Science.gov

Sample records for aberrantly expressed micrornas

  1. MicroRNAs and their therapeutic potential for human diseases: aberrant microRNA expression in Alzheimer's disease brains.

    PubMed

    Satoh, Jun-ichi

    2010-01-01

    MicroRNAs (miRNAs) are a group of small noncoding RNAs that regulate translational repression of multiple target mRNAs. The miRNAs in a whole cell regulate greater than 30% of all protein-coding genes. The vast majority of presently identified miRNAs are expressed in the brain in a spatially and temporally controlled manner. They play a key role in neuronal development, differentiation, and synaptic plasticity. However, at present, the pathological implications of deregulated miRNA expression in neurodegenerative diseases remain largely unknown. This review will briefly summarize recent studies that focus attention on aberrant miRNA expression in Alzheimer's disease brains.

  2. Dysregulation of microRNA expression drives aberrant DNA hypermethylation in basal-like breast cancer.

    PubMed

    Sandhu, Rupninder; Rivenbark, Ashley G; Mackler, Randi M; Livasy, Chad A; Coleman, William B

    2014-02-01

    Basal-like breast cancers frequently express aberrant DNA hypermethylation associated with concurrent silencing of specific genes secondary to DNMT3b overexpression and DNMT hyperactivity. DNMT3b is known to be post-transcriptionally regulated by microRNAs. The objective of the current study was to determine the role of microRNA dysregulation in the molecular mechanism governing DNMT3b overexpression in primary breast cancers that express aberrant DNA hypermethylation. The expression of microRNAs (miRs) that regulate (miR-29a, miR-29b, miR-29c, miR-148a and miR-148b) or are predicted to regulate DNMT3b (miR‑26a, miR-26b, miR-203 and miR-222) were evaluated among 70 primary breast cancers (36 luminal A-like, 13 luminal B-like, 5 HER2‑enriched, 16 basal-like) and 18 normal mammoplasty tissues. Significantly reduced expression of miR-29c distinguished basal-like breast cancers from other breast cancer molecular subtypes. The expression of aberrant DNA hypermethylation was determined in a subset of 33 breast cancers (6 luminal A-like, 6 luminal B-like, 5 HER2-enriched and 16 basal-like) through examination of methylation‑sensitive biomarker gene expression (CEACAM6, CDH1, CST6, ESR1, GNA11, MUC1, MYB, TFF3 and SCNN1A), 11/33 (33%) cancers exhibited aberrant DNA hypermethylation including 9/16 (56%) basal-like cancers, but only 2/17 (12%) non-basal-like cancers (luminal A-like, n=1; HER2-enriched, n=1). Breast cancers with aberrant DNA hypermethylation express diminished levels of miR-29a, miR-29b, miR-26a, miR-26b, miR-148a and miR-148b compared to cancers lacking aberrant DNA hypermethylation. A total of 7/9 (78%) basal-like breast cancers with aberrant DNA hypermethylation exhibit diminished levels of ≥6 regulatory miRs. The results show that i) reduced expression of miR-29c is characteristic of basal-like breast cancers, ii) miR and methylation-sensitive gene expression patterns identify two subsets of basal-like breast cancers, and iii) the subset of basal

  3. Aberrantly expressed microRNAs in the context of bladder tumorigenesis

    PubMed Central

    Lee, Jong-Young; Ryu, Dong-Sung; Kim, Wun-Jae

    2016-01-01

    MicroRNAs (miRNAs), small noncoding RNAs 19–22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis. PMID:27326408

  4. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs.

    PubMed

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-02-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression.

  5. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis

    PubMed Central

    ZHANG, Yang; WANG, Faxuan; ZHOU, Dingzi; REN, Xiaohui; ZHOU, Dinglun; GAO, Xiaosi; LAN, Yajia; ZHANG, Qin; XIE, Xiaoqi

    2016-01-01

    Background To identify differentially expressed miRNAs profiles in bronchoalveolar lavage fluid (BALF) from patients with silicosis and consider the potential contribution of miRNAs to silicosis. Methods miRNAs expression profiling were performed in the cell fraction of BALF samples obtained from 9 subjects (3 silicosis observation subjects, 3 stage I and stage II silicosis patients, respectively). The differential expression of two selected miRNAs hsa-miR-181c-5p and hsa-miR-29a-3p were confirmed by RT-qPCR. Furthermore, miRNAs Gene Ontology Enrichment categories and target mRNAs were determined based on miRWalk. Results We found 110 dysregulated miRNAs in silicosis samples, most of which showed a down-regulation trend. Microarray results were confirmed by RT-qPCR. With the observation group samples set as standards, stage I samples showed 123 differentially expressed miRNAs, and stage II 46. 23 miRNAs were dysregulated in both stages. Finally, functional enrichment analysis indicated that these miRNAs played an important role in various biological processes, including ECM-receptor interaction and endocytosis. Conclusions This is the first time to acquire the BALF-derived microRNAs expression profiling targeting to human silicosis. These results contribute to unravelling miRNAs involved in the pathogenesis of silicosis, and provide new tools of potential use of as biomarkers for diagnosis and/or therapeutic purposes. PMID:26903263

  6. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  7. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-07-24

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis.

  8. Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR

    PubMed Central

    Brzuzan, Paweł; Florczyk, Maciej; Łakomiak, Alicja; Woźny, Maciej

    2016-01-01

    Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7–28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular

  9. Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR.

    PubMed

    Brzuzan, Paweł; Florczyk, Maciej; Łakomiak, Alicja; Woźny, Maciej

    2016-01-01

    Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7-28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular

  10. Aberrant microRNA expression likely controls RAS oncogene activation during malignant transformation of human prostate epithelial and stem cells by arsenic.

    PubMed

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Xu, Yuanyuan; Waalkes, Michael P

    2014-04-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants.

  11. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue.

    PubMed

    Lai, C-Y; Lee, S-Y; Scarr, E; Yu, Y-H; Lin, Y-T; Liu, C-M; Hwang, T-J; Hsieh, M H; Liu, C-C; Chien, Y-L; Udawela, M; Gibbons, A S; Everall, I P; Hwu, H-G; Dean, B; Chen, W J

    2016-01-19

    Based on our previous finding of a seven-miRNA (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) signature as a potential biomarker for schizophrenia, this study aimed to examine if hospitalization could affect expressions of these miRNAs. We compared their expression levels between acute state and partial remission state in people with schizophrenia (n=48) using quantitative PCR method. Further, to examine whether the blood and brain show similar expression patterns, the expressions of two miRNAs (hsa-miR-34a and hsa-miR-548d) were examined in the postmortem brain tissue of people with schizophrenia (n=25) and controls (n=27). The expression level of the seven miRNAs did not alter after ~2 months of hospitalization with significant improvement in clinical symptoms, suggesting the miRNAs could be traits rather than state-dependent markers. The aberrant expression seen in the blood of hsa-miR-34a and hsa-miR-548d were not present in the brain samples, but this does not discount the possibility that the peripheral miRNAs could be clinically useful biomarkers for schizophrenia. Unexpectedly, we found an age-dependent increase in hsa-miR-34a expressions in human cortical (Brodmann area 46 (BA46)) but not subcortical region (caudate putamen). The correlation between hsa-miR-34a expression level in BA46 and age was much stronger in the controls than in the cases, and the corresponding correlation in the blood was only seen in the cases. The association between the miRNA dysregulations, the disease predisposition and aging warrants further investigation. Taken together, this study provides further insight on the candidate peripheral miRNAs as stable biomarkers for the diagnostics of schizophrenia.

  12. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue

    PubMed Central

    Lai, C-Y; Lee, S-Y; Scarr, E; Yu, Y-H; Lin, Y-T; Liu, C-M; Hwang, T-J; Hsieh, M H; Liu, C-C; Chien, Y-L; Udawela, M; Gibbons, A S; Everall, I P; Hwu, H-G; Dean, B; Chen, W J

    2016-01-01

    Based on our previous finding of a seven-miRNA (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) signature as a potential biomarker for schizophrenia, this study aimed to examine if hospitalization could affect expressions of these miRNAs. We compared their expression levels between acute state and partial remission state in people with schizophrenia (n=48) using quantitative PCR method. Further, to examine whether the blood and brain show similar expression patterns, the expressions of two miRNAs (hsa-miR-34a and hsa-miR-548d) were examined in the postmortem brain tissue of people with schizophrenia (n=25) and controls (n=27). The expression level of the seven miRNAs did not alter after ~2 months of hospitalization with significant improvement in clinical symptoms, suggesting the miRNAs could be traits rather than state-dependent markers. The aberrant expression seen in the blood of hsa-miR-34a and hsa-miR-548d were not present in the brain samples, but this does not discount the possibility that the peripheral miRNAs could be clinically useful biomarkers for schizophrenia. Unexpectedly, we found an age-dependent increase in hsa-miR-34a expressions in human cortical (Brodmann area 46 (BA46)) but not subcortical region (caudate putamen). The correlation between hsa-miR-34a expression level in BA46 and age was much stronger in the controls than in the cases, and the corresponding correlation in the blood was only seen in the cases. The association between the miRNA dysregulations, the disease predisposition and aging warrants further investigation. Taken together, this study provides further insight on the candidate peripheral miRNAs as stable biomarkers for the diagnostics of schizophrenia. PMID:26784971

  13. Aberrant Expression of Breast Development-Related MicroRNAs, miR-22, miR-132, and miR-212, in Breast Tumor Tissues

    PubMed Central

    Damavandi, Zahra; Torkashvand, Safoora; Vasei, Mohammad; Soltani, Bahram M.; Tavallaei, Mahmood

    2016-01-01

    Purpose MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that posttranscriptionally regulate the expression of most genes in the human genome. miRNAs are often located in chromosomal fragile sites, which are suscept-ible to amplification or deletion. Chromosomal deletions are frequent events in breast cancer cells. Deletion and loss of heterozygosity at 17p13.3 have been reported in 49% of breast cancers. The aim of the current study was to evaluate potential expression alterations of miR-22, miR-132, and miR-212, which are located on the 17p13.3 locus and are required for mammary gland development. Methods A matched case-control study was conducted, which included 36 pairs of tumor and matched nontumor surgical specimens from patients diagnosed with breast invasive ductal carcinoma. Formalin-fixed paraffin-embedded samples from archival collections at the pathology department of Shariati Hospital were prepared for RNA extraction using the xylene-ethanol method before total RNA was isolated with TRIzol Reagent. Specific primers were designed for cDNA synthesis and miRNA amplification. The expression of miRNAs was then evaluated by real-time polymerase chain reaction (RT-PCR). Results According to our RT-PCR data, the miR-212/miR-132 family was downregulated in breast cancer (0.328-fold, p<0.001), and this reduced expression was the most prominent in high-grade tumors. In contrast, miR-22 exhibited a significant upregulation in breast tumor samples (2.183-fold, p=0.040). Conclusion Consistent with the frequent deletion of the 17p13.3 locus in breast tumor cells, our gene expression data demonstrated a significant downregulation of miR-212 and miR-132 in breast cancer tissues. In contrast, we observed a significant upregulation of miR-22 in breast tumor samples. The latter conflicting result may have been due to the upregulation of miR-22 in stromal/cancer-associated fibroblasts, rather than in the tumor cells. PMID:27382390

  14. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  15. MicroRNA aberrations: An emerging field for gallbladder cancer management.

    PubMed

    Chandra, Vishal; Kim, Jong Joo; Mittal, Balraj; Rai, Rajani

    2016-02-01

    Gallbladder cancer (GBC) is infrequent but most lethal biliary tract malignancy characterized by an advanced stage diagnosis and poor survival rates attributed to absence of specific symptoms and effective treatment options. These necessitate development of early prognostic/predictive markers and novel therapeutic interventions. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in tumor biology by functioning like tumor suppressor- or onco- genes and their aberrant expression are associated with the pathogenesis of several neoplasms with overwhelming clinical implications. Since miRNA signature is tissue specific, here, we focused on current data concerning the miRNAs aberrations in GBC pathogenesis. In GBC, miRNAs with tumor suppressor activity (miR-135-5p, miR-335, miR-34a, miR-26a, miR-146b-5p, Mir-218-5p, miR-1, miR-145, mir-130a) were found downregulated, while those with oncogenic property (miR-20a, miR-182, mir-155) were upregulated. The expression profile of miRNAs was significantly associated with GBC prognosis and prediction, and forced over-expression/ inhibition of these miRNAs was shown to affect tumor growth and development. Further, differential expression of miRNAs in the blood samples of GBC patients suggest miRNAs as promising noninvasive biomarker. Thus, miRNAs represent potential candidate for GBC management, though many hurdles need to be overcome before miRNAs therapy can be clinically applied to GBC prevention and treatment. PMID:26855538

  16. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a

    PubMed Central

    Villegas-Ruiz, Vanessa; Juárez-Méndez, Sergio; Pérez-González, Oscar A; Arreola, Hugo; Paniagua-García, Lucero; Parra-Melquiadez, Miriam; Peralta-Rodríguez, Raúl; López-Romero, Ricardo; Monroy-García, Alberto; Mantilla-Morales, Alejandra; Gómez-Gutiérrez, Guillermo; Román-Bassaure, Edgar; Salcedo, Mauricio

    2014-01-01

    In recent years, the study of microRNAs associated with neoplastic processes has increased. Patterns of microRNA expression in different cell lines and different kinds of tumors have been identified; however, little is known about the alterations in regulatory pathways and genes involved in aberrant set of microRNAs. The identification of these altered microRNAs in several cervical cancer cells and potentially deregulated pathways involved constitute the principal goals of the present study. In the present work, the expression profiles of cellular microRNAs in Cervical Cancer tissues and cell lines were explored using microRNA microarray, Affymetrix. The most over-expressed was miR-196a, which was evaluated by real time PCR, and HOXC8 protein as potential target by immunohistochemistry assay. One hundred and twenty three human microRNAs differentially expressed in the cell tumor, 64 (52%) over-expressed and 59 (48%) under-expressed were observed. Among the microRNAs over-expressed, we focused on miR-196a; at present this microRNA is poorly studied in CC. The expression of this microRNA was evaluated by qRT-PCR, and HOXC8 by immunohistochemistry assay. There is not a specific microRNA expression profile in the CC cells, neither a microRNA related to HPV presence. Furthermore, the miR-196a was over-expressed, while an absence of HOXC8 expression was observed. We suggest that miR-196a could be played as oncomiR in CC. PMID:24817935

  17. Expression patterns of placental microRNAs

    PubMed Central

    Mouillet, Jean-Francois; Chu, Tianjiao; Sadovsky, Yoel

    2016-01-01

    Among different types of small RNA molecules, distinct types of microRNAs (miRNAs) are expressed in many cell types, where they modulate RNA stability and translation, thus controlling virtually every aspect of tissue development, proliferation, differentiation, and function. Aberrant miRNA expression has been linked to discrete pathological processes. As the placenta plays a pivotal role in governing fetal development, it is not surprising that the placenta expresses numerous types of miRNAs. Whereas many of these miRNAs are ubiquitously expressed, certain miRNA species are largely unique to the placenta. Research in the field of placental miRNAs is in its early phase, with most studies centering on cataloging placental miRNA species or examining differences in placental miRNA expression between placentas from normal pregnancies and those from pregnancies complicated by pathologies that are associated with placental dysfunction. Recent research endeavors ventured to assess the function of miRNAs in cultured placental trophoblasts, using in vitro conditions that model relevant pathophysiological processes. The impact of miRNA-mediated repression on the trophoblast transcriptome, particularly in response to genetic and environmental perturbations, remains largely unknown. Further in depth studies are required to unravel the functional significance of miRNAs in molding placental robustness, which must constantly adapt to altered maternal physiological status in order to sustain optimal support to the developing embryo. In this review we summarize the current information about placental miRNAs expression, and the lingering challenges in this field. PMID:21425434

  18. MicroRNA aberrations: An emerging field for gallbladder cancer management

    PubMed Central

    Chandra, Vishal; Kim, Jong Joo; Mittal, Balraj; Rai, Rajani

    2016-01-01

    Gallbladder cancer (GBC) is infrequent but most lethal biliary tract malignancy characterized by an advanced stage diagnosis and poor survival rates attributed to absence of specific symptoms and effective treatment options. These necessitate development of early prognostic/predictive markers and novel therapeutic interventions. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in tumor biology by functioning like tumor suppressor- or onco- genes and their aberrant expression are associated with the pathogenesis of several neoplasms with overwhelming clinical implications. Since miRNA signature is tissue specific, here, we focused on current data concerning the miRNAs abberations in GBC pathogenesis. In GBC, miRNAs with tumor suppressor activity (miR-135-5p, miR-335, miR-34a, miR-26a, miR-146b-5p, Mir-218-5p, miR-1, miR-145, mir-130a) were found downregulated, while those with oncogenic property (miR-20a, miR-182, mir-155) were upregulated. The expression profile of miRNAs was significantly associated with GBC prognosis and prediction, and forced over-expression/ inhibition of these miRNAs was shown to affect tumor growth and development. Further, differential expression of miRNAs in the blood samples of GBC patients suggest miRNAs as promising noninvasive biomarker. Thus, miRNAs represent potential candidate for GBC management, though many hurdles need to be overcome before miRNAs therapy can be clinically applied to GBC prevention and treatment. PMID:26855538

  19. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  20. MicroRNA-339 and microRNA-556 regulate Klotho expression in vitro.

    PubMed

    Mehi, Stephen J; Maltare, Astha; Abraham, Carmela R; King, Gwendalyn D

    2014-02-01

    Klotho is an anti-aging protein with direct effects on life-span in mice. Klotho functions to regulate pathways classically associated with longevity including insulin/IGF1 and Wnt signaling. Decreased Klotho protein expression is observed throughout the body during the normal aging process. While increased methylation of the Klotho promoter is reported, other epigenetic mechanisms could contribute to age-related downregulation of Klotho expression, including microRNA-mediated regulation. Following in silico identification of potential microRNA binding sites within the Klotho 3' untranslated region, reporter assays reveal regulation by microRNA-339, microRNA-556, and, to a lesser extent, microRNA-10 and microRNA-199. MicroRNA-339 and microRNA-556 were further found to directly decrease Klotho protein expression indicating that, if upregulated in aging tissue, these microRNA could play a role in age-related downregulation of Klotho messenger RNA. These microRNAs are differentially regulated in cancer cells compared to normal cells and may imply a role for microRNA-mediated regulation of Klotho in cancer. PMID:23818104

  1. microRNA-34b/c on chromosome 11q23 is aberrantly methylated in chronic lymphocytic leukemia

    PubMed Central

    Deneberg, Stefan; Kanduri, Meena; Ali, Dina; Bengtzen, Sofia; Karimi, Mohsen; Qu, Ying; Kimby, Eva; Mansouri, Larry; Rosenquist, Richard; Lennartsson, Andreas; Lehmann, Sören

    2014-01-01

    A commonly deleted region in chronic lymphocytic leukemia (CLL) is the 11q22–23 region, which encompasses the ATM gene. Evidence suggests that tumor suppressor genes other than ATM are likely to be involved in CLL with del(11q). A microRNA (miR) cluster including the miR-34b and miR-34c genes is located, among other genes, within the commonly deleted region (CDR) at 11q. Interestingly, these miRs are part of the TP53 network and have been shown to be epigenetically regulated. In this study, we investigated the expression and methylation status of these miRs in a well-characterized cohort of CLL, including cases with/without 11q-deletion. We show that the miR-34b/c promoter was aberrantly hypermethylated in a large proportion of CLL cases (48%, 25/52 cases). miR-34b/c expression correlated inversely to DNA methylation (P = 0.003), and presence of high H3K37me3 further suppressed expression regardless of methylation status. Furthermore, increased miR-34b/c methylation inversely correlated with the presence of 11q-deletion, indicating that methylation and del(11q) independently silence these miRs. Finally, 5-azacytidine and trichostatin A exposure synergistically increased the expression of miR-34b/c in CLL cells, and transfection of miR-34b or miR-34c into HG3 CLL cells significantly increased apoptosis. Altogether, our novel data suggest that miR-34b/c is a candidate tumor suppressor that is epigenetically silenced in CLL. PMID:24686393

  2. MicroRNA expression in Sézary syndrome: identification, function, and diagnostic potential

    PubMed Central

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S.; Taylor, Stephen; Dunlop, Heather M.; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H.; Tramonti, Daniela; Saunders, Nigel J.; Boultwood, Jacqueline; Wainscoat, James S.; Pezzella, Francesco; Whittaker, Sean J.; Tensen, Cornelius P.; Hatton, Christian S. R.

    2010-01-01

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4+) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4+ T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P < .05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < .001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells. PMID:20448109

  3. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential.

    PubMed

    Ballabio, Erica; Mitchell, Tracey; van Kester, Marloes S; Taylor, Stephen; Dunlop, Heather M; Chi, Jianxiang; Tosi, Isabella; Vermeer, Maarten H; Tramonti, Daniela; Saunders, Nigel J; Boultwood, Jacqueline; Wainscoat, James S; Pezzella, Francesco; Whittaker, Sean J; Tensen, Cornelius P; Hatton, Christian S R; Lawrie, Charles H

    2010-08-19

    MicroRNAs are commonly aberrantly expressed in many cancers. Very little is known of their role in T-cell lymphoma, however. We therefore elucidated the complete miRNome of purified T cells from 21 patients diagnosed with Sézary Syndrome (SzS), a rare aggressive primary cutaneous T-cell (CD4(+)) lymphoma. Unsupervised cluster analysis of microarray data revealed that the microRNA expression profile was distinct from CD4(+) T-cell controls and B-cell lymphomas. The majority (104 of 114) of SzS-associated microRNAs (P < .05) were down-regulated and their expression pattern was largely consistent with previously reported genomic copy number abnormalities and were found to be highly enriched (P < .001) for aberrantly expressed target genes. Levels of miR-223 distinguished SzS samples (n = 32) from healthy controls (n = 19) and patients with mycosis fungoides (n = 11) in more than 90% of samples. Furthermore, we demonstrate that the down-regulation of intronically encoded miR-342 plays a role in the pathogenesis of SzS by inhibiting apoptosis, and describe a novel mechanism of regulation for this microRNA via binding of miR-199a* to its host gene. We also provide the first in vivo evidence for down-regulation of the miR-17-92 cluster in malignancy and demonstrate that ectopic miR-17-5p expression increases apoptosis and decreases cell proliferation in SzS cells.

  4. Aberrant resting state in microRNA-30e rat model of cognitive impairment.

    PubMed

    Xu, Cheng; Liu, Xiaopeng; Song, Xi; Gao, Qiang; Cheng, Long; Wang, Liang; Zhang, Kerang; Xu, Yong

    2016-08-01

    Increasing evidence suggests that microRNA (miRNA)-30e is implicated in the cognitive symptoms of many neuropsychiatric diseases. Our previous studies showed that miRNA-30e is associated with cognitive impairment in schizophrenia and depression. Neuroimaging studies have suggested that cognitive impairment is best characterized as abnormal local activity or a disconnection syndrome. Therefore, we constructed a cognitively impaired overexpressing miRNA-30e rat model for study using functional MRI (fMRI). The model was developed by transfected lentiviral particles carrying the miRNA-30e into the hippocampal dentate gyrus. The Morris water maze and open-field test were used to evaluate cognitive ability. We used the regional homogeneity approach to analyze resting-state fMRI data to explore the changes in regional synchronization. We then used Granger causality analysis to explore connectivity between the hippocampus, striatum, and thalamus. The model group showed higher regional homogeneity in the right hippocampus and striatum. One-way Granger causality connections were observed from the thalamus to the hippocampus in the model group, whereas connections from the thalamus to the striatum were observed in normal rats. After fluoxetine treatment, we found indirect connections between the thalamus and the striatum; we also found connections from the hippocampus to the striatum after Shuganjieyu capsule treatment. Our results support the hypothesis that cognitive impairment is related to disrupted local functionality or aberrant brain connectivity, with antidepressant drugs partially reversing cognitive impairment. The characteristics of resting-state fMRI in miRNA-30e overexpressing rats can provide further evidence for investigating the neural mechanisms of cognitive impairment in mental disorders. Video abstract; Supplemental digital content 1, http://links.lww.com/WNR/A385.

  5. Aberrant resting state in microRNA-30e rat model of cognitive impairment.

    PubMed

    Xu, Cheng; Liu, Xiaopeng; Song, Xi; Gao, Qiang; Cheng, Long; Wang, Liang; Zhang, Kerang; Xu, Yong

    2016-08-01

    Increasing evidence suggests that microRNA (miRNA)-30e is implicated in the cognitive symptoms of many neuropsychiatric diseases. Our previous studies showed that miRNA-30e is associated with cognitive impairment in schizophrenia and depression. Neuroimaging studies have suggested that cognitive impairment is best characterized as abnormal local activity or a disconnection syndrome. Therefore, we constructed a cognitively impaired overexpressing miRNA-30e rat model for study using functional MRI (fMRI). The model was developed by transfected lentiviral particles carrying the miRNA-30e into the hippocampal dentate gyrus. The Morris water maze and open-field test were used to evaluate cognitive ability. We used the regional homogeneity approach to analyze resting-state fMRI data to explore the changes in regional synchronization. We then used Granger causality analysis to explore connectivity between the hippocampus, striatum, and thalamus. The model group showed higher regional homogeneity in the right hippocampus and striatum. One-way Granger causality connections were observed from the thalamus to the hippocampus in the model group, whereas connections from the thalamus to the striatum were observed in normal rats. After fluoxetine treatment, we found indirect connections between the thalamus and the striatum; we also found connections from the hippocampus to the striatum after Shuganjieyu capsule treatment. Our results support the hypothesis that cognitive impairment is related to disrupted local functionality or aberrant brain connectivity, with antidepressant drugs partially reversing cognitive impairment. The characteristics of resting-state fMRI in miRNA-30e overexpressing rats can provide further evidence for investigating the neural mechanisms of cognitive impairment in mental disorders. Video abstract; Supplemental digital content 1, http://links.lww.com/WNR/A385. PMID:27258654

  6. Transcriptome-wide analysis of compression-induced microRNA expression alteration in breast cancer for mining therapeutic targets

    PubMed Central

    Kim, Baek Gil; Kang, Suki; Han, Hyun Ho; Lee, Joo Hyun; Kim, Ji Eun; Lee, Sung Hwan; Cho, Nam Hoon

    2016-01-01

    Tumor growth–generated mechanical compression may increase or decrease expression of microRNAs, leading to tumor progression. However, little is known about whether mechanical compression induces aberrant expression of microRNAs in cancer and stromal cells. To investigate the relationship between compression and microRNA expression, microRNA array analysis was performed with breast cancer cell lines and cancer-associated fibroblasts (CAFs) exposed to different compressive conditions. In our study, mechanical compression induced alteration of microRNA expression level in breast cancer cells and CAFs. The alteration was greater in the breast cancer cells than CAFs. Mechanical compression mainly induced upregulation of microRNAs rather than downregulation. In a parallel mRNA array analysis, more than 25% of downregulated target genes were functionally involved in tumor suppression (apoptosis, cell adhesion, and cell cycle arrest), whereas generally less than 15% were associated with tumor progression (epithelial-mesenchymal transition, migration, invasion, and angiogenesis). Of all cells examined, MDA-MB-231 cells showed the largest number of compression-upregulated microRNAs. miR-4769-5p and miR-4446-3p were upregulated by compression in both MDA-MB-231 cells and CAFs. Our results suggest that mechanical compression induces changes in microRNA expression level, which contribute to tumor progression. In addition, miR-4769-5p and miR-4446-3p may be potential therapeutic targets for incurable cancers, such as triple negative breast cancer, in that this would reduce or prevent downregulation of tumor-suppressing genes in both the tumor and its microenvironment simultaneously. PMID:27027350

  7. MicroRNA expression profiling of male breast cancer

    PubMed Central

    Fassan, Matteo; Baffa, Raffaele; Palazzo, Juan P; Lloyd, Joshua; Crosariol, Marco; Liu, Chang-Gong; Volinia, Stefano; Alder, Hannes; Rugge, Massimo; Croce, Carlo M; Rosenberg, Anne

    2009-01-01

    Introduction MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. To test the hypothesis that there is a specific miRNA expression signature which characterizes male breast cancers, we performed miRNA microarray analysis in a series of male breast cancers and compared them with cases of male gynecomastia and female breast cancers. Methods Paraffin blocks were obtained at the Department of Pathology of Thomas Jefferson University from 28 male patients including 23 breast cancers and five cases of male gynecomastia, and from 10 female ductal breast carcinomas. The RNA harvested was hybridized to miRNA microarrays (~1,100 miRNA probes, including 326 human and 249 mouse miRNA genes, spotted in duplicate). To further support the microarray data, an immunohistochemical analysis for two specific miRNA gene targets (HOXD10 and VEGF) was performed in a small series of male breast carcinoma and gynecomastia samples. Results We identified a male breast cancer miRNA signature composed of a large portion of underexpressed miRNAs. In particular, 17 miRNAs with increased expression and 26 miRNAs with decreased expression were identified in male breast cancer compared with gynecomastia. Among these miRNAs, some had well-characterized cancer development association and some showed a deregulation in cancer specimens similar to the one previously observed in the published signatures of female breast cancer. Comparing male with female breast cancer miRNA expression signatures, 17 significantly deregulated miRNAs were observed (four overexpressed and 13 underexpressed in male breast cancers). The HOXD10 and VEGF gene immunohistochemical expression significantly follows the corresponding miRNA deregulation. Conclusions Our results suggest that specific miRNAs may be directly involved in male

  8. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci.

    PubMed

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-08-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  9. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci.

    PubMed

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-08-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results.

  10. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  11. MicroRNA Expression Characterizes Oligometastasis(es)

    PubMed Central

    Lussier, Yves A.; Darga, Thomas E.; Malik, Renuka; Fan, Hanli; Perakis, Samantha; Filippo, Matthew; Corbin, Kimberly; Lee, Younghee; Posner, Mitchell C.; Chmura, Steven J.; Hellman, Samuel; Weichselbaum, Ralph R.

    2011-01-01

    Background Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy. Methods Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy. Results Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression. Conclusions These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment. PMID:22174856

  12. Aberrant expression and function of gap junctions during carcinogenesis.

    PubMed Central

    Yamasaki, H

    1991-01-01

    Gap junctional intercellular communication plays a key role in the maintenance of homeostasis in multicellular organisms. Reflecting deranged homeostasis in cancer cells, most transformed or cancerous cells show aberrant gap junctional intercellular communication; they have decreased junctional communication between each other and/or with surrounding normal cells. Studies with in vitro cell transformation and animal carcinogenesis models suggest an involvement of blocked intercellular communication in later stages of carcinogenesis. Analysis of expression of gap junction proteins (connexins) and corresponding mRNA indicates that a number of regulation sites are involved in aberrant function of gap junctions during carcinogenesis. Suppression of transformed phenotypes is often seen when transformed cells are physically in contact with their normal counterparts. Some studies suggest that gap junctional intercellular communication is involved in such tumor suppression. PMID:1663449

  13. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling

    PubMed Central

    Zhou, Xinyao; Li, Qiaoli; Xu, Jiawei; Zhang, Xiaojing; Zhang, Huijuan; Xiang, Yuqian; Fang, Chuantao; Wang, Teng; Xia, Shihui; Zhang, Qiang; Xing, Qinghe; He, Lin; Wang, Lei; Xu, Mingqing; Zhao, Xinzhi

    2016-01-01

    Preeclampsia (PE) is a leading cause of maternal mortality worldwide. Several studies have detected some differentially expressed microRNAs in the preeclamptic placenta, but few of the identified microRNAs demonstrated consistent findings among different research studies. In this study, high-throughput microRNA sequencing (HTS) of 9 preeclamptic and 9 normal placentas was performed. Seventeen microRNAs were identified to be up-regulated, and 8 down-regulated in preeclamptic placentas. Eight differentially expressed microRNAs except one identified in our study were determined to be consistent with at least one previous study, while sixteen were newly found. We performed qRT-PCR with independent 22 preeclamptic placentas and 20 control placentas to verify the differentially expressed microRNAs, and ten microRNAs were validated. The predicted target genes of the aberrantly expressed miR-193b-3p were enriched in the following gene ontology categories: cell motility and migration, cell proliferation and angiogenesis. We also found that miR-193b-3p significantly decreased the migration and invasion of trophoblast (HTR-8/SVneo) cells and that miR-193b-3p could regulate trophoblasts migration and invasion through binding onto the 3′UTR target site of TGF-β2. In conclusion, we identified a list of differentially expressed microRNAs in PE placentas by HTS and provided preliminary evidence for the role of miR-193b-3p in the pathogenesis of preeclampsia. PMID:26822621

  14. Aberrant expression of a chemokinetic glycoprotein in psoriatic skin.

    PubMed

    Rajaraman, S; Schmalsteig, F C; Brysk, M M; Hendrick, S J; Solomon, A R

    1987-05-01

    Clinically involved and uninvolved skin samples of 6 psoriatic patients, 4 samples each of normal skin specimens, basal cell carcinoma and keratoacanthoma were studied by an indirect immunofluorescence technique. The monospecific antibody used in this study was directed against a 30 kD glycoprotein, normally expressed by the terminally differentiated corneocytes. Functional characterization of this glycoprotein was evaluated by neutrophil cell movement assays. The involved and uninvolved skin of psoriatic patients expressed the 30 kD glycoprotein not only in the stratum corneum but in all the viable epidermal layers as well. Functional studies revealed this glycoprotein to be a potent chemokinetic molecule. These results suggest that the 30 kD glycoprotein is an intrinsic chemokinetic molecule of the terminally differentiated corneocytes, and its precocious and aberrant expression in psoriatic epidermis is potentially responsible for some of the pathophysiologic aspects of psoriasis. PMID:3302266

  15. MicroRNA expression and its association with DNA repair in preimplantation embryos

    PubMed Central

    TULAY, Pinar; SENGUPTA, Sioban B.

    2016-01-01

    Active DNA repair pathways are crucial for preserving genomic integrity and are likely among the complex mechanisms involved in the normal development of preimplantation embryos. MicroRNAs (miRNA), short non-coding RNAs, are key regulators of gene expression through the post-transcriptional and post-translational modification of mRNA. The association of miRNA expression with infertility or polycystic ovarian syndrome has been widely investigated; however, there are limited data regarding the importance of miRNA regulation in DNA repair during preimplantation embryo development. In this article, we review normal miRNA biogenesis and consequences of aberrant miRNA expression in the regulation of DNA repair in gametes and preimplantation embryos. PMID:26853522

  16. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  17. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  18. MicroRNAs and Epithelial Immunity

    PubMed Central

    Liu, Jun; Drescher, Kristen M.; Chen, Xian-Ming

    2009-01-01

    MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology. PMID:19811319

  19. A custom microarray platform for analysis of microRNA gene expression.

    PubMed

    Thomson, J Michael; Parker, Joel; Perou, Charles M; Hammond, Scott M

    2004-10-01

    MicroRNAs are short, noncoding RNA transcripts that post-transcriptionally regulate gene expression. Several hundred microRNA genes have been identified in Caenorhabditis elegans, Drosophila, plants and mammals. MicroRNAs have been linked to developmental processes in C. elegans, plants and humans and to cell growth and apoptosis in Drosophila. A major impediment in the study of microRNA function is the lack of quantitative expression profiling methods. To close this technological gap, we have designed dual-channel microarrays that monitor expression levels of 124 mammalian microRNAs. Using these tools, we observed distinct patterns of expression among adult mouse tissues and embryonic stem cells. Expression profiles of staged embryos demonstrate temporal regulation of a large class of microRNAs, including members of the let-7 family. This microarray technology enables comprehensive investigation of microRNA expression, and furthers our understanding of this class of recently discovered noncoding RNAs.

  20. Prognostic significance of aberrantly silenced ANPEP expression in prostate cancer

    PubMed Central

    Sørensen, K D; Abildgaard, M O; Haldrup, C; Ulhøi, B P; Kristensen, H; Strand, S; Parker, C; Høyer, S; Borre, M; Ørntoft, T F

    2013-01-01

    Background: Novel biomarkers for prostate cancer (PC) are urgently needed. This study investigates the expression, epigenetic regulation, and prognostic potential of ANPEP in PC. Methods: Aminopeptidase N (APN; encoded by ANPEP) expression was analysed by immunohistochemistry using tissue microarrays representing 267 radical prostatectomy (RP) and 111 conservatively treated (CT) PC patients. Clinical end points were recurrence-free survival (RFS) and cancer-specific survival (CSS), respectively. The ANPEP promoter methylation levels were determined by bisulphite sequencing or MethyLight analysis in 278 nonmalignant and PC tissue samples, and in cell lines. Results: The APN expression was significantly downregulated in PC compared with nonmalignant prostate tissue samples. Aberrant promoter hypermethylation was frequently observed in PC tissue samples, and 5-aza-2′-deoxycytidine induced ANPEP expression in three hypermethylated prostate cell lines, suggesting epigenetic silencing. Negative APN immunoreactivity was significantly associated with short RFS and short CSS in the RP and CT cohort, respectively, independently of routine clinicopathological predictors. Combining APN with a known angiogenesis marker (vascular endothelial growth factor or microvessel density) improved risk prediction significantly in both cohorts. Conclusion: Our results suggest negative APN immunoreactivity as a new independent adverse prognostic factor for patients with clinically localised PC and, furthermore, that epigenetic mechanisms are involved in silencing of ANPEP in PC. PMID:23322201

  1. Aberrant expression of RUNX3 in patients with immune thrombocytopenia.

    PubMed

    Qiao, Jianlin; Liu, Yun; Wu, Yulu; Li, Xiaoqian; Zhu, Feng; Xia, Yuan; Yao, Haina; Chu, Peipei; Li, Hongchun; Ma, Ping; Li, Depeng; Li, Zhenyu; Xu, Kailin; Zeng, Lingyu

    2015-09-01

    Immune thrombocytopenia (ITP) is an autoimmune disease, characterized by dysregulation of cellular immunity. Previous studies demonstrated that immune imbalance between Th1 and Th2 was associated with the pathogenesis of ITP. Runt-related transcription factor 3 (RUNX3) is a member of the runt domain-containing family of transcription factors and plays an important role in the regulation of T cell differentiation into Th1 cells. Whether RUNX3 was involved in the pathogenesis of ITP remains unclear. In this study, 47 active ITP patients, 18 ITP with remission and 26 age and gender matched healthy control were included. Peripheral blood mononuclear cells (PBMCs) were isolated from ITP and control for isolation of RNA and plasma which were used to measure mRNA level of RUNX3 and T-box transcription factor (T-bet) by quantitative real-time PCR and interferon γ (IFN-γ) plasma level by ELISA. Meanwhile, protein was also extracted from PBMCs for Western blot analysis of RUNX3 expression. Our results showed a significantly higher expression of RUNX3, T-bet and plasma level of IFN-γ in active ITP patients compared to control. No differences were observed between ITP with remission and control. Furthermore, a positive correlation of RUNX3 with T-bet was found in active ITP patients. In conclusion, aberrant expression of RUNX3 was associated with the pathogenesis of ITP and therapeutically targeting it might be a novel approach in ITP treatment. PMID:26093269

  2. Differentially expressed microRNAs in colorectal cancer metastasis

    PubMed Central

    Abba, Mohammed; Benner, Axel; Patil, Nitin; Heil, Oliver; Allgayer, Heike

    2015-01-01

    Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251. PMID:26697326

  3. Review: Aberrant EVI1 expression in acute myeloid leukaemia.

    PubMed

    Hinai, Adil A; Valk, Peter J M

    2016-03-01

    Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.

  4. New advances of microRNAs in glioma stem cells, with special emphasis on aberrant methylation of microRNAs.

    PubMed

    Zhao, Bing; Bian, Er-Bao; Li, Jia; Li, Jun

    2014-09-01

    Malignant brain tumors are thought to be originate from a small population of cells that display stem cell properties, including the capacity of self-renewal, multipotent differentiation, initiation of tumor tissues. Cancer stem cells (CSCs) have been identified in gliomas in which they are named as glioma stem cells (GSCs). GSCs, sharing some characteristics with normal neural stem cells (NSCs), contribute to the cellular origin for primary gliomas and the recurrence of malignant gliomas after current conventional therapy. Recently, increasing evidences have showed that miRNAs play a central role in GSCs. In this review we focus on the role of GSCs in gliomas and in the abnomal expression of miRNAs in GSCs. Furthermore, we also discuss epigenetic dysregulation of tumor-suppressor miRNAs by promoter DNA methylation is involved in the regulation of GSCs biology. Recent advances in understanding dysregulated expression of miRNAs and methylation of tumor-suppressor miRNAs in GSCs and their possible use as new therapeutic targets of gliomas.

  5. Stratification of Digestive Cancers with Different Pathological Features and Survival Outcomes by MicroRNA Expression

    PubMed Central

    Tang, Senwei; Wu, William K. K.; Li, Xiangchun; Wong, Sunny H.; Wong, Nathalie; Chan, Matthew T. V.; Sung, Joseph J. Y.; Yu, Jun

    2016-01-01

    MicroRNAs (miRNAs) are aberrantly expressed in virtually all cancer types, including digestive cancers. Herein, we aggregated and systematically analyzed miRNA expression profiles of 1765 tumor samples, including esophageal, gastric, liver, pancreatic, colon and rectal cancers, obtained through small RNA sequencing by The Cancer Genome Atlas. We found that digestive cancers of different tissue origins could be differentiated according to their miRNA expression profiles. In particular, esophageal squamous cell carcinoma and esophageal adenocarcinoma exhibited distinct miRNA expression patterns. Thirteen (e.g. miR-135b, miR-182) and sixteen (e.g. miR-139, miR-133a-1, miR-490) miRNAs were commonly upregulated and downregulated in more than four cancer types, respectively. Pertinent to pathological features, low miR-181d expression was associated with microsatellite instability in colon and gastric cancers whereas low miR-106a expression was associated with hepatitis B virus infection in hepatocellular carcinoma. Progression in colon cancer could also be predicted by low let-7f-2 and high miR-106a expression. Molecular subtypes with distinct prognostic outcomes independent of tumor-node-metastasis staging were identified in hepatocellular carcinoma and colon cancer. In total, 4 novel and 6 reported associations between specific miRNAs and patients’ survival were identified. Collectively, novel miRNA markers were identified to stratify digestive cancers with different pathological features and survival outcomes. PMID:27080237

  6. Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets

    PubMed Central

    Morris, Valerie A.; Cummings, Carrie L.; Korb, Brendan; Boaglio, Sean

    2015-01-01

    Acute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in AML patient samples with various cytogenetic aberrations, confirm that KLF4 overexpression promotes myeloid differentiation and inhibits cell proliferation in AML cell lines, and identify new targets of KLF4. We have demonstrated that microRNA 150 (miR-150) expression is decreased in AML and that reintroducing miR-150 expression induces myeloid differentiation and inhibits proliferation of AML cells. We show that KLF family DNA binding sites are necessary for miR-150 promoter activity and that KLF2 or KLF4 overexpression induces miR-150 expression. miR-150 silencing, alone or in combination with silencing of CDKN1A, a well-described KLF4 target, did not fully reverse KLF4-mediated effects. Gene expression profiling and validation identified putative KLF4-regulated genes, including decreased MYC and downstream MYC-regulated gene expression in KLF4-overexpressing cells. Our findings indicate that decreased KLF4 expression mediates antileukemic effects through regulation of gene and microRNA networks, containing miR-150, CDKN1A, and MYC, and provide mechanistic support for therapeutic strategies increasing KLF4 expression. PMID:26644403

  7. Placental microRNA expression in pregnancies complicated by preeclampsia

    PubMed Central

    Enquobahrie, Daniel A.; Abetew, Dejene F.; Sorensen, Tanya K.; Willoughby, David; Chidambaram, Kumaravel; Williams, Michelle A.

    2010-01-01

    Objective The role of post-transcription regulation in preeclampsia is largely unknown. We investigated preeclampsia related placental microRNA (miRNA) expression using microarray and confirmatory qRT-PCR experiments. Study design Placental expressions of characterized and novel miRNAs (1,295 probes) were measured in samples collected from 20 preeclampsia cases and 20 controls. Differential expression was evaluated using Students T-test and fold change analyses. In pathway analysis, we examined functions/functional relationships of targets of differentially expressed miRNAs. Results Eight miRNAs were differentially expressed (1 up- and 7 down-regulated) among preeclampsia cases compared with controls. These included previously identified candidates (miR-210, miR-1 and a miRNA in the 14q32.31 cluster region) and others that are novel (miR- 584 and miR-34c-5p). These miRNAs target genes that participate in organ/system development (cardiovascular and reproductive system), immunologic dysfunction, cell adhesion, cell cycle and signaling. Conclusion Expression of microRNAs that target genes in diverse pathophysiological processes is altered in the setting of preeclampsia. PMID:21093846

  8. Micro-RNA Expression and Function in Lymphomas

    PubMed Central

    Sandhu, Sukhinder K.; Croce, Carlo M.; Garzon, Ramiro

    2011-01-01

    The recent discovery of microRNAs (miRNAs) has introduced a new layer of complexity to the process of gene regulation. MiRNAs are essential for cellular function, and their dysregulation often results in disease. Study of miRNA expression and function in animal models and human lymphomas has improved our knowledge of the pathogenesis of this heterogeneous disease. In this paper, we attempt to describe the expression of miRNAs and their function in lymphomas and discuss potential miRNA-based therapies in the diagnosis and treatment of lymphomas. PMID:21461378

  9. MicroRNA Expression and Identification of Putative miRNA Targets in Ovarian Cancer

    PubMed Central

    Dahiya, Neetu; Sherman-Baust, Cheryl A.; Wang, Tian-Li; Davidson, Ben; Shih, Ie-Ming; Zhang, Yongqing; Wood, William; Becker, Kevin G.; Morin, Patrice J.

    2008-01-01

    Background MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Emerging evidence suggests the potential involvement of altered regulation of miRNA in the pathogenesis of cancers, and these genes are thought to function as both tumor suppressors and oncogenes. Methodology/Principal Findings Using microRNA microarrays, we identify several miRNAs aberrantly expressed in human ovarian cancer tissues and cell lines. miR-221 stands out as a highly elevated miRNA in ovarian cancer, while miR-21 and several members of the let-7 family are found downregulated. Public databases were used to reveal potential targets for the highly differentially expressed miRNAs. In order to experimentally identify transcripts whose stability may be affected by the differentially expressed miRNAs, we transfected precursor miRNAs into human cancer cell lines and used oligonucleotide microarrays to examine changes in the mRNA levels. Interestingly, there was little overlap between the predicted and the experimental targets or pathways, or between experimental targets/pathways obtained using different cell lines, highlighting the complexity of miRNA target selection. Conclusion/Significance Our results identify several differentially expressed miRNAs in ovarian cancer and identify potential target transcripts that may be regulated by these miRNAs. These miRNAs and their targets may have important roles in the initiation and development of ovarian cancer. PMID:18560586

  10. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum.

    PubMed

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3' end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon.

  11. MicroRNA evolution, expression, and function during short germband development in Tribolium castaneum

    PubMed Central

    Ninova, Maria; Ronshaugen, Matthew; Griffiths-Jones, Sam

    2016-01-01

    MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model systems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabolous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries of oocytes and successive intervals covering the embryonic development of the short germband model organism, Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal loading and sequence-specific 3′ end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-specific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcription. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript targeting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The expression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved phenomenon. PMID:26518483

  12. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Melão, Alice; Póvoa, Vanda; Sarmento, Leonor; de Cedrón, Marta Gómez; Malumbres, Marcos; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases. PMID:26882564

  13. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma.

    PubMed

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni; Roslind, Anne; Giese, Nathalia; Horn, Thomas; Wøjdemann, Morten; Johansen, Julia S

    2012-12-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced). Several of these microRNAs have not before been related to diagnosis of pancreatic cancer (eg, miR-492, miR-614, miR-622). MiR-614, miR-492, miR-622, miR-135b and miR-196 were most differently expressed. MicroRNA profiles of pancreatic and ampullary adenocarcinomas were correlated (0.990). MicroRNA expression profiles for pancreatic cancer described in the literature were consistent with our findings, and the microRNA profile for pancreatic adenocarcinoma (miR-196b-miR-217) was validated. We identified a more significant expression profile, the difference between miR-411 and miR-198 (P=2.06 × 10(-54)) and a diagnostic LASSO classifier using 19 microRNAs (sensitivity 98.5%; positive predictive value 97.8%; accuracy 97.0%). We also identified microRNA profiles to subclassify ampullary adenocarcinomas into pancreatobiliary or intestinal type. In conclusion, we found that combinations of two microRNAs could roughly separate neoplastic from non-neoplastic samples. A diagnostic 19 microRNA classifier was constructed which without micro-dissection could discriminate pancreatic

  14. Expressing freedom and taking liberties: the paradoxes of aberrant science.

    PubMed

    Little, M

    2006-06-01

    Complete freedom does not exist, despite people's preparedness to die for it. Scientific freedom is much defended and yet much misunderstood. Scientists have limits imposed on their freedom by the disciplines and discourse communities in which they place themselves. Freedom within these socially constructed constraints needs to be distinguished from taking liberties with the rules and practices that make up these constraints, and validate the activities of special groups within society. Scientists (and the public) perceive taking liberties with science's rules and practices as aberrant science, and they often react punitively. Aberrant science can be broadly examined under four headings: wicked science, naughty science, dysfunctional science, and ideologically unacceptable science. When we examine examples of perceived aberrant science, we find that these categories of "misconduct" are connected and often confused. Scientific freedom needs to be redefined with due regard to current understandings of scientists as human beings facing powerful social pressures to deliver results of a particular kind.

  15. [Selection of microRNA for providing tumor specificity of transgene expression in cancer gene therapy].

    PubMed

    Shepelev, M V; Kalinichenko, S V; Vikhreva, P N; Korobko, I V

    2016-01-01

    The use of tumor-specific microRNA loss to inhibit transgene expression in normal cells is considered as a way to increase the specificity of gene-therapeutic antitumor drugs. This method assumes the introduction of recognition sites of suppressed in tumor cells microRNAs into transgene transcipt. In the presented work, the efficiency of the strategy for providing the tumor specificity of transgene expression depending on parameters of microRNA expression in normal and tumor cells was studied. It was established that microRNA suppression in tumor cells and the determination of absolute microRNA levels in tumor and normal cells are not sufficient for the adequate estimation of the possibility of specific microRNA usage in the scheme of cancer gene therapy, and particularly do not allow to exclude a significant decrease in the efficiency of the gene-therapeutic drug upon the introduction of microRNA recognition sites. These parameters are only suitable for the preliminary selection of microRNA. The effect of introduction of microRNA recognition sites on transgene expression level in target tumor cells should be validated experimentally. It is suggested that this should be done directly in the cancer gene therapy scheme with monitoring of the therapeutic transgene activity. PMID:27239854

  16. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy.

    PubMed

    Serino, Grazia; Sallustio, Fabio; Cox, Sharon N; Pesce, Francesco; Schena, Francesco P

    2012-05-01

    Aberrant O-glycosylation in the hinge region of IgA1 characterizes IgA nephropathy. The mechanisms underlying this abnormal glycosylation are not well understood, but reduced expression of the enzyme core 1, β1,3-galactosyltransferase 1 (C1GALT1) may contribute. In this study, high-throughput microRNA (miRNA) profiling identified 37 miRNAs differentially expressed in PBMCs of patients with IgA nephropathy compared with healthy persons. Among them, we observed upregulation of miR-148b, which potentially targets C1GALT1. Patients with IgA nephropathy exhibited lower C1GALT1 expression, which negatively correlated with miR-148b expression. Transfection of PBMCs from healthy persons with a miR-148b mimic reduced endogenous C1GALT1 mRNA levels threefold. Conversely, loss of miR-148b function in PBMCs of patients with IgA nephropathy increased C1GALT1 mRNA and protein levels to those observed in healthy persons. Moreover, we found that upregulation of miR-148b directly correlated with levels of galactose-deficient IgA1. In vitro, we used an IgA1-producing cell line to confirm that miR-148b modulates IgA1 O-glycosylation and the levels of secreted galactose-deficient IgA1. Taken together, these data suggest a role for miRNAs in the pathogenesis of IgA nephropathy. Abnormal expression of miR-148b may explain the aberrant glycosylation of IgA1, providing a potential pharmacologic target for IgA nephropathy.

  17. Cloning and expression of new microRNAs from zebrafish

    PubMed Central

    Kloosterman, Wigard P.; Steiner, Florian A.; Berezikov, Eugene; de Bruijn, Ewart; van de Belt, Jose; Verheul, Mark; Cuppen, Edwin; Plasterk, Ronald H.A.

    2006-01-01

    MicroRNAs (miRNAs) play an important role in development and regulate the expression of many animal genes by post-transcriptional gene silencing. Here we describe the cloning and expression of new miRNAs from zebrafish. By high-throughput sequencing of small-RNA cDNA libraries from 5-day-old zebrafish larvae and adult zebrafish brain we found 139 known miRNAs and 66 new miRNAs. For 65 known miRNAs and for 11 new miRNAs we also cloned the miRNA star sequence. We analyzed the temporal and spatial expression patterns for 35 new miRNAs and for 32 known miRNAs in the zebrafish by whole mount in situ hybridization and northern blotting. Overall, 23 of the 35 new miRNAs and 30 of the 32 known miRNAs could be detected. We found that most miRNAs were expressed during later stages of development. Some were expressed ubiquitously, but many of the miRNAs were expressed in a tissue-specific manner. Most newly discovered miRNAs have low expression levels and are less conserved in other vertebrate species. Our cloning and expression analysis indicates that most abundant and conserved miRNAs in zebrafish are now known. PMID:16698962

  18. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients.

    PubMed

    Banigan, Meredith G; Kao, Patricia F; Kozubek, James A; Winslow, Ashley R; Medina, Juan; Costa, Joan; Schmitt, Andrea; Schneider, Anja; Cabral, Howard; Cagsal-Getkin, Ozge; Vanderburg, Charles R; Delalle, Ivana

    2013-01-01

    Exosomes are cellular secretory vesicles containing microRNAs (miRNAs). Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ) and bipolar disorder (BD) might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center), BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe) and Boston Medical Center (BMC). Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD.

  19. Prognostic Role of microRNA-21 Expression in Brain Tumors: a Meta-analysis.

    PubMed

    He, Xiao-Yan; Liao, Yu-Dong; Guo, Xiao-Qing; Wang, Robin; Xiao, Zhen-Yu; Wang, Yan-Gang

    2016-04-01

    Many studies have shown that microRNAs have important roles in the development and progression of various cancers. Recent studies also showed that microRNA-21 expression may be associated with the prognosis of patients with several common cancers. However, there was still lack of evidence for the prognostic role of microRNA-21 expression in brain tumors. We performed a systemic review and meta-analysis of published and unpublished studies to assess the prognostic role of microRNA-21 expression in patients with brain tumors. PubMed, Embase, and Google Scholar databases were searched for eligible studies with data assessing the prognostic role of microRNA-21 expression in brain tumors. Pooled hazard ratios (HRs) of microRNA-21 expression for overall survival and 95% confidence intervals (CI) were calculated. Six studies from five publications were finally included into the meta-analysis. Those six studies included a total of 747 patients with brain tumors and 654 patients with gliomas. For overall survival, the pooled HR of higher microRNA-21 expression in patients with brain tumors was 1.82 (95% CI 1.29-2.58, P = 0.001). In patients with gliomas, the HR for overall survival of higher microRNA-21 expression was 1.83 (95% CI 1.09-3.09, P = 0.023). Sensitivity analysis by omitting one study by turns also showed there was no obvious influence of individual study on the pooled HRs. There was no obvious risk of publication bias in the meta-analysis. The present meta-analysis suggests that microRNA-21 is associated with the prognosis of patients with brain tumors, and high expression of microRNA-21 can predict poor prognosis in patients with brain tumors.

  20. A high-throughput microRNA expression profiling system.

    PubMed

    Guo, Yanwen; Mastriano, Stephen; Lu, Jun

    2014-01-01

    As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings. PMID:25030917

  1. Insect MicroRNAs: Biogenesis, Expression Profiling and Biological Functions

    PubMed Central

    Lucas, Keira; Raikhel, Alexander S.

    2012-01-01

    MicroRNAs (miRNA) are a class of endogenous regulatory RNA molecules 21-24 nucleotides in length that modulate gene expression at the post-transcriptional level via base pairing to target sites within messenger RNAs (mRNA). Typically, the miRNA “seed sequence” (nucleotides 2-8 at the 5′ end) binds complementary seed match sites within the 3′ untranslated region of mRNAs, resulting in either translational inhibition or mRNA degradation. MicroRNAs were first discovered in Caenorhabditis elegans and were shown to be involved in the timed regulation of developmental events. Since their discovery in the 1990s, thousands of potential miRNAs have since been identified in various organisms through small RNA cloning methods and/or computational prediction, and have been shown to play functionally important roles of gene regulation in invertebrates, vertebrates, plants, fungi and viruses. Numerous functions of miRNAs identified in Drosophila melanogaster have demonstrated a great significance of these regulatory molecules. However, elucidation of miRNA roles in non-drosophilid insects presents a challenging and important task. PMID:23165178

  2. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses.

    PubMed

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species.

  3. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses

    PubMed Central

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M.; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species. PMID:26089831

  4. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids

    PubMed Central

    Pan, Qun; Luo, Xiaoping; Chegini, Nasser

    2008-01-01

    Abstract Given the emerging roles of microRNAs (miRNAs) as key regulator of mRNA stability we assessed their expression profile in paired myometrium and leiomyoma, their isolated smooth muscle cells (MSMC and LSMC), a spontaneously transformed leiomyoma smooth muscle cells (T-LSMC) and SK-LMS-1, a leiomyosarcoma cell line using microarray and real time PCR.Based on global normalization of expression values of 385 miRNAs and statistical analysis (anova), 91 miRNAs were expressed above the threshold levels in myometrium, with a progressive decline in numbers in leiomyomas, MSMC, LSMC, T-LSMC and SK-LMS-1 (P<0.05).We selected and validated the expression of miR-20a, miR-21, miR-26a, miR-18a, miR-206, miR-181a and miR-142–5p and found their differential expression in tissue and cell-specific manners (P<0.05).Treatments of MSMC and LSMC with 17β estradiol and medroxyprogesterone acetate (10−8M), or ICI-182780 and RU-486 (10−6M) resulted in differential regulation of these miRNAs (P<0.05).In conclusion, the expression of a number of miRNAs in myometrium and leiomyoma with their progressive aberrant from normal MSMC into LSMC, transformed and cancerous stage, suggests that miRNAs and their regulation by ovarian steroids play a key role in pathogenesis of leiomyoma through gene expression stability. PMID:18182067

  5. Effects of oestrogen on microRNA expression in hormone-responsive breast cancer cells.

    PubMed

    Ferraro, Lorenzo; Ravo, Maria; Nassa, Giovanni; Tarallo, Roberta; De Filippo, Maria Rosaria; Giurato, Giorgio; Cirillo, Francesca; Stellato, Claudia; Silvestro, Silvana; Cantarella, Concita; Rizzo, Francesca; Cimino, Daniela; Friard, Olivier; Biglia, Nicoletta; De Bortoli, Michele; Cicatiello, Luigi; Nola, Ernesto; Weisz, Alessandro

    2012-06-01

    Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17β-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study. PMID:22274890

  6. Altered microRNA expression profile in hepatitis B virus-related hepatocellular carcinoma.

    PubMed

    Park, Keon Uk; Seo, Young-Su; Lee, Yun-Han; Park, Jungwook; Hwang, Ilseon; Kang, Koo Jeong; Nam, Jehyun; Kim, Sang-Woo; Kim, Jin Young

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers, accounting for about 600,000 cancer deaths worldwide. Despite aggressive chemotherapy, the 5-year survival rate is less than 30% in the United States. This underscores the need for a better understanding of the molecular and cellular disease features. Many studies have demonstrated that aberrant regulation of microRNA (miRNA) expression plays a critical role in the development of various types of cancers including HCC. Here we analyzed the miRNA expression profile of HCC cases associated with chronic hepatitis B virus infection, one of the major etiologies of HCC. Our study identified 267 miRNAs that were differentially regulated in HCC specimens compared to adjacent normal tissues. We next analyzed putative target genes and the relevant signaling pathways that are regulated by these miRNAs. Our findings support the notion that dysfunction of miRNAs is linked to HCC pathogenesis and may lead to the identification of novel targets for diagnosing and treating HCC. PMID:26190160

  7. Differential expression of microRNAs in mouse embryonic bladder

    SciTech Connect

    Liu, Benchun; Cunha, Gerald R.; Baskin, Laurence S.

    2009-08-07

    MicroRNAs (miRNAs) are involved in several biological processes including development, differentiation and proliferation. Analysis of miRNA expression patterns in the process of embryogenesis may have substantial value in determining the mechanism of embryonic bladder development as well as for eventual therapeutic intervention. The miRNA expression profiles are distinct among the cellular types and embryonic stages as demonstrated by microarray technology and validated by quantitative real-time RT-PCR approach. Remarkably, the miRNA expression patterns suggested that unique miRNAs from epithelial and submucosal areas are responsible for mesenchymal cellular differentiation, especially regarding bladder smooth muscle cells. Our data show that miRNA expression patterns are unique in particular cell types of mouse bladder at specific developmental stages, reflecting the apparent lineage and differentiation status within the embryonic bladder. The identification of unique miRNAs expression before and after smooth muscle differentiation in site-specific area of the bladder indicates their roles in embryogenesis and may aid in future clinical intervention.

  8. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    PubMed

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. PMID:26169019

  9. MicroRNA expression profiling of the developing murine upper lip

    PubMed Central

    Warner, Dennis R.; Mukhopadhyay, Partha; Brock, Guy; Webb, Cindy L.; Pisano, M. Michele; Greene, Robert M.

    2015-01-01

    Clefts of the lip and palate are thought to be caused by genetic and environmental insults but the role of epigenetic mechanisms underlying this common birth defect are unknown. We analyzed the expression of over 600 microRNAs in the murine medial nasal and maxillary processes isolated on GD10.0-GD11.5 to identify those expressed during development of the upper lip and analyzed spatial expression of a subset. A total of 169 microRNAs were differentially expressed across gestation days 10.0 to 11.5 in the medial nasal processes, and 77 in the maxillary processes of the first branchial arch with 49 common to both. Of the microRNAs exhibiting the largest percent increase in both facial processes were 5 members of the Let-7 family. Among those with the greatest decrease in expression from GD10.0 to GD11.5 were members of the microRNA-302/367 family that have been implicated in cellular reprogramming. The distribution of expression of microRNA-199a-3p and Let-7i was determined by in situ hybridization and revealed widespread expression in both medial nasal and maxillary facial processes while that for microRNA-203 was much more limited. MicroRNAs are dynamically expressed in the tissues that form the upper lip and several were identified that target mRNAs known to be important for its development, including those that regulate the two main isoforms of p63 (microRNA-203 and microRNA-302/367 family). Integration of these data with corresponding proteomic data sets will lead to a greater appreciation of epigenetic regulation of lip development and provide a better understanding of potential causes of cleft lip. PMID:24849136

  10. microRNA expression in lymphoid malignancies: new hope for diagnosis and therapy?

    PubMed Central

    Lawrie, Charles Henderson

    2008-01-01

    Abstract microRNAs are a newly discovered class of short (∼22 nt) naturally occurring single-stranded RNA molecules that regulate the expression of target genes post-transcriptionally. Despite only being discovered 7 years ago, microRNAs have been implicated as key regulatory molecules in nearly every biological process examined so far and abnormal expression of microRNAs have been linked to many forms of disease including cancer where they can function as both tumour-suppressors and oncogenes. So why are microRNAs causing so much excitement? And will this excitement translate into new medical breakthroughs? This review attempts to answer these questions in the wider context of cancer, focusing on the role that microRNAs play in normal lymphoid development and malignancy. PMID:18624758

  11. Cloning, characterization and expression analysis of porcine microRNAs

    PubMed Central

    Reddy, Alavala Matta; Zheng, Yun; Jagadeeswaran, Guru; Macmil, Simone L; Graham, Wiley B; Roe, Bruce A; Desilva, Udaya; Zhang, Weixiong; Sunkar, Ramanjulu

    2009-01-01

    Background MicroRNAs (miRNAs) are small ~22-nt regulatory RNAs that can silence target genes, by blocking their protein production or degrading the mRNAs. Pig is an important animal in the agriculture industry because of its utility in the meat production. Besides, pig has tremendous biomedical importance as a model organism because of its closer proximity to humans than the mouse model. Several hundreds of miRNAs have been identified from mammals, humans, mice and rats, but little is known about the miRNA component in the pig genome. Here, we adopted an experimental approach to identify conserved and unique miRNAs and characterize their expression patterns in diverse tissues of pig. Results By sequencing a small RNA library generated using pooled RNA from the pig heart, liver and thymus; we identified a total of 120 conserved miRNA homologs in pig. Expression analysis of conserved miRNAs in 14 different tissue types revealed heart-specific expression of miR-499 and miR-208 and liver-specific expression of miR-122. Additionally, miR-1 and miR-133 in the heart, miR-181a and miR-142-3p in the thymus, miR-194 in the liver, and miR-143 in the stomach showed the highest levels of expression. miR-22, miR-26b, miR-29c and miR-30c showed ubiquitous expression in diverse tissues. The expression patterns of pig-specific miRNAs also varied among the tissues examined. Conclusion Identification of 120 miRNAs and determination of the spatial expression patterns of a sub-set of these in the pig is a valuable resource for molecular biologists, breeders, and biomedical investigators interested in post-transcriptional gene regulation in pig and in related mammals, including humans. PMID:19196471

  12. microRNA Expression Profiling: Technologies, Insights, and Prospects.

    PubMed

    Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun

    2015-01-01

    Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms. PMID:26663195

  13. MicroRNA expression profiling of cat and dog kidneys.

    PubMed

    Ichii, Osamu; Otsuka, Saori; Ohta, Hiroshi; Yabuki, Akira; Horino, Taro; Kon, Yasuhiro

    2014-04-01

    MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.

  14. Identification and Expression Profiles of microRNA in Dolphin.

    PubMed

    Segawa, Takao; Kobayashi, Yuki; Inamoto, Satoko; Suzuki, Miwa; Endoh, Tomoko; Itou, Takuya

    2016-02-01

    Recently, microRNAs (miRNAs) are focused on the role of biomarker because they are stable in serum and plasma, and some of them express in the specific organs and increase with the organ injury. Thus miRNAs may be very useful as biomarkers for monitoring the health and condition of dolphins and for detecting disorders in aquariums. Here, a small RNA library was made from dolphin lung, liver and spleen, and miRNA expression patterns were then determined for 15 different tissues. We identified 62 conserved miRNA homologs in the dolphin small RNA library and found high expression miRNAs in specific tissues: miR-125b and miR-221 were highly expressed in brain, miR-23b in heart, miR-199a and miR-223 in lung, and miR-122-5p in liver. Some of these tissue-enriched miRNAs may be useful as specific and sensitive diagnostic blood biomarkers for organ injury in dolphins.

  15. Identification and Expression Profiles of microRNA in Dolphin.

    PubMed

    Segawa, Takao; Kobayashi, Yuki; Inamoto, Satoko; Suzuki, Miwa; Endoh, Tomoko; Itou, Takuya

    2016-02-01

    Recently, microRNAs (miRNAs) are focused on the role of biomarker because they are stable in serum and plasma, and some of them express in the specific organs and increase with the organ injury. Thus miRNAs may be very useful as biomarkers for monitoring the health and condition of dolphins and for detecting disorders in aquariums. Here, a small RNA library was made from dolphin lung, liver and spleen, and miRNA expression patterns were then determined for 15 different tissues. We identified 62 conserved miRNA homologs in the dolphin small RNA library and found high expression miRNAs in specific tissues: miR-125b and miR-221 were highly expressed in brain, miR-23b in heart, miR-199a and miR-223 in lung, and miR-122-5p in liver. Some of these tissue-enriched miRNAs may be useful as specific and sensitive diagnostic blood biomarkers for organ injury in dolphins. PMID:26853874

  16. Composition and Expression of Conserved MicroRNA Genes in Diploid Cotton (Gossypium) Species

    PubMed Central

    Gong, Lei; Kakrana, Atul; Arikit, Siwaret; Meyers, Blake C.; Wendel, Jonathan F.

    2013-01-01

    MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus. PMID:24281048

  17. MicroRNA expression in the aging mouse thymus.

    PubMed

    Ye, Yaqiong; Li, Daotong; Ouyang, Dan; Deng, Li; Zhang, Yuan; Ma, Yongjiang; Li, Yugu

    2014-09-01

    MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.

  18. MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue.

    PubMed

    Bing, Z; Master, S R; Tobias, J W; Baldwin, D A; Xu, X W; Tomaszewski, J E

    2012-12-01

    In this study, we used microRNA (miRNA) microarrays in an unbiased screen for aberrantly expressed miRNAs in seminoma, a primitive type of germ cell tumor. Formalin-fixed and paraffin-embedded (FFPE) surgical samples from 11 cases of normal testicular tissue resected for nonneoplastic causes and from 11 cases of seminoma were assessed for miRNA expression. Normal testicular tissue and seminoma were paired by race. We found 112 miRNAs to be differentially expressed between seminoma and normal testicular tissue; 52 miRNAs were overexpressed, and 60, downregulated in seminoma. We did not observe significant differences between black and white populations in our race-paired study. The upregulation of the expression of hsa-mir-21, hsa-mir-372, hsa-mir-373, has-mir-221, and hsa-mir-222 was validated by reverse transcription and real-time PCR. Hsa-mir-372 was upregulated around 1,270-fold (95 % confidence interval (CI) 525.2-3,064.8; p = 8.1e-5 by Mann-Whitney U test). Hsa-mir-373 was upregulated around 1,530-fold (95 % CI 620.5-3,785.6; p = 8.0e-5 by Mann-Whitney U test), consistent with previous reports, indicating that the miRNAs in FFPE are well preserved, and FFPE can be a valuable source for the miRNA study of seminoma. In addition, expression of hsa-mir-21 (12.2-fold, 0.0095), hsa-mir-221 (3.8-fold, 0.014) and hsa-mir-222 (3.8-fold, 0.019) was found elevated in seminoma compared to normal testicular tissue.

  19. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy.

    PubMed

    Magner, William J; Weinstock-Guttman, Bianca; Rho, Mina; Hojnacki, David; Ghazi, Rabia; Ramanathan, Murali; Tomasi, Thomas B

    2016-03-15

    Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target.

  20. Dicer and microRNA expression in multiple sclerosis and response to interferon therapy.

    PubMed

    Magner, William J; Weinstock-Guttman, Bianca; Rho, Mina; Hojnacki, David; Ghazi, Rabia; Ramanathan, Murali; Tomasi, Thomas B

    2016-03-15

    Dysregulation of microRNA expression has been shown in multiple sclerosis (MS); however, the mechanisms underlying these changes, their response to therapy and the impact of microRNA changes in MS are not completely understood. Dicer mediates the cleavage of precursor microRNAs to mature microRNAs and is dysregulated in multiple pathologies. Having shown that interferons regulate Dicer in vitro, we hypothesized that MS patient IFNβ1a treatment could potentially alter Dicer expression. Dicer mRNA and protein levels, as well as microRNA expression, were determined in MS patient and healthy control PBL. Acute responses to IFNβ1a were assessed in 50 patients. We found that Dicer protein but not mRNA levels decreases in MS patients while both are selectively induced in patients responding well to IFNβ1a. Potential microRNA biomarkers for relapsing remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS) and IFNβ1a response are described. Contrasts in Dicer and microRNA expression levels between patient populations may offer insight into mechanisms underlying disease courses and responses to IFNβ1a therapy. This work identifies Dicer regulation as both a potential mediator of MS pathology and a therapeutic target. PMID:26943961

  1. MicroRNAs and deregulated gene expression networks in neurodegeneration.

    PubMed

    Sonntag, Kai-Christian

    2010-06-18

    Neurodegeneration is characterized by the progressive loss of neuronal cell types in the nervous system. Although the main cause of cell dysfunction and death in many neurodegenerative diseases is not known, there is increasing evidence that their demise is a result of a combination of genetic and environmental factors which affect key signaling pathways in cell function. This view is supported by recent observations that disease-compromised cells in late-stage neurodegeneration exhibit profound dysregulation of gene expression. MicroRNAs (miRNAs) introduce a novel concept of regulatory control over gene expression and there is increasing evidence that they play a profound role in neuronal cell identity as well as multiple aspects of disease pathogenesis. Here, we review the molecular properties of brain cells derived from patients with neurodegenerative diseases, and discuss how deregulated miRNA/mRNA expression networks could be a mechanism in neurodegeneration. In addition, we emphasize that the dysfunction of these regulatory networks might overlap between different cell systems and suggest that miRNA functions might be common between neurodegeneration and other disease entities.

  2. The expression profile of microRNAs in mouse embryos.

    PubMed

    Mineno, Junichi; Okamoto, Sachiko; Ando, Tatsuya; Sato, Masahiro; Chono, Hideto; Izu, Hiroyuki; Takayama, Masanori; Asada, Kiyozo; Mirochnitchenko, Oleg; Inouye, Masayori; Kato, Ikunoshin

    2006-01-01

    MicroRNAs (miRNAs), which are non-coding RNAs 18-25 nt in length, regulate a variety of biological processes, including vertebrate development. To identify new species of miRNA and to simultaneously obtain a comprehensive quantitative profile of small RNA expression in mouse embryos, we used the massively parallel signature sequencing technology that potentially identifies virtually all of the small RNAs in a sample. This approach allowed us to detect a total of 390 miRNAs, including 195 known miRNAs covering approximately 80% of previously registered mouse miRNAs as well as 195 new miRNAs, which are so far unknown in mouse. Some of these miRNAs showed temporal expression profiles during prenatal development (E9.5, E10.5 and E11.5). Several miRNAs were positioned in polycistron clusters, including one particular large transcription unit consisting of 16 known and 23 new miRNAs. Our results indicate existence of a significant number of new miRNAs expressed at specific stages of mammalian embryonic development and which were not detected by earlier methods.

  3. The expression profile of microRNAs in mouse embryos

    PubMed Central

    Mineno, Junichi; Okamoto, Sachiko; Ando, Tatsuya; Sato, Masahiro; Chono, Hideto; Izu, Hiroyuki; Takayama, Masanori; Asada, Kiyozo; Mirochnitchenko, Oleg; Inouye, Masayori; Kato, Ikunoshin

    2006-01-01

    MicroRNAs (miRNAs), which are non-coding RNAs 18–25 nt in length, regulate a variety of biological processes, including vertebrate development. To identify new species of miRNA and to simultaneously obtain a comprehensive quantitative profile of small RNA expression in mouse embryos, we used the massively parallel signature sequencing technology that potentially identifies virtually all of the small RNAs in a sample. This approach allowed us to detect a total of 390 miRNAs, including 195 known miRNAs covering ∼80% of previously registered mouse miRNAs as well as 195 new miRNAs, which are so far unknown in mouse. Some of these miRNAs showed temporal expression profiles during prenatal development (E9.5, E10.5 and E11.5). Several miRNAs were positioned in polycistron clusters, including one particular large transcription unit consisting of 16 known and 23 new miRNAs. Our results indicate existence of a significant number of new miRNAs expressed at specific stages of mammalian embryonic development and which were not detected by earlier methods. PMID:16582102

  4. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  5. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice.

    PubMed

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-11-12

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin(-) cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin(-)c-Kit⁺ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.

  6. MicroRNA expression profiling in human Barrett's carcinogenesis

    PubMed Central

    Fassan, Matteo; Volinia, Stefano; Palatini, Jeff; Pizzi, Marco; Baffa, Raffaele; De Bernard, Marina; Battaglia, Giorgio; Parente, Paola; Croce, Carlo M.; Zaninotto, Giovanni; Ancona, Ermanno; Rugge, Massimo

    2015-01-01

    Barrett's esophagus (BE) is characterized by the native stratified squamous epithelium (N) lining the esophagus being replaced by a columnar epithelium with intestinal differentiation (Barrett's mucosa; BM). BM is considered as the main risk factor for esophageal adenocarcinoma (Barrett's adenocarcinoma; BAc). MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting messenger RNAs and they are reportedly dysregulated in BM. To test the hypothesis that a specific miRNA expression signature characterizes BM development and progression, we performed miRNA microarray analysis comparing native esophageal mucosa with all the phenotypic lesions seen in the Barrett's carcinogenic process. Specimens were collected from 14 BE patients who had undergone esophagectomy, including: 14 with N, 14 with BM, 7 with low-grade intraepithelial neoplasia, 5 with high-grade intra-epithelial neoplasia and 11 with BAc. Microarray findings were further validated by quantitive real-time polymerase chain reaction and in situ hybridization analyses using a different series of consecutive cases (162 biopsy samples and 5 esophagectomies) of histologically proven, long-segment BE. We identified a miRNA signature of Barrett's carcinogenesis consisting of an increased expression of 6 miRNAs and a reduced expression of 7 miRNAs. To further support these results, we investigated target gene expression using the Oncomine database and/or immunohistochemical analysis. We found that target gene expression correlated significantly with miRNA dysregulation. Specific miRNAs are directly involved in BE progression to cancer. miRNA profiling significantly expands current knowledge on the molecular history of Barrett's carcinogenesis, also identifying molecular markers of cancer progression. PMID:21128279

  7. Myogenic factors that regulate expression of muscle-specific microRNAs.

    PubMed

    Rao, Prakash K; Kumar, Roshan M; Farkhondeh, Mina; Baskerville, Scott; Lodish, Harvey F

    2006-06-01

    Since their discovery as key regulators of early animal development, microRNAs now are recognized as widespread regulators of gene expression. Despite their abundance, little is known regarding the regulation of microRNA biogenesis. We show that three highly conserved muscle-specific microRNAs, miR-1, miR-133 and miR-206, are robustly induced during the myoblast-myotube transition, both in primary human myoblasts and in the mouse mesenchymal C2C12 stem cell line. These microRNAs were not induced during osteogenic conversion of C2C12 cells. Moreover, both loci encoding miR-1, miR-1-1, and miR-1-2, and two of the three encoding miR-133, miR-133a-1 and miR-133a-2, are strongly induced during myogenesis. Some of the induced microRNAs are in intergenic regions, whereas two are transcribed in the opposite direction to the nonmuscle-specific gene in which they are embedded. By using CHIP analysis, we demonstrate that the myogenic factors Myogenin and MyoD bind to regions upstream of these microRNAs and, therefore, are likely to regulate their expression. Because miR-1 and miR-206 are predicted to repress similar mRNA targets, our work suggests that induction of these microRNAs is important in regulating the expression of muscle-specific proteins.

  8. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns.

    PubMed

    Hadj-Moussa, Hanane; Moggridge, Jason A; Luu, Bryan E; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  9. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns.

    PubMed

    Hadj-Moussa, Hanane; Moggridge, Jason A; Luu, Bryan E; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B

    2016-04-19

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy.

  10. Sex-biased expression of microRNAs in Schistosoma mansoni.

    PubMed

    Marco, Antonio; Kozomara, Ana; Hui, Jerome H L; Emery, Aidan M; Rollinson, David; Griffiths-Jones, Sam; Ronshaugen, Matthew

    2013-01-01

    Schistosomiasis is an important neglected tropical disease caused by digenean helminth parasites of the genus Schistosoma. Schistosomes are unusual in that they are dioecious and the adult worms live in the blood system. MicroRNAs play crucial roles during gene regulation and are likely to be important in sex differentiation in dioecious species. Here we characterize 112 microRNAs from adult Schistosoma mansoni individuals, including 84 novel microRNA families, and investigate the expression pattern in different sexes. By deep sequencing, we measured the relative expression levels of conserved and newly identified microRNAs between male and female samples. We observed that 13 microRNAs exhibited sex-biased expression, 10 of which are more abundant in females than in males. Sex chromosomes showed a paucity of female-biased genes, as predicted by theoretical evolutionary models. We propose that the recent emergence of separate sexes in Schistosoma had an effect on the chromosomal distribution and evolution of microRNAs, and that microRNAs are likely to participate in the sex differentiation/maintenance process.

  11. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns

    PubMed Central

    Hadj-Moussa, Hanane; Moggridge, Jason A.; Luu, Bryan E.; Quintero-Galvis, Julian F.; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Storey, Kenneth B.

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  12. Intratumoral heterogeneity of microRNA expression in breast cancer.

    PubMed

    Raychaudhuri, Mithu; Schuster, Tibor; Buchner, Theresa; Malinowsky, Katharina; Bronger, Holger; Schwarz-Boeger, Ulrike; Höfler, Heinz; Avril, Stefanie

    2012-07-01

    Profiling studies have identified specific microRNA (miRNA) signatures in malignant tumors including breast cancer. Our aim was to assess intratumoral heterogeneity in miRNA expression levels within primary breast cancers and between axillary lymph node metastases from the same patient. Specimens of 16 primary breast cancers were sampled in 8-10 distinct locations including the peripheral, intermediate, and central tumor zones, as well as two to five axillary lymph node metastases (n = 9). Total RNA was extracted from 132 paraffin-embedded samples, and the expression of miR-10b, miR-210, miR-31, and miR-335 was assessed as well as the reproducibility of RNA extraction and miRNA analysis by quantitative RT-PCR. Considerable intratumoral heterogeneity existed for all four miRNAs within primary breast cancers (CV 40%). No significant differences within (CV 34%) or between different tumor zones (CV 33%) were found. A similar variation in miRNA expression was observed between corresponding lymph node metastases (mean CV 40%). In comparison, the variation among different patients showed a CV of 80% for primary tumors and 103% for lymph node metastases. Both miRNA extraction procedures and quantitative RT-PCR showed high reproducibility (CV ≤ 2%). Thus, the intratumoral heterogeneity of miRNA expression in breast cancers can lead to significant sampling bias. Assessment of breast cancer miRNA profiles may require sampling at several different tumor locations and of several tumor-involved lymph nodes when deriving miRNA expression profiles of metastases.

  13. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy

    PubMed Central

    Zhang, Hongliang; Liu, Shenghua; Dong, Tianwei; Yang, Jun; Xie, Yuanyuan; Wu, Yike; Kang, Kang; Hu, Shengshou; Gou, Deming; Wei, Yingjie

    2016-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC. PMID:27307080

  14. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization.

    PubMed

    Gilchrist, Graham C; Tscherner, Allison; Nalpathamkalam, Thomas; Merico, Daniele; LaMarre, Jonathan

    2016-01-01

    Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo. PMID:26999121

  15. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization

    PubMed Central

    Gilchrist, Graham C.; Tscherner, Allison; Nalpathamkalam, Thomas; Merico, Daniele; LaMarre, Jonathan

    2016-01-01

    Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo. PMID:26999121

  16. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGES

    Paugh, Steven W.; Coss, David R.; Bao, Ju; Laudermilk, Lucas T.; Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael Rex; et al

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10-16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  17. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay

    PubMed Central

    Benes, Vladimir; Collier, Paul; Kordes, Claus; Stolte, Jens; Rausch, Tobias; Muckentaler, Martina U.; Häussinger, Dieter; Castoldi, Mirco

    2015-01-01

    microRNAs are an abundant class of small non-coding RNAs that control gene expression post-transcriptionally. Importantly, microRNA activity participates in the regulation of cellular processes and is a potentially valuable source of biomarkers in the diagnosis and prognosis of human diseases. Here we introduce miQPCR, an innovative method to quantify microRNAs expression by using Real-Time PCR. miQPCR exploits T4 RNA ligase activities to extend uniformly microRNAs’ 3′-ends by addition of a linker-adapter. The adapter is then used as ‘anchor’ to prime cDNA synthesis and throughout qPCR to amplify specifically target amplicons. miQPCR is an open, adaptable and cost-effective procedure, which offers the following advantages; i) universal elongation and reverse transcription of all microRNAs; ii) Tm-adjustment of microRNA-specific primers; iii) high sensitivity and specificity in discriminating among closely related sequences and; iv) suitable for the analysis of cellular and cell-free circulating microRNAs. Analysis of cellular and cell-free circulating microRNAs secreted by rat primary hepatocytes stimulated with cytokines and growth factors identifies for the first time a widespread modulation of both microRNAs expression and secretion. Altogether, our findings suggest that the pleiotropic activity of humoral factors on microRNAs may extensively affect liver function in response to injury and regeneration. PMID:26108880

  18. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  19. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    PubMed

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-01

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  20. Assessment of microRNA differential expression and detection in multiplexed small RNA sequencing data.

    PubMed

    Campbell, Joshua D; Liu, Gang; Luo, Lingqi; Xiao, Ji; Gerrein, Joseph; Juan-Guardela, Brenda; Tedrow, John; Alekseyev, Yuriy O; Yang, Ivana V; Correll, Mick; Geraci, Mark; Quackenbush, John; Sciurba, Frank; Schwartz, David A; Kaminski, Naftali; Johnson, W Evan; Monti, Stefano; Spira, Avrum; Beane, Jennifer; Lenburg, Marc E

    2015-02-01

    Small RNA sequencing can be used to gain an unprecedented amount of detail into the microRNA transcriptome. The relatively high cost and low throughput of sequencing bases technologies can potentially be offset by the use of multiplexing. However, multiplexing involves a trade-off between increased number of sequenced samples and reduced number of reads per sample (i.e., lower depth of coverage). To assess the effect of different sequencing depths owing to multiplexing on microRNA differential expression and detection, we sequenced the small RNA of lung tissue samples collected in a clinical setting by multiplexing one, three, six, nine, or 12 samples per lane using the Illumina HiSeq 2000. As expected, the numbers of reads obtained per sample decreased as the number of samples in a multiplex increased. Furthermore, after normalization, replicate samples included in distinct multiplexes were highly correlated (R > 0.97). When detecting differential microRNA expression between groups of samples, microRNAs with average expression >1 reads per million (RPM) had reproducible fold change estimates (signal to noise) independent of the degree of multiplexing. The number of microRNAs detected was strongly correlated with the log2 number of reads aligning to microRNA loci (R = 0.96). However, most additional microRNAs detected in samples with greater sequencing depth were in the range of expression which had lower fold change reproducibility. These findings elucidate the trade-off between increasing the number of samples in a multiplex with decreasing sequencing depth and will aid in the design of large-scale clinical studies exploring microRNA expression and its role in disease.

  1. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  2. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of highly conserved, small non-coding RNAs (~22 nucleotides) that regulate gene expression post-transcriptionally. MicroRNAs are encoded by specific genes in the genome, which are transcribed as primary transcripts called primary miRNA. MicroRNAs (miRNAs) bind to compl...

  3. The role of MicroRNAs expression in laryngeal cancer

    PubMed Central

    2015-01-01

    MicroRNAs (miRs, miRs) is a class of small non-coding RNAs, which posttranscriptionally regulate gene expression. Deregulated miRs are frequently obseved in patients with laryngeal cancer. In addition, numerous studies have showed miRs play significant roles in the pathogenesis of laryngeal cancer through regulating tumor cell proliferation, metastasis, invasion and apoptosis. miR can play either an oncogenic or tumor suppressive role in laryngeal cancer. In our review, we summarize the recent researches on laryngeal cancer-associated miRs, focusing on their role in the pathogenesis of laryngeal cancer. As changes in the levels of specific miRs in tissues or serum associate with diagnosis and prognosis of patients, we will also discuss the potential use of miRs in laryngeal cancer diagnosis and prognosis. Furthermore, supplementation of oncomiRs or inhibition of tumor suppressive miRs in vivo may be future therapeutic strategy for laryngeal cancer. PMID:26079642

  4. MicroRNA-142 Reduces Monoamine Oxidase A Expression and Activity in Neuronal Cells by Downregulating SIRT1

    PubMed Central

    Datta Chaudhuri, Amrita; Yelamanchili, Sowmya V.; Fox, Howard S.

    2013-01-01

    Aberrant expression of microRNAs (miRs) has been implicated in the pathogenesis of several neurodegenerative disorders. In HIV-associated neurocognitive disorders (HAND), miR-142 was found to be upregulated in neurons and myeloid cells in the brain. We investigated the downstream effects of chronic miR-142 upregulation in neuronal cells by comparing gene expression in stable clones of the human neuroblastoma cell line BE(2)M17 expressing miR-142 to controls. Microarray analysis revealed that miR-142 expression led to a reduction in monoamine oxidase (MAO) A mRNA, which was validated by qRT-PCR. In addition to the mRNA, the MAOA protein level and enzyme activity were also reduced. Examination of primary human neurons revealed that miR-142 expression indeed resulted in a downregulation of MAOA protein level. Although MAOA is not a direct target of miR-142, SIRT1, a key transcriptional upregulator of MAOA is, thus miR-142 downregulation of MAOA expression is indirect. MiR-142 induced decrease in MAOA expression and activity may contribute to the changes in dopaminergic neurotransmission reported in HAND. PMID:24244526

  5. Aberrant ADAM10 expression correlates with osteosarcoma progression

    PubMed Central

    2014-01-01

    Background Osteosarcoma is the most common type of bone cancer and is notorious for its rapid progression. The Notch signaling pathway has recently been shown to be involved in osteosarcoma. As a major sheddase of Notch receptors, ADAM10 has been implicated in many types of cancers, but its role in osteosarcoma has not been investigated. Previous studies have shown that the expression of CD31 was significantly elevated in metastatic osteosarcoma; however, its expression in nonmetastatic groups is not known. In addition, the mysterious multinucleated giant cell in giant cell-rich osteosarcoma was previously regarded as an osteoclast-like cell, but its exact identity is unclear. Method Tissue chip samples from 40 cases of nonmetastatic osteosarcoma were stained for cytoplasmic ADAM10, activated Notch1 and CD31. Osteoclasts in tumor sections were also stained for tartrate-resistant acid phosphatase (TRAP). Results Immunofluorescence staining revealed that ADAM10 expression significantly increased with the progression of osteosarcoma as well as in osteoblastic osteosarcoma, whereas the expression of the Notch intracellular domain (NICD) and CD31 was not significantly altered between different pathological stages. In addition, multinucleated giant cells in giant cell-rich osteosarcoma were also found to coexpress CD31, ADAM10 and NICD, but were negative for TRAP staining. Conclusions Our results highlight the importance of ADAM10 in the progression of osteosarcoma and suggest that the protein might be a potential therapeutic target in osteosarcoma treatment. This study also demonstrates that the multinucleated giant cell is an angiogenic tumor cell, rather than an osteoclast, and involves ADAM10/Notch1 signaling activation. PMID:24548763

  6. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression.

    PubMed

    Diederichs, Sven; Haber, Daniel A

    2007-12-14

    MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here, we show that all Argonautes elevate mature miRNA expression posttranscriptionally, independent of RNase activity. Also, we identify a role for the RISC slicer Argonaute2 (Ago2) in cleaving the pre-miRNA to an additional processing intermediate, termed Ago2-cleaved precursor miRNA or ac-pre-miRNA. This endogenous, on-pathway intermediate results from cleavage of the pre-miRNA hairpin 12 nucleotides from its 3'-end. By analogy to siRNA processing, Ago2 cleavage may facilitate removal of the nicked passenger strand from RISC after maturation. The multiple roles of Argonautes in the RNAi effector phase and miRNA biogenesis and maturation suggest coordinate regulation of microRNA expression and function.

  7. Aberrant expression of RAB1A in human tongue cancer

    PubMed Central

    Shimada, K; Uzawa, K; Kato, M; Endo, Y; Shiiba, M; Bukawa, H; Yokoe, H; Seki, N; Tanzawa, H

    2005-01-01

    This study was designed to identify specific gene expression changes in tongue squamous cell carcinomas (TSCCs) compared with normal tissues using in-house cDNA microarray that comprised of 2304 full-length cDNAs from a cDNA library prepared from normal oral tissues, primary oral cancers, and oral cancer cell lines. The genes identified by our microarray system were further analysed at the mRNA or protein expression level in a series of clinical samples by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT–PCR) analysis and imuunohositochemistry. The microarray analysis identified a total of 16 genes that were significantly upregulated in common among four TSCC specimens. Consistent with the results of the microarray, increased mRNA levels of selected genes with known molecular functions were found in the four TSCCs. Among genes identified, Rab1a, a member of the Ras oncogene family, was further analysed for its protein expression in 54 TSCCs and 13 premalignant lesions. We found a high prevalence of Rab1A-overexpression not only in TSCCs (98%) but also in premalignant lesions (93%). Thus, our results suggest that rapid characterisation of the target gene(s) for TSCCs can be accomplished using our in-house cDNA microarray analysis combined with the qRT–PCR and immunohistochemistry, and that the Rab1A is a potential biomarker of tongue carcinogenesis. PMID:15870709

  8. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells

    PubMed Central

    Cheng, Xinxin; Shao, Mingming; Wu, Chen; Wang, Suhan; Li, Hongmin; Wei, Lixuan; Gao, Yanning; Tan, Wen; Cheng, Shujun; Wu, Tangchun; Yu, Dianke; Lin, Dongxin

    2015-01-01

    Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure. PMID:26338969

  9. The Genomic Analysis of Erythrocyte microRNA Expression in Sickle Cell Diseases

    PubMed Central

    Chen, Shao-Yin; Wang, Yulei; Telen, Marilyn J.; Chi, Jen-Tsan

    2008-01-01

    Background Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). Methods and Findings Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. Conclusions In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases. PMID:18523662

  10. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles.

    PubMed

    Shiiyama, Rie; Fukushima, Satoshi; Jinnin, Masatoshi; Yamashita, Junji; Miyashita, Azusa; Nakahara, Satoshi; Kogi, Ai; Aoi, Jun; Masuguchi, Shinichi; Inoue, Yuji; Ihn, Hironobu

    2013-10-01

    Numerous studies have indicated that the serum levels of microRNAs are useful for the diagnosis or evaluation of activity in human diseases. However, determining the level of only one of the nearly 2000 microRNAs identified so far may be less significant. Accordingly, we examined the possibility that the expression pattern of multiple microRNAs in each patient may be a more reliable disease marker for melanoma, especially metastatic disease, focusing on the interaction among microRNAs. Six microRNAs (miR-9, miR-145, miR-150, miR-155, miR-203, and miR-205) were evaluated using real-time PCR in 11 patients with metastatic melanoma and in 16 patients without melanoma. The expression of the six microRNAs was significantly different between the patients with metastasis and those without it. MiR-9 and miR-205 and miR-203 and miR-205 showed significant correlations, and the combination of miR-9, miR-145, miR-150, miR-155, and miR-205 was more sensitive than when each miR was used individually to distinguish the patients with metastasis from those without it. This is the first report demonstrating the expression profiles of multiple microRNAs in melanoma patients. Clarifying the involvement of the microRNA network in the pathogenesis of melanoma may contribute to the development of new diagnostic tools and to advancing the understanding of this disease.

  11. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  12. Implication of IRF4 aberrant gene expression in the acute leukemias of childhood.

    PubMed

    Adamaki, Maria; Lambrou, George I; Athanasiadou, Anastasia; Tzanoudaki, Marianna; Vlahopoulos, Spiros; Moschovi, Maria

    2013-01-01

    The most frequent targets of genetic alterations in human leukemias are transcription factor genes with essential functions in normal blood cell development. The Interferon Regulatory Factor 4 (IRF4) gene encodes a transcription factor important for key developmental stages of hematopoiesis, with known oncogenic implications in multiple myeloma, adult leukemias and lymphomas. Very few studies have reported an association of IRF4 with childhood malignancy, whereas high transcript levels have been observed in the more mature immunophenotype of ALL. Our aim was to investigate the expression levels of IRF4 in the diagnostic samples of pediatric leukemias and compare them to those of healthy controls, in order to determine aberrant gene expression and whether it extends to leukemic subtypes other than the relatively mature ALL subpopulation. Quantitative real-time RT-PCR methodology was used to investigate IRF4 expression in 58 children with acute leukemias, 4 leukemic cell lines and 20 healthy children. We show that aberrant IRF4 gene expression is implicated in a variety of leukemic subtypes; higher transcript levels appear in the more immature B-common ALL subtype and in T-cell than in B-cell leukemias, with the highest expression levels appearing in the AML group. Interestingly, we show that childhood leukemia, irrespective of subtype or cell maturation stage, is characterised by a minimum of approximately twice the amount of IRF4 gene expression encountered in healthy children. A statistically significant correlation also appeared to exist between high IRF4 expression and relapse. Our results show that ectopic expression of IRF4 follows the reverse expression pattern of what is encountered in normal B-cell development and that there might be a dose-dependency of childhood leukemia for aberrantly expressed IRF4, a characteristic that could be explored therapeutically. It is also suggested that high IRF4 expression might be used as an additional prognostic marker of

  13. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    PubMed

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  14. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome

    PubMed Central

    de la Morena, M. Teresa; Eitson, Jennifer L.; Dozmorov, Igor M.; Belkaya, Serkan; Hoover, Ashley R.; Anguiano, Esperanza; Pascual, M. Virginia; van Oers, Nicolai S.C.

    2013-01-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3 Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance. PMID:23454892

  15. MicroRNA Expression Signature in Degenerative Aortic Stenosis

    PubMed Central

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  16. MicroRNA Expression Signature in Degenerative Aortic Stenosis.

    PubMed

    Shi, Jing; Liu, Hui; Wang, Hui; Kong, Xiangqing

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  17. Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development.

    PubMed

    Choi, Yoori; Hwang, Do Won; Kim, Mee Young; Kim, Joo Yeon; Sun, Woong; Lee, Dong Soo

    2016-01-01

    MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive element in their luciferase-eGFP reporter transgenes which enabled monitoring the action of miR-124 in the brain and other organs in vivo by the bioluminescence imaging. The mouse model was produced and verified by imaging ex vivo so that luminescence by luciferase shone and then reduced during development with miR-124 expression. Bioluminescence dramatically decreased in the brain between embryonic day 13 and 16 as endogenous miR-124 expression increased, which sustained into adulthood. The inverse relationship of miR-124 expression was observed with luciferase bioluminescence and activity ex vivo as well as in vivo. Taken together, one can use this microRNA-transgenic mouse to investigate the temporal changes of microRNA action in vivo in the brain as well as in other organs. PMID:27462205

  18. Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development

    PubMed Central

    Choi, Yoori; Hwang, Do won; Kim, Mee Young; Kim, Joo Yeon; Sun, Woong; Lee, Dong Soo

    2016-01-01

    MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive element in their luciferase-eGFP reporter transgenes which enabled monitoring the action of miR-124 in the brain and other organs in vivo by the bioluminescence imaging. The mouse model was produced and verified by imaging ex vivo so that luminescence by luciferase shone and then reduced during development with miR-124 expression. Bioluminescence dramatically decreased in the brain between embryonic day 13 and 16 as endogenous miR-124 expression increased, which sustained into adulthood. The inverse relationship of miR-124 expression was observed with luciferase bioluminescence and activity ex vivo as well as in vivo. Taken together, one can use this microRNA-transgenic mouse to investigate the temporal changes of microRNA action in vivo in the brain as well as in other organs. PMID:27462205

  19. [Effect of xenobiotics on microRNA expression in rat liver].

    PubMed

    Gulyaeva, L F; Chanyshev, M D; Kolmykov, S K; Ushakov, D S; Nechkin, S S

    2016-01-01

    Using bioinformatics analysis we selected microRNAs which could bind 3'-UTR-region of cytochrome P450 (CYP) genes. Three microRNA miR-21, -221, -222, their potential targets might be mRNA for CYP1A1, and two microRNA miR-143, miR-152 for CYP2B1 accordingly were selected for experimental verification. Expression level of these microRNAs in rat liver upon benzo(a)pyrene (BP), phenobarbital (PB), and DDT induction was determined using RT-qPCR method. In rats treated by both BP, and DDT the hepatic content of miR-21, -221, -222 significantly demonstrated a 2-3-fold decrease. The decrease in miR expression was accompanied by a considerable (5.5-8.7-fold) increase in the CYP1A1-mediated EROD activity. The expression of miR-143 remained unchanged after the PB treatment, while the expression of miR-152 increased by 2 times, however, the (10.5-fold) increase in PROD activity of CYP2B was much higher. In the DDT-treated liver PROD activity increased by 20 times, the expression of miR-152 didn't change, and the expression of miR-143 increased by 2 times. The bioinformatics analysis of interactions between microRNAs and targets showed that the studied miRs can potentially bind 3'-end of AhR, ESR1, GR, CCND1, PTEN mRNA. Thus, the expression profile of miR-21, -221, -222, -143, -152 might change under the xenobiotics exposure. In silico analysis confirmed, that microRNAs target not only cytochrome P450 mRNA but also other genes, including those involved in hormonal carcinogenesis, they also can be regulated with studied miRs. PMID:27143372

  20. Distinctive patterns of microRNA expression in primary muscular disorders.

    PubMed

    Eisenberg, Iris; Eran, Alal; Nishino, Ichizo; Moggio, Maurizio; Lamperti, Costanza; Amato, Anthony A; Lidov, Hart G; Kang, Peter B; North, Kathryn N; Mitrani-Rosenbaum, Stella; Flanigan, Kevin M; Neely, Lori A; Whitney, Duncan; Beggs, Alan H; Kohane, Isaac S; Kunkel, Louis M

    2007-10-23

    The primary muscle disorders are a diverse group of diseases caused by various defective structural proteins, abnormal signaling molecules, enzymes and proteins involved in posttranslational modifications, and other mechanisms. Although there is increasing clarification of the primary aberrant cellular processes responsible for these conditions, the decisive factors involved in the secondary pathogenic cascades are still mainly obscure. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs regulated during the degenerative process of muscle to gain insight into the specific regulation of genes that are disrupted in pathological muscle conditions. We describe 185 miRNAs that are up- or down-regulated in 10 major muscular disorders in humans [Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, limb-girdle muscular dystrophies types 2A and 2B, Miyoshi myopathy, nemaline myopathy, polymyositis, dermatomyositis, and inclusion body myositis]. Although five miRNAs were found to be consistently regulated in almost all samples analyzed, pointing to possible involvement of a common regulatory mechanism, others were dysregulated only in one disease and not at all in the other disorders. Functional correlation between the predicted targets of these miRNAs and mRNA expression demonstrated tight posttranscriptional regulation at the mRNA level in DMD and Miyoshi myopathy. Together with direct mRNA-miRNA predicted interactions demonstrated in DMD, some of which are involved in known secondary response functions and others that are involved in muscle regeneration, these findings suggest an important role of miRNAs in specific physiological pathways underlying the disease pathology.

  1. Distinctive patterns of microRNA expression in primary muscular disorders

    PubMed Central

    Eisenberg, Iris; Eran, Alal; Nishino, Ichizo; Moggio, Maurizio; Lamperti, Costanza; Amato, Anthony A.; Lidov, Hart G.; Kang, Peter B.; North, Kathryn N.; Mitrani-Rosenbaum, Stella; Flanigan, Kevin M.; Neely, Lori A.; Whitney, Duncan; Beggs, Alan H.; Kohane, Isaac S.; Kunkel, Louis M.

    2007-01-01

    The primary muscle disorders are a diverse group of diseases caused by various defective structural proteins, abnormal signaling molecules, enzymes and proteins involved in posttranslational modifications, and other mechanisms. Although there is increasing clarification of the primary aberrant cellular processes responsible for these conditions, the decisive factors involved in the secondary pathogenic cascades are still mainly obscure. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs regulated during the degenerative process of muscle to gain insight into the specific regulation of genes that are disrupted in pathological muscle conditions. We describe 185 miRNAs that are up- or down-regulated in 10 major muscular disorders in humans [Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, limb-girdle muscular dystrophies types 2A and 2B, Miyoshi myopathy, nemaline myopathy, polymyositis, dermatomyositis, and inclusion body myositis]. Although five miRNAs were found to be consistently regulated in almost all samples analyzed, pointing to possible involvement of a common regulatory mechanism, others were dysregulated only in one disease and not at all in the other disorders. Functional correlation between the predicted targets of these miRNAs and mRNA expression demonstrated tight posttranscriptional regulation at the mRNA level in DMD and Miyoshi myopathy. Together with direct mRNA–miRNA predicted interactions demonstrated in DMD, some of which are involved in known secondary response functions and others that are involved in muscle regeneration, these findings suggest an important role of miRNAs in specific physiological pathways underlying the disease pathology. PMID:17942673

  2. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice.

    PubMed

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle.

  3. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice

    PubMed Central

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle. PMID:25999854

  4. In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency.

    PubMed

    Meshesha, Mesfin K; Bentwich, Zvi; Solomon, Semaria A; Avni, Yonat Shemer

    2016-01-01

    Viral encoded microRNAs play key roles in regulating gene expression and the life cycle of human herpes viruses. Latency is one of the hallmarks of the human cytomegalovirus (HCMV or HHV5) life cycle, and its control may have immense practical applications. The present study aims to identify HCMV encoded microRNAs during the latency phase of the virus. We used a highly sensitive real time PCR (RTPCR) assay that involves a pre-amplification step before RTPCR. It can detect HCMV encoded microRNAs (miRNAs) during latency in purified monocytes and PBMCs from HCMV IgG positive donors and in latently infected monocytic THP-1 cell lines. During the latency phase, only eight HCMV encoded microRNAs were detected in PBMCs, monocytes and in the THP-1 cells. Five originated from the UL region of the virus genome and three from the US region. Reactivation of the virus from latency, in monocytes obtained from the same donor, using dexamethasone restored the expression of all known HCMV encoded miRNAs including those that were absent during latency. We observed a shift in the abundance of the two arms of mir-US29 between the productive and latency stages of the viral life cycle, suggesting that the star "passenger" form of this microRNA is preferentially expressed during latency. As a whole, our study demonstrates that HCMV expresses during the latency phase, both in vivo and in vitro, only a subset of its microRNAs, which may indicate that they play an important role in maintenance and reactivation of latency. PMID:26302752

  5. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner.

  6. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area promising future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important role ...

  7. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure [Poster 2015

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area that promises future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important r...

  8. Translational control of FOG-2 expression in cardiomyocytes by microRNA-130a.

    PubMed

    Kim, Gene H; Samant, Sadhana A; Earley, Judy U; Svensson, Eric C

    2009-07-07

    MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3' untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3' untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3' untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development.

  9. Racial differences in microRNA and gene expression in hypertensive women

    PubMed Central

    Dluzen, Douglas F.; Noren Hooten, Nicole; Zhang, Yongqing; Kim, Yoonseo; Glover, Frank E.; Tajuddin, Salman M.; Jacob, Kimberly D.; Zonderman, Alan B.; Evans, Michele K.

    2016-01-01

    Systemic arterial hypertension is an important cause of cardiovascular disease morbidity and mortality. African Americans are disproportionately affected by hypertension, in fact the incidence, prevalence, and severity of hypertension is highest among African American (AA) women. Previous data suggests that differential gene expression influences individual susceptibility to selected diseases and we hypothesized that this phenomena may affect health disparities in hypertension. Transcriptional profiling of peripheral blood mononuclear cells from AA or white, normotensive or hypertensive females identified thousands of mRNAs differentially-expressed by race and/or hypertension. Predominant gene expression differences were observed in AA hypertensive females compared to AA normotensives or white hypertensives. Since microRNAs play important roles in regulating gene expression, we profiled global microRNA expression and observed differentially-expressed microRNAs by race and/or hypertension. We identified novel mRNA-microRNA pairs potentially involved in hypertension-related pathways and differently-expressed, including MCL1/miR-20a-5p, APOL3/miR-4763-5p, PLD1/miR-4717-3p, and PLD1/miR-4709-3p. We validated gene expression levels via RT-qPCR and microRNA target validation was performed in primary endothelial cells. Altogether, we identified significant gene expression differences between AA and white female hypertensives and pinpointed novel mRNA-microRNA pairs differentially-expressed by hypertension and race. These differences may contribute to the known disparities in hypertension and may be potential targets for intervention. PMID:27779208

  10. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients.

  11. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer.

    PubMed

    Gupta, Brij K; Maher, Diane M; Ebeling, Mara C; Sundram, Vasudha; Koch, Michael D; Lynch, Douglas W; Bohlmeyer, Teresa; Watanabe, Akira; Aburatani, Hiroyuki; Puumala, Susan E; Jaggi, Meena; Chauhan, Subhash C

    2012-11-01

    MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.

  12. Aberrant expression of COT is related to recurrence of papillary thyroid cancer.

    PubMed

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-02-01

    Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated.The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes.Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA).qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAF-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAF mutation (odds ratio, 4.662; 95% confidence interval 1.066 - 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC

  13. Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer

    PubMed Central

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Abstract Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated. The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes. Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA). qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAFV600E-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAFV600E mutation (odds ratio, 4.662; 95% confidence interval 1.066 − 21.609; P = 0.045). Moreover, moderate

  14. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves

    PubMed Central

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S. Y.; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  15. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves.

    PubMed

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S Y; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  16. AMPK Promotes Aberrant PGC1β Expression To Support Human Colon Tumor Cell Survival

    PubMed Central

    Fisher, Kurt W.; Das, Binita; Kim, Hyun Seok; Clymer, Beth K.; Gehring, Drew; Smith, Deandra R.; Costanzo-Garvey, Diane L.; Fernandez, Mario R.; Brattain, Michael G.; Kelly, David L.; MacMillan, John

    2015-01-01

    A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2β2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1β. In contrast, PGC1β and ERRα are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKγ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1β-dependent transcriptional pathway via a specific AMPK isoform. PMID:26351140

  17. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  18. Sonic Hedgehog Signaling Affected by Promoter Hypermethylation Induces Aberrant Gli2 Expression in Spina Bifida.

    PubMed

    Lu, Xiao-Lin; Wang, Li; Chang, Shao-Yan; Shangguan, Shao-Fang; Wang, Zhen; Wu, Li-Hua; Zou, Ji-Zhen; Xiao, Ping; Li, Rui; Bao, Yi-Hua; Qiu, Z-Y; Zhang, Ting

    2016-10-01

    GLI2 is a key mediator of the sonic hedgehog (Shh) signaling pathway and plays an important role in neural tube development during vertebrate embryogenesis; however, the role of gli2 in human folate-related neural tube defects remains unclear. In this study, we compared methylation status and polymorphisms of gli2 between spina bifida patients and a control group to explore the underlying mechanisms related to folate deficiency in spina bifida. No single nucleotide polymorphism was found to be significantly different between the two groups, although gli2 methylation levels were significantly increased in spina bifida samples, accompanied by aberrant GLI2 expression. Moreover, a prominent negative correlation was found between the folate level in brain tissue and the gli2 methylation status (r = -0.41, P = 0.014), and gli2 hypermethylation increased the risk of spina bifida with an odds ratio of 12.45 (95 % confidence interval: 2.71-57.22, P = 0.001). In addition, we established a cell model to illustrate the effect of gli2 expression and the accessibility of chromatin affected by methylation. High gli2 and gli1 mRNA expression was detected in 5-Aza-treated cells, while gli2 hypermethylation resulted in chromatin inaccessibility and a reduced association with nuclear proteins containing transcriptional factors. More meaningful to the pathway, the effect gene of the Shh pathway, gli1, was found to have a reduced level of expression along with a decreased expression of gli2 in our cell model. Aberrant high methylation resulted in the low expression of gli2 in spina bifida, which was affected by the change in chromatin status and the capacity of transcription factor binding. PMID:26446020

  19. Aberrant expression of interferon regulatory factor 3 in human lung cancer

    SciTech Connect

    Tokunaga, Takayuki; Naruke, Yuki; Shigematsu, Sayuri; Kohno, Tomoko; Yasui, Kiyoshi; Ma, Yuhua; Chua, Koon Jiew; Katayama, Ikuo; Nakamura, Takashi; Hishikawa, Yoshitaka; Koji, Takehiko; Yatabe, Yasushi; Nagayasu, Takeshi; Fujita, Takashi; Matsuyama, Toshifumi; and others

    2010-06-25

    We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S{sup 175}(AGC) {yields} R{sup 175}(CGC) and A{sup 208}(GCC) {yields} D{sup 208}(GAC)). The R{sup 175} variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D{sup 208} variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to I{kappa}B kinase {epsilon} stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D{sup 208} variant may provide clues to elucidate the etiology of primary lung cancer.

  20. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    PubMed Central

    2010-01-01

    Background There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology. Results H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity. Conclusions The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified. PMID:20929578

  1. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    PubMed

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps. PMID:26997450

  2. Next-Generation Sequencing of Small RNAs from HIV-Infected Cells Identifies Phased microRNA Expression Patterns and Candidate Novel microRNAs Differentially Expressed upon Infection

    PubMed Central

    Chang, Stewart T.; Thomas, Matthew J.; Sova, Pavel; Green, Richard R.; Palermo, Robert E.; Katze, Michael G.

    2013-01-01

    ABSTRACT HIV infection of CD4+ T cells induces a range of host transcriptional changes in mRNAs as well as microRNAs that may coordinate changes in mRNAs. To survey these dynamic changes, we applied next-generation sequencing, analyzing the small RNA fraction of HIV-infected cells at 5, 12, and 24 h postinfection (RNA-Seq). These time points afforded a view of the transcriptomic changes occurring both before and during viral replication. In the resulting small RNA-Seq data set, we detected a phased pattern of microRNA expression. Largely distinct sets of microRNAs were found to be suppressed at 5 and 12 h postinfection, and both sets of changes rebounded later in infection. A larger set of microRNA changes was observed at 24 h postinfection. When integrated with mRNA expression data, the small RNA-Seq data indicated a role for microRNAs in transcriptional regulation, T cell activation, and cell cycle during HIV infection. As a unique benefit of next-generation sequencing, we also detected candidate novel host microRNAs differentially expressed during infection, including one whose downregulation at 24 h postinfection may allow full replication of HIV to proceed. Collectively, our data provide a uniquely comprehensive view of the changes in host microRNAs induced by HIV during cellular infection. PMID:23386435

  3. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy.

    PubMed

    Li, Yaohua; Huang, Cheng; Feng, Peimin; Jiang, Yanping; Wang, Wei; Zhou, Dong; Chen, Lei

    2016-01-01

    Evidence suggest that overexpression of hypoxia-inducible factor-1α (HIF-1α) is linked to multidrug resistance of epilepsy. Here we explored whether aberrant expression of HIF-1α is regulated by miRNAs. Genome-wide microRNA expression profiling was performed on temporal cortex resected from mesial temporal lobe epilepsy (mTLE) patients and age-matched controls. miRNAs that are putative regulator of HIF-1α were predicted via target scan and confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Mimics or miRNA morpholino inhibitors were transfected in astrocytes and luciferase reporter assay was applied to detect HIF-11α expression. Microarray profiling identified down-regulated miR-153 as a putative regulator of HIF-1α in temporal cortex resected from surgical mTLE patients. RT-qPCR confirmed down-regulation of miR-153 in plasma of mTLE patients in an independent validation cohort. Knockdown of miR-153 significantly enhanced expression of HIF-1α while forced expression of miR-153 dramatically inhibited HIF-1α expression in pharmacoresistant astrocyte model. Luciferase assay established that miR-153 might inhibit HIF-1α expression via directly targeting two binding sites in the 3'UTR region of HIF-1α transcript. These data suggest that down-regulation of miR-153 may contribute to enhanced expression of HIF-1α in mTLE and serve as a novel biomarker and treatment target for epilepsy. PMID:27554040

  4. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy

    PubMed Central

    Li, Yaohua; Huang, Cheng; Feng, Peimin; Jiang, Yanping; Wang, Wei; Zhou, Dong; Chen, Lei

    2016-01-01

    Evidence suggest that overexpression of hypoxia-inducible factor-1α (HIF-1α) is linked to multidrug resistance of epilepsy. Here we explored whether aberrant expression of HIF-1α is regulated by miRNAs. Genome-wide microRNA expression profiling was performed on temporal cortex resected from mesial temporal lobe epilepsy (mTLE) patients and age-matched controls. miRNAs that are putative regulator of HIF-1α were predicted via target scan and confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Mimics or miRNA morpholino inhibitors were transfected in astrocytes and luciferase reporter assay was applied to detect HIF-11α expression. Microarray profiling identified down-regulated miR-153 as a putative regulator of HIF-1α in temporal cortex resected from surgical mTLE patients. RT-qPCR confirmed down-regulation of miR-153 in plasma of mTLE patients in an independent validation cohort. Knockdown of miR-153 significantly enhanced expression of HIF-1α while forced expression of miR-153 dramatically inhibited HIF-1α expression in pharmacoresistant astrocyte model. Luciferase assay established that miR-153 might inhibit HIF-1α expression via directly targeting two binding sites in the 3′UTR region of HIF-1α transcript. These data suggest that down-regulation of miR-153 may contribute to enhanced expression of HIF-1α in mTLE and serve as a novel biomarker and treatment target for epilepsy. PMID:27554040

  5. Increased APRIL Expression Induces IgA1 Aberrant Glycosylation in IgA Nephropathy.

    PubMed

    Zhai, Ya-Ling; Zhu, Li; Shi, Su-Fang; Liu, Li-Jun; Lv, Ji-Cheng; Zhang, Hong

    2016-03-01

    Aberrant glycosylated IgA1 molecules, mainly galactose-deficient IgA1 (Gd-IgA1), are important causal factors in IgA nephropathy; however, the underlying mechanism for the production of aberrantly glycosylated IgA1 is unknown. A recent genome-wide association study identified a novel IgAN susceptibility gene, TNFSF13, which encoded a proliferation-inducing ligand (APRIL) that promotes lymphocyte proliferation and IgA class switching. We aimed to explore the mechanism of APRIL's involvement in IgAN. We enrolled 166 patients with IgAN and 77 healthy controls and detected the plasma APRIL levels by the ELISA method, identified the mRNA expression of APRIL and its receptors by relative quantitative PCR, and confirmed by in vitro experiment. We identified increased plasma APRIL levels in IgAN, which was further proved by upregulated mRNA expression in B-lymphocytes from 27 IgAN patients. Analysis of the clinical characteristics of patients with IgAN showed that higher plasma APRIL level was associated with more severe clinical presentations (high proteinuria and low eGFR). The plasma APRIL level was positively correlated with Gd-IgA1 levels. Furthermore, exogenous APRIL could induce more production of Gd-IgA1 in cultured lymphocytes from patients with IgAN, compared with that from healthy controls. And, the relative higher expression of receptors of APRIL, that is, BCMA and TACI, in B-lymphocytes from IgAN patients were observed. Our findings implied that in patients with IgAN, increased APRIL is accompanied elevated expression of its receptors in B-lymphocytes, which induces overproduction of Gd-IgA1, ultimately contributing to the pathogenesis of IgAN.

  6. Aberrant and unstable expression of immunoglobulin genes in persons infected with human immunodeficiency virus.

    PubMed

    Bessudo, A; Rassenti, L; Havlir, D; Richman, D; Feigal, E; Kipps, T J

    1998-08-15

    We examined the IgM VH gene subgroup use-distribution in serial blood samples of 37 human immunodeficiency virus (HIV)-infected patients and a group of HIV-seronegative healthy adults. The IgM VH gene repertoires of healthy adults were relatively similar to one another and were stable over time. In contrast, individuals infected with HIV had IgM VH gene repertoires that were significantly more heterogeneous and unstable. Persons at early stages of HIV infection generally had abnormal expression levels of Ig VH3 genes and frequently displayed marked fluctuations in the relative expression levels of this VH gene subgroup over time. In contrast, persons with established acquired immunodeficiency syndrome (AIDS) had a significantly lower incidence of abnormalities in Ig VH3 expression levels, although continued to display abnormalities and instability in the expression levels of the smaller Ig VH gene subgroups. Moreover, the skewing and/or fluctuations in the expressed-IgM VH gene repertoire appeared greatest for persons at earlier stages of HIV infection. These studies show that persons infected with HIV have aberrant and unstable expression of immunoglobulin genes suggestive of a high degree humoral immune dysregulation and ongoing humoral immune responses to HIV-associated antigens and superantigens.

  7. Centenarians, but not octogenarians, up-regulate the expression of microRNAs.

    PubMed

    Serna, Eva; Gambini, Juan; Borras, Consuelo; Abdelaziz, Kheira M; Mohammed, Kheira; Belenguer, Angel; Sanchis, Paula; Avellana, Juan A; Rodriguez-Mañas, Leocadio; Viña, Jose

    2012-01-01

    Centenarians exhibit extreme longevity and a remarkable compression of morbidity. They have a unique capacity to maintain homeostatic mechanisms. Since small non-coding RNAs (including microRNAs) are implicated in the regulation of gene expression, we hypothesised that longevity of centenarians may reflect alterations in small non-coding RNA expression. We report the first comparison of microRNAs expression profiles in mononuclear cells from centenarians, octogenarians and young individuals resident near Valencia, Spain. Principal Component Analysis of the expression of 15,644 mature microRNAs and, 2,334 snoRNAs and scaRNAs in centenarians revealed a significant overlap with profiles in young individuals but not with octogenarians and a significant up-regulation of 7 small non-coding RNAs in centenarians compared to young persons and notably 102 small non-coding RNAs when compared with octogenarians. We suggest that the small non-coding RNAs signature in centenarians may provide insights into the underlying molecular mechanisms endowing centenarians with extreme longevity.

  8. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs.

    PubMed

    Vincenti, Sara; Brillante, Nadia; Lanza, Vincenzo; Bozzoni, Irene; Presutti, Carlo; Chiani, Francesco; Etna, Marilena Paola; Negri, Rodolfo

    2011-05-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either repression of translation or RNA degradation. They have been shown to be involved in a variety of biological processes such as development, differentiation and cell cycle control, but little is known about their involvement in the response to irradiation. We showed here that in human umbilical vein endothelial cells (HUVEC) some miRNAs previously shown to have a crucial role in vascular biology are transiently modulated in response to a clinically relevant dose of ionizing radiation. In particular we identified an early transcriptional induction of several members of the microRNA cluster 17-92 and other microRNAs already known to be related to angiogenesis. At the same time we observed a peculiar behavior of the miR-221/222 cluster, suggesting an important role of these microRNAs in HUVEC homeostasis. We observed an increased efficiency in the formation of capillary-like structures in irradiated HUVEC. These results could lead to a new interpretation of the effect of ionizing radiation on endothelial cells and on the response of tumor endothelial bed cells to radiotherapy.

  9. Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues.

    PubMed

    Zhang, Qing-He; Sun, Hong-Min; Zheng, Rui-Zhi; Li, Ying-Chun; Zhang, Qian; Cheng, Pan; Tang, Zhen-Hai; Huang, Fen

    2013-09-15

    MicroRNA-183 (miR-183) family is proposed as promising biomarkers for early cancer detection and accurate prognosis as well as targets for more efficient treatment. The results of their expression feature in cancer tissues are inconsistent and controversy still exists in identifying them as new biomarkers of cancers. Therefore, to systemically evaluate the most frequently reported cancers in which miR-183 family members were up- or down-regulated is critical for further investigation on physiological impact of its aberrant regulation in specific cancers. The published studies that compared the level of miR-183 family expression in cancer tissues with those in noncancerous tissues were reviewed by the meta-analysis with a vote-counting strategy. Among the 49 included studies, a total of 18 cancers were reported, with 11 cancers reported in at least two studies. In the panel of miR-183 family members' expression analysis, colorectal cancer and prostate cancer ranked at the top among consistently reported cancer types with up-regulated feature. Bladder cancer, lung cancer and hepatocellular carcinoma were the third most frequently reported cancer types with significant over-expression of miR-96, miR-182 and miR-183 respectively. Breast cancer and gastric cancer were presented with inconsistent regulations and the members of this family had their own distinct regulated features in other different cancers. MiR-183 family, either individually or as a cluster, may be useful prognostic markers and/or therapeutic targets in several cancers. Further studies and repeat efforts are still required to determine the role of miR-183 family in various cancer progressions.

  10. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses.

    PubMed

    Shen, Jianqiang; Xie, Kabin; Xiong, Lizhong

    2010-12-01

    MicroRNAs are a class of endogenous small RNA molecules (20-24 nucleotides) that have pivotal roles in regulating gene expression mostly at posttranscriptional levels in plants. Plant microRNAs have been implicated in the regulation of diverse biological processes including growth and stress responses. However, the information about microRNAs in regulating abiotic stress responses in rice is limited. We optimized a one-tube stem-loop reverse transcription quantitative PCR (ST-RT qPCR) for high-throughput expression profiling analysis of microRNAs in rice under normal and stress conditions. The optimized ST-RT qPCR method was as accurate as small RNA gel blotting and was more convenient and time-saving than other methods in quantifying microRNAs. With this method, 41 rice microRNAs were quantified for their relative expression levels after drought, salt, cold, and abscisic acid (ABA) treatments. Thirty-two microRNAs showed induced or suppressed expression after stress or ABA treatment. Further analysis suggested that stress-responsive cis-elements were enriched in the promoters of stress-responsive microRNA genes. The expressions of five and seven microRNAs were significantly affected in the rice plant with defects in stress tolerance regulatory genes OsSKIPa and OsbZIP23, respectively. Some of the predicted target genes of these microRNAs were also related to abiotic stresses. We conclude that ST-RT qPCR is an efficient and reliable method for expression profiling of microRNAs and a significant portion of rice microRNAs participate in abiotic stress response and regulation.

  11. Subtypes of asthma defined by epithelial cell expression of messenger RNA and microRNA.

    PubMed

    Woodruff, Prescott G

    2013-12-01

    Human asthma can be subcategorized in several ways, but one powerful approach is to subtype asthma on the basis of underlying cellular and molecular mechanisms. Groups of patients with a disease that share a common underlying biology are termed an "endotype." Endotypes of asthma have been studied at both the cellular level (by cytological examination of induced sputum) and, increasingly, at the molecular level. Genome-wide analyses of mRNA expression within the lung have been useful in the identification of molecular endotypes of asthma and point to protein biomarkers of those endotypes that can be measured in the blood. More recently, studies of microRNA expression in airway epithelial cells in asthma have identified additional candidate biomarkers of asthma endotypes. One potentially valuable property of microRNAs is that they can also be measured in extracellular fluids and therefore have the potential to serve directly as noninvasively measured biomarkers.

  12. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    PubMed Central

    Rennoll, Sherri; Yochum, Gregory

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers (CRCs). These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements (WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene (MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review, we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis, novel strategies can be developed to treat individuals suffering from this disease. PMID:26629312

  13. Clinical significance of aberrant mammalian target of rapamycin expression in stage IIIB colon cancer

    PubMed Central

    WEN, MEILING; LI, BAOXIU; CAO, XIAOFEI; WENG, CHENGYIN; WU, YONG; FANG, XISHENG; ZHANG, XIAOSHI; LIU, GUOLONG

    2014-01-01

    The aim of the present study was to investigate the significance of aberrant expression of mammalian target of rapamycin (mTOR) and the activated form of mTOR kinase, phosphorylated mTOR (pmTOR), in human stage IIIB colon cancer. The expression of mTOR and pmTOR was detected by immunohistochemistry in the tumor tissue of stage IIIB colon cancer patients. The association between the expression of mTOR, pmTOR and clinicopathological parameters of patients was analyzed. The positive expression of mTOR and pmTOR was observed to be higher in 75.5% (80/106) and 76.4% (81/106) of the 106 colon cancer specimens, compared with the adjacent normal tissues. The high level of pmTOR expression was found to be significantly higher in the invasive tumor front cells and resulted in a higher risk of mortality. The results suggested that mTOR and pmTOR may be promising clinical markers and present novel molecular targets for designing novel therapeutic strategies to treat this malignancy. PMID:25120661

  14. Aberrant expression of Xist in aborted porcine fetuses derived from somatic cell nuclear transfer embryos.

    PubMed

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  15. Segmentation of genomic and transcriptomic microarrays data reveals major correlation between DNA copy number aberrations and gene-loci expression.

    PubMed

    Ortiz-Estevez, M; De Las Rivas, J; Fontanillo, C; Rubio, A

    2011-02-01

    DNA copy number aberrations (CNAs) are genetic alterations common in cancer cells. Their transcriptional consequences are still poorly understood. Based on the fact that DNA copy number (CN) is highly correlated with the genomic position, we have applied a segmentation algorithm to gene expression (GE) to explore its relation with CN. We have found a strong correlation between segmented CN (sCN) and segmented GE (sGE), corroborating that CNAs have clear effects on genome-wide expression. We have found out that most of the recurrent regions of sGE are common to those obtained from sCN analysis. Results for two cancer datasets confirm the known targets of aberrations and provide new candidates to study. The suggested methodology allows to find recurrent aberrations specific to sGE, revealing loci where the expression of the genes is independent from their CNs. R code and additional files are available as supplementary material. PMID:21044881

  16. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  17. Prenatal Evaluation of MicroRNA Expressions in Pregnancies with Down Syndrome

    PubMed Central

    Erturk, Biray; Karaca, Emin; Guler, Ahmet; Buke, Baris; Yeniel, Ahmet Ozgur; Ozkinay, Ferda; Ozeren, Mehmet; Kazandi, Mert; Akercan, Fuat; Sagol, Sermet; Gunduz, Cumhur

    2016-01-01

    Background. Currently, the data available on the utility of miRNAs in noninvasive prenatal testing is insufficient in the literature. We evaluated the expression levels of 14 miRNAs located on chromosome 21 in maternal plasma and their utility in noninvasive prenatal testing of Down Syndrome. Method. A total of 56 patients underwent invasive prenatal testing; 23 cases were carrying Down Syndrome affected fetuses, and 33 control cases carrying unaffected, normal karyotype fetuses were included for comparison. Indications for invasive prenatal testing were advanced maternal age, increased risk of Down Syndrome in screening tests, and abnormal finding in the sonographic examination. In both the study and control groups, all the pregnant women were at 17th and 18th week of gestation. miRNA expression levels were measured using real-time RT-PCR. Results. Significantly increased maternal plasma levels of miR-3156 and miR-99a were found in the women carrying a fetus with Down Syndrome. Conclusion. Our results provide a basis for multicenter studies with larger sample groups and microRNA profiles, particularly with the microRNAs which were found to be variably expressed in our study. Through this clinical research, the utility of microRNAs in noninvasive prenatal testing can be better explored in future studies. PMID:27110565

  18. Preliminary studies: differences in microRNA expression in asthma and chronic obstructive pulmonary disease

    PubMed Central

    Pająk, Aneta; Górski, Paweł; Kuna, Piotr; Szemraj, Janusz; Goździńska-Nielepkowicz, Agnieszka; Pietras, Tadeusz

    2016-01-01

    Introduction The asthma- and chronic obstructive pulmonary disease (COPD)-related morbidity has been increasing during the recent years. Both asthma and COPD are diseases of inflammatory etiology. The increasing interest in the pathomechanisms involved in the development of obstructive pulmonary diseases seems to be fully justified. Recent research has attempted to determine the associations of microRNA with the pathogenesis of pulmonary diseases. Aim To assess the expression of microRNA in the blood sera of patients diagnosed with bronchial asthma and chronic obstructive pulmonary disease in comparison with healthy subjects. Material and methods In our study, at the preliminary stage, we compared the expression of miRNA in the groups of patients with asthma and COPD versus the control group of healthy subjects. Results A significant difference in hsa-miRNA-224, hsa-miRNA-339-5p, hsa-miRNA-382 in patients with asthma and COPD as compared with the controls was noted. Conclusions With such difference of expression of specific micro-RNA in serum of patient with asthma and COPD, those small non-coding RNA has to play a significant role in those diseases pathway. Therefore we expect to increase the size and differentation of the study groups in next studies. PMID:27605898

  19. Prostate Adenocarcinomas Aberrantly Expressing p63 Are Molecularly Distinct from Usual-Type Prostatic Adenocarcinomas

    PubMed Central

    Tan, Hsueh-Li; Haffner, Michael C.; Esopi, David M.; Vaghasia, Ajay M.; Giannico, Giovanna A.; Ross, Hillary M.; Ghosh, Susmita; Hicks, Jessica; Zheng, Qizhi; Sangoi, Ankur R.; Yegnasubramanian, Srinivasan; Osunkoya, Adeboye O.; De Marzo, Angelo M.; Epstein, Jonathan I.; Lotan, Tamara L.

    2014-01-01

    We have described a rare group of prostate adenocarcinomas that show aberrant expression of p63, a protein strongly expressed in prostatic basal cells and absent from usual-type acinar prostate cancers. The partial basal-like immunophenotype of these tumors is intriguing in light of the persistent debate surrounding the cell-of-origin for prostate cancer, however their molecular phenotype is unknown. We collected 37 of these tumors on radical prostatectomy and biopsy and assessed subsets for a diverse panel of molecular markers. The majority of p63-expressing tumors were positive for the ΔNp63 isoform (6/7) by immunofluorescence and p63 mRNA (7/8) by chromogenic in situ hybridization. Despite p63 positivity, these tumors uniformly expressed luminal-type cytokeratin proteins such as CK18 (13/13), CK8 (8/8) and markers of androgen axis signaling commonly seen in luminal cells, including androgen receptor (10/11), NKX3.1 (8/8) and prostein (12/13). Conversely, basal cytokeratins such as CK14 and CK15 were negative in all cases (0/8) and CK5/6 was weakly and focally positive in 36% (4/11) of cases. Pluripotency markers including β-catenin, Oct4 and c-kit were negative in p63-expressing tumors (0/11). Despite nearly universal expression of androgen receptor and downstream androgen signaling targets, p63-expressing tumors lacked ERG rearrangements by fluorescence in situ hybridization (0/14) and ERG protein expression (0/37). No tumors expressed SPINK1 or showed PTEN protein loss (0/19). Surprisingly, 74% (14/19) of p63-expressing tumors expressed GSTP1 protein at least focally, and 33% (2/6) entirely lacked GSTP1 CpG island hypermethylation by bisulfite sequencing. In contrast to usual prostatic adenocarcinomas, prostate tumors with p63-expression show a mixed luminal/basal immunophenotype, uniformly lack ERG gene rearrangement and frequently express GSTP1. These data strongly suggest that p63-expressing prostate tumors represent a molecularly distinct subclass and

  20. Estrogen Regulation of microRNAs, Target Genes, and microRNA Expression Associated with Vitellogenesis in the Zebrafish

    PubMed Central

    Cohen, Amit

    2014-01-01

    Abstract Estrogen is a steroid hormone that has been implicated in a variety of cellular and physiological processes and in the development of diseases such as cancer. Here we show a remarkable widespread microRNA (miRNA) downregulation in the zebrafish (Danio rerio) liver following 17β-estradiol (E2) treatment. This unique miRNA expression signature in the fish liver was further supported by a combination of computational predictions with gene expression microarray data, showing a significant bias toward upregulation of miRNA target genes after E2 treatment. Using pathway analysis of target genes, their involvement in the processes of cell cycle, DNA replication, and proteasome was observed, suggesting that miRNAs are incorporated into robust regulatory networks controlled by estrogen. In oviparous vertebrates, including fish, the formation of yolky eggs during a process known as vitellogenesis is regulated by estrogen. Microarrays were used to compare miRNA expression profiles between the livers of vitellogenic and nonvitellogenic zebrafish females. Among the upregulated miRNAs in vitellogenic females, were five members of the miR-17-92, a polycistronic miRNA cluster with a role in cell proliferation and cancer. Furthermore, a number of miRNA target genes related to fish vitellogenesis were revealed, including vtg3, a putative target of miR-122; the most abundant miRNA in the liver. Moreover, several of the differentially expressed miRNAs were only conserved in oviparous animals, which suggest an additional novel level of regulation during vitellogenesis by miRNAs and consequently, improves our knowledge of the process of oocyte growth in egg-laying animals. PMID:23767875

  1. MicroRNA and gynecological reproductive diseases.

    PubMed

    Santamaria, Xavier; Taylor, Hugh

    2014-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs estimated to regulate the translation of mRNAs in 30% of all genes in animals by inhibiting translation. Aberrant miRNA expression is associated with many human diseases, including gynecological diseases, cancer, inflammatory diseases, and cardiovascular disorders. Abnormal expression of miRNAs has been observed in multiple human reproductive tract diseases including preeclampsia, endometrioid endometrial adenocarcinoma, uterine leiomyomata, ovarian carcinoma, endometriosis, and recurrent pregnancy loss. In the following review, an update of the role of microRNA and gynecological diseases is performed covering, not only impact of microRNA dysregulation in the origin of each disease, but also showing the potential useful diagnostic and therapeutic tool that miRNA may play in these gynecological pathologies.

  2. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    PubMed Central

    Cantile, Monica; Scognamiglio, Giosuè; La Sala, Lucia; La Mantia, Elvira; Scaramuzza, Veronica; Valentino, Elena; Tatangelo, Fabiana; Losito, Simona; Pezzullo, Luciano; Chiofalo, Maria Grazia; Fulciniti, Franco; Franco, Renato; Botti, Gerardo

    2013-01-01

    Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers. PMID:24189220

  3. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  4. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms.

    PubMed

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-11-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3-23.3 (n=1), 9q33.1-34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31-36.33 (n=6), 17q21.2-q21.31 (n=5) and 17q25.1-25.3 (n=5) and deletions affecting 18p11.31-11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a 'HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal.

  5. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    Chen, YongPing; Wei, QianQian; Chen, XuePing; Li, ChunYu; Cao, Bei; Ou, RuWei; Hadano, Shinji; Shang, Hui-Fang

    2016-01-01

    Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the peripheral

  6. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P < .05). Membranous and/or nuclear expression of Notch-1 was significantly associated with epidermal human melanoma black-45 positivity (P = .01) and percentage of expression in both epidermis (P = .02) and hair follicles (P = .03) of lesional skin. Cytoplasmic pattern of Notch-1 expression in epidermis was significantly found in lesions with white hair (P = .04) and in cases with marked keratinocyte vacuolization (P = .03). Segmental and acrofacial vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance.

  7. Aberrant gene expression patterns in extraembryonic tissue from cloned porcine embryos.

    PubMed

    Park, Mi-Ryung; Im, Gi-Sun; Kim, Sung Woo; Hwang, Seongsoo; Park, Jae-Hong; Kim, Hyun; Do, Yoon Jung; Park, Soo Bon; Yang, Bo-Suck; Song, Young Min; Cho, Jae-Hyeon; Ko, Yeoung-Gyu

    2013-06-01

    The abnormal development of embryos reconstructed by somatic cell nuclear transfer (SCNT) is considered to be associated with consequent changes in gene expression following errors in epigenetic reprogramming. In this study, we carried out SCNT using donor fibroblast cells derived from 3-way hybrids (Landrace×Duroc×Yorkshire). A total of 655 SCNT embryos were transferred, and 6.97±2.3 cloned fetuses were successfully recovered from three surrogates at gestational day 30. An analysis of the 6.97±2.3 cloned embryos revealed that most had severe extraembryonic defects. The extraembryonic tissue from the SCNT embryos was abnormally small compared with that of the control. To investigate the differentially expressed genes between the SCNT and control extraembryonic tissues, we compared the gene expression profiles of the extraembryonic tissues from gestational day 30 cloned pig embryos with those from the control using an annealing control primer-based GeneFishing polymerase chain reaction. As a result, we found that a total of 50 genes were differentially expressed by utilizing 120 ACPs, 38 genes of which were known. Among them, 26 genes were up-regulated, whereas 12 genes were down-regulated. Real-time RT-PCR showed that apoptosis-related genes were expressed significantly higher in SCNT extraembryonic tissue than in the control, whereas metabolism-related genes were expressed at significantly lower levels in the SCNT extraembryonic tissue. These observations strongly indicate that early gestational death of SCNT embryo is caused, at least in part, by the disruption of developing extraembryonic tissues as a result of aberrant gene expression, which results in abnormal apoptosis and metabolism.

  8. Long noncoding RNA are aberrantly expressed in human papillary thyroid carcinoma

    PubMed Central

    YANG, MEILIU; TIAN, JINLI; GUO, XIN; YANG, YING; GUAN, RUHUA; QIU, MINGYUE; LI, YUKAI; SUN, XUELING; ZHEN, YANFENG; ZHANG, YAZHONG; CHEN, CHUNYOU; LI, YANBING; FANG, HUI

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulatory molecules at almost every level of gene expression regulation. The altered expression of lncRNAs is a characteristic of numerous types of cancer, and lncRNAs have been demonstrated to promote the development, invasion and metastasis of tumors through various mechanisms. However, the role of lncRNAs in papillary thyroid carcinoma (PTC) remain unclear. In the present study, differentially expressed lncRNAs and mRNAs were detected by human lncRNA microarray in three pairs of PTC and adjacent noncancerous samples. The microarray results revealed that 675 lncRNAs and 751 mRNAs were abnormally expressed in the three PTC samples compared with adjacent noncancerous samples (fold change ≥2.0; P<0.05). To validate the microarray results, 8 differentially expressed lncRNAs were randomly selected for quantitative polymerase chain reaction (qPCR). The results of qPCR were consistent with the microarray data; the 8 lncRNAs had an aberrant expression in the PTC samples compared with the adjacent noncancerous samples. Gene ontology and pathway analysis indicated that there were 7 downregulated pathways and 29 upregulated pathways in PTC. LncRNA classification and subgroup analysis revealed 7 pairs of enhancer-like lncRNA-mRNA, 9 pairs of antisense lncRNA-mRNA and 45 pairs of lncRNA-mRNA were differentially expressed between PTC and their paired noncancerous samples. In conclusion, the present study identified a series of novel PTC-associated lncRNAs. Further study with these lncRNAs is instrumental for the identification of novel target molecules that could lead to improved diagnosis and treatment for PTC. PMID:27347178

  9. Expression of microRNAs in fibroblast of pterygium

    PubMed Central

    Lee, Joon H.; Jung, Sun-Ah; Kwon, Young-A; Chung, Jae-Lim; Kim, Ungsoo Samuel

    2016-01-01

    AIM To screen microRNAs (miRNAs) and set up target miRNAs in pterygium. METHODS Primary fibroblasts were isolated from pterygium and Tenon's capsule and cultured. Immunocytochemical analysis and Western blotting were performed to confirm the culture of fibroblasts. In all, 1733 miRNAs were screened in the first step by using GeneChip® miRNA3.0 Array. Specific miRNAs involved in the pathogenesis of pterygium were subsequently determined using the following criteria: 1) high reproducibility in a repetitive test; 2) base log value of >7.0 for both control and pterygial fibroblasts; and 3) log ratio of >1.0 between pterygial fibroblasts and control fibroblasts. RESULTS Primary screening showed that 887/1733 miRNAs were up-regulated and 846/1733 miRNAs were down-regulated in pterygial fibroblasts compared with those in control fibroblasts. Of the 1733 miRNAs screened, 4 miRNAs, namely, miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p, met the above-mentioned criteria. Primary screening showed that these 4 miRNAs were up-regulated in pterygial fibroblasts compared with control fibroblasts and that miRNA-143a-3p had the highest mean ratio compared with the miRNAs in control fibroblasts. CONCLUSION miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p are up-regulated in pterygial fibroblasts compared with control fibroblasts, suggesting their involvement in the pathogenesis of pterygium. PMID:27500101

  10. MicroRNA-21 expression and its pathogenetic significance in cutaneous melanoma.

    PubMed

    Saldanha, Gerald; Potter, Linda; Lee, Yee Shin; Watson, Sophie; Shendge, Priya; Pringle, James H

    2016-02-01

    Identification of prognostic biomarkers is timely for melanoma as clinicians seek ways to stratify patients for molecular therapy. MicroRNAs are promising as tissue biomarkers because they can be assayed directly from formalin-fixed paraffin-embedded clinical samples. We previously reported that microRNA-21 (miR-21) was strongly expressed in melanoma relative to naevi and now sought to further assess the significance of this by assessing its relationship with its putative target, PTEN. Clinical melanoma samples were analysed by immunohistochemical analysis for PTEN, stem-loop qRT-PCR for miR-21 and PCR for BRAF/NRAS mutation status. Cell lines were investigated for the effect of anti-miR-21 on PTEN. A total of 81 clinical melanocytic tumour samples were investigated, with uniformly high PTEN expression in the nucleus and cytoplasm of naevi and with preferential loss of PTEN expression in the nucleus of melanoma cells. miR-21 expression was inversely associated with nuclear PTEN expression but not with cytoplasmic PTEN expression. An anti-miR-21 preferentially altered nuclear PTEN in melanoma cell lines. The presence of a BRAF or NRAS mutation had no significant effect on miR-21 expression. These data suggest miR-21 may exert an oncogenic effect in melanoma by favouring redistribution of PTEN to the nucleus.

  11. Low-temperature microRNA expression in the painted turtle, Chrysemys picta during freezing stress.

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2015-11-30

    Natural freeze tolerance depends on cellular adaptations that address the multiple stresses imposed on cells during freezing. These adaptations preserve viability by suppressing energy-expensive cell processes in the frozen state. In this study, we explore the freeze-responsive expression of microRNA in hatchling painted turtles exposed to 20 h freezing. Furthermore, we also explore the possibility of unique temperature-sensitive microRNA targeting programs that aid in adapting turtles for survival in the frozen state. Interestingly, two freeze-responsive 'cryo-miRs' (cpm-miR-16 and cpm-miR-21) were found to have unique low-temperature mRNA targets enriched in biological processes that are known to be part of the stress response.

  12. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection.

    PubMed

    Hamam, Rimi; Ali, Arwa M; Alsaleh, Khalid A; Kassem, Moustapha; Alfayez, Musaed; Aldahmash, Abdullah; Alajez, Nehad M

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples from 23 BC and 9 normals identified 18 up-regulated miRNAs in BC patients (p(corr) < 0.05). Nine miRNAs (hsa-miR-4270, hsa-miR-1225-5p, hsa-miR-188-5p, hsa-miR-1202, hsa-miR-4281, hsa-miR-1207-5p, hsa-miR-642b-3p, hsa-miR-1290, and hsa-miR-3141) were subsequently validated using qRT-PCR in a cohort of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal subtype. Therefore, we developed a novel approach which led to the identification of a novel microRNA panel which was upregulated in BC patients with potential utilization in disease diagnosis and stratification. PMID:27180809

  13. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  14. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations.

  15. Aberrant expression of the candidate tumor suppressor gene DAL-1 due to hypermethylation in gastric cancer

    PubMed Central

    Wang, Hao; Xu, Man; Cui, Xiaobo; Liu, Yixin; Zhang, Yi; Sui, Yu; Wang, Dong; Peng, Lei; Wang, Dexu; Yu, Jingcui

    2016-01-01

    By allelotyping for loss of heterozygosity (LOH), we previously identified a deletion region that harbors the candidate tumor suppressor gene DAL-1 at 18p11.3 in sporadic gastric cancers (GCs). The expression and function of DAL-1 in GCs remained unclear. Here, we demonstrated that the absence of or notable decreases in the expression of DAL-1 mRNA and protein was highly correlated with CpG hypermethylation of the DAL-1 promoter in primary GC tissues and in GC cell lines. Furthermore, abnormal DAL-1 subcellular localization was also observed in GC cells. Exogenous DAL-1 effectively inhibited cancer cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT); exogenous DAL-1 also promoted apoptosis in GC AGS cells. When endogenous DAL-1 was knocked down in GC HGC-27 cells, the cells appeared highly aggressive. Taken together, these findings provide solid evidence that aberrant expression of DAL-1 by hypermethylation in the promoter region results in tumor suppressor gene behavior that plays important roles in the malignancy of GCs. Understanding the role of it played in the molecular pathogenesis of GC, DAL-1 might be a potential biomarker for molecular diagnosis and evaluation of the GC. PMID:26923709

  16. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression

    PubMed Central

    Wang, Yemin; Huang, Jen-Wei; Li, Ming; Cavenee, Webster K.; Mitchell, Patrick S.; Zhou, Xiaofeng; Tewari, Muneesh; Furnari, Frank B.; Taniguchi, Toshiyasu

    2011-01-01

    Precise regulation of DNA damage response is crucial for cellular survival after DNA damage, and its abrogation often results in genomic instability in cancer. Phosphorylated histone H2AX (γH2AX) forms nuclear foci at sites of DNA damage and facilitates DNA damage response and repair. MicroRNAs are short, non-protein-encoding RNA molecules, which post-transcriptionally regulate gene expression by repressing translation of and/or degrading mRNA. How microRNAs modulate DNA damage response is largely unknown. In this study, we developed a cell-based screening assay utilizing ionizing radiation-induced γH2AX foci formation in a human osteosarcoma cell line, U2OS, as the readout. By screening a library of human microRNA mimics, we identified several microRNAs that inhibited γH2AX foci formation. Among them, miR-138 directly targeted the histone H2AX 3′-UTR, reduced histone H2AX expression and induced chromosomal instability after DNA damage. Overexpression of miR-138 inhibited homologous recombination and enhanced cellular sensitivity to multiple DNA damaging agents (cisplatin, camptothecin, and ionizing radiation). Reintroduction of histone H2AX in miR-138 overexpressing cells attenuated miR-138-mediated sensitization to cisplatin and camptothecin. Our study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA damaging agents. PMID:21693595

  17. MicroRNA-223 Expression is Upregulated in Insulin Resistant Human Adipose Tissue.

    PubMed

    Chuang, Tung-Yueh; Wu, Hsiao-Li; Chen, Chen-Chun; Gamboa, Gloria Mabel; Layman, Lawrence C; Diamond, Michael P; Azziz, Ricardo; Chen, Yen-Hao

    2015-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT) from women with polycystic ovary syndrome (PCOS) or controls with insulin resistance (IR) revealed a differentially expressed microRNA (miRNA) profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4) expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3' untranslated region (3'UTR). In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders. PMID:26273679

  18. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling

    PubMed Central

    Nandety, Raja Sekhar; Sharif, Almas; Kamita, Shizuo G.; Ramasamy, Asokan; Falk, Bryce W.

    2015-01-01

    The glassy-winged sharpshooter (GWSS) Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce’s disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs. PMID:26440407

  19. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling.

    PubMed

    Nandety, Raja Sekhar; Sharif, Almas; Kamita, Shizuo G; Ramasamy, Asokan; Falk, Bryce W

    2015-01-01

    The glassy-winged sharpshooter (GWSS) Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs. PMID:26440407

  20. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites

    PubMed Central

    Ghosal, Suman; Saha, Shekhar; Das, Shaoli; Sen, Rituparno; Goswami, Swagata; Jana, Siddhartha S.; Chakrabarti, Jayprokas

    2016-01-01

    Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3′ end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3′ end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3′ UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites. PMID:26923536

  1. Genomic aberration patterns and expression profiles of squamous cell carcinomas of the vulva.

    PubMed

    Micci, Francesca; Panagopoulos, Ioannis; Haugom, Lisbeth; Dahlback, Hanne-Sofie S; Pretorius, Maria E; Davidson, Ben; Abeler, Vera M; Tropé, Claes G; Danielsen, Håvard E; Heim, Sverre

    2013-06-01

    Little is known about the genomic abnormalities of squamous cell carcinomas (SCC) of the vulva and how they correlate with gene expression. We determined the genomic and expression profiles of 15 such SCC using karyotyping, DNA ploidy analysis, arrayCGH, and expression arrays. Four of the five cases with clonal chromosomal aberrations found by G-banding showed highly abnormal karyotypes with multiple rearrangements. The imbalances scored by arrayCGH mapped to different chromosomes with losses being more common than gains. Frequent losses were scored from 3p and 8p whereas gains were frequent from 3q and 8q (loss of 8p with concomitant gain of 8q mostly occurred via 8q isochromosome formation). This is the first study of vulvar tumors using arrayCGH, and some frequent imbalances could be defined precisely. Of particular note were the sometimes large, sometimes small deletions of 3p and 9p which had minute areas in 3p14 and 9p23 as minimal commonly deleted regions. FHIT (3p14) and PTPRD (9p23) are the only genes here. They were both lost in seven cases, including homozygous losses of PTPRD in four tumors. Using qPCR we could demonstrate deregulation of the FHIT gene in tumor cells. Hence, this gene is likely to play a pathogenetic role in vulvar SCC tumorigenesis. Expression array analyses also identified a number of other genes whose expression profile was altered. Notable among the downregulated genes were MAL (in 2q11), KRT4 (in 12q13), and OLFM4 (in 13q14), whereas upregulated genes included SPRR2G (in 1q21.3) and S100A7A (in 1q21.3).

  2. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation

    PubMed Central

    Haar, Janina; Contrant, Maud; Bernhardt, Katharina; Feederle, Regina; Diederichs, Sven; Pfeffer, Sébastien; Delecluse, Henri-Jacques

    2016-01-01

    The Epstein-Barr virus (EBV) transforms B cells by expressing latent proteins and the BHRF1 microRNA cluster. MiR-BHRF1–3, its most transforming member, belongs to the recently identified group of weakly expressed microRNAs. We show here that miR-BHRF1–3 displays an unusually low propensity to form a stem–loop structure, an effect potentiated by miR-BHRF1–3's proximity to the BHRF1 polyA site. Cloning miR-BHRF1–2 or a cellular microRNA, but not a ribozyme, 5′ of miR-BHRF1–3 markedly enhanced its expression. However, a virus carrying mutated miR-BHRF1–2 seed regions expressed miR-BHRF1–3 at normal levels and was fully transforming. Therefore, miR-BHRF1–2's role during transformation is independent of its seed regions, revealing a new microRNA function. Increasing the distance between miR-BHRF1–2 and miR-BHRF1–3 in EBV enhanced miR-BHRF1–3's expression but decreased its transforming potential. Thus, the expression of some microRNAs must be restricted to a narrow range, as achieved by placing miR-BHRF1–3 under the control of miR-BHRF1–2. PMID:26635399

  3. Expression of circulating microRNA-1 and microRNA-133 in pediatric patients with tachycardia.

    PubMed

    Sun, Ling; Sun, Shuo; Zeng, Shaoying; Li, Yufen; Pan, Wei; Zhang, Zhiwei

    2015-06-01

    Paroxysmal or persistent tachycardia in pediatric patients is a common disease. Certain circulating microRNAs (miRNAs) have been associated with arrhythmia. The present study investigated miRNAs in the plasma of pediatric patients with tachycardia. Forty pediatric subjects were included retrospectively: 24 with recurrent sustained tachycardia [seven cases of ventricular tachycardia (VT) and 17 cases of supraventricular tachycardia (SVT)] and 16 healthy controls. Circulating miR‑1 and miR‑133 in the plasma were detected by fluorescent quantitative polymerase chain reaction. miR‑1 levels were significantly decreased in the arrhythmia group compared with those in the controls (P=0.004) whilst miR‑133 expression levels were not significantly different between the two groups (P=0.456). Both miR‑1 and miR‑133 levels showed significant differences between the SVT and VT groups (P=0.004 and P=0.046, respectively), and a significant decrease in miR‑1 levels was observed in the SVT group as compared with the controls (P<0.001). No significant difference was observed in the expression levels of miR‑133. By contrast, miR‑133 levels were significantly increased in the VT group compared with those in the controls (P=0.024), whereas no statistically significant difference was observed in the expression levels of miR‑1. Receiver operating characteristic curves showed that 1/miR‑1 was significant for the evaluation of tachycardia. Additionally, miR‑1 produced enhanced sensitivity and specificity for the evaluation of SVT compared with miR‑133, whereas miR‑133 was a better marker to assess VT. This study demonstrated that miRNAs may be appropriate markers for pediatric tachycardia; miR‑1 levels were decreased in the arrhythmia group compared with those in the healthy controls. Furthermore, patients with SVT had lower miR‑1 expression levels while those with VT had higher miR‑133 expression levels.

  4. Developmental MicroRNA Expression Profiling of Murine Embryonic Orofacial Tissue

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Pihur, Vasyl; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M.

    2011-01-01

    BACKGROUND Orofacial development is a multifaceted process involving precise, spatio-temporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs involved in gene silencing, represent critical regulators of cell and tissue differentiation. MicroRNA gene expression profiling is an effective means of acquiring novel and valuable information regarding the expression and regulation of genes, under the control of miRNA, involved in mammalian orofacial development. METHODS To identify differentially expressed miRNAs during mammalian orofacial ontogenesis, miRNA expression profiles from gestation day (GD) -12, -13 and -14 murine orofacial tissue were compared utilizing miRXplore microarrays from Miltenyi Biotech. Quantitative real-time PCR was utilized for validation of gene expression changes. Cluster analysis of the microarray data was conducted with the clValid R package and the UPGMA clustering method. Functional relationships between selected miRNAs were investigated using Ingenuity Pathway Analysis. RESULTS Expression of over 26% of the 588 murine miRNA genes examined was detected in murine orofacial tissues from GD-12–GD-14. Among these expressed genes, several clusters were seen to be developmentally regulated. Differential expression of miRNAs within such clusters were shown to target genes encoding proteins involved in cell proliferation, cell adhesion, differentiation, apoptosis and epithelial-mesenchymal transformation, all processes critical for normal orofacial development. CONCLUSIONS Using miRNA microarray technology, unique gene expression signatures of hundreds of miRNAs in embryonic orofacial tissue were defined. Gene targeting and functional analysis revealed that the expression of numerous protein-encoding genes, crucial to normal orofacial ontogeny, may be regulated by specific miRNAs. PMID:20589883

  5. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression

    PubMed Central

    Edmonds, Mick D.; Hurst, Douglas R.; Vaidya, Kedar S.; Stafford, Lewis J.; Chen, Dongquan; Welch, Danny R.

    2009-01-01

    Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis of multiple tumor types without blocking tumorigenesis. BRMS1 forms complexes with SIN3, histone deacetylases and selected transcription factors that modify metastasis-associated gene expression (e.g., EGFR, OPN, PI4P5K1A, PLAU). microRNA (miRNA) are a recently discovered class of regulatory, noncoding RNA, some of which are involved in neoplastic progression. Based on these data, we hypothesized that BRMS1 may also exert some of its antimetastatic effects by regulating miRNA expression. Micro-RNA arrays were done comparing small RNAs that were purified from metastatic MDA-MB-231 and MDA-MB-435 and their non-metastatic BRMS1-transfected counterparts. miRNA expression changed by BRMS1 were validated using SYBR Green RT-PCR. BRMS1 decreased metastasis-promoting (miR-10b, -373 and -520c) miRNA, with corresponding reduction of their downstream targets (e.g., RhoC which is downstream of miR-10b). Concurrently, BRMS1 increased expression of metastasis suppressing miRNA (miR-146a, -146b and -335). Collectively, these data show that BRMS1 coordinately regulates expression of multiple metastasis-associated miRNA and suggests that recruitment of BRMS1-containing SIN3:HDAC complexes to, as yet undefined, miRNA promoters might be involved in the regulation of cancer metastasis. PMID:19585508

  6. Proanthocyanidins Modulate MicroRNA Expression in Human HepG2 Cells

    PubMed Central

    Arola-Arnal, Anna; Bladé, Cinta

    2011-01-01

    Mi(cro)RNAs are small non-coding RNAs of 18-25 nucleotides in length that modulate gene expression at the post-transcriptional level. These RNAs have been shown to be involved in a several biological processes, human diseases and metabolic disorders. Proanthocyanidins, which are the most abundant polyphenol class in the human diet, have positive health effects on a variety of metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. The present study aimed to evaluate whether proanthocyanidin-rich natural extracts modulate miRNA expression. Using microarray analysis and Q-PCR, we investigated miRNA expression in HepG2 cells treated with proanthocyanidins. Our results showed that when HepG2 cells were treated with grape seed proanthocyanidin extract (GSPE), cocoa proanthocyanidin extract (CPE) or pure epigallocatechin gallate isolated from green tea (EGCG), fifteen, six and five differentially expressed miRNAs, respectively, were identified out of 904 mRNAs. Specifically, miR-30b* was downregulated by the three treatments, and treatment with GSPE or CPE upregulated miR-1224-3p, miR-197 and miR-532-3p. Therefore, these results provide evidence of the capacity of dietary proanthocyanidins to influence microRNA expression, suggesting a new mechanism of action of proanthocyanidins. PMID:21998738

  7. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.

    PubMed

    Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc C; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen J; Greten, Florian R; Wang, Lai Mun; East, James E; Tomlinson, Ian; Leedham, Simon J

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

  8. Clinical Omics Analysis of Colorectal Cancer Incorporating Copy Number Aberrations and Gene Expression Data

    PubMed Central

    Yoshida, Tsuyoshi; Kobayashi, Takumi; Itoda, Masaya; Muto, Taika; Miyaguchi, Ken; Mogushi, Kaoru; Shoji, Satoshi; Shimokawa, Kazuro; Iida, Satoru; Uetake, Hiroyuki; Ishikawa, Toshiaki; Sugihara, Kenichi; Mizushima, Hiroshi; Tanaka, Hiroshi

    2010-01-01

    Background: Colorectal cancer (CRC) is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC) and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an “omics” study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Materials and methods: Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. Result: We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene expression analysis

  9. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  10. MicroRNA expression profiles in liver and colon of sexually immature gilts after exposure to Fusarium mycotoxins.

    PubMed

    Brzuzan, P; Woźny, M; Wolińska-Nizioł, L; Piasecka, A; Florczyk, M; Jakimiuk, E; Góra, M; Łuczyński, M K; Gajecki, M

    2015-01-01

    To improve our knowledge of the role of microRNAs (miRs) in responses of the porcine digestive system to two Fusarium mycotoxins, zearalenone (ZEN) and deoxynivalenol (DON), we examined the expression of 7 miRs (miR-9, miR-15a, miR-21, miR-34a, miR-122, miR-125b, and miR-192), previously found to be deregulated in diseased liver and colon cells. In this study, immature gilts were exposed to NOEL doses of ZEN (40 μg/kg/d), DON (12 μg/kg/d), ZEN + DON (40 + 12 μg/kg/d), andplacebo (negative control group) for 7, 14, 21, 28, 35, and 42 days. Before the treatment, expression levels of the selected miRs were measured in the liver, the duodenum, the jejunum, and the ascending and the descending colon of the gilts. Hierarchical clustering of the tissues by their miR expression profiles was consistent with what would be expected based on the anatomical locations and the physiological functions of the organs, suggesting that functions of the miRs are related to the specificities of the tissues in which they are expressed. A subset of 2 pairs of miRs (miR-21+miR-192 and miR-15a+miR-34a), which were assigned to two distinct clusters based on their tissue abundance, was then evaluated in the liver and the ascending and the descending colon during the treatment. The most meaningful results were obtained from the ascending colon, where a significant effect of the treatment was observed, suggesting that during the exposure to mycotoxins, the pathways involved in cell proliferation and survival were disordered. Changes in miR expression in the liver and the descending colon of the treated gilts were smaller, and were associated more with treatment duration than the exposure to ZEN, DON, or ZEN + DON. Further research should focus on identification of genes whose expression is regulated by these aberrantly expressed miRs. This should facili- tate understanding of the miRNA-regulated biological effects of mycotoxins.

  11. Altered Gene Expression Associated with microRNA Binding Site Polymorphisms

    PubMed Central

    Võsa, Urmo; Esko, Tõnu; Kasela, Silva; Annilo, Tarmo

    2015-01-01

    Allele-specific gene expression associated with genetic variation in regulatory regions can play an important role in the development of complex traits. We hypothesized that polymorphisms in microRNA (miRNA) response elements (MRE-SNPs) that either disrupt a miRNA binding site or create a new miRNA binding site can affect the allele-specific expression of target genes. By integrating public expression quantitative trait locus (eQTL) data, miRNA binding site predictions, small RNA sequencing, and Argonaute crosslinking immunoprecipitation (AGO-CLIP) datasets, we identified genetic variants that can affect gene expression by modulating miRNA binding efficiency. We also identified MRE-SNPs located in regions associated with complex traits, indicating possible causative mechanisms associated with these loci. The results of this study expand the current understanding of gene expression regulation and help to interpret the mechanisms underlying eQTL effects. PMID:26496489

  12. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  13. Systematic enrichment analysis of microRNA expression profiling studies in endometriosis

    PubMed Central

    Wei, Shiyang; Xu, Hong; Kuang, Yan

    2015-01-01

    Objective(s): The purpose of this study was to conduct a meta-analysis on human microRNAs (miRNAs) expression data of endometriosis tissue profiles versus those of normal controls and to identify novel putative diagnostic markers. Materials and Methods: PubMed, Embase, Web of Science, Ovid Medline were used to search for endometriosis miRNA expression profiling studies of endometriosis. The miRNAs expression data were extracted, and study quality of each article was assessed. The frequently reported miRNAs with consistent regulation were screened out by a meta-profiling algorithm. The putative targets of consistently expressed miRNAs were predicted by using four target prediction tools (TargetScan, PicTar, miRanda, miRDB), and gene ontology pathway enrichment analysis (KEGG and Panther pathways) of the miRNA targets were carried out with GeneCodis web tool. Results: A total of 194 related literatures were retrieved in four databases. One hundred and thirty four differentially expressed miRNAs were found in the 12 microRNA expression profiling studies that compared endometriosis tissues with normal tissues, with 28 miRNAs reported in at least two studies, and 9882 candidate genes retrieved for 13 consistently expressed miRNAs. Kyoto encyclopedia of genes and genomes (KEGG) and Panther pathways enrichment analysis showed that endometriosis related differently expressed miRNA targets were mainly enriched in cancer, endocytosis, Wnt signalling pathway, and angiogenesis. It showed that these differently expressed miRNAs and gene are potential biomarkers of endometriosis. Conclusion: miRNAs appear to be potent regulators of gene expression in endometriosis and its associated reproductive disorders, raising the prospect of using miRNAs as biomarkers and therapeutic agent in endometriosis. PMID:26124927

  14. MicroRNA-17/20a inhibits glucocorticoid-induced osteoclast differentiation and function through targeting RANKL expression in osteoblast cells.

    PubMed

    Shi, Changgui; Qi, Jin; Huang, Ping; Jiang, Min; Zhou, Qi; Zhou, Hanbing; Kang, Hui; Qian, Niandong; Yang, Qiumeng; Guo, Lei; Deng, Lianfu

    2014-11-01

    Glucocorticoids act on the osteoblasts to up-regulate the expression of RANKL, which is very important in the etiology of glucocorticoid-induced osteoclast differentiation and bone resorption. The mechanisms of this process are still not completely understood. Recent studies have shown that glucocorticoids mediate osteoblast function by decreasing the expression of microRNA-17-92a cluster. Coincidentally, we found that the microRNA-17/20a (microRNA-17, microRNA-20a) seed sequences were also complementary to a sequence conserved in the 3'- untranslated region of RANKL mRNA. Therefore, we hypothesized that glucocorticoids might promote osteoblast-derived RANKL expression by down-regulating microRNA-17/20a, which favors differentiation and function of the osteoclasts. In the present study, Western blot analysis showed that microRNA-17/20a markedly lowered the levels of RANKL protein and attenuated dexamethasone-induced RANKL expression in the osteoblasts. The post-transcriptional repression of RANKL by microRNA-17/20a was further confirmed by the luciferase reporter assay. Furthermore, we found that dexamethasone-induced osteoclast differentiation and function were significantly attenuated in co-culture with osteoblast over-expressed microRNA-17/20a and osteoclast progenitors. These results showed that microRNA-17/20a may play a significant role in glucocorticoid-induced osteoclast differentiation and function by targeting the RANKL expression in osteoblast cells.

  15. Role of microRNAs on HLA-G expression in human tumors.

    PubMed

    Seliger, Barbara

    2016-09-01

    The non-classical human leukocyte antigen G (HLA-G) known to protect the embryo from immune cell destruction leading to fetal maternal tolerance is often overexpressed in human tumors of distinct origin thereby leading to an escape from T and NK cell-mediated immune response. The molecular mechanisms controlling HLA-G expression are complex and involve deregulation at the transcriptional, epigenetic and posttranscriptional level. Using bioinformatics and high through put analyses a number of microRNAs (miRs) have been identified, which were able to bind to the 3' UTR of HLA-G with distinct efficacy. This caused by a downregulation of HLA-G surface expression, which was associated with an increased immune response thereby overcoming the HLA-G-mediated immune tolerance. Reduced expression of HLA-G-specific miRs was associated with tumor progression and metastases and appear to affect directly or indirectly tumor characteristics, such as cell proliferation, apoptosis and resistance to chemotherapy. Recently, an interaction between long non-coding RNAs, such as HOTAIR, and HLA-G-specific miRs has also been demonstrated. This review summarizes the control of HLA-G expression and function by microRNAs as well as its clinical significance.

  16. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers.

    PubMed

    Kataoka, Keisuke; Shiraishi, Yuichi; Takeda, Yohei; Sakata, Seiji; Matsumoto, Misako; Nagano, Seiji; Maeda, Takuya; Nagata, Yasunobu; Kitanaka, Akira; Mizuno, Seiya; Tanaka, Hiroko; Chiba, Kenichi; Ito, Satoshi; Watatani, Yosaku; Kakiuchi, Nobuyuki; Suzuki, Hiromichi; Yoshizato, Tetsuichi; Yoshida, Kenichi; Sanada, Masashi; Itonaga, Hidehiro; Imaizumi, Yoshitaka; Totoki, Yasushi; Munakata, Wataru; Nakamura, Hiromi; Hama, Natsuko; Shide, Kotaro; Kubuki, Yoko; Hidaka, Tomonori; Kameda, Takuro; Masuda, Kyoko; Minato, Nagahiro; Kashiwase, Koichi; Izutsu, Koji; Takaori-Kondo, Akifumi; Miyazaki, Yasushi; Takahashi, Satoru; Shibata, Tatsuhiro; Kawamoto, Hiroshi; Akatsuka, Yoshiki; Shimoda, Kazuya; Takeuchi, Kengo; Seya, Tsukasa; Miyano, Satoru; Ogawa, Seishi

    2016-06-16

    Successful treatment of many patients with advanced cancer using antibodies against programmed cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has highlighted the critical importance of PD-1/PD-L1-mediated immune escape in cancer development. However, the genetic basis for the immune escape has not been fully elucidated, with the exception of elevated PD-L1 expression by gene amplification and utilization of an ectopic promoter by translocation, as reported in Hodgkin and other B-cell lymphomas, as well as stomach adenocarcinoma. Here we show a unique genetic mechanism of immune escape caused by structural variations (SVs) commonly disrupting the 3' region of the PD-L1 gene. Widely affecting multiple common human cancer types, including adult T-cell leukaemia/lymphoma (27%), diffuse large B-cell lymphoma (8%), and stomach adenocarcinoma (2%), these SVs invariably lead to a marked elevation of aberrant PD-L1 transcripts that are stabilized by truncation of the 3'-untranslated region (UTR). Disruption of the Pd-l1 3'-UTR in mice enables immune evasion of EG7-OVA tumour cells with elevated Pd-l1 expression in vivo, which is effectively inhibited by Pd-1/Pd-l1 blockade, supporting the role of relevant SVs in clonal selection through immune evasion. Our findings not only unmask a novel regulatory mechanism of PD-L1 expression, but also suggest that PD-L1 3'-UTR disruption could serve as a genetic marker to identify cancers that actively evade anti-tumour immunity through PD-L1 overexpression. PMID:27281199

  17. Regulation of microRNA expression and function by nuclear receptor signaling

    PubMed Central

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNA transcripts that affect various cellular pathways by serving as regulators of gene expression at the translational and transcriptional level. Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene transcription by binding to the promoter region or by interacting with other transcription factors. NRs can regulate miRNA expression either at the transcriptional level, or through posttranscriptional maturation by interacting with miRNA processing factors. This review will summarize recent advances in knowledge of the modulation of miRNA expression by NRs. Increased understanding of the molecular basis of miRNA expression may enable new therapeutic interventions that modulate miRNA activities through NR-mediated signaling. PMID:21936947

  18. Dose-dependent microRNA expression in human fibroblasts after LET irradiation

    NASA Astrophysics Data System (ADS)

    Maes, Olivier Charles; An, Jin; Wu, Honglu; Wang, Eugenia; Sarojini, Harshini

    Humans are exposed to various levels of radiation during spaceflight voyages. In cells, exposure to linear energy transfer (LET) radiation causes cellular damage and triggers responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small ( 22- nucleotide) non-coding RNAs, which regulate gene expression generally by either degrading the messager RNA or inhibiting translation. Their implication in specific cellular response pathways is largely unknown. Here, we investigated the role of radiation-dependent changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray exposure in human fibroblasts, and correlated their predicted targets with the cells' genomics and proteomics profiles. A differential miRNA expression pattern was observed between low and high doses of irradiation, with early (0.5 and 2 hrs) significant changes mostly after a high dose and, late (6 and 24 hrs) significant changes after both low and high doses of irradiation. The results suggest that miRNAs may act as ‘hub' regulators of signaling pathways initially to derepress their target genes for cellular responses such as DNA repair, followed by up-regulation to suppress apoptosis, and finally down-regulation to reestablish cellular normalcy. Functional attributions are made to key microRNAs, potentially regulating known radiation biomarkers as well as radiation-responsive mechanisms of cell cycle checkpoint, proliferation and apoptosis. In summary, radiation-responsive miRNAs may have functional roles in the regulation of cell death or survival, and may become biodosimeters for radiation dose exposure. Specific microRNAs may exert a hormetic effect after low-dose radiation, and prove useful in future applications for radiation adaptive therapy and in the prevention and treatment of radiation-induced damage. The confirmation of specific miRNAs as biodosimetry markers with therapeutic applications will be necessary in future functional

  19. Investigative and extrapolative role of microRNAs' genetic expression in breast carcinoma.

    PubMed

    Usmani, Ambreen; Shoro, Amir Ali; Shirazi, Bushra; Memon, Zahida

    2016-01-01

    MicroRNAs (miRs) are non-coding ribonucleic acids consisting of about 18-22 nucleotide bases. Expression of several miRs can be altered in breast carcinomas in comparison to healthy breast tissue, or between various subtypes of breast cancer. These are regulated as either oncogene or tumor suppressors, this shows that their expression is misrepresented in cancers. Some miRs are specifically associated with breast cancer and are affected by cancer-restricted signaling pathways e.g. downstream of estrogen receptor-α or HER2/neu. Connection of multiple miRs with breast cancer, and the fact that most of these post transcript structures may transform complex functional networks of mRNAs, identify them as potential investigative, extrapolative and predictive tumor markers, as well as possible targets for treatment. Investigative tools that are currently available are RNA-based molecular techniques. An additional advantage related to miRs in oncology is that they are remarkably stable and are notably detectable in serum and plasma. Literature search was performed by using database of PubMed, the keywords used were microRNA (52 searches) AND breast cancer (169 searches). PERN was used by database of Bahria University, this included literature and articles from international sources; 2 articles from Pakistan on this topic were consulted (one in international journal and one in a local journal). Of these, 49 articles were shortlisted which discussed relation of microRNA genetic expression in breast cancer. These articles were consulted for this review. PMID:27375730

  20. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2

  1. Expression of microRNAs in HPV negative tonsil cancers and their regulation of PDCD4.

    PubMed

    Khoury, Samantha; Ahadi, Alireza; Zhang, Xiaoying; Tran, Nham

    2016-06-01

    Global rates of tonsil cancer have been increasing since the turn of the millennia, however we still have a limited understanding of the genes and pathways which control this disease. This array dataset which is linked to our publication (Zhang et al., 2015) describes the profiling of human miRNAs in tonsil and normal adjacent tissues. With this dataset, we identified a list of microRNA (miRNA) which were highly over represented in tonsil cancers and showed that several miRNAs were able to regulate the tumour suppressor PDCD4 in a temporal manner. The dataset has been deposited into Gene Expression Omnibus (GSE75630). PMID:27222808

  2. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations

    PubMed Central

    Louten, Jennifer; Beach, Michael; Palermino, Kristina; Weeks, Maria; Holenstein, Gabrielle

    2015-01-01

    MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus. PMID:26819546

  3. MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression.

    PubMed

    Chen, Weishen; Sheng, Puyi; Huang, Zhiyu; Meng, Fangang; Kang, Yan; Huang, Guangxin; Zhang, Zhiqi; Liao, Weiming; Zhang, Ziji

    2016-01-01

    Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3'-untranslated region (3'-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration. PMID:27563877

  4. MicroRNA-33 suppresses CCL2 expression in chondrocytes.

    PubMed

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-06-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3'UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3'UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA.

  5. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato.

    PubMed

    Goetz, Marc; Hooper, Lauren C; Johnson, Susan D; Rodrigues, Julio Carlyle Macedo; Vivian-Smith, Adam; Koltunow, Anna M

    2007-10-01

    Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:beta-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato ('Monalbo') resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in

  6. Hierarchical Generative Biclustering for MicroRNA Expression Analysis

    NASA Astrophysics Data System (ADS)

    Caldas, José; Kaski, Samuel

    Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.

  7. Analysis of Serum microRNA Expression Profiles and Comparison with Small Intestinal microRNA Expression Profiles in Weaned Piglets.

    PubMed

    Tao, Xin; Xu, Ziwei; Men, Xiaoming

    2016-01-01

    Weaning stress induces tissue injuries and impairs health and growth in piglets, especially during the first week post-weaning. MicroRNAs (miRNAs) play vital roles in regulating stresses and diseases. Our previous study found multiple differentially expressed miRNAs in small intestine of piglets at four days post-weaning. To better understand the roles of miRNAs during weaning stress, we analyzed the serum miRNA expressional profile in weaned piglets (at four days post-weaning) and in suckling piglets (control) of the same age using miRNA microarray technology. We detected a total of 300 expressed miRNAs, 179 miRNAs of which were differentially expressed between the two groups. The miRNA microarray results were validated by RT-qPCR. The biological functions of these differentially expressed miRNAs were predicted by GO terms and KEGG pathway annotations. We identified 10 highly expressed miRNAs in weaned piglets including miR-31, miR-205, and miR-21 (upregulated) and miR-144, miR-30c-5p, miR-363, miR-194a, miR-186, miR-150, and miR-194b-5p (downregulated). Additionally, miR-194b-5p expression was significantly downregulated in serum and small intestine of weaned piglets. Our results suggest that weaning stress affects serum miRNA profiles in piglets. And serum miR-194b-5p levels can reflect its expressional changes in small intestine of piglets by weaning stress. PMID:27632531

  8. Analysis of Serum microRNA Expression Profiles and Comparison with Small Intestinal microRNA Expression Profiles in Weaned Piglets

    PubMed Central

    Tao, Xin; Xu, Ziwei; Men, Xiaoming

    2016-01-01

    Weaning stress induces tissue injuries and impairs health and growth in piglets, especially during the first week post-weaning. MicroRNAs (miRNAs) play vital roles in regulating stresses and diseases. Our previous study found multiple differentially expressed miRNAs in small intestine of piglets at four days post-weaning. To better understand the roles of miRNAs during weaning stress, we analyzed the serum miRNA expressional profile in weaned piglets (at four days post-weaning) and in suckling piglets (control) of the same age using miRNA microarray technology. We detected a total of 300 expressed miRNAs, 179 miRNAs of which were differentially expressed between the two groups. The miRNA microarray results were validated by RT-qPCR. The biological functions of these differentially expressed miRNAs were predicted by GO terms and KEGG pathway annotations. We identified 10 highly expressed miRNAs in weaned piglets including miR-31, miR-205, and miR-21 (upregulated) and miR-144, miR-30c-5p, miR-363, miR-194a, miR-186, miR-150, and miR-194b-5p (downregulated). Additionally, miR-194b-5p expression was significantly downregulated in serum and small intestine of weaned piglets. Our results suggest that weaning stress affects serum miRNA profiles in piglets. And serum miR-194b-5p levels can reflect its expressional changes in small intestine of piglets by weaning stress. PMID:27632531

  9. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number. PMID:24866763

  10. Expression of microRNAs in human post-mortem amyotrophic lateral sclerosis spinal cords provides insight into disease mechanisms.

    PubMed

    Figueroa-Romero, Claudia; Hur, Junguk; Lunn, J Simon; Paez-Colasante, Ximena; Bender, Diane E; Yung, Raymond; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Amyotrophic lateral sclerosis is a late-onset and terminal neurodegenerative disease. The majority of cases are sporadic with unknown causes and only a small number of cases are genetically linked. Recent evidence suggests that post-transcriptional regulation and epigenetic mechanisms, such as microRNAs, underlie the onset and progression of neurodegenerative disorders; therefore, altered microRNA expression may result in the dysregulation of key genes and biological pathways that contribute to the development of sporadic amyotrophic lateral sclerosis. Using systems biology analyses on postmortem human spinal cord tissue, we identified dysregulated mature microRNAs and their potential targets previously implicated in functional process and pathways associated with the pathogenesis of ALS. Furthermore, we report a global reduction of mature microRNAs, alterations in microRNA processing, and support for a role of the nucleotide binding protein, TAR DNA binding protein 43, in regulating sporadic amyotrophic lateral sclerosis-associated microRNAs, thereby offering a potential underlying mechanism for sporadic amyotrophic lateral sclerosis.

  11. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks

    PubMed Central

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Arun, Rajpranap; Santhakumar, Rajalakshmi; Kapadia, Nand Kishore; Kumar, Ravi; Verma, Rama Shanker

    2015-01-01

    Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2. PMID:26295583

  12. Expression Pattern of Inflammatory Response Genes and Their Regulatory MicroRNAs in Bovine Oviductal Cells in Response to Lipopolysaccharide: Implication for Early Embryonic Development

    PubMed Central

    Ibrahim, Sally; Salilew-Wondim, Dessie; Rings, Franca; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development. PMID:25764515

  13. Expression pattern of inflammatory response genes and their regulatory micrornas in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development.

    PubMed

    Ibrahim, Sally; Salilew-Wondim, Dessie; Rings, Franca; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development. PMID:25764515

  14. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review)

    PubMed Central

    JIMÉNEZ-WENCES, HILDA; PERALTA-ZARAGOZA, OSCAR; FERNÁNDEZ-TILAPA, GLORIA

    2014-01-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53. PMID:24737381

  15. Aberrant NF-KappaB Expression in Autism Spectrum Condition: A Mechanism for Neuroinflammation

    PubMed Central

    Young, Adam M. H.; Campbell, Elaine; Lynch, Sarah; Suckling, John; Powis, Simon J.

    2011-01-01

    Autism spectrum condition (ASC) is recognized as having an inflammatory component. Post-mortem brain samples from patients with ASC display neuroglial activation and inflammatory markers in cerebrospinal fluid, although little is known about the underlying molecular mechanisms. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a protein found in almost all cell types and mediates regulation of immune response by inducing the expression of inflammatory cytokines and chemokines, establishing a feedback mechanism that can produce chronic or excessive inflammation. This article describes immunodetection and immunofluorescence measurements of NF-κB in human post-mortem samples of orbitofrontal cortex tissue donated to two independent centers: London Brain Bank, Kings College London, UK (ASC: n = 3, controls: n = 4) and Autism Tissue Program, Harvard Brain Bank, USA (ASC: n = 6, controls: n = 5). The hypothesis was that concentrations of NF-κB would be elevated, especially in activated microglia in ASC, and pH would be concomitantly reduced (i.e., acidification). Neurons, astrocytes, and microglia all demonstrated increased extranuclear and nuclear translocated NF-κB p65 expression in brain tissue from ASC donors relative to samples from matched controls. These between-groups differences were increased in astrocytes and microglia relative to neurons, but particularly pronounced for highly mature microglia. Measurement of pH in homogenized samples demonstrated a 0.98-unit difference in means and a strong (F = 98.3; p = 0.00018) linear relationship to the expression of nuclear translocated NF-κB in mature microglia. Acridine orange staining localized pH reductions to lysosomal compartments. In summary, NF-κB is aberrantly expressed in orbitofrontal cortex in patients with ASC, as part of a putative molecular cascade leading to inflammation, especially of resident immune cells in brain regions associated with the

  16. Hypoxia alters MicroRNA expression in rat cortical pericytes.

    PubMed

    Truettner, Jessie S; Katyshev, Vladimir; Esen-Bilgin, Nilufer; Dietrich, W Dalton; Dore-Duffy, Paula

    2013-01-01

    Microvascular adaptation to metabolic stress is important in the maintenance of tissue homeostasis. Nowhere is this more important than in the central nervous system (CNS) where the cellular constituents of the neurovascularture including endothelial cells, pericytes and some astroglia must make fine-tuned autoregulatory modulations that maintain the delicate balance between oxygen availability and metabolic demand. miRNAs have been reported to play an important regulatory role in many cellular functions including cell differentiation, growth and proliferation, lineage determination, and metabolism. In this study, we investigated the possible role of miRNAs in the CNS capillary pericyte response to hypoxic stress. Micro-array analysis was used to examine the expression of 388 rat miRNAs in primary rat cortical pericytes with and without exposure to low oxygen (1%) after 24 or 48 hr. Pericytes subjected to hypoxia showed 27 miRNAs that were higher than control and 31 that were lower. Validation and quantification was performed by Real Time RT-PCR on pericytes subjected to 2 hr, 24 hr, or 48 hr of hypoxia. Hypoxia induced changes included physiological pathways governing the stress response, angiogenesis, migration and cell cycle regulation. miRNAs associated with HIF-1α (miR-322[1], miR-199a [2]), TGF-β1 (miR-140[3], miR-145[4], miR-376b-3p[5]) and VEGF (miR-126a[6], miR-297[7], miR-16[8], miR-17-5p[9]) were differentially regulated. Systematic and integrative analysis of possible gene targets analyzed by DAVID bioinformatics resource (http://david.abcc.ncifcrf.gov) and MetaSearch 2.0 (GeneGo) for some of these miRNAs was conducted to determine possible gene targets and pathways that may be affected by the post-transcriptional changes after hypoxic insult.

  17. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced.

  18. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA (mRNA) and protein synthesis. Recent studies have shown that some miRNAs are involved in the progression of nasopharyngeal carcinoma (NPC). However, the aberrant miRNAs implicated in different clinical stages of NPC remain unknown and their functions have not been systematically studied. Methods In this study, miRNA microarray assay was performed on biopsies from different clinical stages of NPC. TargetScan was used to predict the target genes of the miRNAs. The target gene list was narrowed down by searching the data from the UniGene database to identify the nasopharyngeal-specific genes. The data reduction strategy was used to overlay with nasopharyngeal-specifically expressed miRNA target genes and complementary DNA (cDNA) expression data. The selected target genes were analyzed in the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The microRNA-Gene-Network was build based on the interactions of miRNAs and target genes. miRNA promoters were analyzed for the transcription factor (TF) binding sites. UCSC Genome database was used to construct the TF-miRNAs interaction networks. Results Forty-eight miRNAs with significant change were obtained by Multi-Class Dif. The most enriched GO terms in the predicted target genes of miRNA were cell proliferation, cell migration and cell matrix adhesion. KEGG analysis showed that target genes were significantly involved in adherens junction, cell adhesion molecules, p53 signalling pathway et al. Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-29a/c, miR-34b, miR-34c-3p, miR-34c-5p, miR-429, miR-203, miR-222, miR-1/206, miR-141, miR-18a/b, miR-544, miR-205 and miR-149 may play important roles on the development of NPC. We proposed an integrative strategy for identifying the miRNA-mRNA regulatory modules and

  19. Review of MicroRNA Deregulation in Oral Cancer. Part I

    PubMed Central

    Miloro, Michael; Zhou, Xiaofeng

    2011-01-01

    ABSTRACT Objectives Oral cancer is the sixth most common malignancy worldwide. Cancer development and progression requires inactivation of tumour suppressor genes and activation of proto-oncogenes. Expression of these genes is in part dependant on RNA and microRNA based mechanisms. MicroRNAs are essential regulators of diverse cellular processes including proliferation, differentiation, apoptosis, survival, motility, invasion and morphogenesis. Several microRNAs have been found to be aberrantly expressed in various cancers including oral cancer. The purpose of this article was to review the literature related to microRNA deregulation in the head and neck/oral cavity cancers. Material and Methods A comprehensive review of the available literature from 2000 to 2011 relevant to microRNA deregulation in oral cancer was undertaken using PubMed, Medline, Scholar Google and Scopus. Keywords for the search were: microRNA and oral cancer, microRNA and squamous cell carcinoma, microRNA deregulation. Only full length articles in the English language were included. Strengths and limitations of each study are presented in this review. Results Several studies were identified that investigated microRNA alternations in the head and neck/oral cavity cancers. Significant progress has been made in identification of microRNA deregulation in these cancers. It has been evident that several microRNAs were found to be deregulated specifically in oral cavity cancers. Among these, several microRNAs have been functionally validated and their potential target genes have been identified. Conclusions These findings on microRNA deregulation in cancer further enhance our understanding of the disease progression, response to treatment and may assist with future development of targeted therapy. PMID:24421988

  20. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers.

    PubMed

    Wang, Fan; Liu, Wei; Jin, Yihe; Wang, Faqi; Ma, Junsheng

    2015-01-01

    Perfluorooctane sulfonate (PFOS) is an animal carcinogen. However, the underlying mechanism in cancer initiation is still largely unknown. Recently identified microRNAs (miRNAs) may play an important role in toxicant exposure and in the process of toxicant-induced tumorigenesis. We used PFOS to investigate PFOS-induced changes in miRNA expression in developing rat liver and the potential mechanism of PFOS-induced toxic action. Dams received 3.2 mg/kg PFOS in their feed from gestational day 1 (GD1) to postnatal day 7 (PND 7). Pups then had free access to treated feed until PND 7. We isolated RNAs from liver tissues on PND 1 and 7 and analyzed the expression profiles of 387 known rat miRNAs using microarray technology. PFOS exposure induced significant changes in miRNA expression profiles. Forty-six miRNAs had significant expression alterations on PND 1, nine miRNAs on PND 7. Specifically, expression of four miRNAs was up-regulated on PND 7 but down-regulated on PND1 (p < 0.05). Many aberrantly expressed miRNAs were related to various cancers. We found oncogenic and tumor-suppressing miRNAs, which included miR-19b, miR-21*, miR-17-3p, miR-125a-3p, miR-16, miR-26a, miR-1, miR-200c, and miR-451. In addition, four miRNAs were simultaneous significantly expressed on both PND 1 and 7. Functional Annotation analysis of the predicted transcript targets revealed that PFOS exposure potentially alters pathways associated with different cancers (cancer, melanoma, pancreatic cancer, colorectal cancer, and glioma), biological processes which include positive regulation of apoptosis and cell proliferation. Results showed PFOS exposure altered the expression of a suite of miRNAs. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 712-723, 2015.

  1. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns.

    PubMed

    Treece, Amanda L; Duncan, Daniel L; Tang, Weihua; Elmore, Sandra; Morgan, Douglas R; Dominguez, Ricardo L; Speck, Olga; Meyers, Michael O; Gulley, Margaret L

    2016-06-01

    MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics. PMID:26950485

  2. Differential expression of microRNAs in shrimp Marsupenaeus japonicus in response to Vibrio alginolyticus infection.

    PubMed

    Zhu, Fei; Wang, Zhi; Sun, Bao-Zhen

    2016-02-01

    Till date numerous microRNAs (miRNAs) have been discovered from various organisms, including mammals, plants, insects, nematodes and viruses. They are known to have antiviral functions in crustaceans such as shrimp Marsupenaeus japonicas. However, little is known about the role of miRNAs against bacterial infection in this shrimp caused by Vibrio alginolyticus. We performed small RNA sequencing to characterize the differentially expressed microRNAs in V. alginolyticus challenged shrimp, in comparison to that in control uninfected shrimp, at 24 h and 48 h. In total, 55 host miRNAs were differentially expressed in response to the infection and most of these were downregulated at both the time-points. TargetScan and miRanda algorithms showed that the target genes of these down-regulated miRNAs were related to innate immune functions such as production of phenoloxidase enzyme, apoptosis and phagocytosis. Further, gene ontology analysis revealed that many immune signaling pathways were mediated by these miRNAs. This study is one of the earliest attempts at characterizing shrimp miRNAs that respond to V. alginolyticus infection, and will help unravel the miRNA pathways involved in antibacterial action in shrimp.

  3. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers.

    PubMed

    Liu, Zhaowen; Zhang, Junying; Yuan, Xiguo; Liu, Baobao; Liu, Yajun; Li, Aimin; Zhang, Yuanyuan; Sun, Xiaohan; Tuo, Shouheng

    2015-08-01

    MicroRNAs (miRNAs) play an indispensable role in cancer initiation and progression. Different cancers have some common hallmarks in general. Analyzing miRNAs that consistently contribute to different cancers can help us to discover the relationship between miRNAs and traits shared by cancers. Most previous works focus on analyzing single miRNA. However, dysregulation of a single miRNA is generally not sufficient to contribute to complex cancer processes. In this study, we put emphasis on analyzing cooperation of miRNAs across cancers. We assume that miRNAs can cooperatively regulate oncogenic pathways and contribute to cancer hallmarks. Such a cooperation is modeled by a miRNA module referred to as a pan-cancer conserved miRNA module. The module consists of miRNAs which simultaneously regulate cancers and are significantly intra-correlated. A novel computational workflow for the module discovery is presented. Multiple modules are discovered from miRNA expression profiles using the method. The function of top two ranked modules are analyzed using the mRNAs which correlate to all the miRNAs in a module across cancers, inferring that the two modules function in regulating the cell cycle which relates to cancer hallmarks as self sufficiency in growth signals and insensitivity to antigrowth signals. Additionally, two novel miRNAs mir-590 and mir-629 are found to cooperate with well-known onco-miRNAs in the modules to contribute to cancers. We also found that PTEN, which is a well known tumor suppressor that regulates the cell cycle, is a common target of miRNAs in the top-one module and cooperative control of PTEN can be a reason for the miRNAs' cooperation. We believe that analyzing the cooperative mechanism of the miRNAs in modules rather than focusing on only single miRNAs may help us know more about the complicated relationship between miRNAs and cancers and develop more effective treatment strategies for cancers. PMID:26052692

  4. MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma

    PubMed Central

    Shen, Fengmei; Mo, Meng-Hsuan; Chen, Liang; An, Shejuan; Tan, Xiaohui; Fu, Yebo; Rezaei, Katayoon; Wang, Zuoren; Zhang, Lin; Fu, Sidney W.

    2014-01-01

    Retinoblastoma (RB) is a children's ocular cancer caused by mutated retinoblastoma 1 (Rb1) gene on both alleles. Rb1 and other related genes could be regulated by microRNAs (miRNA) via complementarily pairing with their target sites. MicroRNA-21 (miR-21) possesses the oncogenic potential to target several tumor suppressor genes, including PDCD4, and regulates tumor progression and metastasis. However, the mechanism of how miR-21 regulates PDCD4 is poorly understood in RB. We investigated the expression of miRNAs in RB cell lines and identified that miR-21 is one of the most deregulated miRNAs in RB. Using qRT-PCR, we verified the expression level of several miRNAs identified by independent microarray assays, and analyzed miRNA expression patterns in three RB cell lines, including Weri-Rb1, Y79 and RB355. We found that miR-19b, -21, -26a, -195 and -222 were highly expressed in all three cell lines, suggesting their potential role in RB tumorigenesis. Using the TargetScan program, we identified a list of potential target genes of these miRNAs, of which PDCD4 is one the targets of miR-21. In this study, we focused on the regulatory mechanism of miR-21 on PDCD4 in RB. We demonstrated an inverse correlation between miR-21 and PDCD4 expression in Weri-Rb1 and Y79 cells. These data suggest that miR-21 down-regulates Rb1 by targeting PDCD4 tumor suppressor. Therefore, miR-21 could serve as a therapeutic target for retinoblastoma. PMID:25520758

  5. Microarray analysis reveals altered circulating microRNA expression in mice infected with Coxsackievirus B3

    PubMed Central

    Sun, Chaoyu; Tong, Lei; Zhao, Wenran; Wang, Yan; Meng, Yuan; Lin, Lexun; Liu, Bingchen; Zhai, Yujia; Zhong, Zhaohua; Li, Xueqi

    2016-01-01

    Coxsackievirus B3 (CVB3) is a common causative agent in the development of inflammatory cardiomyopathy. However, whether the expression of peripheral blood microRNAs (miRNAs) is altered in this process is unknown. The present study investigated changes to miRNA expression in the peripheral blood of CVB3-infected mice. Utilizing miRNA microarray technology, differential miRNA expression was examined between normal and CVB3-infected mice. The present results suggest that specific miRNAs were differentially expressed in the peripheral blood of mice infected with CVB3, varying with infection duration. Using miRNA microarray analysis, a total of 96 and 89 differentially expressed miRNAs were identified in the peripheral blood of mice infected with CVB3 for 3 and 6 days, respectively. Quantitative polymerase chain reaction was used to validate differentially expressed miRNAs, revealing a consistency of these results with the miRNA microarray analysis results. The biological functions of the differentially expressed miRNAs were then predicted by bioinformatics analysis. The potential biological roles of differentially expressed miRNAs included hypertrophic cardiomyopathy, dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. These results may provide important insights into the mechanisms responsible for the progression of CVB3 infection. PMID:27698715

  6. Microarray analysis reveals altered circulating microRNA expression in mice infected with Coxsackievirus B3

    PubMed Central

    Sun, Chaoyu; Tong, Lei; Zhao, Wenran; Wang, Yan; Meng, Yuan; Lin, Lexun; Liu, Bingchen; Zhai, Yujia; Zhong, Zhaohua; Li, Xueqi

    2016-01-01

    Coxsackievirus B3 (CVB3) is a common causative agent in the development of inflammatory cardiomyopathy. However, whether the expression of peripheral blood microRNAs (miRNAs) is altered in this process is unknown. The present study investigated changes to miRNA expression in the peripheral blood of CVB3-infected mice. Utilizing miRNA microarray technology, differential miRNA expression was examined between normal and CVB3-infected mice. The present results suggest that specific miRNAs were differentially expressed in the peripheral blood of mice infected with CVB3, varying with infection duration. Using miRNA microarray analysis, a total of 96 and 89 differentially expressed miRNAs were identified in the peripheral blood of mice infected with CVB3 for 3 and 6 days, respectively. Quantitative polymerase chain reaction was used to validate differentially expressed miRNAs, revealing a consistency of these results with the miRNA microarray analysis results. The biological functions of the differentially expressed miRNAs were then predicted by bioinformatics analysis. The potential biological roles of differentially expressed miRNAs included hypertrophic cardiomyopathy, dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. These results may provide important insights into the mechanisms responsible for the progression of CVB3 infection.

  7. MicroRNA Expression Patterns in Human Astrocytes in Relation to Anatomical Location and Age.

    PubMed

    Rao, Vijayaraghava T S; Ludwin, Samuel K; Fuh, Shih-Chieh; Sawaya, Robin; Moore, Craig S; Ho, Ming-Kai; Bedell, Barry J; Sarnat, Harvey B; Bar-Or, Amit; Antel, Jack P

    2016-02-01

    Anatomic distribution and age are variables linked to functions of astrocytes under physiologic and pathologic conditions. We measured the relative expression of a panel of microRNAs (miRNAs) in astrocytes captured by laser micro-dissection from normal human adult white and grey matter, human fetal white matter and germinal matrix samples. Although expression of most miRNAs was comparable between adult and fetal samples, regional differences were observed. In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid. Differences between adult white and grey matter miRNA expression included higher expression of pro-inflammatory miRNAs in the former, potentially contributing to differences in inflammation between grey and white matter plaques in multiple sclerosis. Lower expression of miRNAs in fetal versus adult white matter astrocytes likely reflects the immaturity of these migrating cells. Highly expressed miRNAs in the fetal germinal matrix are probably relevant in development and also recapitulate some responses to injury. Future studies can address regional alterations of miRNA expression in pathological conditions. PMID:26802178

  8. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer

    PubMed Central

    He, Dong-Xu; Gu, Feng; Gao, Fei; Hao, Jun-jun; Gong, Desheng; Gu, Xiao-Ting; Mao, Ai-Qin; Jin, Jian; Fu, Li; Ma, Xin

    2016-01-01

    Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance. PMID:27094684

  9. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother

    PubMed Central

    Alsaweed, Mohammed; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2015-01-01

    Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance. PMID:26529003

  10. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother.

    PubMed

    Alsaweed, Mohammed; Hartmann, Peter E; Geddes, Donna T; Kakulas, Foteini

    2015-11-01

    Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance. PMID:26529003

  11. Effects of Simulated Microgravity on the Expression Profile of Microrna in Human Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda

    2012-07-01

    EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15

  12. Investigating the Expression of Oncogenic and Tumor Suppressive MicroRNA in DLBCL.

    PubMed

    Handal, Brian; Enlow, Rossanna; Lara, Daniel; Bailey, Mark; Vega, Francisco; Hu, Peter; Lennon, Alan

    2013-01-01

    Diffuse Large B-cell Lymphoma (DLBCL) is the most common form of lymphoma, accounting for 40 percent of newly diagnosed cases each year. DLBCL is an aggressive abnormal growth of tissue characterized by the accumulation of abnormal B-lymphocytes in the lymphatics of affected individuals. The goal of this study was to analyze microRNA (miRNA) as an alternative method of diagnosis and treatment for patients affected with the observed cancer. MiRNAs are small, non-coding, endogenous RNA that control gene expression at the post-transcriptional level. Emerging evidence suggests that miRNA-mediated gene regulation has a functional role in cancer and could prove to be crucial targets for therapeutic intervention. Here, we provide a quantitative study on the expression of a diverse class of oncogenic and tumor suppressive miRNA that have shown to regulate oncoproteins involved in differentiation, proliferation, and/or apoptosis.

  13. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells.

    PubMed

    Funamizu, Naotake; Lacy, Curtis R; Kamada, Minori; Yanaga, Katsuhiko; Manome, Yoshinobu

    2015-11-01

    The present study investigated the relationship between microRNA-203 (miR-203) and the p53 upregulated modulator of apoptosis (Puma) in colon (HCT116) and lung cancer (A549) cells. Colon and lung cancer cell lines were selected for this study since a relationship between p53/miR-203 and p53/Puma has been established in both cancers. In the present study, adriamycin and nutlin-3 were used to activate p53, which induced both miR-203 and Puma expression in HCT116 cells. In contrast, HCT 116 cells with downregulated p53 showed decreased miR-203 and Puma expression. Importantly, we found that overexpressed miR-203 in HCT116 cells resulted in significantly increased Puma expression (P<0.05). Based on these findings, we hypothesized that another limb of the p53/Puma axis depends on miR-203 expression. To further validate this relationship, we used lung cancer cells (A549) and found that activated p53 increased both miR-203 and Puma expression. In addition, we found that Puma expression remained elevated in cells with overexpressed miR-203 in the presence of p53 downregulation. Cumulatively, our data purport that p53 not only increased Puma expression directly, but that it may also do so through miR-203. Additionally, functional studies revealed that miR-203 overexpression induced apoptosis and inhibited cell invasiveness.

  14. Tetrandrine induces microRNA differential expression in human hypertrophic scar fibroblasts in vitro.

    PubMed

    Ning, P; Peng, Y; Liu, D W; Hu, Y H; Liu, Y; Liu, D M

    2016-01-01

    MicroRNAs (miRNAs) have recently been shown to play a role in normal wound healing process. miRNAs may be linked to pathologic wound healing and closely related to the formation of hypertrophic scars. This study aimed to explore the effects of tetrandrine on the miRNA expression profile in human hypertrophic scar fibroblasts (HSFs) in vitro. HSFs were randomly divided into two groups: the tetrandrine treatment group and the control group. The experimental and control groups were collected and analyzed by miRNA array after a 48-h culture. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to confirm the array results. The targets of differentially expressed miRNA were functionally annotated using bioinformatic approaches. miRNA microarray analysis identified 193 differentially expressed miRNAs and the expression of 186 miRNAs in the experimental group decreased while that of 7 miRNAs increased compared to the control group. The most significantly downregulated miRNA was hsa-miR-1246, and hsa-miR-27b had the highest expression level. Significant differentially expressed miRNAs were predicted to be related to several important signaling pathways related to scar wound healing. The differential miRNA expression identified in this study provides the experimental basis for further understanding the anti-fibrosis effect of tetrandrine. PMID:26909951

  15. Global correlation analysis for microRNA and gene expression profiles in human obesity.

    PubMed

    Li, Jiayu; Zhou, Changyu; Li, Jiarui; Su, Ziyuan; Sang, Haiyan; Jia, Erna; Si, Daoyuan

    2015-05-01

    Obesity is an increasing health problem associated with major adverse consequences for human health. MicroRNAs (miRNAs), small endogenous non-coding RNAs, regulate the expression of genes that play roles in human body via posttranscriptional inhibition. To identify the miRNAs and their target genes involved in obesity, we downloaded the miRNA and gene expression profiles from gene expression omnibus (GEO) database and analyzed the differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in adipose tissues from obese subjects compared to those from non-obese subjects. Then, we constructed the miRNA-target interaction network and conducted functional enrichment analysis of DEGs, and the targets negatively correlated with DEMs. We identified a total of 16 miRNAs and 192 genes that showed a significantly different expression and 3002 miRNA-target interaction pairs, including 182 regulatory pairs in obesity. Target genes of DEMs were found mainly enriched in several functions, such as collagen fibril organization, extracellular matrix part, and extracellular matrix structural constituent. Moreover, hsa-miR-425 and hsa-miR-126 had a significant number of target genes and hsa-miR-16/COL12A1 and hsa-miR-634/SLC4A4 interaction pairs are significantly co-expressed, suggesting that they might play important roles in the pathogenesis of obesity. Our study provides a bioinformatic basis for further research of molecular mechanism in obesity.

  16. Regulation of the expression of the liver cancer susceptibility gene MICA by microRNAs.

    PubMed

    Kishikawa, Takahiro; Otsuka, Motoyuki; Yoshikawa, Takeshi; Ohno, Motoko; Takata, Akemi; Shibata, Chikako; Kondo, Yuji; Akanuma, Masao; Yoshida, Haruhiko; Koike, Kazuhiko

    2013-01-01

    Hepatocellular carcinoma (HCC) is a threat to public health worldwide. We previously identified the association of a single nucleotide polymorphism (SNP) at the promoter region of the MHC class I polypeptide-related sequence A (MICA) gene with the risk of hepatitis-virus-related HCC. Because this SNP affects MICA expression levels, regulating MICA expression levels may be important in the prevention of HCC. We herein show that the microRNA (miR) 25-93-106b cluster can modulate MICA levels in HCC cells. Overexpression of the miR 25-93-106b cluster significantly suppressed MICA expression. Conversely, silencing of this miR cluster enhanced MICA expression in cells that express substantial amounts of MICA. The changes in MICA expression levels by the miR25-93-106b cluster were biologically significant in an NKG2D-binding assay and an in vivo cell-killing model. These data suggest that the modulation of MICA expression levels by miRNAs may be a useful method to regulate HCCs during hepatitis viral infection.

  17. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar.

    PubMed

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-04-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5' and 3' flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes.

  18. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  19. UVA and UVB Irradiation Differentially Regulate microRNA Expression in Human Primary Keratinocytes

    PubMed Central

    Kraemer, Anne; Chen, I-Peng; Henning, Stefan; Faust, Alexandra; Volkmer, Beate; Atkinson, Michael J.; Moertl, Simone; Greinert, Ruediger

    2013-01-01

    MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis. PMID:24391759

  20. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs.

    PubMed

    Towler, Benjamin P; Jones, Christopher I; Viegas, Sandra C; Apura, Patricia; Waldron, Joseph A; Smalley, Sarah K; Arraiano, Cecilia M; Newbury, Sarah F

    2015-01-01

    Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a "no wing" phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥ 2-fold and 6 (5.5%) decreasing in level ≥ 2-fold. Of these microRNAs, miR-252-5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252-5p for degradation during normal wing development. Another microRNA, miR-982-5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease.

  1. Prognostic value of microRNA-126 and CRK expression in gastric cancer

    PubMed Central

    Yue, Shun; Shi, Huichang; Han, Jun; Zhang, Tiecheng; Zhu, Weiguo; Zhang, Dahong

    2016-01-01

    Background MicroRNA (miR)-126, acting as a tumor suppressor, has been reported to inhibit the invasion of gastric cancer cells in part by targeting v-crk sarcoma virus CT10 oncogene homologue (CRK). The aim of this study was to investigate the clinical significance of miR-126/CRK axis in gastric cancer. Methods miR-126 and CRK mRNA expression levels were detected by real-time quantitative reverse transcription polymerase chain reaction in 220 self-pairs of gastric cancer and adjacent noncancerous tissues. Results Expression levels of miR-126 and CRK mRNA in gastric cancer tissues were, respectively, lower and higher than those in adjacent noncancerous tissues (both P<0.001). Low miR-126 expression and high CRK expression, alone or in combination, were all significantly associated with positive lymph node and distant metastases and advanced TNM stage of human gastric cancer (all P<0.05). We also found that the overall survival rates of the patients with low miR-126 expression and high CRK expression were, respectively, shorter than those with high miR-126 expression and low CRK expression. Interestingly, miR-126-low/CRK-high expression was associated with a significantly worse overall survival of all miR-126/CRK groups (P<0.001). Moreover, multivariate analysis identified miR-126 and/or CRK expression as independent prognostic factors for patients with gastric cancer. Notably, the prognostic relevance of miR-126 and/or CRK expression was more obvious in the subgroup of patients with TNM stage IV. Conclusion Dysregulation of miR-126/CRK axis may promote the malignant progression of human gastric cancer. miR-126 and CRK combined expression may serve as an independent predictor of overall survival in patients with advanced gastric cancer. PMID:27785060

  2. Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells.

    PubMed

    Mangala, Lingegowda S; Zhang, Ye; He, Zhenhua; Emami, Kamal; Ramesh, Govindarajan T; Story, Michael; Rohde, Larry H; Wu, Honglu

    2011-09-16

    This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.

  3. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  4. MicroRNAs Expression Profile in Common Bean (Phaseolus vulgaris) under Nutrient Deficiency Stresses and Manganese Toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. The information on miRNAs in legumes is scarce. This work analyzes miRNAs in the agronomically important legume common bean (Phaseolus vulgaris. A hybridization approach of miRNAs-macroarrays prin...

  5. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    EPA Science Inventory

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  6. MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization

    PubMed Central

    Fan, Yi; Zhou, Yachuan; Zhou, Xuedong; Sun, Feifei; Gao, Bo; Wan, Mian; Zhou, Xin; Sun, Jianxun; Xu, Xin; Cheng, Lei; Crane, Janet

    2015-01-01

    Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3′ untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization. PMID:26055330

  7. MicroRNA expression during demosponge dissociation, reaggregation, and differentiation and a evolutionarily conserved demosponge miRNA expression profile.

    PubMed

    Robinson, Jeffrey M

    2015-11-01

    Demosponges share eight orthologous microRNAs (miRNAs), with none in common with Bilateria. Biological functions of these demosponge miRNAs are unknown. Bilaterian miRNAs are key regulators of cellular processes including cell cycle, differentiation, and metabolism. Resolving if demosponge miRNAs participate in such biological functions will provide clues whether these functions are convergent, evidence on the mode of evolution of cellular developmental processes. Here, a quantitative PCR (qPCR) assay was developed and used to test for differential miRNA expression during dissociation and reaggregation in Spongosorites, compare expression profiles between choanosome and cortex in Spongosorites, and compare undifferentiated gemmules to differentiated juveniles in Ephydatia. During Spongosorites dissociation and reaggregation, miRNA expression showed a global decrease in expression across a range of reaggregating cell densities. miRNA differential response could be related to various general cellular responses, potentially related to nutrient-poor conditions of the minimal artificial seawater media, stress response from tissue dissociation, or loss of cell-cell or cell-matrix contact. In Ephydatia, overall increase in miRNA expression in gemmule-hatched stage 4/5 juveniles relative to gemmules is observed, indicating that increased miRNA expression may be related to increased cellular activity such as migration, cell cycle, and/or differentiation. Observed differential miRNA expression of miRNA during dissociation in Spongosorites (lowered global expression), and during activation, and differentiation of Ephydatia gemmules (increased global expression) could indicate that miRNA expression is associated with cell cycle, differentiation, or metabolism pathways. Interspecies comparison was performed, results indicating that orthologous miRNAs share similar relative expression pattern between the four species tested (Spongosorites, Cinachyrella, Haliclona, and Ephydatia

  8. microRNA Expression and Biogenesis in Cellular Response to Ionizing Radiation

    PubMed Central

    Mao, Aihong; Liu, Yang; Di, Cuixia; Sun, Chao

    2014-01-01

    Increasing evidence demonstrates that the expression levels of microRNAs (miRNAs) significantly change upon ionizing radiation (IR) and play a critical role in cellular response to IR. Although several radiation responsive miRNAs and their targets have been identified, little is known about how miRNAs expression and biogenesis is regulated by IR-caused DNA damage response (DDR). Hence, in this review, we summarize miRNA expression and biogenesis in cellular response to IR and mainly elucidate the regulatory mechanisms of miRNA expression and biogenesis from different aspects including ataxia-telangiectasia mutated (ATM) kinase, p53/p63/p73 family and other potential factors. Furthermore, we focus on ΔNp73, which might be a potential regulator of miRNA expression and biogenesis in cellular response to IR. miRNAs could effectively activate the IR-induced DDR and modulate the radiation response and cellular radiosensitivity, which have an important potential clinical application. Therefore, thoroughly understanding the regulatory mechanisms of miRNAs expression and biogenesis in radiation response will provide new insights for clinical cancer radiotherapy. PMID:24905898

  9. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions

    PubMed Central

    Chavali, Pavithra Lakshminarasimhan; Funa, Keiko; Chavali, Sreenivas

    2011-01-01

    microRNAs (miRNAs) spatio-temporally modulate gene expression; however, very little is known about the regulation of their expression. Here, we hypothesized that the well-known cis-regulatory elements of gene expression, scaffold/matrix-attachment regions (MARs) could modulate miRNA expression. Accordingly, we found MARs to be enriched in the upstream regions of miRNA genes. To determine their role in cell type-specific expression of miRNAs, we examined four individual miRNAs (let-7b, miR-17, miR-93 and miR-221) and the miR-17–92 cluster, known to be overexpressed in neuroblastoma. Our results show that MARs indeed define the cell-specific expression of these miRNAs by tethering the chromatin to nuclear matrix. This is brought about by cell type-specific binding of HMG I/Y protein to MARs that then promotes the local acetylation of histones, serving as boundary elements for gene activation. The binding, chromatin tethering and gene activation by HMG I/Y was not observed in fibroblast control cells but were restricted to neuroblastoma cells. This study implies that the association of MAR binding proteins to MARs could dictate the tissue/context specific regulation of miRNA genes by serving as a boundary element signaling the transcriptional activation. PMID:21586588

  10. Suppression of MicroRNA let-7a Expression by Agmatine Regulates Neural Stem Cell Differentiation

    PubMed Central

    Song, Juhyun; Oh, Yumi; Kim, Jong Youl; Cho, Kyoung Joo

    2016-01-01

    Purpose Neural stem cells (NSCs) effectively reverse some severe central nervous system (CNS) disorders, due to their ability to differentiate into neurons. Agmatine, a biogenic amine, has cellular protective effects and contributes to cellular proliferation and differentiation in the CNS. Recent studies have elucidated the function of microRNA let-7a (let-7a) as a regulator of cell differentiation with roles in regulating genes associated with CNS neurogenesis. Materials and Methods This study aimed to investigate whether agmatine modulates the expression of crucial regulators of NSC differentiation including DCX, TLX, c-Myc, and ERK by controlling let-7a expression. Results Our data suggest that high levels of let-7a promoted the expression of TLX and c-Myc, as well as repressed DCX and ERK expression. In addition, agmatine attenuated expression of TLX and increased expression of ERK by negatively regulating let-7a. Conclusion Our study therefore enhances the present understanding of the therapeutic potential of NSCs in CNS disorders. PMID:27593875

  11. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression.

    PubMed

    Ucar, Olga; Tykocinski, Lars-Oliver; Dooley, James; Liston, Adrian; Kyewski, Bruno

    2013-07-01

    The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin configuration, epigenetic modifications and post-transcriptional control. Given the involvement of microRNAs (miRNAs) as potent post-transcriptional modulators of gene expression, we investigated their role in the regulation of pGE in purified mouse and human thymic epithelial cells (TECs). Microarray profiling of TEC subpopulations revealed evolutionarily conserved cell type and differentiation-specific miRNA signatures with a subset of miRNAs being significantly upregulated during terminal medullary thymic epithelial cell differentiation. The differential regulation of this subset of miRNAs was correlated with Aire expression and some of these miRNAs were misexpressed in the Aire knockout thymus. In turn, the specific absence of miRNAs in TECs resulted in a progressive reduction of Aire expression and pGE, affecting both Aire-dependent and -independent genes. In contrast, the absence of miR-29a only affected the Aire-dependent gene pool. These findings reveal a mutual interdependence of miRNA and Aire.

  12. MicroRNA-155 expression is independently predictive of outcome in chordoma

    PubMed Central

    Osaka, Eiji; Kelly, Andrew D.; Spentzos, Dimitrios; Choy, Edwin; Yang, Xiaoqian; Shen, Jacson K.; Yang, Pei; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Background Chordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma. Methods The miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively. Results The miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells. Conclusions We have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma. PMID:25823817

  13. MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression

    PubMed Central

    Chen, Weishen; Sheng, Puyi; Huang, Zhiyu; Meng, Fangang; Kang, Yan; Huang, Guangxin; Zhang, Zhiqi; Liao, Weiming; Zhang, Ziji

    2016-01-01

    Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3′-untranslated region (3′-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration. PMID:27563877

  14. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies.

    PubMed

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P; Alder, Hansjuerg; Carosi, Mariantonia A; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M

    2015-08-28

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.

  15. Identification of Novel, Highly Expressed Retroviral MicroRNAs in Cells Infected by Bovine Foamy Virus

    PubMed Central

    Whisnant, Adam W.; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin

    2014-01-01

    ABSTRACT While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo. PMID:24522910

  16. Plasma microRNA Expression and Micronuclei Frequency in Workers Exposed to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Deng, Qifei; Huang, Suli; Zhang, Xiao; Zhang, Wangzhen; Feng, Jing; Wang, Tian; Hu, Die; Guan, Lei; Li, Jun; Dai, Xiayun; Deng, Huaxin; Zhang, Xiaomin

    2014-01-01

    Background: Ubiquitous polycyclic aromatic hydrocarbons (PAHs) have been shown to alter gene expression patterns and elevate micronuclei (MN) frequency, but the underlying mechanisms are largely unknown. MicroRNAs (miRNAs) are key gene regulators that may be influenced by PAH exposures and mediate their effects on MN frequency. Objectives: We sought to identify PAH-associated miRNAs and evaluate their associations with MN frequency. Methods: We performed a two-stage study in healthy male coke oven workers to identify miRNAs associated with PAH exposures quantified using urinary monohydroxy-PAHs and plasma benzo[a]pyrene-r-7,t-8,c-10-tetrahydrotetrol-albumin (BPDE–Alb) adducts. In the discovery stage, we used Solexa sequencing to test differences in miRNA expression profiles between pooled plasma samples from 20 exposed workers and 20 controls. We then validated associations with eight selected miRNAs in 365 workers. We further evaluated associations between the PAH-associated miRNAs and MN frequency. Results: In the discovery stage, miRNA expression profiles differed between the exposed and control groups, with 68 miRNAs significantly down-regulated [fold change (FC) ≤ –5] and 3 miRNAs mildly up-regulated (+2 ≤ FC < +5) in the exposed group. In the validation analysis, urinary 4-hydroxyphenanthrene and/or plasma BPDE–Alb adducts were associated with lower miR-24-3p, miR-27a-3p, miR-142-5p, and miR-28-5p expression (p < 0.030). Urinary 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyphenanthrene, and the sum of monohydroxy-PAHs were associated with higher miR-150-5p expression (p < 0.030). These miRNAs were associated with higher MN frequency (p < 0.005), with stronger associations in drinkers (pinteraction < 0.015). Conclusions: Associations of PAH exposures with miRNA expression, and of miRNA expression with MN frequency, suggest potential mechanisms of adverse effects of PAHs that are worthy of further investigation. Citation: Deng Q, Huang S

  17. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  18. MicroRNA expression profiling of the porcine developing hypothalamus and pituitary tissue.

    PubMed

    Zhang, Lifan; Cai, Zhaowei; Wei, Shengjuan; Zhou, Huiyun; Zhou, Hongmei; Jiang, Xiaoling; Xu, Ningying

    2013-10-14

    MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our knowledge about spatial

  19. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium

    PubMed Central

    Schembri, Frank; Sridhar, Sriram; Perdomo, Catalina; Gustafson, Adam M.; Zhang, Xiaoling; Ergun, Ayla; Lu, Jining; Liu, Gang; Zhang, Xiaohui; Bowers, Jessica; Vaziri, Cyrus; Ott, Kristen; Sensinger, Kelly; Collins, James J.; Brody, Jerome S.; Getts, Robert; Lenburg, Marc E.; Spira, Avrum

    2009-01-01

    We have shown that smoking impacts bronchial airway gene expression and that heterogeneity in this response associates with smoking-related disease risk. In this study, we sought to determine whether microRNAs (miRNAs) play a role in regulating the airway gene expression response to smoking. We examined whole-genome miRNA and mRNA expression in bronchial airway epithelium from current and never smokers (n = 20) and found 28 miRNAs to be differentially expressed (P < 0.05) with the majority being down-regulated in smokers. We further identified a number of mRNAs whose expression level is highly inversely correlated with miRNA expression in vivo. Many of these mRNAs contain potential binding sites for the differentially expressed miRNAs in their 3′-untranslated region (UTR) and are themselves affected by smoking. We found that either increasing or decreasing the levels of mir-218 (a miRNA that is strongly affected by smoking) in both primary bronchial epithelial cells and H1299 cells was sufficient to cause a corresponding decrease or increase in the expression of predicted mir-218 mRNA targets, respectively. Further, mir-218 expression is reduced in primary bronchial epithelium exposed to cigarette smoke condensate (CSC), and alteration of mir-218 levels in these cells diminishes the induction of the predicted mir-218 target MAFG in response to CSC. These data indicate that mir-218 levels modulate the airway epithelial gene expression response to cigarette smoke and support a role for miRNAs in regulating host response to environmental toxins. PMID:19168627

  20. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5

    PubMed Central

    Sharma, Nikhil; Kumawat, Kanhaiya L.; Rastogi, Meghana; Basu, Anirban; Singh, Sunit K.

    2016-01-01

    Japanese encephalitis virus (JEV) is a plus strand RNA virus, which infects brain. MicroRNAs are regulatory non-coding RNAs which regulate the expression of various genes in cells. Viruses modulate the expression of various microRNAs to suppress anti-viral signaling and evade the immune response. SOCS (Suppressor of cytokine signalling) family of proteins are negative regulators of anti-viral Jak-STAT pathway. In this study, we demonstrated the regulatory role of SOCS5 in Jak-STAT signaling and its exploitation by JEV through a microRNA mediated mechanism. JEV infection in human brain microglial cells (CHME3) downregulated the expression of miR-432, and upregulated SOCS5 levels. SOCS5 was validated as a target of miR-432 by using 3′UTR clone of SOCS5 in luciferase vector along with miR-432 mimic. The overexpression of miR-432 prior to JEV infection enhanced the phosphorylation of STAT1 resulting into increased ISRE activity and cellular inflammatory response resulting into diminished viral replication. The knockdown of SOCS5 resulted into increased STAT1 phosphorylation and suppressed viral replication. JEV infection mediated downregulation of miR-432 leads to SOCS5 upregulation, which helps the virus to evade cellular anti-viral response. This study demonstrated that JEV utilizes this microRNA mediated strategy to manipulate cellular immune response promoting JEV pathogenesis. PMID:27282499

  1. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice

    PubMed Central

    Yan, Sheng; Yim, Lok Yan; Tam, Rachel Chun Yee; Chan, Albert; Lu, Liwei; Lau, Chak Sing; Chan, Vera Sau-Fong

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity. PMID:27509492

  2. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probes

    PubMed Central

    Thompson, Robert C.; Deo, Monika; Turner, David L.

    2007-01-01

    In situ hybridization is an important tool for analyzing gene expression and developing hypotheses about gene functions. The discovery of hundreds of microRNA (miRNA) genes in animals has provided new challenges for analyzing gene expression and functions. The small size of the mature miRNAs (∼20-24 nucleotides in length) presents difficulties for conventional in situ hybridization methods. However, we have developed a modified in situ hybridization method for detection of mammalian miRNAs in tissue sections, based upon the use of RNA oligonucleotide probes in combination with highly specific wash conditions. Here we present detailed procedures for detection of miRNAs in tissue sections or cultured cells. The methods described can utilize either nonradioactive hapten-conjugated probes that are detected by enzyme-coupled antibodies, or radioactively labeled probes that are detected by autoradiography. The ability to visualize miRNA expression patterns in tissue sections provides an additional tool for the analyses of miRNA expression and function. In addition, the use of radioactively labeled probes should facilitate quantitative analyses of changes in miRNA gene expression. PMID:17889803

  3. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression

    PubMed Central

    Guo, Jia; Zhang, Jin-Fang; Wang, Wei-Mao; Cheung, Florence Wing-ki; Lu, Ying-fei; Ng, Chi-fai; Kung, Hsiang-fu; Liu, Wing-keung

    2014-01-01

    The microphthalmia-associated transcription factor (MITF) is a pivotal regulator of melanogenic enzymes for melanogenesis, and its expression is modulated by many transcriptional factors at the transcriptional level or post-transcriptional level through microRNAs (miRNAs). Although several miRNAs modulate melanogenic activities, there is no evidence of their direct action on MITF expression. Out of eight miRNAs targeting the 3′-UTR of Mitf predicted by bioinformatic programs, our results show miR-218 to be a novel candidate for direct action on MITF expression. Ectopic miR-218 dramatically reduced MITF expression, suppressed tyrosinase activity, and induced depigmentation in murine immortalized melan-a melanocytes. MiR-218 also suppressed melanogenesis in human pigmented skin organotypic culture (OTC) through the repression of MITF. An inverse correlation between MITF and miR-218 expression was found in human primary skin melanocytes and melanoma cell lines. Taken together, our findings demonstrate a novel mechanism involving miR-218 in the regulation of the MITF pigmentary process and its potential application for skin whitening therapy. PMID:24824743

  4. Expression of let-7 microRNAs that are involved in Japanese flounder (Paralichthys olivaceus) metamorphosis.

    PubMed

    Fu, Yuanshuai; Shi, Zhiyi; Wang, Guyue; Zhang, Junling; Li, Wenjuan; Jia, Liang

    2013-06-01

    The let-7 microRNAs (miRNAs), a class of small noncoding RNAs, are phylogenetically conserved and temporally expressed and control the proper timing of events during development as heterochronic genes in many animals. Japanese flounder (Paralichthys olivaceus) undergoes a metamorphosis from the larval to juvenile form. Here, we identified 21 let-7 miRNA precursors from different genome loci in Japanese flounder. P. olivaceus let-7 miRNAs are widely expressed in adult tissues, highly expressed during metamorphosis, but weakly during embryonic development. Exogenous thyroid hormone (0.1 mg/L), which induces premature metamorphosis, significantly promotes the expression of let-7 miRNAs, while thiourea (30 mg/L), which affects metamorphic arrest, inhibits the expression of let-7 miRNAs in metamorphosis in P. olivaceus. These results show that let-7 miRNAs widely participate in tissue development and metabolism during development and are also involved in regulation of temporal transitions associated with cell proliferation and differentiation during metamorphosis, in P. olivaceus.

  5. Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells.

    PubMed

    Li, Hailong; Xie, Shoupin; Liu, Xiaojun; Wu, Hongyan; Lin, Xingyao; Gu, Jing; Wang, Huping; Duan, Yongqiang

    2014-11-01

    Matrine, a major alkaloid extracted from Sophora flavescens, has been reported to possess antitumor properties in several types of cancers, including gastric cancer. However, its mechanisms of action on gastric cancer remain poorly understood. Dysregulation of microRNAs, a class of small, non-coding, regulatory RNA molecules involved in gene expression, is strongly correlated with cancer. The aim of the present study was to demonstrate that matrine treatment altered miRNA expression in SGC7901 cells. Using miRCURY™ microarray analysis, we identified 128 miRNAs substantially exhibiting >2-fold expression changes in matrine-treated cells relative to their expression levels in untreated cells. RT-qPCR was used to show that the levels of 8 miRNAs whose target genes were clustered in the cell cycle pathway increased, while levels of 14 miRNAs whose target genes were clustered in the MAPK signaling pathway decreased. These results were consistent with those from the miRNA microarray experiment. Bioinformatical analysis revealed that the majority of 57 identified enrichment pathways were highly involved in tumorigenesis. In conclusion, the results demonstrated that matrine induces considerable changes in the miRNA expression profiles of SGC7901 cells, suggesting miRNA microarray combined with RT-qPCR validation and bioinformatical analysis provide a novel and promising approach to identify anticancer targets and the mechanisms of matrine involved.

  6. Determinants of effective lentivirus-driven microRNA expression in vivo

    PubMed Central

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E.; Sadovsky, Yoel

    2016-01-01

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a “cassette” replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use. PMID:27627961

  7. Genome-Wide Expression of MicroRNAs Is Regulated by DNA Methylation in Hepatocarcinogenesis

    PubMed Central

    Shen, Jing; Wang, Shuang; Siegel, Abby B.; Remotti, Helen; Wang, Qiao; Sirosh, Iryna; Santella, Regina M.

    2015-01-01

    Background. Previous studies, including ours, have examined the regulation of microRNAs (miRNAs) by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC) is unclear. Subjects/Methods. Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation. Results. We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6%) showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells. Conclusion. These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis. PMID:25861255

  8. Determinants of effective lentivirus-driven microRNA expression in vivo.

    PubMed

    Mishima, Takuya; Sadovsky, Elena; Gegick, Margaret E; Sadovsky, Yoel

    2016-01-01

    Manipulation of microRNA (miRNA) levels, including overexpression of mature species, has become an important biological tool, even motivating miRNA-based therapeutics. To assess key determinants of miRNA overexpression in a mammalian system in vivo, we sought to bypass the laborious generation of a transgenic animal by exploiting placental trophoblast-specific gene manipulation using lentiviral vectors, which has been instrumental in elucidating trophoblast biology. We examined the impact of several key components of miRNA stem loops and their flanking sequences on the efficiency of mature miRNA expression in vivo. By combining established and novel approaches for miRNA expression, we engineered lentivirus-driven miRNA expression plasmids, which we tested in the mouse placenta. We found that reverse sense inserts minimized single-strand splicing and degradation, and that maintaining longer, poly-A-containing arms flanking the miRNA stem-loop markedly enhanced transgenic miRNA expression. Additionally, we accomplished overexpression of diverse mammalian, drosophila, or C. elegans miRNAs, either based on native context or using a "cassette" replacement of the mature miRNA sequence. Together, we have identified primary miRNA sequences that are paramount for effective expression of mature miRNAs, and validated their role in mice. Principles established by our findings may guide the design of efficient miRNA vectors for in vivo use. PMID:27627961

  9. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  10. Computational prediction of microRNAs from Toxoplasma gondii potentially regulating the hosts' gene expression.

    PubMed

    Saçar, Müşerref Duygu; Bağcı, Caner; Allmer, Jens

    2014-10-01

    MicroRNAs (miRNAs) were discovered two decades ago, yet there is still a great need for further studies elucidating their genesis and targeting in different phyla. Since experimental discovery and validation of miRNAs is difficult, computational predictions are indispensable and today most computational approaches employ machine learning. Toxoplasma gondii, a parasite residing within the cells of its hosts like human, uses miRNAs for its post-transcriptional gene regulation. It may also regulate its hosts' gene expression, which has been shown in brain cancer. Since previous studies have shown that overexpressed miRNAs within the host are causal for disease onset, we hypothesized that T. gondii could export miRNAs into its host cell. We computationally predicted all hairpins from the genome of T. gondii and used mouse and human models to filter possible candidates. These were then further compared to known miRNAs in human and rodents and their expression was examined for T. gondii grown in mouse and human hosts, respectively. We found that among the millions of potential hairpins in T. gondii, only a few thousand pass filtering using a human or mouse model and that even fewer of those are expressed. Since they are expressed and differentially expressed in rodents and human, we suggest that there is a chance that T. gondii may export miRNAs into its hosts for direct regulation.

  11. Downregulation of MicroRNA-152 contributes to high expression of DKK1 in multiple myeloma

    PubMed Central

    Xu, Yinyin; Chen, Bingda; George, Suraj K; Liu, Beizhong

    2015-01-01

    Multiple myeloma (MM) induced bone lesion is one of the most crippling characteristics, and the MM secreted Dickkopf-1 (DKK1) has been reported to play important role in this pathologic process. However, the underlying regulation mechanisms involved in DKK1 expression are still unclear. In this study, we validated the expression patterns of microRNA (miR) 15a, 34a, 152, and 223 in MM cells and identified that miR-152 was significantly downregulated in the MM group compared with the non-MM group, and that miR-152 level was negatively correlated with the expression of DKK1 in the MM cells. Mechanistic studies showed that manipulating miR-152 artificially in MM cells led to changes in DKK-1 expression, and miR-152 blocked DKK1 transcriptional activity by binding to the 3′UTR of DKK1 mRNA. Importantly, we revealed that MM cells stably expressing miR-152 improved the chemotherapy sensitivity, and counteracted the bone disruption in an intrabone-MM mouse model. Our study contributes better understanding of the regulation mechanism of DKK-1 in MM, and opens up the potential for developing newer therapeutic strategies in the MM treatment. PMID:26400224

  12. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia.

    PubMed

    Biggar, Kyle K; Kornfeld, Samantha F; Maistrovski, Yulia; Storey, Kenneth B

    2012-10-01

    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at -6 °C for 24 h (P<0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P<0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia. PMID:23200140

  13. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  14. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  15. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells

    PubMed Central

    Bianchi, Nicoletta; Finotti, Alessia; Ferracin, Manuela; Lampronti, Ilaria; Zuccato, Cristina; Breveglieri, Giulia; Brognara, Eleonora; Fabbri, Enrica; Borgatti, Monica; Negrini, Massimo; Gambari, Roberto

    2015-01-01

    Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells. PMID:25849663

  16. Expression of microRNAs in bovine and human pre-implantation embryo culture media.

    PubMed

    Kropp, Jenna; Salih, Sana M; Khatib, Hasan

    2014-01-01

    MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy.

  17. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    PubMed

    Zhang, Jingcheng; Gao, Yang; Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  18. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.

    PubMed

    Scarfò, Irene; Pellegrino, Elisa; Mereu, Elisabetta; Kwee, Ivo; Agnelli, Luca; Bergaggio, Elisa; Garaffo, Giulia; Vitale, Nicoletta; Caputo, Manuel; Machiorlatti, Rodolfo; Circosta, Paola; Abate, Francesco; Barreca, Antonella; Novero, Domenico; Mathew, Susan; Rinaldi, Andrea; Tiacci, Enrico; Serra, Sara; Deaglio, Silvia; Neri, Antonino; Falini, Brunangelo; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio; Piva, Roberto

    2016-01-14

    Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions. PMID:26463425

  19. Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients

    SciTech Connect

    Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F.; Barker, Christopher A.; Wolden, Suzanne L.; Smilenov, Lubomir B.

    2011-06-01

    Purpose: MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials: Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results: The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions: Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells

  20. Antagonism Pattern Detection between MicroRNA and Target Expression in Ewing’s Sarcoma

    PubMed Central

    Martignetti, Loredana; Laud-Duval, Karine; Tirode, Franck; Pierron, Gaelle; Reynaud, Stéphanie; Barillot, Emmanuel; Delattre, Olivier; Zinovyev, Andrei

    2012-01-01

    MicroRNAs (miRNAs) have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing’s sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3′UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing’s sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms. PMID:22848594

  1. MicroRNA-561 inhibits gastric cancercell proliferation and invasion by downregulating c-Myc expression

    PubMed Central

    Qian, Kun; Mao, Binglang; Zhang, Wei; Chen, Huanwen

    2016-01-01

    Gastric cancer (GC) causes nearly one million deaths worldwide each year. However, the molecular pathway of GC development remains unclear. Increasing evidences have shown that microRNAs (miRNAs) are highly associated with tumor development. However, relative little is known about the potential role of miRNAs in gastric cancer development. In the present study, we showed that miR-561 was down-regulated frequently in human GCs cell lines and tissues, and its expression was associated with tumor-node-metastasis (pTNM) stage. Enforced expression of miR-561 in GC cells inhibited cell proliferation and invasion in vitro. In contrast, knockdown of miR-561 had the opposite effect on cell proliferation and invasion. Moreover, c-Myc was identified as a potential miR-561 target. Further studies confirmed that miR-561 suppressed the expression of c-Myc by directly binding to its 3’-untranslated region. Restoration of c-Myc in miR-561-overexpressed GC cells reversed the suppressive effects of miR-561 and c-Myc was inversely correlated with miR-561 expression in GC tissues. These results demonstrate that miR-561 acts as a novel tumor suppressor in GC by targeting c-Myc gene and inhibiting GC cells proliferation and invasion. These findings contribute to current understanding of the functions of miR-561 in GC. PMID:27725860

  2. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  3. Expression Profiling of Circulating MicroRNAs in Canine Myxomatous Mitral Valve Disease

    PubMed Central

    Li, Qinghong; Freeman, Lisa M.; Rush, John E.; Laflamme, Dorothy P.

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have shown promise as noninvasive biomarkers in cardiac disease. This study was undertaken to investigate the miRNA expression profile in dogs with myxomatous mitral valve disease (MMVD). 277 miRNAs were quantified using RT-qPCR from six normal dogs (American College of Veterinary Internal Medicine Stage A), six dogs with MMVD mild to moderate cardiac enlargement (ACVIM Stage B1/B2) and six dogs with MMVD and congestive heart failure (ACVIM Stage C/D). Eleven miRNAs were differentially expressed (False Discovery Rate < 0.05). Dogs in Stage B1/B2 or C/D had four upregulated miRNAs, including three cfa-let-7/cfa-miR-98 family members, while seven others were downregulated, compared to Stage A. Expression of six of the 11 miRNAs also were significantly different between dogs in Stage C/D and those in Stage B1/B2. The expression changes were greater as disease severity increased. These miRNAs may be candidates for novel biomarkers and may provide insights into genetic regulatory pathways in canine MMVD. PMID:26101868

  4. Identification of differentially expressed microRNAs across the developing human brain.

    PubMed

    Ziats, M N; Rennert, O M

    2014-07-01

    We present a spatio-temporal assessment of microRNA (miRNA) expression throughout early human brain development. We assessed the prefrontal cortex, hippocampus and cerebellum of 18 normal human donor brains spanning infancy through adolescence by RNA-seq. We discovered differentially expressed miRNAs and broad miRNA patterns across both temporal and spatial dimensions, and between male and female prefrontal cortex. Putative target genes of the differentially expressed miRNAs were identified, which demonstrated functional enrichment for transcription regulation, synaptogenesis and other basic intracellular processes. Sex-biased miRNAs also targeted genes related to Wnt and transforming growth factor-beta pathways. The differentially expressed miRNA targets were highly enriched for gene sets related to autism, schizophrenia, bipolar disorder and depression, but not neurodegenerative diseases, epilepsy or other adult-onset psychiatric diseases. Our results suggest critical roles for the identified miRNAs in transcriptional networks of the developing human brain and neurodevelopmental disorders.

  5. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures.

    PubMed

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2013-11-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process.

  6. Gender- and stressor-specific microRNA expression in Tribolium castaneum.

    PubMed

    Freitak, Dalial; Knorr, Eileen; Vogel, Heiko; Vilcinskas, Andreas

    2012-10-23

    MicroRNAs (miRNAs) are small non-coding RNAs mediating post-transcriptional regulation of gene expression in eukaryotes. Addressing their role in regulation of physiological adaptations to environmental stress in insects, we selected the red flour beetle Tribolium castaneum as a model. Beetles were fed with the bacterial entomopathogen Pseudomonas entomophila (to mimic natural infection), injected with peptidoglycan (experimental setting of strong immune responses) or subjected to either mild heat shock or starvation. Differential expression of selected immunity- and stress-related genes was quantified using real-time PCR, and expression and induction of 455 mature arthropod miRNAs were determined using proprietary microarrays. We found that Tribolium exhibits both gender- and stressor-specific adjustment of immune gene and miRNA expression. Strikingly, we discovered that the number of stressor-induced miRNAs in females is remarkably higher than in males. This observation could support the hypothesis called Bateman's principle in immunity that predicts gender-specific immune responses because females gain fitness through increased longevity, whereas males gain fitness by increasing mating rates. Our results suggest that Tribolium males and females display differential regulatory elements, both pre- and post-transcriptional, likely resulting from different investment strategies in life-history traits.

  7. Characterization of microRNA expression profiles in Leishmania-infected human phagocytes.

    PubMed

    Geraci, N S; Tan, J C; McDowell, M A

    2015-01-01

    Leishmania are intracellular protozoa that influence host immune responses eliciting parasite species-specific pathologies. MicroRNAs (miRNAs) are short single-stranded ribonucleic acids that complement gene transcripts to block protein translation and have been shown to regulate immune system molecular mechanisms. Human monocyte-derived dendritic cells (DC) and macrophages (MP) were infected in vitro with Leishmania major or Leishmania donovani parasites. Small RNAs were isolated from total RNA and sequenced to identify mature miRNAs associated with leishmanial infections. Normalized sequence read count profiles revealed a global downregulation in miRNA expression among host cells following infection. Most identified miRNAs were expressed at higher levels in L. donovani-infected cells relative to L. major-infected cells. Pathway enrichments using in silico-predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal MAP kinase signalling pathway effects. Whereas JAK-STAT and TGF-β signalling pathways were more highly enriched using targets of miRNAs upregulated in L. donovani-infected cells, these data provide evidence in support of a selective influence on host cell miRNA expression and regulation in response to differential Leishmania infections.

  8. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression

    PubMed Central

    LI, JIAN-ZHE; TANG, XIU-NENG; LI, TING-TING; LIU, LI-JUAN; YU, SHU-YI; ZHOU, GUANG-YU; SHAO, QING-RUI; SUN, HUI-PING; WU, CHENG; YANG, YANG

    2016-01-01

    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  9. Spaceflight alters expression of microRNA during T-cell activation.

    PubMed

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21. PMID:26276131

  10. Spaceflight alters expression of microRNA during T-cell activation.

    PubMed

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21.

  11. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.

    PubMed

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer

    2012-11-22

    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.

  12. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.

    PubMed

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer

    2012-11-22

    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells. PMID:23151476

  13. Prediction of microRNAs affecting mRNA expression during retinal development

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs) are small RNA molecules (~22 nucleotides) which have been shown to play an important role both in development and in maintenance of adult tissue. Conditional inactivation of miRNAs in the eye causes loss of visual function and progressive retinal degeneration. In addition to inhibiting translation, miRNAs can mediate degradation of targeted mRNAs. We have previously shown that candidate miRNAs affecting transcript levels in a tissue can be deduced from mRNA microarray expression profiles. The purpose of this study was to predict miRNAs which affect mRNA levels in developing and adult retinal tissue and to confirm their expression. Results Microarray expression data from ciliary epithelial retinal stem cells (CE-RSCs), developing and adult mouse retina were generated or downloaded from public repositories. Analysis of gene expression profiles detected the effects of multiple miRNAs in CE-RSCs and retina. The expression of 20 selected miRNAs was confirmed by RT-PCR and the cellular distribution of representative candidates analyzed by in situ hybridization. The expression levels of miRNAs correlated with the significance of their predicted effects upon mRNA expression. Highly expressed miRNAs included miR-124, miR-125a, miR-125b, miR-204 and miR-9. Over-expression of three miRNAs with significant predicted effects upon global mRNA levels resulted in a decrease in mRNA expression of five out of six individual predicted target genes assayed. Conclusions This study has detected the effect of miRNAs upon mRNA expression in immature and adult retinal tissue and cells. The validity of these observations is supported by the experimental confirmation of candidate miRNA expression and the regulation of predicted target genes following miRNA over-expression. Identified miRNAs are likely to be important in retinal development and function. Misregulation of these miRNAs might contribute to retinal degeneration and disease. Conversely, manipulation

  14. Effects of β4 integrin expression on microRNA patterns in breast cancer.

    PubMed

    Gerson, Kristin D; Maddula, V S R Krishna; Seligmann, Bruce E; Shearstone, Jeffrey R; Khan, Ashraf; Mercurio, Arthur M

    2012-07-15

    The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as 'β4', this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs) were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA) revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility.

  15. MicroRNA-124 Targets Tip110 Expression and Regulates Hematopoiesis.

    PubMed

    Liu, Ying; Huang, Xinxin; Timani, Khalid Amine; Broxmeyer, Hal E; He, Johnny J

    2015-09-01

    MicroRNA (miR) regulates hematopoiesis through targeting different genes post-transcriptionally. We have recently shown that Tip110 expression is downregulated during hematopoietic stem cell differentiation. However, the underlying mechanisms are not known. In this study, we identified a conserved miR-124-binding site on the Tip110 3'-untranslated region (3'-UTR) and showed that Tip110 was downregulated by miR-124 through its 3'-UTR. We then examined the relationship among miR-124 and Tip110 expression and differentiation of human cord blood CD34(+) cells. We found that miR-124 was expressed in a low level in human cord blood CD34(+) cells, but it was considerably upregulated during culturing and differentiation of these cells. Moreover, we demonstrated that miR-124 expression decreased Tip110 expression and promoted differentiation of human cord blood CD34(+) cells, while miR-124 knockdown increased Tip110 expression, slowed down differentiation of human cord blood CD34(+) cells, and caused an expansion of hematopoietic progenitor cells in vitro. Finally, we used mouse embryonic fibroblasts derived from Tip110 transgenic mice, performed the exon array analysis, and found that Tip110 altered a number of genes in the hematopoiesis pathways. Dnmt3a as de novo methyltransferase was also significantly upregulated. That miR-124 was markedly upregulated during human cord blood CD34(+) cell differentiation could be the result of direct loss of its promoter methylation from Dnmt3a. Taken together, our study demonstrates that miR-124 regulates Tip110 expression and differentiation of human cord blood CD34(+) cells and suggests important roles of miR-124/Tip110 in hematopoiesis. PMID:25928721

  16. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  17. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  18. Expression and clinical significance of microRNA-326 in human glioma miR-326 expression in glioma.

    PubMed

    Wang, Shuai; Lu, Shengkui; Geng, Shaomei; Ma, Shucheng; Liang, Zhaohui; Jiao, Baohua

    2013-03-01

    As a suppressor of Hedgehog signaling pathway, microRNA-326 (miR-326) has been demonstrated to control the development of cerebellar neuronal progenitor and tumor cells. More recently, it has been reported that miR-326 was down-regulated in glioblastoma tissues and might regulate the metabolic activity of glioma and glioma stem cells, suggesting the involvement of miR-326 in tumorigenesis and progression of gliomas. However, the role of miR-326 in human glioma has not been clearly understood. Therefore, the aim of this study was to investigate the clinical significance of miR-326 expression in human glioma. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to characterize the expression patterns of miR-326 in 108 glioma and 20 normal brain tissues. The associations of miR-326 expression with clinicopathological factors and prognosis of glioma patients were also statistically analyzed. The expression levels of miR-326 in glioma tissues were significantly lower than those in normal brain tissues (P < 0.001). Additionally, the decreased miR-326 expression in glioma was significantly associated with advanced pathological grade (P = 0.01) and low Karnofsky performance score (KPS, P = 0.03). Moreover, Kaplan-Meier survival and Cox regression analyses showed that low expression of miR-326 (P = 0.01) and advanced pathological grade (P = 0.02) were independent factors predicting poor prognosis for gliomas. Furthermore, subgroup analyses showed that miR-326 expression was significantly associated with poor overall survival in glioma patients with high pathological grades (for grade III-IV: P < 0.001). Down-regulation of miR-326 may have potential value for predicting clinical outcomes in glioma patients with high pathological grades, suggesting that miR-326 is an important candidate tumor suppressor, and its down-regulated expression may contribute to glioma progression.

  19. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos

    SciTech Connect

    Jenny, Matthew J.; Aluru, Neelakanteswar; Hahn, Mark E.

    2012-10-15

    Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular

  20. Regulation of host gene expression by HIV-1 TAR microRNAs

    PubMed Central

    2013-01-01

    Background The transactivating response (TAR) element of human immunodeficiency virus type 1 (HIV-1) is the source of two functional microRNAs (miRNAs), miR-TAR-5p and miR-TAR-3p. The objective of this study was to characterize the post-transcriptional regulation of host messenger RNAs (mRNAs) relevant to HIV-1 pathogenesis by HIV-1 TAR miRNAs. Results We demonstrated that TAR miRNAs derived from HIV-1 can incorporate into host effector Argonaute protein complexes, which is required if these miRNAs are to regulate host mRNA expression. Bioinformatic predictions and reporter gene activity assays identified regulatory elements complementary and responsive to miR-TAR-5p and miR-TAR-3p in the 3’ untranslated region (UTR) of several candidate genes involved in apoptosis and cell survival. These include Caspase 8, Aiolos, Ikaros and Nucleophosmin (NPM)/B23. Analyses of Jurkat cells that stably expressed HIV-1 TAR or contained a full-length latent HIV provirus suggested that HIV-1 TAR miRNAs could regulate the expression of genes in T cells that affect the balance between apoptosis and cell survival. Conclusions HIV-1 TAR miRNAs may contribute to the replication cycle and pathogenesis of HIV-1, by regulating host genes involved in the intricate balance between apoptosis and infected cell, to induce conditions that promote HIV-1 propagation and survival. PMID:23938024

  1. MirZ: an integrated microRNA expression atlas and target prediction resource.

    PubMed

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-07-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens.

  2. MirZ: an integrated microRNA expression atlas and target prediction resource

    PubMed Central

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-01-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens. PMID:19468042

  3. Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition

    PubMed Central

    Lee, Seungwoo; Hwang, Seungwoo; Yu, Hee Jeong; Oh, Dayoung; Choi, Yu Jung; Kim, Myung-Chul; Kim, Yongbaek; Ryu, Doug-Young

    2016-01-01

    MicroRNAs (miRNAs) in blood plasma are stable under high levels of ribonuclease activity and could function in tissue-to-tissue communication, suggesting that they may have distinctive structural characteristics compared with non-circulating miRNAs. In this study, the expression of miRNAs in horse plasma and their characteristic nucleotide composition were examined and compared with non-plasma miRNAs. Highly expressed plasma miRNA species were not part of the abundant group of miRNAs in non-plasma tissues, except for the eca-let-7 family. eca-miR-486-5p, -92a, and -21 were among the most abundant plasma miRNAs, and their human orthologs also belong to the most abundant group of miRNAs in human plasma. Uracil and guanine were the most common nucleotides of both plasma and non-plasma miRNAs. Cytosine was the least common in plasma and non-plasma miRNAs, although levels were higher in plasma miRNAs. Plasma miRNAs also showed higher expression levels of miRNAs containing adenine and cytosine repeats, compared with non-plasma miRNAs. These observations indicate that miRNAs in the plasma have a unique nucleotide composition. PMID:26731407

  4. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development.

    PubMed

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-04-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development. PMID:25638647

  5. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    SciTech Connect

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S.; Arbuthnot, Patrick

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  6. MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients.

    PubMed

    Ogata, Yorimasa; Matsui, Sari; Kato, Ayako; Zhou, Liming; Nakayama, Yohei; Takai, Hideki

    2014-12-01

    Periodontitis is a chronic inflammatory disease caused by specific bacteria and viruses. Local, systemic, and environmental factors affect the rate of disease progression. Immune responses to bacterial products, and the subsequent production of inflammatory cytokines, are crucial in the destruction of periodontal tissue. MicroRNAs (miRNAs) are a class of small RNAs that control various cell processes by negatively regulating protein-coding genes. In this study, we compared miRNA expression in inflamed and noninflamed gingival tissues from Japanese dental patients. Total RNAs were isolated from inflamed and noninflamed gingival tissues. miRNA expression profiles were examined by an miRNA microarray, and the data were analyzed by GeneSpring GX, Ingenuity Pathways Analysis, and the TargetScan databases. Observed miRNA expression levels in inflamed gingiva were confirmed by real-time PCR. The three most overexpressed (by >2.72-fold) miRNAs were hsa-miR-150, hsa-miR-223, and hsa-miR-200b, and the three most underexpressed (by <0.39-fold) miRNAs were hsa-miR-379, hsa-miR-199a-5p, and hsa-miR-214. In IPA analysis, hsa-miR-150, hsa-miR-223, and hsa-miR-200b were associated with inflammatory disease, organismal injury, abnormalities, urological disease, and cancer. The present findings suggest that miRNAs are associated with chronic periodontitis lesions in Japanese.

  7. Differential microRNA expression in childhood B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ju, Xiuli; Li, Dong; Shi, Qing; Hou, Huaishui; Sun, Nianzheng; Shen, Baijun

    2009-01-01

    MiRNAs play important roles in the development of both hematopoiesis and leukemogenesis. The analysis of differential microRNA expression profiles may be a powerful tool to allow us insight on the mechanisms of childhood B-cell precursor acute lymphoblastic leukemia (pre-B-ALL). The present study provides an informative profile of the expression of miRNAs in pre-B-ALL using two independent and quantitative methods: miRNA chip and qRT-PCR of mature miRNA from 40 newly diagnosed pre-B-ALL children. Additionally, putative hematopoiesis-specific target genes were analyzed with informatics technique. Both approaches showed that miR-222, miR-339, and miR-142-3p were dramatically overexpressed in pre-B-ALL patients, and downregulation of hsa-miR-451 and hsa-miR-373* was confirmed. The results of this study offer a comprehensive and quantitative profile of miRNA expression in pre-B-ALL and their healthy counterpart, suggesting that miRNAs could play a primary role in the disease itself.

  8. Detection and monitoring of microRNA expression in developing mouse brain and fixed brain cryosections.

    PubMed

    De Pietri Tonelli, Davide; Clovis, Yoanne M; Huttner, Wieland B

    2014-01-01

    MicroRNAs (miRNAs) are 20-25 nucleotide long, noncoding, and single-strand RNAs that have been found in almost all organisms and shown to exert essential roles by regulating the stability and translation of target mRNAs. In mammals most miRNAs show tissue specific and developmentally regulated expression. Approximately 70 % of all miRNAs are expressed in the brain and a growing number of studies have shown that miRNAs can modulate both brain development function and dysfunction. Moreover, miRNAs have been involved in a variety of human pathologies, including cancer and diabetes and are rapidly emerging as new potential drug targets. In order to further characterize miRNA functions, it is therefore crucial to develop techniques enabling their detection in tissues (both fixed and in vivo) with single-cell resolution. Here, we describe methods for the detection/monitoring of miRNA expression, that can be applied in both developing embryos and fixed samples, which we and others have applied to the investigation of both embryonal and postnatal neurogenesis in mice, but also in zebrafish, and cell cultures. PMID:24318812

  9. MicroRNAs expression profile in CCR6+ regulatory T cells

    PubMed Central

    Hu, Yan; Chen, Chao; Zhou, Ya; Tao, Yijin; Guo, Mengmeng; Qin, Nalin

    2014-01-01

    Backgroud. CCR6+ CD4+ regulatory T cells (CCR6+ Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+ Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods. The expression profile of miRNAs as well as genes in CCR6+ Tregs or CCR6- Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using the Keggs pathway library. Results. We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+ Tregs compared with CCR6- Tregs. Moreover, 1,391 genes were observed with 3 fold change and 20 signaling pathways were enriched using the Keggs pathway library. Conclusion. The present data showed CCR6+ Tregs expressed specific miRNAs pattern, which provides insight into the role of miRNAs in the biological function of distinct Tregs subsets. PMID:25279261

  10. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions

    PubMed Central

    Catalanotto, Caterina; Cogoni, Carlo; Zardo, Giuseppe

    2016-01-01

    The finding that small non-coding RNAs (ncRNAs) are able to control gene expression in a sequence specific manner has had a massive impact on biology. Recent improvements in high throughput sequencing and computational prediction methods have allowed the discovery and classification of several types of ncRNAs. Based on their precursor structures, biogenesis pathways and modes of action, ncRNAs are classified as small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs), promoter associate RNAs (pRNAs), small nucleolar RNAs (snoRNAs) and sno-derived RNAs. Among these, miRNAs appear as important cytoplasmic regulators of gene expression. miRNAs act as post-transcriptional regulators of their messenger RNA (mRNA) targets via mRNA degradation and/or translational repression. However, it is becoming evident that miRNAs also have specific nuclear functions. Among these, the most studied and debated activity is the miRNA-guided transcriptional control of gene expression. Although available data detail quite precisely the effectors of this activity, the mechanisms by which miRNAs identify their gene targets to control transcription are still a matter of debate. Here, we focus on nuclear functions of miRNAs and on alternative mechanisms of target recognition, at the promoter lavel, by miRNAs in carrying out transcriptional gene silencing. PMID:27754357

  11. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs.

    PubMed

    Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu

    2016-01-01

    It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes.

  12. Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine

    PubMed Central

    2013-01-01

    Background Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical methods for expression analysis are focused on differences between experimental groups, the performance of approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods for the identification of genes that are dysregulated relative to a single sample in a given set of experimental samples, to our knowledge, has not been performed. Methods We systematically evaluated several methods including variations on the nearest neighbor based outlying degree method, as well as the Zscore and a robust variant for their suitability to detect patient-specific events. The methods were assessed using both simulations and expression data from a cohort of pediatric acute B lymphoblastic leukemia patients. Results We first assessed power and false discovery rates using simulations and found that even under optimal conditions, high effect sizes (>4 unit differences) were necessary to have acceptable power for any method (>0.9) though high false discovery rates (>0.1) were pervasive across simulation conditions. Next we introduced a technical factor into the simulation and found that performance was reduced for all methods and that using weights with the outlying degree could provide performance gains depending on the number of samples and genes affected by the technical factor. In our use case that highlights the integration of functional assays and aberrant expression in a patient cohort (the identification of gene dysregulation events associated with the targets from a siRNA screen), we demonstrated that both the outlying degree and the Zscore can successfully identify genes dysregulated in one patient sample. However, only the outlying degree can identify genes dysregulated across several patient samples

  13. Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology

    PubMed Central

    QI, MIN; HUANG, XIAOYUAN; ZHOU, LEI; ZHANG, JIANGLIN

    2014-01-01

    In this study, we investigated differentially expressed microRNAs (miRNAs or miRs) and their functions in metastatic melanoma using next-generation sequencing technology. The GSE36236 data set was downloaded from the Gene Expression Omnibus (GEO) database and 4 primary cutaneous melanoma samples (used as controls) and 3 metastatic melanoma samples were selected from 31 samples for further analysis. Firstly, the differentially expressed miRNAs were screened by limma package in R language. Secondly, the target genes of the miRNAs were retrieved with TargetScanHuman 6.2, and the interactions among these genes were identified by String and an interaction network was established. Finally, functional and pathway analyses were performed for the genes in the network using Expression Analysis Systematic Explorer (EASE). A total of 4 differentially expressed miRNAs (hsa-miR-146, hsa-miR-27, hsa-miR-877 and hsa-miR-186) were obtained between the metastatic melanoma and primary cutaneous melanoma samples. We predicted 101 high-confidence target genes of hsa-miR-27 and obtained a network with 41 interactions. Finally, functional and pathway analyses revealed that the genes in the network were significantly enriched at the transcriptional level. Differentially expressed miRNAs were identified in the metastatic melanoma compared with the primary cutaneous melanoma samples and the target genes of hsa-miR-27 were found to be significantly enriched at the transcriptional level. The results presented in our study may prove helpful in the diagnosis and treatment of metastatic melanoma. PMID:24573402

  14. Distinct microRNA expression signatures in human right atrial and ventricular myocardium.

    PubMed

    Zhang, Yangyang; Wang, Xiaowei; Xu, Xiaohan; Wang, Jun; Liu, Xiang; Chen, Yijiang

    2012-12-01

    Human atrial and ventricular myocardium has distinct structure and physiology. MicroRNAs (miRNAs) are the central players in the regulation of gene expression, participating in many physiological processes. A comprehensive knowledge of miRNA expression in the human heart is essential for the understanding of myocardial function. The aim of this study was to compare the miRNA signature in human right atrial and ventricular myocardium. Agilent human miRNA arrays were used to indicate the miRNA expression signatures of the right atrial (n = 8) and ventricular (n = 9) myocardium of healthy individuals. Quantitative reverse transcription-polymerase chain reactions (qRT-PCRs) were used to validate the array results. DIANA-mirPath was used to incorporate the miRNAs into pathways. MiRNA arrays showed that 169 miRNAs were expressed at different levels in human right atrial and ventricular myocardium. The unsupervised hierarchical clustering analysis based on the 169 dysregulated miRNAs showed that miRNA expression categorized two well-defined clusters that corresponded to human right atrial and ventricular myocardium. The qRT-PCR results correlated well with the microarray data. Bioinformatic analysis indicated the potential miRNA targets and molecular pathways. This study indicates that distinct miRNA expression signatures in human right atrial and ventricular myocardium. The findings provide a novel understanding of the molecular differences between human atrial and ventricular myocardium and may establish a framework for an anatomically detailed evaluation of cardiac function regulation.

  15. First feed affects the expressions of microRNA and their targets in Atlantic cod.

    PubMed

    Bizuayehu, Teshome Tilahun; Furmanek, Tomasz; Karlsen, Ørjan; van der Meeren, Terje; Edvardsen, Rolf Brudvik; Rønnestad, Ivar; Hamre, Kristin; Johansen, Steinar D; Babiak, Igor

    2016-04-14

    To our knowledge, there is no report on microRNA (miRNA) expression and their target analysis in relation to the type of the first feed and its effect on the further growth of fish. Atlantic cod (Gadus morhua) larvae have better growth and development performance when fed natural zooplankton as a start-feed, as compared with those fed typical aquaculture start-feeds. In our experiment, two groups of Atlantic cod larvae were fed reference feed (zooplankton, mostly copepods, filtered from a seawater pond) v. aquaculture feeds: enriched rotifers (Brachionus sp.) and later brine shrimp (Artemia salina). We examined the miRNA expressions of six defined developmental stages as determined and standardised by body length from first feeding for both diet groups. We found eight miRNA (miR-9, miR-19a, miR-130b, miR-146, miR-181a, miR-192, miR-206 and miR-11240) differentially expressed between the two feeding groups in at least one developmental stage. We verified the next-generation sequencing data using real-time RT-PCR. We found 397 putative targets (mRNA) to the differentially expressed miRNA; eighteen of these mRNA showed differential expression in at least one stage. The patterns of differentially expressed miRNA and their putative target mRNA were mostly inverse, but sometimes also concurrent. The predicted miRNA targets were involved in different pathways, including metabolic, phototransduction and signalling pathways. The results of this study provide new nutrigenomic information on the potential role of miRNA in mediating nutritional effects on growth during the start-feeding period in fish larvae. PMID:26857476

  16. Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology.

    PubMed

    Qi, Min; Huang, Xiaoyuan; Zhou, Lei; Zhang, Jianglin

    2014-05-01

    In this study, we investigated differentially expressed microRNAs (miRNAs or miRs) and their functions in metastatic melanoma using next-generation sequencing technology. The GSE36236 data set was downloaded from the Gene Expression Omnibus (GEO) database and 4 primary cutaneous melanoma samples (used as controls) and 3 metastatic melanoma samples were selected from 31 samples for further analysis. Firstly, the differentially expressed miRNAs were screened by limma package in R language. Secondly, the target genes of the miRNAs were retrieved with TargetScanHuman 6.2, and the interactions among these genes were identified by String and an interaction network was established. Finally, functional and pathway analyses were performed for the genes in the network using Expression Analysis Systematic Explorer (EASE). A total of 4 differentially expressed miRNAs (hsa-miR-146, hsa-miR-27, hsa-miR-877 and hsa-miR-186) were obtained between the metastatic melanoma and primary cutaneous melanoma samples. We predicted 101 high-confidence target genes of hsa-miR-27 and obtained a network with 41 interactions. Finally, functional and pathway analyses revealed that the genes in the network were significantly enriched at the transcriptional level. Differentially expressed miRNAs were identified in the metastatic melanoma compared with the primary cutaneous melanoma samples and the target genes of hsa-miR-27 were found to be significantly enriched at the transcriptional level. The results presented in our study may prove helpful in the diagnosis and treatment of metastatic melanoma.

  17. First feed affects the expressions of microRNA and their targets in Atlantic cod.

    PubMed

    Bizuayehu, Teshome Tilahun; Furmanek, Tomasz; Karlsen, Ørjan; van der Meeren, Terje; Edvardsen, Rolf Brudvik; Rønnestad, Ivar; Hamre, Kristin; Johansen, Steinar D; Babiak, Igor

    2016-04-14

    To our knowledge, there is no report on microRNA (miRNA) expression and their target analysis in relation to the type of the first feed and its effect on the further growth of fish. Atlantic cod (Gadus morhua) larvae have better growth and development performance when fed natural zooplankton as a start-feed, as compared with those fed typical aquaculture start-feeds. In our experiment, two groups of Atlantic cod larvae were fed reference feed (zooplankton, mostly copepods, filtered from a seawater pond) v. aquaculture feeds: enriched rotifers (Brachionus sp.) and later brine shrimp (Artemia salina). We examined the miRNA expressions of six defined developmental stages as determined and standardised by body length from first feeding for both diet groups. We found eight miRNA (miR-9, miR-19a, miR-130b, miR-146, miR-181a, miR-192, miR-206 and miR-11240) differentially expressed between the two feeding groups in at least one developmental stage. We verified the next-generation sequencing data using real-time RT-PCR. We found 397 putative targets (mRNA) to the differentially expressed miRNA; eighteen of these mRNA showed differential expression in at least one stage. The patterns of differentially expressed miRNA and their putative target mRNA were mostly inverse, but sometimes also concurrent. The predicted miRNA targets were involved in different pathways, including metabolic, phototransduction and signalling pathways. The results of this study provide new nutrigenomic information on the potential role of miRNA in mediating nutritional effects on growth during the start-feeding period in fish larvae.

  18. Ultra-Deep Sequencing Reveals the microRNA Expression Pattern of the Human Stomach

    PubMed Central

    Ribeiro-dos-Santos, Ândrea; Khayat, André S.; Silva, Artur; Alencar, Dayse O.; Lobato, Jessé; Luz, Larissa; Pinheiro, Daniel G.; Varuzza, Leonardo; Assumpção, Monica; Assumpção, Paulo; Santos, Sidney; Zanette, Dalila L.; Silva, Wilson A.; Burbano, Rommel; Darnet, Sylvain

    2010-01-01

    Background While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. Methodology/Principal Findings A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue. Conclusions/Significance This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide. PMID:20949028

  19. MicroRNA GENE EXPRESSION SIGNATURES IN THE DEVELOPING NEURAL TUBE

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Appana, Savitri; Webb, Cynthia; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube (NT) defects. MicroRNAs are key modulators of cell and tissue differentiation. In order to define potential roles of miRNAs in development of the murine NT, miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0 and 9.5 were defined and compared utilizing miRXplore™ microarrays from Miltenyi Biotech GmbH. Gene expression changes were verified by TaqMan™ quantitative Real-Time PCR. clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS miRXplore™ chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biological networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs may direct expression of numerous genes encoding proteins which have been shown to be indispensable

  20. MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets

    PubMed Central

    Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L.

    2013-01-01

    microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels. In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet

  1. MicroRNA-20b (miR-20b) Promotes the Proliferation, Migration, Invasion, and Tumorigenicity in Esophageal Cancer Cells via the Regulation of Phosphatase and Tensin Homologue Expression

    PubMed Central

    Xiao, Bin

    2016-01-01

    Increasing evidence has indicated that many microRNAs participate in the development and progression of esophageal cancer and gene expression regulation. MicroRNA-20b (miR-20b) has been reported to be aberrantly expressed in various cancers, but its exact role in esophageal cancer cells remains unclear so far. Therefore, we detected the levels of miR-20b in esophageal tumor tissues and their adjacent normal tissues, and various esophageal cancer cell lines by qRT-PCR. We also explored the effects of miR-20b on cell proliferation, migration, invasion and tumorigenicity of esophageal carcinoma cells through transfection with miR-20b mimics or inhibitor to upregulate or downregulate miR-20b expression in the esophageal cancer cells Eca-109 and KYSE-150, respectively. Additionally, the 3'-untranslated region (3'-UTR) of phosphatase and tensin homologue (PTEN) binding with miR-20b was analyzed by dual-luciferase reporter assays. The results indicated that miR-20b expression level in esophageal tumor tissues was significantly increased compared with their neighboring normal tissues, but its expression was inverse with PTEN protein expression. Luciferase assays confirmed that the 3'-UTR of PTEN was a target of miR-20b in esophageal cancer cells. MiR-20b upregulation promoted cell proliferation, migration, invasiveness, and tumor growth, and decreased apoptosis, and reduced PTEN protein level but not mRNA expression in Eca-109 cells. Conversely, downregulation of miR-20b suppressed these processes in KYSE-150 cells, and enhanced PTEN protein expression. These data indicate that miR-20b plays important roles in tumorigenesis of esophageal cancer possibly via regulation of PTEN expression, and it may be a potential therapeutic target for esophageal cancer treatment. PMID:27701465

  2. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells.

    PubMed

    Chen, Bo-Zhi; Yu, Sung-Liang; Singh, Sher; Kao, Li-Pin; Tsai, Zong-Yun; Yang, Pan-Chyr; Chen, Bai-Hsiun; Shoei-Lung Li, Steven

    2011-01-01

    Type 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, making it important to find a new alternative source of the islet beta cells to replace the damaged cells. hES (human embryonic stem) cells possess unlimited self-renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES-T3 cells with normal female karyotype were first differentiated into EBs (embryoid bodies) and then induced to generate the T3pi (pancreatic islet-like cell clusters derived from T3 cells), which expressed pancreatic islet cell-specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the T3pi were analysed and compared with those of undifferentiated hES-T3 cells and differentiated EBs. MicroRNAs negatively regulate the expression of protein-coding mRNAs. The T3pi showed very high expression of microRNAs, miR-186, miR-199a and miR-339, which down-regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs and their target genes are very likely to play important regulatory roles in the development of pancreas and/or differentiation of islet cells, and they may be manipulated to increase the proportion of beta cells and insulin synthesis in the differentiated T3pi for cell therapy of type I diabetics. PMID:20735361

  3. Oncogenic MicroRNAs: Key Players in Malignant Transformation

    PubMed Central

    Frixa, Tania; Donzelli, Sara; Blandino, Giovanni

    2015-01-01

    MicroRNAs (miRNAs) represent a class of non-coding RNAs that exert pivotal roles in the regulation of gene expression at the post-transcriptional level. MiRNAs are involved in many biological processes and slight modulations in their expression have been correlated with the occurrence of different diseases. In particular, alterations in the expression of miRNAs with oncogenic or tumor suppressor functions have been associated with carcinogenesis, malignant transformation, metastasis and response to anticancer treatments. This review will mainly focus on oncogenic miRNAs whose aberrant expression leads to malignancy. PMID:26694467

  4. microRNA expression in the cervix during pregnancy is associated with length of gestation

    PubMed Central

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Svensson, Katherine; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Wright, Robert O; Baccarelli, Andrea A

    2015-01-01

    Preterm birth is a leading cause of infant mortality and can lead to poor life-long health and adverse neurodevelopmental outcomes. The pathophysiologic mechanisms that precede preterm labor remain elusive, and the role that epigenetic phenomena play is largely unstudied. The objective of this study was to assess the association between microRNA (miRNA) expression levels in cervical cells obtained from swabs collected during pregnancy and the length of gestation. We analyzed cervical samples obtained between 16 and 19 weeks of gestation from 53 women in a prospective cohort from Mexico City, and followed them until delivery. Cervical miRNA was extracted and expression was quantified using the NanoString nCounter Analysis System. Linear regression models were used to examine the association between miRNA expression levels and gestational age at delivery, adjusted for maternal age, education, parity, body mass index, smoke exposure, and inflammation assessed on a Papanicolaou smear. We identified 6 miRNAs that were significantly associated with gestational age at the time of delivery, including miR-21, 30e, 142, 148b, 29b, and 223. Notably, per each doubling in miR-21 expression, gestations were 0.9 (95% CI: 0.2–1.5) days shorter on average (P = 0.009). Per each doubling in miR-30e, 142, 148b, 29b, and 223 expression, gestations were shorter by 1.0 to 1.6 days. The predicted targets of the miRNAs were enriched for molecules involved in DNA replication and inflammatory processes. The levels of specific miRNAs in the human cervix during pregnancy are predictive of gestational age at delivery, and should be validated in future studies as potential biomarkers of preterm birth risk. PMID:25611922

  5. Placental microRNA expression in pregnancies complicated by superimposed pre‑eclampsia on chronic hypertension.

    PubMed

    Vashukova, Elena S; Glotov, Andrey S; Fedotov, Pavel V; Efimova, Olga A; Pakin, Vladimir S; Mozgovaya, Elena V; Pendina, Anna A; Tikhonov, Andrei V; Koltsova, Alla S; Baranov, Vladislav S

    2016-07-01

    Pre-eclampsia (PE) is a complication of pregnancy that affects 5‑8% of women after 20 weeks of gestation. It is usually diagnosed based on the de novo onset of hypertension and proteinuria. Preexisting hypertension in women developing PE, also known as superimposed PE on chronic hypertension (SPE), leads to elevated risk of maternal and fetal mortality. PE is associated with an altered microRNA (miRNA) expression pattern in the placenta, suggesting that miRNA deregulation is involved in the pathogenesis of PE. Whether and how the miRNA expression pattern is changed in the SPE placenta remains unclear. The present study analyzed the placental miRNA expression profile in pregnancies complicated by SPE. miRNA expression profiles in SPE and normal placentas were investigated using an Ion Torrent sequencing system. Sequencing data were processed using a comprehensive analysis pipeline for deep miRNA sequencing (CAP‑miRSeq). A total of 22 miRNAs were identified to be deregulated in placentas from patients with SPE. They included 16 miRNAs previously known to be associated with PE and 6 novel miRNAs. Among the 6 novel miRNAs, 4 were upregulated (miR‑518a, miR‑527, miR‑518e and miR‑4532) and 2 downregulated (miR‑98 and miR‑135b) in SPE placentas compared with controls. The present results suggest that SPE is associated with specific alterations in the placental miRNA expression pattern, which differ from alterations detected in PE placentas, and therefore, provide novel targets for further investigation of the molecular mechanisms underlying SPE pathogenesis. PMID:27176897

  6. microRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma

    PubMed Central

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie; Shen, Yulei; Dabrowska, Magdalena Julia; Dybkaer, Karen; Lim, Megan S.; Piva, Roberto; Barreca, Antonella; Pellegrino, Elisa; Spaccarotella, Elisa; Lachel, Cynthia M.; Kucuk, Can; Jiang, Chun-Sun; Hu, Xiaozhou; Bhagavathi, Sharathkumar; Greiner, Timothy C.; Weisenburger, Dennis D.; Aoun, Patricia; Perkins, Sherrie L.; McKeithan, Timothy W.; Inghirami, Giorgio

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[−]) ALCLs, 9 angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(–) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, miR-708, miR-135b; 2 downregulated: miR-146a, miR-155) significantly associated with ALK(+) ALCL cases. In addition, we derived an 11-miRNA signature (4 upregulated: miR-210, miR-197, miR-191, miR-512-3p; 7 downregulated: miR-451, miR-146a, miR-22, miR-455-3p, miR-455-5p, miR-143, miR-494) that differentiates ALK(–) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, the miR-17∼92 cluster and its paralogues were also highly expressed in ALK(+) ALCL and may represent important downstream effectors of the ALK oncogenic pathway. PMID:23801630

  7. MicroRNA-373 induces expression of genes with complementary promoter sequences.

    PubMed

    Place, Robert F; Li, Long-Cheng; Pookot, Deepa; Noonan, Emily J; Dahiya, Rajvir

    2008-02-01

    Recent studies have shown that microRNA (miRNA) regulates gene expression by repressing translation or directing sequence-specific degradation of complementary mRNA. Here, we report new evidence in which miRNA may also function to induce gene expression. By scanning gene promoters in silico for sequences complementary to known miRNAs, we identified a putative miR-373 target site in the promoter of E-cadherin. Transfection of miR-373 and its precursor hairpin RNA (pre-miR-373) into PC-3 cells readily induced E-cadherin expression. Knockdown experiments confirmed that induction of E-cadherin by pre-miR-373 required the miRNA maturation protein Dicer. Further analysis revealed that cold-shock domain-containing protein C2 (CSDC2), which possesses a putative miR-373 target site within its promoter, was also readily induced in response to miR-373 and pre-miR-373. Furthermore, enrichment of RNA polymerase II was detected at both E-cadherin and CSDC2 promoters after miR-373 transfection. Mismatch mutations to miR-373 indicated that gene induction was specific to the miR-373 sequence. Transfection of promoter-specific dsRNAs revealed that the concurrent induction of E-cadherin and CSDC2 by miR-373 required the miRNA target sites in both promoters. In conclusion, we have identified a miRNA that targets promoter sequences and induces gene expression. These findings reveal a new mode by which miRNAs may regulate gene expression.

  8. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance

    PubMed Central

    2014-01-01

    Background Development of resistance to androgen deprivation therapy (ADT) is a major obstacle for the management of advanced prostate cancer. Therapies with androgen receptor (AR) antagonists and androgen withdrawal initially regress tumors but development of compensatory mechanisms including AR bypass signaling leads to re-growth of tumors. MicroRNAs (miRNAs) are small regulatory RNAs that are involved in maintenance of cell homeostasis but are often altered in tumor cells. Results In this study, we determined the association of genome wide miRNA expression (1113 unique miRNAs) with development of resistance to ADT. We used androgen sensitive prostate cancer cells that progressed to ADT and AR antagonist Casodex (CDX) resistance upon androgen withdrawal and treatment with CDX. Validation of expression of a subset of 100 miRNAs led to identification of 43 miRNAs that are significantly altered during progression of cells to treatment resistance. We also show a correlation of altered expression of 10 proteins targeted by some of these miRNAs in these cells. Conclusions We conclude that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade. The cumulative effect of these altered miRNA expression profiles is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance. These early events are driving the transition to castration resistance and cannot be studied in already developed CRPC cell lines or tissues. Furthermore our results can be used a prognostic marker of cancers with a potential to be resistant to ADT. PMID:24387052

  9. Mechanism analysis of colorectal cancer according to the microRNA expression profile

    PubMed Central

    Li, Hong; Zhang, Huichao; Lu, Gang; Li, Qingjing; Gu, Jifeng; Song, Yuan; Gao, Shejun; Ding, Yawen

    2016-01-01

    The present study aimed to identify specific microRNAs (miRs) and their predicted target genes to clarify the molecular mechanisms of colorectal cancer (CRC). An miR expression profile (array ID, GSE39833), which consisted of 88 CRC samples with various tumor-necrosis-metastasis stages and 11 healthy controls, was downloaded from the Gene Expression Omnibus database. Subsequently, the differentially expressed miRs and their target genes were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways of target genes were analyzed using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the target genes was constructed using the Search Tool for the Retrieval of Interacting Genes database. The present study identified a total of 18 differentially expressed miRs (upregulated, 8; downregulated, 10) in the sera of the CRC patients compared with the healthy controls. Of these, 3 upregulated (let-7b, miR-1290 and miR-126) and 2 downregulated (miR-16 and miR-760) differentially expressed miRs and their target genes, including cyclin D1 (CCND1), v-myc avian myelocytomatosis viral oncogene homolog (MYC), phosphoinositide-3-kinase, regulatory subunit 2 (beta) (PIK3R2) and SMAD family member 3 (SMAD3), were significantly enriched in the CRC developmental pathway. All these target genes had higher node degrees in the PPI network. In conclusion, let-7b, miR-1290, miR-126, miR-16 and miR-760 and their target genes, CCND1, MYC, PIK3R2 and SMAD3, may be important in the molecular mechanisms for the progression of CRC.

  10. microRNA expression in the cervix during pregnancy is associated with length of gestation.

    PubMed

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Svensson, Katherine; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Wright, Robert O; Baccarelli, Andrea A

    2015-01-01

    Preterm birth is a leading cause of infant mortality and can lead to poor life-long health and adverse neurodevelopmental outcomes. The pathophysiologic mechanisms that precede preterm labor remain elusive, and the role that epigenetic phenomena play is largely unstudied. The objective of this study was to assess the association between microRNA (miRNA) expression levels in cervical cells obtained from swabs collected during pregnancy and the length of gestation. We analyzed cervical samples obtained between 16 and 19 weeks of gestation from 53 women in a prospective cohort from Mexico City, and followed them until delivery. Cervical miRNA was extracted and expression was quantified using the NanoString nCounter Analysis System. Linear regression models were used to examine the association between miRNA expression levels and gestational age at delivery, adjusted for maternal age, education, parity, body mass index, smoke exposure, and inflammation assessed on a Papanicolaou smear. We identified 6 miRNAs that were significantly associated with gestational age at the time of delivery, including miR-21, 30e, 142, 148b, 29b, and 223. Notably, per each doubling in miR-21 expression, gestations were 0.9 (95% CI: 0.2-1.5) days shorter on average (P = 0.009). Per each doubling in miR-30e, 142, 148b, 29b, and 223 expression, gestations were shorter by 1.0 to 1.6 days. The predicted targets of the miRNAs were enriched for molecules involved in DNA replication and inflammatory processes. The levels of specific miRNAs in the human cervix during pregnancy are predictive of gestational age at delivery, and should be validated in future studies as potential biomarkers of preterm birth risk. PMID:25611922

  11. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells.

    PubMed

    Chen, Yinghua; Mohammed, Arshad; Oubaidin, Maysaa; Evans, Carla A; Zhou, Xiaofeng; Luan, Xianghong; Diekwisch, Thomas G H; Atsawasuwan, Phimon

    2015-07-15

    MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1Hz for 24h decreased expression of miR-29 family member miRs about 0.5 fold while 2g/cm(2) compression force for 24h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression. PMID:25827718

  12. Altered microRNA expression profiles in a rat model of spina bifida

    PubMed Central

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-liang; Chen, Xin-rang; Yang, He-ying; Fan, Ying-zhong; Wang, Jia-xiang

    2016-01-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  13. Developmental expression and evolution of muscle-specific microRNAs conserved in vertebrates.

    PubMed

    Tani, Saori; Kuraku, Shigehiro; Sakamoto, Hiroshi; Inoue, Kunio; Kusakabe, Rie

    2013-01-01

    microRNAs (miRs) are small non-coding RNA molecules expressed in a tissue-specific manner in numerous organisms. Among them, miR-1, miR-206, and miR-133, which are encoded as bicistronic gene clusters in the genome, play major roles in the control of vertebrate myogenesis. To address how the gene organization and function of these miRs evolved, we identified their homologues in the cyclostomes, the chondrichthyans and the teleosts, and examined their patterns of expression during development. It was suggested that the chondrichthyans and the cyclostome lampreys possess fewer miR-1/miR-133 genes than the medaka. The medaka additionally possessed the miR-206 gene which was not found in the genomes of chondrichthyans and lampreys. In contrast, the number and genomic organization of medaka miR-1(206)/miR-133 were similar to those found in mammals. In the lamprey, shark and medaka, miR-1 and miR-133 were expressed in both skeletal and cardiac muscle cells in adults, a developmental feature traced back to chordate invertebrates such as ascidians. We further examined the expression of these miRs in different muscle tissues in medaka embryos. miR-206 was expressed in both the tail and pectoral fin muscles, whereas miR-1, which shares the similar nucleotide sequence with miR-206, was not detectable in the embryonic pectoral fins. Comparison of the relative positions with the neighboring protein-coding genes showed high conservation of synteny between the miR-1(206)/miR-133 clusters in a single species, as well as across the vertebrate taxa. Our results suggest that, after the gene duplications, these muscle-specific miRs acquired differential regulatory functions and have contributed to the establishment of diverse and complex musculature of vertebrates. PMID:23809703

  14. Mechanism analysis of colorectal cancer according to the microRNA expression profile

    PubMed Central

    Li, Hong; Zhang, Huichao; Lu, Gang; Li, Qingjing; Gu, Jifeng; Song, Yuan; Gao, Shejun; Ding, Yawen

    2016-01-01

    The present study aimed to identify specific microRNAs (miRs) and their predicted target genes to clarify the molecular mechanisms of colorectal cancer (CRC). An miR expression profile (array ID, GSE39833), which consisted of 88 CRC samples with various tumor-necrosis-metastasis stages and 11 healthy controls, was downloaded from the Gene Expression Omnibus database. Subsequently, the differentially expressed miRs and their target genes were screened. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways of target genes were analyzed using the Database for Annotation Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of the target genes was constructed using the Search Tool for the Retrieval of Interacting Genes database. The present study identified a total of 18 differentially expressed miRs (upregulated, 8; downregulated, 10) in the sera of the CRC patients compared with the healthy controls. Of these, 3 upregulated (let-7b, miR-1290 and miR-126) and 2 downregulated (miR-16 and miR-760) differentially expressed miRs and their target genes, including cyclin D1 (CCND1), v-myc avian myelocytomatosis viral oncogene homolog (MYC), phosphoinositide-3-kinase, regulatory subunit 2 (beta) (PIK3R2) and SMAD family member 3 (SMAD3), were significantly enriched in the CRC developmental pathway. All these target genes had higher node degrees in the PPI network. In conclusion, let-7b, miR-1290, miR-126, miR-16 and miR-760 and their target genes, CCND1, MYC, PIK3R2 and SMAD3, may be important in the molecular mechanisms for the progression of CRC. PMID:27698796

  15. MicroRNA Profile of Circulating CD4-positive Regulatory T Cells in Human Adults and Impact of Differentially Expressed MicroRNAs on Expression of Two Genes Essential to Their Function*

    PubMed Central

    Fayyad-Kazan, Hussein; Rouas, Redouane; Fayyad-Kazan, Mohammad; Badran, Rabih; El Zein, Nabil; Lewalle, Philippe; Najar, Medhi; Hamade, Eva; Jebbawi, Fadi; Merimi, Makram; Romero, Pedro; Burny, Arsène; Badran, Bassam; Martiat, Philippe

    2012-01-01

    Regulatory T cells (Tregs) are characterized by a high expression of IL-2 receptor α chain (CD25) and of forkhead box P3 (FOXP3), the latter being essential for their development and function. Another major player in the regulatory function is the cytotoxic T-lymphocyte associated molecule-4 (CTLA-4) that inhibits cytotoxic responses. However, the regulation of CTLA-4 expression remains less well explored. We therefore studied the microRNA signature of circulating CD4+ Tregs isolated from adult healthy donors and identified a signature composed of 15 differentially expressed microRNAs. Among those, miR-24, miR-145, and miR-210 were down-regulated in Tregs compared with controls and were found to have potential target sites in the 3′-UTR of FOXP3 and CTLA-4; miR-24 and miR-210 negatively regulated FOXP3 expression by directly binding to their two target sites in its 3′-UTR. On the other hand, miR-95, which is highly expressed in adult peripheral blood Tregs, positively regulated FOXP3 expression via an indirect mechanism yet to be identified. Finally, we showed that miR-145 negatively regulated CTLA-4 expression in human CD4+ adult peripheral blood Tregs by binding to its target site in CTLA-4 transcript 3′-UTR. To our knowledge, this is the first identification of a human adult peripheral blood CD4+ Treg microRNA signature. Moreover, unveiling one mechanism regulating CTLA-4 expression is novel and may lead to a better understanding of the regulation of this crucial gene. PMID:22294691

  16. SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk

    PubMed Central

    Mullany, Lila E.; Wolff, Roger K.; Herrick, Jennifer S.; Buas, Matthew F.; Slattery, Martha L.

    2015-01-01

    Introduction MicroRNAs (miRNAs) regulate messenger RNAs (mRNAs) and as such have been implicated in a variety of diseases, including cancer. MiRNAs regulate mRNAs through binding of the miRNA 5’ seed sequence (~7–8 nucleotides) to the mRNA 3’ UTRs; polymorphisms in these regions have the potential to alter miRNA-mRNA target associations. SNPs in miRNA genes as well as miRNA-target genes have been proposed to influence cancer risk through altered miRNA expression levels. Methods MiRNA-SNPs and miRNA-target gene-SNPs were identified through the literature. We used SNPs from Genome-Wide Association Study (GWAS) data that were matched to individuals with miRNA expression data generated from an Agilent platform for colon tumor and non-tumor paired tissues. These samples were used to evaluate 327 miRNA-SNP pairs for associations between SNPs and miRNA expression levels as well as for SNP associations with colon cancer. Results Twenty-two miRNAs expressed in non-tumor tissue were significantly different by genotype and 21 SNPs were associated with altered tumor/non-tumor differential miRNA expression across genotypes. Two miRNAs were associated with SNP genotype for both non-tumor and tumor/non-tumor differential expression. Of the 41 miRNAs significantly associated with SNPs all but seven were significantly differentially expressed in colon tumor tissue. Two of the 41 SNPs significantly associated with miRNA expression levels were associated with colon cancer risk: rs8176318 (BRCA1), ORAA 1.31 95% CI 1.01, 1.78, and rs8905 (PRKAR1A), ORGG 2.31 95% CI 1.11, 4.77. Conclusion Of the 327 SNPs identified in the literature as being important because of their potential regulation of miRNA expression levels, 12.5% had statistically significantly associations with miRNA expression. However, only two of these SNPs were significantly associated with colon cancer. PMID:26630397

  17. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells

    PubMed Central

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Marincola, Francesco M; Stroncek, David F

    2009-01-01

    Background The unique features of human embryonic stem (hES) cells make them the best candidate resource for both cell replacement therapy and development research. However, the molecular mechanisms responsible for the simultaneous maintenance of their self-renewal properties and undifferentiated state remain unclear. Non-coding microRNAs (miRNA) which regulate mRNA cleavage and inhibit encoded protein translation exhibit temporal or tissue-specific expression patterns and they play an important role in development timing. Results In this study, we analyzed miRNA and gene expression profiles among samples from 3 hES cell lines (H9, I6 and BG01v), differentiated embryoid bodies (EB) derived from H9 cells at different time points, and 5 adult cell types including Human Microvascular Endothelial Cells (HMVEC), Human Umbilical Vein Endothelial Cells (HUVEC), Umbilical Artery Smooth Muscle Cells (UASMC), Normal Human Astrocytes (NHA), and Lung Fibroblasts (LFB). This analysis rendered 104 miRNAs and 776 genes differentially expressed among the three cell types. Selected differentially expressed miRNAs and genes were further validated and confirmed by quantitative real-time-PCR (qRT-PCR). Especially, members of the miR-302 cluster on chromosome 4 and miR-520 cluster on chromosome 19 were highly expressed in undifferentiated hES cells. MiRNAs in these two clusters displayed similar expression levels. The members of these two clusters share a consensus 7-mer seed sequence and their targeted genes had overlapping functions. Among the targeted genes, genes with chromatin structure modification function are enriched suggesting a role in the maintenance of chromatin structure. We also found that the expression level of members of the two clusters, miR-520b and miR-302c, were negatively correlated with their targeted genes based on gene expression analysis Conclusion We identified the expression patterns of miRNAs and gene transcripts in the undifferentiation of human embryonic

  18. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  19. Hydrogen Sulfide Improves Drought Tolerance in Arabidopsis thaliana by MicroRNA Expressions

    PubMed Central

    Yuan, Huihong; Liu, Zhiqiang; Jin, Zhuping; Zhang, Liping; Pei, Yanxi

    2013-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs) in plant adaptive responses to drought stress has thereby increased our interest to delve into the possible interplay between H2S and miRNAs. Our results showed that treating wild type (WT) Arabidopsis seedlings with polyethylene glycol 8000 (PEG8000) to simulate drought stress caused an increase in production rate of endogenous H2S; and a significant transcriptional reformation of relevant miRNAs, which were also triggered by exogenous H2S in WT. When lcd mutants (with lower H2S production rate than WT) were treated with PEG8000, they showed lower levels of miRNA expression changes than WT. In addition, we detected significant changes in target gene expression of those miRNAs and the corresponding phenotypes in lcd, including less roots, retardation of leaf growth and development and greater superoxide dismutase (SOD) activity under drought stress. We thereby conclude that H2S can improve drought resistance through regulating drought associated miRNAs in Arabidopsis. PMID:24194857

  20. MicroRNA expression profiles predict progression and clinical outcome in lung adenocarcinoma

    PubMed Central

    Lin, Kang; Xu, Tao; He, Bang-Shun; Pan, Yu-Qin; Sun, Hui-Ling; Peng, Hong-Xin; Hu, Xiu-Xiu; Wang, Shu-Kui

    2016-01-01

    Lung cancer is one of the leading causes of cancer death worldwide. Accumulating evidence has indicated that microRNAs (miRNAs) can be proposed as promising diagnostic and prognostic markers for various cancers. The current study analyzed the miRNA expression profiles of 418 lung adenocarcinoma (LUAD) cases obtained from The Cancer Genome Atlas dataset, with the aim to investigate the relationship of miRNAs with progression and prognosis of LUAD. A total of 185 miRNAs were found to be differentially expressed between LUAD tumor tissues and adjacent normal tissues. Among them, 13, 10, 0, and 10 miRNAs were discovered to be associated with pathologic T, N, M, and Stage, respectively. Interestingly, mir-200 family (mir-200a, mir-200b, and mir-429) was shown to play a critical role in the progression of LUAD. In the multivariate Cox regression analysis, mir-1468 (P=0.009), mir-212 (P=0.026), mir-3653 (P=0.012), and mir-31 (P=0.002) were significantly correlated with recurrence-free survival. With regard to overall survival, mir-551b (P=0.011), mir-3653 (P=0.016), and mir-31 (P=0.001) were proven as independent prognostic markers. In summary, this study identified the cancer-specific miRNAs that may predict the progression and prognosis of LUAD. PMID:27695346

  1. Validation of Suitable Reference Genes for Assessing Gene Expression of MicroRNAs in Lonicera japonica

    PubMed Central

    Wang, Yaolong; Liu, Juan; Wang, Xumin; Liu, Shuang; Wang, Guoliang; Zhou, Junhui; Yuan, Yuan; Chen, Tiying; Jiang, Chao; Zha, Liangping; Huang, Luqi

    2016-01-01

    MicroRNAs (miRNAs), which play crucial regulatory roles in plant secondary metabolism and responses to the environment, could be developed as promising biomarkers for different varieties and production areas of herbal medicines. However, limited information is available for miRNAs from Lonicera japonica, which is widely used in East Asian countries owing to various pharmaceutically active secondary metabolites. Selection of suitable reference genes for quantification of target miRNA expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of secondary metabolic regulation in different tissues and varieties of L. japonica. For precise normalization of gene expression data in L. japonica, 16 candidate miRNAs were examined in three tissues, as well as 21 cultivated varieties collected from 16 production areas, using GeNorm, NormFinder, and RefFinder algorithms. Our results revealed combination of u534122 and u3868172 as the best reference genes across all samples. Their specificity was confirmed by detecting the cycling threshold (Ct) value ranges in different varieties of L. japonica collected from diverse production areas, suggesting the use of these two reference miRNAs is sufficient for accurate transcript normalization with different tissues, varieties, and production areas. To our knowledge, this is the first report on validation of reference miRNAs in honeysuckle (Lonicera spp.). Restuls from this study can further facilitate discovery of functional regulatory miRNAs in different varieties of L. japonica. PMID:27507983

  2. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium).

    PubMed

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Du, Xinping; Sheng, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation. PMID:26650759

  3. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium)

    PubMed Central

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Du, Xinping; Sheng, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation. PMID:26650759

  4. Validation of Suitable Reference Genes for Assessing Gene Expression of MicroRNAs in Lonicera japonica.

    PubMed

    Wang, Yaolong; Liu, Juan; Wang, Xumin; Liu, Shuang; Wang, Guoliang; Zhou, Junhui; Yuan, Yuan; Chen, Tiying; Jiang, Chao; Zha, Liangping; Huang, Luqi

    2016-01-01

    MicroRNAs (miRNAs), which play crucial regulatory roles in plant secondary metabolism and responses to the environment, could be developed as promising biomarkers for different varieties and production areas of herbal medicines. However, limited information is available for miRNAs from Lonicera japonica, which is widely used in East Asian countries owing to various pharmaceutically active secondary metabolites. Selection of suitable reference genes for quantification of target miRNA expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of secondary metabolic regulation in different tissues and varieties of L. japonica. For precise normalization of gene expression data in L. japonica, 16 candidate miRNAs were examined in three tissues, as well as 21 cultivated varieties collected from 16 production areas, using GeNorm, NormFinder, and RefFinder algorithms. Our results revealed combination of u534122 and u3868172 as the best reference genes across all samples. Their specificity was confirmed by detecting the cycling threshold (C t) value ranges in different varieties of L. japonica collected from diverse production areas, suggesting the use of these two reference miRNAs is sufficient for accurate transcript normalization with different tissues, varieties, and production areas. To our knowledge, this is the first report on validation of reference miRNAs in honeysuckle (Lonicera spp.). Restuls from this study can further facilitate discovery of functional regulatory miRNAs in different varieties of L. japonica. PMID:27507983

  5. Expression of microRNA-370 in human breast cancer compare with normal samples

    PubMed Central

    Mollainezhad, Halimeh; Eskandari, Nahid; Pourazar, Abbasali; Salehi, Mansoor; Andalib, Alireza

    2016-01-01

    Background: Breast cancer is the second leading cause of deaths from cancer in the woman. MicroRNAs (miRNAs) are endogenous noncoding RNAs that are known critical player in carcinogenesis. The role of miR-370 in malignancies remains controversial because of its levels varying in different cancers according to its targets while the role of miR-370 in breast cancer has not been addressed so far. The aim of this study was to identify the expression pattern of miR-370 in human breast cancer tissue compared to adjacent healthy tissue. Materials and Methods: Twenty-two fresh frozen tissues (normal and malignant) from patients with breast cancer were examined for miR-370 by quantitative real-time polymerase chain reaction method at 2013. Results: We observed up-regulation (six-fold higher) of miR-370 in breast cancer tissue compared with normal adjacent tissue. Tumor samples in stage III, invasive ductal type, larger tumor size, human epidermal growth-factor receptor 2+, estrogen receptor/progesterone receptor−, P53 − status showed significantly increased expression in miR-370. Conclusion: Together, miR-370 may acts as an onco-miRNA, and it may have a novel role in breast cancer. Detection of miR-370 and its targets could be helpful as a diagnostic biomarker and therapeutic target. PMID:27563639

  6. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity

    PubMed Central

    Hou, Qingming; Ruan, Hongyu; Gilbert, James; Wang, Guan; Ma, Qi; Yao, Wei-Dong; Man, Heng-Ye

    2015-01-01

    Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. PMID:26620774

  7. Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets

    PubMed Central

    Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions. PMID:25856313

  8. Plasma microRNAs expression profile in female workers occupationally exposed to mercury

    PubMed Central

    Ding, Enmin; Zhao, Qiuni; Bai, Ying; Xu, Ming; Pan, Liping; Liu, Qingdong; Wang, Bosheng; Song, Xianping; Wang, Jun; Chen, Lin

    2016-01-01

    Background Circulating microRNAs (miRNAs) have attracted interests as non-invasive biomarkers of physiological and pathological conditions. Several studies have examined the potential effects of mercury exposure on miRNAs expression profiles of general population environmentally exposed to mercury. The objective is to identify mercury-related miRNAs of female workers occupationally exposed to mercury. Methods In this case-control study, we used a microarray assay to detect the miRNA expression profiles in pooled plasma samples between (I) chronic mercury poisoning group; (II) mercury absorbing group and (III) control group in the discovery stage. Each group has ten individuals. In addition, we conducted a validation of eight candidate miRNAs in the same 30 workers by quantitative real-time PCR. Results In the discovery stage, eight miRNAs were conformed following our selection criteria. In the validation stage, RT-PCR confirmed up-regulation of miR-92a and miR-486 in the mercury poisoned group (P<0.05) compared to the other two groups. The results were consistent with the microarray analysis. Conclusions Plasma miR-92a-3p and miR-486-5p might prove to be potential biomarkers to indicate responses to mercury exposure. However, further studies are necessary to prove the causal association between miRNAs changes and mercury exposure, and to determine whether these two miRNAs are clear biomarkers to mercury exposure. PMID:27162656

  9. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression

    PubMed Central

    Hu, Ruozhen; Huffaker, Thomas B.; Kagele, Dominique A.; Runtsch, Marah C.; Bake, Erin; Chaudhuri, Aadel A.; Round, June L.; O’Connell, Ryan M.

    2013-01-01

    Th17 cells are central to the pathogenesis of autoimmune disease, and recently specific noncoding microRNAs (miRNAs) have been shown to regulate their development. However, it remains unclear if miRNAs are also involved in modulating Th17 cell effector functions. Consequently, we examined the role of miR-155 in differentiated Th17 cells during their induction of Experimental Autoimmune Encephalomyelitis (EAE). Using adoptive transfer experiments, we found that highly purified, MOG antigen-specific Th17 cells lacking miR-155 were defective in their capacity to cause EAE. Gene expression profiling of purified miR-155−/− IL-17F+ Th17 cells identified a subset of effector genes that are dependent upon miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155−/− Th17 cells being hypo-responsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation, and finds that this occurs through a signaling network involving miR-155, Ets1 and the clinically relevant IL-23-IL-23R pathway. PMID:23686497

  10. MicroRNA expression profiles predict progression and clinical outcome in lung adenocarcinoma

    PubMed Central

    Lin, Kang; Xu, Tao; He, Bang-Shun; Pan, Yu-Qin; Sun, Hui-Ling; Peng, Hong-Xin; Hu, Xiu-Xiu; Wang, Shu-Kui

    2016-01-01

    Lung cancer is one of the leading causes of cancer death worldwide. Accumulating evidence has indicated that microRNAs (miRNAs) can be proposed as promising diagnostic and prognostic markers for various cancers. The current study analyzed the miRNA expression profiles of 418 lung adenocarcinoma (LUAD) cases obtained from The Cancer Genome Atlas dataset, with the aim to investigate the relationship of miRNAs with progression and prognosis of LUAD. A total of 185 miRNAs were found to be differentially expressed between LUAD tumor tissues and adjacent normal tissues. Among them, 13, 10, 0, and 10 miRNAs were discovered to be associated with pathologic T, N, M, and Stage, respectively. Interestingly, mir-200 family (mir-200a, mir-200b, and mir-429) was shown to play a critical role in the progression of LUAD. In the multivariate Cox regression analysis, mir-1468 (P=0.009), mir-212 (P=0.026), mir-3653 (P=0.012), and mir-31 (P=0.002) were significantly correlated with recurrence-free survival. With regard to overall survival, mir-551b (P=0.011), mir-3653 (P=0.016), and mir-31 (P=0.001) were proven as independent prognostic markers. In summary, this study identified the cancer-specific miRNAs that may predict the progression and prognosis of LUAD.

  11. MicroRNA-16 suppresses epithelial-mesenchymal transition‑related gene expression in human glioma.

    PubMed

    Wang, Qin; Li, Xu; Zhu, Yu; Yang, Ping

    2014-12-01

    Glioma is one of the most prevalent types of brain tumor and is associated with the highest mortality rate of all CNS cancers. Epithelial‑mesenchymal transition (EMT) has been recognized as an important factor in tumor metastasis. Previously, it has been demonstrated that microRNA-16 (miR-16) has an important role in tumor metastasis in human cancer cell lines. However, the role of miR-16 in epithelial‑mesenchymal transition of human glioma cells remains unclear. In the present study, U87 and U251 glioma cell lines overexpressing miR-16 were established and it was identified that miR-16 suppressed invasion, adhesion, cell cycle, production of interleukin (IL)-6, IL-8 and transforming growth factor-β, and EMT-related gene expression, including vimentin, β-catenin and E-cadherin in miR-16 overexpressing U87 and U251 glioma cells. Furthermore, miR-16 suppressed EMT mainly through the downregulation of p-FAK and p-Akt expression, and nuclear factor-κB and Slug transcriptional activity. Therefore, miR-16 may be an important therapeutic target and predictor for glioma therapy. PMID:25242314

  12. Analysis of tomato microRNAs expression profile induced by Cucumovirus and Tobamovirus infections.

    PubMed

    Chen, Jishuang; Feng, Junli; Liao, Qiansheng; Chen, Shaoning; Zhang, Jianguang; Lang, Qiulei; Du, Zhiyou; Zheng, Xiaodong; Ouyang, Pingkai

    2012-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that affect the morphological and physiological development of plants. In recent years, there is accumulating evidence that miRNAs are involved in defense mechanism of host plants. Therefore, investigating the alteration of miRNAs expression profiles after virus infection will provide new insights for understanding the sophisticated virus-host plant interaction. The current miRNA sequence database (miRBase) contains more than 1669 mature plant miRNAs across 25 species, but few tomato miRNAs are reported. Here we created a microarray suitable for detection of plant miRNAs based on the conservative character of miRNAs, and a total of 105 conserved plant miRNAs were detected from tomato leaf tissues. Among them, 85% of the detected miRNAs showed significant expression alterations when infected by different strains of cucumber mosaic virus (CMV) and N5 strain of tomato mosaic virus (ToMV). Combination with their symptoms development, interferences of CMV 2b protein and alleviated/aggravated satellite RNA on host miRNA pathway were discussed, and the differences in interference mechanisms between CMV and ToMV on host miRNA pathway were compared. Our results represent the comprehensive investigation of tomato miRNAs on a genome scale thus far and provide information to study the interaction between plant viruses and host plants. PMID:22523958

  13. Bioinformatic identification and expression analysis of Nelumbo nucifera microRNA and their targets1

    PubMed Central

    Pan, Lei; Wang, Xiaolei; Jin, Jing; Yu, Xiaolu; Hu, Jihong

    2015-01-01

    Premise of the study: Sacred lotus (Nelumbo nucifera) is a perennial aquatic herbaceous plant of ecological, ornamental, and economic importance. MicroRNAs (miRNAs) play an important role in plant development. However, reports of miRNAs and their role in sacred lotus have been limited. Methods: Using the homology search of known miRNAs with genome and transcriptome contig sequences, we employed a pipeline to identify miRNAs in N. nucifera. We also predicted the targets of these miRNAs. Results: We found 106 conserved miRNAs in N. nucifera, and 456 of their miRNA targets were annotated. Quantitative real-time PCR (qRT-PCR) analysis revealed the different expression levels of the 10 selected conserved miRNAs in tissues of young leaves, stems, and flowers of N. nucifera. Negative correlation of expression level between five miRNAs and their target genes was also revealed. Discussion: Combining bioinformatics and experiment analysis, we identified the miRNAs in N. nucifera. The results can be used as a workbench for further investigation of the roles of miRNAs in N. nucifera. PMID:26421251

  14. MicroRNA-16 suppresses epithelial-mesenchymal transition‑related gene expression in human glioma.

    PubMed

    Wang, Qin; Li, Xu; Zhu, Yu; Yang, Ping

    2014-12-01

    Glioma is one of the most prevalent types of brain tumor and is associated with the highest mortality rate of all CNS cancers. Epithelial‑mesenchymal transition (EMT) has been recognized as an important factor in tumor metastasis. Previously, it has been demonstrated that microRNA-16 (miR-16) has an important role in tumor metastasis in human cancer cell lines. However, the role of miR-16 in epithelial‑mesenchymal transition of human glioma cells remains unclear. In the present study, U87 and U251 glioma cell lines overexpressing miR-16 were established and it was identified that miR-16 suppressed invasion, adhesion, cell cycle, production of interleukin (IL)-6, IL-8 and transforming growth factor-β, and EMT-related gene expression, including vimentin, β-catenin and E-cadherin in miR-16 overexpressing U87 and U251 glioma cells. Furthermore, miR-16 suppressed EMT mainly through the downregulation of p-FAK and p-Akt expression, and nuclear factor-κB and Slug transcriptional activity. Therefore, miR-16 may be an important therapeutic target and predictor for glioma therapy.

  15. Detection of epigenetic aberrations in the development of hepatocellular carcinoma.

    PubMed

    Zhang, Yujing

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third most common cause of cancer death worldwide. Hepatocarcinogenesis is a complex, multistep process. It is now recognized that HCC is a both genetic and epigenetic disease; genetic and epigenetic components cooperate at all stages of hepatocarcinogenesis. Epigenetic changes involve aberrant DNA methylation, posttranslational histone modifications and aberrant expression of microRNAs all of which can affect the expression of oncogenes, tumor suppressor genes and other tumor-related genes and alter the pathways in cancer development. Several risk factors for HCC, including hepatitis B and C virus infections and exposure to the chemical carcinogen aflatoxin B1 have been found to influence epigenetic changes. Their interactions could play an important role in the initiation and progression of HCC. Discovery and detection of biomarkers for epigenetic changes is a promising area for early diagnosis and risk prediction of HCC.

  16. Identification and Pathway Analysis of microRNAs with No Previous Involvement in Breast Cancer

    PubMed Central

    Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo

    2012-01-01

    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described. PMID:22438871

  17. Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels

    PubMed Central

    Wu, Cheng-Wei; Biggar, Kyle K.; Storey, Kenneth B.

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05), which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control), while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P < 0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked

  18. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P<0.05), which was 16%-54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32-2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%-70% of control), while only expression of miR-138 was significantly upregulated (2.91±0.8-fold of the control, P<0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct

  19. MicroRNA-199b expression level and coliform count in irritable bowel syndrome.

    PubMed

    Mansour, Marwa A; Sabbah, Norhan A; Mansour, Shymaa A; Ibrahim, Amany M

    2016-05-01

    Irritable bowel syndrome (IBS) is a common intestinal disorder. The pathophysiology of IBS may involve an altered intestinal microbiota. Recent studies have shown that alterations in microRNA (miRNA) levels have affected IBS and its subtypes. We aimed to compare both the count of Coliform and serum level of miRNA-199b between patients with IBS and healthy controls and to find the relationship between the Coliform and miRNAs in patients with IBS. Patients with IBS were classified into three subgroups based on their predominant bowel pattern as defined by Rome III criteria. Quantitative culture of Coliform and determination of serum miRNA-199b expression level by quantitative real-time PCR in IBS group versus healthy controls were performed. There was a significant increase in the count of Coliform in patients with IBS and its different subtypes when compared with healthy controls. There was a significant decrease of serum miR-199b expression level in patients with IBS and its different subtypes when compared with healthy controls with the highest level (1.9 ± 0.53 log scale) in healthy controls and lowest one (0.71 ± 0.27 log scale) in IBS with diarrhea (IBS-D) subtype. Moreover, there was a negative correlation between the count of Coliform and the serum miRNA-199b expression level in IBS. This study reported that there was a significant increase in the count of Coliform and a decrease in the serum miRNA-199b expression level. In addition, there was a negative correlation between them in patients with IBS and its different subtypes when compared with healthy controls. © 2016 IUBMB Life, 68(5):335-342, 2016. PMID:27015896

  20. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development

    PubMed Central

    Williams, Andrew E.; Moschos, Sterghios A.; Perry, Mark M.; Barnes, Peter J.; Lindsay, Mark A.

    2008-01-01

    MicroRNAs (miRNAs) are a recently discovered class of non-coding genes that regulate the translation of target mRNA. More than 300 miRNAs have now been discovered in humans, although the function of most is still unknown. A highly sensitive, semi-quantitative RT-PCR method was utilised to reveal the differential expression of a number of miRNAs during the development of both mouse and human lung. Of note was the upregulation in neonatal mouse and fetal human lung of a maternally imprinted miRNA cluster located at human chromosome 14q32.21 (mouse chromosome 12F2), which includes the miR-154 and miR-335 families and is situated within the Gtl2-Dio3 domain. Conversely, several miRNAs were upregulated in adult compared to neonatal/fetal lung including miR-29a and miR-29b. Differences in the spatial expression patterns of miR-154, miR-29a and miR-26a was demonstrated using in situ hybridisation of mouse neonatal and adult tissue using miRNA-specific LNA probes. Interestingly, miR-154 appeared to be localised to the stroma of fetal but not adult lungs. The overall expression profile was similar for mouse and human tissue suggesting evolutionary conservation of miRNA expression during lung development and demonstrating the importance of maternally imprinted miRNAs in the developmental process. PMID:17191223

  1. Profiling the expression domains of a rice-specific microRNA under stress

    PubMed Central

    Sharma, Neha; Tripathi, Anita; Sanan-Mishra, Neeti

    2015-01-01

    Plant microRNAs (miRs) have emerged as important regulators of gene expression under normal as well as stressful environments. Rice is an important cereal crop whose productivity is compromised due to various abiotic stress factors such as salt, heat and drought. In the present study, we have investigated the role of rice-specific Osa-miR820, in indica rice cultivars showing contrasting response to salt stress. The dissection of expression patterns indicated that the miR is present in all the tissues but is enriched in the anther tissues. In salinity, the miR levels are up-regulated in the leaf tissues but down-regulated in the root tissues. To map the deregulation under salt stress comprehensive time kinetics of expression was performed in the leaf and root tissues. The reproductive stages were also analyzed under salt stress. It emerged that a common regulatory scheme for Osa-miR820 expression is present in the salt-susceptible Pusa Basmati 1 and salt-tolerant Pokkali varieties, although there is a variation in the levels of the miR and its target transcript, OsDRM2. The regulation of Osa-miR820 and its target were also studied under other abiotic stresses. This study thus captures the window for the miR-target correlation and the putative role of this regulation is discussed. This will help in gaining useful insights on the role of species specific miRs in plant development and abiotic stress response. PMID:26029232

  2. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients

    PubMed Central

    Singh, Prashant K.; Preus, Leah; Hu, Qiang; Yan, Li; Long, Mark D.; Morrison, Carl D.; Nesline, Mary; Johnson, Candace S.; Koochekpour, Shahriar; Kohli, Manish; Liu, Song; Trump, Donald L.

    2014-01-01

    We aimed to identify microRNA (miRNA) expression patterns in the serum of prostate cancer (CaP) patients that predict the risk of early treatment failure following radical prostatectomy (RP). Microarray and Q-RT-PCR analyses identified 43 miRNAs as differentiating disease stages within 14 prostate cell lines and reflectedpublically available patient data. 34 of these miRNA were detectable in the serum of CaP patients. Association with time to biochemical progression was examined in a cohort of CaP patients following RP. A greater than two-fold increase in hazard of biochemical progression associated with altered expression of miR-103, miR-125b and miR-222 (p <.0008) in the serum of CaP patients. Prediction models based on penalized regression analyses showed that the levels of the miRNAs and PSA together were better at detecting false positives than models without miRNAs, for similar level of sensitivity. Analyses of publically available data revealed significant and reciprocal relationships between changes in CpG methylation and miRNA expression patterns suggesting a role for CpG methylation to regulate miRNA. Exploratory validation supported roles for miR-222 and miR-125b to predict progression risk in CaP. The current study established that expression patterns of serum-detectable miRNAs taken at the time of RP are prognostic for men who are at risk of experiencing subsequent early biochemical progression. These non-invasive approaches could be used to augment treatment decisions. PMID:24583788

  3. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    PubMed Central

    Dou, Liping; Li, Jingxin; Zheng, Dehua; Li, Yonghui; Gao, Xiaoning; Xu, Chengwang; Gao, Li; Wang, Lili; Yu, Li

    2013-01-01

    Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL) is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;1l)(q21;q23)), leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs) might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11) inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA) and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annex in V staining using fluorescence-activated cell sorting (FACS) analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL. PMID:24009426

  4. Aberrant activation-induced cytidine deaminase expression in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia.

    PubMed

    Shi, Yang; Zhao, Xiaoxian; Durkin, Lisa; Rogers, Heesun Joyce; Hsi, Eric D

    2016-06-01

    Activation-induced cytidine deaminase (AID) is expressed in germinal center B cells and plays a critical role in somatic hypermutation and class-switch recombination of immunoglobulin genes. Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) carries a poor prognosis and is specifically treated with tyrosine kinase inhibitors. Interestingly, AID has been shown to be aberrantly expressed and functional in Ph+ ALL and is thought to contribute to genetic instability. We hypothesized that AID might be detectable in routinely processed bone marrow biopsies by immunohistochemistry (IHC) and assist in identifying Ph+ ALL. We found that AID was expressed in 26 (70%) of 37 cases of Ph+ ALL but only 1 (2.9%) of 38 cases of Ph- ALL cases. There was a significant difference in AID expression between these 2 ALL groups (P < .001, Fisher exact test). The expression of AID was confirmed by RT-PCR (reverse-transcriptase polymerase chain reaction) and correlated with IHC scoring. AID protein is expressed in a large proportion of Ph+ ALL cases at levels detectable by IHC in clinical samples and might be useful to rapidly identify cases likely to have a BCR/ABL1 fusion. PMID:26980048

  5. Gamma-Retroviral Vector Design for the Co-Expression of Artificial microRNAs and Therapeutic Proteins

    PubMed Central

    Park, Tristen S.; Zhang, Ling; Zheng, Zhili; Morgan, Richard A.

    2014-01-01

    To generate γ-retroviral vectors for stable conjoint expression of artificial microRNAs (amiR) and therapeutic genes in primary human lymphocytes, and to identify the design parameters that are key for successful vector generation. Gamma-retroviral vectors were designed to co-express both amiRs and a linked reporter gene, truncated CD34 (tCD34). Artificial miRs based on microRNAs miR-16, miR-142, miR-146b, miR-150, miR155, and miR-223 were inserted into sites within the intron of the vector and tested for tCD34 expression by flow cytometry (FACS). Different constructs were assembled with amiRs targeted to knockdown expression of suppressor of cytokine signaling 1 (SOCS1) or programmed cell death 1 (PDCD1, PD-1). Three of the six amiRs maintained tCD34 expression. Expansion of primary human T cells transduced with these amiR vectors, as well as transgene expression, were equivalent to control engineered T cells over a 40-day period. Knockdown of SOCS1 RNA and PD-1 expression by FACS was shown to vary between constructs, dependent on either the specific short interfering RNA sequence used in the amiR, or the microRNA backbone and location in the vector intron. Gamma-retroviral vectors that both efficiently knockdown endogenous gene expression and maintain linked transgene production can be produced, but empirical vector evaluations were best suited for optimal construct analysis. PMID:25019196

  6. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    SciTech Connect

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a

  7. MicroRNA-941 Expression in Polymorphonuclear Granulocytes Is Not Related to Granulomatosis with Polyangiitis

    PubMed Central

    Svendsen, Jesper Brink; Baslund, Bo; Cramer, Elisabeth Præstekjær; Rapin, Nicolas; Borregaard, Niels

    2016-01-01

    Jumonji Domain-Containing Protein 3 (JMJD3)/lysine demethylase 6B (KDM6B) is an epigenetic modulator that removes repressive histone marks on genes. Expression of KDM6B mRNA is elevated in leukocytes from patients with ANCA-associated vasculitis (AAV) and has been suggested to be the reason for higher proteinase 3 (PR3) mRNA expression in these cells due to derepression of PRTN3 gene transcription. MicroRNA-941 (miR-941) has been shown to target KDM6B mRNA and inhibit JMJD3 production. We therefore investigated whether polymorphonuclear granulocytes (PMNs) from patients suffering from granulomatosis with polyangiitis (GPA) have lower expression of miR-941 than healthy control donors as a biological cause for higher JMJD3 levels. We found no significant difference in the degree of maturation of PMNs from GPA patients (n = 8) and healthy controls (n = 11) as determined from cell surface expression of the neutrophil maturation marker CD16 and gene expression profile of FCGR3B. The expression of PRTN3 and KDM6B mRNAs and miR-941 was not significantly different in GPA patients and healthy controls. Transfection of pre-miR-941 into the neutrophil promyelocyte cell line PLB-985 cells did not result in reduction of the KDM6B mRNA level as shown previously in a hepatocellular carcinoma cell line. The amount of PR3 in PMNs from GPA patients and healthy controls was comparable. In conclusion, we found that PRTN3 mRNA, KDM6B mRNA, and miR-941 expression levels in PMNs do not differ between GPA patients and healthy controls, and that miR-941 does not uniformly regulate KDM6B mRNA levels by inducing degradation of the transcript. Thus, decreased miR-941 expression in PMNs cannot be part of the pathogenesis of GPA. PMID:27755585

  8. microRNA in Human Reproduction.

    PubMed

    Eisenberg, Iris; Kotaja, Noora; Goldman-Wohl, Debra; Imbar, Tal

    2015-01-01

    microRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. microRNAs have been shown to play an important role in control of reproductive functions, especially in the processes of oocyte maturation, folliculogenesis, corpus luteum function, implantation, and early embryonic development. Knockout of Dicer, the cytoplasmic enzyme that cleaves the pre-miRNA to its mature form, results in postimplantation embryonic lethality in several animal models, attributing to these small RNA vital functions in reproduction and development. Another intriguing characteristic of microRNAs is their presence in body fluids in a remarkably stable form that is protected from endogenous RNase activity. In this chapter we will describe the current knowledge on microRNAs, specifically relating to human gonadal cells. We will focus on their role in the ovarian physiologic process and ovulation dysfunction, regulation of spermatogenesis and male fertility, and putative involvement in human normal and aberrant trophoblast differentiation and invasion through the process of placentation. PMID:26663192

  9. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer.

    PubMed

    Jiao, Feng; Hu, Hai; Han, Ting; Zhuo, Meng; Yuan, Cuncun; Yang, Haiyan; Wang, Lei; Wang, Liwei

    2016-03-29

    Previous studies showed that aberrant CDH1 or/and HDAC3 localization is essential for the progression of some human cancers. Here, we investigate the prognostic significance of aberrant CDH1 and HDAC3 localization in 84 pancreatic cancer patients. Our results show that increases in both membrane and cytoplasmic CDH1 correlate with lymph node metastasis (P = 0.026 and P < 0.001, respectively) and clinical stage (P = 0.020 and P < 0.001, respectively). Increased nuclear HDAC3 correlates with lymph node metastasis (P < 0.001) and advanced clinical stage (P < 0.001), but increased cytoplasmic HDAC3 does not (P > 0.05). Multivariate analysis showed that nuclear HDAC3 and cytoplasmic CDH1 (P = 0.001 and P = 0.010, respectively), as well as tumor differentiation (P = 0.009) are independent prognostic factors. Most importantly, patients with high co-expression of nuclear HDAC3 and cytoplasmic CDH1 had shorter survival times (P < 0.001), more frequent lymph node metastasis (P < 0.001), and advanced clinical stage (P < 0.001). Our studies provide convincing evidence that nuclear HDAC3 and cytoplasmic CDH1 have independent prognostic value in pancreatic cancer and provide novel targets for prognostic therapeutics.

  10. Naturally Arising Strains of Polyomaviruses with Severely Attenuated MicroRNA Expression

    PubMed Central

    Chen, Chun Jung; Burke, James M.; Kincaid, Rodney P.; Azarm, Kristopher D.; Mireles, Noel; Butel, Janet S.

    2014-01-01

    ABSTRACT Several different polyomaviruses (PyVs) encode microRNAs (miRNAs) that regulate viral as well as host gene expression. However, the functions of polyomaviral miRNAs, particularly during in vivo infection, remain poorly understood. Here we identify rare naturally arising PyVs that are severely attenuated or null for miRNA expression. We identify hypomorphic or null strains for miRNA expression from rhesus macaque simian virus 40 (SV40) and human JC virus. These strains were isolated from immunocompromised hosts and derive from insertions or deletions in the viral DNA that preserve the amino acid reading frame of opposing-strand large T antigen gene. Characterization of the SV40 miRNA hypomorph, K661, shows that it is inhibited at the early miRNA biogenesis step of Drosha-mediated processing. Despite having a nonrearranged enhancer, which a previous study has shown renders some PyVs more susceptible to the autoregulatory activities of the miRNA, restoring miRNA expression to K661 has little effect on virus growth in either immortalized or primary monkey kidney cells. Thus, in addition to any effect of accompanying genomic elements, these results suggest that the cellular context also determines susceptibility to PyV miRNA-mediated effects. Combined, these results demonstrate that polyomaviruses lacking miRNAs can arise infrequently and that the functional importance of polyomaviral miRNAs is context dependent, consistent with an activity connected to the immune status of the host. IMPORTANCE Diverse virus families encode miRNAs, yet much remains unknown about viral miRNA function and contribution to the infectious cycle. Polyomaviruses (PyVs) are small DNA viruses, long known to be important as etiological agents of rare diseases and valuable models of DNA virus infection. Here, in immunosuppressed hosts, we uncover rare naturally arising variants of different PyVs that have lost the ability to express miRNAs. This represents some of the only known natural

  11. A model for data analysis of microRNA expression in forensic body fluid identification.

    PubMed

    Wang, Zheng; Luo, Haibo; Pan, Xiongfei; Liao, Miao; Hou, Yiping

    2012-05-01

    MicroRNAs (miRNAs, 18-25 bases in length) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. MiRNA expression patterns, including presence and relative abundance of particular miRNA species, provide cell- and tissue-specific information that can be used for body fluid identification. Recently, two published studies reported that a number of body fluid-specific miRNAs had been identified. However, the results were inconsistent when different technology platforms and statistical methods were applied. To further study the role of miRNAs in identification of body fluids, this study sets out to develop an accurate and reliable model for data analysis of miRNA expression. To that end, the relative expression levels of three miRNAs were studied using the mirVana™ miRNA Isolation Kit, high-specificity stem-loop reverse transcription (RT) and high-sensitivity hydrolysis probes (TaqMan) quantitative real-time polymerase chain reaction (qPCR) in forensically relevant biological fluids, including venous blood, vaginal secretions, menstrual blood, semen and saliva. Accurate quantification of miRNAs requires not only a highly sensitive and specific detection platform for experiment operation, but also a reproducible methodology with an adequate model for data analysis. In our study, the efficiency-calibrated model that incorporated the impact of the quantification cycle (Cq) values and PCR efficiencies of target and reference genes was developed to calculate the relative expression ratio of miRNAs in forensically relevant body fluids. Our results showed that venous blood was distinguished from other body fluids according to the relative expression ratio of miR16 using as little as 50pg of total RNA, while the expression level of miR658 was unstable and that of miR205 was nonspecific among different body fluids. Collectively, the findings may constitute a basis for future miRNA-based research on body fluid identification and show mi

  12. MicroRNA expression profiling studies on bronchopulmonary dysplasia: a systematic review and meta-analysis.

    PubMed

    Yang, Y; Qiu, J; Kan, Q; Zhou, X-G; Zhou, X-Y

    2013-01-01

    Over the past several years, several microRNA (miRNA) expression profiling studies have been carried out on bronchopulmonary dysplasia (BPD) in mammalian lung tissues. The most effective way to identify these important miRNAs is to systematically search for similar signatures identified in multiple independent studies. Accordingly, a meta-analysis was conducted to review published miRNA expression profiling studies that compared miRNA expression profiles between BPD lung tissues and normal lung tissues. A vote-counting strategy that considered the total number of studies and time points reporting differential expression was applied. Furthermore, cut-off criteria of statistically significant differentially expressed miRNAs as defined by the author and their predicted target genes, if available, as well as the list of up- and down-regulated miRNA features, were collected and recorded. Results of the meta-analysis revealed that four up-regulated miRNAs (miRNA-21, miRNA-34a, miRNA-431, and Let-7f) and one down-regulated miRNA (miRNA-335) were differentially expressed in BPD lung tissues compared with normal groups. In addition, eight miRNAs (miRNA-146b, miRNA-29a, miRNA-503, miRNA-411, miRNA-214, miRNA-130b, miRNA-382, and miRNA-181a-1*) were found to show differential expression not only in the process of normal lung development, but also during the progress of BPD. Finally, several meaningful target genes (such as the HPGD and NTRK genes) of common miRNAs (such as miRNA-21 and miRNA-141) were systematically predicted. These specific miRNAs may provide clues of the potential mechanisms involved in BPD. Further mechanistic and external validation studies are needed to confirm the clinical significance of these miRNAs in the development of BPD. PMID:24301780

  13. A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig

    PubMed Central

    Shang, Peng; Wang, Zhixiu; Ma, Jun; Wang, Liyuan; Zhang, Hao

    2015-01-01

    Tibetan pigs live between 2500 and 4300 m above sea level on the Tibetan Plateau, and are better adapted to hypoxia than lowland pigs. MicroRNAs (miRNAs) are involved in a wide variety of cellular processes; however, their regulatory role in hypoxia adaptation remains unclear. In this study, miRNA-seq was used to identify differentially expressed miRNAs (DE miRNAs) in the cardiac muscle of Tibetan and Yorkshire pigs, which were both raised in high elevation environments. We obtained 108 M clean reads and 372 unique miRNAs, which included 210 known porcine miRNAs, 136 conserved in other mammals, and 26 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 up-regulated and 10 down-regulated miRNAs, were also found after comparison between Tibetan and Yorkshire pigs. We predicted miRNA targets based on differential expression and abundance in the two populations. Furthermore, the results of a Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DE miRNAs in Tibetan and Yorkshire pigs are involved in hypoxia-related signaling pathways such as the mitogen-activated protein kinase, which is the mechanistic target of rapamycin, and the vascular endothelial growth factor, as well as cancer-related signaling pathways. Five DE miRNAs were randomly selected to validate the results of miRNA-seq using real-time polymerase chain reaction, and the results corresponded to those from the miRNA-seq, confirming that deep-sequencing methods are feasible and efficient. In our study, we identified various previously unknown hypoxia-related miRNAs in pigs, and the data obtained suggest that hypoxia-related miRNA expression patterns are significantly altered in the Tibetan pig compared to other species. Therefore, DE miRNAs may play an important role in organisms that have adapted to hypoxic environments. PMID:26571238

  14. A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig.

    PubMed

    Zhang, Bo; Qiangba, Yangzong; Shang, Peng; Wang, Zhixiu; Ma, Jun; Wang, Liyuan; Zhang, Hao

    2015-01-01

    Tibetan pigs live between 2500 and 4300 m above sea level on the Tibetan Plateau, and are better adapted to hypoxia than lowland pigs. MicroRNAs (miRNAs) are involved in a wide variety of cellular processes; however, their regulatory role in hypoxia adaptation remains unclear. In this study, miRNA-seq was used to identify differentially expressed miRNAs (DE miRNAs) in the cardiac muscle of Tibetan and Yorkshire pigs, which were both raised in high elevation environments. We obtained 108 M clean reads and 372 unique miRNAs, which included 210 known porcine miRNAs, 136 conserved in other mammals, and 26 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 up-regulated and 10 down-regulated miRNAs, were also found after comparison between Tibetan and Yorkshire pigs. We predicted miRNA targets based on differential expression and abundance in the two populations. Furthermore, the results of a Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DE miRNAs in Tibetan and Yorkshire pigs are involved in hypoxia-related signaling pathways such as the mitogen-activated protein kinase, which is the mechanistic target of rapamycin, and the vascular endothelial growth factor, as well as cancer-related signaling pathways. Five DE miRNAs were randomly selected to validate the results of miRNA-seq using real-time polymerase chain reaction, and the results corresponded to those from the miRNA-seq, confirming that deep-sequencing methods are feasible and efficient. In our study, we identified various previously unknown hypoxia-related miRNAs in pigs, and the data obtained suggest that hypoxia-related miRNA expression patterns are significantly altered in the Tibetan pig compared to other species. Therefore, DE miRNAs may play an important role in organisms that have adapted to hypoxic environments. PMID:26571238

  15. MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos.

    PubMed

    Castro, F O; Sharbati, S; Rodríguez-Alvarez, L L; Cox, J F; Hultschig, C; Einspanier, R

    2010-01-01

    The objective of this study was to identify microRNAs (miRNAs) expressed in bovine (Bos Taurus) cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or in vitro fertilization) during elongation. Day 7 bovine expanded blastocysts produced by hand made cloning (HMC) or in vitro fertilization were bulk-transferred to synchronized recipient cattle (48 HMC embryos to 10 recipients and 28 in vitro-produced embryos to four recipients). Elongated embryos were retrieved at Day 17; miRNAs were isolated and subjected to microarray screening using custom composite slides spotted with human, mouse, and rat and in silico-predicted miRNAs. An initial profile of expressed miRNAs was determined in cloned embryos and somatic donor cells; this profile changed after somatic cell nucleus transfer, identifying differentially expressed miRNAs between cloned and in vitro-produced bovine embryos. Furthermore, microarray data were validated using a miRNA-specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) approach (miR-Q). There was an 83% correlation (P=0.01) between microarray and qPCR data. Based on qRT-PCR, correct reprogramming of some miRNAs from the donor cells was confirmed in cloned bovine embryos, whereas other somatic miRNAs were not appropriately reprogrammed. Some of the miRNAs that were equally reprogrammed clustered on the same chromosomal location in the bovine genome. In conclusion, reprogramming of miRNAs seemed to occur in cloned bovine embryos. This could have profound implications for elucidating nuclear reprogramming in somatic cloning, as well as for the role of miRNAs in preimplantation mammalian development.

  16. MicroRNA-147b Regulates Vascular Endothelial Barrier Function by Targeting ADAM15 Expression

    PubMed Central

    Chatterjee, Victor; Beard, Richard S.; Reynolds, Jason J.; Haines, Ricci; Guo, Mingzhang; Rubin, Matthew; Guido, Jenny; Wu, Mack H.; Yuan, Sarah Y.

    2014-01-01

    A disintegrin and metalloproteinase15 (ADAM15) has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS). An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3′ UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression. PMID:25333931

  17. MicroRNA regulation of DNA repair gene expression in hypoxic stress.

    PubMed

    Crosby, Meredith E; Kulshreshtha, Ritu; Ivan, Mircea; Glazer, Peter M

    2009-02-01

    Genetic instability is a hallmark of cancer; the hypoxic tumor microenvironment has been implicated as a cause of this phenomenon. MicroRNAs (miR) are small nonprotein coding RNAs that can regulate various cellular pathways. We report here that two miRs, miR-210 and miR-373, are up-regulated in a hypoxia-inducible factor-1alpha-dependent manner in hypoxic cells. Bioinformatics analyses suggested that these miRs could regulate factors implicated in DNA repair pathways. Forced expression of miR-210 was found to suppress the levels of RAD52, which is a key factor in homology-dependent repair (HDR); the forced expression of miR-373 led to a reduction in the nucleotide excision repair (NER) protein, RAD23B, as well as in RAD52. Consistent with these results, both RAD52 and RAD23B were found to be down-regulated in hypoxia, but in both cases, the hypoxia-induced down-regulation could be partially reversed by antisense inhibition of miR-210 and miR-373. Importantly, luciferase reporter assays indicated that miR-210 is capable of interacting with the 3' untranslated region (UTR) of RAD52 and that miR-373 can act on the 3' UTR of RAD23B. These results indicate that hypoxia-inducible miR-210 and miR-373 play roles in modulating the expression levels of key proteins involved in the HDR and NER pathways, providing new mechanistic insight into the effect of hypoxia on DNA repair and genetic instability in cancer.

  18. Clinical significance and expression of microRNA in diabetic patients with erectile dysfunction

    PubMed Central

    JIANG, XI; LUO, YONG; ZHAO, SHULI; CHEN, QICHAO; JIANG, CHAO; DAI, YUTIAN; CHEN, YUN; CAO, ZHIGANG

    2015-01-01

    The aim of the present study was to investigate the expression of microRNA (miR)-93, miR-320 and miR-16 and to assess their diagnostic value in diabetic patients with erectile dysfunction (ED). A total of 120 individuals were divided into three groups, which included the diabetics with ED group (ED group), the diabetics without ED group (NED group) and the healthy volunteers group (control group). Each group included 40 individuals. Serum samples were collected and reverse transcription quantitative polymerase chain reaction detection of the three types of miRNA was performed and the sensitivity of ED was analyzed by receiver operating characteristic curves. A negative correlation was identified between the incidence of ED in patients with diabetes and serum total testosterone levels (r=0.302, P<0.05); however, a positive correlation was observed between the incidence of ED in diabetics and the HbA1c level (r=0.231, P<0.05). Additionally, the relative expression levels of the three types of miRNA were higher in the ED group when compared with the NED and control groups (P<0.05). When compared with the control group, the area under the curve (AUC) values for miR-93, miR-320 and miR-16 were 0.793, 0.818 and 0.810, respectively, in the ED group and 0.576, 0.532 and 0.542 in the NED group, respectively. Furthermore, when compared with the NED group, the AUC value for miR-93, miR-320 and miR-16 was 0.707, 0.810 and 0.833, respectively, in the ED group. Therefore, the expression levels of miR-93, miR-320 and miR-16 may be useful for the early diagnosis of ED in patients with diabetes. PMID:26170937

  19. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease.

    PubMed

    Tan, Lin; Yu, Jin-Tai; Tan, Meng-Shan; Liu, Qiu-Yan; Wang, Hui-Fu; Zhang, Wei; Jiang, Teng; Tan, Lan

    2014-01-01

    Recent findings that human serum contains stably expressed microRNAs (miRNAs) have revealed a great potential of serum miRNA signature as disease fingerprints to diagnosis. Here we used genome-wide serum miRNA expression analysis to investigate the value of serum miRNAs as biomarkers for the diagnosis of Alzheimer's disease (AD). Illumina HiSeq 2000 sequencing followed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays was used to test the difference in levels of serum miRNAs between 50 AD patients and 50 controls in the screening stages. The detected serum miRNAs then were validated by qRT-PCR in 158 patients and 155 controls. MiR-98-5p, miR-885-5p, miR-483-3p, miR-342-3p, miR-191-5p, and miR-let-7d-5p displayed significantly different expression levels in AD patients compared with controls. Among the 6 miRNAs, miR-342-3p has the best sensitivity (81.5%) and specificity (70.1%) and was correlated to Mini-Mental State Examination score. This study identified six serum miRNAs that distinguish AD patients from healthy controls with high sensitivity and specificity. Serum miRNA panel (or miR-342-3p alone) may serve as a novel, noninvasive biomarker for AD.

  20. The expression profile of microRNAs in wistar rats with lipopolysaccharide-induced periventricular leukomalacia.

    PubMed

    Guo, Kai; Yang, Yang; Qiu, Jie; Kan, Qing; Zhou, Xiao-Guang; Zhou, Xiao-Yu

    2013-11-01

    Over the recent decades, with numbers of premature infants being cured, clinical diseases on brain damage like periventricular leukomalacia (PVL) have become much more common. Meanwhile, since the discovery of first miRNA lin-4, an increasing number of important studies about this small RNA have been performed not only in the normal organ development but also in the pathogenic mechanism of diseases. However, throughout the past several years, there have been rare miRNA researches discussing the connection between the PVL and miRNA. In view of this situation, we constructed an animal model of PVL induced by lipopolysaccharide (LPS) and performed a miRNA microarray which was repeated three times to profile the expression of microRNAs (miRNAs) between two groups (PVL group versus control group). Then, miRNAs with notable fold changes (fold change >1.5) were found; some of them were further validated by real-time PCR. As a result, 104 differentially expressed miRNAs were identified using the microarray, including 64 upregulated and 40 downregulated miRNAs. Then, five miRNAs of them were selected, characterized by consistent trend in expression in all three microarrays. Among these five miRNAs (miRNA-451, miRNA-200b, miRNA-29a, miRNA-21, and miRNA-138), we subsequently selected miRNA-451 and miRNA-200b for real-time PCR because they possess the highest fold changes. Finally, the results of PCR are basically in accord with the microarray. We guess these new identified miRNAs may play an important role in the pathogenesis of PVL and may provide certain pathophysiological basis for the future research of related diseases in preterm infants.

  1. Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells.

    PubMed

    Macedo, Claudia; Evangelista, Adriane F; Marques, Márcia M; Octacílio-Silva, Shirlei; Donadi, Eduardo A; Sakamoto-Hojo, Elza T; Passos, Geraldo A

    2013-04-01

    The autoimmune regulator (Aire) is a transcription factor that controls the ectopic expression of a large set of peripheral tissue antigen (PTA) genes in medullary thymic epithelial cells (mTECs). Recent evidence has demonstrated that Aire releases stalled RNA polymerase II (RNA Pol II) from blockage at the promoter region of its target genes. Given that, in addition to messenger RNAs (mRNA), RNA Pol II also transcribes microRNAs (miRNAs), we raised the hypothesis that Aire might play a role as an upstream controller of miRNA transcription. To test this, we initially analyzed the expression profiles of 662 miRNAs in control and Aire-silenced (siRNA) murine mTEC 3.10 cells using microarrays. The bioinformatics programs SAM and Cluster-TreeView were then used to identify the differentially expressed miRNAs and their profiles, respectively. Thirty Aire-dependent miRNAs were identified in the Aire-silenced mTECs, of which 18 were up- and 12 were down-regulated. The down-regulated miR-376 family was the focus of this study because its members (miR-376a, miR-376b and miR-376c) are located in the genome within the Gm2922 open-reading frame (ORF) gene segment on the chromosome 12F1. The T-boxes (TTATTA) and G-boxes (GATTGG), which represent putative RNA Pol II promoter motifs, were located in a portion spanning 10 kb upstream of the ATG codon of Gm2922. Moreover, we found that Gm2922 encodes an mRNA, which was also down-regulated in Aire-silenced mTECs. These results represent the first evidence that Aire can play a role as a controller of transcription of miRNAs located within genomic regions encompassing ORF and/or mRNA genes.

  2. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression

    PubMed Central

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P.; Chang, Shou-Mei; Cousins, Robert J.; Fisher, William E.; Brunicardi, F. Charles; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi

    2007-01-01

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth. PMID:18003899

  3. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    PubMed

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth.

  4. Up-regulated expression and aberrant DNA methylation of LEP and SH3PXD2A in pre-eclampsia.

    PubMed

    Xiang, Yuqian; Cheng, Yan; Li, Xiaotian; Li, Qiaoli; Xu, Jiawei; Zhang, Junyu; Liu, Yun; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2013-01-01

    The primary mechanism underlying pre-eclampsia (PE) remains one of the most burning problems in the obstetrics and gynecology. In this study, we performed an expression profiling screen and detected 1312 genes that were differentially expressed (p<0.05 and fold change >1.5) in PE placentas, including LEP and SH3PXD2A. After validating the microarray results, we conducted the quantitative methylation analysis of LEP and SH3PXD2A in preeclamptic (n = 16) versus normal placentas (n = 16). Our results showed that many CpG sites close to the transcriptional start site (TSS) of LEP gene were hypomethylated in placentas from pregnancies with PE compared with those of in controls, including the TSS position (p = 0.001), the binding sites of Sp1 (p = 1.57×10(-4)), LP1 (p = 0.023) and CEBPα (p = 0.031). Luciferase reporter analysis confirmed the aberrant methylation of LEP promoter and CEBPα co-transfection had a role in the regulation of gene expression. Our results indicated the aberrant LEP promoter methylation was involved in the development of PE. We did not find a significant methylation differences between groups in the promoter region of SH3PXD2A, however, a CGI region in the gene body (CGI34) presented a higher methylation in preeclamptic placentas (p = 1.57×10(-4)), which might promote the efficiency of gene transcription. We speculated that SH3PXD2A may take part in the pathogenesis of PE through its role in the regulation of trophoblast cell invasion in the period of placenta formation.

  5. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  6. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes

    PubMed Central

    2014-01-01

    Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal

  7. Evidence for the expression of abundant microRNAs in the locust genome.

    PubMed

    Wang, Yanli; Jiang, Feng; Wang, Huimin; Song, Tianqi; Wei, Yuanyuan; Yang, Meiling; Zhang, Jianzhen; Kang, Le

    2015-01-01

    Substantial accumulation of neutral sequences accounts for genome size expansion in animal genomes. Numerous novel microRNAs (miRNAs), which evolve in a birth and death manner, are considered evolutionary neutral sequences. The migratory locust is an ideal model to determine whether large genomes contain abundant neutral miRNAs because of its large genome size. A total of 833 miRNAs were discovered, and several miRNAs were randomly chosen for validation by Northern blot and RIP-qPCR. Three additional verification methods, namely, processing-dependent methods of miRNA biogenesis using RNAi, evolutionary comparison with closely related species, and evidence supported by tissue-specific expression, were applied to provide compelling results that support the authenticity of locust miRNAs. We observed that abundant local duplication events of miRNAs, which were unique in locusts compared with those in other insects with small genome sizes, may be responsible for the substantial acquisition of miRNAs in locusts. Together, multiple evidence showed that the locust genome experienced a burst of miRNA acquisition, suggesting that genome size expansion may have considerable influences of miRNA innovation. These results provide new insight into the genomic dynamics of miRNA repertoires under genome size evolution.

  8. Label-free high-throughput microRNA expression profiling from total RNA

    PubMed Central

    Duan, Demin; Zheng, Ke-xiao; Shen, Ye; Cao, Rong; Jiang, Li; Lu, Zhuoxuan; Yan, Xiyun; Li, Jiong

    2011-01-01

    MicroRNAs (miRNAs) are key biological regulators and promising disease markers whose detection technologies hold great potentials in advancing fundamental research and medical diagnostics. Currently, miRNAs in biological samples have to be labeled before being applied to most high-throughput assays. Although effective, these labeling-based approaches are usually labor-intensive, time-consuming and liable to bias. Besides, the cross-hybridization of co-existing miRNA precursors (pre-miRNAs) is not adequately addressed in most assays that use total RNA as input. Here, we present a hybridization-triggered fluorescence strategy for label-free, microarray-based high-throughput miRNA expression profiling. The total RNA is directly applied to the microarray with a short fluorophore-linked oligonucleotide Universal Tag which can be selectively captured by the target-bound probes via base-stacking effects. This Stacking-Hybridized Universal Tag (SHUT) assay has been successfully used to analyze as little as 100 ng total RNA from human tissues, and found to be highly specific to homogenous miRNAs. Superb discrimination toward single-base mismatch at the 5′ or 3′ end has been demonstrated. Importantly, the pre-miRNAs generated negligible signals, validating the direct use of total RNA. PMID:21976734

  9. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    PubMed

    Jung, Il Lae; Ryu, Moonyoung; Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  10. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    PubMed

    Jung, Il Lae; Ryu, Moonyoung; Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  11. Evidence for the expression of abundant microRNAs in the locust genome.

    PubMed

    Wang, Yanli; Jiang, Feng; Wang, Huimin; Song, Tianqi; Wei, Yuanyuan; Yang, Meiling; Zhang, Jianzhen; Kang, Le

    2015-01-01

    Substantial accumulation of neutral sequences accounts for genome size expansion in animal genomes. Numerous novel microRNAs (miRNAs), which evolve in a birth and death manner, are considered evolutionary neutral sequences. The migratory locust is an ideal model to determine whether large genomes contain abundant neutral miRNAs because of its large genome size. A total of 833 miRNAs were discovered, and several miRNAs were randomly chosen for validation by Northern blot and RIP-qPCR. Three additional verification methods, namely, processing-dependent methods of miRNA biogenesis using RNAi, evolutionary comparison with closely related species, and evidence supported by tissue-specific expression, were applied to provide compelling results that support the authenticity of locust miRNAs. We observed that abundant local duplication events of miRNAs, which were unique in locusts compared with those in other insects with small genome sizes, may be responsible for the substantial acquisition of miRNAs in locusts. Together, multiple evidence showed that the locust genome experienced a burst of miRNA acquisition, suggesting that genome size expansion may have considerable influences of miRNA innovation. These results provide new insight into the genomic dynamics of miRNA repertoires under genome size evolution. PMID:26329925

  12. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana

    PubMed Central

    Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  13. microRNA-181 promotes prostate cancer cell proliferation by regulating DAX-1 expression.

    PubMed

    Tong, Shi-Jun; Liu, Jun; Wang, Xiang; Qu, Lian-Xi

    2014-10-01

    microRNAs (miRNAs) are a class of short noncoding RNA molecules that have a critical role in the initiation and progression of types of human cancer, including prostate cancer. In the present study, the expression of miR-181 in prostate cancer tissues was evaluated and was demonstrated to be significantly upregulated in prostate cancer tissues compared with that in adjacent normal tissues. The results of in vitro MTT and BrdU incorporation assays, as well as cell-cycle analysis, indicated that miR-181 overexpression markedly promoted the proliferation of LNCaP cells. Furthermore, miR-181 overexpression was found to promote the progression of LNCaP tumor growth in nude mice. Mechanistic studies demonstrated that dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1), a negative regulator of androgen receptor in prostate cancer, was inhibited by miR-181 overexpression. Therefore, the results from the present study suggest that miR-181 functions as a growth-suppressive miRNA during prostate cancer development. PMID:25187843

  14. microRNA-181 promotes prostate cancer cell proliferation by regulating DAX-1 expression

    PubMed Central

    TONG, SHI-JUN; LIU, JUN; WANG, XIANG; QU, LIAN-XI

    2014-01-01

    microRNAs (miRNAs) are a class of short noncoding RNA molecules that have a critical role in the initiation and progression of types of human cancer, including prostate cancer. In the present study, the expression of miR-181 in prostate cancer tissues was evaluated and was demonstrated to be significantly upregulated in prostate cancer tissues compared with that in adjacent normal tissues. The results of in vitro MTT and BrdU incorporation assays, as well as cell-cycle analysis, indicated that miR-181 overexpression markedly promoted the proliferation of LNCaP cells. Furthermore, miR-181 overexpression was found to promote the progression of LNCaP tumor growth in nude mice. Mechanistic studies demonstrated that dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1), a negative regulator of androgen receptor in prostate cancer, was inhibited by miR-181 overexpression. Therefore, the results from the present study suggest that miR-181 functions as a growth-suppressive miRNA during prostate cancer development. PMID:25187843

  15. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system

    PubMed Central

    Wang, Lu; Bammler, Theo K.; Beyer, Richard P.; Gallagher, Evan P.

    2016-01-01

    Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g. let-7, miR-7a, miR-128 and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g. miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system, and identify novel miRNA biomarkers of metal exposures. PMID:23745839

  16. Robust global microRNA expression profiling using next-generation sequencing technologies.

    PubMed

    Tam, Shirley; de Borja, Richard; Tsao, Ming-Sound; McPherson, John D

    2014-03-01

    miRNAs are a class of regulatory molecules involved in a wide range of cellular functions, including growth, development and apoptosis. Given their widespread roles in biological processes, understanding their patterns of expression in normal and diseased states will provide insights into the consequences of aberrant expression. As such, global miRNA expression profiling of human malignancies is gaining popularity in both basic and clinically driven research. However, to date, the majority of such analyses have used microarrays and quantitative real-time PCR. With the introduction of digital count technologies, such as next-generation sequencing (NGS) and the NanoString nCounter System, we have at our disposal many more options. To make effective use of these different platforms, the strengths and pitfalls of several miRNA profiling technologies were assessed, including a microarray platform, NGS technologies and the NanoString nCounter System. Overall, NGS had the greatest detection sensitivity, largest dynamic range of detection and highest accuracy in differential expression analysis when compared with gold-standard quantitative real-time PCR. Its technical reproducibility was high, with intrasample correlations of at least 0.95 in all cases. Furthermore, miRNA analysis of formalin-fixed, paraffin-embedded (FFPE) tissue was also evaluated. Expression profiles between paired frozen and FFPE samples were similar, with Spearman's ρ>0.93. These results show the superior sensitivity, accuracy and robustness of NGS for the comprehensive profiling of miRNAs in both frozen and FFPE tissues.

  17. Expression Profile of C19MC microRNAs in Placental Tissue in Pregnancy-Related Complications

    PubMed Central

    Kotlabova, Katerina; Ondrackova, Marketa; Pirkova, Petra; Kestlerova, Andrea; Novotna, Veronika; Hympanova, Lucie; Krofta, Ladislav

    2015-01-01

    To demonstrate that pregnancy-related complications are associated with alterations in placental microRNA expression. Gene expression of 15 C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525, miR-526a, and miR-526b) was assessed in placental tissues, compared between groups (21 gestational hypertension [GH], 63 preeclampsia, 36 fetal growth restriction [FGR], and 42 normal pregnancies), and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. The expression profile of microRNAs was different between pregnancy-related complications and controls. The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p, and miR-525), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, and miR-525), and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525, and miR-526a) microRNAs was associated with GH, FGR, and preeclampsia, respectively. Sudden onset of severe preeclampsia requiring immediate termination of gestation and mild forms of preeclampsia (persisting for several weeks) were associated with similar microRNA expression profile (downregulation of miR-517-5p, miR-520a-5p, miR-524-5p, and miR-525). In addition, miR-519a was found to be associated with severe preeclampsia. The longer the pregnancy-related disorder lasted, the more extensive was the downregulation of microRNAs (miR-515-5p, miR-518b, miR-518f-5p, miR-519d, and miR-520h). The downregulation of some C19MC microRNAs is a common phenomenon shared between GH, preeclampsia, and FGR. On the other hand, some of the C19MC microRNAs are only downregulated just in preeclampsia. PMID:25825993

  18. Modulation of microRNA expression by volatile organic compounds in mouse lung.

    PubMed

    Wang, Fan; Li, Chonglei; Liu, Wei; Jin, Yihe

    2014-06-01

    Volatile organic compounds (VOCs) are one of main pollutants indoors. Exposure to VOCs is associated with cancer, asthma disease, and multiple chemical allergies. Despite the adverse health effects of VOCs, the molecular mechanisms underlying VOCs-induced disease remain largely unknown. MicroRNAs (miRNAs), as key post-transcriptional regulators of gene expression, may influence cellular disease state. To investigate whether lung miRNA expression profiles in mice are modified by VOCs mixture exposure, 44 male Kunming mice were exposed in 4 similar static chambers, 0 (control) and 3 different doses of VOCs mixture (groups 1-3). The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 3.0 + 3.3 + 6.0 + 6.0 mg/m(3) , 5.0 + 5.5 + 10.0 + 10.0 mg/m(3) , 10.0 + 11.0 + 20.0 + 20.0 mg/m(3) , respectively, which corresponded to 30, 50, and 100 times of indoor air quality standard in China, after exposure to 2 weeks (2 h/day, 5 days/week). Small RNAs in lung and protein isolated from bronchoalveolar lavage fluid (BALF) were collected and analyzed for miRNA expression using microarray analysis and for interleukin-8 (IL-8) protein levels by enzyme-linked immunosorbent assay, respectively. VOCs exposure altered the miRNA expression profiles in lung in mice. Specifically, 69 miRNAs were significantly differentially expressed in VOCs-exposed samples versus controls. Functional annotation analysis of the predicted miRNA transcript targets revealed that VOCs exposure potentially alters signaling pathways associated with cancer, chemokine signaling, Wnt signaling, neuroactive ligand-receptor interaction, and cell adhesion molecules. IL-8 isolated from BALF and nitric oxide synthase of lung increased significantly, whereas GSH of lung decreased significantly in mice exposed to VOCs. These results indicate that inhalation of VOCs alters miRNA patterns that regulate gene expression, potentially leading to the initiation of cancer and inflammatory

  19. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs.

    PubMed

    Hanson, Erin K; Lubenow, Helge; Ballantyne, Jack

    2009-04-15

    The serology-based methods routinely used in forensic casework for the identification of biological fluids are costly in terms of time and sample and have varying degrees of sensitivity and specificity. Recently, the use of a molecular genetics-based approach using messenger RNA (mRNA) profiling has been proposed to supplant conventional methods for body fluid identification. However, the size of the amplification products used in these mRNA assays (approximately 200-300 nt) might not be ideal for use with degraded or compromised samples frequently encountered in forensic casework. Recently, there has been an explosion of interest in a novel class of small noncoding RNAs, microRNAs (miRNAs, approximately 20-25 bases in length), with numerous published studies reporting that some miRNAs are expressed in a tissue-specific manner. In this article, we provide the first comprehensive evaluation of miRNA expression in dried, forensically relevant biological fluids--blood, semen, saliva, vaginal secretions, and menstrual blood--in an attempt to identify putative body fluid-specific miRNAs. Most of the 452 human miRNAs tested (approximately 67% of the known miRNAome) were either expressed in multiple body fluids or not expressed at all. Nevertheless, we have identified a panel of nine miRNAs--miR451, miR16, miR135b, miR10b, miR658, miR205, miR124a, miR372, and miR412--that are differentially expressed to such a degree as to permit the identification of the body fluid origin of forensic biological stains using as little as 50 pg of total RNA. The miRNA-based body fluid identification assays were highly specific because the miRNA expression profile for each body fluid was different from that obtained from 21 human tissues. The results of this study provide an initial indication that miRNA profiling may provide a promising alternative approach to body fluid identification for forensic casework.

  20. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a.

    PubMed

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133(+) primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133(+) glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133(+) glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133(+) glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The

  1. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a

    PubMed Central

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133+ primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133+ glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133+ glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133+ glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The overexpression of

  2. The expression and function of microRNA-203 in lung cancer.

    PubMed

    Jin, Jianhua; Deng, Jianzhong; Wang, Fang; Xia, Xiyi; Qiu, Tiefeng; Lu, Wenbin; Li, Xianwen; Zhang, Hua; Gu, Xiaoyan; Liu, Yungang; Cao, Weiguo; Shao, Wenlong

    2013-02-01

    We aimed to determine the expression of microRNA-203 (miR-203) in human lung cancer cell lines and to evaluate the effects of miR-203 by targeting survivin, on the lung cancer cell line 95-D to provide potential new strategies for treating lung cancer. The expression of miR-203 was detected using quantitative real-time PCR (qRT-PCR) in the in vitro cultured lung cancer cells A549, HCC827, NCI-H1299, and 95-D as well as in normal human bronchial epithelial cells. Following a 72-h transfection with the miR-203 precursor in 95-D lung cancer cells, the change in miR-203 expression was detected using qRT-PCR and the resulting effect on survivin protein expression was ascertained by Western blot analysis. The influence of miR-203 on the viability of 95-D lung cancer cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effect of miR-203 on 95-D cell proliferation was analyzed using flow cytometry. The consequences of miR-203 expression on 95-D cell apoptosis were analyzed by Annexin V/propidium iodide double staining coupled with flow cytometry. The role of miR-203 in the invasive potential of 95-D cells was studied using a transwell chamber assay. A luciferase reporter gene system was used to verify that survivin is a target gene for miR-203. By qRT-PCR, the expression of miR-203 was lower in lung cancer cells than in normal bronchial epithelial cells (p < 0.01), and the expression of miR-203 in 95-D lung cancer cells was significantly higher after a 72-h transfection with the miR-203 precursor (p < 0.01). After a 72-h transfection with the miR-203 precursor, survivin protein levels in 95-D cells were significantly decreased (p < 0.01). Cell viability, as assessed with an MTT assay, decreased following an increase in miR-203 expression (p < 0.05). The flow cytometry results indicated that after miR-203 expression increased, the cell proliferation index decreased (p < 0.05) and the number of apoptotic

  3. MicroRNA degeneracy and pluripotentiality within a Lavallière-tie architecture confers robustness to gene expression networks.

    PubMed

    Bhajun, Ricky; Guyon, Laurent; Gidrol, Xavier

    2016-08-01

    Modularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches. We synthesize published and unpublished data and hypothesize that miRNA pluripotentiality acts to buffer gene expression, while miRNA degeneracy tunes the expression of targets, thus providing robustness to gene expression networks. Furthermore, we propose a Lavallière-tie architecture by integrating signal transduction, miRNAs and protein expression data to model complex gene expression networks. PMID:27038488

  4. Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.

    PubMed

    Teicher, Beverly A; Polley, Eric; Kunkel, Mark; Evans, David; Silvers, Thomas; Delosh, Rene; Laudeman, Julie; Ogle, Chad; Reinhart, Russell; Selby, Michael; Connelly, John; Harris, Erik; Monks, Anne; Morris, Joel

    2015-11-01

    The diversity in sarcoma phenotype and genotype make treatment of this family of diseases exceptionally challenging. Sixty-three human adult and pediatric sarcoma lines were screened with 100 FDA-approved oncology agents and 345 investigational agents. The investigational agents' library enabled comparison of several compounds targeting the same molecular entity allowing comparison of target specificity and heterogeneity of cell line response. Gene expression was derived from exon array data and microRNA expression was derived from direct digital detection assays. The compounds were screened against each cell line at nine concentrations in triplicate with an exposure time of 96 hours using Alamar blue as the endpoint. Results are presented for inhibitors of the following targets: aurora kinase, IGF-1R, MEK, BET bromodomain, and PARP1. Chemical structures, IC50 heat maps, concentration response curves, gene expression, and miR expression heat maps are presented for selected examples. In addition, two cases of exceptional responders are presented. The drug and compound response, gene expression, and microRNA expression data are publicly available at http://sarcoma.cancer.gov. These data provide a unique resource to the cancer research community. PMID:26351324

  5. The expression of LEP, LEPR, IGF1 and IL10 in obesity and the relationship with microRNAs.

    PubMed

    Viesti A Collares, Renata; Salgado, Wilson; Pretti da Cunha Tirapelli, Daniela; dos Santos, José Sebastião

    2014-01-01

    Obesity is a multifactorial disease, with epigenetic alterations. Have been described modifications in the expression of some microRNAs, and some proteins related to obesity. The objective was to determine and correlate, in obese patients, the gene expression of LEP, LEPR, IGF1, IL10 and of miR-27a, miR-27b, miR-143 and miR-145. RNA was extracted from biopsies of subcutaneous fat, liver and visceral fat of 15 obese subjects submitted to bariatric surgery and of 15 non-obese subjects submitted to cholecystectomy for cDNA synthesis and for RT-PCR. The microRNAs were chosen using the TargetScan software. An increased expression of LEP and IGF1 was detected in the subcutaneous fat of the obese group compared to control, while the expression of IGF1 was higher in the control group than in the obese one. MiRNA-27a had a higher expression in the omentum of the obese patients and there was also a correlation in the expression of miRNA-145 and LEPR in the omentum of this group.

  6. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment.

    PubMed

    Klein, Bernard; Seckinger, Anja; Moehler, Thomas; Hose, Dirk

    2011-01-01

    This chapter focuses on two aspects of myeloma pathogenesis: (1) chromosomal aberrations and resulting changes in gene and protein expression with a special focus on growth and survival factors of malignant (and normal) plasma cells and (2) the remodeling of the bone marrow microenvironment induced by accumulating myeloma cells. We begin this chapter with a discussion of normal plasma cell generation, their survival, and a novel class of inhibitory factors. This is crucial for the understanding of multiple myeloma, as several abilities attributed to malignant plasma cells are already present in their normal counterpart, especially the production of survival factors and interaction with the bone marrow microenvironment (niche). The chapter closes with a new model of pathogenesis of myeloma.

  7. Prognostic Importance of MN1 Transcript Levels, and Biologic Insights From MN1-Associated Gene and MicroRNA Expression Signatures in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    PubMed Central

    Langer, Christian; Marcucci, Guido; Holland, Kelsi B.; Radmacher, Michael D.; Maharry, Kati; Paschka, Peter; Whitman, Susan P.; Mrózek, Krzysztof; Baldus, Claudia D.; Vij, Ravi; Powell, Bayard L.; Carroll, Andrew J.; Kolitz, Jonathan E.; Caligiuri, Michael A.; Larson, Richard A.; Bloomfield, Clara D.

    2009-01-01

    Purpose To determine the prognostic importance of the meningioma 1 (MN1) gene expression levels in the context of other predictive molecular markers, and to derive MN1 associated gene– and microRNA–expression profiles in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods MN1 expression was measured in 119 untreated primary CN-AML adults younger than 60 years by real-time reverse-transcriptase polymerase chain reaction. Patients were also tested for FLT3, NPM1, CEBPA, and WT1 mutations, MLL partial tandem duplications, and BAALC and ERG expression. Gene- and microRNA-expression profiles were attained by performing genome-wide microarray assays. Patients were intensively treated on two first-line Cancer and Leukemia Group B clinical trials. Results Higher MN1 expression associated with NPM1 wild-type (P < .001), increased BAALC expression (P = .004), and less extramedullary involvement (P = .01). In multivariable analyses, higher MN1 expression associated with a lower complete remission rate (P = .005) after adjustment for WBC; shorter disease-free survival (P = .01) after adjustment for WT1 mutations, FLT3 internal tandem duplications (FLT3-ITD), and high ERG expression; and shorter survival (P = .04) after adjustment for WT1 and NPM1 mutations, FLT3-ITD, and WBC. Gene- and microRNA-expression profiles suggested that high MN1 expressers share features with high BAALC expressers and patients with wild-type NPM1. Higher MN1 expression also appears to be associated with genes and microRNAs that are active in aberrant macrophage/monocytoid function and differentiation. Conclusion MN1 expression independently predicts outcome in CN-AML patients. The MN1 gene- and microRNA-expression signatures suggest biologic features that could be exploited as therapeutic targets. PMID:19451432

  8. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype

    PubMed Central

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis. PMID:27031510

  9. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype.

    PubMed

    Fahrenkrog, Birthe; Martinelli, Valérie; Nilles, Nadine; Fruhmann, Gernot; Chatel, Guillaume; Juge, Sabine; Sauder, Ursula; Di Giacomo, Danika; Mecucci, Cristina; Schwaller, Jürg

    2016-01-01

    Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.

  10. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration.

    PubMed

    Beauchemin, Megan; Smith, Ashley; Yin, Viravuth P

    2015-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the Western world owing to the limited regenerative capacity of the mammalian cardiovascular system. In lieu of new muscle synthesis, the human heart replaces necrotic tissue with deposition of a noncontractile scar. By contrast, the adult zebrafish is endowed with a remarkable regenerative capacity, capable of de novo cardiomyocyte (CM) creation and scar tissue removal when challenged with an acute injury. In these studies, we examined the contributions of the dynamically regulated microRNA miR-101a during adult zebrafish heart regeneration. We demonstrate that miR-101a expression is rapidly depleted within 3 days post-amputation (dpa) but is highly upregulated by 7-14 dpa, before returning to uninjured levels at the completion of the regenerative process. Employing heat-inducible transgenic strains and antisense oligonucleotides, we demonstrate that decreases in miR-101a levels at the onset of cardiac injury enhanced CM proliferation. Interestingly, prolonged suppression of miR-101a activity stimulates new muscle synthesis but with defects in scar tissue clearance. Upregulation of miR-101a expression between 7 and 14 dpa is essential to stimulate removal of the scar. Through a series of studies, we identified the proto-oncogene fosab (cfos) as a potent miR-101a target gene, stimulator of CM proliferation, and inhibitor of scar tissue removal. Importantly, combinatorial depletion of fosab and miR-101a activity rescued defects in scar tissue clearance mediated by miR-101a inhibition alone. In summation, our studies indicate that the precise temporal modulation of the miR-101a/fosab genetic axis is crucial for coordinating CM proliferation and scar tissue removal during zebrafish heart regeneration.

  11. Differential expression of microRNA species in a freeze tolerant insect, Eurosta solidaginis.

    PubMed

    Courteau, Lynn A; Storey, Kenneth B; Morin, Pier

    2012-12-01

    Freeze tolerance in insects is associated with a variety of adaptations including production of cryoprotectants, specialized proteins that regulate ice formation, and energy-saving mechanisms that strongly suppress the rates of metabolic processes in the oxygen-limited frozen state. We hypothesized that microRNAs (miRNAs), small non-coding transcripts that bind to mRNA, could play a role in the global regulation of energy-expensive mRNA translation in frozen insects and would be modulated at subzero temperatures. Expression levels of miRNA species were evaluated in control (5 °C) and frozen (-15 °C) goldenrod gall fly larvae, Eurosta solidaginis, using a miRNA microarray. Levels of miR-11, miR-276, miR-71, miR-3742, miR-277-3p, miR-2543b and miR-34 were significantly reduced in frozen larvae whereas miR-284, miR-3791-5p and miR-92c-3p rose significantly in frozen larvae. Target prediction for two miRNAs, miR-277-3p and miR-284, revealed potential regulation of transcripts involved in translation and the Krebs cycle. These data constitute the first report that differential expression of miRNAs occurs in a freeze tolerant insect and suggest a mechanism for reversible gene regulation during prolonged periods of freezing over the winter months, a mechanism that can be rapidly reversed to allow renewed translation of mRNA when temperatures rise and insects thaw.

  12. MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus

    PubMed Central

    Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257

  13. Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice.

    PubMed

    Wing-Lun, Edwina; Eaton, Sally A; Hur, Suzy S J; Aiken, Alastair; Young, Paul E; Buckland, Michael E; Li, Cheryl C Y; Cropley, Jennifer E; Suter, Catherine M

    2016-07-01

    The complex interaction between obesity, Western-style diets, and cardiovascular disease is of increasing interest, with a growing number of children being born to obese parents with poor lifestyle choices. These offspring have themselves an increased susceptibility to obesity and subsequent cardiovascular disease in adult life, which may be 'programmed' by their intrauterine environment. Cardiac microRNAs (miRNAs) are affected by multiple disease states, and have also been shown to be capable of exerting a hormone-like control on whole body metabolism. Here we sought to determine the effect of prenatal exposure to maternal obesity and/or postnatal exposure to a Western diet on miRNA expression in the heart. Unbiased small RNA sequencing was carried out on cardiac tissue from young adult mice born to lean or obese mothers; offspring were weaned onto either a low-fat control diet or a high-fat Western-style diet. We found 8 cardiac miRNAs that were significantly altered in response to maternal obesity, but only when the offspring were challenged postnatally with the Western diet. In contrast, postnatal exposure to the diet alone induced significant changes to the expression of a much larger number of miRNAs (33 in offspring of lean and 46 in offspring of obese). Many of the affected miRNAs have previously been implicated in various cardiac pathologies. The pervasive cardiac miRNA changes induced by a Western diet suggest that an individual's lifestyle choices outweigh the impact of any programming effects by maternal obesity on miRNA-related cardiac health. PMID:27216962

  14. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration.

    PubMed

    Beauchemin, Megan; Smith, Ashley; Yin, Viravuth P

    2015-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in the Western world owing to the limited regenerative capacity of the mammalian cardiovascular system. In lieu of new muscle synthesis, the human heart replaces necrotic tissue with deposition of a noncontractile scar. By contrast, the adult zebrafish is endowed with a remarkable regenerative capacity, capable of de novo cardiomyocyte (CM) creation and scar tissue removal when challenged with an acute injury. In these studies, we examined the contributions of the dynamically regulated microRNA miR-101a during adult zebrafish heart regeneration. We demonstrate that miR-101a expression is rapidly depleted within 3 days post-amputation (dpa) but is highly upregulated by 7-14 dpa, before returning to uninjured levels at the completion of the regenerative process. Employing heat-inducible transgenic strains and antisense oligonucleotides, we demonstrate that decreases in miR-101a levels at the onset of cardiac injury enhanced CM proliferation. Interestingly, prolonged suppression of miR-101a activity stimulates new muscle synthesis but with defects in scar tissue clearance. Upregulation of miR-101a expression between 7 and 14 dpa is essential to stimulate removal of the scar. Through a series of studies, we identified the proto-oncogene fosab (cfos) as a potent miR-101a target gene, stimulator of CM proliferation, and inhibitor of scar tissue removal. Importantly, combinatorial depletion of fosab and miR-101a activity rescued defects in scar tissue clearance mediated by miR-101a inhibition alone. In summation, our studies indicate that the precise temporal modulation of the miR-101a/fosab genetic axis is crucial for coordinating CM proliferation and scar tissue removal during zebrafish heart regeneration. PMID:26628091

  15. Characterization of microRNAs Expressed during Secondary Wall Biosynthesis in Acacia mangium

    PubMed Central

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324

  16. Diversity and Expression of MicroRNAs in the Filarial Parasite, Brugia malayi

    PubMed Central

    Poole, Catherine B.; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J.; Bauche, David; McReynolds, Larry A.

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics. PMID:24824352

  17. Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice.

    PubMed

    Wing-Lun, Edwina; Eaton, Sally A; Hur, Suzy S J; Aiken, Alastair; Young, Paul E; Buckland, Michael E; Li, Cheryl C Y; Cropley, Jennifer E; Suter, Catherine M

    2016-07-01

    The complex interaction between obesity, Western-style diets, and cardiovascular disease is of increasing interest, with a growing number of children being born to obese parents with poor lifestyle choices. These offspring have themselves an increased susceptibility to obesity and subsequent cardiovascular disease in adult life, which may be 'programmed' by their intrauterine environment. Cardiac microRNAs (miRNAs) are affected by multiple disease states, and have also been shown to be capable of exerting a hormone-like control on whole body metabolism. Here we sought to determine the effect of prenatal exposure to maternal obesity and/or postnatal exposure to a Western diet on miRNA expression in the heart. Unbiased small RNA sequencing was carried out on cardiac tissue from young adult mice born to lean or obese mothers; offspring were weaned onto either a low-fat control diet or a high-fat Western-style diet. We found 8 cardiac miRNAs that were significantly altered in response to maternal obesity, but only when the offspring were challenged postnatally with the Western diet. In contrast, postnatal exposure to the diet alone induced significant changes to the expression of a much larger number of miRNAs (33 in offspring of lean and 46 in offspring of obese). Many of the affected miRNAs have previously been implicated in various cardiac pathologies. The pervasive cardiac miRNA changes induced by a Western diet suggest that an individual's lifestyle choices outweigh the impact of any programming effects by maternal obesity on miRNA-related cardiac health.

  18. Diversity and expression of microRNAs in the filarial parasite, Brugia malayi.

    PubMed

    Poole, Catherine B; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J; Bauche, David; McReynolds, Larry A

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼ 30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5-7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics.

  19. MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants

    PubMed Central

    Curtin, Shaun J.; Michno, Jean-Michel; Campbell, Benjamin W.; Gil-Humanes, Javier; Mathioni, Sandra M.; Hammond, Reza; Gutierrez-Gonzalez, Juan J.; Donohue, Ryan C.; Kantar, Michael B.; Eamens, Andrew L.; Meyers, Blake C.; Voytas, Daniel F.; Stupar, Robert M.

    2015-01-01

    Small nonprotein-coding microRNAs (miRNAs) are present in most eukaryotes and are central effectors of RNA silencing-mediated mechanisms for gene expression regulation. In plants, DICER-LIKE1 (DCL1) is the founding member of a highly conserved family of RNase III-like endonucleases that function as core machinery proteins to process hairpin-like precursor transcripts into mature miRNAs, small regulatory RNAs, 21–22 nucleotides in length. Zinc finger nucleases (ZFNs) were used to generate single and double-mutants of putative soybean DCL1 homologs, DCL1a and DCL1b, to confirm their functional role(s) in the soybean miRNA pathway. Neither DCL1 single mutant, dcl1a or dcl1b plants, exhibited a pronounced morphological or molecular phenotype. However, the dcl1a/dcl1b double mutant expressed a strong morphological phenotype, characterized by reduced seed size and aborted seedling development, in addition to defective miRNA precursor transcript processing efficiency and deregulated miRNA target gene expression. Together, these findings indicate that the two soybean DCL1 paralogs, DCL1a and DCL1b, largely play functionally redundant roles in the miRNA pathway and are essential for normal plant development. PMID:26681515

  20. MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants.

    PubMed

    Curtin, Shaun J; Michno, Jean-Michel; Campbell, Benjamin W; Gil-Humanes, Javier; Mathioni, Sandra M; Hammond, Reza; Gutierrez-Gonzalez, Juan J; Donohue, Ryan C; Kantar, Michael B; Eamens, Andrew L; Meyers, Blake C; Voytas, Daniel F; Stupar, Robert M

    2016-02-01

    Small nonprotein-coding microRNAs (miRNAs) are present in most eukaryotes and are central effectors of RNA silencing-mediated mechanisms for gene expression regulation. In plants, DICER-LIKE1 (DCL1) is the founding member of a highly conserved family of RNase III-like endonucleases that function as core machinery proteins to process hairpin-like precursor transcripts into mature miRNAs, small regulatory RNAs, 21-22 nucleotides in length. Zinc finger nucleases (ZFNs) were used to generate single and double-mutants of putative soybean DCL1 homologs, DCL1a and DCL1b, to confirm their functional role(s) in the soybean miRNA pathway. Neither DCL1 single mutant, dcl1a or dcl1b plants, exhibited a pronounced morphological or molecular phenotype. However, the dcl1a/dcl1b double mutant expressed a strong morphological phenotype, characterized by reduced seed size and aborted seedling development, in addition to defective miRNA precursor transcript processing efficiency and deregulated miRNA target gene expression. Together, these findings indicate that the two soybean DCL1 paralogs, DCL1a and DCL1b, largely play functionally redundant roles in the miRNA pathway and are essential for normal plant development. PMID:26681515

  1. Differentially Expressed MicroRNAs in Postpartum Breast Cancer in Hispanic Women

    PubMed Central

    Futscher, Bernard W.; Hu, Chengcheng; Komenaka, Ian K.; Meza-Montenegro, Maria Mercedes; Gutierrez-Millan, Luis Enrique; Daneri-Navarro, Adrian; Thompson, Patricia A.; Martinez, Maria Elena

    2015-01-01

    The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers. PMID:25875827

  2. Differentially expressed microRNAs in postpartum breast cancer in Hispanic women.

    PubMed

    Muñoz-Rodríguez, José L; Vrba, Lukas; Futscher, Bernard W; Hu, Chengcheng; Komenaka, Ian K; Meza-Montenegro, Maria Mercedes; Gutierrez-Millan, Luis Enrique; Daneri-Navarro, Adrian; Thompson, Patricia A; Martinez, Maria Elena

    2015-01-01

    The risk of breast cancer transiently increases immediately following pregnancy; peaking between 3-7 years. The biology that underlies this risk window and the effect on the natural history of the disease is unknown. MicroRNAs (miRNAs) are small non-coding RNAs that have been shown to be dysregulated in breast cancer. We conducted miRNA profiling of 56 tumors from a case series of multiparous Hispanic women and assessed the pattern of expression by time since last full-term pregnancy. A data-driven splitting analysis on the pattern of 355 miRNAs separated the case series into two groups: a) an early group representing women diagnosed with breast cancer ≤ 5.2 years postpartum (n = 12), and b) a late group representing women diagnosed with breast cancer ≥ 5.3 years postpartum (n = 44). We identified 15 miRNAs with significant differential expression between the early and late postpartum groups; 60% of these miRNAs are encoded on the X chromosome. Ten miRNAs had a two-fold or higher difference in expression with miR-138, miR-660, miR-31, miR-135b, miR-17, miR-454, and miR-934 overexpressed in the early versus the late group; while miR-892a, miR-199a-5p, and miR-542-5p were underexpressed in the early versus the late postpartum group. The DNA methylation of three out of five tested miRNAs (miR-31, miR-135b, and miR-138) was lower in the early versus late postpartum group, and negatively correlated with miRNA expression. Here we show that miRNAs are differentially expressed and differentially methylated between tumors of the early versus late postpartum, suggesting that potential differences in epigenetic dysfunction may be operative in postpartum breast cancers.

  3. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation

    PubMed Central

    Nagarajan, Raman P.; Hogart, Amber R.; Gwye, Ynnez; Martin, Michelle R.; LaSalle, Janine M.

    2007-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are “pervasive developmental disorders” and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism. PMID:17486179

  4. Families of microRNAs Expressed in Clusters Regulate Cell Signaling in Cervical Cancer

    PubMed Central

    Servín-González, Luis Steven; Granados-López, Angelica Judith; López, Jesús Adrián

    2015-01-01

    Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate or repress a particular cell axis. It is well known that aberrant miRNA expression is well recognized as an important step in the development of cancer. Individual miRNA expression is reported without considering that miRNAs are grouped in clusters and may have similar functions, such as the case of clusters with anti-oncomiRs (23b~27b~24-1, miR-29a~29b-1, miR-29b-2~29c, miR-99a~125b-2, miR-99b~125a, miR-100~125b-1, miR-199a-2~214, and miR-302s) or oncomiRs activity (miR-1-1~133a-2, miR-1-2~133a-1, miR-133b~206, miR-17~92, miR-106a~363, miR183~96~182, miR-181a-1~181b-1, and miR-181a-2~181b-2), which regulated mitogen-activated protein kinases (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), NOTCH, proteasome-culling rings, and apoptosis cell signaling. In this work we point out the pathways regulated by families of miRNAs grouped in 20 clusters involved in cervical cancer. Reviewing how miRNA families expressed in cluster-regulated cell path signaling will increase the knowledge of cervical cancer progression, providing important information for therapeutic, diagnostic, and prognostic methodology design. PMID:26057746

  5. microRNA regulation of molecular networks mapped by global microRNA, mRNA, and protein expression in activated T-lymphocytes

    PubMed Central

    Grigoryev, Yevgeniy A.; Kurian, Sunil M.; Hart, Traver; Nakorchevsky, Aleksey A.; Chen, Caifu; Campbell, Daniel; Head, Steven R.; Yates, John R.; Salomon, Daniel. R

    2011-01-01

    MicroRNAs (miRNAs) regulate specific immune mechanisms but their genome-wide regulation of T-lymphocyte activation is largely unknown. We performed a multidimensional functional genomics analysis to integrate genome-wide differential mRNA, miRNA, and protein expression as a function of human T-lymphocyte activation and time. We surveyed expression of 420 human miRNAs in parallel with genome-wide mRNA expression. We identified a unique signature of 71 differentially expressed miRNAs, 57 of which were previously not known as regulators of immune activation. The majority of miRNAs are upregulated, mRNA expression of these target genes is downregulated and this is a function of binding multiple miRNAs (combinatorial targeting). Our data reveal that consideration of this complex signature, rather than single miRNAs, is necessary to construct a full picture of miRNA-mediated regulation. Molecular network mapping of miRNA targets revealed the regulation of activation-induced immune signaling. In contrast, pathways populated by genes that are not miRNA targets are enriched for metabolism and biosynthesis. Finally, we specifically validated miR-155 (known) and miR-221 (novel in T-lymphocytes) using locked nucleic acid inhibitors. Inhibition of these 2 highly upregulated miRNAs in CD4+ T cells were shown to increase proliferation by removing suppression of 4 target genes linked to proliferation and survival. Thus, multiple lines of evidence link top functional networks directly to T-lymphocyte immunity underlining the value of mapping global gene, protein and miRNA expression. PMID:21788445

  6. MicroRNA-602 and microRNA-608 regulate sonic hedgehog expression via target sites in the coding region in human chondrocytes

    PubMed Central

    Akhtar, Nahid; Makki, Mohammad Shahidul; Haqqi, Tariq M.

    2015-01-01

    Objective Hedgehog(Hh) signaling has recently been associated with cartilage degradation in osteoarthritis(OA). As interleukin-1β(IL-1β) is a critical mediator of OA pathogenesis, here we determined whether IL-1β induces the expression of sonic hedgehog(SHH) and its regulation by microRNAs in human chondrocytes. Methods SHH protein expression in human OA-cartilage and in an animal model of OA was determined by immunohistochemistry and immunofluorescence respectively. Gene and protein expression in IL-1β or SHH-stimulated chondrocytes was determined by TaqMan assays and immunoblotting respectively. Effect of overexpression of miR-602 and miR-608 or their anatgomirs on SHH expression was evaluated by transient transfections of human chondrocytes and HEK-293 cells. Role of signaling pathways was evaluated using small molecule inhibitors. Binding of miRNAs with the putative “seed sequence” in the SHH mRNA was validated with a SHH luciferase reporter assay. Results Expression of SHH, PTCH-1, GLI-1, HHIP, MMP-13, and COL10A1 was high in damaged OAcartilage. Expression of SHH was inversely correlated with the expression of miR-608 in damaged cartilage and in IL-1β-stimulated chondrocytes. Transfection with miR-608 or miR-602 mimics inhibited the reporter activity and mutation of the miRNAs “seed sequences” abolished the repression of reporter activity. Overexpression of miR-602 or miR-608 inhibited the expression of SHH mRNA and protein and this was abrogated by antagomirs. Stimulation with SHH-protein up-regulated the MMP-13 expression and inhibition of Hh signaling blocked MMP-13 expression in OA chondrocytes. Conclusions miR-602 and miR-608 are important regulators of SHH expression in chondrocytes and their suppression by IL-1β may contribute to the enhanced expression of SHH and MMP-13 in OA. PMID:25385442

  7. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    SciTech Connect

    Qin, Bing; Xiao, Bo; Liang, Desheng; Xia, Jian; Li, Ye; Yang, Huan

    2011-06-24

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the

  8. Identification of conserved and novel microRNAs in Manduca sexta and their possible roles in the expression regulation of immunity-related genes.

    PubMed

    Zhang, Xiufeng; Zheng, Yun; Jagadeeswaran, Guru; Ren, Ren; Sunkar, Ramanjulu; Jiang, Haobo

    2014-04-01

    The tobacco hornworm Manduca sexta has served as a model for insect biochemical and physiological research for decades. However, knowledge of the posttranscriptional regulation of gene expression by microRNAs is still rudimentary in this species. Our previous study (Zhang et al., 2012) identified 163 conserved and 13 novel microRNAs in M. sexta, most of which were present at low levels in pupae. To identify additional M. sexta microRNAs and more importantly to examine their possible roles in the expression regulation of immunity-related genes, we constructed four small RNA libraries using fat body and hemocytes from naïve or bacteria-injected larvae and obtained 32.9 million reads of 18-31 nucleotides by Illumina sequencing. Mse-miR-929 and mse-miR-1b (antisense microRNA of mse-miR-1) were predicted in the previous study and now found to be conserved microRNAs in the tissue samples. We also found four novel microRNAs, two of which result from a gene cluster. Mse-miR-281-star, mse-miR-965-star, mse-miR-31-star, and mse-miR-9b-star were present at higher levels than their respective mature strands. Abundance changes of microRNAs were observed after the immune challenge. Based on the quantitative data of mRNA levels in control and induced fat body and hemocytes as well as the results of microRNA target site prediction, we suggest that certain microRNAs and microRNA*s regulate gene expression for pattern recognition, prophenoloxidase activation, cellular responses, antimicrobial peptide synthesis, and conserved intracellular signal transduction (Toll, IMD, JAK-STAT, MAPK-JNK-p38, and small interfering RNA pathways). In summary, this study has enriched our knowledge on M. sexta microRNAs and how some of them may participate in the expression regulation of immunity-related genes.

  9. Aberrant DKK3 Expression in the Oral Leukoplakia and Oral Submucous Fibrosis: A Comparative Immunohistochemical Study

    PubMed Central

    Al-dhohrah, T.; Mashrah, M.; Yao, Z.; Huang, J.

    2016-01-01

    We aimed to assess and compare the expression of Dickkopf homolog 3 (DKK3), a possible tumor suppressor gene (TSG), in oral leukoplakia (OLK) and oral submucous fibrosis (OSF) using immunohistochemistry. Seventy-five cases of normal oral mucosa (NOM), OLK, OSF, and squamous cell carcinoma (OSCC) were studied. DKK3 was expressed in all cases of NOM, OLK and OSCC. There was steady increases in the percentage of the positive cells progressing toward OSCC. The expression was localized in the cytoplasm and cell membrane of cell affected by OLK with mild dysplasia and OLK with severe dysplasia. No significant association was observed between DKK3 expression and dysplastic status of OLK. Loss of DKK3 expression was observed in 15 of 30 cases in the OSF group, which was significantly associated with histological grade of OSF (P<0.0001). The percentage of positive cells gradually declined with the increasing severity of epithelial atrophy. A significant difference (P<0.01) was observed when comparing DKK3 expression among different groups of OLK and OSF cases. DKK3 may have diverse expressions in oral premalignant lesions. Loss of DKK3 expression in dysplastic/advanced stage of OSF may imply a high risk of progression to oral cancer. PMID:27349317

  10. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    PubMed

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  11. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing

    PubMed Central

    Zhang, Yuanwei; Xu, Bo; Zhou, Jun; Fan, Song; Hao, Zongyao; Shi, Haoqiang; Zhang, Xiansheng; Kong, Rui; Xu, Lingfan; Gao, Jingjing; Zou, Duohong; Liang, Chaozhao

    2015-01-01

    Penile cancer (PeCa) is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis) cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs be