals such as reward prediction errors (RPEs). It has been proposed that aberrant salience attribution is associated with impaired coding of RPE and heightened dopamine turnover in the striatum, and might be linked to the development of psychotic symptoms. However, the relationship of aberrant salience attribution, RPE coding, and dopamine synthesis capacity has not been directly investigated. Here we assessed the association between a behavioral measure of aberrant salience attribution, the salience attribution test, to neural correlates of RPEs measured via functional magnetic resonance imaging while healthy participants (n = 58) performed an instrumental learning task. A subset of participants (n = 27) also underwent positron emission tomography with the radiotracer [(18)F]fluoro-l-DOPA to quantify striatal presynaptic dopamine synthesis capacity. Individual variability in aberrant salience measures related negatively to ventral striatal and prefrontal RPE signals and in an exploratory analysis was found to be positively associated with ventral striatal presynaptic dopamine levels. These data provide the first evidence for a specific link between the constructs of aberrant salience attribution, reduced RPE processing, and potentially increased presynaptic dopamine function. PMID:26180188

  12. Regulation of SREBPs by Sphingomyelin in Adipocytes via a Caveolin and Ras-ERK-MAPK-CREB Signaling Pathway.

    PubMed

    Makdissy, Nehman; Haddad, Katia; Mouawad, Charbel; Popa, Iuliana; Younsi, Mohamed; Valet, Philippe; Brunaud, Laurent; Ziegler, Olivier; Quilliot, Didier

    2015-01-01

    Sterol response element binding protein (SREBP) is a key transcription factor in insulin and glucose metabolism. We previously demonstrated that elevated levels of membrane sphingomyelin (SM) were related to peroxisome proliferator-activated receptor-γ (PPARγ), which is a known target gene of SREBP-1 in adipocytes. However, the role of SM in SREBP expression in adipocytes remains unknown. In human abdominal adipose tissue from obese women with various concentrations of fasting plasma insulin, SREBP-1 proteins decreased in parallel with increases in membrane SM levels. An inverse correlation was found between the membrane SM content and the levels of SREBP-1c/ERK/Ras/PPARγ/CREB proteins. For the first time, we demonstrate the effects of SM and its signaling pathway in 3T3-F442A adipocytes. These cells were enriched or unenriched with SM in a range of concentrations similar to those observed in obese subjects by adding exogenous natural SMs (having different acyl chain lengths) or by inhibiting neutral sphingomyelinase. SM accumulated in caveolae of the plasma membrane within 24 h and then in the intracellular space. SM enrichment decreased SREBP-1 through the inhibition of extracellular signal-regulated protein kinase (ERK) but not JNK or p38 mitogen-activated protein kinase (MAPK). Ras/Raf-1/MEK1/2 and KSR proteins, which are upstream mediators of ERK, were down-regulated, whereas SREBP-2/caveolin and cholesterol were up-regulated. In SM-unmodulated adipocytes treated with DL-1-Phenyl-2-Palmitoylamino-3-morpholino-1-propanol (PPMP), where the ceramide level increased, the expression levels of SREBPs and ERK were modulated in an opposite direction relative to the SM-enriched cells. SM inhibited the insulin-induced expression of SREBP-1. Rosiglitazone, which is an anti-diabetic agent and potent activator of PPARγ, reversed the effects of SM on SREBP-1, PPARγ and CREB. Taken together, these findings provide novel insights indicating that excess membrane SM might

  13. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia

    PubMed Central

    Luo, Xiaochuang; Yang, Juhua; Li, Yumin; Li, Tianfu; Wang, Ruirui; Fei, Jia

    2016-01-01

    BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML. PMID:26967392

  14. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P < .05). Membranous and/or nuclear expression of Notch-1 was significantly associated with epidermal human melanoma black-45 positivity (P = .01) and percentage of expression in both epidermis (P = .02) and hair follicles (P = .03) of lesional skin. Cytoplasmic pattern of Notch-1 expression in epidermis was significantly found in lesions with white hair (P = .04) and in cases with marked keratinocyte vacuolization (P = .03). Segmental and acrofacial vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance.

  15. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    PubMed Central

    Rennoll, Sherri; Yochum, Gregory

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers (CRCs). These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements (WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene (MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review, we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis, novel strategies can be developed to treat individuals suffering from this disease. PMID:26629312

  16. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    PubMed

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps. PMID:26997450

  17. Ras enhances Myc protein stability.

    PubMed

    Sears, R; Leone, G; DeGregori, J; Nevins, J R

    1999-02-01

    Various experiments have demonstrated a collaborative action of Myc and Ras, both in normal cell growth control as well as during oncogenesis. We now show that Ras enhances the accumulation of Myc activity by stabilizing the Myc protein. Whereas Myc has a very short half-life when produced in the absence of mitogenic signals, due to degradation by the 26S proteasome, the half-life of Myc increases markedly in growth-stimulated cells. This stabilization is dependent on the Ras/Raf/MAPK pathway and is not augmented by proteasome inhibition, suggesting that Ras inhibits the proteasome-dependent degradation of Myc. We propose that one aspect of Myc-Ras collaboration is an ability of Ras to enhance the accumulation of transcriptionally active Myc protein.

  18. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling.

    PubMed

    Kauko, Otto; Laajala, Teemu Daniel; Jumppanen, Mikael; Hintsanen, Petteri; Suni, Veronika; Haapaniemi, Pekka; Corthals, Garry; Aittokallio, Tero; Westermarck, Jukka; Imanishi, Susumu Y

    2015-08-17

    Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays.

  19. Regulation of Caenorhabditis elegans p53/CEP-1–Dependent Germ Cell Apoptosis by Ras/MAPK Signaling

    PubMed Central

    Rutkowski, Rachael; Dickinson, Robin; Stewart, Graeme; Craig, Ashley; Schimpl, Marianne; Keyse, Stephen M.; Gartner, Anton

    2011-01-01

    Maintaining genome stability in the germline is thought to be an evolutionarily ancient role of the p53 family. The sole Caenorhabditis elegans p53 family member CEP-1 is required for apoptosis induction in meiotic, late-stage pachytene germ cells in response to DNA damage and meiotic recombination failure. In an unbiased genetic screen for negative regulators of CEP-1, we found that increased activation of the C. elegans ERK orthologue MPK-1, resulting from either loss of the lip-1 phosphatase or activation of let-60 Ras, results in enhanced cep-1–dependent DNA damage induced apoptosis. We further show that MPK-1 is required for DNA damage–induced germ cell apoptosis. We provide evidence that MPK-1 signaling regulates the apoptotic competency of germ cells by restricting CEP-1 protein expression to cells in late pachytene. Restricting CEP-1 expression to cells in late pachytene is thought to ensure that apoptosis doesn't occur in earlier-stage cells where meiotic recombination occurs. MPK-1 signaling regulates CEP-1 expression in part by regulating the levels of GLD-1, a translational repressor of CEP-1, but also via a GLD-1–independent mechanism. In addition, we show that MPK-1 is phosphorylated and activated upon ionising radiation (IR) in late pachytene germ cells and that MPK-1–dependent CEP-1 activation may be in part direct, as these two proteins interact in a yeast two-hybrid assay. In summary, we report our novel finding that MAP kinase signaling controls CEP-1–dependent apoptosis by several different pathways that converge on CEP-1. Since apoptosis is also restricted to pachytene stage cells in mammalian germlines, analogous mechanisms regulating p53 family members are likely to be conserved throughout evolution. PMID:21901106

  20. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing Ras prenylation.

    PubMed

    Shen, Ning; Shao, Yue; Lai, Shan-Shan; Qiao, Long; Yang, Run-Lin; Xue, Bin; Pan, Fei-Yan; Chen, Hua-Qun; Li, Chao-Jun

    2011-12-01

    Cigarette smoke activates the extracellular signal-regulated kinase (ERK) 1/2 mitogen activated-protein kinase pathway, which, in turn, is responsible for early growth response gene-1 (EGR-1) activation. Here we provide evidence that EGR-1 activation can also reactivate ERK 1/2 mitogen activated-protein kinase through a positive feedback loop through its target gene (geranylgeranyl diphosphate synthase) GGPPS. For the first time, the GGPPS gene is identified as a target of EGR-1, as EGR-1 can directly bind to the predicted consensus-binding site in the GGPPS promoter and regulate its transcription. Long-term observations show that there are two ERK 1/2 phosphorylation peaks after cigarette smoke extract stimulation in human lung epithelial Beas-2B cells. The first peak (at 10 minutes) is responsible for EGR-1 accumulation, and the second (at 4 hours) is diminished after the disruption of EGR-1 transcriptional activity. EGR-1 overexpression enhances Ras prenylation and membrane association in a GGPPS-dependent manner, and it augments ERK 1/2 activation. Likewise, a great reduction of the second peak of ERK 1/2 phosphorylation is observed during long-term cigarette smoke extract stimulation in cells where GGPPS is disrupted. Thus, we have uncovered an intricate positive feedback loop in which ERK 1/2-activated EGR-1 promotes ERK 1/2 reactivation through promoting GGPPS transcription, which might affect cigarette smoke-related lung pathological processes.

  1. Ultra-sensitive biosensor for K-ras gene detection using enzyme capped gold nanoparticles conjugates for signal amplification.

    PubMed

    Fang, Xian; Bai, Lijuan; Han, Xiaowei; Wang, Jiao; Shi, Anqi; Zhang, Yuzhong

    2014-09-01

    In this study, an ultra-sensitive hairpin DNA-based electrochemical DNA biosensor for K-ras gene detection is described. Gold nanoparticles (Au-NPs) and horseradish peroxidase (HRP)-streptavidin capped Au-NPs (HAS) conjugates are used for signal amplification. Initially, hairpin DNA dually labeled with thiol at its 5' end and with biotin at its 3' end is immobilized on the surface of Au-NPs modified electrode, and the hairpin DNA is in a "closed" state; hence, the HAS conjugates are shielded from being approached by the biotin due to steric hindrance. However, in the presence of target DNA, the target DNA hybridizes with the loop structure of hairpin DNA and causes conformational change, resulting in biotin forced away from the electrode surface, thereby becoming accessible for the HAS conjugates. Thus, the HAS conjugates are linked to the electrode surface via the specific interaction between biotin and streptavidin. Electrochemical detection was performed in phosphate-buffered saline (PBS) containing tetramethylbenzidine (TMB) and H2O2. Under optimal conditions, the peak current differences (ΔI) are linear with the target DNA in the range from 0.1 fM to 1 nM with a detection limit of 0.035 fM. Furthermore, this biosensor also demonstrates its excellent specificity for single-base mismatched DNA. PMID:24939462

  2. Uncoupling of EGFR–RAS signaling and nuclear localization of YBX1 in colorectal cancer

    PubMed Central

    Roßner, F; Gieseler, C; Morkel, M; Royer, H-D; Rivera, M; Bläker, H; Dietel, M; Schäfer, R; Sers, C

    2016-01-01

    The transcription factor YBX1 can act as a mediator of signals transmitted via the EGFR–RAS–MAPK axis. YBX1 expression has been associated with tumor progression and prognosis in multiple types of cancer. Immunohistochemical studies have revealed dependency between YBX1 expression and individual EGFR family members. We analyzed YBX1 and EGFR family proteins in a colorectal cancer (CRC) cohort and provide functional analyses of YBX1 in the context of EGFR–RAS–MAPK signaling. Immunohistochemistry for YBX1 and EGFR family receptors with two antibodies for YBX1 and EGFR were performed and related to clinicopathological data. We employed Caco2 cells expressing an inducible KRASV12 gene to determine effects on localization and levels of YBX1. Mouse xenografts of Caco2-KRASV12 cells were used to determine YBX1 dynamics in a tissue context. The two different antibodies against YBX1 showed discordant immunohistochemical stainings in cell culture and clinical specimens. Expression of YBX1 and EGFR family members were not correlated in CRC. Analysis of Caco2 xenografts displayed again heterogeneity of YBX1 staining with both antibodies. Our results suggest that YBX1 is controlled via complex regulatory mechanisms involving tumor stroma interaction and signal transduction processes. Our study highlights that YBX1 antibodies have different specificities, advocating their use in a combined manner. PMID:26779809

  3. Effect of acerola cherry extract on cell proliferation and activation of ras signal pathway at the promotion stage of lung tumorigenesis in mice.

    PubMed

    Nagamine, Isao; Akiyama, Tsutomu; Kainuma, Motoomi; Kumagai, Hitomi; Satoh, Haruna; Yamada, Kazuhiko; Yano, Tomohiro; Sakurai, Hidetoshi

    2002-02-01

    The present study was undertaken to estimate the effect of acerola cherry extract (ACE) pretreatment on cell proliferation and the activation of Ras signal pathway at a promotion stage of lung tumorigenesis in mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Pretreatment with ACE (dose, 70mg/kg body weight and 700 mg/kg body weight) inhibited increases in the levels of proliferating nuclear cell antigen and ornithine decarboxylase at the promotion stage. This treatment of ACE also suppressed the activation of Ras signal pathway at the same stage. These results suggest that ACE regulates abnormal cell growth at the promotion stage of lung tumorigenesis in mice treated with NNK as a result of suppression of the initiation stage.

  4. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression through the suppression of Ras-Ral signaling.

    PubMed

    Feldmann, Georg; Mishra, Anjali; Hong, Seung-Mo; Bisht, Savita; Strock, Christopher J; Ball, Douglas W; Goggins, Michael; Maitra, Anirban; Nelkin, Barry D

    2010-06-01

    Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers in which it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers in which metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration, and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in the profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer.

  5. Inhibiting the cyclin-dependent kinase CDK5 blocks pancreatic cancer formation and progression via suppression of Ras-Ral signaling

    PubMed Central

    Feldmann, Georg; Mishra, Anjali; Hong, Seung-Mo; Bisht, Savita; Strock, Christopher J.; Ball, Douglas W.; Goggins, Michael; Maitra, Anirban; Nelkin, Barry D.

    2011-01-01

    Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers where it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers where metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer. PMID:20484029

  6. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    PubMed

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  7. Activated Ki-Ras complements erythropoietin signaling in CTLL-2 cells, inducing tyrosine phosphorylation of a 160-kDa protein.

    PubMed Central

    Yamamura, Y; Noda, M; Ikawa, Y

    1994-01-01

    We have previously shown that expression of erythropoietin (EPO) receptor (EPOR) alone failed to confer EPO responsiveness on the interleukin 2-dependent T-cell line CTLL-2, whereas the introduction of the EPOR into interleukin 3-dependent pro-B-cell lines, such as BAF-B03, allowed the cells to proliferate in response to EPO. Here, we report that additional expression of v-Ki-Ras conferred EPO-dependent growth on CTLL-2 cells expressing the EPOR, with additional formation of a high-affinity EPOR. To investigate possible mechanisms of EPOR downstream signaling induced by v-Ki-Ras expression in these CTLL-2-derived cells, we carried out anti-phosphotyrosine immunoblot analysis of the EPOR complex immunoprecipitated with anti-EPOR antibody from lysates of cells with and without cytokine stimulation, revealing two 160-kDa and 130-kDa phosphotyrosyl proteins. An anti-JAK2 antibody did not react with these proteins, suggesting that they may represent cellular components involved in an EPO-EPOR signaling pathway induced by v-Ki-Ras. Similar phosphotyrosyl proteins were present among Friend erythroleukemia cell lines, in which the Friend virus gp55/EPOR complex on the cell surface constitutively sends signals for cell growth. Images PMID:7522324

  8. The BTB/POZ-ZF Transcription Factor dPLZF Is Involved in Ras/ERK Signaling During Drosophila Wing Development

    PubMed Central

    Maeng, Oky; Son, Wonseok; Chung, Jongkyeong; Lee, Kyu-Sun; Lee, Young-Ha; Yoo, Ook-Joon; Cha, Guang-Ho; Paik, Sang-Gi

    2012-01-01

    In Drosophila, broad complex, tramtrack, bric à brac (BTB)/ poxvirus and zinc finger (POZ) transcription factors are essential regulators of development. We searched the Drosophila genome for BTB/POZ-ZF domains and discovered an unknown Drosophila gene, dPLZF, which encodes an orthologue of human PLZF. We then characterized the biological function of the dPLZF via genetic interaction analysis. Ectopic expression of dPLZF in the wing induced extra vein formation during wing development in Drosophila. Genetic interactions between dPLZF and Ras or extracellular signal-regulated kinase (ERK) significantly enhanced the formation of vein cells. On the other hand, loss-of-function mutations in dPLZF resulted in a dramatic suppression of the extra and ectopic vein formation induced by elevated Ras/ERK signaling. Moreover, dPLZF activity upregulated the expression of rhomboid (rho) and spitz, which perform crucial functions in vein cell formation in the developing wing. These results indicate that dPLZF is a transcription factor controlled by the Ras/ERK signaling pathway, which is a prominent regulator of vein cell formation during wing development in Drosophila. PMID:22544070

  9. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty

  10. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network.

    PubMed

    Cheng, Yougan; Othmer, Hans

    2016-05-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that [Formula: see text] cycling modulated by Ric8, a nonreceptor guanine exchange factor for [Formula: see text] in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both [Formula: see text] and Gβγ are essential for direction sensing, in that membrane-localized [Formula: see text], the activated GTP-bearing form of [Formula: see text], leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient 'memory' to eliminate the 'back-of-the wave' problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since

  11. Ras in Cancer and Developmental Diseases

    PubMed Central

    Fernández-Medarde, Alberto; Santos, Eugenio

    2011-01-01

    Somatic, gain-of-function mutations in ras genes were the first specific genetic alterations identified in human cancer about 3 decades ago. Studies during the last quarter century have characterized the Ras proteins as essential components of signaling networks controlling cellular proliferation, differentiation, or survival. The oncogenic mutations of the H-ras, N-ras, or K-ras genes frequently found in human tumors are known to throw off balance the normal outcome of those signaling pathways, thus leading to tumor development. Oncogenic mutations in a number of other upstream or downstream components of Ras signaling pathways (including membrane RTKs or cytosolic kinases) have been detected more recently in association with a variety of cancers. Interestingly, the oncogenic Ras mutations and the mutations in other components of Ras/MAPK signaling pathways appear to be mutually exclusive events in most tumors, indicating that deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis. In contrast to sporadic tumors, separate studies have identified germline mutations in Ras and various other components of Ras signaling pathways that occur in specific association with a number of different familial, developmental syndromes frequently sharing common phenotypic cardiofaciocutaneous features. Finally, even without being a causative force, defective Ras signaling has been cited as a contributing factor to many other human illnesses, including diabetes and immunological and inflammatory disorders. We aim this review at summarizing and updating current knowledge on the contribution of Ras mutations and altered Ras signaling to development of various tumoral and nontumoral pathologies. PMID:21779504

  12. Paeonol Inhibits Proliferation of Vascular Smooth Muscle Cells Stimulated by High Glucose via Ras-Raf-ERK1/2 Signaling Pathway in Coculture Model

    PubMed Central

    Chen, Junjun; Dai, Min; Wang, Yueqin

    2014-01-01

    Paeonol (Pae) has been previously reported to protect against atherosclerosis (AS) by inhibiting vascular smooth muscle cell (VSMC) proliferation or vascular endothelial cell (VEC) injury. But studies lack how VSMCs and VECs interact when Pae plays a role. The current study was based on a coculture model of VSMCs and VECs to investigate the protective mechanisms of Pae on atherosclerosis (AS) by determining the secretory function of VECs and proliferation of VSMCs focusing on the Ras-Raf-ERK1/2 signaling pathway. VECs were stimulated by high glucose. Our data showed that high concentration (35.5 mM) of glucose induced damage in VECs. Injury of VECs stimulated VSMC proliferation in the coculture model. Pae (120 μM) decreased vascular endothelial growth factor (VEGF) and platelet derivative growth factor B (PDGF-B) release from VECs and inhibited overexpression of Ras, P-Raf, and P-ERK proteins in VSMCs. The results indicate that diabetes modulates the inflammatory response in VECs to stimulate VSMC proliferation and promote the development of AS. Pae was beneficial by inhibiting the inflammatory effects of VECs on VSMC proliferation. This study suggests the inhibitory mechanism of Pae due to the inhibition of VEGF and PDGF-B secretion in VECs and Ras-Raf-ERK1/2 signaling pathway in VSMCs. PMID:25002903

  13. A New View of Ras Isoforms in Cancers.

    PubMed

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  14. Targeting Ras-RAF-ERK and its Interactive Pathways as a Novel Therapy for Malignant Gliomas

    PubMed Central

    Lo, H.-W.

    2013-01-01

    Malignant gliomas are the most common and the deadliest brain malignancies in adults. Despite the lack of a complete understanding of the biology of these tumors, significant advances have been made in the past decades. One of the key discoveries made in the area of malignant gliomas is that these tumors can be induced and maintained by aberrant signaling networks. In this context, the Ras pathway has been extensively exploited, from both basic and translational perspectives. Although somatic oncogenic mutations of Ras genes are frequent in several cancer types, early investigations on gliomas revealed disappointing facts that the Ras mutations are nearly absent in malignant gliomas and that the BRAF mutations are present in a very small percentage of gliomas. Therefore, the observed deregulation of the Ras-RAF-ERK signaling pathway in gliomas is attributed to its upstream positive regulators, including, EGFR and PDGFR known to be highly active in the majority of malignant gliomas. In contrast to the initial negative results on the somatic mutations of H-Ras, K-Ras and BRAF, recent breakthrough studies on pediatric low-grade astrocytomas uncovered genetic alterations of the BRAF gene involving copy number gains and rearrangements. The 7q34 rearrangements result in a novel in-frame KIAA1549:BRAF fusion gene that possesses constitutive BRAF kinase activity resembling oncogenic BRAF (V600E). In light of the earlier findings and recent breakthroughs, this review summarizes our current understanding of the Ras-RAF-ERK signaling pathway in gliomas and the outcome of preclinical and clinical studies that evaluated the efficacy of Ras-targeted therapy in malignant gliomas. PMID:20718706

  15. Activation of p21ras/MAPK signal transduction molecules decreases with age in mitogen-stimulated T cells from rats.

    PubMed

    Pahlavani, M A; Harris, M D; Richardson, A

    1998-04-10

    Signal transduction is ubiquitously involved in the initiation of physiological signals that lead to growth and proliferation of cells. The signaling cascade mediated by the mitogen-activated protein kinase (MAPK) is considered essential for T cell growth and function. Therefore, it was of interest to determine the influence of age on the induction of MAPK in mitogen-activated T cells. T cells from young (4-6 months) and old (24-26 months) rats responded to concanavalin A (Con A) stimulation by increasing MAPK, c-jun amino terminal kinase (JNK), and p21ras activities. The time course of induction of MAPK/JNK and p21ras activities was similar in T cells isolated from young and old rats. The induction of JNK activity did not change significantly with age; however, the induction of MAPK and p21ras activities was significantly less (50 to 65%) in T cells from old rats than in T cells from young rats. Although the relative protein levels of p42 and p44 MAPK did not change with age, the proportion of the phosphorylated p44 MAPK decreased with age. In addition, it was found that the in vitro kinase activities of the T cell receptor-associated protein tyrosine kinase Lck (p56Lck) and ZAP-70 but not Fyn (p59Fyn) were lower in T cells from old rats than in T cells from young rats. The decline in activities of these signaling molecules with age was not associated with changes in their corresponding protein levels. Thus, our results demonstrate that aging alters the activation of the signal transduction cascade that leads to T cell activation.

  16. Therapeutic Strategies for Targeting Ras Proteins

    PubMed Central

    Gysin, Stephan; Salt, Megan; Young, Amy; McCormick, Frank

    2011-01-01

    Ras genes are frequently activated in cancer. Attempts to develop drugs that target mutant Ras proteins have, so far, been unsuccessful. Tumors bearing these mutations, therefore, remain among the most difficult to treat. Most efforts to block activated Ras have focused on pathways downstream. Drugs that inhibit Raf kinase have shown clinical benefit in the treatment of malignant melanoma. However, these drugs have failed to show clinical benefit in Ras mutant tumors. It remains unclear to what extent Ras depends on Raf kinase for transforming activity, even though Raf proteins bind directly to Ras and are certainly major effectors of Ras action in normal cells and in development. Furthermore, Raf kinase inhibitors can lead to paradoxical activation of the MAPK pathway. MEK inhibitors block the Ras-MAPK pathway, but often activate the PI3’-kinase, and have shown little clinical benefit as single agents. This activation is mediated by EGF-R and other receptor tyrosine kinases through relief of a negative feedback loop from ERK. Drug combinations that target multiple points within the Ras signaling network are likely to be necessary to achieve substantial clinical benefit. Other effectors may also contribute to Ras signaling and provide a source of targets. In addition, unbiased screens for genes necessary for Ras transformation have revealed new potential targets and have added to our understanding of Ras cancer biology. PMID:21779505

  17. Original Research: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1-34 associated with the Ras-ERK signaling.

    PubMed

    Liu, Xiaogang; Zou, Chunbo; Yu, Chengyuan; Xie, Rujuan; Sui, Manshu; Mu, Suhong; Li, Li; Zhao, Shilei

    2016-10-01

    We investigated the effects of atorvastatin (Ator) on cardiomyocyte hypertrophy (CMH) induced by rat parathyroid hormone 1-34 (PTH1-34) and Ras-extracellular signal regulated protein kinases 1/2 (ERK1/2) signaling. Rat cardiomyocytes were randomly divided into seven groups: normal controls (NC), PTH1-34 (10(-7) mol/L), Ator (10(-5) mol/L), farnesyl transferase inhibitors-276 (FTI-276, 4 × 10(-5) mol/L), PTH1-34 + Ator, PTH1-34 + FTI-276 and PTH1-34 + Ator + mevalonic acid (MVA, 10(-4) mol/L). After treatment, the hypertrophic responses of cardiomyocytes were assessed by measuring cell diameter, detecting protein synthesis, and single-cell protein content. The concentrations of hypertrophic markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by ELISA. Protein expressions of ERK1/2, p-ERK1/2 and Ras were detected by western blotting. The results showed that compared with the PTH1-34 group, cellular diameter, 3H-leucine incorporation, single-cell protein content, ANP and BNP concentration decreased by 12.07 µm, 1622 cpm/well, 84.34 pg, 7.13 ng/L and 20.04 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were downregulated in PTH1-34 + Ator group (P < 0.05). Compared to the PTH1-34 + Ator group, the corresponding hypertrophic responses and hypertrophic markers increased by 4.95 µm, 750 cpm/well, 49.08 pg, 3.12 ng/L and 9.35 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were upregulated in the PTH1-34 + Ator + MVA group (P < 0.05). In conclusion, Ator prevents neonatal rat CMH induced by PTH1-34 and Ras-ERK signaling may be involved in this process.

  18. Original Research: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1-34 associated with the Ras-ERK signaling.

    PubMed

    Liu, Xiaogang; Zou, Chunbo; Yu, Chengyuan; Xie, Rujuan; Sui, Manshu; Mu, Suhong; Li, Li; Zhao, Shilei

    2016-10-01

    We investigated the effects of atorvastatin (Ator) on cardiomyocyte hypertrophy (CMH) induced by rat parathyroid hormone 1-34 (PTH1-34) and Ras-extracellular signal regulated protein kinases 1/2 (ERK1/2) signaling. Rat cardiomyocytes were randomly divided into seven groups: normal controls (NC), PTH1-34 (10(-7) mol/L), Ator (10(-5) mol/L), farnesyl transferase inhibitors-276 (FTI-276, 4 × 10(-5) mol/L), PTH1-34 + Ator, PTH1-34 + FTI-276 and PTH1-34 + Ator + mevalonic acid (MVA, 10(-4) mol/L). After treatment, the hypertrophic responses of cardiomyocytes were assessed by measuring cell diameter, detecting protein synthesis, and single-cell protein content. The concentrations of hypertrophic markers such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured by ELISA. Protein expressions of ERK1/2, p-ERK1/2 and Ras were detected by western blotting. The results showed that compared with the PTH1-34 group, cellular diameter, 3H-leucine incorporation, single-cell protein content, ANP and BNP concentration decreased by 12.07 µm, 1622 cpm/well, 84.34 pg, 7.13 ng/L and 20.04 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were downregulated in PTH1-34 + Ator group (P < 0.05). Compared to the PTH1-34 + Ator group, the corresponding hypertrophic responses and hypertrophic markers increased by 4.95 µm, 750 cpm/well, 49.08 pg, 3.12 ng/L and 9.35 µg/L, respectively, and the expressions of Ras and p-ERK1/2 were upregulated in the PTH1-34 + Ator + MVA group (P < 0.05). In conclusion, Ator prevents neonatal rat CMH induced by PTH1-34 and Ras-ERK signaling may be involved in this process. PMID:27190264

  19. Cloning and characterization of Ras-GRF2, a novel guanine nucleotide exchange factor for Ras.

    PubMed

    Fam, N P; Fan, W T; Wang, Z; Zhang, L J; Chen, H; Moran, M F

    1997-03-01

    Conversion of Ras proteins into an activated GTP-bound state able to bind effector proteins is catalyzed by specific guanine nucleotide exchange factors in response to a large number of extracellular stimuli. Here we report the isolation of mouse cDNAs encoding Ras-GRF2, a multidomain 135-kDa protein containing a COOH-terminal Cdc25-related domain that stimulates release of GDP from Ras but not other GTPases in vitro. Ras-GRF2 bound specifically to immobilized Ras lacking bound nucleotides, suggesting stabilization of the nucleotide-free form of Ras as a mechanism of catalyzing nucleotide exchange. The NH2-terminal region of Ras-GRF2 is predicted to contain features common to various signaling proteins including two pleckstrin homology domains and a Dbl homology region. Ras-GRF2 also contains an IQ motif which was required for its apparent constitutive association with calmodulin in epithelial cells ectopically expressing Ras-GRF2. Transient expression of Ras-GRF2 in kidney epithelial cells stimulated GTP binding by Ras and potentiated calcium ionophore-induced activation of mitogen-activated protein kinase (ERK1) dependent upon the IQ motif. Calcium influx caused Ras-GRF2 subcellular localization to change from cytosolic to peripheral, suggesting a possible mechanism for controlling Ras-GRF2 interactions with Ras at the plasma membrane. Epithelial cells overexpressing Ras-GRF2 are morphologically transformed and grow in a disorganized manner with minimal intercellular contacts. Northern analysis indicated a 9-kb GRF2 transcript in brain and lung, where p135 Ras-GRF2 is known to be expressed, and RNAs of 12 kb and 2.2 kb were detected in several tissues. Thus, Ras-GRF2 proteins with different domain structures may be widely expressed and couple diverse extracellular signals to Ras activation.

  20. Gas6-mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of Ras.

    PubMed

    Goruppi, S; Ruaro, E; Varnum, B; Schneider, C

    1999-07-22

    Gas6 is a growth factor membrane of the vitamin K-dependent family of proteins which is preferentially expressed in quiescent cells. Gas6 was identified as the ligand for Axl tyrosine kinase receptor family. Consistent with this, Gas6 was previously reported to induce cell cycle re-entry of serum-starved NIH3T3 cells and to prevent cell death after complete growth factor withdrawal, the survival effect being uncoupled from Gas6-induced mitogenesis. We have previously demonstrated that both Gas6 mitogenic and survival effects are mediated by Src and the phosphatidylinositol3-OH kinase (PI3K). Here we report that Ras is required for Gas6 mitogenesis but is dispensable for its survival effect. Gas6-induced survival requires the activity of the small GTPases of the Rho family, Rac and Rho, together with the downstream kinase Pak. Overexpression of the respective dominant negative constructs abrogates Gas6-mediated survival functions. Addition of Gas6 to serum starved cells results in the activation of AKT/PKB and in the phosphorylation of the Bcl-2 family member, Bad. By ectopic expression of a catalytically inactive form of AKT/PKB, we demonstrate that AKT/PKB is necessary for Gas6-mediated survival functions. We further show evidence that Gas6 stimulation of serum starved NIH3T3 cells results in a transient ERK, JNK/SAPK and p38 MAPK activation. Blocking ERK activation did not influence Gas6-induced survival, suggesting that such pathway is not involved in Gas6 protection from cell death. On the contrary we found that the late constitutive increase of p38 MAPK activity associated with cell death was downregulated in Gas6-treated NIH3T3 cells thus suggesting that Gas6 might promote survival by interfering with this pathway. Taken together the evidence here provided identity elements involved in Gas6 signalling more specifically elucidating the pathway responsible for Gas6-induced cell survival under conditions that do not allow cell proliferation.

  1. RAS oncogenes: weaving a tumorigenic web

    PubMed Central

    Pylayeva-Gupta, Yuliya; Grabocka, Elda; Bar-Sagi, Dafna

    2013-01-01

    RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis. PMID:21993244

  2. TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus.

    PubMed

    Matsuda, Taito; Murao, Naoya; Katano, Yuki; Juliandi, Berry; Kohyama, Jun; Akira, Shizuo; Kawai, Taro; Nakashima, Kinichi

    2015-01-01

    Pathological conditions such as epilepsy cause misregulation of adult neural stem/progenitor populations in the adult hippocampus in mice, and the resulting abnormal neurogenesis leads to impairment in learning and memory. However, how animals cope with abnormal neurogenesis remains unknown. Here we show that microglia in the mouse hippocampus attenuate convulsive seizure-mediated aberrant neurogenesis through the activation of Toll-like receptor 9 (TLR9), an innate immune sensor known to recognize microbial DNA and trigger inflammatory responses. We found that microglia sense self-DNA from degenerating neurons following seizure, and secrete tumour necrosis factor-α, resulting in attenuation of aberrant neurogenesis. Furthermore, TLR9 deficiency exacerbated seizure-induced cognitive decline and recurrent seizure severity. Our findings thus suggest the existence of bidirectional communication between the innate immune and nervous systems for the maintenance of adult brain integrity. PMID:25751136

  3. TLR9 signalling in microglia attenuates seizure-induced aberrant neurogenesis in the adult hippocampus.

    PubMed

    Matsuda, Taito; Murao, Naoya; Katano, Yuki; Juliandi, Berry; Kohyama, Jun; Akira, Shizuo; Kawai, Taro; Nakashima, Kinichi

    2015-03-09

    Pathological conditions such as epilepsy cause misregulation of adult neural stem/progenitor populations in the adult hippocampus in mice, and the resulting abnormal neurogenesis leads to impairment in learning and memory. However, how animals cope with abnormal neurogenesis remains unknown. Here we show that microglia in the mouse hippocampus attenuate convulsive seizure-mediated aberrant neurogenesis through the activation of Toll-like receptor 9 (TLR9), an innate immune sensor known to recognize microbial DNA and trigger inflammatory responses. We found that microglia sense self-DNA from degenerating neurons following seizure, and secrete tumour necrosis factor-α, resulting in attenuation of aberrant neurogenesis. Furthermore, TLR9 deficiency exacerbated seizure-induced cognitive decline and recurrent seizure severity. Our findings thus suggest the existence of bidirectional communication between the innate immune and nervous systems for the maintenance of adult brain integrity.

  4. Caenorhabditis elegans TRPV channels function in a modality-specific pathway to regulate response to aberrant sensory signaling.

    PubMed

    Ezak, Meredith J; Hong, Elizabeth; Chaparro-Garcia, Angela; Ferkey, Denise M

    2010-05-01

    Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974

  5. Caenorhabditis elegans TRPV Channels Function in a Modality-Specific Pathway to Regulate Response to Aberrant Sensory Signaling

    PubMed Central

    Ezak , Meredith J.; Hong , Elizabeth; Chaparro-Garcia , Angela; Ferkey , Denise M.

    2010-01-01

    Olfaction and some forms of taste (including bitter) are mediated by G protein-coupled signal transduction pathways. Olfactory and gustatory ligands bind to chemosensory G protein-coupled receptors (GPCRs) in specialized sensory cells to activate intracellular signal transduction cascades. G protein-coupled receptor kinases (GRKs) are negative regulators of signaling that specifically phosphorylate activated GPCRs to terminate signaling. Although loss of GRK function usually results in enhanced cellular signaling, Caenorhabditis elegans lacking GRK-2 function are not hypersensitive to chemosensory stimuli. Instead, grk-2 mutant animals do not chemotax toward attractive olfactory stimuli or avoid aversive tastes and smells. We show here that loss-of-function mutations in the transient receptor potential vanilloid (TRPV) channels OSM-9 and OCR-2 selectively restore grk-2 behavioral avoidance of bitter tastants, revealing modality-specific mechanisms for TRPV channel function in the regulation of C. elegans chemosensation. Additionally, a single amino acid point mutation in OCR-2 that disrupts TRPV channel-mediated gene expression, but does not decrease channel function in chemosensory primary signal transduction, also restores grk-2 bitter taste avoidance. Thus, loss of GRK-2 function may lead to changes in gene expression, via OSM-9/OCR-2, to selectively alter the levels of signaling components that transduce or regulate bitter taste responses. Our results suggest a novel mechanism and multiple modality-specific pathways that sensory cells employ in response to aberrant signal transduction. PMID:20176974

  6. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer

    PubMed Central

    Wu, Cheng-Shyong; Wei, Kuo-Liang; Chou, Jian-Liang; Lu, Chung-Kuang; Hsieh, Ching-Chuan; Lin, Jora M. J.; Deng, Yi-Fang; Hsu, Wan-Ting; Wang, Hui-Min David; Leung, Chung-Hang; Ma, Dik-Lung; Li, Chin; Chan, Michael W. Y.

    2016-01-01

    Aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2). Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60) of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation. PMID:27598141

  7. Aberrant JAK/STAT Signaling Suppresses TFF1 and TFF2 through Epigenetic Silencing of GATA6 in Gastric Cancer.

    PubMed

    Wu, Cheng-Shyong; Wei, Kuo-Liang; Chou, Jian-Liang; Lu, Chung-Kuang; Hsieh, Ching-Chuan; Lin, Jora M J; Deng, Yi-Fang; Hsu, Wan-Ting; Wang, Hui-Min David; Leung, Chung-Hang; Ma, Dik-Lung; Li, Chin; Chan, Michael W Y

    2016-01-01

    Aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2). Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60) of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation. PMID:27598141

  8. Oncogenic Ras pushes (and pulls) cell cycle progression through ERK activation.

    PubMed

    Campbell, Paul M

    2014-01-01

    The Ras-Raf-MEK-ERK signaling cascade is capable of channeling a wide variety of extracellular signals into control of cell proliferation, differentiation, senescence, and death. Because aberrant regulation at all steps of this signaling axis is observed in cancer, it remains an area of great interest in the field of tumor biology. Here we present evidence of the intricate and delicate levels of control of this pathway as it pertains to cell cycle regulation and illustrate how this control is not simply a rheostat.

  9. Binding of calcium ions to Ras promotes Ras guanine nucleotide exchange under emulated physiological conditions.

    PubMed

    Liao, Jun-Ming; Mo, Zhong-Ying; Wu, Ling-Jia; Chen, Jie; Liang, Yi

    2008-11-01

    Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.

  10. RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors

    PubMed Central

    Zhao, Xuesong; Ponomaryov, Tatyana; Ornell, Kimberly J.; Zhou, Pengcheng; Dabral, Sukriti K.; Pak, Ekaterina; Li, Wei; Atwood, Scott X.; Whitson, Ramon J.; Chang, Anne Lynn S.; Li, Jiang; Oro, Anthony E.; Chan, Jennifer A.; Kelleher, Joseph F.; Segal, Rosalind A.

    2015-01-01

    Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors. PMID:26130651

  11. dpl-1 DP and efl-1 E2F act with lin-35 Rb to antagonize Ras signaling in C. elegans vulval development.

    PubMed

    Ceol, C J; Horvitz, H R

    2001-03-01

    The synthetic multivulva (synMuv) genes define two functionally redundant pathways that antagonize RTK/Ras signaling during Caenorhabditis elegans vulval induction. The synMuv gene lin-35 encodes a protein similar to the mammalian tumor suppressor pRB and has been proposed to act as a transcriptional repressor. Studies using mammalian cells have shown that pRB can prevent cell cycle progression by inhibiting DP/E2F-mediated transcriptional activation. We identified C. elegans genes that encode proteins similar to DP or E2F. Loss-of-function mutations in two of these genes, dpl-1 DP and efl-1 E2F, caused the same vulval abnormalities as do lin-35 Rb loss-of-function mutations. We propose that rather than being inhibited by lin-35 Rb, dpl-1 DP and efl-1 E2F act with lin-35 Rb in transcriptional repression to antagonize RTK/Ras signaling during vulval development.

  12. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells.

    PubMed

    Cao, Ai-Li; Tang, Qing-Feng; Zhou, Wen-Chao; Qiu, Yan-Yan; Hu, Song-Jiao; Yin, Pei-Hao

    2015-01-01

    Curcumin, the biologically active compound from the rhizome of Curcuma longa, could inhibit cell growth and induce apoptosis in gastric carcinoma. However, the underlying mechanism of curcumin on gastric carcinoma cells still needs further investigation. In this study, morphological observation indicated that curcumin inhibited the proliferation of AGS cells in a dose-dependent manner. According to the flow cytometric analysis, curcumin treatment resulted in G2/M arrest in AGS cells, accompanied with an increased expression of cyclin B1 and a decreased expression of cyclin D1. In addition, DNA ladders were observed by gel electrophoresis. Meanwhile, the activities of caspase-3, -8, and -9 were also enhanced in curcumin-treated AGS cells. Nevertheless, the increased activities could be inhibited by benzyloxycarbonyl-Val-Ala-Asp (OME)-fluoromethylketone (z-VAD-fmk), which suggested that the apoptosis was caspase-dependent. Furthermore, downregulation of rat sarcoma (Ras) and upregulation of extracellular-signal-regulated kinase (ERK) were also observed in AGS cells treated with curcumin by Western blot. U0126, an ERK inhibitor, blocked curcumin-induced apoptosis. The results suggested that curcumin inhibited the growth of the AGS cells and induced apoptosis through the activation of Ras/ERK signaling pathway and downstream caspase cascade, and curcumin might be a potential target for the treatment of gastric carcinoma.

  13. RAS Laboratory Groups

    Cancer.gov

    The RAS Initiative uses multiple technologies to attack RAS-driven cancers. The resources of the Frederick National Lab allocated to the RAS Hub are organized into seven laboratory groups, each contributing to the collaborative effort.

  14. The RAS Initiative

    Cancer.gov

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  15. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  16. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  17. P120-GAP associated with syndecan-2 to function as an active switch signal for Src upon transformation with oncogenic ras

    SciTech Connect

    Huang, J.-W.; Chen, C.-L.; Chuang, N.-N. . E-mail: zonnc@sinica.edu.tw

    2005-04-15

    BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q{sub 61}K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.

  18. Paeonia lactiflora Extract Attenuating Cerebral Ischemia and Arterial Intimal Hyperplasia Is Mediated by Paeoniflorin via Modulation of VSMC Migration and Ras/MEK/ERK Signaling Pathway

    PubMed Central

    Chen, Yuh-Fung; Wu, Kuo-Jen; Wood, W. Gibson

    2013-01-01

    Paeonia lactiflora is a well-known traditional Chinese medicine. Paeoniflorin is an active component found in Paeonia lactiflora, which is used to treat smooth muscle spasms and pain and to protect the cardiovascular system. The objective of this study was to determine if Paeonia lactiflora would be protective in rodent models of cerebral ischemia and arterial intimal hyperplasia. Paeonia lactiflora extract (PLex) and paeoniflorin (PF) significantly attenuated cerebral infarction in ischemia/reperfusion injury rats and the severity of intimal hyperplasia in mice where the carotid artery was ligated. PLex and PF reduced PDGF-stimulated VSMC proliferation and migration in a dose-dependent manner by MTT, wound healing, and transwell assays. PF significantly reduced protein levels of Ras, MEK, p-MEK and p-ERK, but not MMP-2 and MMP-9. In summary, Paeonia lactiflora reduced cerebral ischemia and arterial intimal hyperplasia which were mainly made via the intermediary of PF. The protective effect of PF was related to the modulation of the Ras/MEK/ERK signaling pathway. PMID:23818926

  19. RasGRP1 and RasGRP3 Are Required for Efficient Generation of Early Thymic Progenitors.

    PubMed

    Golec, Dominic P; Henao Caviedes, Laura M; Baldwin, Troy A

    2016-09-01

    T cell development is dependent on the migration of progenitor cells from the bone marrow to the thymus. Upon reaching the thymus, progenitors undergo a complex developmental program that requires inputs from various highly conserved signaling pathways including the Notch and Wnt pathways. To date, Ras signaling has not been implicated in the very earliest stages of T cell differentiation, but members of a family of Ras activators called RasGRPs have been shown to be involved at multiple stages of T cell development. We examined early T cell development in mice lacking RasGRP1, RasGRP3, and RasGRPs 1 and 3. We report that RasGRP1- and RasGRP3-deficient thymi show significantly reduced numbers of early thymic progenitors (ETPs) relative to wild type thymi. Furthermore, RasGRP1/3 double-deficient thymi show significant reductions in ETP numbers compared with either RasGRP1 or RasGRP3 single-deficient thymi, suggesting that both RasGRP1 and RasGRP3 regulate the generation of ETPs. In addition, competitive bone marrow chimera experiments reveal that RasGRP1/3 double-deficient progenitors intrinsically generate ETPs less efficiently than wild type progenitors. Finally, RasGRP1/3-deficient progenitors show impaired migration toward the CCR9 ligand, CCL25, suggesting that RasGRP1 and RasGRP3 may regulate progenitor entry into the thymus through a CCR9-dependent mechanism. These data demonstrate that, in addition to Notch and Wnt, the highly conserved Ras pathway is critical for the earliest stages of T cell development and further highlight the importance of Ras signaling during thymocyte maturation. PMID:27465532

  20. Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells.

    PubMed

    Oh, You-Take; Deng, Jiusheng; Yue, Ping; Sun, Shi-Yong

    2016-01-01

    B-Raf inhibitors have been used for the treatment of some B-Raf-mutated cancers. They effectively inhibit B-Raf/MEK/ERK signaling in cancers harboring mutant B-Raf, but paradoxically activates MEK/ERK in Ras-mutated cancers. Death receptor 5 (DR5), a cell surface pro-apoptotic protein, triggers apoptosis upon ligation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or aggregation. This study focused on determining the effects of B-Raf inhibition on DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Using chemical and genetic approaches, we have demonstrated that the B-Raf inhibitor PLX4032 induces DR5 upregulation exclusively in Ras-mutant cancer cells; this effect is dependent on Ras/c-Raf/MEK/ERK signaling activation. PLX4032 induces DR5 expression at transcriptional levels, largely due to enhancing CHOP/Elk1-mediated DR5 transcription. Pre-exposure of Ras-mutated cancer cells to PLX4032 sensitizes them to TRAIL-induced apoptosis; this is also a c-Raf/MEK/ERK-dependent event. Collectively, our findings highlight a previously undiscovered effect of B-Raf inhibition on the induction of DR5 expression and the enhancement of DR5 activation-induced apoptosis in Ras-mutant cancer cells and hence may suggest a novel therapeutic strategy against Ras-mutated cancer cells by driving their death due to DR5-dependent apoptosis through B-Raf inhibition.

  1. Visualizing and Quantitating the Spatiotemporal Regulation of Ras/ERK Signaling by Dual-Specificity Mitogen-Activated Protein Phosphatases (MKPs).

    PubMed

    Caunt, Christopher J; Kidger, Andrew M; Keyse, Stephen M

    2016-01-01

    The spatiotemporal regulation of the Ras/ERK pathway is critical in determining the physiological and pathophysiological outcome of signaling. Dual-specificity mitogen-activated protein kinase (MAPK) phosphatases (DUSPs or MKPs) are key regulators of pathway activity and may also localize ERK to distinct subcellular locations. Here we present methods largely based on the use of high content microscopy to both visualize and quantitate the subcellular distribution of activated (p-ERK) and total ERK in populations of mouse embryonic fibroblasts derived from mice lacking DUSP5, a nuclear ERK-specific MKP. Such methods in combination with rescue experiments using adenoviral vectors encoding wild-type and mutant forms of DUSP5 have allowed us to visualize specific defects in ERK regulation in these cells thus confirming the role of this phosphatase as both a nuclear regulator of ERK activity and localization. PMID:27514808

  2. Nucleophosmin Mutants Promote Adhesion, Migration and Invasion of Human Leukemia THP-1 Cells through MMPs Up-regulation via Ras/ERK MAPK Signaling

    PubMed Central

    Xian, Jingrong; Shao, Huiyuan; Chen, Xianchun; Zhang, Shuaishuai; Quan, Jing; Zou, Qin; Jin, Hongjun; Zhang, Ling

    2016-01-01

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been defined as a unique subgroup in the new classification of myeloid neoplasm, and the AML patients with mutated NPM1 frequently present extramedullary infiltration, but how NPM1 mutants regulate this process remains elusive. In this study, we found that overexpression of type A NPM1 gene mutation (NPM1-mA) enhanced the adhesive, migratory and invasive potential in THP-1 AML cells lacking mutated NPM1. NPM1-mA had up-regulated expression and gelatinolytic matrix metalloprotease-2 (MMP-2)/MMP-9 activity, as assessed by real-time PCR, western blotting and gelatin zymography. Following immunoprecipitation analysis to identify the interaction of NPM1-mA with K-Ras, we focused on the effect of NPM1-mA overexpression on the Ras/Mitogen-activated protein kinase (MAPK) signaling axis and showed that NPM1-mA increased the MEK and ERK phosphorylation levels, as evaluated by western blotting. Notably, a specific inhibitor of the ERK/MAPK pathway (PD98059), but not p38/MAPK, JNK/MAPK or PI3-K/AKT inhibitors, markedly decreased the cell invasion numbers in a transwell assay. Further experiments demonstrated that blocking the ERK/MAPK pathway by PD98059 resulted in reduced MMP-2/9 protein levels and MMP-9 activity. Additionally, NPM1-mA overexpression had down-regulated gene expression and protein production of tissue inhibitor of MMP-2 (TIMP-2) in THP-1 cells. Furthermore, evaluation of gene expression data from The Cancer Genome Atlas (TCGA) dataset revealed that MMP-2 was overexpressed in AML patient samples with NPM1 mutated and high MMP-2 expression associated with leukemic skin infiltration. Taken together, our results reveal that NPM1 mutations contribute to the invasive potential of AML cells through MMPs up-regulation via Ras/ERK MAPK signaling pathway activation and offer novel insights into the potential role of NPM1 mutations in leukemogenesis. PMID:26884713

  3. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity.

    PubMed

    Cussac, D; Vidal, M; Leprince, C; Liu, W Q; Cornille, F; Tiraboschi, G; Roques, B P; Garbay, C

    1999-01-01

    With the aim of interrupting the growth factor-stimulated Ras signaling pathway at the level of the Grb2-Sos interaction, a peptidimer, made of two identical proline-rich sequences from Sos linked by a lysine spacer, was designed using structural data from Grb2 and a proline-rich peptide complexed with its SH3 domains. The peptidimer affinity for Grb2 is 40 nM whereas that of the monomer is 16 microM, supporting the dual recognition of both Grb2 SH3 domains by the dimer. At 50 nM, the peptidimer blocks selectively Grb2-Sos complexation in ER 22 (CCL 39 fibroblasts overexpressing epidermal growth factor receptor) cellular extracts. The peptidimer specifically recognizes Grb2 and does not interact with PI3K or Nck, two SH3 domain-containing adaptors. The peptidimer was modified to enter cells by coupling to a fragment of Antennapedia homeodomain. At 10 microM, the conjugate inhibits the Grb2-Sos interaction (100%) and MAP kinase (ERK1 and ERK2) phosphorylation (60%) without modifying cellular growth of ER 22 cells. At the same concentration, the conjugate also inhibits both MAP kinase activation induced by nerve growth factor or epidermal growth factor in PC12 cells, and differentiation triggered by nerve growth factor. Finally, when tested for its antiproliferative activity, the conjugate was an efficient inhibitor of the colony formation of transformed NIH3T3/HER2 cells grown in soft agar, with an IC50 of around 1 microM. Thus, the designed peptidimers appear to be interesting leads to investigate signaling and intracellular processes and for designing selective inhibitors of tumorigenic Ras-dependent processes.

  4. Blunted sympathoinhibitory responses in obesity-related hypertension are due to aberrant central but not peripheral signalling mechanisms

    PubMed Central

    How, Jackie M Y; Wardak, Suhail A; Ameer, Shaik I; Davey, Rachel A; Sartor, Daniela M

    2014-01-01

    The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague–Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13–15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P < 0.05). Barosensitivity of RVLM neurons was significantly attenuated in OP animals (P < 0.05), suggesting altered baroreflex gain. CCK induced inhibitory responses in RVLM neurons of OR/control animals but not OP animals. Subdiaphragmatic vagal nerve responsiveness to CCK and CCK1 receptor mRNA expression in nodose ganglia did not differ between the groups, but CCK induced significantly less Fos-like immunoreactivity in both the nucleus of the solitary tract and the caudal ventrolateral medulla of OP animals compared to controls (P < 0.05). These results suggest that blunted sympathoinhibitory and vasodilator responses in obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension. PMID:24492842

  5. Blunted sympathoinhibitory responses in obesity-related hypertension are due to aberrant central but not peripheral signalling mechanisms.

    PubMed

    How, Jackie M Y; Wardak, Suhail A; Ameer, Shaik I; Davey, Rachel A; Sartor, Daniela M

    2014-04-01

    The gut hormone cholecystokinin (CCK) acts at subdiaphragmatic vagal afferents to induce renal and splanchnic sympathoinhibition and vasodilatation, via reflex inhibition of a subclass of cardiovascular-controlling neurons in the rostroventrolateral medulla (RVLM). These sympathoinhibitory and vasodilator responses are blunted in obese, hypertensive rats and our aim in the present study was to determine whether this is attributable to (i) altered sensitivity of presympathetic vasomotor RVLM neurons, and (ii) aberrant peripheral or central signalling mechanisms. Using a diet-induced obesity model, male Sprague-Dawley rats exhibited either an obesity-prone (OP) or obesity-resistant (OR) phenotype when placed on a medium high fat diet for 13-15 weeks; control animals were placed on a low fat diet. OP animals had elevated resting arterial pressure compared to OR/control animals (P < 0.05). Barosensitivity of RVLM neurons was significantly attenuated in OP animals (P < 0.05), suggesting altered baroreflex gain. CCK induced inhibitory responses in RVLM neurons of OR/control animals but not OP animals. Subdiaphragmatic vagal nerve responsiveness to CCK and CCK1 receptor mRNA expression in nodose ganglia did not differ between the groups, but CCK induced significantly less Fos-like immunoreactivity in both the nucleus of the solitary tract and the caudal ventrolateral medulla of OP animals compared to controls (P < 0.05). These results suggest that blunted sympathoinhibitory and vasodilator responses in obesity-related hypertension are due to alterations in RVLM neuronal responses, resulting from aberrant central but not peripheral signalling mechanisms. In obesity, blunted sympathoinhibitory mechanisms may lead to increased regional vascular resistance and contribute to the development of hypertension.

  6. Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors

    PubMed Central

    Jacob, Allison P.; Dougall, William C.; Ittmann, Michael M.; Lydon, John P.

    2015-01-01

    Unlike cancers of related exocrine tissues such as the mammary and prostate gland, diagnosis and treatment of aggressive salivary gland malignancies have not markedly advanced in decades. Effective clinical management of malignant salivary gland cancers is undercut by our limited knowledge concerning the key molecular signals that underpin the etiopathogenesis of this rare and heterogeneous head and neck cancer. Without knowledge of the critical signals that drive salivary gland tumorigenesis, tumor vulnerabilities cannot be exploited that allow for targeted molecular therapies. This knowledge insufficiency is further exacerbated by a paucity of preclinical mouse models (as compared to other cancer fields) with which to both study salivary gland pathobiology and test novel intervention strategies. Using a mouse transgenic approach, we demonstrate that deregulation of the Receptor Activator of NFkB Ligand (RANKL)/RANK signaling axis results in rapid tumor development in all three major salivary glands. In line with its established role in other exocrine gland cancers (i.e., breast cancer), the RANKL/RANK signaling axis elicits an aggressive salivary gland tumor phenotype both at the histologic and molecular level. Despite the ability of this cytokine signaling axis to drive advanced stage disease within a short latency period, early blockade of RANKL/RANK signaling markedly attenuates the development of malignant salivary gland neoplasms. Together, our findings have uncovered a tumorigenic role for RANKL/RANK in the salivary gland and suggest that targeting this pathway may represent a novel therapeutic intervention approach in the prevention and/or treatment of this understudied head and neck cancer. PMID:26061636

  7. Lipopolysaccharide enhances bradykinin-induced signal transduction via activation of Ras/Raf/MEK/MAPK in canine tracheal smooth muscle cells

    PubMed Central

    Luo, Shue-Fen; Wang, Chuan-Chwan; Chiu, Chi-Tso; Chien, Chin-Sung; Hsiao, Li-Der; Lin, Chien-Huang; Yang, Chuen-Mao

    2000-01-01

    Bacterial lipopolysaccharide (LPS) was found to induce inflammatory responses and to enhance bronchial hyperreactivity to several contractile agonists. However, the implication of LPS in the pathogenesis of bronchial hyperreactivity was not completely understood. Therefore, in this study, we investigated the effect of LPS on mitogen-activated protein kinase (MAPK) activation associated with potentiation of bradykinin (BK)-induced inositol phosphates (IPs) accumulation and Ca2+ mobilization in canine cultured tracheal smooth muscle cells (TSMCs).LPS stimulated phosphorylation of p42/p44 MAPK in a time- and concentration-dependent manner using a Western blot analysis against a specific phosphorylated form of MAPK antibody. Maximal stimulation of the p42 and p44 MAPK isoforms occurred after 7 min-incubation and the maximal effect was achieved with 100 μg ml−1 LPS.Pretreatment of TSMCs with LPS potentiated BK-induced IPs accumulation and Ca2+ mobilization. However, there was no effect on the IPs response induced by endothelin-1, 5-hydroxytryptamine, and carbachol. In addition, pretreatment with PDGF-BB enhanced BK-induced IPs response.These enhancements by LPS and PDGF-BB might be due to an increase in BK B2 receptor density (Bmax) in TSMCs, characterized by competitive inhibition of [3H]-BK binding using B1 and B2 receptor-selective reagents.The enhancing effects of LPS and PDGF-BB were attenuated by PD98059, an inhibitor of MAPK kinase (MEK), suggesting that the effect of LPS may share a common signalling pathway with PDGF-BB in TSMCs.Furthermore, overexpression of dominant negative mutants, H-Ras-15A and Raf-N4, significantly suppressed p42/p44 MAPK activation induced by LPS and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases.These results suggest that the augmentation of BK-induced responses produced by LPS might be, at least in part, mediated through activation of Ras/Raf/MEK/MAPK pathway in TSMCs. PMID:10952668

  8. The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.

    PubMed

    Shrestha, Gajendra; MacNeil, Shelley M; McQuerry, Jasmine A; Jenkins, David F; Sharma, Sunil; Bild, Andrea H

    2016-10-01

    The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer.

  9. The value of genomics in dissecting the RAS-network and in guiding therapeutics for RAS-driven cancers.

    PubMed

    Shrestha, Gajendra; MacNeil, Shelley M; McQuerry, Jasmine A; Jenkins, David F; Sharma, Sunil; Bild, Andrea H

    2016-10-01

    The rise in genomic knowledge over the past decade has revealed the molecular etiology of many diseases, and has identified intricate signaling network activity in human cancers. Genomics provides the opportunity to determine genome structure and capture the activity of thousands of molecular events concurrently, which is important for deciphering highly complex genetic diseases such as cancer. In this review, we focus on genomic efforts directed towards one of cancer's most frequently mutated networks, the RAS pathway. Genomic tools such as gene expression signatures and assessment of mutations across the RAS network enable the capture of RAS signaling complexity. Due to this high level of interaction and cross-talk within the network, efforts to target RAS signaling in the clinic have generally failed, and we currently lack the ability to directly inhibit the RAS protein with high efficacy. We propose that the use of gene expression data can identify effective treatments that broadly inhibit the RAS network as this approach measures pathway activity independent of mutation status or any single mechanism of activation. Here, we review the genomic studies that map the complexity of the RAS network in cancer, and that show how genomic measurements of RAS pathway activation can identify effective RAS inhibition strategies. We also address the challenges and future directions for treating RAS-driven tumors. In summary, genomic assessment of RAS signaling provides a level of complexity necessary to accurately map the network that matches the intricacy of RAS pathway interactions in cancer. PMID:27338857

  10. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold

    PubMed Central

    Posada, Itziar M. D.; Serulla, Marc; Zhou, Yong; Oetken-Lindholm, Christina

    2016-01-01

    Ras-induced senescence mediated through ASPP2 represents a barrier to tumour formation. It is initiated by ASPP2’s interaction with Ras at the plasma membrane, which stimulates the Raf/MEK/ERK signaling cascade. Ras to Raf signalling requires Ras to be organized in nanoscale signalling complexes, called nanocluster. We therefore wanted to investigate whether ASPP2 affects Ras nanoclustering. Here we show that ASPP2 increases the nanoscale clustering of all oncogenic Ras isoforms, H-ras, K-ras and N-ras. Structure-function analysis with ASPP2 truncation mutants suggests that the nanocluster scaffolding activity of ASPP2 converges on its α-helical domain. While ASPP2 increased effector recruitment and stimulated ERK and AKT phosphorylation, it did not increase colony formation of RasG12V transformed NIH/3T3 cells. By contrast, ASPP2 was able to suppress the transformation enhancing ability of the nanocluster scaffold Gal-1, by competing with the specific effect of Gal-1 on H-rasG12V- and K-rasG12V-nanoclustering, thus imposing ASPP2’s ERK and AKT signalling signature. Similarly, ASPP2 robustly induced senescence and strongly abrogated mammosphere formation irrespective of whether it was expressed alone or together with Gal-1, which by itself showed the opposite effect in Ras wt or H-ras mutant breast cancer cells. Our results suggest that Gal-1 and ASPP2 functionally compete in nanocluster for active Ras on the plasma membrane. ASPP2 dominates the biological outcome, thus switching from a Gal-1 supported growth-promoting setting to a senescence inducing and stemness suppressive program in cancer cells. Our results support Ras nanocluster as major integrators of tumour fate decision events. PMID:27437940

  11. Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion.

    PubMed

    Yu, Jian-Bo; Jiang, Hao; Zhan, Ren-Ya

    2016-08-01

    Upregulation of the Notch signaling pathway in cancer stem cells and side population (SP) cells has a major role in maintenance, self-renewal and chemoresistance. The present study isolated a cancer stem cell-like SP accounting for 4.1% of a glioblastoma cell population using a Hoechst 33342 dye exclusion assay. In this glioblastoma SP, the expression of of Notch1 signaling proteins Notch1 intracellular domain and Hes‑1 was markedly upregulated. Furthermore, knockdown of Notch1 by RNA interference significantly diminished the neurosphere formation ability, self‑renewal and chemoresistance of the SP cells. In addition, the expression of the stem‑cell surface genes Oct‑4, Sox2 and Nanog in SP cells was significantly reduced and the sensitivity to the SP cells to chemotherapeutics was enhanced following Notch1 knockdown. In conclusion, the results of the present study suggested that upregulation of Notch1 is involved in the chemotherapy resistance and tumor recurrence of glioblastoma. Hence, the development of novel anti‑cancer drugs targeting the Notch1 signaling pathway may be a promising strategy for curing glioblastoma. PMID:27315154

  12. Aberrant T cell ERK pathway signaling and chromatin structure in lupus

    PubMed Central

    Gorelik, Gabriela; Richardson, Bruce

    2009-01-01

    Human systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibodies to nuclear components with subsequent immune complex formation and deposition in multiple organs. A combination of genetic and environmental factors is required for disease development, but how the environment interacts with the immune system in genetically predisposed hosts to cause lupus is unclear. Recent evidence suggests that environmental agents may alter T cell chromatin structure and gene expression through effects on DNA methylation, a repressive epigenetic mechanism promoting chromatin inactivation, to cause lupus in people with the appropriate genetic background. DNA methylation is regulated by ERK pathway signaling, and abnormalities in ERK pathway signaling may contribute to immune dysfunction in lupus through epigenetic effects on gene expression. This article reviews current evidence for epigenetic abnormalities, and in particular DNA demethylation, in the pathogenesis of idiopathic and some forms of drug induced lupus, and how impaired ERK pathway signaling may contribute to the development of human lupus through effects on T cell DNA methylation. PMID:18723128

  13. Targeting RTK Signaling Pathways in Cancer

    PubMed Central

    Regad, Tarik

    2015-01-01

    The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions. PMID:26404379

  14. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    SciTech Connect

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer; Giehl, Klaudia; Rodemann, H. Peter

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival of wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.

  15. Aberrant Wnt/β-Catenin Signaling Pathway in Testis of Azoospermic Men​

    PubMed Central

    Ghaffari Novin, Marefat; Mirfakhraie, Reza; Nazarian, Hamid

    2015-01-01

    Purpose: The Importance and key role of Wnt/β-catenin signaling pathway in spermatogenesis is known. Abnormalities of this pathway in Sertoli and germ cells leads to infertility. Leydig cells play an important role in spermatogenesis and male reproduction. As of now, exact position of the Wnt/β-catenin signaling pathway disorders in the tissue and possible involvement of Leydig cells has not been investigated. Methods: Samples of our previous study were used for common Y chromosome microdeletions screening and common CFTR gene mutations.1 β-catenin gene expression were evaluated and compared between testicular tissue obtained by testicular sperm extraction (TESE) in two groups of obstructive (n=10) and non-obstructive (n=10) azoospermic infertile men. Location of β-catenin accumulation was detected by immunofluorescence technic and quantitatively compared in the tissue followed by counterstaining with anti-vimentin antibody. It was used as specific marker of leydig cells to determine and confirm the cells in which this gathering was occurred. Results: β-catenin gene expression does not have a significant difference between the obstructive azoospermia (0.998) and non-obstructive azoospermia group (0.891). β-catenin was abnormally aggregated in leydig cell of non-obstructive azoospermic men. Conclusion: Gathering β-catenin in cytoplasm of leydig cells can disrupt spermatogenesis and cause infertility in men. PMID:26504759

  16. RAS Initiative - Community Outreach

    Cancer.gov

    Through community and technical collaborations, workshops and symposia, and the distribution of reference reagents, the RAS Initiative seeks to increase the sharing of knowledge and resources essential to defeating cancers caused by mutant RAS genes.

  17. RAS Initiative - Events

    Cancer.gov

    The NCI RAS Initiative has organized multiple events with outside experts to discuss how the latest scientific and technological breakthroughs can be applied to discover vulnerabilities in RAS-driven cancers.

  18. Basal cell carcinoma and the carcinogenic role of aberrant Hedgehog signaling.

    PubMed

    Saran, Anna

    2010-06-01

    Basal cell carcinoma (BCC) is the most frequent cancer in the white population and its incidence appears to be increasing worldwide. While the majority of BCCs arise sporadically, many cases are attributable to basal cell nevus syndrome, or Gorlin syndrome, an autosomal dominantly inherited disorder characterized by the occurrence of multiple BCCs and by extracutaneous tumors. Genetic studies on patients with basal cell nevus syndrome indicate deregulation of the Hedgehog (Hh) pathway in epidermal keratinocytes as the primary event in the pathogenesis of BCC. This article summarizes the recent progress in understanding Hh-dependent BCC tumorigenesis, as well as evidence for deregulation of other molecular pathways, primarily the Wnt developmental pathway. Understanding the molecular genetics of BCC development has provided new opportunities for molecular therapy of this cancer by targeting Hh and other signaling pathways. PMID:20528237

  19. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  20. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  1. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    SciTech Connect

    Kumari, Gita; Mahalingam, S.

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  2. Linking Alzheimer's disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation.

    PubMed

    Kamal, Mohammad A; Priyamvada, Shubha; Anbazhagan, Arivarasu N; Jabir, Nasimudeen R; Tabrez, Shams; Greig, Nigel H

    2014-03-01

    Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two progressive and devastating health disorders afflicting millions of people worldwide. The probability and incidence of both have increased considerably in recent years consequent to increased longevity and population growth. Progressively more links are being continuously found between inflammation and central nervous system disorders like AD, Parkinson's disease, Huntington's disease, motor neuron disease, multiple sclerosis, stroke, traumatic brain injury and even cancers of the nervous tissue. The depth of the relationship depends on the timing and extent of anti- or pro-inflammatory gene expression. Inflammation has also been implicated in T2DM. Misfolding and fibrillization (of tissue specific and/or non-specific proteins) are features common to both AD and T2DM and are induced by as well as contribute to inflammation and stress (oxidative/ glycation). This review appraises the roles of inflammation and abnormalities in the insulin signaling system as important shared features of T2DM and AD. The capacity of anti-cholinesterases in reducing the level of certain common inflammatory markers in particular if they may provide therapeutic potential to mitigate awry mechanisms leading to AD.

  3. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  4. Biochemical similarity of Schizosaccharomyces pombe ras1 protein with RAS2 protein of Saccharomyces cervisiae.

    PubMed

    Onozawa, T; Danjoh, I; Fujiyama, A

    1995-07-01

    Schizosaccharomyces pombe contains single ras oncogene homologue, ras1, that functions in the signal transduction pathway conducting the cell's mating processes. To understand the biochemical basis of yeast ras proteins, we have purified the ras1 protein and compared the major biochemical constants with those of RAS2 protein from Saccharomyces cerevisiae and mammalian ras proteins. The purified ras1 protein showed a remarkably high Kd value for GDP binding (178 nM) and for binding with ATP. In contrast, the Kd value for GTP binding and the rate of GTPase activity were 64 nM and 77 x 10(-6) s-1 at 37 degrees C, respectively; both were higher than normal p21ras protein, but at the same level as the RAS2 protein. We directly measured rate of GTP binding and GDP binding which were 3.9 x 10(-3) s-1 and 1.8 x 10(-3) s-1 at 30 degrees C, respectively. On the other hand, exchange rates between bound and free nucleotides remained almost constant throughout the tested combination of GTP and GDP, and were several-fold lower than the binding rate. These results suggest that the release of the guanine nucleotide is the rate-limiting step in the ras-GTP/GDP cycle. As a whole, the biochemical properties of the ras1 protein are close to those of the RAS2 protein, although these two proteins function differently in the signal transduction pathway in the cells. PMID:7483844

  5. Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine.

    PubMed

    Holik, Aliaksei Z; Young, Madeleine; Krzystyniak, Joanna; Williams, Geraint T; Metzger, Daniel; Shorning, Boris Y; Clarke, Alan R

    2014-07-01

    Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance. PMID:25010414

  6. Brg1 Loss Attenuates Aberrant Wnt-Signalling and Prevents Wnt-Dependent Tumourigenesis in the Murine Small Intestine

    PubMed Central

    Holik, Aliaksei Z.; Young, Madeleine; Krzystyniak, Joanna; Williams, Geraint T.; Metzger, Daniel; Shorning, Boris Y.; Clarke, Alan R.

    2014-01-01

    Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance. PMID:25010414

  7. ROLE OF RAS IN METAL-INDUCED EGF RECEPTOR AND NFKB SIGNALING IN HUMAN AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    We have shown previously that EGF receptor signaling is triggered by some metals associated with ambient air particles. Western blot using phospho-specific antibodies showed that As, Zn and V activated EGF receptor tyrosine kinase and the downstream kinases, MEK1/2 and ERK1/2. Us...

  8. Novel FTS-diamine/cinnamic acid hybrids inhibit tumor cell proliferation and migration and promote apoptosis via blocking Ras-related signaling in vitro.

    PubMed

    Ling, Yong; Zhao, Xinmei; Li, Xianghua; Wang, Xuemin; Yang, Yang; Wang, Zhiqiang; Wang, Xinyang; Zhang, Jie; Zhang, Yihua

    2015-02-01

    Novel FTS-diamine/cinnamic acid hybrids 7a-f were prepared, and their in vitro biological activities were evaluated. It was found that 7c showed the strongest anti-proliferation activities against cancer cells in vitro and significant growth inhibition of tumor in vivo, and more potential for inhibitory selectivity to tumor cells than intermediate 6 and FTS. Furthermore, the anti-proliferative effect of 7c in Lovo cell lines followed a similar pattern, which included a dose-dependent induction of cell apoptosis via the up-regulation of Bax as well as activated caspase-3 and down-regulation of Bcl-2, and the inhibition of cancer cells migration and invasion in a concentration-dependent way. More importantly, 7c could significantly block Ras-related signaling pathways, which may contribute to its pro-apoptotic induction of the cancer cell lines and its inhibition of carcinoma cell proliferation, migration, and invasion. Therefore, our novel findings may provide a new framework for the discovery of new FTS hybrids for the intervention of human carcinoma cells.

  9. Novel triterpenoids isolated from raisins exert potent antiproliferative activities by targeting mitochondrial and Ras/Raf/ERK signaling in human breast cancer cells.

    PubMed

    Liu, Juan; Wang, Yihai; Liu, Rui Hai; He, Xiangjiu

    2016-07-13

    Raisins are produced in many regions of the world and may be eaten raw or used in cooking, baking and brewing. Bioactivity-guided fractionation of raisins was used to determine the chemical identity of bioactive constituents. Seven triterpenoids, including three novel triterpenoids, were isolated and identified. The novel triterpenoids were elucidated to be 3β,13β-dihydroxy-12,13-dihydrooleanolic acid (1), 3β,12β,13β-trihydroxy-12,13-dihydrooleanolic acid (2, TOA), and 3β,13β-dihydroxy-12,13-dihydroursolic acid (7), respectively. TOA showed the highest antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 3.60 ± 0.55 μM. Compounds 1, 3 and 7 also exhibited potent antiproliferative activity against MCF-7/DOX cells, with an EC50 value of 7.10 ± 0.65, 10.22 ± 0.90 and 8.91 ± 1.12 μM. Compounds 1 and 2 also exhibited potent antioxidant activities. Moreover, the detailed cytotoxic mechanisms of TOA were investigated by targeting the mitochondrial and protein tyrosine kinase signaling (Ras/Raf/ERK). The results strongly demonstrated that the novel triterpenoids isolated from raisins could be promising candidates for therapy of breast cancer. PMID:27359376

  10. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance. PMID:26655273

  11. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways.

    PubMed

    Xu, Yanmin; Huang, Ji; Ma, Leina; Shan, Juanjuan; Shen, Junjie; Yang, Zhi; Liu, Limei; Luo, Yongli; Yao, Chao; Qian, Cheng

    2016-02-28

    Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance.

  12. An orthosteric inhibitor of the RAS-SOS interaction.

    PubMed

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling.

  13. Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae.

    PubMed

    van Aelst, L; Jans, A W; Thevelein, J M

    1991-02-01

    Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-protein-mediated cAMP signal, which induces a protein phosphorylation cascade. Yeast strains without a functional CDC25 gene were deficient in basal cAMP synthesis and in the glucose-induced cAMP signal. Addition of dinitrophenol, which in wild-type strains strongly stimulates in vivo cAMP synthesis by lowering intracellular pH, did not enhance the cAMP level. cdc25 disruption mutants, in which the basal cAMP level was restored by the RAS2val19 oncogene or by disruption of the gene (PDE2) coding for the high-affinity phosphodiesterase, were still deficient in the glucose- and acidification-induced cAMP responses. These results indicate that the CDC25 gene product is required not only for basal cAMP synthesis in yeast but also for specific activation of cAMP synthesis by the signal transmission pathway leading from glucose to adenyl cyclase. They also show that intracellular acidification stimulates the pathway at or upstream of the CDC25 protein. When shifted to the restrictive temperature, cells with the temperature sensitive cdc25-5 mutation lost their cAMP content within a few minutes. After prolonged incubation at the restrictive temperature, cells with this mutation, and also those with the temperature sensitive cdc25-1 mutation, arrested at the 'start' point (in G1) of the cell cycle, and subsequently accumulated in the resting state G0. In contrast with cdc25-5 cells, however, the cAMP level did not decrease and normal glucose- and acidification-induced cAMP responses were observed when cdc25-1 cells were shifted to the restrictive temperature.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Aberrant amino acid signaling promotes growth and metastasis of hepatocellular carcinomas through Rab1A-dependent activation of mTORC1 by Rab1A

    PubMed Central

    Yang, Yang; Zhang, Mei-Yin; Rao, Hui-Lan; Wang, Hui-Yun; Zheng, X.F. Steven

    2015-01-01

    mTORC1 is a master regulator of cell growth and proliferation, and an established anticancer drug target. Aberrant mTORC1 signaling is common in hepatocellular carcinoma (HCC), but the underlying mechanism remains elusive. Rab1A is a newly identified mTORC1 activator that mediates an alternative amino acid (AA) signaling branch to Rag GTPases. Because liver is a physiological hub for nutrient sensing and metabolic homeostasis, we investigated the possible role of Rab1A in HCC. We found that Rab1A is frequently overexpressed in HCC, which enhances hyperactive AA-mTORC1 signaling, promoting malignant growth and metastasis of HCC in vitro and in vivo. Moreover, aberrant Rab1A expression is closely associated with poor prognosis. Strikingly, aberrant Rab1A overexpression leads to increased rapamycin sensitivity, indicating that inappropriate activation of AA signaling is a cancer-driving event in HCC. Our findings further suggest that Rab1A is a valuable biomarker for prognosis and personalized mTORC1-targeted therapy in liver cancer. PMID:26308575

  15. Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization.

    PubMed

    Mitin, Natalia Y; Ramocki, Melissa B; Zullo, Alfred J; Der, Channing J; Konieczny, Stephen F; Taparowsky, Elizabeth J

    2004-05-21

    The Ras small GTPase functions as a signaling node and is activated by extracellular stimuli. Upon activation, Ras interacts with a spectrum of functionally diverse downstream effectors and stimulates multiple cytoplasmic signaling cascades that regulate cellular proliferation, differentiation, and apoptosis. In addition to the association of Ras with the plasma membrane, recent studies have established an association of Ras with Golgi membranes. Whereas the effectors of signal transduction by activated, plasma membrane-localized Ras are well characterized, very little is known about the effectors used by Golgi-localized Ras. In this study, we report the identification of a novel Ras-interacting protein, Rain, that may serve as an effector for endomembrane-associated Ras. Rain does not share significant sequence similarity with any known mammalian proteins, but contains a Ras-associating domain that is found in RalGDS, AF-6, and other characterized Ras effectors. Rain interacts with Ras in a GTP-dependent manner in vitro and in vivo, requires an intact Ras core effector-binding domain for this interaction, and thus fits the definition of a Ras effector. Unlike other Ras effectors, however, Rain is localized to perinuclear, juxta-Golgi vesicles in intact cells and is recruited to the Golgi by activated Ras. Finally, we found that Rain cooperates with activated Raf and causes synergistic transformation of NIH3T3 cells. Taken together, these observations support a role for Rain as a novel protein that can serve as an effector of endomembrane-localized Ras.

  16. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  17. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking.

    PubMed

    Zhou, Mo; Wiener, Heidi; Su, Wenjuan; Zhou, Yong; Liot, Caroline; Ahearn, Ian; Hancock, John F; Philips, Mark R

    2016-08-15

    Ras guanosine triphosphatases (GTPases) regulate signaling pathways only when associated with cellular membranes through their C-terminal prenylated regions. Ras proteins move between membrane compartments in part via diffusion-limited, fluid phase transfer through the cytosol, suggesting that chaperones sequester the polyisoprene lipid from the aqueous environment. In this study, we analyze the nature of the pool of endogenous Ras proteins found in the cytosol. The majority of the pool consists of farnesylated, but not palmitoylated, N-Ras that is associated with a high molecular weight (HMW) complex. Affinity purification and mass spectrographic identification revealed that among the proteins found in the HMW fraction is VPS35, a latent cytosolic component of the retromer coat. VPS35 bound to N-Ras in a farnesyl-dependent, but neither palmitoyl- nor guanosine triphosphate (GTP)-dependent, fashion. Silencing VPS35 increased N-Ras's association with cytoplasmic vesicles, diminished GTP loading of Ras, and inhibited mitogen-activated protein kinase signaling and growth of N-Ras-dependent melanoma cells. PMID:27502489

  18. High TUBB3 expression, an independent prognostic marker in patients with early non-small cell lung cancer treated by preoperative chemotherapy, is regulated by K-Ras signaling pathway.

    PubMed

    Levallet, Guénaëlle; Bergot, Emmanuel; Antoine, Martine; Creveuil, Christian; Santos, Adriana O; Beau-Faller, Michelle; de Fraipont, Florence; Brambilla, Elisabeth; Levallet, Jérôme; Morin, Franck; Westeel, Virginie; Wislez, Marie; Quoix, Elisabeth; Debieuvre, Didier; Dubois, Fatéméh; Rouquette, Isabelle; Pujol, Jean-Louis; Moro-Sibilot, Denis; Camonis, Jacques; Zalcman, Gérard

    2012-05-01

    We assessed the prognostic and predictive value of β-tubulin III (TUBB3) expression, as determined by immunohistochemistry, in 412 non-small cell lung cancer (NSCLC) specimens from early-stage patients who received neoadjuvant chemotherapy (paclitaxel- or gemcitabine-based) in a phase III trial (IFCT-0002). We also correlated TUBB3 expression with K-Ras and EGF receptor (EGFR) mutations in a subset of 208 cryopreserved specimens. High TUBB3 protein expression was associated with nonsquamous cell carcinomas (P < 0.001) and K-Ras mutation (P < 0.001). The 127 (30.8%) TUBB3-negative patients derived more than 1 year of overall survival advantage, with more than 84 months median overall survival versus 71.7 months for TUBB3-positive patients [HR, 1.58; 95% confidence interval (CI), 1.11-2.25)]. This prognostic value was confirmed in multivariate analysis (adjusted HR for death, 1.51; 95% CI, 1.04-2.21; P = 0.031) with a bootstrapping validation procedure. TUBB3 expression was associated with nonresponse to chemotherapy (adjusted HR, 1.31; 95% CI, 1.01-1.70; P = 0.044) but had no predictive value (taxane vs. gemcitabine). Taking account of these clinical findings, we further investigated TUBB3 expression in isogenic human bronchial cell lines only differing by K-Ras gene status and assessed the effect of K-Ras short interfering RNA (siRNA) mediated depletion, cell hypoxia, or pharmacologic inhibitors of K-Ras downstream effectors, on TUBB3 protein cell content. siRNA K-Ras knockdown, inhibition of RAF/MEK (MAP-ERK kinase) and phosphoinositide 3-kinase (PI3K)/AKT signaling, and hypoxia were shown to downregulate TUBB3 expression in bronchial cells. This study is the first one to identify K-Ras mutations as determinant of TUBB3 expression, a chemoresistance marker. Our in vitro data deserve studies combining standard chemotherapy with anti-MEK or anti-PI3K drugs in patients with TUBB3-overexpressing tumors.

  19. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities

    PubMed Central

    Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  20. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities.

    PubMed

    Hubbard, Paul A; Moody, Colleen L; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  1. A requirement for extracellular signal-regulated kinase (ERK) function in the activation of AP-1 by Ha-Ras, phorbol 12-myristate 13-acetate, and serum.

    PubMed Central

    Frost, J A; Geppert, T D; Cobb, M H; Feramisco, J R

    1994-01-01

    The role of ERK-1 and ERK-2 in wild-type (wt) Ha-Ras, phorbol 12-myristate 13-acetate (PMA), and serum-induced AP-1 activity was studied. Microinjection of ERK-specific substrate peptides inhibited the induction of AP-1 activity by all three stimuli, whereas a control peptide had no effect. By using eukaryotic expression constructs encoding wt ERK-1 and kinase-deficient mutants of ERKs 1 and 2, it was found that ERK-1 and ERK-2 activities are required for AP-1 activation stimulated by either wt Ha-Ras, PMA, or serum. Overexpression of ERK-1 augmented wt Ha-Ras stimulation of AP-1, while having no effect upon PMA or serum stimulation. Overexpression of either kinase-deficient ERK-1 or kinase-deficient ERK-2 partially inhibited AP-1 activation by wt Ha-Ras but had no effect on PMA or serum-induced activation. Coexpression of both interfering mutants abolished AP-1 induction by wt Ha-Ras, PMA, or serum. We conclude that ERKs are necessary components in the pathway leading to the activation of AP-1 stimulated by these agents. Images PMID:8170999

  2. Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells.

    PubMed

    Hu, Z W; Shi, X Y; Lin, R Z; Hoffman, B B

    1999-01-01

    Activation of protein kinases is an important intermediate step in signaling pathways of many G protein-coupled receptors including alpha1-adrenergic receptors. The present study was designed to investigate the capacity of the three cloned subtypes of human alpha1-receptors, namely, alpha1A, alpha1B and alpha1D to activate phosphatidylinositol 3-kinase (PI 3-kinase) and p21ras in transfected NIH3T3 cells. Norepinephrine activated PI 3-kinase in cells expressing human alpha1A and alpha1B via pertussis toxin-insensitive G proteins; alpha1D-receptors did not detectably activate this kinase. Transient transfection of NIH 3T3 cells with the alpha-subunit of the G protein transducin (alpha(t)) a scavenger of betagamma-subunits released from activated G proteins, inhibited alpha1B-receptor but not alpha1A-receptor-stimulated PI 3-kinase activity. Stimulation of both alpha1A- and alpha1B-receptors activated p21ras and stimulated guanine nucleotide exchange on Ras protein. Overexpression of a dominant negative mutant of p21ras attenuated alpha1B-receptor but not alpha1A-receptor activation of PI 3-kinase. Overexpression of a dominant negative mutant of PI 3-kinase attenuated alpha1A- but not alpha1B-receptor-stimulated mitogen-activated protein kinase activity. These results demonstrate the capacity for heterologous signaling of the alpha1-adrenergic receptor subtypes in promoting cellular responses in NIH3T3 cells.

  3. Serum-dependent transcriptional networks identify distinct functional roles for H-Ras and N-Ras during initial stages of the cell cycle

    PubMed Central

    2009-01-01

    Background Using oligonucleotide microarrays, we compared transcriptional profiles corresponding to the initial cell cycle stages of mouse fibroblasts lacking the small GTPases H-Ras and/or N-Ras with those of matching, wild-type controls. Results Serum-starved wild-type and knockout ras fibroblasts had very similar transcriptional profiles, indicating that H-Ras and N-Ras do not significantly control transcriptional responses to serum deprivation stress. In contrast, genomic disruption of H-ras or N-ras, individually or in combination, determined specific differential gene expression profiles in response to post-starvation stimulation with serum for 1 hour (G0/G1 transition) or 8 hours (mid-G1 progression). The absence of N-Ras caused significantly higher changes than the absence of H-Ras in the wave of transcriptional activation linked to G0/G1 transition. In contrast, the absence of H-Ras affected the profile of the transcriptional wave detected during G1 progression more strongly than did the absence of N-Ras. H-Ras was predominantly functionally associated with growth and proliferation, whereas N-Ras had a closer link to the regulation of development, the cell cycle, immunomodulation and apoptosis. Mechanistic analysis indicated that extracellular signal-regulated kinase (ERK)-dependent activation of signal transducer and activator of transcription 1 (Stat1) mediates the regulatory effect of N-Ras on defense and immunity, whereas the pro-apoptotic effects of N-Ras are mediated through ERK and p38 mitogen-activated protein kinase signaling. Conclusions Our observations confirm the notion of an absolute requirement for different peaks of Ras activity during the initial stages of the cell cycle and document the functional specificity of H-Ras and N-Ras during those processes. PMID:19895680

  4. Metabolic Dependencies in RAS-Driven Cancers.

    PubMed

    Kimmelman, Alec C

    2015-04-15

    The ability to inhibit the RAS oncogene has been the holy grail of oncology because of the critical role of this gene in a multitude of tumor types. In addition, RAS-mutant tumors are among the most aggressive and refractory to treatment. Although directly targeting the RAS oncogene has proven challenging, an alternative approach for treating RAS-driven cancers is to inhibit critical downstream events that are required for tumor maintenance. Indeed, much focus has been put on inhibiting signaling cascades downstream of RAS. Recent studies have shown that oncogenic RAS promotes a metabolic reprogramming of tumor cells, shifting them toward an anabolic metabolism necessary to produce biomass to support unconstrained proliferation. These cancers also use a diverse set of fuel sources to meet their metabolic needs and have even developed a variety of mechanisms to act as metabolic scavengers to obtain necessary metabolic substrates from both extracellular and intracellular sources. Collectively, these adaptations can create "metabolic bottlenecks" whereby tumor cells rely on particular pathways or rate-limiting metabolites. In this regard, inhibiting individual or combinations of these metabolic pathways can attenuate growth in preclinical models. Because these dependencies are tumor selective and downstream of oncogenic RAS, there is the opportunity for therapeutic intervention. Although targeting tumor metabolism is still in the early days of translation to patients, our continued advances in understanding critical metabolic adaptations in RAS-driven cancers, as well as the ability to study this altered metabolism in relevant tumor models, will accelerate the development of new therapeutic approaches. Clin Cancer Res; 21(8); 1828-34. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878364

  5. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  6. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  7. Aberrant Cytoplasm Localization and Protein Stability of SIRT1 is Regulated by PI3K/IGF-1R Signaling in Human Cancer Cells

    PubMed Central

    Byles, Vanessa; Chmilewski, Laura K.; Wang, Joyce; Zhu, Lijia; Forman, Lora W.; Faller, Douglas V.; Dai, Yan

    2010-01-01

    SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway. PMID:20941378

  8. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells.

    PubMed Central

    Koide, H; Satoh, T; Nakafuku, M; Kaziro, Y

    1993-01-01

    Ras is involved in signal transduction of various factors for growth, differentiation, and oncogenesis. Recent studies have revealed several proteins that function upstream and downstream of the Ras signaling pathway. However, its immediate downstream target molecular has not yet been identified. In an effort to identify the Ras-associated downstream proteins, we added recombinant Ha-Ras in a GTP-bound form to cell-free lysates and used several antibodies against Ras to immunoprecipitate Ras complexes. We found that a serine/threonine kinase, Raf-1, was coimmunoprecipitated with Ha-Ras by two anti-Ras antibodies (LA069 and Y13-238), whereas a neutralizing antibody against Ras (Y13-259) could not precipitate Raf-1. The coimmunoprecipitation was observed with a complex of Ras and guanosine 5'-[gamma- thio]triphosphate but not with a complex of Ras and guanosine 5'-[beta-thio]diphosphate. The GTP-dependent association of Ha-Ras with Raf-1 was observed with lysates of various types of cultured cells, including NIH 3T3, pheochromocytoma (PC) 12, Ba/F3, and Jurkat T cells, and also with crude extracts from rat brain. Furthermore, Raf-1 was precipitated with a transforming Ha-Ras mutant ([Val12]Ras) and wild-type Ha-Ras but not with an effector-region mutant ([Leu35,ARg37]Ras) that lacks transforming activity. These results indicate that Ras.GTP physically associates with Raf either directly or through other component(s) and strongly suggest that Raf functions in close downstream proximity to Ras in mammalian cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8378348

  9. Cellular and subcellular localization of Ras guanyl nucleotide-releasing protein in the rat hippocampus.

    PubMed

    Pierret, P; Vallée, A; Mechawar, N; Dower, N A; Stone, J C; Richardson, P M; Dunn, R J

    2001-01-01

    Ras guanyl nucleotide-releasing protein (RasGRP) is a recently discovered Ras guanyl nucleotide exchange factor that is expressed in selected regions of the rodent CNS, with high levels of expression in the hippocampus. Biochemical studies suggest that RasGRP can activate the Ras signal pathway in response to changes in diacylglycerol and possibly calcium. To investigate potential sites for RasGRP signaling, we have determined the cellular and subcellular localization of RasGRP protein in adult rat hippocampus, and have also examined the appearance of RasGRP mRNA and protein during hippocampal development. RasGRP immunoreactivity is predominately localized to those neurons participating in the direct cortico-hippocampo-cortical loop. In both hippocampal and entorhinal neurons, RasGRP protein appeared to be localized to both dendrites and somata, but not to axons. Electron microscopy of hippocampal pyramidal cells confirmed RasGRP immunoreactivity in neuronal cell bodies and dendrites, where it appeared to be associated with microtubules. The localization of RasGRP to dendrites suggests a role for this pathway in the regulation of dendritic function. Examination of developing hippocampal structures indicated that RasGRP mRNA and protein appear synchronously during the first 2 weeks of postnatal development as these neurons become fully mature. This result indicates that the RasGRP signal transduction pathway is not required during early hippocampal development, but is a feature of mature neurons during the later stages of development.

  10. Nerve Growth Factor Regulation of Cyclin D1 in PC12 Cells through a p21RAS Extracellular Signal-regulated Kinase Pathway Requires Cooperative Interactions between Sp1 and Nuclear Factor-κB

    PubMed Central

    Marampon, Francesco; Casimiro, Mathew C.; Fu, Maofu; Powell, Michael J.; Popov, Vladimir M.; Lindsay, Jaime; Zani, Bianca M.; Ciccarelli, Carmela; Watanabe, Genichi; Lee, Richard J.

    2008-01-01

    The PC12 pheochromocytoma cell line responds to nerve growth factor (NGF) by exiting from the cell cycle and differentiating to induce extending neurites. Cyclin D1 is an important regulator of G1/S phase cell cycle progression, and it is known to play a role in myocyte differentiation in cultured cells. Herein, NGF induced cyclin D1 promoter, mRNA, and protein expression via the p21RAS pathway. Antisense- or small interfering RNA to cyclin D1 abolished NGF-mediated neurite outgrowth, demonstrating the essential role of cyclin D1 in NGF-mediated differentiation. Expression vectors encoding mutants of the Ras/mitogen-activated protein kinase pathway, and chemical inhibitors, demonstrated NGF induction of cyclin D1 involved cooperative interactions of extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase pathways downstream of p21RAS. NGF induced the cyclin D1 promoter via Sp1, nuclear factor-κB, and cAMP-response element/activated transcription factor sites. NGF induction via Sp1 involved the formation of a Sp1/p50/p107 complex. Cyclin D1 induction by NGF governs differentiation and neurite outgrowth in PC12 cells. PMID:18367547

  11. EGF receptor specificity for phosphotyrosine-primed substrates provides signal integration with Src

    PubMed Central

    Begley, Michael J; Yun, Cai-hong; Gewinner, Christina A; Asara, John M; Johnson, Jared L; Coyle, Anthony J; Eck, Michael J; Apostolou, Irina; Cantley, Lewis C

    2016-01-01

    Aberrant activation of the EGF receptor (EGFR) contributes to many human cancers by activating the Ras-MAPK and other pathways. EGFR signaling is augmented by Src-family kinases, but the mechanism is poorly understood. Here, we show that human EGFR preferentially phosphorylates peptide substrates that are primed by a prior phosphorylation. Utilizing peptides based on the sequence of the adaptor protein Shc1, we show that Src mediates the priming phosphorylation, promoting subsequent phosphorylation by EGFR. Importantly, the doubly phosphorylated Shc1 peptide binds more tightly to the Ras activator Grb2, a key step in activating the Ras-MAPK pathway, than singly phosphorylated peptides. Finally, a crystal structure of EGFR in complex with a primed Shc1 peptide reveals the structural basis for EGFR substrate specificity. These results provide a molecular explanation for the integration of Src and EGFR signaling with downstream effectors such as Ras. PMID:26551075

  12. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway.

    PubMed Central

    Khwaja, A; Rodriguez-Viciana, P; Wennström, S; Warne, P H; Downward, J

    1997-01-01

    Upon detachment from the extracellular matrix, epithelial cells enter into programmed cell death, a phenomenon known as anoikis, ensuring that they are unable to survive in an inappropriate location. Activated ras oncogenes protect cells from this form of apoptosis. The nature of the survival signals activated by integrin engagement and usurped by oncogenic Ras are unknown: here we show that in both cases phosphoinositide 3-OH kinase (PI 3-kinase), but not Raf, mediates this protection, acting through protein kinase B/Akt (PKB/Akt). Constitutively activated PI 3-kinase or PKB/Akt block anoikis, while inhibition of PI 3-kinase abrogates protection by Ras, but not PKB/Akt. Inhibition of either PI 3-kinase or PKB/Akt induces apoptosis in adherent epithelial cells. Attachment of cells to matrix leads to rapid elevation of the levels of PI 3-kinase lipid products and PKB/Akt activity, both of which remain high in Ras-transformed cells even in suspension. PI 3-kinase acting through PKB/Akt is therefore implicated as a key mediator of the aberrant survival of Ras-transformed epithelial cells in the absence of attachment, and mediates matrix-induced survival of normal epithelial cells. PMID:9184223

  13. CDK4 coexpression with Ras generates malignant human epidermal tumorigenesis.

    PubMed

    Lazarov, Mirella; Kubo, Yoshiaki; Cai, Ti; Dajee, Maya; Tarutani, Masahito; Lin, Qun; Fang, Min; Tao, Shiying; Green, Cheryl L; Khavari, Paul A

    2002-10-01

    Ras acts with other proteins to induce neoplasia. By itself, however, strong Ras signaling can suppress proliferation of normal cells. In primary epidermal cells, we found that oncogenic Ras transiently decreases cyclin-dependent kinase (CDK) 4 expression in association with cell cycle arrest in G1 phase. CDK4 co-expression circumvents Ras growth suppression and induces invasive human neoplasia resembling squamous cell carcinoma. Tumorigenesis is dependent on CDK4 kinase function, with cyclin D1 required but not sufficient for this process. In facilitating escape from G1 growth restraints, Ras and CDK4 alter the composition of cyclin D and cyclin E complexes and promote resistance to growth inhibition by INK4 cyclin-dependent kinase inhibitors. These data identify a new role for oncogenic Ras in CDK4 regulation and highlight the functional importance of CDK4 suppression in preventing uncontrolled growth.

  14. The RAS Problem

    Cancer.gov

    More than 30% of all human cancers, including a high percentage of lung and colon cancers and 95% of pancreatic cancers are driven by mutations and possibly amplification (increased copies) of RAS genes.

  15. Classic Ras Proteins Promote Proliferation and Survival Via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells

    PubMed Central

    Brossier, Nicole M.; Prechtl, Amanda M.; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S.; Byer, Stephanie J.; Brosius, Stephanie N.; Carroll, Steven L.

    2015-01-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras and K-Ras are coexpressed with their activators, (guanine nucleotide exchange factors), in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades. PMID:25946318

  16. Classic Ras Proteins Promote Proliferation and Survival via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells.

    PubMed

    Brossier, Nicole M; Prechtl, Amanda M; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S; Byer, Stephanie J; Brosius, Stephanie N; Carroll, Steven L

    2015-06-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras, and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis, and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras, and K-Ras are coexpressed with their activators (guanine nucleotide exchange factors) in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells, and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras, and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation, and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades.

  17. [Research advances of K-ras mutation in the prognosis and targeted therapy of gastric cancer].

    PubMed

    Huang, Y; Wei, J; Liu, B R

    2016-02-01

    K-ras mutations have been described in 30% of human cancers with significantly different mutation frequencies. High K-ras mutation frequency is found in many cancers such as pancreas and lung cancers, whereas, gastric cancer has a relatively low K-ras mutation frequency. In recent years, numerous researches have focused on the K-ras mutation in gastric cancer. This review summarizes the K-ras mutation frequency in gastric cancer, the relationship of K-ras mutation with clinicopathologic features and prognosis of gastric cancer patients, targeted therapy for K-ras mutated gastric cancer, some small-molecular inhibitors of K-ras, and development of targeted therapy drugs for K-ras signaling pathway in gastric cancer.

  18. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    PubMed Central

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-01-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis. PMID:27528092

  19. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    NASA Astrophysics Data System (ADS)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  20. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer.

    PubMed

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M J; Huang, Yao-Ting; Ng, Enders K W; Cheng, Alfred S L; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W Y

    2016-01-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis. PMID:27528092

  1. Sustained Wnt/β-catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole.

    PubMed

    Herrera, Antonio; Saade, Murielle; Menendez, Anghara; Marti, Elisa; Pons, Sebastian

    2014-01-01

    β-Catenin mediates the canonical Wnt pathway by stimulating Tcf-dependent transcription and also associates to N-cadherin at the apical complex (AC) of neuroblasts. Here, we show that while β-catenin activity is required to form the AC and to maintain the cell polarity, oncogenic mutations that render stable forms of β-catenin (sβ-catenin) maintain the stemness of neuroblasts, inhibiting their differentiation and provoking aberrant growth. In examining the transcriptional and structural roles of β-catenin, we find that while β-catenin/Tcf transcriptional activity induces atypical protein kinase C (aPKC) expression, an alternative effect of β-catenin restricts aPKC to the apical pole of neuroepithelial cells. In agreement, we show that a constitutively active form of aPKC reproduces the neuroepithelial aberrations induced by β-catenin. Therefore, we conclude that β-catenin controls the cell fate and polarity of the neuroblasts through the expression and localization of aPKC. PMID:24942669

  2. TC21 and Ras share indistinguishable transforming and differentiating activities.

    PubMed

    Graham, S M; Oldham, S M; Martin, C B; Drugan, J K; Zohn, I E; Campbell, S; Der, C J

    1999-03-25

    Constitutively activated mutants of the Ras-related protein TC21/R-Ras2 cause tumorigenic transformation of NIH3T3 cells. However, unlike Ras, TC21 fails to bind to and activate the Raf-1 serine-threonine kinase. Thus, whereas Ras transformation is critically dependent on Raf-1 TC21 activity is promoted by activation of Raf-independent signaling pathways. In the present study, we have further compared the functions of Ras and TC21. First we determined the basis for the inability of TC21 to activate Raf-1. Whereas Ras can interact with the two distinct Ras-binding sequences in NH2-terminus of Raf-1, designated RBS1 and Raf-Cys, TC21 could only bind Raf-Cys. Thus, the inability of TC21 to bind to RBS1 may prevent it from promoting the translocation of Raf-1 to the plasma membrane. Second, we found that TC21 is an activator of the JNK and p38, but not ERK, mitogen-activated protein kinase cascades and that TC21 transforming activity was dependent on Rac function. Thus, like Ras, TC21 may activate a Rac/JNK pathway. Third, we determined if TC21 could cause the same biological consequences as Ras in three distinct cell types. Like Ras, activated TC21 caused transformation of RIE-1 rat intestinal epithelial cells and terminal differentiation of PC12 pheochromocytoma cells. Finally, activated TC21 blocked serum starvation-induced differentiation of C2 myoblasts, whereas dominant negative TC21 greatly accelerated this differentiation process. Therefore, TC21 and Ras share indistinguishable biological activities in all cell types that we have evaluated. These results support the importance of Raf-independent pathways in mediating the actions of Ras and TC21.

  3. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding

    PubMed Central

    Ting, Pamela Y.; Johnson, Christian W.; Fang, Cong; Cao, Xiaoqing; Graeber, Thomas G.; Mattos, Carla; Colicelli, John

    2015-01-01

    RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr137. Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr137 phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr137 is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRASY137F and HRASY137E revealed conformation changes radiating from the mutated residue. Although consistent with Tyr137 participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr137 phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRASG12V with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr137 allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.—Ting, P. Y., Johnson, C. W., Fang, C., Cao, X., Graeber, T. G., Mattos, C., Colicelli, J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. PMID:25999467

  4. Ras chaperones: new targets for cancer and immunotherapy.

    PubMed

    Kloog, Yoel; Elad-Sfadia, Galit; Haklai, Roni; Mor, Adam

    2013-01-01

    The Ras inhibitor S-trans,trans-farnesylthiosalicylic acid (FTS, Salirasib®) interferes with Ras membrane interactions that are crucial for Ras-dependent signaling and cellular transformation. FTS had been successfully evaluated in clinical trials of cancer patients. Interestingly, its effect is mediated by targeting Ras chaperones that serve as key coordinators for Ras proper folding and delivery, thus offering a novel target for cancer therapy. The development of new FTS analogs has revealed that the specific modifications to the FTS carboxyl group by esterification and amidation yielded compounds with improved growth inhibitory activity. When FTS was combined with additional therapeutic agents its activity toward Ras was significantly augmented. FTS should be tested not only in cancer but also for genetic diseases associated with abnormal Ras signaling, as well as for various inflammatory and autoimmune disturbances, where Ras plays a major role. We conclude that FTS has a great potential both as a safe anticancer drug and as a promising immune modulator agent. PMID:25033809

  5. Phase aberration effects in elastography.

    PubMed

    Varghese, T; Bilgen, M; Ophir, J

    2001-06-01

    In sonography, phase aberration plays a role in the corruption of sonograms. Phase aberration does not have a significant impact on elastography, if statistically similar phase errors are present in both the pre- and postcompression signals. However, if the phase errors are present in only one of the pre- or postcompression signal pairs, the precision of the strain estimation process will be reduced. In some cases, increased phase errors may occur only in the postcompression signal due to changes in the tissue structure with the applied compression. Phase-aberration effects increase with applied strain and may be viewed as an image quality derating factor, much like frequency-dependent attenuation or undesired lateral tissue motion. In this paper, we present a theoretical and simulation study of the effects of phase aberration on the elastographic strain-estimation process, using the strain filter approach.

  6. Inhibition of Ras oncogenic activity by Ras protooncogenes.

    PubMed

    Diaz, Roberto; Lue, Jeffrey; Mathews, Jeremy; Yoon, Andrew; Ahn, Daniel; Garcia-España, Antonio; Leonardi, Peter; Vargas, Marcelo P; Pellicer, Angel

    2005-01-10

    Point mutations in ras genes have been found in a large number and wide variety of human tumors. These oncogenic Ras mutants are locked in an active GTP-bound state that leads to a constitutive and deregulated activation of Ras function. The dogma that ras oncogenes are dominant, whereby the mutation of a single allele in a cell will predispose the host cell to transformation regardless of the presence of the normal allele, is being challenged. We have seen that increasing amounts of Ras protooncogenes are able to inhibit the activity of the N-Ras oncogene in the activation of Elk in NIH 3T3 cells and in the formation of foci. We have been able to determine that the inhibitory effect is by competition between Ras protooncogenes and the N-Ras oncogene that occurs first at the effector level at the membranes, then at the processing level and lastly at the effector level in the cytosol. In addition, coexpression of the N-Ras protooncogene in thymic lymphomas induced by the N-Ras oncogene is associated with increased levels of p107, p130 and cyclin A and decreased levels of Rb. In the present report, we have shown that the N-Ras oncogene is not truly dominant over Ras protooncogenes and their competing activities might be depending on cellular context.

  7. RAS - Screens & Assays - Drug Discovery

    Cancer.gov

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  8. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function.

    PubMed

    Alvarez-Moya, B; López-Alcalá, C; Drosten, M; Bachs, O; Agell, N

    2010-11-01

    Fine tuning of Ras activity is widely known as a mechanism to induce different cellular responses. Recently, we have shown that calmodulin (CaM) binds to K-Ras and that K-Ras phosphorylation inhibits its interaction with CaM. In this study we report that CaM inhibits K-Ras phosphorylation at Ser181 by protein kinase C (PKC) in vivo, and this is a mechanism to modulate K-Ras activity and signaling. Although CaM inhibition increased the activation of endogenous K-Ras, PKC inhibition decreased its activation status. We demonstrate that K-Ras phosphorylation decreased susceptibility to p120GAP activity. Accordingly, we also observed that non-phosphorylable K-Ras mutant exhibits a less sustained activation profile and do not efficiently activate AKT at low growth factor doses compared with wild-type K-Ras. It is interesting that the physiological responses induced by K-Ras are affected by this phosphorylation; when K-Ras cannot be phosphorylated it exhibits a remarkably decreased ability to stimulate proliferation in non-saturated serum conditions. Finally, we demonstrate that phosphorylation also regulates oncogenic K-Ras functions, as focus formation capacity, mobility and apoptosis resistance upon adriamycin treatment of cells expressing oncogenic K-Ras that cannot be phosphorylated are highly compromised. Moreover, at low serum concentration proliferation and survival is practically inhibited when cells cannot phosphorylate oncogenic K-Ras. In this condition, K-Ras phosphorylation is essential to ensure a proper activation of mitogen-activated protein kinase and PI3K/AKT pathways. In summary, our findings suggest that the interplay between CaM interaction and PKC phosphorylation is essential to regulate non-oncogenic and oncogenic K-Ras activity and functionality.

  9. Ras activation and symmetry breaking during Dictyostelium chemotaxis.

    PubMed

    Kortholt, Arjan; Keizer-Gunnink, Ineke; Kataria, Rama; Van Haastert, Peter J M

    2013-10-01

    Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).

  10. Aberrant activation of canonical Notch1 signaling in the mouse uterus decreases progesterone receptor by hypermethylation and leads to infertility.

    PubMed

    Su, Ren-Wei; Strug, Michael R; Jeong, Jae-Wook; Miele, Lucio; Fazleabas, Asgerally T

    2016-02-23

    In mammalian reproduction, implantation is one of the most critical events. Failure of implantation and the subsequent decidualization contribute to more than 75% of pregnancy losses in women. Our laboratory has previously reported that inhibition of Notch signaling results in impaired decidualization in both women and a transgenic mouse model. In this study, we generated a Notch gain-of-function transgenic mouse by conditionally overexpressing the Notch1 intracellular domain (N1ICD) in the reproductive tract driven by a progesterone receptor (Pgr) -Cre. We show that the overexpression of N1ICD in the uterus results in complete infertility as a consequence of multiple developmental and physiological defects, including the absence of uterine glands and dysregulation of progesterone and estrogen signaling by a Recombination Signal Binding Protein Jκ-dependent signaling mechanism. We further show that the inhibition of progesterone signaling is caused by hypermethylation of its receptor Pgr by Notch1 overexpression through the transcription factor PU.1 and DNA methyltransferase 3b (Dnmt3b). We have generated a mouse model to study the consequence of increased Notch signaling in female reproduction and provide the first evidence, to our knowledge, that Notch signaling can regulate epigenetic modification of the Pgr.

  11. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  12. The Endocrine Dyscrasia that Accompanies Menopause and Andropause Induces Aberrant Cell Cycle Signaling that Triggers Cell Cycle Reentry of Post-mitotic Neurons, Neurodysfunction, Neurodegeneration and Cognitive Disease

    PubMed Central

    Atwood, Craig S.; Bowen, Richard L.

    2016-01-01

    Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and

  13. A Phase IIa Randomized, Double-Blind Trial of Erlotinib in Inhibiting Epidermal Growth Factor Receptor Signaling in Aberrant Crypt Foci of the Colorectum

    PubMed Central

    Gillen, Daniel L.; Meyskens, Frank L.; Morgan, Timothy R.; Zell, Jason; Carroll, Robert; Benya, Richard; Chen, Wen-Pin; Mo, Allen; Tucker, Chris; Bhattacharya, Asmita; Huang, Zhiliang; Arcilla, Myra; Wong, Vanessa; Chung, Jinah; Gonzalez, Rachel; Rodriguez, Luz Maria; Szabo, Eva; Rosenberg, Daniel W.; Lipkin, Steven M.

    2015-01-01

    Colorectal cancer (CRC) progresses through multiple distinct stages that are potentially amenable to chemopreventative intervention. Epidermal Growth Factor Receptor (EGFR) inhibitors are efficacious in advanced tumors including CRC. There is significant evidence that EGFR also plays important roles in CRC initiation, and that EGFR inhibitors block tumorigenesis. We performed a double-blind randomized clinical trial to test whether the EGFR inhibitor erlotinib given for up to 30 days had an acceptable safety and efficacy profile to reduce EGFR signaling biomarkers in colorectal aberrant crypt foci (ACF), a subset of which progress to CRC, and normal rectal tissue. A total of N=45 patients were randomized to one of three erlotinib doses (25 mg, 50 mg, 100 mg) with randomization stratified by non-steroidal anti-inflammatory drug (NSAID) use. There were no unanticipated adverse events with Erlotinib therapy. Erlotinib was detected in both normal rectal mucosa and ACFs. Colorectal ACF phosphoERK, phosphoEGFR and total EGFR signaling changes from baseline were modest and there was no dose response. Overall, this trial did not meet is primary efficacy endpoint. Colorectal EGFR signaling inhibition by erlotinib is therefore likely insufficient to merit further studies without additional pre-screening stratification or potentially longer duration of use. PMID:25604134

  14. A phase IIa randomized, double-blind trial of erlotinib in inhibiting epidermal growth factor receptor signaling in aberrant crypt foci of the colorectum.

    PubMed

    Gillen, Daniel L; Meyskens, Frank L; Morgan, Timothy R; Zell, Jason A; Carroll, Robert; Benya, Richard; Chen, Wen-Pin; Mo, Allen; Tucker, Chris; Bhattacharya, Asmita; Huang, Zhiliang; Arcilla, Myra; Wong, Vanessa; Chung, Jinah; Gonzalez, Rachel; Rodriguez, Luz Maria; Szabo, Eva; Rosenberg, Daniel W; Lipkin, Steven M

    2015-03-01

    Colorectal cancer progresses through multiple distinct stages that are potentially amenable to chemopreventative intervention. Epidermal growth factor receptor (EGFR) inhibitors are efficacious in advanced tumors including colorectal cancer. There is significant evidence that EGFR also plays important roles in colorectal cancer initiation, and that EGFR inhibitors block tumorigenesis. We performed a double-blind randomized clinical trial to test whether the EGFR inhibitor erlotinib given for up to 30 days had an acceptable safety and efficacy profile to reduce EGFR signaling biomarkers in colorectal aberrant crypt foci (ACF), a subset of which progress to colorectal cancer, and normal rectal tissue. A total of 45 patients were randomized to one of three erlotinib doses (25, 50, and 100 mg) with randomization stratified by nonsteroidal anti-inflammatory drug (NSAID) use. There were no unanticipated adverse events with erlotinib therapy. Erlotinib was detected in both normal rectal mucosa and ACFs. Colorectal ACF phosphorylated ERK (pERK), phosphorylated EGFR (pEGFR), and total EGFR signaling changes from baseline were modest and there was no dose response. Overall, this trial did not meet is primary efficacy endpoint. Colorectal EGFR signaling inhibition by erlotinib is therefore likely insufficient to merit further studies without additional prescreening stratification or potentially longer duration of use.

  15. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition

    PubMed Central

    Garcia-Rendueles, Maria E.R.; Ricarte-Filho, Julio C.; Untch, Brian R.; Landa, Iňigo; Knauf, Jeffrey A.; Voza, Francesca; Smith, Vicki E.; Ganly, Ian; Taylor, Barry S.; Persaud, Yogindra; Oler, Gisele; Fang, Yuqiang; Jhanwar, Suresh C.; Viale, Agnes; Heguy, Adriana; Huberman, Kety H.; Giancotti, Filippo; Ghossein, Ronald; Fagin, James A.

    2015-01-01

    Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation are insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacological disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling, and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. PMID:26359368

  16. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.

    PubMed

    Kishi, Noriyuki; MacDonald, Jessica L; Ye, Julia; Molyneaux, Bradley J; Azim, Eiman; Macklis, Jeffrey D

    2016-01-29

    Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation.

  17. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice

    PubMed Central

    Kishi, Noriyuki; MacDonald, Jessica L.; Ye, Julia; Molyneaux, Bradley J.; Azim, Eiman; Macklis, Jeffrey D.

    2016-01-01

    Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation. PMID:26821816

  18. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  19. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  20. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  1. Characterization of the intracellular signalling pathways that underlie growth-factor-stimulated glucose transport in Xenopus oocytes: evidence for ras- and rho-dependent pathways of phosphatidylinositol 3-kinase activation.

    PubMed Central

    Thomson, F J; Jess, T J; Moyes, C; Plevin, R; Gould, G W

    1997-01-01

    The stimulation of glucose transport is one of the early cellular responses to growth factors and is essential for cell proliferation, yet the molecular processes that underlie this response are poorly defined. The aim of this study was to characterize the role of the low-molecular-mass G-proteins, Ras and Rho, and their downstream targets, Raf protein kinase and phosphatidylinositol 3-kinase, in the regulation of glucose transport in Xenopus oocytes by two distinct growth-factor receptors: the insulin-like growth factor I (IGF-I) tyrosine kinase receptor and the heterotrimeric G-protein-coupled lysophosphatidic acid (LPA) receptor. Microinjection of a neutralizing anti-Ras antibody partially blocked IGF-I-stimulated deoxyglucose uptake but was without effect on LPA-stimulated deoxyglucose uptake. In contrast, microinjection of the C3 coenzyme of botulinum toxin, which selectively ADP-ribosylates and inactivates Rho, inhibited LPA-stimulated, but not IGF-I-stimulated, deoxyglucose uptake. Similarly, LPA- but not IGF-I-stimulated deoxyglucose uptake was attenuated in oocytes expressing a dominant negative rho construct. Cells expressing a dominant negative mutant of Raf protein kinase exhibited markedly reduced sensitivity to both LPA and IGF-I, consistent with a role for endogenous Raf in glucose uptake by both growth factors. Furthermore, expression of a constitutively activated form of raf-1 resulted in a growth-factor-independent increase in deoxyglucose uptake. Measurements of phosphatidylinositol 3-kinase activity in microinjected cells support the hypothesis that the IGF-I receptor stimulates glucose transport by a Ras-dependent activation of phosphatidylinositol 3-kinase, whereas the G-protein-coupled LPA receptor controls this response by a pathway that involves Rho-dependent activation of a distinct phosphatidylinositol 3-kinase. Thus we provide evidence for clear differences in the signalling pathways that control glucose transport by G

  2. A Ras subfamily GTPase shows cell cycle-dependent nuclear localization

    PubMed Central

    Sutherland, Brent W.; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Previously characterized Ras subfamily proteins have been found to be predominantly associated with the plasma membrane where they function in signal transduction pathways to convey extracellular signals to intracellular targets. Here, we provide evidence that the Dictyostelium Ras subfamily protein RasB has a novel subcellular localization and function. The protein is predominantly localized in the nucleus during most of the cell cycle. Furthermore, during mitosis and cytokinesis RasB assumes a diffuse cellular localization despite the fact that the nuclear membrane stays intact. The linkage between the position of RasB in the cell and division suggests that it may have a role in nuclear division. Consistent with this idea, rasB– cells exhibit severe growth defects and cells overexpressing an activated version of RasB are multinucleate. PMID:11606416

  3. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization.

    PubMed

    Cadwallader, K A; Paterson, H; Macdonald, S G; Hancock, J F

    1994-07-01

    Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.

  4. The hypervariable region of K-Ras4B is responsible for its specific interactions with Calmodulin

    PubMed Central

    Abraham, Sherwin J.; Nolet, Ryan P.; Calvert, Richard J.; Anderson, Lucy M.; Gaponenko, Vadim

    2009-01-01

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival and motility. The p21 Ras proteins such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry we demonstrate that the hypervariable region of K-Ras contributes in a major way to the interaction with calmodulin while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca2+-loaded calmodulin with micromolar affinity, while the GTP-γ-S loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin. PMID:19583261

  5. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.

    PubMed

    Abraham, Sherwin J; Nolet, Ryan P; Calvert, Richard J; Anderson, Lucy M; Gaponenko, Vadim

    2009-08-18

    K-Ras4B belongs to the family of p21 Ras GTPases, which play an important role in cell proliferation, survival, and motility. The p21 Ras proteins, such as K-Ras4B, K-Ras4A, H-Ras, and N-Ras, share 85% sequence homology and activate very similar signaling pathways. Only the C-terminal hypervariable regions differ significantly. A growing body of literature demonstrates that each Ras isoform possesses unique functions in normal physiological processes as well as in pathogenesis. One of the central questions in the field of Ras biology is how these very similar proteins achieve such remarkable specificity in protein-protein interactions that regulate signal transduction pathways. Here we explore specific binding of K-Ras4B to calmodulin. Using NMR techniques and isothermal titration calorimetry, we demonstrate that the hypervariable region of K-Ras4B contributes in a major way to the interaction with calmodulin, while the catalytic domain of K-Ras4B provides a way to control the interaction by nucleotide binding. The hypervariable region of K-Ras4B binds specifically to the C-terminal domain of Ca(2+)-loaded calmodulin with micromolar affinity, while the GTP-gamma-S-loaded catalytic domain of K-Ras4B may interact with the N-terminal domain of calmodulin.

  6. Aberrant calcium signaling by transglutaminase-mediated posttranslational modification of inositol 1,4,5-trisphosphate receptors.

    PubMed

    Hamada, Kozo; Terauchi, Akiko; Nakamura, Kyoko; Higo, Takayasu; Nukina, Nobuyuki; Matsumoto, Nagisa; Hisatsune, Chihiro; Nakamura, Takeshi; Mikoshiba, Katsuhiko

    2014-09-23

    The inositol 1,4,5-trisphosphate receptor (IP3R) in the endoplasmic reticulum mediates calcium signaling that impinges on intracellular processes. IP3Rs are allosteric proteins comprising four subunits that form an ion channel activated by binding of IP3 at a distance. Defective allostery in IP3R is considered crucial to cellular dysfunction, but the specific mechanism remains unknown. Here we demonstrate that a pleiotropic enzyme transglutaminase type 2 targets the allosteric coupling domain of IP3R type 1 (IP3R1) and negatively regulates IP3R1-mediated calcium signaling and autophagy by locking the subunit configurations. The control point of this regulation is the covalent posttranslational modification of the Gln2746 residue that transglutaminase type 2 tethers to the adjacent subunit. Modification of Gln2746 and IP3R1 function was observed in Huntington disease models, suggesting a pathological role of this modification in the neurodegenerative disease. Our study reveals that cellular signaling is regulated by a new mode of posttranslational modification that chronically and enzymatically blocks allosteric changes in the ligand-gated channels that relate to disease states.

  7. PPARγ deficiency results in severe, accelerated osteoarthritis associated with aberrant mTOR signalling in the articular cartilage

    PubMed Central

    Vasheghani, Faezeh; Zhang, Yue; Li, Ying-Hua; Blati, Meryem; Fahmi, Hassan; Lussier, Bertrand; Roughley, Peter; Lagares, David; Endisha, Helal; Saffar, Bahareh; Lajeunesse, Daniel; Marshall, Wayne K; Rampersaud, Y Raja; Mahomed, Nizar N; Gandhi, Rajiv; Pelletier, Jean-Pierre; Martel-Pelletier, Johanne; Kapoor, Mohit

    2015-01-01

    Objectives We have previously shown that peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor, is essential for the normal growth and development of cartilage. In the present study, we created inducible cartilage-specific PPARγ knockout (KO) mice and subjected these mice to the destabilisation of medial meniscus (DMM) model of osteoarthritis (OA) to elucidate the specific in vivo role of PPARγ in OA pathophysiology. We further investigated the downstream PPARγ signalling pathway responsible for maintaining cartilage homeostasis. Methods Inducible cartilage-specific PPARγ KO mice were generated and subjected to DMM model of OA. We also created inducible cartilage-specific PPARγ/mammalian target for rapamycin (mTOR) double KO mice to dissect the PPARγ signalling pathway in OA. Results Compared with control mice, PPARγ KO mice exhibit accelerated OA phenotype with increased cartilage degradation, chondrocyte apoptosis, and the overproduction of OA inflammatory/catabolic factors associated with the increased expression of mTOR and the suppression of key autophagy markers. In vitro rescue experiments using PPARγ expression vector reduced mTOR expression, increased expression of autophagy markers and reduced the expression of OA inflammatory/catabolic factors, thus reversing the phenotype of PPARγ KO mice chondrocytes. To dissect the in vivo role of mTOR pathway in PPARγ signalling, we created and subjected PPARγ-mTOR double KO mice to the OA model to see if the genetic deletion of mTOR in PPARγ KO mice (double KO) can rescue the accelerated OA phenotype observed in PPARγ KO mice. Indeed, PPARγ-mTOR double KO mice exhibit significant protection/reversal from OA phenotype. Significance PPARγ maintains articular cartilage homeostasis, in part, by regulating mTOR pathway. PMID:25573665

  8. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed

    Downward, Julian

    2015-04-15

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacologic approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be "undruggable." This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS-mutant but not wild-type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS-mutant cancers. Possible reasons for these disappointing results are discussed here, along with a reevaluation of the approaches taken. On the basis of experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS-mutant cancers. Clin Cancer Res; 21(8); 1802-9. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878361

  9. Inhibition of p300 histone acetyltransferase activity in palate mesenchyme cells attenuates Wnt signaling via aberrant E-cadherin expression.

    PubMed

    Warner, Dennis R; Smith, Scott C; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M

    2016-03-01

    p300 is a multifunctional transcriptional coactivator that interacts with numerous transcription factors and exhibits protein/histone acetyltransferase activity. Loss of p300 function in humans and in mice leads to craniofacial defects. In this study, we demonstrated that inhibition of p300 histone acetyltransferase activity with the compound, C646, altered the expression of several genes, including Cdh1 (E-cadherin) in mouse maxillary mesenchyme cells, which are the cells that give rise to the secondary palate. The increased expression of plasma membrane-bound E-cadherin was associated with reduced cytosolic β-catenin, that led to attenuated signaling through the canonical Wnt pathway. Furthermore, C646 reduced both cell proliferation and the migratory ability of these cells. These results suggest that p300 histone acetyltransferase activity is critical for Wnt-dependent palate mesenchymal cell proliferation and migration, both processes that play a significant role in morphogenesis of the palate.

  10. Automated quantification of FISH signals in urinary cells enables the assessment of chromosomal aberration patterns characteristic for bladder cancer.

    PubMed

    Köhler, Christina U; Martin, Laura; Bonberg, Nadine; Behrens, Thomas; Deix, Thomas; Braun, Katharina; Noldus, Joachim; Jöckel, Karl-Heinz; Erbel, Raimund; Sommerer, Florian; Tannapfel, Andrea; Harth, Volker; Käfferlein, Heiko U; Brüning, Thomas

    2014-06-13

    Targeting the centromeres of chromosomes 3, 7, 17 (CEP3, 7, 17) and the 9p21-locus (LSI9p21) for diagnosing bladder cancer (BC) is time- and cost-intensive and requires a manual investigation of the sample by a well-trained investigator thus overall limiting its use in clinical diagnostics and large-scaled epidemiological studies. Here we introduce a new computer-assisted FISH spot analysis tool enabling an automated, objective and quantitative assessment of FISH patterns in the urinary sediment. Utilizing a controllable microscope workstation, the microscope software Scan^R was programmed to allow automatic batch-scanning of up to 32 samples and identifying quadruple FISH signals in DAPI-scanned nuclei of urinary sediments. The assay allowed a time- and cost-efficient, automated and objective assessment of CEP3, 7 and 17 FISH signals and facilitated the quantification of nuclei harboring specific FISH patterns in all cells of the urinary sediment. To explore the diagnostic capability of the developed tool, we analyzed the abundance of 51 different FISH patterns in a pilot set of urine specimens from 14 patients with BC and 21 population controls (PC). Herein, the results of the fully automated approach yielded a high degree of conformity when compared to those obtained by an expert-guided re-evaluation of archived scans. The best cancer-identifying pattern was characterized by a concurrent gain of CEP3, 7 and 17. Overall, our automated analysis refines current FISH protocols and encourages its use to establish reliable diagnostic cutoffs in future large-scale studies with well-characterized specimens-collectives. PMID:24802410

  11. Targeting the K-Ras/PDEδ protein-protein interaction: the solution for Ras-driven cancers or just another therapeutic mirage?

    PubMed

    Frett, Brendan; Wang, Yuanxiang; Li, Hong-Yu

    2013-10-01

    The holy grail, finally? After years of unsuccessful attempts at drugging the Ras oncogene, a recent paper by Zimmerman et al. has revealed the possibility of inhibiting Ras signaling on a clinically relevant level by blocking the K-Ras/PDEδ protein-protein interaction. The results, reported in Nature, are highlighted herein with future implications and directions to evaluate the full clinical potential of this research. PMID:23939923

  12. A novel role for flotillin-1 in H-Ras-regulated breast cancer aggressiveness.

    PubMed

    Koh, Minsoo; Yong, Hae-Young; Kim, Eun-Sook; Son, Hwajin; Jeon, You Rim; Hwang, Jin-Sun; Kim, Myeong-Ok; Cha, Yujin; Choi, Wahn Soo; Noh, Dong-Young; Lee, Kyung-Min; Kim, Ki-Bum; Lee, Jae-Seon; Kim, Hyung Joon; Kim, Haemin; Kim, Hong-Hee; Kim, Eun Joo; Park, So Yeon; Kim, Hoe Suk; Moon, Woo Kyung; Choi Kim, Hyeong-Reh; Moon, Aree

    2016-03-01

    Elevated expression and aberrant activation of Ras have been implicated in breast cancer aggressiveness. H-Ras, but not N-Ras, induces breast cell invasion. A crucial link between lipid rafts and H-Ras function has been suggested. This study sought to identify the lipid raft protein(s) responsible for H-Ras-induced tumorigenicity and invasiveness of breast cancer. We conducted a comparative proteomic analysis of lipid raft proteins from invasive MCF10A human breast epithelial cells engineered to express active H-Ras and non-invasive cells expressing active N-Ras. Here, we identified a lipid raft protein flotillin-1 as an important regulator of H-Ras activation and breast cell invasion. Flotillin-1 was required for epidermal growth factor-induced activation of H-Ras, but not that of N-Ras, in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Flotillin-1 knockdown inhibited the invasiveness of MDA-MB-231 and Hs578T TNBC cells in vitro and in vivo. In xenograft mouse tumor models of these TNBC cell lines, we showed that flotillin-1 played a critical role in tumor growth. Using human breast cancer samples, we provided clinical evidence for the metastatic potential of flotillin-1. Membrane staining of flotillin-1 was positively correlated with metastatic spread (p = 0.013) and inversely correlated with patient disease-free survival rates (p = 0.005). Expression of flotillin-1 was associated with H-Ras in breast cancer, especially in TNBC (p < 0.001). Our findings provide insight into the molecular basis of Ras isoform-specific interplay with flotillin-1, leading to tumorigenicity and aggressiveness of breast cancer.

  13. Prostaglandin E2 Blocks Menadione-Induced Apoptosis through the Ras/Raf/Erk Signaling Pathway in Promonocytic Leukemia Cell Lines

    PubMed Central

    Yeo, Hyun-Seok; Shehzad, Adeeb; Lee, Young Sup

    2012-01-01

    Altered oxidative stress has long been observed in cancer cells, and this biochemical property of cancer cells represents a specific vulnerability that can be exploited for therapeutic benefit. The major role of an elevated oxidative stress for the efficacy of molecular targeted drugs is under investigation. Menadione is considered an attractive model for the study of oxidative stress, which can induce apoptosis in human leukemia HL-60 cell lines. Prostaglandin E2 (PGE2) via its receptors not only promotes cell survival but also reverses apoptosis and promotes cancer progression. Here, we present evidence for the biological role of PGE2 as a protective agent of oxidative stress-induced apoptosis in monocytic cells. Pretreatment of HL-60 cells with PGE2 markedly ameliorated the menadione-induced apoptosis and inhibited the degradation of PARP and lamin B. The EP2 receptor antagonist AH6809 abrogated the inhibitory effect of PGE2, suggesting the role of the EP2/cAMP system. The PKA inhibitor H89 also reversed apoptosis and decreased the PKA activity that was elevated 10-fold by PGE2. The treatment of HL-60 cells with NAC or zinc chloride showed a similar protective effect as with PGE2 on menadione-treated cells. Furthermore, PGE2 activated the Ras/Raf/MEK pathway, which in turn initiated ERK activation, and ultimately protected menadione-induced apoptosis. These results imply that PGE2 via cell survival pathways may protect oxidative stress-induced apoptosis in monocytic cells. This study warrants further pre-clinical investigation as well as application towards leukemia clinics. PMID:22450688

  14. Prostaglandin E2 blocks menadione-induced apoptosis through the Ras/Raf/Erk signaling pathway in promonocytic leukemia cell lines.

    PubMed

    Yeo, Hyun-Seok; Shehzad, Adeeb; Lee, Young Sup

    2012-04-01

    Altered oxidative stress has long been observed in cancer cells, and this biochemical property of cancer cells represents a specific vulnerability that can be exploited for therapeutic benefit. The major role of an elevated oxidative stress for the efficacy of molecular targeted drugs is under investigation. Menadione is considered an attractive model for the study of oxidative stress, which can induce apoptosis in human leukemia HL-60 cell lines. Prostaglandin E(2) (PGE(2)) via its receptors not only promotes cell survival but also reverses apoptosis and promotes cancer progression. Here, we present evidence for the biological role of PGE(2) as a protective agent of oxidative stress-induced apoptosis in monocytic cells. Pretreatment of HL-60 cells with PGE(2) markedly ameliorated the menadione-induced apoptosis and inhibited the degradation of PARP and lamin B. The EP(2) receptor antagonist AH6809 abrogated the inhibitory effect of PGE(2), suggesting the role of the EP(2)/cAMP system. The PKA inhibitor H89 also reversed apoptosis and decreased the PKA activity that was elevated 10-fold by PGE(2). The treatment of HL-60 cells with NAC or zinc chloride showed a similar protective effect as with PGE(2) on menadione-treated cells. Furthermore, PGE(2) activated the Ras/Raf/MEK pathway, which in turn initiated ERK activation, and ultimately protected menadione-induced apoptosis. These results imply that PGE(2) via cell survival pathways may protect oxidative stress-induced apoptosis in monocytic cells. This study warrants further pre-clinical investigation as well as application towards leukemia clinics.

  15. Oncogenic K-Ras promotes proliferation in quiescent intestinal stem cells.

    PubMed

    Gierut, Jessica J; Lyons, Jesse; Shah, Manasvi S; Genetti, Casie; Breault, David T; Haigis, Kevin M

    2015-07-01

    K-Ras is a monomeric GTPase that controls cellular and tissue homeostasis. Prior studies demonstrated that mutationally activated K-Ras (K-Ras(G12D)) signals through MEK to promote expansion and hyperproliferation of the highly mitotically active transit-amplifying cells (TACs) in the intestinal crypt. Its effect on normally quiescent stem cells was unknown, however. Here, we have used an H2B-Egfp transgenic system to demonstrate that K-Ras(G12D) accelerates the proliferative kinetics of quiescent intestinal stem cells. As in the TAC compartment, the effect of mutant K-Ras on the quiescent stem cell is dependent upon activation of MEK. Mutant K-Ras is also able to increase self-renewal potential of intestinal stem cells following damage. These results demonstrate that mutant K-Ras can influence intestinal homeostasis on multiple levels.

  16. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.

    PubMed

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an

  17. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  18. Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster

    Cancer.gov

    Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.

  19. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-05-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17{beta}-hydroxysteroid dehydrogenase-7 (HSD17{beta}7; involved in estradiol production) and decreased expression of HSD17{beta}5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood.

  20. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels.

    PubMed

    Dumaz, Nicolas; Marais, Richard

    2005-07-01

    One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance.

  1. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels.

    PubMed

    Dumaz, Nicolas; Marais, Richard

    2005-07-01

    One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance. PMID:16008550

  2. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  3. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes

    PubMed Central

    Anta, B; Pérez-Rodríguez, A; Castro, J; García- Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-01-01

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment. PMID:27468687

  4. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes.

    PubMed

    Anta, B; Pérez-Rodríguez, A; Castro, J; García-Domínguez, C A; Ibiza, S; Martínez, N; Durá, L M; Hernández, S; Gragera, T; Peña-Jiménez, D; Yunta, M; Zarich, N; Crespo, P; Serrador, J M; Santos, E; Muñoz, A; Oliva, J L; Rojas-Cabañeros, J M

    2016-07-28

    The cyclopentenone prostaglandin A1 (PGA1) is an inducer of cell death in cancer cells. However, the mechanism that initiates this cytotoxic response remains elusive. Here we report that PGA1 triggers apoptosis by a process that entails the specific activation of H- and N-Ras isoforms, leading to caspase activation. Cells without H- and N-Ras did not undergo apoptosis upon PGA1 treatment; in these cells, the cellular demise was rescued by overexpression of either H-Ras or N-Ras. Consistently, the mutant H-Ras-C118S, defective for binding PGA1, did not produce cell death. Molecular analysis revealed a key role for the RAF-MEK-ERK signaling pathway in the apoptotic process through the induction of calpain activity and caspase-12 cleavage. We propose that PGA1 evokes a specific physiological cell death program, through H- and N-Ras, but not K-Ras, activation at endomembranes. Our results highlight a novel mechanism that may be of potential interest for tumor treatment.

  5. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models.

    PubMed

    Choi, Catherine H; Schoenfeld, Brian P; Bell, Aaron J; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J; Campbell, Sean R; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J; Chambers, Daniel B; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M; Liebelt, David A; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J; Louneva, Natalia; Arnold, Steven E; Featherstone, Robert E; Siegel, Steven J; Zukin, R Suzanne; McDonald, Thomas V; Bolduc, Francois V; Jongens, Thomas A; McBride, Sean M J

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model. PMID:27445731

  6. Multiple Drug Treatments That Increase cAMP Signaling Restore Long-Term Memory and Aberrant Signaling in Fragile X Syndrome Models

    PubMed Central

    Choi, Catherine H.; Schoenfeld, Brian P.; Bell, Aaron J.; Hinchey, Joseph; Rosenfelt, Cory; Gertner, Michael J.; Campbell, Sean R.; Emerson, Danielle; Hinchey, Paul; Kollaros, Maria; Ferrick, Neal J.; Chambers, Daniel B.; Langer, Steven; Sust, Steven; Malik, Aatika; Terlizzi, Allison M.; Liebelt, David A.; Ferreiro, David; Sharma, Ali; Koenigsberg, Eric; Choi, Richard J.; Louneva, Natalia; Arnold, Steven E.; Featherstone, Robert E.; Siegel, Steven J.; Zukin, R. Suzanne; McDonald, Thomas V.; Bolduc, Francois V.; Jongens, Thomas A.; McBride, Sean M. J.

    2016-01-01

    Fragile X is the most common monogenic disorder associated with intellectual disability (ID) and autism spectrum disorders (ASD). Additionally, many patients are afflicted with executive dysfunction, ADHD, seizure disorder and sleep disturbances. Fragile X is caused by loss of FMRP expression, which is encoded by the FMR1 gene. Both the fly and mouse models of fragile X are also based on having no functional protein expression of their respective FMR1 homologs. The fly model displays well defined cognitive impairments and structural brain defects and the mouse model, although having subtle behavioral defects, has robust electrophysiological phenotypes and provides a tool to do extensive biochemical analysis of select brain regions. Decreased cAMP signaling has been observed in samples from the fly and mouse models of fragile X as well as in samples derived from human patients. Indeed, we have previously demonstrated that strategies that increase cAMP signaling can rescue short term memory in the fly model and restore DHPG induced mGluR mediated long term depression (LTD) in the hippocampus to proper levels in the mouse model (McBride et al., 2005; Choi et al., 2011, 2015). Here, we demonstrate that the same three strategies used previously with the potential to be used clinically, lithium treatment, PDE-4 inhibitor treatment or mGluR antagonist treatment can rescue long term memory in the fly model and alter the cAMP signaling pathway in the hippocampus of the mouse model. PMID:27445731

  7. RasGRP1 Transgenic Mice Develop Cutaneous Squamous Cell Carcinomas in Response to Skin Wounding

    PubMed Central

    Diez, Federico R.; Garrido, Ann A.; Sharma, Amrish; Luke, Courtney T.; Stone, James C.; Dower, Nancy A.; Cline, J. Mark; Lorenzo, Patricia S.

    2009-01-01

    Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations. PMID:19497993

  8. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc.

  9. RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?

    PubMed Central

    Downward, Julian

    2015-01-01

    The RAS genes are critical oncogenic drivers activated by point mutation in some 20% of human malignancies. However, no pharmacological approaches to targeting RAS proteins directly have yet succeeded, leading to suggestions that these proteins may be “undruggable.” This has led to two alternative indirect approaches to targeting RAS function in cancer. One has been to target RAS signaling pathways downstream at tractable enzymes such as kinases, particularly in combination. The other, which is the focus of this review, has been to seek targets that are essential in cells bearing an activated RAS oncogene, but not those without. This synthetic lethal approach, while rooted in ideas from invertebrate genetics, has been inspired most strongly by the successful use of PARP inhibitors, such as olaparib, in the clinic to treat BRCA defective cancers. Several large-scale screens have been carried out using RNA interference-mediated expression silencing to find genes that are uniquely essential to RAS mutant but not wild type cells. These screens have been notable for the low degree of overlap between their results, with the possible exception of proteasome components, and have yet to lead to successful new clinical approaches to the treatment of RAS mutant cancers. Possible reasons for these disappointing results are discussed here, along with a re-evaluation of the approaches taken. Based on experience to date, RAS synthetic lethality has so far fallen some way short of its original promise and remains unproven as an approach to finding effective new ways of tackling RAS mutant cancers. PMID:25878361

  10. Presence of Ras guanyl nucleotide-releasing protein in striosomes of the mature and developing rat.

    PubMed

    Pierret, P; Mechawar, N; Vallée, A; Patel, J; Priestley, J V; Dunn, R J; Dower, N A; Stone, J C; Richardson, P M

    2002-01-01

    Ras signal transduction pathways have been implicated as key regulators in neuroplasticity and synaptic transmission in the brain. These pathways can be modulated by Ras guanyl nucleotide exchange factors, (GEF) which activate Ras proteins by catalysing the exchange of GDP for GTP. Ras guanyl nucleotide-releasing protein (RasGRP), a recently discovered Ras GEF, that links diacylglycerol and probably calcium to Ras signaling pathways, is expressed in brain as well as in T-cells. Here, we have used a highly selective monoclonal antibody against RasGRP to localize this protein within the striatum and related forebrain structures of developing and adult rats. RasGRP immunolabeling was found to be widespread in the mature and developing rat forebrain. Most notably, it presented a prominent patchy distribution throughout the striatum at birth and at all postnatal ages examined. These patches were found to correspond with the striosomal compartment of the striatum, as identified by micro-opioid receptor labeling in the adult. RasGRP-immunoreactivity was also observed in the matrix-like compartment surrounding these patches/striosomes but appeared later in development and was always weaker than in the patches. In both striatal compartments, RasGRP was exclusively expressed by medium-sized spiny neurons and showed no preference for neurons that project either directly or indirectly to the substantia nigra. At the ultrastructural level, immunogold labeling of RasGRP was confined to the cell bodies and dendritic shafts of these output neurons. We conclude that the prominent expression of RasGRP in striosomes may be of significance for diacylglycerol signaling in the striatum, and could be of importance for the processing of limbic-related activity within the basal ganglia.

  11. Leukotriene B(4) BLT receptor signaling regulates the level and stability of cyclooxygenase-2 (COX-2) mRNA through restricted activation of Ras/Raf/ERK/p42 AUF1 pathway.

    PubMed

    Zhai, Beibei; Yang, Huiqing; Mancini, Arturo; He, QingWen; Antoniou, John; Di Battista, John A

    2010-07-30

    Recent studies suggest that active resolution of the inflammatory response in animal models of arthritis may involve leukotriene B(4) (LTB(4))-dependent stimulation of "intermediate" prostaglandin production, which in turn favors the synthesis of "downstream" anti-inflammatory and pro-resolving lipoxins, resolvins, and protectins. We explored a putative mechanism involving LTB(4)-dependent control of cyclooxygenase-2 (COX-2) expression, the rate-limiting step in inflammatory prostaglandin biosynthesis. Indeed, LTB(4) potently up-regulated/stabilized interleukin-1beta-induced COX-2 mRNA and protein expression under conditions of COX-2 inhibitor-dependent blockade of PGE(2) release in human synovial fibroblasts (EC(50) = 16.5 + or - 1.7 nm for mRNA; 19 + or - 2.4 nm for protein, n = 4). The latter response was pertussis toxin-sensitive, and semi-quantitative reverse transcription-PCR confirmed the quantitative predominance of the BLT2 receptor. Transfection experiments, using human COX-2 promoter plasmids and chimeric luciferase-COX-2 mRNA 3'-untranslated region (3'-UTR) reporter constructs, revealed that LTB(4) exerted its stabilizing effect at the post-transcriptional level through a 116-bp adenylate/uridylate-rich sequence in the proximal region of the COX-2 3'-UTR. Using luciferase-COX-2 mRNA 3'-UTR reporter constructs and Ras/c-Raf expression and mutant constructs, we showed that the Ras/c-Raf/MEK1/2/ERK1/2 signaling pathway mediated LTB(4)-dependent COX-2 mRNA stabilization. Knockdown experiments with specific short hairpin RNAs confirmed that LTB(4) stabilization of COX-2 mRNA was apparently mediated through the RNA-binding protein, p42 AUF1. The nuclear export of p42 AUF1 was driven by c-Raf/MEK1/2/ERK1/2 signaling and sensitive to leptomycin B treatment, suggesting a CRM1-dependent mechanism. We conclude that LTB(4) may support the resolution phase of the inflammatory response by stabilizing COX-2, ensuring a reservoir of ambient pro-resolution lipid

  12. Influence of aberrations in microholographic recording

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuichi

    2015-11-01

    The influence of various types of aberrations (spherical, coma, and astigmatic) of recording and readout beams on the readout signal in a microholographic recording was investigated through a numerical simulation. The simulation conditions were that the wavelength of the laser was 405 nm and the numerical aperture of the objective lenses was 0.85. The tolerance of the root-mean-square (RMS) wavefront aberrations was defined as the aberration when the normalized signal level decreased to 0.8. Among the three types of aberrations, the influence of the spherical aberration was the most significant. When both the recording and readout beams were aberrated and the signs of the aberrations were in the worst case, the tolerance of the RMS wavefront aberrations was less than half of the Maréchal's criterion. Moreover, when the RMS wavefront aberrations of the recording and readout beams were within the above tolerance, the bit intervals of 0.13 and 0.65 μm in the inplane and vertical directions, respectively, which correspond to the recording density of 91 bit/μm3 (recording capacity of 16 TB for a 120-mm-diameter optical disk having a 300-μm-thick recording layer), were shown to be feasible for confocal detection with an allowable signal-to-noise ratio.

  13. The RASopathies: Developmental syndromes of Ras/MAPK pathway dysregulation

    PubMed Central

    Tidyman, William E.; Rauen, Katherine A.

    2009-01-01

    The Ras/mitogen activated protein kinase (MAPK) pathway is essential in the regulation of the cell cycle, differentiation, growth and cell senescence, all of which are critical to normal development. It is therefore not surprising that its dysregulation has profound effects on development. A class of developmental disorders, the “RASopathies”, is caused by germline mutations in genes that encode protein components of the Ras/MAPK pathway. The vast majority of these mutations result in increased signal transduction down the Ras/MAPK pathway, but usually to a lesser extent than somatic mutations associated with oncogenesis. Each syndrome exhibits unique phenotypic features, however, since they all cause dysregulation of the Ras/MAPK pathway, there are numerous overlapping phenotypic features between the syndromes, including characteristic facial features, cardiac defects, cutaneous abnormalities, neurocognitive delay and a predisposition to malignancies. Here we review the clinical and underlying molecular basis for each of these syndromes. PMID:19467855

  14. The Efficacy of Raf Kinase Recruitment to the GTPase H-ras Depends on H-ras Membrane Conformer-specific Nanoclustering*♦

    PubMed Central

    Guzmán, Camilo; Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Andrade, Débora M.; Reymond, Luc; Eggeling, Christian; Abankwa, Daniel

    2014-01-01

    Solution structures and biochemical data have provided a wealth of mechanistic insight into Ras GTPases. However, information on how much the membrane organization of these lipid-modified proteins impacts on their signaling is still scarce. Ras proteins are organized into membrane nanoclusters, which are necessary for Ras-MAPK signaling. Using quantitative conventional and super-resolution fluorescence methods, as well as mathematical modeling, we investigated nanoclustering of H-ras helix α4 and hypervariable region mutants that have different bona fide conformations on the membrane. By following the emergence of conformer-specific nanoclusters in the plasma membrane of mammalian cells, we found that conformers impart distinct nanoclustering responses depending on the cytoplasmic levels of the nanocluster scaffold galectin-1. Computational modeling revealed that complexes containing H-ras conformers and galectin-1 affect both the number and lifetime of nanoclusters and thus determine the specific Raf effector recruitment. Our results show that mutations in Ras can affect its nanoclustering response and thus allosterically effector recruitment and downstream signaling. We postulate that cancer- and developmental disease-linked mutations that are associated with the Ras membrane conformation may exhibit so far unrecognized Ras nanoclustering and therefore signaling alterations. PMID:24569991

  15. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering.

    PubMed

    Guzmán, Camilo; Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Andrade, Débora M; Reymond, Luc; Eggeling, Christian; Abankwa, Daniel

    2014-04-01

    Solution structures and biochemical data have provided a wealth of mechanistic insight into Ras GTPases. However, information on how much the membrane organization of these lipid-modified proteins impacts on their signaling is still scarce. Ras proteins are organized into membrane nanoclusters, which are necessary for Ras-MAPK signaling. Using quantitative conventional and super-resolution fluorescence methods, as well as mathematical modeling, we investigated nanoclustering of H-ras helix α4 and hypervariable region mutants that have different bona fide conformations on the membrane. By following the emergence of conformer-specific nanoclusters in the plasma membrane of mammalian cells, we found that conformers impart distinct nanoclustering responses depending on the cytoplasmic levels of the nanocluster scaffold galectin-1. Computational modeling revealed that complexes containing H-ras conformers and galectin-1 affect both the number and lifetime of nanoclusters and thus determine the specific Raf effector recruitment. Our results show that mutations in Ras can affect its nanoclustering response and thus allosterically effector recruitment and downstream signaling. We postulate that cancer- and developmental disease-linked mutations that are associated with the Ras membrane conformation may exhibit so far unrecognized Ras nanoclustering and therefore signaling alterations.

  16. Plk2 Raps up Ras to subdue synapses

    PubMed Central

    Lee, Kea Joo; Hoe, Hyang-Sook

    2011-01-01

    We recently identified the activity-inducible protein kinase Plk2 as a novel overseer of the balance between Ras and Rap small GTPases. Plk2 achieves a profound level of regulatory control by interacting with and phosphorylating at least four Ras and Rap guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Combined, these actions result in synergistic suppression of Ras and hyperstimulation of Rap signaling. Perturbation of Plk2 function abolished homeostatic adaptation of synapses to enhanced activity and impaired behavioral adaptation in various learning tasks, indicating that this regulation was critical for maintaining appropriate Ras/Rap levels. These studies provide insights into the highly cooperative nature of Ras and Rap regulation in neurons. However, different GEF and GAP substrates of Plk2 also controlled specific aspects of dendritic spine morphology, illustrating the ability of individual GAPs/GEFs to assemble microdomains of Ras and Rap signaling that respond to different stimuli and couple to distinct output pathways. PMID:21776418

  17. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival

    PubMed Central

    Singh, Anurag; Greninger, Patricia; Rhodes, Daniel; Koopman, Louise; Violette, Sheila; Bardeesy, Nabeel; Settleman, Jeff

    2009-01-01

    SUMMARY K-Ras mutations occur frequently in epithelial cancers. Using shRNAs to deplete K-Ras in lung and pancreatic cancer cell lines harboring K-Ras mutations, two classes were identified—lines that do or do not require K-Ras to maintain viability. Comparing these two classes of cancer cells revealed a gene expression signature in K-Ras-dependent cells, associated with a well-differentiated epithelial phenotype, which was also seen in primary tumors. Several of these genes encode pharmacologically tractable proteins, such as Syk and Ron kinases and integrin beta6, depletion of which induces epithelial-mesenchymal transformation (EMT) and apoptosis specifically in K-Ras-dependent cells. These findings indicate that epithelial differentiation and tumor cell viability are associated, and that EMT regulators in “K-Ras-addicted” cancers represent candidate therapeutic targets. SIGNIFICANCE K-Ras is the most frequently mutated oncogene in solid tumors and when aberrantly activated, is a potent tumor initiator. However, the identification of the critical effectors of K-Ras-mediated tumorigenesis and the development of clinically effective therapeutic strategies in this setting remain challenging. We have found that cancer cell lines harboring K-Ras mutations can be broadly classified into K-Ras-dependent and K-Ras-independent groups. By establishing a gene expression signature that can distinguish these two groups, we identified genes that are specifically up-regulated in K-Ras-dependent cells and are required for their viability. Therefore, the K-Ras dependency signature has revealed several potential therapeutic targets in a subset of otherwise pharmacologically intractable human cancers. PMID:19477428

  18. TrkB reduction exacerbates Alzheimer's disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice.

    PubMed

    Devi, L; Ohno, M

    2015-05-05

    Accumulating evidence shows that brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) significantly decrease early in Alzheimer's disease (AD). However, it remains unclear whether BDNF/TrkB reductions may be mechanistically involved in the pathogenesis of AD. To address this question, we generated 5XFAD transgenic mice with heterozygous TrkB knockout (TrkB(+/-)·5XFAD), and tested the effects of TrkB reduction on AD-like features in this mouse model during an incipient stage that shows only modest amyloid-β (Aβ) pathology and retains normal mnemonic function. TrkB(+/-) reduction exacerbated memory declines in 5XFAD mice at 4-5 months of age as assessed by the hippocampus-dependent spontaneous alternation Y-maze task, while the memory performance was not affected in TrkB(+/-) mice. Meanwhile, TrkB(+/-)·5XFAD mice were normal in nest building, a widely used measure for social behavior, suggesting the memory-specific aggravation of AD-associated behavioral impairments. We found no difference between TrkB(+/-)·5XFAD and 5XFAD control mice in cerebral plaque loads, Aβ concentrations including total Aβ42 and soluble oligomers and β-amyloidogenic processing of amyloid precursor protein. Interestingly, reductions in hippocampal expression of AMPA/NMDA glutamate receptor subunits as well as impaired signaling pathways downstream to TrkB such as CREB (cAMP response element-binding protein) and Akt/GSK-3β (glycogen synthase kinase-3β) were observed in TrkB(+/-)·5XFAD mice but not in 5XFAD mice. Among these signaling aberrations, only Akt/GSK-3β dysfunction occurred in TrkB(+/-) mice, while others were synergistic consequences between TrkB reduction and subthreshold levels of Aβ in TrkB(+/-)·5XFAD mice. Collectively, our results indicate that reduced TrkB does not affect β-amyloidosis but exacerbates the manifestation of hippocampal mnemonic and signaling dysfunctions in early AD.

  19. A role for RalGDS and a novel Ras effector in the Ras-mediated inhibition of skeletal myogenesis.

    PubMed

    Ramocki, M B; White, M A; Konieczny, S F; Taparowsky, E J

    1998-07-10

    Oncogenic Ras inhibits the differentiation of skeletal muscle cells through the activation of multiple downstream signaling pathways, including a Raf-dependent, mitogen-activated or extracellular signal-regulated kinase kinase/mitogen-activated protein kinase (MEK/MAPK)-independent pathway. Here we report that a non-Raf binding Ras effector-loop variant (H-Ras G12V,E37G), which retains interaction with the Ral guanine nucleotide dissociation stimulator (RalGDS), inhibits the conversion of MyoD-expressing C3H10T1/2 mouse fibroblasts to skeletal muscle. We show that H-Ras G12V,E37G, RalGDS, and the membrane-localized RalGDS CAAX protein inhibit the activity of alpha-actin-Luc, a muscle-specific reporter gene containing a necessary E-box and serum response factor (SRF) binding site, while a RalGDS protein defective for Ras interaction has no effect on alpha-actin-Luc transcription. H-Ras G12V,E37G does not activate endogenous MAPK, but does increase SRF-dependent transcription. Interestingly, RalGDS, RalGDS CAAX, and RalA G23V inhibit H-Ras G12V, E37G-induced expression of an SRF-regulated reporter gene, demonstrating that signaling through RalGDS does not duplicate the action of H-Ras G12V,E37G in this system. As additional evidence for this, we show that H-Ras G12V,E37G inhibits the expression of troponin I-Luc, an SRF-independent muscle-specific reporter gene, whereas RalGDS and RalGDS CAAX do not. Although our studies show that signaling through RalGDS can interfere with the expression of reporter genes dependent on SRF activity (including alpha-actin-Luc), our studies also provide strong evidence that an additional signaling molecule(s) activated by H-Ras G12V,E37G is required to achieve the complete inhibition of the myogenic differentiation program.

  20. ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells

    PubMed Central

    2010-01-01

    Background ZNF217 is a candidate oncogene located at 20q13, a chromosomal region frequently amplified in breast cancers. The precise mechanisms involved in ZNF217 pro-survival function are currently unknown, and utmost importance is given to deciphering the role of ZNF217 in cancer therapy response. Results We provide evidence that stable overexpression of ZNF217 in MDA-MB-231 breast cancer cells conferred resistance to paclitaxel, stimulated cell proliferation in vitro associated with aberrant expression of several cyclins, and increased tumor growth in mouse xenograft models. Conversely, siRNA-mediated silencing of ZNF217 expression in MCF7 breast cancer cells, which possess high endogenous levels of ZNF217, led to decreased cell proliferation and increased sensitivity to paclitaxel. The paclitaxel resistance developed by ZNF217-overexpressing MDA-MB-231 cells was not mediated by the ABCB1/PgP transporter. However, ZNF217 was able to counteract the apoptotic signals mediated by paclitaxel as a consequence of alterations in the intrinsic apoptotic pathway through constitutive deregulation of the balance of Bcl-2 family proteins. Interestingly, ZNF217 expression levels were correlated with the oncogenic kinase Aurora-A expression levels, as ZNF217 overexpression led to increased expression of the Aurora-A protein, whereas ZNF217 silencing was associated with low Aurora-A expression levels. We showed that a potent Aurora-A kinase inhibitor was able to reverse paclitaxel resistance in the ZNF217-overexpressing cells. Conclusion Altogether, these data suggest that ZNF217 might play an important role in breast neoplastic progression and chemoresistance, and that Aurora-A might be involved in ZNF217-mediated effects. PMID:21059223

  1. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  2. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  3. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  4. Expression of a dominant-negative Ras mutant does not affect stimulation of glucose uptake and glycogen synthesis by insulin.

    PubMed

    Dorrestijn, J; Ouwens, D M; Van den Berghe, N; Bos, J L; Maassen, J A

    1996-05-01

    It has previously been shown that insulin-induced stimulation of glucose uptake and glycogen synthesis requires activation of phosphatidylinositol-3-kinase (PI3kinase). Insulin also induces formation of RasGTP in cells and various studies have yielded inconsistent data with respect to the contribution of signalling pathways activated by RasGTP, to insulin-stimulated glucose uptake and glycogen synthesis. We have examined the requirement of RasGTP-mediated signalling for these insulin responses by expression of a dominant negative mutant of Ras (RasN17) in cells by vaccinia virus mediated gene transfer. This Ras-mutant abrogates the signalling pathways mediated by endogenous RasGTP. Subsequently, the ability of insulin to stimulate 2-deoxyglucose uptake and glycogen was examined. We observed that expression of RasN17 in 3T3L1 adipocytes did not affect the stimulation of hexose uptake by insulin. Similarly, expression of RasN17 in A14 cells, an NIH 3T3-derived cell line with high expression of insulin receptors, did not affect insulin-induced stimulation of glycogen synthesis. In both cell lines, insulin-induced phosphorylation of Mapkinase (Erk1,2) was abrogated after expression of RasN17, demonstrating the functional interference by RasN17 with signalling mediated by endogenous RasGTP. Wortmannin, an inhibitor of PI3kinase, abolished dose-dependently the insulin-induced stimulation of hexose uptake and glycogen synthesis without an effect on RasGTP levels in both cell types. We conclude that stimulation of glucose transport and glycogen synthesis by insulin occurs independently of RasGTP-mediated signalling.

  5. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras

    PubMed Central

    Akutagawa, Jon; Huang, Tannie Q.; Epstein, Inbal; Chang, Tiffany; Quirindongo-Crespo, Maricel; Cottonham, Charisa L.; Dail, Monique; Slusher, Barbara S.; Friedman, Lori S.; Sampath, Deepak; Braun, Benjamin S.

    2016-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation due to NRAS, KRAS, PTPN11, CBL, and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3´-OH kinase (PI3K)/Akt cascades. Mx1-Cre, KrasD12 and Mx1-Cre, Nf1flox/− mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, KrasD12 mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia, and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients. PMID:26965285

  6. Breast Tumors with Elevated Expression of 1q Candidate Genes Confer Poor Clinical Outcome and Sensitivity to Ras/PI3K Inhibition

    PubMed Central

    Viveka Thangaraj, Soundara; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D.; Raghavan, Swetha; Ganesan, Kumaresan

    2013-01-01

    Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors. PMID:24147022

  7. [Role of RAS in prehypertension].

    PubMed

    Inaba, Shinji; Iwai, Masaru; Horiuchi, Masatsugu

    2008-08-01

    Hypertension has long been recognized as a major risk factor of several cardiovascular diseases. It is well known that the renin-angiotensin system(RAS) is involved in the pathogenesis of both hypertension and hypertensive end-organ damage. Untreated hypertension is self-accelerating condition through RAS stimulation. Activation of RAS contributes to the transition from borderline hypertension to established hypertension. Recently, "the Seventh Report of Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (JNC 7)" proposed a new classification of borderline blood pressure levels, as "prehypertension". The therapeutic focus has begun to shift from the therapy of established hypertension to the prevention of hypertension. This review addressed the relationship between hypertension, prehypertension and the role of RAS. PMID:18700549

  8. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects.

    PubMed

    Marcus, Kendra; Mattos, Carla

    2015-04-15

    The crystal structure of RAS was first solved 25 years ago. In spite of tremendous and sustained efforts, there are still no drugs in the clinic that directly target this major driver of human cancers. Recent success in the discovery of compounds that bind RAS and inhibit signaling has fueled renewed enthusiasm, and in-depth understanding of the structure and function of RAS has opened new avenues for direct targeting. To succeed, we must focus on the molecular details of the RAS structure and understand at a high-resolution level how the oncogenic mutants impair function. Structural networks of intramolecular communication between the RAS active site and membrane-interacting regions on the G-domain are disrupted in oncogenic mutants. Although conserved across the isoforms, these networks are near hot spots of protein-ligand interactions with amino acid composition that varies among RAS proteins. These differences could have an effect on stabilization of conformational states of interest in attenuating signaling through RAS. The development of strategies to target these novel sites will add a fresh direction in the quest to conquer RAS-driven cancers. Clin Cancer Res; 21(8); 1810-8. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878362

  9. Ras Modifies Proliferation and Invasiveness of Cells Expressing Human Papillomavirus Oncoproteins▿

    PubMed Central

    Yoshida, Satoshi; Kajitani, Naoko; Satsuka, Ayano; Nakamura, Hiroyasu; Sakai, Hiroyuki

    2008-01-01

    Infection by human papillomavirus (HPV) is a major risk factor for human cervical carcinoma. However, the HPV infection alone is not sufficient for cancer formation. Cervical carcinogenesis is considered a multistep process accompanied by genetic alterations of the cell. Ras is activated in approximately 20% of human cancers, and it is related to the metastatic conversion of tumor cells. We investigated how Ras activation was involved in the malignant conversion of HPV-infected lesions. The active form of H-ras was introduced into human primary keratinocytes expressing the HPV type 18 (HPV18) oncoproteins E6 and/or E7. We analyzed the keratinocytes’ growth potentials and found that the activation of the Ras pathway induced senescence-like growth arrest. Senescence could be eliminated by high-risk E7 expression, suggesting that the pRb pathway was important for Ras-induced senescence. Then we analyzed the effect of Ras activation on epidermis development by using an organotypic “raft” culture and found that the E7 and H-ras coexpressions conferred invasive potential on the epidermis. This invasiveness resulted from the upregulation of MT1-MMP and MMP9 by H-ras and E7, respectively, in which the activation of the MEK/extracellular signal-regulated kinase pathway was involved. These results indicated that the activation of Ras or the related signal pathways promoted the malignant conversion of HPV-infected cells. PMID:18579583

  10. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    SciTech Connect

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru; Ma, Ning; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.

  11. PEA-15 potentiates H-Ras mediated epithelial cell transformation through Phospholipase D

    PubMed Central

    Sulzmaier, Florian J.; Valmiki, Mohana K. Gudur; Nelson, Deirdre A.; Caliva, Maisel J.; Geerts, Dirk; Matter, Michelle L.; White, Eileen P.; Ramos, Joe W.

    2011-01-01

    The small GTPase H-Ras is a proto-oncogene that activates a variety of different pathways including the extracellular-signal-regulated kinase mitogen-activated protein kinase (ERK/MAPK) pathway. H-Ras is mutated in many human malignancies and these mutations cause the protein to be constitutively active. PEA-15 blocks ERK-dependent gene transcription and inhibits proliferation by sequestering ERK in the cytoplasm. We therefore investigated whether PEA-15 influences H-Ras mediated transformation. We found that PEA-15 does not block H-Ras activated proliferation when H-Ras is constitutively active. We show instead that in H-Ras transformed mouse kidney epithelial cells, co-expression of PEA-15 resulted in enhanced soft agar colony growth and increased tumor growth in vivo. Overexpression of both H-Ras and PEA-15 resulted in accelerated G1/S cell cycle transition and increased activation of the ERK signaling pathway. PEA-15 mediated these effects through activation of its binding partner phospholipase D1 (PLD1). Inhibition of PLD1 or interference with PEA-15/PLD1 binding blocked PEA-15’s ability to increase ERK activation. Our findings reveal a novel mechanism by which PEA-15 positively regulates Ras/ERK signaling and increases the proliferation of H-Ras transformed epithelial cells through enhanced PLD1 expression and activation. Thus, our work provides a surprising mechanism by which PEA-15 augments H-Ras driven transformation. These data reveal that PEA-15 not only suppresses ERK signaling and tumorigenesis but can alternatively enhance tumorigenesis in the context of active Ras. PMID:22105357

  12. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

    PubMed Central

    Evelyn, Chris R.; Duan, Xin; Biesiada, Jacek; Seibel, William L.; Meller, Jaroslaw; Zheng, Yi

    2014-01-01

    Summary Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine-nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, is found to bind to SOS1, competitively suppresses SOS1-Ras interaction, and dose-dependently inhibits SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity. PMID:25455859

  13. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1.

    PubMed

    Evelyn, Chris R; Duan, Xin; Biesiada, Jacek; Seibel, William L; Meller, Jaroslaw; Zheng, Yi

    2014-12-18

    Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.

  14. Activation of intracellular kinases in Xenopus oocytes by p21ras and phospholipases: a comparative study.

    PubMed

    Carnero, A; Lacal, J C

    1995-02-01

    Signal transduction induced by generations of second messengers from membrane phospholipids is a major regulatory mechanism in the control of cell proliferation. Indeed, oncogenic p21ras alters the intracellular levels of phospholipid metabolites in both mammalian cells and Xenopus oocytes. However, it is still controversial whether this alteration it is biologically significant. We have analyzed the ras-induced signal transduction pathway in Xenopus oocytes and have correlated its mechanism of activation with that of the three most relevant phospholipases (PLs). After microinjection, ras-p21 induces a rapid PLD activation followed by a late PLA2 activation. By contrast, phosphatidylcholine-specific PLC was not activated under similar conditions. When each of these PLs was studied for its ability to activate intracellular signalling kinases, all of them were found to activate maturation-promoting factor efficiently. However, only PLD was able to activate MAP kinase and S6 kinase II, a similar pattern to that induced by p21ras proteins. Thus, the comparison of activated enzymes after microinjection of p21ras or PLs indicated that only PLD microinjection mimetized p21ras signalling. Finally, inhibition of the endogenous PLD activity by neomycin substantially reduced the biological activity of p21ras. All these results suggest that PLD activation may constitute a relevant step in ras-induced germinal vesicle breakdown in Xenopus oocytes.

  15. The Phosphotyrosine Phosphatase SHP-2 Participates in a Multimeric Signaling Complex and Regulates T Cell Receptor (TCR) coupling to the Ras/Mitogen-activated Protein Kinase (MAPK) Pathway in Jurkat T Cells

    PubMed Central

    Frearson, Julie A.; Alexander, Denis R.

    1998-01-01

    Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process

  16. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation.

    PubMed Central

    Khosravi-Far, R; White, M A; Westwick, J K; Solski, P A; Chrzanowska-Wodnicka, M; Van Aelst, L; Wigler, M H; Der, C J

    1996-01-01

    Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events. PMID:8668210

  17. Imaging of Ras/Raf activity induced by low energy laser irradiation in living cell using FRET

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Tong-Sheng; Xing, Da

    2005-01-01

    Ras/Raf signaling pathway is an important signaling pathway that governs cell proliferation, differential and apoptosis. Low-energy laser irradiation (LELI) was found to modulate various processes. Generally, cell proliferation is induced by low doses LELI and apoptosis is induced by high doses LELI. Mechanism of biological effect of LELI has not been clear. Recently, activation of MEK (mitogen-activated protein kinase) and ERK (extracellular-signal-regulated kinase), which are downstream protein kinases of Ras/Raf, are observed during LELI-induced cell proliferation by immunoprecipitation and western blot analysis. RaichuRas reporter consisting of fusions of H-ras, the Ras-binding domain of Raf (RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Therefore, intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) was transfected with the plasmid (pRaichuRas) and then treated with LELI at dose of 60J/cm2. Effect of LELI on Ras/Raf in physiological condition of living cells was observed by fluorescence resonance energy transfer (FRET) technique during lung adenocarcinoma cell apoptosis induced by high dose (60J/cm2) LELI. Experimental results showed that after high dose LELI treatment, the binding of Ras and Raf decreases obviously, Ras/Raf signaling pathway deregulates and cell apoptosis occurs.

  18. Inhibition of ras oncogene: a novel approach to antineoplastic therapy.

    PubMed

    Scharovsky, O G; Rozados, V R; Gervasoni, S I; Matar, P

    2000-01-01

    The most frequently detected oncogene alterations, both in animal and human cancers, are the mutations in the ras oncogene family. These oncogenes are mutated or overexpressed in many human tumors, with a high incidence in tumors of the pancreas, thyroid, colon, lung and certain types of leukemia. Ras is a small guanine nucleotide binding protein that transduces biological information from the cell surface to cytoplasmic components within cells. The signal is transduced to the cell nucleus through second messengers, and it ultimately induces cell division. Oncogenic forms of p21(ras) lead to unregulated, sustained signaling through downstream effectors. The ras family of oncogenes is involved in the development of both primary tumors and metastases making it a good therapeutic target. Several therapeutic approaches to cancer have been developed pointing to reducing the altered gene product or to eliminating its biological function: (1) gene therapy with ribozymes, which are able to break down specific RNA sequences, or with antisense oligonucleotides, (2) immunotherapy through passive or active immunization protocols, and (3) inhibition of p21(ras) farnesylation either by inhibition of farnesyl transferase or synthesis inhibition of farnesyl moieties. PMID:10895051

  19. Mutation in SHOC2 promotes aberrant protein N-myristoylation and underlies Noonan-like syndrome with loose anagen hair

    PubMed Central

    Cordeddu, Viviana; Di Schiavi, Elia; Pennacchio, Len A.; Ma'ayan, Avi; Sarkozy, Anna; Fodale, Valentina; Cecchetti, Serena; Cardinale, Alessio; Martin, Joel; Schackwitz, Wendy; Lipzen, Anna; Zampino, Giuseppe; Mazzanti, Laura; Digilio, Maria C.; Martinelli, Simone; Flex, Elisabetta; Lepri, Francesca; Bartholdi, Deborah; Kutsche, Kerstin; Ferrero, Giovanni B.; Anichini, Cecilia; Selicorni, Angelo; Rossi, Cesare; Tenconi, Romano; Zenker, Martin; Merlo, Daniela; Dallapiccola, Bruno; Iyengar, Ravi; Bazzicalupo, Paolo; Gelb, Bruce D.; Tartaglia, Marco

    2009-01-01

    N-myristoylation is a common form of co-translational protein fatty acylation resulting from the attachment of myristate to a required N-terminal glycine residue.1,2 We show that aberrantly acquired N-myristoylation of SHOC2, a leucine-rich repeat-containing protein that positively modulates RAS-MAPK signal flow,3–6 underlies a clinically distinctive condition of the neuro-cardio-facial-cutaneous disorders family. Twenty-five subjects with a relatively consistent phenotype previously termed Noonan-like syndrome with loose anagen hair [OMIM 607721]7 shared the 4A>G missense change (Ser2Gly) in SHOC2 that introduces an N-myristoylation site, resulting in aberrant targeting of SHOC2 to the plasma membrane and impaired translocation to the nucleus upon growth factor stimulation. Expression of SHOC2S2G in vitro enhanced MAPK activation in a cell type-specific fashion. Induction of SHOC2S2G in Caenorhabditis elegans engendered protruding vulva, a neomorphic phenotype previously associated with aberrant signaling. These results document the first example of an acquired N-terminal lipid modification of a protein causing human disease. PMID:19684605

  20. Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras.

    PubMed

    Yun, H Y; Gonzalez-Zulueta, M; Dawson, V L; Dawson, T M

    1998-05-12

    N-methyl-D-aspartate (NMDA) glutamate receptor-mediated increases in intracellular calcium are thought to play a critical role in synaptic plasticity. The mechanisms by which changes in cytoplasmic calcium transmit the glutamate signal to the nucleus, which is ultimately important for long-lasting neuronal responses, are poorly understood. We show that NMDA receptor stimulation leads to activation of p21(ras) (Ras) through generation of nitric oxide (NO) via neuronal NO synthase. The competitive NO synthase inhibitor, L-nitroarginine methyl ester, prevents Ras activation elicited by NMDA and this effect is competitively reversed by the NO synthase substrate, L-arginine. NMDA receptor stimulation fails to activate Ras in neuronal cultures from mice lacking neuronal NO synthase. NMDA-induced Ras activation occurs through a cGMP-independent pathway as 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), a potent and selective inhibitor of guanylyl cyclase, has no effect on NMDA receptor-induced activation of Ras, and the cell-permeable cGMP analog, 8Br-cGMP, does not activate Ras. Furthermore, NO directly activates immunoprecipitated Ras from neurons. NMDA also elicits tyrosine phosphorylation of extracellular signal-regulated kinases, a downstream effector pathway of Ras, through a NO/non-cGMP dependent mechanism, thus supporting the physiologic relevance of endogenous NO regulation of Ras. These results suggest that Ras is a physiologic target of endogenously produced NO and indicates a signaling pathway for NMDA receptor activation that may be important for long-lasting neuronal responses.

  1. Fas-induced programmed cell death is mediated by a Ras-regulated O2- synthesis.

    PubMed Central

    Gulbins, E; Brenner, B; Schlottmann, K; Welsch, J; Heinle, H; Koppenhoefer, U; Linderkamp, O; Coggeshall, K M; Lang, F

    1996-01-01

    Fas induces apoptosis in lymphocytes via a poorly defined intracellular signalling cascade. Previously, we have demonstrated the involvement and significance of a signalling cascade from the Fas receptor via sphingomyelinases and ceramide to Ras in Fas-induced apoptosis. Here we demonstrate rapid and transient synthesis of reactive oxygen intermediates (ROI) via activation of Ras after Fas. Genetic inhibition of Ras by transfection of transdominant inhibitory N17Ras blocked Fas-mediated ROI synthesis and programmed cell death. Likewise, the antioxidants N-acetyl-cysteine and N-t-butyl-phenylnitrone abolished Fas-induced cell death, pointing to an important role for Ras-triggered ROI synthesis in Fas-mediated programmed cell death. Images Figure 1 Figure 3 PMID:8943716

  2. Revisiting G3BP1 as a RasGAP Binding Protein: Sensitization of Tumor Cells to Chemotherapy by the RasGAP 317–326 Sequence Does Not Involve G3BP1

    PubMed Central

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317–326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317–326 sequence of RasGAP (TAT-RasGAP317–326), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP317–326 did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP317–326 was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP. PMID:22205990

  3. Revisiting G3BP1 as a RasGAP binding protein: sensitization of tumor cells to chemotherapy by the RasGAP 317-326 sequence does not involve G3BP1.

    PubMed

    Annibaldi, Alessandro; Dousse, Aline; Martin, Sophie; Tazi, Jamal; Widmann, Christian

    2011-01-01

    RasGAP is a multifunctional protein that controls Ras activity and that is found in chromosomal passenger complexes. It also negatively or positively regulates apoptosis depending on the extent of its cleavage by caspase-3. RasGAP has been reported to bind to G3BP1 (RasGAP SH3-domain-binding protein 1), a protein regulating mRNA stability and stress granule formation. The region of RasGAP (amino acids 317-326) thought to bind to G3BP1 corresponds exactly to the sequence within fragment N2, a caspase-3-generated fragment of RasGAP, that mediates sensitization of tumor cells to genotoxins. While assessing the contribution of G3BP1 in the anti-cancer function of a cell-permeable peptide containing the 317-326 sequence of RasGAP (TAT-RasGAP₃₁₇₋₃₂₆), we found that, in conditions where G3BP1 and RasGAP bind to known partners, no interaction between G3BP1 and RasGAP could be detected. TAT-RasGAP₃₁₇₋₃₂₆ did not modulate binding of G3BP1 to USP10, stress granule formation or c-myc mRNA levels. Finally, TAT-RasGAP₃₁₇₋₃₂₆ was able to sensitize G3BP1 knock-out cells to cisplatin-induced apoptosis. Collectively these results indicate that G3BP1 and its putative RasGAP binding region have no functional influence on each other. Importantly, our data provide arguments against G3BP1 being a genuine RasGAP-binding partner. Hence, G3BP1-mediated signaling may not involve RasGAP.

  4. Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells.

    PubMed

    Gendron, L; Laflamme, L; Rivard, N; Asselin, C; Payet, M D; Gallo-Payet, N

    1999-09-01

    In a previous study, we had shown that activation of the AT2 (angiotensin type 2) receptor of angiotensin II (Ang II) induced morphological differentiation of the neuronal cell line NG108-15. In the present study, we investigated the nature of the possible intracellular mediators involved in the AT2 effect. We found that stimulation of AT2 receptors in NG108-15 cells resulted in time-dependent modulation of tyrosine phosphorylation of a number of cytoplasmic proteins. Stimulation of NG108-15 cells with Ang II induced a decrease in GTP-bound p21ras but a sustained increase in the activity of p42mapk and p44mapk as well as neurite outgrowth. Similarly, neurite elongation, increased polymerized tubulin levels, and increased mitogen-activated protein kinase (MAPK) activity were also observed in a stably transfected NG108-15 cell line expressing the dominant-negative mutant of p21ras, RasN17. These results support the observation that inhibition of p21ras did not impair the effect of Ang II on its ability to stimulate MAPK activity. While 10 microM of the MEK inhibitor, PD98059, only moderately affected elongation, 50 microM PD98059 completely blocked the Ang II- and the RasN17-mediated induction of neurite outgrowth. These results demonstrate that some of the events associated with the AT2 receptor-induced neuronal morphological differentiation of NG108-15 cells not only include inhibition of p21ras but an increase in MAPK activity as well, which is essential for neurite outgrowth.

  5. Mechanisms of Membrane Binding of Small GTPase K-Ras4B Farnesylated Hypervariable Region*

    PubMed Central

    Jang, Hyunbum; Abraham, Sherwin J.; Chavan, Tanmay S.; Hitchinson, Ben; Khavrutskii, Lyuba; Tarasova, Nadya I.; Nussinov, Ruth; Gaponenko, Vadim

    2015-01-01

    K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling. PMID:25713064

  6. Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase.

    PubMed

    Chen, Chun-Chia; Liu, Tzu-Yu; Huang, Shih-Pin; Ho, Chi-Tang; Huang, Tzou-Chi

    2015-11-01

    Glyoxalase 1 (GLO1) and HMG-CoA reductase (HMGCR) are highly expressed in most tumor cells and little in normal cells. In this study, treatment of HL-60 cells with lovastatin induced characteristic apoptosis in a dose-dependent manner. We demonstrated that lovastatin treatment inhibited Ras and Raf protein translocation to cell membrane and eliminated the phosphorylation of the downstream effectors Akt and ERK, and the subsequent NF-κB translocation into nucleus. Specific inhibitors and γ-tocotrienol confirmed the Ras/Raf/ERK/NF-κB/GLO1 and Ras/Akt/NF-κB/GLO1 pathways. Data revealed that lovastatin induced HL-60 cell death was attenuated by mevalonate treatment. We demonstrated also that γ-tocotrienol showed its apoptotic effect on the HL-60 cell through the same pathway. γ-Tocotrienol enhanced the apoptotic effect of lovastatin through the down-regulation of GLO1 and HMGCR resulting in an increase of methylglyoxal and a decrease of cholesterol and led to the apoptosis of HL-60 cells. Data also revealed that both lovastatin and gamma-tocotrienol induced significant HL-60 cell differentiation. These results suggest that both lovastatin and gamma-tocotrienol could induce differentiation and followed by apoptosis.

  7. Cardiac remodelling and RAS inhibition.

    PubMed

    Ferrario, Carlos M

    2016-06-01

    Risk factors such as hypertension and diabetes are known to augment the activity and tissue expression of angiotensin II (Ang II), the major effector peptide of the renin-angiotensin system (RAS). Overstimulation of the RAS has been implicated in a chain of events that contribute to the pathogenesis of cardiovascular (CV) disease, including the development of cardiac remodelling. This chain of events has been termed the CV continuum. The concept of CV disease existing as a continuum was first proposed in 1991 and it is believed that intervention at any point within the continuum can modify disease progression. Treatment with antihypertensive agents may result in regression of left ventricular hypertrophy, with different drug classes exhibiting different degrees of efficacy. The greatest decrease in left ventricular mass is observed following treatment with angiotensin converting enzyme inhibitors (ACE-Is), which inhibit Ang II formation. Although ACE-Is and angiotensin receptor blockers (ARBs) provide significant benefits in terms of CV events and stroke, mortality remains high. This is partly due to a failure to completely suppress the RAS, and, as our knowledge has increased, an escape phenomenon has been proposed whereby the human sequence of the 12 amino acid substrate angiotensin-(1-12) is converted to Ang II by the mast cell protease, chymase. Angiotensin-(1-12) is abundant in a wide range of organs and has been shown to increase blood pressure in animal models, an effect abolished by the presence of ACE-Is or ARBs. This review explores the CV continuum, in addition to examining the influence of the RAS. We also consider novel pathways within the RAS and how new therapeutic approaches that target this are required to further reduce Ang II formation, and so provide patients with additional benefits from a more complete blockade of the RAS. PMID:27105891

  8. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches.

    PubMed

    Lee, Sojung; Kang, Jungwoo; Cho, Minchul; Seo, Eunhee; Choi, Heesook; Kim, Eunjin; Kim, Junghee; Kim, Heejong; Kang, Gum Yong; Kim, Kwang Pyo; Park, Young-Ho; Yu, Dae-Yeul; Yum, Young Na; Park, Sue-Nie; Yoon, Do-Young

    2009-01-01

    The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as

  9. Profiling of transcripts and proteins modulated by K-ras oncogene in the lung tissues of K-ras transgenic mice by omics approaches.

    PubMed

    Lee, Sojung; Kang, Jungwoo; Cho, Minchul; Seo, Eunhee; Choi, Heesook; Kim, Eunjin; Kim, Junghee; Kim, Heejong; Kang, Gum Yong; Kim, Kwang Pyo; Park, Young-Ho; Yu, Dae-Yeul; Yum, Young Na; Park, Sue-Nie; Yoon, Do-Young

    2009-01-01

    The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as

  10. M-Ras induces Ral and JNK activation to regulate MEK/ERK-independent gene expression in MCF-7 breast cancer cells

    PubMed Central

    Castro, Ariel F.; Campos, Tania; Babcock, Justin T.; Armijo, Marisol E.; Martinez-Conde, Alfonso; Pincheira, Roxana; Quilliam, Lawrence A.

    2011-01-01

    Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as PI3K/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf /M-Ras interaction and Ral /JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors. PMID:22121046

  11. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells.

    PubMed

    Liu, Ping; Wilson, Michael J

    2012-02-01

    MicroRNA 520c and 373 (miR-520c and miR-373) have been characterized as oncogenes and play critical roles in cancer cell metastasis. However, the relationship between these two microRNAs and matrix metalloproteinases (MMPs), which are important in cancer cell metastasis, remains unknown. Here, we report new evidence in which miR-520c and miR-373 effects in human fibrosarcoma HT1080 cells are associated with MMP9 activity, and this upregulation of MMP9 is not only at the activity and protein levels, but also at that of its mRNA. Our experimental data demonstrate that these effects occur not by direct binding to the MMP9 promoter, but by miR-520c and miR-373 directly targeting the 3'-untranslational region (UTR) of mRNAs of mTOR and SIRT1 (negative regulators of expression of MMP9 via inactivating the Ras/Raf/MEK/Erk signaling pathway and transcription factor NF-κB activity); and thus suppressing translation levels of SIRT1 and mTOR. Moreover, inhibition of key kinases of the Ras/Raf/MEK/Erk signaling pathway and Western blots for selected proteins further identified miR-520c and miR-373 as activating this signaling pathway and NF-κB. In conclusion, miR-520c and miR-373 increased the expression of MMP9 by directly targeting the 3'-UTRs of mRNAs of mTOR and SIRT1 and suppressing their translation; resulting in activation of the Ras/Raf/MEK/Erk signaling pathway and NF-κB; and, finally, increasing the mRNA, protein, and activity of MMP9 and enhancing cell migration and cell growth in 3D type I collagen gels.

  12. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding.

    PubMed

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A; Chan, Andrew M

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5'-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras-/-). An examination of the lymphoid organs of Rras-/- mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras-/- mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras-/- mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras-/- T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras-/- T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras-/- T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  13. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  14. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  15. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  16. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  17. Genome-wide gene expression analysis identifies K-ras as a regulator of alcohol intake.

    PubMed

    Repunte-Canonigo, Vez; van der Stap, Lena D; Chen, Jihuan; Sabino, Valentina; Wagner, Ulrich; Zorrilla, Eric P; Schumann, Gunter; Roberts, Amanda J; Sanna, Pietro Paolo

    2010-06-21

    Adaptations in the anterior cingulate cortex (ACC) have been implicated in alcohol and drug addiction. To identify genes that may contribute to excessive drinking, here we performed microarray analyses in laser microdissected rat ACC after a single or repeated administration of an intoxicating dose of alcohol (3 g/kg). Expression of the small G protein K-ras was differentially regulated following both single and repeated alcohol administration. We also observed that voluntary alcohol intake in K-ras heterozygous null mice (K-ras(+/-)) did not increase after withdrawal from repeated cycles of intermittent ethanol vapor exposure, unlike in their wild-type littermates. To identify K-ras regulated pathways, we then profiled gene expression in the ACC of K-ras(+/-), heterozygous null mice for the K-ras negative regulator Nf1 (Nf1(+/-)) and wild-type mice following repeated administration of an intoxicating dose of alcohol. Pathway analysis showed that alcohol differentially affected various pathways in a K-ras dependent manner - some of which previously shown to be regulated by alcohol - including the insulin/PI3K pathway, the NF-kappaB, the phosphodiesterases (PDEs) pathway, the Jak/Stat and the adipokine signaling pathways. Altogether, the data implicate K-ras-regulated pathways in the regulation of excessive alcohol drinking after a history of dependence.

  18. A RAS renaissance: emerging targeted therapies for KRAS-mutated non-small cell lung cancer.

    PubMed

    Vasan, Neil; Boyer, Julie L; Herbst, Roy S

    2014-08-01

    Of the numerous oncogenes implicated in human cancer, the most common and perhaps the most elusive to target pharmacologically is RAS. Since the discovery of RAS in the 1960s, numerous studies have elucidated the mechanism of activity, regulation, and intracellular trafficking of the RAS gene products, and of its regulatory pathways. These pathways yielded druggable targets, such as farnesyltransferase, during the 1980s to 1990s. Unfortunately, early clinical trials investigating farnesyltransferase inhibitors yielded disappointing results, and subsequent interest by pharmaceutical companies in targeting RAS waned. However, recent advances including the identification of novel regulatory enzymes (e.g., Rce1, Icmt, Pdeδ), siRNA-based synthetic lethality screens, and fragment-based small-molecule screens, have resulted in a "Ras renaissance," signified by new Ras and Ras pathway-targeted therapies that have led to new clinical trials of patients with Ras-driven cancers. This review gives an overview of KRas signaling pathways with an emphasis on novel targets and targeted therapies, using non-small cell lung cancer as a case example.

  19. Aberration corrected emittance exchange

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.

    2015-08-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (rf) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by multiple orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dogleg emittance exchange setup with a five cell rf deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of an EEX line with emittances differing by four orders of magnitude, i.e., an initial transverse emittance of 1 pm-rad is exchanged with a longitudinal emittance of 10 nm-rad.

  20. CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity

    PubMed Central

    Tang, Bing; Zhu, Le-Le; Liu, Yan-Hui; Zhao, Xue-Qiang; Gorjestani, Sara; Hsu, Yen-Michael S.; Yang, Long; Guan, Jian-Hong; Xu, Guo-Tong

    2014-01-01

    Dectin-1 functions as a pattern recognition receptor for sensing fungal infection. It has been well-established that Dectin-1 induces innate immune responses through caspase recruitment domain-containing protein 9 (CARD9)–mediated NF-κB activation. In this study, we find that CARD9 is dispensable for NF-κB activation induced by Dectin-1 ligands, such as curdlan or Candida albicans yeast. In contrast, we find that CARD9 regulates H-Ras activation by linking Ras-GRF1 to H-Ras, which mediates Dectin-1–induced extracellular signal-regulated protein kinase (ERK) activation and proinflammatory responses when stimulated by their ligands. Mechanistically, Dectin-1 engagement initiates spleen tyrosine kinase (Syk)–dependent Ras-GRF1 phosphorylation, and the phosphorylated Ras-GRF1 recruits and activates H-Ras through forming a complex with CARD9, which leads to activation of ERK downstream. Finally, we show that inhibiting ERK activation significantly accelerates the death of C. albicans–infected mice, and this inhibitory effect is dependent on CARD9. Together, our studies reveal a molecular mechanism by which Dectin-1 induces H-Ras activation that leads to ERK activation for host innate immune responses against fungal infection. PMID:25267792

  1. Platelet-derived growth factor and reactive oxygen species (ROS) regulate Ras protein levels in primary human fibroblasts via ERK1/2. Amplification of ROS and Ras in systemic sclerosis fibroblasts.

    PubMed

    Svegliati, Silvia; Cancello, Raffaella; Sambo, Paola; Luchetti, Michele; Paroncini, Paolo; Orlandini, Guido; Discepoli, Giancarlo; Paterno, Roberto; Santillo, Mariarosaria; Cuozzo, Concetta; Cassano, Silvana; Avvedimento, Enrico V; Gabrielli, Armando

    2005-10-28

    The levels of Ras proteins in human primary fibroblasts are regulated by PDGF (platelet-derived growth factor). PDGF induced post-transcriptionally Ha-Ras by stimulating reactive oxygen species (ROS) and ERK1/2. Activation of ERK1/2 and high ROS levels stabilize Ha-Ras protein, by inhibiting proteasomal degradation. We found a remarkable example in vivo of amplification of this circuitry in fibroblasts derived from systemic sclerosis (scleroderma) lesions, producing vast excess of ROS and undergoing rapid senescence. High ROS, Ha-Ras, and active ERK1/2 stimulated collagen synthesis, DNA damage, and accelerated senescence. Conversely ROS or Ras inhibition interrupted the signaling cascade and restored the normal phenotype. We conclude that in primary fibroblasts stabilization of Ras protein by ROS and ERK1/2 amplifies the response of the cells to growth factors and in systemic sclerosis represents a critical factor in the onset and progression of the disease. PMID:16081426

  2. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    PubMed

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers. PMID:26867649

  3. The Bisphenol A analogue Bisphenol S binds to K-Ras4B--implications for 'BPA-free' plastics.

    PubMed

    Schöpel, Miriam; Herrmann, Christian; Scherkenbeck, Jürgen; Stoll, Raphael

    2016-02-01

    K-Ras4B is a small GTPase that belongs to the Ras superfamily of guanine nucleotide-binding proteins. GTPases function as molecular switches in cells and are key players in intracellular signalling. Ras has been identified as an oncogene and is mutated in more than 20% of human cancers. Here, we report that Bisphenol S binds into a binding pocket of K-Ras4B previously identified for various low molecular weight compounds. Our results advocate for more comprehensive safety studies on the toxicity of Bisphenol S, as it is frequently used for Bisphenol A-free food containers.

  4. Transgenic activation of Ras in neurons increases synapse formation in mouse neocortex.

    PubMed

    Seeger, G; Gärtner, U; Arendt, Th

    2005-06-01

    The small G protein Ras, which is a molecular switch in neurotrophic signal transduction, is implicated in synaptic plasticity and synapse development during ontogeny and in the adult nervous system. To characterise the involvement of Ras-dependent signaling in synaptogenesis, the cortical synapse-to-neuron ratio was investigated in synRas mice overexpressing Val12-Ha-Ras in postmitotic neurons (introduced by Heumann, 2000). The number of synapses per neuron was analysed in cortical layers II/III of the somatosensory cortex at different stages of postnatal development by stereological methods. The synapse-to-neuron ratio was still identical in wild-type and synRas mice at postnatal day 4 before the onset of transgene expression. At P12, P47 and in the adult, analyses revealed a significant increase in the synapse-to-neuron ratio in synRas mice which correlated with the strength of transgene expression. The data presented here provide evidence that Ras activity might be profoundly involved in synaptogenesis by reinforcing the formation or maintenance of synapses during the development and in the adult.

  5. Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer.

    PubMed

    Hecht, J Randolph; Douillard, Jean-Yves; Schwartzberg, Lee; Grothey, Axel; Kopetz, Scott; Rong, Alan; Oliner, Kelly S; Sidhu, Roger

    2015-09-01

    RAS family proteins (including KRAS and NRAS) play important roles in the epidermal growth factor receptor (EGFR) signaling pathway. Mutations in RAS genes (occurring at loci in exons 2, 3, and 4) often result in constitutive activation of RAS proteins and persistent downstream signaling. Mutations in KRAS exon 2 (codon 12/13) are an established predictor of lack of response to the anti-EGFR monoclonal antibodies cetuximab and panitumumab in patients with metastatic colorectal cancer (mCRC), and have been used routinely in clinical practice to identify patients unlikely to derive benefit from these therapies. However, a meaningful proportion of patients with mCRC have tumors bearing other mutations in RAS genes. Recent studies have demonstrated that evaluation of an extended panel of RAS mutations—including mutations in KRAS exon 2, 3, and 4 and NRAS exons 2, 3, and 4—can better define the patient population that is unlikely to benefit from anti-EGFR therapy, with concomitant improvements in outcomes in the more highly selected RAS wild-type group. This discovery has changed the practice of oncology and has the potential to spare patients from exposure to ineffective therapy. In the near future, it is important for the oncology community to validate extended RAS analysis assays and make certain that patients who are candidates for anti-EGFR therapy undergo appropriate testing and treatment.

  6. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon; Kim, In-Ah

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression and radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.

  7. A Flt3 and Ras-dependent Pathway Primes B Cell Development by Inducing A State of IL7-responsiveness

    PubMed Central

    Li, Lin-Xi; Goetz, Christine A.; Katerndahl, Casey D.S.; Sakaguchi, Nobuo; Farrar, Michael A.

    2009-01-01

    Ras plays an important role in B cell development. However, the stage at which Ras governs B cell development remains unclear. Moreover, the upstream receptors and downstream effectors of Ras that govern B cell differentiation remain undefined. Using mice that express a dominant negative form of Ras, we demonstrate that Ras-mediated signaling plays a critical role in the development of common lymphoid progenitors (CLP). This developmental block parallels that found in flt3−/− mice, suggesting that Flt3 is an important upstream activator of Ras in early B cell progenitors. Ras inhibition impaired proliferation of CLP and pre-pro-B cells but not pro-B cells. Rather, Ras promotes STAT5-dependent pro-B cell differentiation by enhancing IL7Rα levels and suppressing socs2 and socs3 expression. Our results suggest a model in which Flt3/Ras-dependent signals play a critical role in B cell development by priming early B cell progenitors for subsequent STAT5-dependent B cell differentiation. PMID:20065110

  8. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells.

    PubMed

    Shin, Ilchung; Kim, Seonhoe; Song, Hyun; Kim, Hyeong-Reh Choi; Moon, Aree

    2005-04-15

    Human tumors frequently exhibit constitutively activated Ras signaling, which contributes to the malignant phenotype. Mounting evidence suggests unique roles of the Ras family members, H-Ras, N-Ras and K-Ras, in normal and pathological conditions. In an effort to dissect distinct Ras isoform-specific functions in malignant phenotypic changes, we previously established H-Ras- and N-Ras-activated MCF10A human breast epithelial cell lines. Using these, we showed that p38 kinase is a key signaling molecule differentially regulated between H-Ras and N-Ras, leading to H-Ras-specific induction of invasive and migrative phenotypes. The present study is to further investigate H-Ras- and N-Ras-mediated signaling pathways and to unveil how these pathways are integrated for regulation of invasive/migrative phenotypic conversion of human breast epithelial cells. Here we report that the Rac-MAPK kinase (MKK)3/6-p38 pathway is a unique signaling pathway activated by H-Ras, leading to the invasive/migrative phenotype. In contrast, Raf-MEK-ERK and phosphatidylinositol 3-kinase-Akt pathways, which are fundamental to proliferation and differentiation, are activated by both H-Ras and N-Ras. A significant role for p38 in cell invasion is further supported by the observation that p38 activation by MKK6 transfection is sufficient to induce invasive and migrative phenotypes in MCF10A cells. Activation of the MKK6-p38 pathway results in a marked induction of matrix metalloproteinase (MMP)-2, whereas it had little effect on MMP-9, suggesting MMP-2 up-regulation by MKK6-p38 pathway as a key step for H-Ras-induced invasion and migration. We also provide evidence for cross-talk among the Rac, Raf, and phosphatidylinositol 3-kinase pathways critical for regulation of MMP-2 and MMP-9 expression and invasive phenotype. Taken together, the present study elucidated the role of the Rac-MKK3/6-p38 pathway leading to H-Ras-specific induction of malignant progression in breast epithelial cells

  9. The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase.

    PubMed

    Jaumot, Montserrat; Yan, Jun; Clyde-Smith, Jodi; Sluimer, Judith; Hancock, John F

    2002-01-01

    Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane micro-localization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.

  10. Activated Ras Induces Cytoplasmic Vacuolation and Non-Apoptotic Death in Glioblastoma Cells via Novel Effector Pathways

    PubMed Central

    Kaul, Aparna; Overmeyer, Jean H.; Maltese, William A.

    2007-01-01

    Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles and increased autophagic activity. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer. PMID:17210246

  11. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  12. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    SciTech Connect

    Tsujita, Maristela; Batista, Wagner L.; Ogata, Fernando T.; Monteiro, Hugo P. Arai, Roberto J.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  13. Inhibitors of Ras-SOS Interactions.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal.

  14. Across the universe of K-RAS mutations in non-small-cell-lung cancer.

    PubMed

    Piva, Sheila; Ganzinelli, Monica; Garassino, Marina Chiara; Caiola, Elisa; Farina, Gabriella; Broggini, Massimo; Marabese, Mirko

    2014-01-01

    RAS family proteins are important signaling molecules that regulate cell growth, survival and differentiation by coupling receptor activation to downstream effector pathways. Three distinct genes encode for the three different proteins H-, K-, and N- RAS. These proteins share high sequence homology, particularly at the N-Terminal domain. Among them, K-RAS is one of the most frequently mutated in human cancer. The majority of the mutations present in K-RAS are at codon 12 (from 80 to 100%) followed by codon 13 and 61. In all cases, aminoacid change leads to a constitutively activated protein. K-RAS mutations have a role in tumor development as well as in tumor progression and resistance. Despite the various studies which have been published, the prognostic and predictive role of K-RAS mutations is still under debate. Keeping in mind that the glycine present at position 12 can be substituted by valine, aspartic acid or cysteine, it could be well understood that each different substitution plays a different role in K-RAS-dependent processes. The present article focuses on the molecular and biological characteristics of K-RAS protein, its role in NSCLC tumor development and progression. We also present an overview of the preclinical models both in vitro and in vivo available to determine the role of K-RAS in tumor progression and response to treatment and on the recent results obtained in this field. Finally, we have considered the impact of KRAS mutations in clinical practice, analyzing the different recent trials that have taken into consideration K-RAS.

  15. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice

    SciTech Connect

    Plowman, Sarah J.; Arends, Mark J.; Brownstein, David G.; Luo Feijun; Devenney, Paul S.; Rose, Lorraine; Ritchie, Ann-Marie; Berry, Rachel L.; Harrison, David J.; Hooper, Martin L.; Patek, Charles E. . E-mail: Charles.Patek@ed.ac.uk

    2006-01-01

    Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} (exon 4A knock-out) ES cells which express K-ras4B only and K-ras {sup -/-} (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} and K-ras {sup -/-} ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras {sup -/-} cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras {sup tm{delta}}{sup 4A/tm{delta}}{sup 4A} ES cells were more resistant to etoposide-induced apoptosis than K-ras {sup -/-} cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice.

  16. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras.

    PubMed

    Peng, Bo; Ganapathy, Suthakar; Shen, Ling; Huang, Junchi; Yi, Bo; Zhou, Xiaodong; Dai, Wei; Chen, Changyan

    2015-09-01

    The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras. PMID:26041886

  17. Minireview: physiological and pathological actions of RAS in the ovary.

    PubMed

    Fan, Heng-Yu; Richards, Joanne S

    2010-02-01

    The small G proteins of the RAS superfamily act as molecular switches in the transduction of cellular signals critical for a wide range of normal developmental events as well as pathological processes. However, the functions of Ras genes in ovarian cells have only started to be unveiled. RAS, most likely KRAS that is highly expressed in granulosa cells of growing follicles, appears crucial for mediating the gonadotropin-induced events associated with the unique physiological process of ovulation. By contrast, conditional expression of a constitutively active Kras(G12D) mutant in granulosa cells results in ovulation defects due to the complete disruption of normal follicular growth, cessation of granulosa cell proliferation, and blockage of granulosa cell apoptosis and differentiation. When the tumor suppressor Pten is disrupted conditionally in the Kras(G12D)-expressing granulosa cells, granulosa cell tumors fail to develop. However, ovarian surface epithelial cells expressing the same Pten;Kras(G12D) mutations rapidly become ovarian surface epithelial serous cystadenocarcinomas. In this minireview, we summarize some of the physiological as well as pathological functions of RAS in the rodent ovary, discuss the implications of the Kras(G12D) mutant mouse models for understanding human diseases such as premature ovarian failure and ovarian cancers, and highlight new questions raised by the results of recent studies.

  18. RAS and BRAF in metastatic colorectal cancer management

    PubMed Central

    Gong, Jun; Cho, May

    2016-01-01

    The treatment of metastatic colorectal cancer (mCRC) has been further refined with the development of monoclonal antibodies, cetuximab and panitumumab, towards the epidermal growth factor receptor (EGFR). Anti-EGFR therapy has afforded improved survival in those with wild-type RAS mCRC but provides no benefit and even harm in those with RAS-mutant tumors. BRAF mutations have also been shown to predict lack of clinically meaningful benefit to anti-EGFR therapy in mCRC. Mechanisms of resistance to EGFR blockade in wild-type RAS or BRAF metastatic colorectal tumors appear to converge on the mitogen-activated protein kinase (MAPK) signaling pathway. Clinical trials involving combined BRAF, EGFR, and/or MAPK kinase (MEK) inhibition have shown promising activity in BRAF-mutant mCRC. Here, we review pivotal clinical trials that have redefined our treatment approach in mCRC with respect to anti-EGFR therapy based on RAS and BRAF mutation status. Future studies will likely focus on improving efficacy of anti-EGFR-based therapy in mCRC through sustained MAPK pathway inhibition. PMID:27747083

  19. Aberrant CD8+ T-Cell Responses and Memory Differentiation upon Viral Infection of an Ataxia-Telangiectasia Mouse Model Driven by Hyper-Activated Akt and mTORC1 Signaling

    PubMed Central

    D'Souza, Anthony D.; Parish, Ian A.; McKay, Sharen E.; Kaech, Susan M.; Shadel, Gerald S.

    2011-01-01

    Immune system-related pathology is common in ataxia-telangiectasia (A-T) patients and mice that lack the protein kinase, A-T mutated (ATM). However, it has not been studied how ATM influences immune responses to a viral infection. Using the lymphocytic choriomeningitis virus (LCMV) infection model, we show that ATM−/− mice, despite having fewer naïve CD8+ T cells, effectively clear the virus. However, aberrant CD8+ T-cell responses are observed, including defective expansion and contraction, effector-to-memory differentiation, and a switch in viral-epitope immunodominance. T-cell receptor-activated, but not naïve, ATM−/− splenic CD8+ T cells have increased ribosomal protein S6 and Akt phosphorylation and do not proliferate well in response to IL-15, a cytokine important for memory T-cell development. Accordingly, pharmacological Akt or mammalian target of rapamycin complex 1 (mTORC1) inhibition during T-cell receptor activation alone rescues the IL-15 proliferation defect. Finally, rapamycin treatment during LCMV infection in vivo increases the number of memory T cells in ATM−/− mice. Altogether, these results show that CD8+ T cells lacking ATM have hyperactive Akt and mTORC1 signaling in response to T-cell receptor activation, which results in aberrant cytokine responses and memory T-cell development. We speculate that similar signaling defects contribute to the immune system pathology of A-T, and that inhibition of Akt and/or mTORC1 may be of therapeutic value. PMID:21641396

  20. Dominant inhibitory Ras delays Sindbis virus-induced apoptosis in neuronal cells.

    PubMed Central

    Joe, A K; Ferrari, G; Jiang, H H; Liang, X H; Levine, B

    1996-01-01

    Mature neurons are more resistant than dividing cells or differentiating neurons to Sindbis virus-induced apoptotic death. Therefore, we hypothesized that mitogenic signal transduction pathways may influence susceptibility to Sindbis virus-induced apoptosis. Since Ras, a 21-kDa GTP-binding protein, plays an important role in cellular proliferation and neuronal differentiation, we investigated the effect of an inducible dominant inhibitory Ras on Sindbis virus-induced death of a rat pheochromocytoma cell line, PC12 cells. Dexamethasone induction of dominant inhibitory Ras (Ha Ras(Asn17)) expression in transfected PC12 cell lines (MMTV-M17-21 and GSrasDN6 cells) resulted in a marked delay in Sindbis virus-induced apoptosis, compared with infected, uninduced cells. The delay in death after Sindbis virus infection in induced versus uninduced PC12 cells was not associated with differences in viral titers or viral infectivity. No delay in Sindbis virus-induced apoptosis was observed in Ha Ras(Asn17)-transfected PC12 cells if dexamethasone induction was initiated less than 12 h before Sindbis virus infection or in wild-type PC12 cells infected with a chimeric Sindbis virus construct that expresses Ha Ras(Asn17). The delay in Sindbis virus-induced apoptosis in induced Ha Ras(Asn17)-transfected PC12 cells was associated with a decrease in cellular DNA synthesis as measured by 5'-bromo-2'-deoxyuridine incorporation. Thus, in PC12 cells, inducible dominant inhibitory Ras inhibits cellular proliferation and delays Sindbis virus-induced apoptosis. These findings suggest that a Ras-dependent signaling pathway is a determinant of neuronal susceptibility to Sindbis virus-induced apoptosis. PMID:8892895

  1. Post-translational processing of purified human K-ras in Xenopus oocytes.

    PubMed

    Kaplan, J B; Sass, P M

    1991-01-01

    Membrane localization of ras p21 involves a complex series of post-translational processing events, including S-farnesylation of Cys-186, removal of three carboxyl-terminal amino acid residues, and methylation of the carboxyl-terminal farnesylcysteine residue. Palmitoylation of cysteine residues within the hypervariable region (amino acids 165-185) is also required for membrane localization of mammalian H-, N-, and K-ras(A). For K-ras(B), which contains no cysteine residues within the hypervariable region, a polybasic domain substitutes for palmitoylation as a second signal for plasma membrane targeting. In order to investigate the localization of K-ras(B) to the plasma membrane, we purified wild-type and mutant human K-ras(B) proteins from strains of E. coli harboring bacterial expression plasmids and injected them into Xenopus laevis oocytes. Our results show that wild-type and activated K-ras(B) proteins can be post-translationally modified and can induce meiotic maturation in Xenopus oocytes. A mutation at Cys-186 (Cys to Gly) abolished the ability of activated K-ras(B) to induce meiosis. Deprivation of isoprenyl precursors by the addition of lovastatin, a drug that blocks the synthesis of mevalonate, also abolished the ability of activated K-ras(B) to induce meiosis, although this inhibition could be overcome by the addition of exogenous mevalonate. Lovastatin did not block meiotic maturation induced by microinjection of purified mos protein, a component of the cytostatic factor that arrests Xenopus oocytes at the first meiotic prophase. These results indicate that post-translational isoprenylation of K-ras(B) is essential for plasma membrane targeting and induction of meiotic maturation in Xenopus oocytes and that further isoprenyl modification of proteins downstream from mos signal transduction is not essential for this process. PMID:16296004

  2. Synergism between K-rasVal12 and mutant Apc accelerates murine large intestinal tumourigenesis.

    PubMed

    Luo, Feijun; Poulogiannis, George; Ye, Hongtao; Hamoudi, Rifat; Arends, Mark J

    2011-07-01

    K-ras (KRAS) is mutated in 40-50% of human colorectal adenomas and carcinomas and plays key roles in cell proliferation, apoptosis, motility and differentiation, but its functional contribution to intestinal tumourigenesis in vivo remains incompletely understood. We have previously crossed K-rasVal12 transgenic mice with Ah-Cre mice to produce K-rasVal12/Cre offspring that inducibly express K-rasVal12 4A and 4B in the intestines, but this alone showed no significant effect on intestinal adenoma formation. Here, we crossed these mice with Min mice to evaluate the effect of K-rasVal12 and Apc mutation on intestinal tumourigenesis in vivo. The double mutant K-rasVal12/Cre/ApcMin/+ mice showed a moderate (1.86-fold) increase in adenomas in the small intestines, but a striking acceleration (6-fold increase) of large intestinal adenoma formation (P<0.01) and significantly reduced survival (by ~5 weeks) compared with control ApcMin/+ mice (P<0.01). There was recombination of the mutant K-rasVal12 transgene in 80% of large intestinal adenomas with expression of both K-rasVal12 4A and 4B isoform transcripts and expression of K-RasVal12 protein. The large intestinal adenomas showed immunohistochemical evidence of activation of MapK, Akt and Wnt signaling pathways and this was confirmed by quantitative RT-PCR analysis of relative transcript expression levels of target genes using a panel of 23 selected genes evaluated in both adenomas and non-tumour-bearing intestines. Several genes including Tiam1, Gastrin, CD44, uPA, Igfbp4, VEGF and Cox-2 that are known to be transcriptionally regulated by activation of the Wnt signaling pathway were found to be expressed at higher levels in the large intestinal adenomas from K-rasVal12/Cre/ApcMin/+ mice compared with those from controls, although other Wnt signaling pathway target genes remained unchanged. These data show that intestinal expression of K-rasVal12 accelerates Apc-initiated intestinal adenomagenesis in vivo with

  3. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling

    PubMed Central

    Zhou, Xinyao; Li, Qiaoli; Xu, Jiawei; Zhang, Xiaojing; Zhang, Huijuan; Xiang, Yuqian; Fang, Chuantao; Wang, Teng; Xia, Shihui; Zhang, Qiang; Xing, Qinghe; He, Lin; Wang, Lei; Xu, Mingqing; Zhao, Xinzhi

    2016-01-01

    Preeclampsia (PE) is a leading cause of maternal mortality worldwide. Several studies have detected some differentially expressed microRNAs in the preeclamptic placenta, but few of the identified microRNAs demonstrated consistent findings among different research studies. In this study, high-throughput microRNA sequencing (HTS) of 9 preeclamptic and 9 normal placentas was performed. Seventeen microRNAs were identified to be up-regulated, and 8 down-regulated in preeclamptic placentas. Eight differentially expressed microRNAs except one identified in our study were determined to be consistent with at least one previous study, while sixteen were newly found. We performed qRT-PCR with independent 22 preeclamptic placentas and 20 control placentas to verify the differentially expressed microRNAs, and ten microRNAs were validated. The predicted target genes of the aberrantly expressed miR-193b-3p were enriched in the following gene ontology categories: cell motility and migration, cell proliferation and angiogenesis. We also found that miR-193b-3p significantly decreased the migration and invasion of trophoblast (HTR-8/SVneo) cells and that miR-193b-3p could regulate trophoblasts migration and invasion through binding onto the 3′UTR target site of TGF-β2. In conclusion, we identified a list of differentially expressed microRNAs in PE placentas by HTS and provided preliminary evidence for the role of miR-193b-3p in the pathogenesis of preeclampsia. PMID:26822621

  4. Wild-Type N-Ras, Overexpressed in Basal-like Breast Cancer, Promotes Tumor Formation by Inducing IL-8 Secretion via JAK2 Activation.

    PubMed

    Zheng, Ze-Yi; Tian, Lin; Bu, Wen; Fan, Cheng; Gao, Xia; Wang, Hai; Liao, Yi-Hua; Li, Yi; Lewis, Michael T; Edwards, Dean; Zwaka, Thomas P; Hilsenbeck, Susan G; Medina, Daniel; Perou, Charles M; Creighton, Chad J; Zhang, Xiang H-F; Chang, Eric C

    2015-07-21

    Basal-like breast cancers (BLBCs) are aggressive, and their drivers are unclear. We have found that wild-type N-RAS is overexpressed in BLBCs but not in other breast cancer subtypes. Repressing N-RAS inhibits transformation and tumor growth, whereas overexpression enhances these processes even in preinvasive BLBC cells. We identified N-Ras-responsive genes, most of which encode chemokines; e.g., IL8. Expression levels of these chemokines and N-RAS in tumors correlate with outcome. N-Ras, but not K-Ras, induces IL-8 by binding and activating the cytoplasmic pool of JAK2; IL-8 then acts on both the cancer cells and stromal fibroblasts. Thus, BLBC progression is promoted by increasing activities of wild-type N-Ras, which mediates autocrine/paracrine signaling that can influence both cancer and stroma cells.

  5. Ras Regulates Rb via NORE1A.

    PubMed

    Barnoud, Thibaut; Donninger, Howard; Clark, Geoffrey J

    2016-02-01

    Mutations in the Ras oncogene are one of the most frequent events in human cancer. Although Ras regulates numerous growth-promoting pathways to drive transformation, it can paradoxically promote an irreversible cell cycle arrest known as oncogene-induced senescence. Although senescence has clearly been implicated as a major defense mechanism against tumorigenesis, the mechanisms by which Ras can promote such a senescent phenotype remain poorly defined. We have shown recently that the Ras death effector NORE1A plays a critical role in promoting Ras-induced senescence and connects Ras to the regulation of the p53 tumor suppressor. We now show that NORE1A also connects Ras to the regulation of a second major prosenescent tumor suppressor, the retinoblastoma (Rb) protein. We show that Ras induces the formation of a complex between NORE1A and the phosphatase PP1A, promoting the activation of the Rb tumor suppressor by dephosphorylation. Furthermore, suppression of Rb reduces NORE1A senescence activity. These results, together with our previous findings, suggest that NORE1A acts as a critical tumor suppressor node, linking Ras to both the p53 and the Rb pathways to drive senescence.

  6. Regulation of Ras Localization and Cell Transformation by Evolutionarily Conserved Palmitoyltransferases

    PubMed Central

    Young, Evelin; Zheng, Ze-Yi; Wilkins, Angela D.; Jeong, Hee-Tae; Li, Min; Lichtarge, Olivier

    2014-01-01

    Ras can act on the plasma membrane (PM) to mediate extracellular signaling and tumorigenesis. To identify key components controlling Ras PM localization, we performed an unbiased screen to seek Schizosaccharomyces pombe mutants with reduced PM Ras. Five mutants were found with mutations affecting the same gene, S. pombe erf2 (sp-erf2), encoding sp-Erf2, a palmitoyltransferase, with various activities. sp-Erf2 localizes to the trans-Golgi compartment, a process which is mediated by its third transmembrane domain and the Erf4 cofactor. In fission yeast, the human ortholog zDHHC9 rescues the phenotypes of sp-erf2 null cells. In contrast, expressing zDHHC14, another sp-Erf2-like human protein, did not rescue Ras1 mislocalization in these cells. Importantly, ZDHHC9 is widely overexpressed in cancers. Overexpressing ZDHHC9 promotes, while repressing it diminishes, Ras PM localization and transformation of mammalian cells. These data strongly demonstrate that sp-Erf2/zDHHC9 palmitoylates Ras proteins in a highly selective manner in the trans-Golgi compartment to facilitate PM targeting via the trans-Golgi network, a role that is most certainly critical for Ras-driven tumorigenesis. PMID:24248599

  7. The Thyroid Hormone Receptor Is a Suppressor of ras-Mediated Transcription, Proliferation, and Transformation

    PubMed Central

    García-Silva, Susana; Aranda, Ana

    2004-01-01

    The thyroid hormone triiodothyronine (T3) has a profound effect on growth, differentiation, and metabolism in higher organisms. Here we demonstrate that T3 inhibits ras-induced proliferation in neuroblastoma cells and blocks induction of cyclin D1 expression by the oncogene. The hormone, at physiological concentrations, strongly antagonizes the transcriptional response mediated by the Ras/mitogen-activated protein kinase/ribosomal-S6 subunit kinase (Rsk) signaling pathway in cells expressing thyroid hormone receptors (TRs). T3 blocks the response to the oncogenic forms of the three ras isoforms (H-, K-, and N-ras) and both TRα and TRβ can mediate this action. The main target for induction of cyclin D1 transcription by oncogenic ras in neuroblastoma cells is a cyclic AMP response element (CRE) located in proximal promoter sequences, and T3 represses the transcriptional activity of b-Zip transcription factors such as CREB (CRE-binding protein) or ATF-2 (activation transcription factor 2) that are direct targets of Rsk2 and bind to this sequence. The hormone also blocks fibroblast transformation by oncogenic ras when TR is expressed. Furthermore, TRs act as suppressors of tumor formation by the oncogene in vivo in nude mice. The TRβ isoform has stronger antitransforming properties than the α isoform and can inhibit tumorigenesis even in hypothyroid mice. These results show the existence of a previously unrecognized transcriptional cross talk between the TRs and the ras oncogene which influences relevant processes such as cell proliferation, transformation, or tumorigenesis. PMID:15314161

  8. Measuring Ras-family GTP levels in vivo--running hot and cold.

    PubMed

    Castro, Ariel F; Rebhun, John F; Quilliam, Lawrence A

    2005-10-01

    The detection of Ras-family GTPase activity is important in the determination of cell signaling events elicited by numerous ligands and cellular processes. This has been made much easier in recent years by the use of glutathione S-transferase (GST)-fused Ras binding domains. These domains from downstream effectors such as Raf and RalGDS preferentially bind the GTP-bound Ras proteins enabling their extraction and subsequent quantification by immunoblotting. Despite this advance, effectors that efficiently discriminate between GTP- and GDP-bound states are not available for many Ras-family members. While this hampers the ability to detect activity in tissue specimens, it is still possible to metabolically label cells with (32)Pi to load the GTP/GDP pool with labeled nucleotides, immunoprecipitate the Ras protein and detect the bound label following thin layer chromatographic separation and exposure to film or a phosphorimager. Using a transfection system and antibodies that recognize epitope tags one can test the ability of a protein to work as a GEF or GAP for a certain GTPase. Alternatively, if an immunoprecipitating antibody is available to the target GTPase, then analysis of endogenous GTP/GDP ratio is possible. Here we describe the detection of M-Ras and Rap1 activity by GST-RBD pull-down as well as that of Rheb and epitope-tagged R-Ras by classical metabolic labeling and immunoprecipitation.

  9. c-Myc inhibits Ras-mediated differentiation of pheochromocytoma cells by blocking c-Jun up-regulation.

    PubMed

    Vaqué, José P; Fernández-García, Belén; García-Sanz, Pablo; Ferrandiz, Nuria; Bretones, Gabriel; Calvo, Fernando; Crespo, Piero; Marín, María C; León, Javier

    2008-02-01

    Although mutant Ras proteins were originally described as transforming oncoproteins, they induce growth arrest, senescence, and/or differentiation in many cell types. c-Myc is an oncogenic transcription factor that cooperates with Ras in cellular transformation and oncogenesis. However, the Myc-Ras relationship in cellular differentiation is largely unknown. Here, we have analyzed the effects of c-Myc on PC12-derived cells (UR61 cell line), harboring an inducible N-Ras oncogene. In these cells, Ras activation induces neuronal-like differentiation by a process involving c-Jun activation. We found that c-Myc inhibited Ras-mediated differentiation by a mechanism that involves the blockade of c-Jun induction in response to Ras signal. Accordingly, ectopically expressed c-Jun could bypass c-Myc impediment of Ras-induced differentiation and activator protein 1 activation. Interestingly, it did not rescue the proliferative arrest elicited by Ras and did not enhance the differentiation-associated apoptosis. The blockade of Ras-mediated induction of c-Jun takes place at the level of c-Jun proximal promoter. Mutational analysis revealed that c-Myc regions involved in DNA binding and transactivation are required to block differentiation and c-Jun induction. c-Myc does not seem to require Miz-1 to inhibit differentiation and block c-Jun induction. Furthermore, Max is not required for c-Myc activity, as UR61 cells lack a functional Max gene. c-Myc-inhibitory effect on the Ras/c-Jun connection is not restricted to UR61 cells as it can occur in other cell types as K562 or HEK293. In conclusion, we describe a novel interplay between c-Myc and c-Jun that controls the ability of Ras to trigger the differentiation program of pheochromocytoma cells.

  10. Identification of an essential signaling cascade for mitogen-activated protein kinase activation by angiotensin II in cultured rat vascular smooth muscle cells. Possible requirement of Gq-mediated p21ras activation coupled to a Ca2+/calmodulin-sensitive tyrosine kinase.

    PubMed

    Eguchi, S; Matsumoto, T; Motley, E D; Utsunomiya, H; Inagami, T

    1996-06-14

    In cultured rat vascular smooth muscle cells, angiotensin II (Ang II) induced a rapid increase in mitogen-activated protein kinase (MAPK) activity through the Ang II type 1 receptor, which was insensitive to pertussis toxin but was abolished by the phospholipase C inhibitor, U73122. The Ang II-induced MAPK activation was not affected by the protein kinase C inhibitor, GF109203X, and was only partially impaired by pretreatment with a phorbol ester, whereas both treatments completely prevented MAPK activation by the phorbol ester. Intracellular Ca2+ chelation by TMB-8, but not extracellular Ca2+ chelation or inhibition of Ca2+ influx, abolished Ang II-induced MAPK activation. The calmodulin inhibitor, calmidazolium, and the tyrosine kinase inhibitor, genistein, completely blocked MAPK activation by Ang II as well as by the Ca2+ ionophore A23187. Ang II caused a rapid increase in the binding of GTP to p21(ras), and this was inhibited by genistein, TMB-8, and calmidazolium but not by pertussis toxin or GF109203X. These data suggest that Ang II-induced MAPK activation through the Ang II type 1 receptor could be mediated by p21(ras)activation through a currently unidentified tyrosine kinase that lies downstream of Gq-coupled Ca2+/calmodulin signals.

  11. Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/AKT pathway.

    PubMed

    Ramaswamy, Bhuvaneswari; Lu, Yuanzhi; Teng, Kun-yu; Nuovo, Gerard; Li, Xiaobai; Shapiro, Charles L; Majumder, Sarmila

    2012-10-01

    Endocrine resistance is a major challenge in the management of estrogen receptor (ER)-positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of patients developing resistance to endocrine therapy warrants additional studies. Here we show that noncanonical Hedgehog (Hh) signaling is an alternative growth promoting mechanism that is activated in tamoxifen-resistant tumors. Importantly, phosphoinositide 3-kinase inhibitor/protein kinase B (PI3K/AKT) pathway plays a key role in regulating Hh signaling by protecting key components of this pathway from proteasomal degradation. The levels of Hh-signaling molecules SMO and GLI1 and the targets were significantly elevated in tamoxifen-resistant MCF-7 cells and T47D cells. Serial passage of the resistant cells in mice resulted in aggressive tumors that metastasized to distant organs with concurrent increases in Hh marker expression and epithelial mesenchymal transition. RNAi-mediated depletion of SMO or GLI1 in the resistant cells resulted in reduced proliferation, clonogenic survival and delayed G(1)-S transition. Notably, treatment of resistant cells with PI3K inhibitors decreased SMO and GLI1 protein levels and activity that was rescued upon blocking GSK3β and proteasomal degradation. Furthermore, treatment of tamoxifen-resistant xenografts with anti-Hh compound GDC-0449 blocked tumor growth in mice. Importantly, high GLI1 expression correlated inversely with disease-free and overall survival in a cohort of 315 patients with breast cancer. In summary, our results describe a signaling event linking PI3K/AKT pathway with Hh signaling that promotes tamoxifen resistance. Targeting Hh pathway alone or in combination with PI3K/AKT pathway could therefore be a novel therapeutic option in treating endocrine-resistant breast cancer.

  12. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    SciTech Connect

    Naumov, Inna; Kazanov, Dina; Lisiansky, Victoria; Starr, Alex; Aroch, Ilan; Shapira, Shiran; Kraus, Sarah; Arber, Nadir

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1 and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.

  13. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  14. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed

    Cox, Adrienne D; Der, Channing J; Philips, Mark R

    2015-04-15

    RAS proteins require membrane association for their biologic activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTI) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anticancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes, and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated posttranslational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. Clin Cancer Res; 21(8); 1819-27. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers." PMID:25878363

  15. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed

    Cox, Adrienne D; Der, Channing J; Philips, Mark R

    2015-04-15

    RAS proteins require membrane association for their biologic activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTI) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anticancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes, and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated posttranslational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. Clin Cancer Res; 21(8); 1819-27. ©2015 AACR. See all articles in this CCR Focus section, "Targeting RAS-Driven Cancers."

  16. MLL-AF6 fusion oncogene sequesters AF6 into the nucleus to trigger RAS activation in myeloid leukemia.

    PubMed

    Manara, Elena; Baron, Emma; Tregnago, Claudia; Aveic, Sanja; Bisio, Valeria; Bresolin, Silvia; Masetti, Riccardo; Locatelli, Franco; Basso, Giuseppe; Pigazzi, Martina

    2014-07-10

    A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.

  17. MicroRNA-based Therapeutic Strategies for Targeting Mutant and Wild Type RAS in Cancer

    PubMed Central

    Sharma, Sriganesh B.; Ruppert, J. Michael

    2015-01-01

    MicroRNAs (miRs) have been causally implicated in the progression and development of a wide variety of cancers. miRs modulate the activity of key cell signaling networks by regulating the translation of pathway component proteins. Thus, the pharmacological targeting of miRs that regulate cancer cell signaling networks, either by promoting (using miR-supplementation) or by suppressing (using anti-sense oligonucleotide based strategies) miR activity is an area of intense research. The RAS-Extracellular signal regulated kinase (ERK) pathway represents a major miR-regulated signaling network that endows cells with some of the classical hallmarks of cancer, and is often inappropriately activated in malignancies by somatic genetic alteration through point mutation or alteration of gene copy number. In addition, recent progress indicates that many tumors may be deficient in GTPase activating proteins (GAPs) due to the collaborative action of oncogenic microRNAs. Recent studies also suggest that in tumors harboring a mutant RAS allele there is a critical role for wild type RAS proteins in determining overall RAS-ERK pathway activity. Together, these two advances comprise a new opportunity for therapeutic intervention. In this review, we evaluate miR-based therapeutic strategies for modulating RAS-ERK signaling in cancers, in particular for more direct modulation of RAS-GTP levels, with the potential to complement current strategies in order to yield more durable treatment responses. To this end, we discuss the potential for miR-based therapies focused on three prominent miRs including the pan-RAS regulator let-7 and the GAP regulator comprised of miR-206 and miR-21 (miR-206/21). PMID:26284568

  18. TAT-RasGAP317-326 requires p53 and PUMA to sensitize tumor cells to genotoxins.

    PubMed

    Michod, David; Widmann, Christian

    2007-05-01

    Although chemotherapy has revolutionized cancer treatment, the associated side effects induced by lack of specificity to tumor cells remain a challenging problem. We have previously shown that TAT-RasGAP(317-326),a cell-permeable peptide derived from RasGAP, specifically sensitizes cancer cells to the action of genotoxins. The underlying mechanisms of this sensitization were not defined however. Here, we report that TAT-RasGAP(317-326) requires p53, but not the Ras effectors Akt and extracellular signal-regulated kinase, to mediate its tumor sensitization abilities. The TAT-RasGAP(317-326) peptide, although not modulating the transcriptional activity of p53 or its phosphorylation and acetylation status, nevertheless requires a functional p53 cellular status to increase the sensitivity of tumor cells to genotoxins. Genes regulated by p53 encode proapoptotic proteins, such as PUMA, and cell cycle control proteins, such as p21. The ability of TAT-RasGAP(317-326) to sensitize cancer cells was found to require PUMA but not p21. TAT-RasGAP(317-326) did not affect PUMA levels, however, but increased genotoxin-induced mitochondrial depolarization and caspase-3 activation. These results indicate that TAT-RasGAP(317-326) sensitizes tumor cells by activating signals that intersect with the p53 pathway downstream of, or at the level of, proapoptotic p53 target gene products to increase the activation of the mitochondrial death pathway.

  19. Degradation of Activated K-Ras Orthologue via K-Ras-specific Lysine Residues Is Required for Cytokinesis*

    PubMed Central

    Sumita, Kazutaka; Yoshino, Hirofumi; Sasaki, Mika; Majd, Nazanin; Kahoud, Emily Rose; Takahashi, Hidenori; Takeuchi, Koh; Kuroda, Taruho; Lee, Susan; Charest, Pascale G.; Takeda, Kosuke; Asara, John M.; Firtel, Richard A.; Anastasiou, Dimitrios; Sasaki, Atsuo T.

    2014-01-01

    Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers. PMID:24338482

  20. Aberrant Wnt/β-catenin signaling and elevated expression of stem cell proteins are associated with osteosarcoma side population cells of high tumorigenicity.

    PubMed

    Yi, Xi-Jun; Zhao, Yu-Hua; Qiao, Li-Xiang; Jin, Chun-Lei; Tian, Jing; Li, Qiu-Shi

    2015-10-01

    According to the cancer stem cell theory, the presence of a small sub‑population of cancer cells, termed cancer stem cells (CSCs), have a significant implication on cancer treatment and are responsible for tumor recurrence. Previous studies have reported that alterations in the Wnt/β‑catenin signaling are crucial in the maintenance of CSCs. In the present study, the characteristic features and activation of Wnt/β‑catenin signaling in CSCs from osteosarcoma, an aggressive human bone tumor, were investigated. In total, ~2.1% of the cancer stem‑like side population (SP) cells were identified in the osteosarcoma samples. The results of subsequent western blot and reverse transcription‑quantitative polymerase chain reaction analyses revealed that the protein levels of β‑catenin and cyclin D1 were markedly upregulated in the fluorescence‑activated cell sorted osteosarcoma SP cells. In addition, the elevated expression levels of stem cell proteins, including CD133, nestin Oct‑4, Sox‑2 and Nanog were significantly higher in the SP cells, which contributed to self‑renewal and enhanced the proliferation rate of the SP cells. Furthermore, the SP cells were found to be highly invasive and able to form tumors in vivo. Taken together, these data suggested that the identification of novel anticancer drugs, which suppress the Wnt/β‑catenin signaling and its downstream pathway may assist in eradicating osteosarcoma stem cells.

  1. Molecular kinetics. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics.

    PubMed

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M; Abel, Steven M; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S; Hansen, Scott D; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K; Kuriyan, John; Groves, Jay T

    2014-07-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average.

  2. Optimizing depuration of salmon in RAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish cultured within water recirculating aquaculture systems (RAS) can acquire "earthy" or "musty" off-flavors due to bioaccumulation of the compounds geosmin and 2-methylisoborneol (MIB), respectively, which are produced by certain bacterial species present in RAS biosolids and microbial biofilms. ...

  3. Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations

    PubMed Central

    Ng, R C-L; Matsumaru, D; Ho, A S-H; Garcia-Barceló, M-M; Yuan, Z-W; Smith, D; Kodjabachian, L; Tam, P K-H; Yamada, G; Lui, V C-H

    2014-01-01

    In mammalian urorectal development, the urorectal septum (urs) descends from the ventral body wall to the cloaca membrane (cm) to partition the cloaca into urogenital sinus and rectum. Defective urs growth results in human congenital anorectal malformations (ARMs), and their pathogenic mechanisms are unclear. Recent studies only focused on the importance of urs mesenchyme proliferation, which is induced by endoderm-derived Sonic Hedgehog (Shh). Here, we showed that the programmed cell death of the apical urs and proximal cm endoderm is particularly crucial for the growth of urs during septation. The apoptotic endoderm was closely associated with the tempo-spatial expression of Wnt inhibitory factor 1 (Wif1), which is an inhibitor of Wnt-β-catenin signaling. In Wif1lacZ/lacZ mutant mice and cultured urorectum with exogenous Wif1, cloaca septation was defective with undescended urs and hypospadias-like phenotypes, and such septation defects were also observed in Shh−/− mutants and in endodermal β-catenin gain-of-function (GOF) mutants. In addition, Wif1 and Shh were expressed in a complementary manner in the cloaca endoderm, and Wif1 was ectopically expressed in the urs and cm associated with excessive endodermal apoptosis and septation defects in Shh−/− mutants. Furthermore, apoptotic cells were markedly reduced in the endodermal β-catenin GOF mutant embryos, which counteracted the inhibitory effects of Wif1. Taken altogether, these data suggest that regulated expression of Wif1 is critical for the growth of the urs during cloaca septation. Hence, Wif1 governs cell apoptosis of urs endoderm by repressing β-catenin signal, which may facilitate the protrusion of the underlying proliferating mesenchymal cells towards the cm for cloaca septation. Dysregulation of this endodermal Shh-Wif1-β-catenin signaling axis contributes to ARM pathogenesis. PMID:24632949

  4. An Active RFID Accountability System (RAS) for Constrained Wireless Environments

    SciTech Connect

    Barker, Alan M; Hanson, Gregory R; Sexton, Angela Kay; Jones Jr, J P; Freer, Eva B; Sjoreen, Andrea L

    2011-01-01

    A team from Oak Ridge National Laboratory (ORNL) has developed an RFID Accountability System (RAS) that allows items with active RFID tags to be tracked in environments where tags may not be able to transmit their location continuously. The system uses activators that transmit a short range signal. Active RFID tags are in a sleep state until they encounter an activator. Then they transmit a signal that is picked up by the antennas installed throughout the building. This paper presents the theory of operation, application areas, lessons learned, and key features developed over the course of seven years of development and use.

  5. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed Central

    Cox, Adrienne D.; Der, Channing J.; Philips, Mark R.

    2015-01-01

    RAS proteins require membrane association for their biological activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTIs) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anti-cancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated post-translational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. PMID:25878363

  6. Structure of the dominant negative S17N mutant of Ras

    PubMed Central

    Nassar, Nicolas; Singh, Kavita; Garcia-Diaz, Miguel

    2010-01-01

    The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17N in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg2+ ion that normally coordinates the β-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca2+ ion is coordinating the α-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide’s guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg2+ ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg2+ should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways. PMID:20131908

  7. Oncogenic Ras modulates p38 MAPK-mediated inflammatory cytokine production in glioblastoma cells.

    PubMed

    Munoz, Lenka; Yeung, Yiu To; Grewal, Thomas

    2016-04-01

    Inflammation is an important factor promoting the progression of glioblastoma. In the present study we examined the contribution of Ras signaling and TNFα/IL-1β cytokines to the development of the glioblastoma inflammatory microenvironment. Enhanced activation of Ras through de-regulated activation of receptor tyrosine kinases, such as EGFR, PDGFR and cMet, is a hallmark of the majority of glioblastomas. Glioblastoma microenvironment contains high levels of TNFα and IL-1β, which mediate inflammation through induction of a local network of cytokines and chemokines. While many studies have focused on Ras- and TNFα/IL-1β-driven inflammation in isolation, little is known about the co-operation between these oncogenic and microenvironment-derived stimuli. Using constitutively active HRasG12V that mimics enhanced Ras activation, we demonstrate that elevated Ras activity in glioblastoma cells leads to up-regulation of IL-6 and IL-8. Furthermore, Ras synergizes with the microenvironment-derived TNFα and IL-1β resulting in amplified IL-6/IL-8 secretion. IL-8 secretion induced by Ras and TNFα/IL-1β is attenuated by inhibitors targeting Erk, JNK and p38 MAPK pathways. IL-6 secretion significantly decreased upon inhibition of JNK and p38 MAPK pathways. Interestingly, although constitutively active HRasG12V does not increase basal or TNFα/IL-1β stimulated p38 MAPK activity, HRasG12V increased the efficacy of the p38 MAPK inhibitor SB203580 to inhibit IL-1β-induced IL-6 secretion. In summary, oncogenic Ras co-operates with the microenvironment-derived TNFα/IL-1β to sustain inflammatory microenvironment, which was effectively attenuated via inhibition of p38 MAPK signaling. PMID:26794430

  8. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding

    PubMed Central

    Yan, Xiaocai; Yan, Mingfei; Guo, Yihe; Singh, Gobind; Chen, Yuhong; Yu, Mei; Wang, Demin; Hillery, Cheryl A.; Chan, Andrew M.

    2015-01-01

    The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response. PMID:26710069

  9. Two types of RAS mutants that dominantly interfere with activators of RAS.

    PubMed Central

    Jung, V; Wei, W; Ballester, R; Camonis, J; Mi, S; Van Aelst, L; Wigler, M; Broek, D

    1994-01-01

    In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25. Images PMID:8196614

  10. α-Ketobenzothiazole Serine Protease Inhibitors of Aberrant HGF/c-MET and MSP/RON Kinase Pathway Signaling in Cancer.

    PubMed

    Han, Zhenfu; Harris, Peter K W; Karmakar, Partha; Kim, Tommy; Owusu, Ben Y; Wildman, Scott A; Klampfer, Lidija; Janetka, James W

    2016-03-17

    Upregulation of the HGF and MSP growth-factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c-MET or RON kinase signaling. We rationally designed P1' α-ketobenzothiazole mechanism-based inhibitors of these proteases. Structure-activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1-P1' substrate cleavage site via a P1' amide linker off the benzothiazole, occupying the S3' pocket. Optimized inhibitors display sub-nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin-like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)-mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types. PMID:26889658

  11. Ras Oncogene-Mediated Progressive Silencing of Extracellular Superoxide Dismutase in Tumorigenesis

    PubMed Central

    Cammarota, Francesca; de Vita, Gabriella; Salvatore, Marco; Laukkanen, Mikko O.

    2015-01-01

    Extracellular superoxide dismutase (SOD3) is a secreted enzyme that uses superoxide anion as a substrate in a dismutase reaction that results in the formation of hydrogen peroxide. Both of these reactive oxygen species affect growth signaling in cells. Although SOD3 has growth-supporting characteristics, the expression of SOD3 is downregulated in epithelial cancer cells. In the current work, we studied the mechanisms regulating SOD3 expression in vitro using thyroid cell models representing different stages of thyroid cancer. We demonstrate that a low level of RAS activation increases SOD3 mRNA synthesis that then gradually decreases with increasing levels of RAS activation and the decreasing degree of differentiation of the cancer cells. Our data indicate that SOD3 regulation can be divided into two classes. The first class involves RAS–driven reversible regulation of SOD3 expression that can be mediated by the following mechanisms: RAS GTPase regulatory genes that are responsible for SOD3 self-regulation; RAS-stimulated p38 MAPK activation; and RAS-activated increased expression of the mir21 microRNA, which inversely correlates with sod3 mRNA expression. The second class involves permanent silencing of SOD3 mediated by epigenetic DNA methylation in cells that represent more advanced cancers. Therefore, the work suggests that SOD3 belongs to the group of ras oncogene-silenced genes. PMID:26550576

  12. Critical roles of RasGRP1 for invariant natural killer T cell development

    PubMed Central

    Shen, Shudan; Chen, Yong; Gorentla, Balachandra; Lu, Jianxin; Stone, James C.; Zhong, Xiao-Ping

    2011-01-01

    The invariant NKT (iNKT) cell lineage contains CD4+ and CD4- subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for T cell receptor-induced activation of the Ras-Erk1/2 pathway, is critical for conventional αβ T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. Here we report severe decreases of iNKT cells in RasGRP1-/- mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1-/- mice, there is a selective absence of the CD4+ subset. Furthermore, RasGRP1-/- iNKT cells are defective in T cell receptor induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development, but also for the generation/maintenance of the CD4+ iNKT cells. Our data provides genetic evidence that the CD4+ and CD4- iNKT cells are distinct sub-lineages with differential signaling requirements for their development. PMID:21957144

  13. Crosstalk of Ras and Rho: activation of RhoA abates Kras-induced liver tumorigenesis in transgenic zebrafish models.

    PubMed

    Chew, T W; Liu, X J; Liu, L; Spitsbergen, J M; Gong, Z; Low, B C

    2014-05-22

    RAS and Rho small GTPases are key molecular switches that control cell dynamics, cell growth and tissue development through their distinct signaling pathways. Although much has been learnt about their individual functions in both cell and animal models, the physiological and pathophysiological consequences of their signaling crosstalk in multi-cellular context in vivo remain largely unknown, especially in liver development and liver tumorigenesis. Furthermore, the roles of RhoA in RAS-mediated transformation and their crosstalk in vitro remain highly controversial. When challenged with carcinogens, zebrafish developed liver cancer that resembles the human liver cancer both molecularly and histopathologically. Capitalizing on the growing importance and relevance of zebrafish (Danio rerio) as an alternate cancer model, we have generated liver-specific, Tet-on-inducible transgenic lines expressing oncogenic Kras(G12V), RhoA, constitutively active RhoA(G14V) or dominant-negative RhoA(T19N). Double-transgenic lines expressing Kras(G12V) with one of the three RhoA genes were also generated. Based on quantitative bioimaging and molecular markers for genetic and signaling aberrations, we showed that the induced expression of oncogenic Kras during early development led to liver enlargement and hepatocyte proliferation, associated with elevated Erk phosphorylation, activation of Akt2 and modulation of its two downstream targets, p21Cip and S6 kinase. Such an increase in liver size and Akt2 expression was augmented by dominant-negative RhoA(T19N), but was abrogated by the constitutive-active RhoA(G14V). Consequently, induced expression of the oncogenic Kras in adult transgenic fish led to the development of hepatocellular carcinomas. Survival studies further revealed that the co-expression of dominant-negative RhoA(T19N) with oncogenic Kras increased the mortality rate compared with the other single or double-transgenic lines. This study provides evidence of the previously

  14. Phase from chromatic aberrations.

    PubMed

    Waller, Laura; Kou, Shan Shan; Sheppard, Colin J R; Barbastathis, George

    2010-10-25

    We show that phase objects may be computed accurately from a single color image in a brightfield microscope, with no hardware modification. Our technique uses the chromatic aberration that is inherent to every lens-based imaging system as a phase contrast mechanism. This leads to a simple and inexpensive way of achieving single-shot quantitative phase recovery by a modified Transport of Intensity Equation (TIE) solution, allowing real-time phase imaging in a traditional microscope. PMID:21164620

  15. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    PubMed

    Koh, Min-Soo; Moon, Aree

    2011-03-01

    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  16. Nf1 Loss and Ras Hyperactivation in Oligodendrocytes Induce NOS-Driven Defects in Myelin and Vasculature

    PubMed Central

    Mayes, Debra A.; Rizvi, Tilat A.; Titus-Mitchell, Haley; Oberst, Rachel; Ciraolo, Georgianne M.; Vorhees, Charles V.; Robinson, Andrew P.; Miller, Stephen D.; Cancelas, Jose A.; Stemmer-Rachamimov, Anat O.; Ratner, Nancy

    2014-01-01

    SUMMARY Patients with neurofibromatosis type 1 (NF1) and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB) developed, implicating a soluble mediator. Nitric oxide (NO) can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3) were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that anti-oxidants may improve some behavioral deficits in Rasopathy patients. PMID:24035394

  17. Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation.

    PubMed

    Langlois, W J; Sasaoka, T; Saltiel, A R; Olefsky, J M

    1995-10-27

    Insulin and epidermal growth factor receptors transmit signals for cell proliferation and gene regulation through formation of active GTP-bound p21ras mediated by the guanine nucleotide exchange factor Sos. Sos is constitutively bound to the adaptor protein Grb2 and growth factor stimulation induces association of the Grb2/Sos complex with Shc and movement of Sos to the plasma membrane location of p21ras. Insulin or epidermal growth factor stimulation induces a rapid increase in p21ras levels, but after several minutes levels decline toward basal despite ongoing hormone stimulation. Here we show that deactivation of p21ras correlates closely with phosphorylation of Sos and dissociation of Sos from Grb2, and that inhibition of mitogen-activated protein (MAP) kinase kinase (also known as extracellular signal-related kinase (ERK) kinase, or MEK) blocks both events, resulting in prolonged p21ras activation. These data suggest that a negative feedback loop exists whereby activation of the Raf/MEK/MAP kinase cascade by p21ras causes Sos phosphorylation and, therefore, Sos/Grb2 dissociation, limiting the duration of p21ras activation by growth factors. A serine/threonine kinase downstream of MEK (probably MAP kinase) mediates this desensitization feedback pathway.

  18. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma.

    PubMed

    Wang, Lin; Shi, Zhu-Mei; Jiang, Cheng-Fei; Liu, Xue; Chen, Qiu-Dan; Qian, Xu; Li, Dong-Mei; Ge, Xin; Wang, Xie-Feng; Liu, Ling-Zhi; You, Yong-Ping; Liu, Ning; Jiang, Bing-Hua

    2014-07-30

    Therapeutic applications of microRNAs (miRNAs) in RAS-driven glioma were valuable, but their specific roles and functions have yet to be fully elucidated. Here, we firstly report that miR-143 directly targets the neuroblastoma RAS viral oncogene homolog (N-RAS) and functions as a tumor-suppressor in glioma. Overexpression of miR-143 decreased the expression of N-RAS, inhibited PI3K/AKT, MAPK/ERK signaling, and attenuated the accumulation of p65 in nucleus of glioma cells. In human clinical specimens, miR-143 was downregulated where an adverse with N-RAS expression was observed. Furthermore, overexpression of miR-143 decreased glioma cell migration, invasion, tube formation and slowed tumor growth and angiogenesis in a manner associated with N-RAS downregulation in vitro and in vivo. Finally, miR-143 also sensitizes glioma cells to temozolomide (TMZ),the first-line drug for glioma treatment. Taken together, for the first time, our results demonstrate that miR-143 plays a significant role in inactivating the RAS signaling pathway through the inhibition of N-RAS, which may provide a novel therapeutic strategy for treatment of glioma and other RAS-driven cancers.

  19. NAM: The 2004 RAS National Astronomy Meeting

    NASA Astrophysics Data System (ADS)

    Jones, Barrie; Norton, Andrew

    2004-06-01

    This year's RAS National Astronomy Meeting was held at the Open University's Milton Keynes campus from 29 March to 2 April. The event was organized by members of the OU Physics & Astronomy Department and Planetary & Space Science Research Institute. Around 450 people attended the meeting, at which more than 220 talks were presented, along with around 90 posters. Co-chairs of RAS NAM04, Barrie Jones and Andrew Norton, summarize.

  20. Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma.

    PubMed

    Breunig, Joshua J; Levy, Rachelle; Antonuk, C Danielle; Molina, Jessica; Dutra-Clarke, Marina; Park, Hannah; Akhtar, Aslam Abbasi; Kim, Gi Bum; Hu, Xin; Bannykh, Serguei I; Verhaak, Roel G W; Danielpour, Moise

    2015-07-14

    As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.

  1. Inhibition of RAS in diabetic nephropathy

    PubMed Central

    Yacoub, Rabi; Campbell, Kirk N

    2015-01-01

    Diabetic kidney disease (DKD) is a progressive proteinuric renal disorder in patients with type 1 or type 2 diabetes mellitus. It is a common cause of end-stage kidney disease worldwide, particularly in developed countries. Therapeutic targeting of the renin–angiotensin system (RAS) is the most validated clinical strategy for slowing disease progression. DKD is paradoxically a low systematic renin state with an increased intrarenal RAS activity implicated in its pathogenesis. Angiotensin II (AngII), the main peptide of RAS, is not only a vasoactive peptide but functions as a growth factor, activating interstitial fibroblasts and mesangial and tubular cells, while promoting the synthesis of extracellular matrix proteins. AngII also promotes podocyte injury through increased calcium influx and the generation of reactive oxygen species. Blockade of the RAS using either angiotensin converting enzyme inhibitors, or angiotensin receptor blockers can attenuate progressive glomerulosclerosis in animal models, and slows disease progression in humans with DKD. In this review, we summarize the role of intrarenal RAS activation in the pathogenesis and progression of DKD and the rationale for RAS inhibition in this population. PMID:25926752

  2. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation.

    PubMed

    Murphy, Gretchen A; Graham, Suzanne M; Morita, Staeci; Reks, Sarah E; Rogers-Graham, Kelley; Vojtek, Anne; Kelley, Grant G; Der, Channing J

    2002-03-22

    Oncogenic Ras and activated forms of the Ras-related protein TC21/R-Ras2 share similar abilities to alter cell proliferation. However, in contrast to Ras, we found previously that TC21 fails to activate the Raf-1 serine/threonine kinase. Thus, TC21 must utilize non-Raf effectors to regulate cell function. In this study, we determined that TC21 interacts strongly with some (RalGDS, RGL, RGL2/Rlf, AF6, and the phosphatidylinositol 3-kinase (PI3K) catalytic subunit p110delta), and weakly with other Ras small middle dotGTP-binding proteins. In addition, library screening identified novel TC21-interacting proteins. We also determined that TC21, similar to Ras, mediates activation of phospholipase Cepsilon. We then examined if RalGDS, a RalA guanine nucleotide exchange factor, or PI3K are effectors for TC21-mediated signaling and cell proliferation in murine fibroblasts. We found that overexpression of full-length RalGDS reduced the focus forming activity of activated TC21. Furthermore, expression of activated Ras, but not TC21, enhanced GTP loading on RalA. In fact, TC21 attenuated insulin-stimulated RalA small middle dotGTP formation. In contrast, like Ras, expression of activated TC21 resulted in membrane translocation and an increase in the PI3K-dependent phosphorylation of Akt, and inhibition of PI3K activity interfered with TC21 focus formation. Finally, unlike Ras, TC21 did not activate the Rac small GTPase, indicating that Ras may not activate Rac by PI3K. Taken together, these results suggest that PI3K, but not RalGDS, is an important mediator of cell proliferation by TC21.

  3. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation

    PubMed Central

    Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Jaiswal, Alok; Zhou, Yong; Liang, Hong; Lectez, Benoit; Kopra, Kari; Guzmán, Camilo; Härmä, Harri; Hancock, John F; Aittokallio, Tero; Abankwa, Daniel

    2015-01-01

    Hotspot mutations of Ras drive cell transformation and tumorigenesis. Less frequent mutations in Ras are poorly characterized for their oncogenic potential. Yet insight into their mechanism of action may point to novel opportunities to target Ras. Here, we show that several cancer-associated mutations in the switch III region moderately increase Ras activity in all isoforms. Mutants are biochemically inconspicuous, while their clustering into nanoscale signaling complexes on the plasma membrane, termed nanocluster, is augmented. Nanoclustering dictates downstream effector recruitment, MAPK-activity, and tumorigenic cell proliferation. Our results describe an unprecedented mechanism of signaling protein activation in cancer. DOI: http://dx.doi.org/10.7554/eLife.08905.001 PMID:26274561

  4. Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways

    PubMed Central

    Grahl, Nora; Demers, Elora G.; Lindsay, Allia K.; Harty, Colleen E.; Willger, Sven D.; Piispanen, Amy E.; Hogan, Deborah A.

    2015-01-01

    Candida albicans is both a major fungal pathogen and a member of the commensal human microflora. The morphological switch from yeast to hyphal growth is associated with disease and many environmental factors are known to influence the yeast-to-hyphae switch. The Ras1-Cyr1-PKA pathway is a major regulator of C. albicans morphogenesis as well as biofilm formation and white-opaque switching. Previous studies have shown that hyphal growth is strongly repressed by mitochondrial inhibitors. Here, we show that mitochondrial inhibitors strongly decreased Ras1 GTP-binding and activity in C. albicans and similar effects were observed in other Candida species. Consistent with there being a connection between respiratory activity and GTP-Ras1 binding, mutants lacking complex I or complex IV grew as yeast in hypha-inducing conditions, had lower levels of GTP-Ras1, and Ras1 GTP-binding was unaffected by respiratory inhibitors. Mitochondria-perturbing agents decreased intracellular ATP concentrations and metabolomics analyses of cells grown with different respiratory inhibitors found consistent perturbation of pyruvate metabolism and the TCA cycle, changes in redox state, increased catabolism of lipids, and decreased sterol content which suggested increased AMP kinase activity. Biochemical and genetic experiments provide strong evidence for a model in which the activation of Ras1 is controlled by ATP levels in an AMP kinase independent manner. The Ras1 GTPase activating protein, Ira2, but not the Ras1 guanine nucleotide exchange factor, Cdc25, was required for the reduction of Ras1-GTP in response to inhibitor-mediated reduction of ATP levels. Furthermore, Cyr1, a well-characterized Ras1 effector, participated in the control of Ras1-GTP binding in response to decreased mitochondrial activity suggesting a revised model for Ras1 and Cyr1 signaling in which Cyr1 and Ras1 influence each other and, together with Ira2, seem to form a master-regulatory complex necessary to integrate

  5. Notch and Ras promote sequential steps of excretory tube development in C. elegans.

    PubMed

    Abdus-Saboor, Ishmail; Mancuso, Vincent P; Murray, John I; Palozola, Katherine; Norris, Carolyn; Hall, David H; Howell, Kelly; Huang, Kai; Sundaram, Meera V

    2011-08-01

    Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.

  6. Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin.

    PubMed

    Agell, Neus; Bachs, Oriol; Rocamora, Nati; Villalonga, Priam

    2002-08-01

    Ras activation induces a variety of cellular responses that depend on the specific activated effector, the intensity and amplitude of its activation, and the cellular type. Transient activation followed by a sustained but low signal of the Ras/Raf/MEK/ERK pathway is a common feature of cell proliferation in many systems. On the contrary, sustained, high activation is linked with either senescence or apoptosis in fibroblasts and to differentiation in neurones and PC12 cells. The temporal regulation of the pathway is relevant and not only depends on the specific receptor activated but also on the presence of diverse modulators of the pathway. We review here evidence showing that calcium (Ca(2+)) and calmodulin (CaM) are able to regulate the Ras/Raf/MEK/ERK pathway. CaM-binding proteins (CaMBPs) as Ras-GRF and CaM-dependent protein kinase IV (CaMKIV) positively modulate ERK1/2 activation induced by either NGF or membrane depolarisation in neurones. In fibroblasts, CaM binding to EGF receptor and K-Ras(B) may be involved in the downregulation of the pathway after its activation, allowing a proliferative signalling.

  7. Role of neuronal ras activity in adult hippocampal neurogenesis and cognition.

    PubMed

    Manns, Martina; Leske, Oliver; Gottfried, Sebastian; Bichler, Zoë; Lafenêtre, Pauline; Wahle, Petra; Heumann, Rolf

    2011-01-01

    Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

  8. Ras regulates SCF(β-TrCP) protein activity and specificity via its effector protein NORE1A.

    PubMed

    Schmidt, M Lee; Donninger, Howard; Clark, Geoffrey J

    2014-11-01

    Ras is the most frequently activated oncogene found in human cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with β-TrCP, the substrate recognition component of the SCF(β-TrCP) ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCF(β-TrCP) toward its target β-catenin, resulting in degradation of β-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/β-TrCP is substrate-specific because IκB, another substrate of SCF(β-TrCP), is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCF(β-TrCP) targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/β-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that β-TrCP can act as a tumor suppressor or an oncogene in different cell systems.

  9. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease

    NASA Astrophysics Data System (ADS)

    Larive, Romain M.; Moriggi, Giulia; Menacho-Márquez, Mauricio; Cañamero, Marta; Álava, Enrique De; Alarcón, Balbino; Dosil, Mercedes; Bustelo, Xosé R.

    2014-05-01

    R-Ras2 is a transforming GTPase that shares downstream effectors with Ras subfamily proteins. However, little information exists about the function of this protein in tumorigenesis and its signalling overlap with classical Ras GTPases. Here we show, by combining loss- and gain-of-function studies in breast cancer cells, mammary epithelial cells and mouse models, that endogenous R-Ras2 has a role in both primary breast tumorigenesis and the late metastatic steps of cancer cells in the lung parenchyma. R-Ras2 drives tumorigenesis in a phosphatidylinostiol-3 kinase (PI3K)-dependent and signalling autonomous manner. By contrast, its prometastatic role requires other priming oncogenic signals and the engagement of several downstream elements. R-Ras2 function is required even in cancer cells exhibiting constitutive activation of classical Ras proteins, indicating that these GTPases are not functionally redundant. Our results also suggest that application of long-term R-Ras2 therapies will result in the development of compensatory mechanisms in breast tumours.

  10. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  11. Calcium-dependent immediate-early gene induction in lymphocytes is negatively regulated by p21Ha-ras.

    PubMed

    Chen, C Y; Forman, L W; Faller, D V

    1996-11-01

    The induction of immediate-early (IE) response genes, such as egr-1, c-fos, and c-jun, occurs rapidly after the activation of T lymphocytes. The process of activation involves calcium mobilization, activation of protein kinase C (PKC), and phosphorylation of tyrosine kinases. p21(ras), a guanine nucleotide binding factor, mediates T-cell signal transduction through PKC-dependent and PKC-independent pathways. The involvement of p21(ras) in the regulation of calcium-dependent signals has been suggested through analysis of its role in the activation of NF-AT. We have investigated the inductions of the IE genes in response to calcium signals in Jurkat cells (in the presence of activated p21(ras)) and their correlated consequences. The expression of activated p21(ras) negatively regulated the induction of IE genes by calcium ionophore. This inhibition of calcium-activated IE gene induction was reversed by treatment with cyclosporin A, suggesting the involvement of calcineurin in this regulation. A later result of inhibition of this activation pathway by p21(ras) was down-regulation of the activity of the transcription factor AP-1 and subsequent coordinate reductions in IL-2 gene expression and protein production. These results suggest that p2l(ras) is an essential mediator in generating not only positive but also negative modulatory mechanisms controlling the competence of T cells in response to inductive stimulations.

  12. Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways.

    PubMed

    Luo, Feijun; Brooks, David G; Ye, Hongtao; Hamoudi, Rifat; Poulogiannis, George; Patek, Charles E; Winton, Douglas J; Arends, Mark J

    2009-10-01

    Summary K-ras mutations are found in 40-50% of human colorectal adenomas and carcinomas, but their functional contribution remains incompletely understood. Here, we show that a conditional mutant K-ras mouse model (K-ras(Asp12)/Cre), with transient intestinal Cre activation by beta-Naphthoflavone (beta-NF) treatment, displayed transgene recombination and K-ras(Asp12) expression in the murine intestines, but developed few intestinal adenomas over 2 years. However, when crossed with Apc(Min/+) mice, the K-ras(Asp12)/Cre/Apc(Min/+) offspring showed acceleration of intestinal tumourigenesis with significantly changed average lifespan (P < 0.05) decreased to 18.4 +/- 5.4 weeks from 20.9 +/- 4.7 weeks (control Apc(Min/+) mice). The numbers of adenomas in the small intestine and large intestine were significantly (P < 0.01) increased by 1.5-fold and 5.7-fold, respectively, in K-ras(Asp12)/Cre/Apc(Min/+) mice compared with Apc(Min/+) mice, with the more marked increase in adenoma prevalence in the large intestine. To explore possible mechanisms for K-ras(Asp12) and Apc(Min) co-operation, the Mitogen-activated protein kinase (Mapk), Akt and Wnt signalling pathways, including selected target gene expression levels, were evaluated in normal large intestine and large intestinal tumours. K-ras(Asp12) increased activation of Mapk and Akt signalling pathway targets phospho-extracellular signal-regulated kinase (pErk) and pAkt, and increased relative expression levels of Wnt pathway targets vascular endothelial growth factor (VEGF), gastrin, cyclo-oxygenase 2 (Cox2) and T-cell lymphoma invasion and metastasis 1 (Tiam1) in K-ras(Asp12)/Cre/Apc(Min/+) adenomas compared with that of Apc(Min/+) adenomas, although other Wnt signalling pathway target genes such as Peroxisome proliferator-activated receptor delta (PPARd), matrix metalloproteinase 7 (MMP7), protein phosphatase 1 alpha (PP1A) and c-myc remained unchanged. In conclusion, intestinal expression of K-ras(Asp12) promotes mutant

  13. Combined rational design and a high throughput screening platform for identifying chemical inhibitors of a Ras-activating enzyme.

    PubMed

    Evelyn, Chris R; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-05-15

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.

  14. A novel functional link between MAP kinase cascades and the Ras/cAMP pathway that regulates survival.

    PubMed

    Cherkasova, Vera A; McCully, Ryan; Wang, Yunmei; Hinnebusch, Alan; Elion, Elaine A

    2003-07-15

    In mammalian cells, Ras regulates multiple effectors, including activators of mitogen-activated protein kinase (MAPK) cascades, phosphatidylinositol-3-kinase, and guanine nucleotide exchange factors (GEFs) for RalGTPases. In S. cerevisiae, Ras regulates the Kss1 MAPK cascade that promotes filamentous growth and cell integrity, but its major function is to activate adenylyl cyclase and control proliferation and survival ([; see Figure S1 in the Supplemental Data available with this article online). Previous work hints that the mating Fus3/Kss1 MAPK cascade cross-regulates the Ras/cAMP pathway during growth and mating, but direct evidence is lacking. Here, we report that Kss1 and Fus3 act upstream of the Ras/cAMP pathway to regulate survival. Loss of Fus3 increases cAMP and causes poor long-term survival and resistance to stress. These effects are dependent on Kss1 and Ras2. Activation of Kss1 by a hyperactive Ste11 MAPKKK also increases cAMP, but mating receptor/scaffold activation has little effect and may therefore insulate the MAPKs from cross-regulation. Catalytically inactive Fus3 represses cAMP by blocking accumulation of active Kss1 and by another function also shared by Kss1. The conserved RasGEF Cdc25 is a likely control point, because Kss1 and Fus3 complexes associate with and phosphorylate Cdc25. Cross-regulation of Cdc25 may be a general way that MAPKs control Ras signaling networks. PMID:12867033

  15. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    PubMed Central

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  16. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  17. Mutant N-RAS Induces Erythroid Lineage Dysplasia in Human CD34+ Cells

    PubMed Central

    Darley, Richard L.; Hoy, Terence G.; Baines, Paul; Padua, Rose Ann; Burnett, Alan K.

    1997-01-01

    RAS mutations arise at high frequency (20–40%) in both acute myeloid leukemia and myelodysplastic syndrome (which is considered to be a manifestation of preleukemic disease). In each case, mutations arise predominantly at the N-RAS locus. These observations suggest a fundamental role for this oncogene in leukemogenesis. However, despite its obvious significance, little is known of how this key oncogene may subvert the process of hematopoiesis in human cells. Using CD34+ progenitor cells, we have modeled the preleukemic state by infecting these cells with amphotropic retrovirus expressing mutant N-RAS together with the selectable marker gene lacZ. Expression of the lacZ gene product, β-galactosidase, allows direct identification and study of N-RAS–expressing cells by incubating infected cultures with a fluorogenic substrate for β-galactosidase, which gives rise to a fluorescent signal within the infected cells. By using multiparameter flow cytometry, we have studied the ability of CD34+ cells expressing mutant N-RAS to undergo erythroid differentiation induced by erythropoietin. By this means, we have found that erythroid progenitor cells expressing mutant N-RAS exhibit a proliferative defect resulting in an increased cell doubling time and a decrease in the proportion of cells in S + G2M phase of the cell cycle. This is linked to a slowing in the rate of differentiation as determined by comparative cell-surface marker analysis and ultimate failure of the differentiation program at the late-erythroblast stage of development. The dyserythropoiesis was also linked to an increased tendency of the RAS-expressing cells to undergo programmed cell death during their differentiation program. This erythroid lineage dysplasia recapitulates one of the most common features of myelodysplastic syndrome, and for the first time provides a causative link between mutational activation of N-RAS and the pathogenesis of preleukemia. PMID:9104820

  18. The Ras G Domain Lacks the Intrinsic Propensity to Form Dimers

    PubMed Central

    Kovrigina, Elizaveta A.; Galiakhmetov, Azamat R.; Kovrigin, Evgenii L.

    2015-01-01

    Ras GTPase is a molecular switch controlling a number of cellular pathways including growth, proliferation, differentiation, and apoptosis. Recent reports indicated that Ras undergoes dimerization at the membrane surface through protein-protein interactions. If firmly established this property of Ras would require profound reassessment of a large amount of published data and modification of the Ras signaling paradigm. One proposed mechanism of dimerization involves formation of salt bridges between the two GTPase domains (G domains) leading to formation of a compact dimer as observed in Ras crystal structures. In this work, we interrogated the intrinsic ability of Ras to self-associate in solution by creating conditions of high local concentration through irreversibly tethering the two G domains together at their unstructured C-terminal tails. We evaluated possible self-association in this inverted tandem conjugate via analysis of the time-domain fluorescence anisotropy and NMR chemical shift perturbations. We did not observe the increased rotational correlation time expected for the G domain dimer. Variation of the ionic strength (to modulate stability of the salt bridges) did not affect the rotational correlation time in the tandem further supporting independent rotational diffusion of two G domains. In a parallel line of experiments to detect and map weak self-association of the G domains, we analyzed NMR chemical shifts perturbations at a number of sites near the crystallographic dimer interface. The nearly complete lack of chemical shift perturbations in the tandem construct supported a simple model with the independent G domains repelled from each other by their overall negative charge. These results lead us to the conclusion that self-association of the G domains cannot be responsible for homodimerization of Ras reported in the literature. PMID:26331257

  19. SY 09-3 ROLE OF INTRARENAL RAS IN THE PATHOGENESIS OF SALT-DEPENDENT HYPERTENSION.

    PubMed

    Nishiyama, Akira

    2016-09-01

    The renin-angiotensin system (RAS) plays a critical role in the regulation of blood pressure and body fluid homeostasis. In addition to its physiological roles, angiotensin II (AngII) induces inflammation, cell growth, mitogenesis, apoptosis, migration, and differentiation, regulates the gene expression of bioactive substances, and activates multiple intracellular signaling pathways, all of which contribute to renal tissue injuries. In the kidney, all of the RAS components are present and intrarenal AngII is formed by independent multiple mechanisms. In particular, a series of our studies have revealed that intrarenal angiotensinogen plays a predominant role in the regulation of AngII production in the kidney. Consequently, AngII is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. For example, circulating plasma AngII levels are reduced in CKD patients with salt-dependent hypertension; however, intrarenal RAS is activated by inappropriately augmentation of angiotensinogen in the kidney. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this symposium, I will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development of salt-dependent hypertension in patients with CKD. We will also discuss the possible biomarker of the intrarenal RAS. PMID:27642896

  20. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site

    PubMed Central

    Mazhab-Jafari, Mohammad T.; Marshall, Christopher B.; Smith, Matthew J.; Gasmi-Seabrook, Geneviève M. C.; Stathopulos, Peter B.; Inagaki, Fuyuhiko; Kay, Lewis E.; Neel, Benjamin G.; Ikura, Mitsuhiko

    2015-01-01

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractiv