Science.gov

Sample records for aberrantly expressed micrornas

  1. Aberrantly expressed microRNAs in the context of bladder tumorigenesis

    PubMed Central

    Lee, Jong-Young; Ryu, Dong-Sung; Kim, Wun-Jae

    2016-01-01

    MicroRNAs (miRNAs), small noncoding RNAs 19–22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis. PMID:27326408

  2. Aberrantly expressed microRNAs in the context of bladder tumorigenesis.

    PubMed

    Lee, Jong-Young; Ryu, Dong-Sung; Kim, Wun-Jae; Kim, Seong-Jin

    2016-06-01

    MicroRNAs (miRNAs), small noncoding RNAs 19-22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis. PMID:27326408

  3. Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs

    PubMed Central

    Liu, Di; Dai, Manman; Zhang, Xu; Cao, Weisheng; Liao, Ming

    2016-01-01

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression. PMID:26830017

  4. Aberrant microRNA expression in peripheral plasma and mononuclear cells as specific blood-based biomarkers in schizophrenia patients.

    PubMed

    Sun, Xin-yang; Lu, Jim; Zhang, Liang; Song, Hong-tao; Zhao, Lin; Fan, Hui-min; Zhong, Ai-fang; Niu, Wei; Guo, Zhong-min; Dai, Yun-hua; Chen, Chao; Ding, Yan-fen; Zhang, Li-yi

    2015-03-01

    Findings from multiple studies on microRNA (miRNA) expression profiling in schizophrenia patients have produced conflicting results. In order to investigate miRNA as specific biomarkers in the peripheral plasma and peripheral blood mononuclear cells (PBMC) of schizophrenia patients, expression levels of the nine most frequently reported schizophrenia-associated miRNA (miR-30e, miR-34a, miR-181b, miR-195, miR-346, miR-432, miR-7, miR-132 and miR-212) were examined in the peripheral plasma and PBMC in 25 schizophrenia patients and 13 healthy controls using quantitative real-time reverse transcription polymerase chain reaction. We observed significantly increased expressions of miR-132, miR-195, miR-30e and miR-7 in plasma samples (p<0.05 to p<0.001), and miR-212, miR-34a and miR-30e in PBMC samples (p<0.05 to p<0.01). Receiver operating characteristic curve analysis revealed that the area under the curve (AUC) of miR-30e in plasma was 0.767 (95% confidence interval [CI] 0.608-0.926) with sensitivity and specificity of 90.90% and 60.00% respectively, and the AUC of miR-30e in PBMC was 0.756 (95% CI 0.584-0.929) with sensitivity and specificity of 81.80% and 68.00%, respectively. Logistic regression analysis demonstrated that miR-30e in plasma was more sensitive to differentiate schizophrenia patients from normal controls than miR-30e in PBMC. Our findings indicate that miRNA expression is more significant in plasma than in PBMC, and suggest that miR-30e in plasma may be a more sensitive biomarker for schizophrenia diagnosis, although its aberrant expression can be detected in both plasma and PBMC. PMID:25487174

  5. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis.

    PubMed

    Zhang, Yang; Wang, Faxuan; Zhou, Dingzi; Ren, Xiaohui; Zhou, Dinglun; Gao, Xiaosi; Lan, Yajia; Zhang, Qin; Xie, Xiaoqi

    2016-08-01

    Background To identify differentially expressed miRNAs profiles in bronchoalveolar lavage fluid (BALF) from patients with silicosis and consider the potential contribution of miRNAs to silicosis.Methods miRNAs expression profiling were performed in the cell fraction of BALF samples obtained from 9 subjects (3 silicosis observation subjects, 3 stage I and stage II silicosis patients, respectively). The differential expression of two selected miRNAs hsa-miR-181c-5p and hsa-miR-29a-3p were confirmed by RT-qPCR. Furthermore, miRNAs Gene Ontology Enrichment categories and target mRNAs were determined based on miRWalk.Results We found 110 dysregulated miRNAs in silicosis samples, most of which showed a down-regulation trend. Microarray results were confirmed by RT-qPCR. With the observation group samples set as standards, stage I samples showed 123 differentially expressed miRNAs, and stage II 46. 23 miRNAs were dysregulated in both stages. Finally, functional enrichment analysis indicated that these miRNAs played an important role in various biological processes, including ECM-receptor interaction and endocytosis.Conclusions This is the first time to acquire the BALF-derived microRNAs expression profiling targeting to human silicosis. These results contribute to unravelling miRNAs involved in the pathogenesis of silicosis, and provide new tools of potential use of as biomarkers for diagnosis and/or therapeutic purposes. PMID:26903263

  6. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis

    PubMed Central

    ZHANG, Yang; WANG, Faxuan; ZHOU, Dingzi; REN, Xiaohui; ZHOU, Dinglun; GAO, Xiaosi; LAN, Yajia; ZHANG, Qin; XIE, Xiaoqi

    2016-01-01

    Background To identify differentially expressed miRNAs profiles in bronchoalveolar lavage fluid (BALF) from patients with silicosis and consider the potential contribution of miRNAs to silicosis. Methods miRNAs expression profiling were performed in the cell fraction of BALF samples obtained from 9 subjects (3 silicosis observation subjects, 3 stage I and stage II silicosis patients, respectively). The differential expression of two selected miRNAs hsa-miR-181c-5p and hsa-miR-29a-3p were confirmed by RT-qPCR. Furthermore, miRNAs Gene Ontology Enrichment categories and target mRNAs were determined based on miRWalk. Results We found 110 dysregulated miRNAs in silicosis samples, most of which showed a down-regulation trend. Microarray results were confirmed by RT-qPCR. With the observation group samples set as standards, stage I samples showed 123 differentially expressed miRNAs, and stage II 46. 23 miRNAs were dysregulated in both stages. Finally, functional enrichment analysis indicated that these miRNAs played an important role in various biological processes, including ECM-receptor interaction and endocytosis. Conclusions This is the first time to acquire the BALF-derived microRNAs expression profiling targeting to human silicosis. These results contribute to unravelling miRNAs involved in the pathogenesis of silicosis, and provide new tools of potential use of as biomarkers for diagnosis and/or therapeutic purposes. PMID:26903263

  7. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  8. HPVbase – a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas

    PubMed Central

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  9. Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR

    PubMed Central

    Brzuzan, Paweł; Florczyk, Maciej; Łakomiak, Alicja; Woźny, Maciej

    2016-01-01

    Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7–28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular

  10. Illumina Sequencing Reveals Aberrant Expression of MicroRNAs and Their Variants in Whitefish (Coregonus lavaretus) Liver after Exposure to Microcystin-LR.

    PubMed

    Brzuzan, Paweł; Florczyk, Maciej; Łakomiak, Alicja; Woźny, Maciej

    2016-01-01

    Molecular analyses show that challenging fish with microcystin-LR (MC-LR) causes perturbations of microRNA (miRNA) signaling. However, the significance and scope of these alterations is currently unknown. To address this issue, we studied miRNA gene expression in the liver of juvenile whitefish, C. lavaretus, during 28 days of exposure to a subacute dose of MC-LR (100 μg·kg-1 body mass). Using genomic resources of Atlantic salmon (AGKD03), the mature miRNA library of Atlantic salmon (miRBase-21) and bioinformatics tools (sRNAbench), we discovered and annotated a total of 377 distinct mature miRNAs belonging to 93 families of evolutionary conserved miRNAs, as well as 24 novel mature miRNA candidates that were mapped to 14 distinct S. salar miRNA precursors. miRNA-Seq transcriptome profiling of liver tissues revealed differential miRNA expression in control and treated fish at 14 days (73 miRNAs were modulated) and at 28 days (83 miRNAs) of the treatment, subsequently validated by qPCR for nine selected differentially expressed miRNAs. Additional qPCR study confirmed the miRNA-Seq data and revealed consistent, aberrant miRNAs expression profile in the later phase of MC-LR hepatotoxicity (7-28 d). Functional annotation analysis revealed that the aberrantly expressed miRNAs have target genes involved in cytoskeletal remodeling, cell metabolism, cell cycle regulation and apoptosis; dysregulation of these processes in liver cells leads to cirrhosis and hepatocellular carcinoma in humans. To enable deeper insight into the molecular responses of liver cells in fish exposed to MC-LR, we expanded the miRNAome analysis by inclusion of miRNA variants (isomiRs) profiles, and we showed that the isomiR profiles of liver specific MiR122, and a few other miRNAs, correlated with MC-LR treatment. Given the importance of isomiRs for disease biology in mammals, we believe that further research focused on the miRNA isoforms will bring us closer to better understanding the molecular

  11. Aberrant Regulation and Function of MicroRNAs in Cancer

    PubMed Central

    Adams, Brian D.; Kasinski, Andrea L.; Slack, Frank J.

    2014-01-01

    Synopsis Malignant neoplasms are consistently among the top four leading causes of death in all age groups in the United States, despite a concerted effort toward developing novel therapeutic approaches[1]. Our understanding of and therapeutic strategy for treating each of these neoplastic diseases has been elevated through decades of research on the genetics, signaling pathways, and cellular biology that govern tumor cell initiation, progression and maintenance. Much of this work has concentrated on post-translational modifications and abnormalities at the DNA level, including point mutations, amplifications/deletions, and chromosomal translocations, and how these aberrant events affect the expression and function of protein-coding genes. Only recently has a novel class of conserved gene regulatory molecules been identified as major contributors to malignant neoplastic disease. This review focuses on how these small non-coding RNA molecules, termed microRNAs (miRNAs), can function as oncogenes or tumor suppressors, and how the misexpression of miRNAs and dysregulation of factors that regulate miRNAs contributes to the tumorigenic process. Specific focus is given to more recently discovered regulatory mechanisms that go awry in cancer, and how these changes alter miRNA expression, processing, and function. PMID:25137592

  12. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  13. Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue.

    PubMed

    Lai, C-Y; Lee, S-Y; Scarr, E; Yu, Y-H; Lin, Y-T; Liu, C-M; Hwang, T-J; Hsieh, M H; Liu, C-C; Chien, Y-L; Udawela, M; Gibbons, A S; Everall, I P; Hwu, H-G; Dean, B; Chen, W J

    2016-01-01

    Based on our previous finding of a seven-miRNA (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) signature as a potential biomarker for schizophrenia, this study aimed to examine if hospitalization could affect expressions of these miRNAs. We compared their expression levels between acute state and partial remission state in people with schizophrenia (n=48) using quantitative PCR method. Further, to examine whether the blood and brain show similar expression patterns, the expressions of two miRNAs (hsa-miR-34a and hsa-miR-548d) were examined in the postmortem brain tissue of people with schizophrenia (n=25) and controls (n=27). The expression level of the seven miRNAs did not alter after ~2 months of hospitalization with significant improvement in clinical symptoms, suggesting the miRNAs could be traits rather than state-dependent markers. The aberrant expression seen in the blood of hsa-miR-34a and hsa-miR-548d were not present in the brain samples, but this does not discount the possibility that the peripheral miRNAs could be clinically useful biomarkers for schizophrenia. Unexpectedly, we found an age-dependent increase in hsa-miR-34a expressions in human cortical (Brodmann area 46 (BA46)) but not subcortical region (caudate putamen). The correlation between hsa-miR-34a expression level in BA46 and age was much stronger in the controls than in the cases, and the corresponding correlation in the blood was only seen in the cases. The association between the miRNA dysregulations, the disease predisposition and aging warrants further investigation. Taken together, this study provides further insight on the candidate peripheral miRNAs as stable biomarkers for the diagnostics of schizophrenia. PMID:26784971

  14. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma

    PubMed Central

    Zhao, Jiali; Chen, Fengli; Zhou, Quan; Pan, Wei; Wang, Xinhong; Xu, Jin; Ni, Li; Yang, Huilin

    2016-01-01

    Background The mammalian target of rapamycin (mTOR) has been reported to act as a target gene of microRNA (miR)-99a in various cancer cells and identified as an independent prognostic marker of human osteosarcoma. The aim of this study was to investigate the clinical significance of miR-99a/mTOR axis in human osteosarcoma. Methods A total of 130 pairs of osteosarcoma and matched noncancerous bone tissues were used to detect the expression levels of miR-99a and mTOR mRNA by quantitative real-time polymerase chain reaction. Then, associations of miR-99a and/or mTOR expression with clinico-pathological features and prognosis of patients with osteosarcoma were statistically analyzed. Results The expression levels of miR-99a (tumor vs normal: 2.11±1.03 vs 4.69±1.21, P<0.001) and mTOR mRNA (tumor vs normal: 4.40±1.13 vs 1.74±0.85, P<0.001) in osteosarcoma tissues were, respectively, lower and higher than those in noncancerous bone tissues. The expression levels of miR-99a in osteosarcoma tissues were negatively correlated with those of mTOR mRNA. Additionally, miR-99a-low and/or mTOR-high expression were all significantly associated with advanced surgical stage, positive metastasis and recurrence, and poor response to chemotherapy (all P<0.05). Moreover, patients with osteosarcoma with miR-99a-low and/or mTOR-high expression had shorter overall and disease-free survivals than those in miR-99a-high and/or mTOR-low expression groups. Multivariate Cox analyses showed that miR-99a and/or mTOR expression were all independent prognostic factors of osteosarcoma. Conclusion Our data showed the crucial role of miR-99a/mTOR axis in the malignant progression of human osteosarcoma, implying that conjoined expression of miR-99a and mTOR may offer an attractive novel prognostic marker for this disease. PMID:27073323

  15. Aberrant Expression of Breast Development-Related MicroRNAs, miR-22, miR-132, and miR-212, in Breast Tumor Tissues

    PubMed Central

    Damavandi, Zahra; Torkashvand, Safoora; Vasei, Mohammad; Soltani, Bahram M.; Tavallaei, Mahmood

    2016-01-01

    Purpose MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that posttranscriptionally regulate the expression of most genes in the human genome. miRNAs are often located in chromosomal fragile sites, which are suscept-ible to amplification or deletion. Chromosomal deletions are frequent events in breast cancer cells. Deletion and loss of heterozygosity at 17p13.3 have been reported in 49% of breast cancers. The aim of the current study was to evaluate potential expression alterations of miR-22, miR-132, and miR-212, which are located on the 17p13.3 locus and are required for mammary gland development. Methods A matched case-control study was conducted, which included 36 pairs of tumor and matched nontumor surgical specimens from patients diagnosed with breast invasive ductal carcinoma. Formalin-fixed paraffin-embedded samples from archival collections at the pathology department of Shariati Hospital were prepared for RNA extraction using the xylene-ethanol method before total RNA was isolated with TRIzol Reagent. Specific primers were designed for cDNA synthesis and miRNA amplification. The expression of miRNAs was then evaluated by real-time polymerase chain reaction (RT-PCR). Results According to our RT-PCR data, the miR-212/miR-132 family was downregulated in breast cancer (0.328-fold, p<0.001), and this reduced expression was the most prominent in high-grade tumors. In contrast, miR-22 exhibited a significant upregulation in breast tumor samples (2.183-fold, p=0.040). Conclusion Consistent with the frequent deletion of the 17p13.3 locus in breast tumor cells, our gene expression data demonstrated a significant downregulation of miR-212 and miR-132 in breast cancer tissues. In contrast, we observed a significant upregulation of miR-22 in breast tumor samples. The latter conflicting result may have been due to the upregulation of miR-22 in stromal/cancer-associated fibroblasts, rather than in the tumor cells. PMID:27382390

  16. MicroRNA expression profiling using microarrays.

    PubMed

    Love, Cassandra; Dave, Sandeep

    2013-01-01

    MicroRNAs are small noncoding RNAs which are able to regulate gene expression at both the transcriptional and translational levels. There is a growing recognition of the role of microRNAs in nearly every tissue type and cellular process. Thus there is an increasing need for accurate quantitation of microRNA expression in a variety of tissues. Microarrays provide a robust method for the examination of microRNA expression. In this chapter, we describe detailed methods for the use of microarrays to measure microRNA expression and discuss methods for the analysis of microRNA expression data. PMID:23666707

  17. Estrogen Regulation of MicroRNA Expression

    PubMed Central

    Klinge, Carolyn M

    2009-01-01

    Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) therapy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly through binding to estrogen receptors alpha and beta (ERα and ERβ) that are ligand-activated transcription factors and indirectly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA molecules that base-pair with the 3’ untranslated region of target mRNAs. This interaction either blocks translation of the mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant patterns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been implicated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in aging has yet to be explored. PMID:19881910

  18. Heterogeneity of microRNAs expression in cervical cancer cells: over-expression of miR-196a

    PubMed Central

    Villegas-Ruiz, Vanessa; Juárez-Méndez, Sergio; Pérez-González, Oscar A; Arreola, Hugo; Paniagua-García, Lucero; Parra-Melquiadez, Miriam; Peralta-Rodríguez, Raúl; López-Romero, Ricardo; Monroy-García, Alberto; Mantilla-Morales, Alejandra; Gómez-Gutiérrez, Guillermo; Román-Bassaure, Edgar; Salcedo, Mauricio

    2014-01-01

    In recent years, the study of microRNAs associated with neoplastic processes has increased. Patterns of microRNA expression in different cell lines and different kinds of tumors have been identified; however, little is known about the alterations in regulatory pathways and genes involved in aberrant set of microRNAs. The identification of these altered microRNAs in several cervical cancer cells and potentially deregulated pathways involved constitute the principal goals of the present study. In the present work, the expression profiles of cellular microRNAs in Cervical Cancer tissues and cell lines were explored using microRNA microarray, Affymetrix. The most over-expressed was miR-196a, which was evaluated by real time PCR, and HOXC8 protein as potential target by immunohistochemistry assay. One hundred and twenty three human microRNAs differentially expressed in the cell tumor, 64 (52%) over-expressed and 59 (48%) under-expressed were observed. Among the microRNAs over-expressed, we focused on miR-196a; at present this microRNA is poorly studied in CC. The expression of this microRNA was evaluated by qRT-PCR, and HOXC8 by immunohistochemistry assay. There is not a specific microRNA expression profile in the CC cells, neither a microRNA related to HPV presence. Furthermore, the miR-196a was over-expressed, while an absence of HOXC8 expression was observed. We suggest that miR-196a could be played as oncomiR in CC. PMID:24817935

  19. MicroRNA aberrations: An emerging field for gallbladder cancer management.

    PubMed

    Chandra, Vishal; Kim, Jong Joo; Mittal, Balraj; Rai, Rajani

    2016-02-01

    Gallbladder cancer (GBC) is infrequent but most lethal biliary tract malignancy characterized by an advanced stage diagnosis and poor survival rates attributed to absence of specific symptoms and effective treatment options. These necessitate development of early prognostic/predictive markers and novel therapeutic interventions. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in tumor biology by functioning like tumor suppressor- or onco- genes and their aberrant expression are associated with the pathogenesis of several neoplasms with overwhelming clinical implications. Since miRNA signature is tissue specific, here, we focused on current data concerning the miRNAs aberrations in GBC pathogenesis. In GBC, miRNAs with tumor suppressor activity (miR-135-5p, miR-335, miR-34a, miR-26a, miR-146b-5p, Mir-218-5p, miR-1, miR-145, mir-130a) were found downregulated, while those with oncogenic property (miR-20a, miR-182, mir-155) were upregulated. The expression profile of miRNAs was significantly associated with GBC prognosis and prediction, and forced over-expression/ inhibition of these miRNAs was shown to affect tumor growth and development. Further, differential expression of miRNAs in the blood samples of GBC patients suggest miRNAs as promising noninvasive biomarker. Thus, miRNAs represent potential candidate for GBC management, though many hurdles need to be overcome before miRNAs therapy can be clinically applied to GBC prevention and treatment. PMID:26855538

  20. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  1. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    SciTech Connect

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-02-06

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent ({approx}10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT)

  2. MicroRNA aberrations: An emerging field for gallbladder cancer management

    PubMed Central

    Chandra, Vishal; Kim, Jong Joo; Mittal, Balraj; Rai, Rajani

    2016-01-01

    Gallbladder cancer (GBC) is infrequent but most lethal biliary tract malignancy characterized by an advanced stage diagnosis and poor survival rates attributed to absence of specific symptoms and effective treatment options. These necessitate development of early prognostic/predictive markers and novel therapeutic interventions. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play a key role in tumor biology by functioning like tumor suppressor- or onco- genes and their aberrant expression are associated with the pathogenesis of several neoplasms with overwhelming clinical implications. Since miRNA signature is tissue specific, here, we focused on current data concerning the miRNAs abberations in GBC pathogenesis. In GBC, miRNAs with tumor suppressor activity (miR-135-5p, miR-335, miR-34a, miR-26a, miR-146b-5p, Mir-218-5p, miR-1, miR-145, mir-130a) were found downregulated, while those with oncogenic property (miR-20a, miR-182, mir-155) were upregulated. The expression profile of miRNAs was significantly associated with GBC prognosis and prediction, and forced over-expression/ inhibition of these miRNAs was shown to affect tumor growth and development. Further, differential expression of miRNAs in the blood samples of GBC patients suggest miRNAs as promising noninvasive biomarker. Thus, miRNAs represent potential candidate for GBC management, though many hurdles need to be overcome before miRNAs therapy can be clinically applied to GBC prevention and treatment. PMID:26855538

  3. Aberrant expression of hormone receptors in adrenal Cushing's syndrome.

    PubMed

    Christopoulos, Stavroula; Bourdeau, Isabelle; Lacroix, André

    2004-01-01

    In recent years, a novel understanding of the pathophysiology of adrenal Cushing's syndrome has emerged. The ectopic or aberrant expression of G-protein-coupled hormone receptors in the adrenal cortex was found to play a central role in the regulation of cortisol secretion in ACTH-independent macronodular adrenal hyperplasia (AIMAH) and in some unilateral adrenal adenomas. Various aberrant receptors, functionally coupled to steroidogenesis, have been reported: GIP, vasopressin, beta-adrenergic, LH/hCG, and serotonin receptors have been best characterized, but angiotensin, leptin, glucagon, IL-1 and TSH receptors have also been described. The molecular mechanisms responsible for the aberrant expression of these receptors are currently unknown. One or many of these aberrant receptors are present in most cases of AIMAH and in some cases of adrenal adenomas with overt or sub-clinical secretion of cortisol. Clinical protocols to screen for such aberrant receptors have been developed and should be performed in all patients with AIMAH. The identification of such aberrant regulation of steroidogenesis in AIMAH provides the novel opportunity to treat some of these patients with pharmacological agents that either suppress the endogenous ligand or block the aberrant receptor, thus avoiding bilateral adrenalectomy. PMID:16010457

  4. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer

    PubMed Central

    Shen, Jianxiong; Law, Priscilla T.Y.; Chan, Matthew T.V.; Wu, William K.K.

    2015-01-01

    Gallbladder cancer is the most common biliary tract malignancy with poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous, non-coding RNAs of 19–23 nucleotides in length, which regulate gene expression at post-transcriptional and translational levels. Several studies have demonstrated aberrant expression of miRNAs in gallbladder cancer tissues. Recent evidences also demonstrated that specific miRNAs are functionally involved in gallbladder cancer development through modulating cell proliferation, apoptosis, migration, invasion and metastasis. In this review, we explore the possibilities of using miRNAs as prognostic, diagnostic markers and therapeutic targets in gallbladder cancer. PMID:26040010

  5. Cohort of estrogen-induced microRNAs regulate adrenomedullin expression.

    PubMed

    Wetzel-Strong, Sarah E; Li, Manyu; Espenschied, Scott T; Caron, Kathleen M

    2016-01-15

    Estrogen regulates the expression of many genes and has been correlated with differences in cardiac contraction; however, the underlying mechanisms remain poorly defined. Adrenomedullin (Adm = gene; AM = protein) is a multifunctional peptide with inotropic actions. Previous studies have demonstrated that estrogen enhances the expression of Adm, suggesting a relationship between AM and estrogen in cardiac contraction during physiological and pathological states. In this study, female mice in a mouse model of genetic Adm overexpression, abbreviated as Adm(hi/hi), were found to express 60 times more Adm in the heart than wild-type littermates, compared with the three-fold elevation of Adm previously reported in Adm(hi/hi) male hearts. Thus, this study sought to further investigate any functional consequences of increased cardiac Adm expression and begin exploring the mechanisms that regulate Adm expression in an estrogen-dependent fashion. This study revealed that heart function is enhanced in Adm(hi/hi) females, which along with Adm expression levels, was reversed following ovariectomization. Since the Adm(hi/hi) line was generated by the displacement of the 3' untranslated region (UTR), the native 3'UTR was examined for estrogen-induced microRNAs target sites to potentially explain the aberrant overexpression observed in Adm(hi/hi) female hearts. Using a bioinformatic approach, it was determined that the mouse Adm 3'UTR contains many target sites for previously characterized estrogen-induced microRNAs. This study also determined that the novel microRNA, miR-879, is another estrogen-induced microRNA that interacts with the 3'UTR of Adm to destabilize the mRNA. Together, these studies revealed that estrogen-induced microRNAs are important for balancing cardiac Adm expression in females. PMID:26582637

  6. MicroRNA Expression and Regulation in Human Ovarian Carcinoma Cells by Luteinizing Hormone

    PubMed Central

    Cui, Juan; Eldredge, Joanna B.; Xu, Ying; Puett, David

    2011-01-01

    Background MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH) contributions to LH receptor (LHR)-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR. Methods Human ovarian cancer cells (SKOV3) were chosen as negative control (LHR−) and stably transfected to express functional LHR (LHR+), followed by incubation with LH (0–20 h). At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™), which profiled ∼100,000 transcripts with ∼400 non-coding microRNAs. Findings In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs. Conclusion The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles. PMID:21765906

  7. MicroRNA Expression in the Glaucomatous Retina

    PubMed Central

    Jayaram, Hari; Cepurna, William O.; Johnson, Elaine C.; Morrison, John C.

    2015-01-01

    Purpose MicroRNAs are small, endogenous noncoding RNAs that modulate posttranscriptional gene expression. Although the contribution of microRNAs to the pathogenesis of glaucomatous damage is unknown, supporting evidence from central nervous system (CNS) research suggests they may play a role. It was therefore hypothesized that microRNAs known to be altered in CNS injury are also altered in experimental glaucoma. Methods Intraocular pressure (IOP) was elevated in rats by unilateral injection of hypertonic saline and IOP monitored for 5 weeks. After rats were killed, retrobulbar optic nerve sections were graded for damage. MicroRNA was extracted from whole retinae of eyes with advanced nerve damage (n = 8) and from normal, noninjected control eyes (n = 8). Quantitative PCRs were performed using a panel of 17 microRNAs, reported from CNS research to be implicated in mechanisms also linked to glaucomatous damage. Computationally and experimentally derived gene targets were identified for the differentially expressed microRNAs. These were then integrated with existing gene array data. Functional interpretation was performed using the Molecular Signatures Database and DAVID Functional Annotation Clustering. Results Eight microRNAs were significantly downregulated in glaucomatous retinae compared with controls (miR-181c, miR-497, miR-204, let-7a, miR-29b, miR-16, miR106b, and miR-25); miR-27a was significantly upregulated. Enrichment of targets associated with extracellular matrix/cell proliferation, immune system, and regulation of apoptosis were observed. Cholesterol homeostasis and mTORC-1 pathways showed reduced expression. Conclusions MicroRNAs are differentially expressed in retinae of eyes with advanced glaucomatous damage compared with normal controls. Integrating microRNA with gene expression data may improve understanding of the complex biological responses produced by chronically elevated IOP. PMID:26720444

  8. HCV core protein-induced upregulation of microRNA-196a promotes aberrant proliferation in hepatocellular carcinoma by targeting FOXO1.

    PubMed

    Xu, Hao; Li, Guangming; Yue, Zhanyi; Li, Chengzhong

    2016-06-01

    The hepatitis C virus (HCV) core protein is critical in the development of hepatocellular carcinoma (HCC). Investigations on HCC have previously focused on microRNAs, a class of small non‑coding RNAs, which are crucial in cancer development and progression. The present study aimed to investigate whether microRNA (miR)‑196a is aberrantly regulated by the HCV core protein, and whether miR‑196a is involved in the regulation of the aberrant proliferation of HCV‑HCC cells. In the study, miRNA expression was detected by quantitative polymerase chain reaction analysis. An Ad‑HCV core adenovirus was constructed and cell proliferation was measured using a Cell Counting Kit-8 assay and a cell cycle assay following infection. The results of the present study demonstrated that the HCV core protein increased the expression of miR‑196a, and that overexpression of miR‑196a in the HepG2 and Huh‑7 HCC cell lines promoted cell proliferation by inducing the G1‑S transition. Furthermore, the present study demonstrated that forkhead box O1 (FOXO1) was directly regulated by miR‑196a, and was essential in mediating the biological effects of miR‑196a in HCC. The overexpression of FOXO1 markedly reversed the effect of miR‑196a in HCC cell proliferation. Taken together, the data obtained in the present study provided compelling evidence that elevated expression levels of miR‑196a by the HCV core protein can function as an onco‑microRNA during HCV‑induced cell proliferation by downregulating the expression of FOXO1, indicating a potential novel therapeutic target for HCV-related HCC. PMID:27108614

  9. Aberrant resting state in microRNA-30e rat model of cognitive impairment.

    PubMed

    Xu, Cheng; Liu, Xiaopeng; Song, Xi; Gao, Qiang; Cheng, Long; Wang, Liang; Zhang, Kerang; Xu, Yong

    2016-08-01

    Increasing evidence suggests that microRNA (miRNA)-30e is implicated in the cognitive symptoms of many neuropsychiatric diseases. Our previous studies showed that miRNA-30e is associated with cognitive impairment in schizophrenia and depression. Neuroimaging studies have suggested that cognitive impairment is best characterized as abnormal local activity or a disconnection syndrome. Therefore, we constructed a cognitively impaired overexpressing miRNA-30e rat model for study using functional MRI (fMRI). The model was developed by transfected lentiviral particles carrying the miRNA-30e into the hippocampal dentate gyrus. The Morris water maze and open-field test were used to evaluate cognitive ability. We used the regional homogeneity approach to analyze resting-state fMRI data to explore the changes in regional synchronization. We then used Granger causality analysis to explore connectivity between the hippocampus, striatum, and thalamus. The model group showed higher regional homogeneity in the right hippocampus and striatum. One-way Granger causality connections were observed from the thalamus to the hippocampus in the model group, whereas connections from the thalamus to the striatum were observed in normal rats. After fluoxetine treatment, we found indirect connections between the thalamus and the striatum; we also found connections from the hippocampus to the striatum after Shuganjieyu capsule treatment. Our results support the hypothesis that cognitive impairment is related to disrupted local functionality or aberrant brain connectivity, with antidepressant drugs partially reversing cognitive impairment. The characteristics of resting-state fMRI in miRNA-30e overexpressing rats can provide further evidence for investigating the neural mechanisms of cognitive impairment in mental disorders. Video abstract; Supplemental digital content 1, http://links.lww.com/WNR/A385. PMID:27258654

  10. Principles of microRNA Regulation Revealed Through Modeling microRNA Expression Quantitative Trait Loci

    PubMed Central

    Budach, Stefan; Heinig, Matthias; Marsico, Annalisa

    2016-01-01

    Extensive work has been dedicated to study mechanisms of microRNA-mediated gene regulation. However, the transcriptional regulation of microRNAs themselves is far less well understood, due to difficulties determining the transcription start sites of transient primary transcripts. This challenge can be addressed using expression quantitative trait loci (eQTLs) whose regulatory effects represent a natural source of perturbation of cis-regulatory elements. Here we used previously published cis-microRNA-eQTL data for the human GM12878 cell line, promoter predictions, and other functional annotations to determine the relationship between functional elements and microRNA regulation. We built a logistic regression model that classifies microRNA/SNP pairs into eQTLs or non-eQTLs with 85% accuracy; shows microRNA-eQTL enrichment for microRNA precursors, promoters, enhancers, and transcription factor binding sites; and depletion for repressed chromatin. Interestingly, although there is a large overlap between microRNA eQTLs and messenger RNA eQTLs of host genes, 74% of these shared eQTLs affect microRNA and host expression independently. Considering microRNA-only eQTLs we find a significant enrichment for intronic promoters, validating the existence of alternative promoters for intragenic microRNAs. Finally, in line with the GM12878 cell line derived from B cells, we find genome-wide association (GWA) variants associated to blood-related traits more likely to be microRNA eQTLs than random GWA and non-GWA variants, aiding the interpretation of GWA results. PMID:27260304

  11. The aberrantly expressed miR-193b-3p contributes to preeclampsia through regulating transforming growth factor-β signaling

    PubMed Central

    Zhou, Xinyao; Li, Qiaoli; Xu, Jiawei; Zhang, Xiaojing; Zhang, Huijuan; Xiang, Yuqian; Fang, Chuantao; Wang, Teng; Xia, Shihui; Zhang, Qiang; Xing, Qinghe; He, Lin; Wang, Lei; Xu, Mingqing; Zhao, Xinzhi

    2016-01-01

    Preeclampsia (PE) is a leading cause of maternal mortality worldwide. Several studies have detected some differentially expressed microRNAs in the preeclamptic placenta, but few of the identified microRNAs demonstrated consistent findings among different research studies. In this study, high-throughput microRNA sequencing (HTS) of 9 preeclamptic and 9 normal placentas was performed. Seventeen microRNAs were identified to be up-regulated, and 8 down-regulated in preeclamptic placentas. Eight differentially expressed microRNAs except one identified in our study were determined to be consistent with at least one previous study, while sixteen were newly found. We performed qRT-PCR with independent 22 preeclamptic placentas and 20 control placentas to verify the differentially expressed microRNAs, and ten microRNAs were validated. The predicted target genes of the aberrantly expressed miR-193b-3p were enriched in the following gene ontology categories: cell motility and migration, cell proliferation and angiogenesis. We also found that miR-193b-3p significantly decreased the migration and invasion of trophoblast (HTR-8/SVneo) cells and that miR-193b-3p could regulate trophoblasts migration and invasion through binding onto the 3′UTR target site of TGF-β2. In conclusion, we identified a list of differentially expressed microRNAs in PE placentas by HTS and provided preliminary evidence for the role of miR-193b-3p in the pathogenesis of preeclampsia. PMID:26822621

  12. Serum levels of microRNA-133b and microRNA-206 expression predict prognosis in patients with osteosarcoma

    PubMed Central

    Zhang, Chun; Yao, Cong; Li, Haopeng; Wang, Guoyu; He, Xijing

    2014-01-01

    The aim of the present study was to investigate whether the aberrant expression of microRNA (miR)-133b and miR-206 can be used as potential prognostic markers of human osteosarcoma. Quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis was performed to detect the expression levels of miR-133b and miR-206 in 100 pairs of osteosarcoma tissues and matched noncancerous bone tissues, and serum samples from 100 patients with osteosarcoma as well as in serum samples from 100 healthy controls. As a result, expression levels of miR-133b and miR-206 were both significantly decreased in osteosarcoma tissues and patients’ sera (both P<0.001). Then, the downregulation of miR-133b and miR-206 both more frequently occurred in osteosarcoma patients with high tumor grade (both P=0.01), positive metastasis (both P<0.001) and recurrence (both P<0.001). Moreover, the patients with low miR-133b expression and low miR-206 expression both had shorter overall survival (OS, both P<0.001) and disease-free survival (DFS, both P<0.001) than those with high expressions. Of note, the OS and DFS of patients with combined low expression of miR-133b and miR-206 (miR-133b-low/miR-206-low) were the shortest (both P<0.001). Furthermore, low miR-133b expression, low miR-206 expression and conjoined expression of miR-133b/miR-206 were all independent prognostic factors for OS and DFS of osteosarcoma patients. Collectively, the aberrant expression of miR-133b and miR-206 may be implicated in tumorigenesis and tumor progression of osteosarcoma. More interestingly, detection of serum miR-133b and miR-206 expression could be further developed as novel, non-invasive and efficient markers for prognosis in patients with osteosarcomas. PMID:25120799

  13. MicroRNA expression and its association with DNA repair in preimplantation embryos

    PubMed Central

    TULAY, Pinar; SENGUPTA, Sioban B.

    2016-01-01

    Active DNA repair pathways are crucial for preserving genomic integrity and are likely among the complex mechanisms involved in the normal development of preimplantation embryos. MicroRNAs (miRNA), short non-coding RNAs, are key regulators of gene expression through the post-transcriptional and post-translational modification of mRNA. The association of miRNA expression with infertility or polycystic ovarian syndrome has been widely investigated; however, there are limited data regarding the importance of miRNA regulation in DNA repair during preimplantation embryo development. In this article, we review normal miRNA biogenesis and consequences of aberrant miRNA expression in the regulation of DNA repair in gametes and preimplantation embryos. PMID:26853522

  14. Aberrant expression of a chemokinetic glycoprotein in psoriatic skin.

    PubMed

    Rajaraman, S; Schmalsteig, F C; Brysk, M M; Hendrick, S J; Solomon, A R

    1987-05-01

    Clinically involved and uninvolved skin samples of 6 psoriatic patients, 4 samples each of normal skin specimens, basal cell carcinoma and keratoacanthoma were studied by an indirect immunofluorescence technique. The monospecific antibody used in this study was directed against a 30 kD glycoprotein, normally expressed by the terminally differentiated corneocytes. Functional characterization of this glycoprotein was evaluated by neutrophil cell movement assays. The involved and uninvolved skin of psoriatic patients expressed the 30 kD glycoprotein not only in the stratum corneum but in all the viable epidermal layers as well. Functional studies revealed this glycoprotein to be a potent chemokinetic molecule. These results suggest that the 30 kD glycoprotein is an intrinsic chemokinetic molecule of the terminally differentiated corneocytes, and its precocious and aberrant expression in psoriatic epidermis is potentially responsible for some of the pathophysiologic aspects of psoriasis. PMID:3302266

  15. EXPRESSION PROFILES OF MICRO-RNAS IN SWINE MUSCLE DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRs) are small ~18-22 nucleotide-long non-coding RNAs that have been shown to control gene expression by inhibiting translation or targeting messenger RNA for degradation. MiRs have been implicated in control of development, tissue homeostasis, and immune response. We examined the expr...

  16. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  17. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  18. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  19. Genome-wide analysis of microRNA and mRNA expression signatures in cancer

    PubMed Central

    Li, Ming-hui; Fu, Sheng-bo; Xiao, Hua-sheng

    2015-01-01

    Cancer is an extremely diverse and complex disease that results from various genetic and epigenetic changes such as DNA copy-number variations, mutations, and aberrant mRNA and/or protein expression caused by abnormal transcriptional regulation. The expression profiles of certain microRNAs (miRNAs) and messenger RNAs (mRNAs) are closely related to cancer progression stages. In the past few decades, DNA microarray and next-generation sequencing techniques have been widely applied to identify miRNA and mRNA signatures for cancers on a genome-wide scale and have provided meaningful insights into cancer diagnosis, prognosis and personalized medicine. In this review, we summarize the progress in genome-wide analysis of miRNAs and mRNAs as cancer biomarkers, highlighting their diagnostic and prognostic roles. PMID:26299954

  20. MicroRNAs and Epithelial Immunity

    PubMed Central

    Liu, Jun; Drescher, Kristen M.; Chen, Xian-Ming

    2009-01-01

    MicroRNAs are required for development and maintenance of the epithelial barrier. It is hypothesized that microRNAs are involved in regulating epithelial anti-microbial defenses by targeting key epithelial effector molecules and/or influencing intracellular signaling pathways. Additionally, aberrant microRNA expression has been implicated in the pathogenesis of various diseases at the skin and mucosa. Increased understanding of the role of microRNAs in epithelial immunoregulation and identification of microRNAs of pathogenetic significance will enhance our understanding of epithelial immunobiology and immunopathology. PMID:19811319

  1. Identification of Aberrantly Expressed miRNAs in Gastric Cancer

    PubMed Central

    Liu, Dan; Hu, Xiaowei; Zhou, Hongfeng; Shi, Guangyue; Wu, Jin

    2014-01-01

    The noncoding components of the genome, including miRNA, can contribute to pathogenesis of gastric cancer. Their expression has been profiled in many human cancers, but there are a few published studies in gastric cancer. It is necessary to identify novel aberrantly expressed miRNAs in gastric cancer. In this study, the expression profile of 1891 miRNAs was analyzed using a miRCURY array LNA miRNA chip from three gastric cancer tissues and three normal tissues. The expression levels of 4 miRNAs were compared by real-time PCR between cancerous and normal tissues. We found that 31 miRNAs are upregulated in gastric cancer (P < 0.05) and 10 miRNAs have never been reported by other studies; 30 miRNA are downregulated (P < 0.05) in gastric cancer tissues. Gene ontology analysis revealed that those dysregulated miRNAs mainly take part in regulating cell proliferation. The levels of has-miR-105, -213∗, -514b, and -548n were tested by real-time PCR and have high levels in cancerous tissues. Here, we report a miRNA profile of gastric cancer and provide new perspective to understand this malignant disease. This novel information suggests the potential roles of these miRNAs in the diagnosis, prognosis biomarkers, or therapy targets of gastric cancer. PMID:24982669

  2. Aberrant expression of RUNX3 in patients with immune thrombocytopenia.

    PubMed

    Qiao, Jianlin; Liu, Yun; Wu, Yulu; Li, Xiaoqian; Zhu, Feng; Xia, Yuan; Yao, Haina; Chu, Peipei; Li, Hongchun; Ma, Ping; Li, Depeng; Li, Zhenyu; Xu, Kailin; Zeng, Lingyu

    2015-09-01

    Immune thrombocytopenia (ITP) is an autoimmune disease, characterized by dysregulation of cellular immunity. Previous studies demonstrated that immune imbalance between Th1 and Th2 was associated with the pathogenesis of ITP. Runt-related transcription factor 3 (RUNX3) is a member of the runt domain-containing family of transcription factors and plays an important role in the regulation of T cell differentiation into Th1 cells. Whether RUNX3 was involved in the pathogenesis of ITP remains unclear. In this study, 47 active ITP patients, 18 ITP with remission and 26 age and gender matched healthy control were included. Peripheral blood mononuclear cells (PBMCs) were isolated from ITP and control for isolation of RNA and plasma which were used to measure mRNA level of RUNX3 and T-box transcription factor (T-bet) by quantitative real-time PCR and interferon γ (IFN-γ) plasma level by ELISA. Meanwhile, protein was also extracted from PBMCs for Western blot analysis of RUNX3 expression. Our results showed a significantly higher expression of RUNX3, T-bet and plasma level of IFN-γ in active ITP patients compared to control. No differences were observed between ITP with remission and control. Furthermore, a positive correlation of RUNX3 with T-bet was found in active ITP patients. In conclusion, aberrant expression of RUNX3 was associated with the pathogenesis of ITP and therapeutically targeting it might be a novel approach in ITP treatment. PMID:26093269

  3. Differentially expressed microRNAs in colorectal cancer metastasis.

    PubMed

    Abba, Mohammed; Benner, Axel; Patil, Nitin; Heil, Oliver; Allgayer, Heike

    2015-12-01

    Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251. PMID:26697326

  4. Differentially expressed microRNAs in colorectal cancer metastasis

    PubMed Central

    Abba, Mohammed; Benner, Axel; Patil, Nitin; Heil, Oliver; Allgayer, Heike

    2015-01-01

    Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251. PMID:26697326

  5. Stratification of Digestive Cancers with Different Pathological Features and Survival Outcomes by MicroRNA Expression

    PubMed Central

    Tang, Senwei; Wu, William K. K.; Li, Xiangchun; Wong, Sunny H.; Wong, Nathalie; Chan, Matthew T. V.; Sung, Joseph J. Y.; Yu, Jun

    2016-01-01

    MicroRNAs (miRNAs) are aberrantly expressed in virtually all cancer types, including digestive cancers. Herein, we aggregated and systematically analyzed miRNA expression profiles of 1765 tumor samples, including esophageal, gastric, liver, pancreatic, colon and rectal cancers, obtained through small RNA sequencing by The Cancer Genome Atlas. We found that digestive cancers of different tissue origins could be differentiated according to their miRNA expression profiles. In particular, esophageal squamous cell carcinoma and esophageal adenocarcinoma exhibited distinct miRNA expression patterns. Thirteen (e.g. miR-135b, miR-182) and sixteen (e.g. miR-139, miR-133a-1, miR-490) miRNAs were commonly upregulated and downregulated in more than four cancer types, respectively. Pertinent to pathological features, low miR-181d expression was associated with microsatellite instability in colon and gastric cancers whereas low miR-106a expression was associated with hepatitis B virus infection in hepatocellular carcinoma. Progression in colon cancer could also be predicted by low let-7f-2 and high miR-106a expression. Molecular subtypes with distinct prognostic outcomes independent of tumor-node-metastasis staging were identified in hepatocellular carcinoma and colon cancer. In total, 4 novel and 6 reported associations between specific miRNAs and patients’ survival were identified. Collectively, novel miRNA markers were identified to stratify digestive cancers with different pathological features and survival outcomes. PMID:27080237

  6. Deregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets

    PubMed Central

    Morris, Valerie A.; Cummings, Carrie L.; Korb, Brendan; Boaglio, Sean

    2015-01-01

    Acute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in AML patient samples with various cytogenetic aberrations, confirm that KLF4 overexpression promotes myeloid differentiation and inhibits cell proliferation in AML cell lines, and identify new targets of KLF4. We have demonstrated that microRNA 150 (miR-150) expression is decreased in AML and that reintroducing miR-150 expression induces myeloid differentiation and inhibits proliferation of AML cells. We show that KLF family DNA binding sites are necessary for miR-150 promoter activity and that KLF2 or KLF4 overexpression induces miR-150 expression. miR-150 silencing, alone or in combination with silencing of CDKN1A, a well-described KLF4 target, did not fully reverse KLF4-mediated effects. Gene expression profiling and validation identified putative KLF4-regulated genes, including decreased MYC and downstream MYC-regulated gene expression in KLF4-overexpressing cells. Our findings indicate that decreased KLF4 expression mediates antileukemic effects through regulation of gene and microRNA networks, containing miR-150, CDKN1A, and MYC, and provide mechanistic support for therapeutic strategies increasing KLF4 expression. PMID:26644403

  7. Placental microRNA expression in pregnancies complicated by preeclampsia

    PubMed Central

    Enquobahrie, Daniel A.; Abetew, Dejene F.; Sorensen, Tanya K.; Willoughby, David; Chidambaram, Kumaravel; Williams, Michelle A.

    2010-01-01

    Objective The role of post-transcription regulation in preeclampsia is largely unknown. We investigated preeclampsia related placental microRNA (miRNA) expression using microarray and confirmatory qRT-PCR experiments. Study design Placental expressions of characterized and novel miRNAs (1,295 probes) were measured in samples collected from 20 preeclampsia cases and 20 controls. Differential expression was evaluated using Students T-test and fold change analyses. In pathway analysis, we examined functions/functional relationships of targets of differentially expressed miRNAs. Results Eight miRNAs were differentially expressed (1 up- and 7 down-regulated) among preeclampsia cases compared with controls. These included previously identified candidates (miR-210, miR-1 and a miRNA in the 14q32.31 cluster region) and others that are novel (miR- 584 and miR-34c-5p). These miRNAs target genes that participate in organ/system development (cardiovascular and reproductive system), immunologic dysfunction, cell adhesion, cell cycle and signaling. Conclusion Expression of microRNAs that target genes in diverse pathophysiological processes is altered in the setting of preeclampsia. PMID:21093846

  8. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia.

    PubMed

    Correia, Nádia C; Melão, Alice; Póvoa, Vanda; Sarmento, Leonor; Gómez de Cedrón, Marta; Malumbres, Marcos; Enguita, Francisco J; Barata, João T

    2016-02-16

    The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases. PMID:26882564

  9. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Melão, Alice; Póvoa, Vanda; Sarmento, Leonor; de Cedrón, Marta Gómez; Malumbres, Marcos; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases. PMID:26882564

  10. Alzheimer's disease shares gene expression aberrations with purinergic dysregulation of HPRT deficiency (Lesch-Nyhan disease).

    PubMed

    Kang, Tae Hyuk; Friedmann, Theodore

    2015-03-17

    Transcriptomic studies of murine D3 embryonic stem (ES) cells deficient in the purinergic biosynthetic function hypoxanthine guanine phosphoribosyltransferase (HPRT) and undergoing dopaminergic neuronal differentiation has demonstrated a marked shift from neuronal to glial gene expression and aberrant expression of multiple genes also known to be aberrantly expressed in Alzheimer's and other CNS disorders. Such genetic dysregulations may indicate some shared pathogenic metabolic mechanisms in diverse CNS diseases. PMID:25636690

  11. Genetic variants in microRNA genes: impact on microRNA expression, function, and disease

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; De Rijk, Peter; Del Favero, Jurgen

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression and like any other gene, their coding sequences are subject to genetic variation. Variants in miRNA genes can have profound effects on miRNA functionality at all levels, including miRNA transcription, maturation, and target specificity, and as such they can also contribute to disease. The impact of variants in miRNA genes is the focus of the present review. To put these effects into context, we first discuss the requirements of miRNA transcripts for maturation. In the last part an overview of available databases and tools and experimental approaches to investigate miRNA variants related to human disease is presented. PMID:26052338

  12. Flank Sequences of miR‐145/143 and Their Aberrant Expression in Vascular Disease: Mechanism and Therapeutic Application

    PubMed Central

    Liu, Xiaojun; Cheng, Yunhui; Yang, Jian; Qin, Shanshan; Chen, Xiuwei; Tang, Xiaojun; Zhou, Xiangyu; Krall, Thomas J.; Zhang, Chunxiang

    2013-01-01

    Background Many microRNAs (miRNAs) are downregulated in proliferative vascular disease. Thus, upregulation of these miRNAs has become a major focus of research activity. However, there is a critical barrier in gene therapy to upregulate some miRNAs such as miR‐145 and miR‐143 because of their significant downregulation by the unclear endogenous mechanisms under disease conditions. The purpose of this study was to determine the molecular mechanisms responsible for their downregulation and to overcome the therapeutic barrier. Methods and Results In cultured proliferative rat vascular smooth muscle cells (VSMCs) in vitro and in diseased rat and mouse arteries in vivo, we have identified that the impairment of pri‐miR‐145 into pre‐miR‐145 is the critical step related to the downregulation of miR‐145, in which the PI3‐kinase/Akt/p53 pathway is involved. We further identified that the flank sequences of pri‐miR‐145 are the critical structural components responsible for the aberrant miR‐145 expression. Switching of the flank sequence of downregulated miR‐145 and miR‐143 to the flank sequence of miR‐31 confers resistance to their downregulation. The genetically engineered miR‐145 (smart miR‐145) restored the downregulated miR‐145 in proliferative rat VSMCs and in rat carotid arteries with balloon injury and mouse atherosclerotic aortas and demonstrated much better therapeutic effects on the abnormal growth of VSMCs, expression of its target gene, KLF5 expression, VSMC marker gene expression, and vascular neointimal growth. Conclusions The flank sequences of miR‐145 and miR‐143 play a critical role in their aberrant expression in VSMCs and vascular walls. The genetically engineered “smart” miRNAs based on their flank sequences may have broadly therapeutic applications for many vascular diseases. PMID:24166492

  13. Differential Expression of Exosomal microRNAs in Prefrontal Cortices of Schizophrenia and Bipolar Disorder Patients

    PubMed Central

    Kozubek, James A.; Winslow, Ashley R.; Medina, Juan; Costa, Joan; Schmitt, Andrea; Schneider, Anja; Cabral, Howard; Cagsal-Getkin, Ozge; Vanderburg, Charles R.; Delalle, Ivana

    2013-01-01

    Exosomes are cellular secretory vesicles containing microRNAs (miRNAs). Once secreted, exosomes are able to attach to recipient cells and release miRNAs potentially modulating the function of the recipient cell. We hypothesized that exosomal miRNA expression in brains of patients diagnosed with schizophrenia (SZ) and bipolar disorder (BD) might differ from controls, reflecting either disease-specific or common aberrations in SZ and BD patients. The sources of the analyzed samples included McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center), BrainNet Europe II (BNE, a consortium of 18 brain banks across Europe) and Boston Medical Center (BMC). Exosomal miRNAs from frozen postmortem prefrontal cortices with well-preserved RNA were isolated and submitted to profiling by Luminex FLEXMAP 3D microfluidic device. Multiple statistical analyses of microarray data suggested that certain exosomal miRNAs were differentially expressed in SZ and BD subjects in comparison to controls. RT-PCR validation confirmed that two miRNAs, miR-497 in SZ samples and miR-29c in BD samples, have significantly increased expression when compared to control samples. These results warrant future studies to evaluate the potential of exosome-derived miRNAs to serve as biomarkers of SZ and BD. PMID:23382797

  14. Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses

    PubMed Central

    Barciszewska-Pacak, Maria; Milanowska, Kaja; Knop, Katarzyna; Bielewicz, Dawid; Nuc, Przemyslaw; Plewka, Patrycja; Pacak, Andrzej M.; Vazquez, Franck; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2015-01-01

    Arabidopsis microRNA expression regulation was studied in a wide array of abiotic stresses such as drought, heat, salinity, copper excess/deficiency, cadmium excess, and sulfur deficiency. A home-built RT-qPCR mirEX platform for the amplification of 289 Arabidopsis microRNA transcripts was used to study their response to abiotic stresses. Small RNA sequencing, Northern hybridization, and TaqMan® microRNA assays were performed to study the abundance of mature microRNAs. A broad response on the level of primary miRNAs (pri-miRNAs) was observed. However, stress response at the level of mature microRNAs was rather confined. The data presented show that in most instances, the level of a particular mature miRNA could not be predicted based on the level of its pri-miRNA. This points to an essential role of posttranscriptional regulation of microRNA expression. New Arabidopsis microRNAs responsive to abiotic stresses were discovered. Four microRNAs: miR319a/b, miR319b.2, and miR400 have been found to be responsive to several abiotic stresses and thus can be regarded as general stress-responsive microRNA species. PMID:26089831

  15. Identification and characterization of MicroRNAs expressed in chicken skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs, miRs) encompass a class of small noncoding RNAs that negatively regulate gene expression. MicroRNAs play an essential role in skeletal muscle, determining the proper development and maintenance of this tissue. In comparison to other organs and tissues, the full set of muscle miRNA...

  16. Effects of oestrogen on microRNA expression in hormone-responsive breast cancer cells.

    PubMed

    Ferraro, Lorenzo; Ravo, Maria; Nassa, Giovanni; Tarallo, Roberta; De Filippo, Maria Rosaria; Giurato, Giorgio; Cirillo, Francesca; Stellato, Claudia; Silvestro, Silvana; Cantarella, Concita; Rizzo, Francesca; Cimino, Daniela; Friard, Olivier; Biglia, Nicoletta; De Bortoli, Michele; Cicatiello, Luigi; Nola, Ernesto; Weisz, Alessandro

    2012-06-01

    Oestrogen receptor alpha (ERα) is a ligand-dependent transcription factor that mediates oestrogen effects in hormone-responsive cells. Following oestrogenic activation, ERα directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) represent a class of small noncoding RNAs that function as negative regulators of protein-coding gene expression. They are found aberrantly expressed or mutated in cancer, suggesting their crucial role as either oncogenes or tumour suppressor genes. Here, we analysed changes in miRNA expression in response to oestrogen in hormone-responsive breast cancer MCF-7 and ZR-75.1 cells by microarray-mediated expression profiling. This led to the identification of 172 miRNAs up- or down-regulated by ERα in response to 17β-oestradiol, of which 52 are similarly regulated by the hormone in the two cell models investigated. To identify mechanisms by which ERα exerts its effects on oestrogen-responsive miRNA genes, the oestrogen-dependent miRNA expression profiles were integrated with global in vivo ERα binding site mapping in the genome by ChIP-Seq. In addition, data from miRNA and messenger RNA (mRNA) expression profiles obtained under identical experimental conditions were compared to identify relevant miRNA target transcripts. Results show that miRNAs modulated by ERα represent a novel genomic pathway to impact oestrogen-dependent processes that affect hormone-responsive breast cancer cell behaviour. MiRNome analysis in tumour tissues from breast cancer patients confirmed a strong association between expression of these small RNAs and clinical outcome of the disease, although this appears to involve only marginally the oestrogen-regulated miRNAs identified in this study. PMID:22274890

  17. Differential expression of microRNAs in mouse embryonic bladder

    SciTech Connect

    Liu, Benchun; Cunha, Gerald R.; Baskin, Laurence S.

    2009-08-07

    MicroRNAs (miRNAs) are involved in several biological processes including development, differentiation and proliferation. Analysis of miRNA expression patterns in the process of embryogenesis may have substantial value in determining the mechanism of embryonic bladder development as well as for eventual therapeutic intervention. The miRNA expression profiles are distinct among the cellular types and embryonic stages as demonstrated by microarray technology and validated by quantitative real-time RT-PCR approach. Remarkably, the miRNA expression patterns suggested that unique miRNAs from epithelial and submucosal areas are responsible for mesenchymal cellular differentiation, especially regarding bladder smooth muscle cells. Our data show that miRNA expression patterns are unique in particular cell types of mouse bladder at specific developmental stages, reflecting the apparent lineage and differentiation status within the embryonic bladder. The identification of unique miRNAs expression before and after smooth muscle differentiation in site-specific area of the bladder indicates their roles in embryogenesis and may aid in future clinical intervention.

  18. Observation of lens aberrations for high resolution electron microscopy II: simple expressions for optimal estimates.

    PubMed

    Saxton, W Owen

    2015-04-01

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. PMID:25728295

  19. Altered microRNA expression profile in hepatitis B virus-related hepatocellular carcinoma.

    PubMed

    Park, Keon Uk; Seo, Young-Su; Lee, Yun-Han; Park, Jungwook; Hwang, Ilseon; Kang, Koo Jeong; Nam, Jehyun; Kim, Sang-Woo; Kim, Jin Young

    2015-12-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers, accounting for about 600,000 cancer deaths worldwide. Despite aggressive chemotherapy, the 5-year survival rate is less than 30% in the United States. This underscores the need for a better understanding of the molecular and cellular disease features. Many studies have demonstrated that aberrant regulation of microRNA (miRNA) expression plays a critical role in the development of various types of cancers including HCC. Here we analyzed the miRNA expression profile of HCC cases associated with chronic hepatitis B virus infection, one of the major etiologies of HCC. Our study identified 267 miRNAs that were differentially regulated in HCC specimens compared to adjacent normal tissues. We next analyzed putative target genes and the relevant signaling pathways that are regulated by these miRNAs. Our findings support the notion that dysfunction of miRNAs is linked to HCC pathogenesis and may lead to the identification of novel targets for diagnosing and treating HCC. PMID:26190160

  20. MicroRNAs Expression Profiles in Cardiovascular Diseases

    PubMed Central

    Bronze-da-Rocha, Elsa

    2014-01-01

    The current search for new markers of cardiovascular diseases (CVDs) is explained by the high morbidity and mortality still observed in developed and developing countries due to cardiovascular events. Recently, microRNAs (miRNAs or miRs) have emerged as potential new biomarkers and are small sequences of RNAs that regulate gene expression at posttranscriptional level by inhibiting translation or inducing degradation of the target mRNAs. Circulating miRNAs are involved in the regulation of signaling pathways associated to aging and can be used as novel diagnostic markers for acute and chronic diseases such as cardiovascular pathologies. This review summarizes the biogenesis, maturation, and stability of miRNAs and their use as potential biomarkers for coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF). PMID:25013816

  1. MicroRNA expression profiling in children with different asthma phenotypes.

    PubMed

    Midyat, Levent; Gulen, Figen; Karaca, Emin; Ozkinay, Ferda; Tanac, Remziye; Demir, Esen; Cogulu, Ozgur; Aslan, Asli; Ozkinay, Cihangir; Onay, Huseyin; Atasever, Mesude

    2016-06-01

    An improved understanding of the molecular mechanisms in asthma through exploring the role of microRNAs may offer promise to reveal new approaches for primary prevention and identification of new therapeutic targets in childhood asthma. The primary goal of this study is to identify the microRNAs that play a role in the pathogenesis of asthma in pediatric age group. The secondary goal is to analyze these microRNAs according to the asthma phenotype, atopic status, and severity of the disease exacerbation. To our knowledge, this is the first research project in the literature which studies the relationship between microRNA expression and the severity of childhood asthma. One hundred children between 6 and 18 years old with a diagnosis of asthma, and 100 age-matched healthy children were enrolled in this study, and the analyses of microRNA expression profiles were performed in the Medical Genetics Laboratories of Ege University between November 2009 and June 2010. The expression of 10 microRNAs were shown to be higher in patients with more severe asthma, and the expression of these microRNAs were also found to be higher in patients who present with more severe acute asthma exacerbation symptoms (P < 0.001). Also, five microRNAs were found to be expressed more than twofold in allergic patients when compared to non-allergic participants (P <0.001). Asthma is one of the best examples of complex genetic diseases, and further studies, which will investigate the relationship between these microRNA's and their target genes, are needed to learn more about the specific roles of microRNAs in respiratory diseases. Pediatr Pulmonol. 2016;51:582-587. © 2015 Wiley Periodicals, Inc. PMID:26422695

  2. microRNA expression in lymphoid malignancies: new hope for diagnosis and therapy?

    PubMed Central

    Lawrie, Charles Henderson

    2008-01-01

    Abstract microRNAs are a newly discovered class of short (∼22 nt) naturally occurring single-stranded RNA molecules that regulate the expression of target genes post-transcriptionally. Despite only being discovered 7 years ago, microRNAs have been implicated as key regulatory molecules in nearly every biological process examined so far and abnormal expression of microRNAs have been linked to many forms of disease including cancer where they can function as both tumour-suppressors and oncogenes. So why are microRNAs causing so much excitement? And will this excitement translate into new medical breakthroughs? This review attempts to answer these questions in the wider context of cancer, focusing on the role that microRNAs play in normal lymphoid development and malignancy. PMID:18624758

  3. Identification and Expression Profiles of microRNA in Dolphin.

    PubMed

    Segawa, Takao; Kobayashi, Yuki; Inamoto, Satoko; Suzuki, Miwa; Endoh, Tomoko; Itou, Takuya

    2016-02-01

    Recently, microRNAs (miRNAs) are focused on the role of biomarker because they are stable in serum and plasma, and some of them express in the specific organs and increase with the organ injury. Thus miRNAs may be very useful as biomarkers for monitoring the health and condition of dolphins and for detecting disorders in aquariums. Here, a small RNA library was made from dolphin lung, liver and spleen, and miRNA expression patterns were then determined for 15 different tissues. We identified 62 conserved miRNA homologs in the dolphin small RNA library and found high expression miRNAs in specific tissues: miR-125b and miR-221 were highly expressed in brain, miR-23b in heart, miR-199a and miR-223 in lung, and miR-122-5p in liver. Some of these tissue-enriched miRNAs may be useful as specific and sensitive diagnostic blood biomarkers for organ injury in dolphins. PMID:26853874

  4. Composition and Expression of Conserved MicroRNA Genes in Diploid Cotton (Gossypium) Species

    PubMed Central

    Gong, Lei; Kakrana, Atul; Arikit, Siwaret; Meyers, Blake C.; Wendel, Jonathan F.

    2013-01-01

    MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus. PMID:24281048

  5. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    PubMed Central

    Staub, Eike; Gröne, Jörn; Mennerich, Detlev; Röpcke, Stefan; Klamann, Irina; Hinzmann, Bernd; Castanos-Velez, Esmeralda; Mann, Benno; Pilarsky, Christian; Brümmendorf, Thomas; Weber, Birgit; Buhr, Heinz-Johannes; Rosenthal, André

    2006-01-01

    Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC) and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes) are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin) also have a substantial impact on the formation of co-expression islands in colorectal carcinoma. PMID:16982006

  6. Birth and expression evolution of mammalian microRNA genes.

    PubMed

    Meunier, Julien; Lemoine, Frédéric; Soumillon, Magali; Liechti, Angélica; Weier, Manuela; Guschanski, Katerina; Hu, Haiyang; Khaitovich, Philipp; Kaessmann, Henrik

    2013-01-01

    MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression, yet their origins and functional evolution in mammals remain little understood due to the lack of appropriate comparative data. Using RNA sequencing, we have generated extensive and comparable miRNA data for five organs in six species that represent all main mammalian lineages and birds (the evolutionary outgroup) with the aim to unravel the evolution of mammalian miRNAs. Our analyses reveal an overall expansion of miRNA repertoires in mammals, with threefold accelerated birth rates of miRNA families in placentals and marsupials, facilitated by the de novo emergence of miRNAs in host gene introns. Generally, our analyses suggest a high rate of miRNA family turnover in mammals with many newly emerged miRNA families being lost soon after their formation. Selectively preserved mammalian miRNA families gradually evolved higher expression levels, as well as altered mature sequences and target gene repertoires, and were apparently mainly recruited to exert regulatory functions in nervous tissues. However, miRNAs that originated on the X chromosome evolved high expression levels and potentially diverse functions during spermatogenesis, including meiosis, through selectively driven duplication-divergence processes. Overall, our study thus provides detailed insights into the birth and evolution of mammalian miRNA genes and the associated selective forces. PMID:23034410

  7. Profiling of microRNA expression by mRAP.

    PubMed

    Takada, Shuji; Mano, Hiroyuki

    2007-01-01

    MicroRNA (miRNA) amplification profiling (mRAP) is a sensitive method for the determination of miRNA expression profiles. The method relies on a long, optimized 5' adaptor and the SMART (switching mechanism at the 5' end of RNA templates of reverse transcriptase) reaction to yield miRNA-derived cDNAs flanked by synthesized oligomers at each end. The cDNAs are PCR-amplified with primers corresponding to the oligomers, and the products are concatamerized for nucleotide sequencing. The expression level of each miRNA can be estimated from the frequency of the occurrence of its sequence in the data set, provided that sufficient clones of the cDNAs are sequenced. This method potentially yields millions of miRNA-derived clones from as few as 1 x 10(4) cells, thus allowing the characterization of miRNA expression profiles with small quantities of starting material such as those available for fresh clinical specimens or organs of developing embryos. This protocol can be completed in 10 d. PMID:18079713

  8. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay.

    PubMed

    Benes, Vladimir; Collier, Paul; Kordes, Claus; Stolte, Jens; Rausch, Tobias; Muckentaler, Martina U; Häussinger, Dieter; Castoldi, Mirco

    2015-01-01

    microRNAs are an abundant class of small non-coding RNAs that control gene expression post-transcriptionally. Importantly, microRNA activity participates in the regulation of cellular processes and is a potentially valuable source of biomarkers in the diagnosis and prognosis of human diseases. Here we introduce miQPCR, an innovative method to quantify microRNAs expression by using Real-Time PCR. miQPCR exploits T4 RNA ligase activities to extend uniformly microRNAs' 3'-ends by addition of a linker-adapter. The adapter is then used as 'anchor' to prime cDNA synthesis and throughout qPCR to amplify specifically target amplicons. miQPCR is an open, adaptable and cost-effective procedure, which offers the following advantages; i) universal elongation and reverse transcription of all microRNAs; ii) Tm-adjustment of microRNA-specific primers; iii) high sensitivity and specificity in discriminating among closely related sequences and; iv) suitable for the analysis of cellular and cell-free circulating microRNAs. Analysis of cellular and cell-free circulating microRNAs secreted by rat primary hepatocytes stimulated with cytokines and growth factors identifies for the first time a widespread modulation of both microRNAs expression and secretion. Altogether, our findings suggest that the pleiotropic activity of humoral factors on microRNAs may extensively affect liver function in response to injury and regeneration. PMID:26108880

  9. MicroRNA Expression Profiles as Biomarkers of Minor Salivary Gland Inflammation and Dysfunction in Sjögren's Syndrome

    PubMed Central

    Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.

    2013-01-01

    Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008

  10. Exploiting aberrant mRNA expression in autism for gene discovery and diagnosis.

    PubMed

    Guan, Jinting; Yang, Ence; Yang, Jizhou; Zeng, Yong; Ji, Guoli; Cai, James J

    2016-07-01

    Autism spectrum disorder (ASD) is characterized by substantial phenotypic and genetic heterogeneity, which greatly complicates the identification of genetic factors that contribute to the disease. Study designs have mainly focused on group differences between cases and controls. The problem is that, by their nature, group difference-based methods (e.g., differential expression analysis) blur or collapse the heterogeneity within groups. By ignoring genes with variable within-group expression, an important axis of genetic heterogeneity contributing to expression variability among affected individuals has been overlooked. To this end, we develop a new gene expression analysis method-aberrant gene expression analysis, based on the multivariate distance commonly used for outlier detection. Our method detects the discrepancies in gene expression dispersion between groups and identifies genes with significantly different expression variability. Using this new method, we re-visited RNA sequencing data generated from post-mortem brain tissues of 47 ASD and 57 control samples. We identified 54 functional gene sets whose expression dispersion in ASD samples is more pronounced than that in controls, as well as 76 co-expression modules present in controls but absent in ASD samples due to ASD-specific aberrant gene expression. We also exploited aberrantly expressed genes as biomarkers for ASD diagnosis. With a whole blood expression data set, we identified three aberrantly expressed gene sets whose expression levels serve as discriminating variables achieving >70 % classification accuracy. In summary, our method represents a novel discovery and diagnostic strategy for ASD. Our findings may help open an expression variability-centered research avenue for other genetically heterogeneous disorders. PMID:27131873

  11. Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice

    PubMed Central

    Wei, Haiyan; Zhang, Juan; Tan, Kehong; Sun, Rongli; Yin, Lihong; Pu, Yuepu

    2015-01-01

    Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs. PMID:26569237

  12. MicroRNA-126 Inhibits SOX2 Expression and Contributes to Gastric Carcinogenesis

    PubMed Central

    Otsubo, Takeshi; Akiyama, Yoshimitsu; Hashimoto, Yutaka; Shimada, Shu; Goto, Kentaro; Yuasa, Yasuhito

    2011-01-01

    Background SRY (sex-determining region Y)-box 2 (SOX2) is a crucial transcription factor for the maintenance of embryonic stem cell pluripotency and the determination of cell fate. Previously, we demonstrated that SOX2 plays important roles in growth inhibition through cell cycle arrest and apoptosis, and that SOX2 expression is frequently down-regulated in gastric cancers. However, the mechanisms underlying loss of SOX2 expression and its target genes involved in gastric carcinogenesis remain largely unknown. Here, we assessed whether microRNAs (miRNAs) regulate SOX2 expression in gastric cancers. Furthermore, we attempted to find downstream target genes of SOX2 contributing to gastric carcinogenesis. Methodology/Principal Findings We performed in silico analysis and focused on miRNA-126 (miR-126) as a potential SOX2 regulator. Gain- and loss-of function experiments and luciferase assays revealed that miR-126 inhibited SOX2 expression by targeting two binding sites in the 3′-untranslated region (3′-UTR) of SOX2 mRNA in multiple cell lines. In addition, miR-126 was highly expressed in some cultured and primary gastric cancer cells with low SOX2 protein levels. Furthermore, exogenous miR-126 over-expression as well as siRNA-mediated knockdown of SOX2 significantly enhanced the anchorage-dependent and -independent growth of gastric cancer cell lines. We next performed microarray analysis after SOX2 over-expression in a gastric cancer cell line, and found that expression of the placenta-specific 1 (PLAC1) gene was significantly down-regulated by SOX2 over-expression. siRNA- and miR-126-mediated SOX2 knockdown experiments revealed that miR-126 positively regulated PLAC1 expression through suppression of SOX2 expression in gastric cancer cells. Conclusions Taken together, our results indicate that miR-126 is a novel miRNA that targets SOX2, and PLAC1 may be a novel downstream target gene of SOX2 in gastric cancer cells. These findings suggest that aberrant over-expression

  13. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns

    PubMed Central

    Hadj-Moussa, Hanane; Moggridge, Jason A.; Luu, Bryan E.; Quintero-Galvis, Julian F.; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Storey, Kenneth B.

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  14. The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns.

    PubMed

    Hadj-Moussa, Hanane; Moggridge, Jason A; Luu, Bryan E; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B

    2016-01-01

    When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy. PMID:27090740

  15. Search for MicroRNAs Expressed by Intracellular Bacterial Pathogens in Infected Mammalian Cells

    PubMed Central

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A.; Xet-Mull, Ana M.; Sisk, Dana M.; Smith, Kristen L. Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H.; Tobin, David M.; Cullen, Bryan R.

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin. PMID:25184567

  16. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins

    PubMed Central

    Ostler, KR; Davis, EM; Payne, SL; Gosalia, BB; Expósito-Céspedes, J; Le Beau, MM; Godley, LA

    2008-01-01

    Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5′ end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells. PMID:17353906

  17. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy

    PubMed Central

    Zhang, Hongliang; Liu, Shenghua; Dong, Tianwei; Yang, Jun; Xie, Yuanyuan; Wu, Yike; Kang, Kang; Hu, Shengshou; Gou, Deming; Wei, Yingjie

    2016-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a kind of primary cardiomyopathy characterized by the fibro-fatty replacement of right ventricular myocardium. Currently, myocardial microRNAs have been reported to play critical role in the pathophysiology of cardiovascular pathophysiology. So far, the profiling of microRNAs in ARVC has not been described. In this study, we applied S-Poly (T) Plus method to investigate the expression profile of microRNAs in 24 ARVC patients heart samples. The tissue levels of 1078 human microRNAs were assessed and were compared with levels in a group of 24 healthy controls. Analysis of the area under the receiver operating characteristic curve (ROC) supported the 21 validated microRNAs to be miRNA signatures of ARVC, eleven microRNAs were significantly increased in ARVC heart tissues and ten microRNAs were significantly decreased. After functional enrichment analysis, miR-21-5p and miR-135b were correlated with Wnt and Hippo pathway, which might involve in the molecular pathophysiology of ARVC. Overall, our data suggested that myocardial microRNAs were involved in the pathophysiology of ARVC, miR-21-5p and miR-135b were significantly associated with both the myocardium adipose and fibrosis, which was a potential disease pathway for ARVC and might to be useful as therapeutic targets for ARVC. PMID:27307080

  18. MicroRNA control of myelopoiesis and the differentiation block in acute myeloid leukaemia

    PubMed Central

    Palma, Catalina A; Tonna, Elise J; Ma, David F; Lutherborrow, Mark A

    2012-01-01

    Abstract In the relatively short period of time since their discovery, microRNAs have been shown to control many important cellular functions such as cell differentiation, growth, proliferation and apoptosis. In addition, microRNAs have been demonstrated as key drivers of many malignancies and can function as either tumour suppressors or oncogenes. The haematopoietic system is not outside the realm of microRNA control with microRNAs controlling aspects of stem cell and progenitor self-renewal and differentiation, with many, if not all, haematological disorders associated with aberrant microRNA expression and function. In this review, we focus on the current understanding of microRNA control of haematopoiesis and detail the evidence for the contribution and clinical relevance of aberrant microRNA function to the characteristic block of differentiation in acute myeloid leukaemia. PMID:22225649

  19. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization

    PubMed Central

    Gilchrist, Graham C.; Tscherner, Allison; Nalpathamkalam, Thomas; Merico, Daniele; LaMarre, Jonathan

    2016-01-01

    Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo. PMID:26999121

  20. MicroRNA Expression during Bovine Oocyte Maturation and Fertilization.

    PubMed

    Gilchrist, Graham C; Tscherner, Allison; Nalpathamkalam, Thomas; Merico, Daniele; LaMarre, Jonathan

    2016-01-01

    Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo. PMID:26999121

  1. MicroRNA expression profiles of porcine skeletal muscle.

    PubMed

    Zhou, B; Liu, H L; Shi, F X; Wang, J Y

    2010-10-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs of ∼22 nucleotides in length that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. To evaluate the roles of miRNA in porcine skeletal muscle, miRNA expression profiles were investigated using longissimus muscle tissue from pigs at embryonic day 90 (E90) and postpartum day 120 (PD120). First, we used previously known miRNA sequences from humans and mice to perform blast searches against the porcine expressed sequence tag (EST) database; 98 new miRNA candidates were identified according to a range of filtering criteria. These miRNA candidates and 73 known miRNAs (miRBase 13.0) from pigs were chosen for porcine miRNA microarray analysis. A total of 16 newly identified miRNAs and 31 previously known miRNAs were detected in porcine skeletal muscle tissues. During later foetal development at E90, miR-1826, miR-26a, miR-199b and let-7 were highly expressed, whilst miR-1a, miR-133a, miR-26a and miR-1826 showed highest abundance during the fast growing stage at PD120. Using the 47 miRNAs detected by the microarray assay, we performed further investigations using the publicly available porcine mRNA database from NCBI and computed potential target hits using the software rnahybrid. This study identified 16 new miRNA candidates, computed potential target hits for 18 miRNA families and determined the miRNA expression profiles in porcine skeletal muscle tissues at different developmental stages. These results provide a valuable resource for investigators interested in post-transcriptional gene regulation in pigs and related animals. PMID:20331612

  2. The functional consequences of age-related changes in microRNA expression in skeletal muscle.

    PubMed

    Soriano-Arroquia, Ana; House, Louise; Tregilgas, Luke; Canty-Laird, Elizabeth; Goljanek-Whysall, Katarzyna

    2016-06-01

    A common characteristic of ageing is disrupted homeostasis between growth and atrophy of skeletal muscle resulting in loss of muscle mass and function, which is associated with sarcopenia. Sarcopenia is related to impaired balance, increased falls and decline in quality of life of older people. Ageing-related transcriptome and proteome changes in skeletal muscle have been characterised, however the molecular mechanisms underlying sarcopenia are still not fully understood. microRNAs are novel regulators of gene expression known to modulate skeletal muscle development and homeostasis. Expression of numerous microRNAs is disrupted in skeletal muscle with age however, the functional consequences of this are not yet understood. Given that a single microRNA can simultaneously affect multiple signalling pathways, microRNAs are potent modulators of pathophysiological changes occurring during ageing. Here we use microRNA and transcript expression profiling together with microRNA functional assays to show that disrupted microRNA:target interactions play an important role in maintaining muscle homeostasis. We identified miR-181a as a regulator of the sirtuin1 (Sirt1) gene expression in skeletal muscle and show that the expression of miR-181a and its target gene is disrupted in skeletal muscle from old mice. Moreover, we show that miR-181a:Sirt1 interactions regulate myotube size. Our results demonstrate that disrupted microRNA:target interactions are likely related to the pathophysiological changes occurring in skeletal muscle during ageing. PMID:26922183

  3. Aberrant expression of signaling proteins in essential thrombocythemia.

    PubMed

    Hui, Wuhan; Ye, Fei; Zhang, Wei; Liu, Congyan; Cui, Miao; Li, Wei; Xu, Juan; Zhang, David Y

    2013-09-01

    Dysregulated expression of signaling proteins may contribute to the pathophysiology of essential thrombocythemia (ET). This study aimed to characterize protein expression in ET and to correlate the dysregulated proteins with phenotypes and prognosis of ET patients. The expression of 128 proteins in peripheral blood neutrophils from 74 ET patients was assessed and compared with those from 29 healthy subjects and 35 polycythemia vera (PV) patients using protein pathway array. Fifteen proteins were differentially expressed between ET patients and normal controls. These dysregulated proteins were involved in the signaling pathways related with apoptosis and inflammation. Our results showed a significant overlap in protein expression between ET patients with JAK2V617F mutation and PV patients. In addition, nine proteins were associated with JAK2V617F mutation status in ET patients. Furthermore, estrogen receptor beta (ERβ) and Stat3 were independent risk factors for subsequent thrombosis during follow-up on multivariable analysis. Our study shows a broad dysregulation of signaling protein in ET patients, suggesting their roles in ET pathogenesis. The expression levels of ERβ and Stat3 could be promising predictors of subsequent thrombosis in ET patients. PMID:23639951

  4. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    PubMed

    Paugh, Steven W; Coss, David R; Bao, Ju; Laudermilk, Lucas T; Grace, Christy R; Ferreira, Antonio M; Waddell, M Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F; Panetta, John C; Wilkinson, Mark R; Pui, Ching-Hon; Naeve, Clayton W; Uberbacher, Edward C; Bonten, Erik J; Evans, William E

    2016-02-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16)) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  5. Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay

    PubMed Central

    Benes, Vladimir; Collier, Paul; Kordes, Claus; Stolte, Jens; Rausch, Tobias; Muckentaler, Martina U.; Häussinger, Dieter; Castoldi, Mirco

    2015-01-01

    microRNAs are an abundant class of small non-coding RNAs that control gene expression post-transcriptionally. Importantly, microRNA activity participates in the regulation of cellular processes and is a potentially valuable source of biomarkers in the diagnosis and prognosis of human diseases. Here we introduce miQPCR, an innovative method to quantify microRNAs expression by using Real-Time PCR. miQPCR exploits T4 RNA ligase activities to extend uniformly microRNAs’ 3′-ends by addition of a linker-adapter. The adapter is then used as ‘anchor’ to prime cDNA synthesis and throughout qPCR to amplify specifically target amplicons. miQPCR is an open, adaptable and cost-effective procedure, which offers the following advantages; i) universal elongation and reverse transcription of all microRNAs; ii) Tm-adjustment of microRNA-specific primers; iii) high sensitivity and specificity in discriminating among closely related sequences and; iv) suitable for the analysis of cellular and cell-free circulating microRNAs. Analysis of cellular and cell-free circulating microRNAs secreted by rat primary hepatocytes stimulated with cytokines and growth factors identifies for the first time a widespread modulation of both microRNAs expression and secretion. Altogether, our findings suggest that the pleiotropic activity of humoral factors on microRNAs may extensively affect liver function in response to injury and regeneration. PMID:26108880

  6. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGESBeta

    Paugh, Steven W.; Coss, David R.; Bao, Ju; Laudermilk, Lucas T.; Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael Rex; et al

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10-16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  7. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  8. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.

    PubMed

    Wahlang, Banrida; Petriello, Michael C; Perkins, Jordan T; Shen, Shu; Hennig, Bernhard

    2016-09-01

    Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity. PMID:27288564

  9. MicroRNA (miRNA) expression is regulated by butyrate-induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of highly conserved, small non-coding RNAs (~22 nucleotides) that regulate gene expression post-transcriptionally. MicroRNAs are encoded by specific genes in the genome, which are transcribed as primary transcripts called primary miRNA. MicroRNAs (miRNAs) bind to compl...

  10. Arsenic exposure triggers a shift in microRNA expression.

    PubMed

    Sturchio, Elena; Colombo, Teresa; Boccia, Priscilla; Carucci, Nicoletta; Meconi, Claudia; Minoia, Claudio; Macino, Giuseppe

    2014-02-15

    Exposure to inorganic Arsenic (iAs) through drinking water is a major public health problem affecting most countries. iAs has been classified by the International Agency for Research on Cancer as Group 1: "Carcinogenic to humans". Although numerous studies have shown the related adverse effects of iAs, sensitive appropriate biomarkers for studies of environmental epidemiology are still required. The present work aims at investigate the role of microRNAs (miRNAs), powerful negative regulators of gene expression, playing a key role in many physiological and pathological cellular processes, in iAs exposure. To this end, we analyzed miRNA changes in expression profile triggered by iAs exposure in Jurkat cell line. We used microarray technology to profile the expression of miRNAs following 2 μmol/L sodium arsenite treatment at different time points. Moreover, we performed phenotypic analysis of iAs treated cells. Real Time Polymerase Chain Reaction (RT-PCR) was used to validate miRNA microarray data and to assay expression modulation of selected relevant mRNAs. Finally, bioinformatics techniques were applied to reconstruct iAs-relevant molecular pathways and miRNA regulatory networks from the expression data. We report miRNAs modulated after iAs treatment in Jurkat cells. In particular, we highlight 36 miRNAs exhibiting consistent dysregulation and particularly a panel of 8 miRNAs which we also validated by RT-PCR analysis. Computational analysis of lists of putative target genes for these 8 miRNAs points to an involvement in arsenic-response pathways, for a subset of them, that were analyzed by RT-PCR. Furthermore, iAs exposure reveals induction of cell cycle progression and the failure of apoptosis, supporting the idea of iAs carcinogenic activity. Our study provides a list of miRNAs whose expression levels are affected by iAs treatment, corroborating the importance of proceeding with the hunt for specific subset of miRNAs, which can serve as potential biomarkers of

  11. MicroRNA-142 Reduces Monoamine Oxidase A Expression and Activity in Neuronal Cells by Downregulating SIRT1

    PubMed Central

    Datta Chaudhuri, Amrita; Yelamanchili, Sowmya V.; Fox, Howard S.

    2013-01-01

    Aberrant expression of microRNAs (miRs) has been implicated in the pathogenesis of several neurodegenerative disorders. In HIV-associated neurocognitive disorders (HAND), miR-142 was found to be upregulated in neurons and myeloid cells in the brain. We investigated the downstream effects of chronic miR-142 upregulation in neuronal cells by comparing gene expression in stable clones of the human neuroblastoma cell line BE(2)M17 expressing miR-142 to controls. Microarray analysis revealed that miR-142 expression led to a reduction in monoamine oxidase (MAO) A mRNA, which was validated by qRT-PCR. In addition to the mRNA, the MAOA protein level and enzyme activity were also reduced. Examination of primary human neurons revealed that miR-142 expression indeed resulted in a downregulation of MAOA protein level. Although MAOA is not a direct target of miR-142, SIRT1, a key transcriptional upregulator of MAOA is, thus miR-142 downregulation of MAOA expression is indirect. MiR-142 induced decrease in MAOA expression and activity may contribute to the changes in dopaminergic neurotransmission reported in HAND. PMID:24244526

  12. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  13. Cloning of oocyte-expressed MicroRNAs in rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules that regulate post-transcriptional expression of target genes and play important roles in animal development. We report here the identification of rainbow trout oocyte-expressed miRNAs and their expression profiles during ov...

  14. MicroRNA Expression Differentiates Squamous Epithelium from Barrett’s Esophagus and Esophageal Cancer

    PubMed Central

    Garman, Katherine S.; Owzar, Kouros; Hauser, Elizabeth R.; Westfall, Kristen; Anderson, Blair R.; Souza, Rhonda F.; Diehl, Anna Mae; Provenzale, Dawn; Shaheen, Nicholas J.

    2013-01-01

    Background Current strategies fail to identify most patients with esophageal adenocarcinoma (EAC) before the disease becomes advanced and incurable. Given the dismal prognosis associated with EAC, improvements in detection of early-stage esophageal neoplasia are needed. Aims We sought to assess whether differential expression of microRNAs could discriminate between squamous epithelium, Barrett’s esophagus (BE), and EAC. Methods We analyzed microRNA expression in a discovery cohort of human endoscopic biopsy samples from 36 patients representing normal squamous esophagus (n=11), BE (n=14), and high-grade dysplasia (HGD)/EAC (n=11). RNA was assessed using microarrays representing 847 human microRNAs followed by qRT-PCR verification of nine microRNAs. In a second cohort (n=18), qRT-PCR validation of five miRNAs was performed. Expression of 59 microRNAs associated with BE/EAC in the literature was assessed in our training cohort. Known esophageal cell lines were used to compare miRNA expression to tissue miRNAs. Results After controlling for multiple comparisons, we found 34 miRNAs differentially expressed between squamous esophagus and BE/EAC by microarray analysis. However, miRNA expression did not reliably differentiate non-dysplastic BE from EAC. In the validation cohort, all five microRNAs selected for qRT-PCR validation differentiated between squamous samples and BE/EAC. Microarray results supported 14 of the previously reported microRNAs associated with BE/EAC in the literature. Cell lines did not generally reflect miRNA expression found in vivo. Conclusions These data indicate that miRNAs differ between squamous esophageal epithelium and BE/EAC, but do not distinguish between BE and EAC. We suggest prospective evaluation of miRNAs in patients at high risk for EAC. PMID:23925817

  15. Identification of plasma microRNA expression profile in radiographic axial spondyloarthritis-a pilot study.

    PubMed

    Magrey, Marina N; Haqqi, Tariq; Haseeb, Abdul

    2016-05-01

    At present, there are no studies that have established a microRNA (miRNA)-based signature profile in patients with radiographic axial spondyloarthritis (rad-axial SpA), and we hypothesized that these patients may have aberrantly expressed circulating miRNAs reflective of underlying disease and inflammation. This study aims to determine the expression profile of miRNAs in plasma of patients with rad-axial SpA and compare it with healthy, age, and sex-matched controls. Fifteen subjects with rad-axial SpA based on ASAS classification criteria and 5 controls were recruited from our local SpA registry. Demographic data were collected and disease activity was measured using Bath Ankylosing Spondylitis Disease Activity Index (BASDI). Peripheral blood samples (5 ml) were obtained from eligible consenting patients and controls. RNA from the plasma was prepared using miRNeasy kit (Qiagen) by a modified protocol. Expression of 175 miRNAs was screened in the plasma of all 15 patients and 5 controls using serum/plasma miRNA PCR arrays (Exiqon Inc. Woburn, MA) essentially following the manufacturer's instructions. Real-time PCR was carried out on StepOne Plus (Applied Biosystems) and the data was extracted and analyzed using ExiGen Enterprise software (MultiD, Göteborg, Sweden). Potential miRNA targets were identified using bioinformatics. ESR and CRP levels were measured by standard laboratory methods. We identified 7 differentially expressed miRNAs (2 upregulated and 5 downregulated). miR-34a, which was overexpressed in patients with rad-axial SpA, was predicted to target BMP-3 mRNA by TargetscanS and PicTar miRNA target algorithms. miR-150 was downregulated in all of the samples analyzed by us using the TaqMan Gene Expression assay. The most repressed miRNA was miR-16 and is predicted to regulate the expression of activin A receptor (ACVR2B), a receptor for growth, and differentiation factor-5 (GDF-5). Our data indicates that (1) patients with axial SpA, as compared to

  16. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells

    PubMed Central

    Cheng, Xinxin; Shao, Mingming; Wu, Chen; Wang, Suhan; Li, Hongmin; Wei, Lixuan; Gao, Yanning; Tan, Wen; Cheng, Shujun; Wu, Tangchun; Yu, Dianke; Lin, Dongxin

    2015-01-01

    Long-term exposure to airborne PM2.5 is associated with increased lung cancer risk but the underlying mechanism remains unclear. We characterized global microRNA and mRNA expression in human bronchial epithelial cells exposed to PM2.5 organic extract and integrally analyzed microRNA-mRNA interactions. Foci formation and xenograft tumorigenesis in mice with NIH3T3 cells expressing genes targeted by microRNAs were performed to explore the oncogenic potential of these genes. We also detected plasma levels of candidate microRNAs in subjects exposed to different levels of air PM2.5 and examined the aberrant expression of genes targeted by these microRNAs in human lung cancer. Under our experimental conditions, treatment of cells with PM2.5 extract resulted in downregulation of 138 microRNAs and aberrant expression of 13 mRNAs (11 upregulation and 2 downregulation). In silico and biochemical analyses suggested SLC30A1, SERPINB2 and AKR1C1, among the upregulated genes, as target for miR-182 and miR-185, respectively. Ectopic expression of each of these genes significantly enhanced foci formation in NIH3T3 cells. Following subcutaneous injection of these cells into nude mice, fibrosarcoma were formed from SLC30A1- or SERPINB2-expressing cells. Reduced plasma levels of miR-182 were detected in subjects exposed to high level of PM2.5 than in those exposed to low level of PM2.5 (P = 0.043). Similar results were seen for miR-185 although the difference was not statistically significant (P = 0.328). Increased expressions of SLC30A1, SERPINB2 and AKR1C1 were detected in human lung cancer. These results suggest that modulation of miR-182 and miR-185 and their target genes may contribute to lung carcinogenesis attributable to PM2.5 exposure. PMID:26338969

  17. Aberrant ADAM10 expression correlates with osteosarcoma progression

    PubMed Central

    2014-01-01

    Background Osteosarcoma is the most common type of bone cancer and is notorious for its rapid progression. The Notch signaling pathway has recently been shown to be involved in osteosarcoma. As a major sheddase of Notch receptors, ADAM10 has been implicated in many types of cancers, but its role in osteosarcoma has not been investigated. Previous studies have shown that the expression of CD31 was significantly elevated in metastatic osteosarcoma; however, its expression in nonmetastatic groups is not known. In addition, the mysterious multinucleated giant cell in giant cell-rich osteosarcoma was previously regarded as an osteoclast-like cell, but its exact identity is unclear. Method Tissue chip samples from 40 cases of nonmetastatic osteosarcoma were stained for cytoplasmic ADAM10, activated Notch1 and CD31. Osteoclasts in tumor sections were also stained for tartrate-resistant acid phosphatase (TRAP). Results Immunofluorescence staining revealed that ADAM10 expression significantly increased with the progression of osteosarcoma as well as in osteoblastic osteosarcoma, whereas the expression of the Notch intracellular domain (NICD) and CD31 was not significantly altered between different pathological stages. In addition, multinucleated giant cells in giant cell-rich osteosarcoma were also found to coexpress CD31, ADAM10 and NICD, but were negative for TRAP staining. Conclusions Our results highlight the importance of ADAM10 in the progression of osteosarcoma and suggest that the protein might be a potential therapeutic target in osteosarcoma treatment. This study also demonstrates that the multinucleated giant cell is an angiogenic tumor cell, rather than an osteoclast, and involves ADAM10/Notch1 signaling activation. PMID:24548763

  18. Aberrant expression of RAB1A in human tongue cancer

    PubMed Central

    Shimada, K; Uzawa, K; Kato, M; Endo, Y; Shiiba, M; Bukawa, H; Yokoe, H; Seki, N; Tanzawa, H

    2005-01-01

    This study was designed to identify specific gene expression changes in tongue squamous cell carcinomas (TSCCs) compared with normal tissues using in-house cDNA microarray that comprised of 2304 full-length cDNAs from a cDNA library prepared from normal oral tissues, primary oral cancers, and oral cancer cell lines. The genes identified by our microarray system were further analysed at the mRNA or protein expression level in a series of clinical samples by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT–PCR) analysis and imuunohositochemistry. The microarray analysis identified a total of 16 genes that were significantly upregulated in common among four TSCC specimens. Consistent with the results of the microarray, increased mRNA levels of selected genes with known molecular functions were found in the four TSCCs. Among genes identified, Rab1a, a member of the Ras oncogene family, was further analysed for its protein expression in 54 TSCCs and 13 premalignant lesions. We found a high prevalence of Rab1A-overexpression not only in TSCCs (98%) but also in premalignant lesions (93%). Thus, our results suggest that rapid characterisation of the target gene(s) for TSCCs can be accomplished using our in-house cDNA microarray analysis combined with the qRT–PCR and immunohistochemistry, and that the Rab1A is a potential biomarker of tongue carcinogenesis. PMID:15870709

  19. MicroRNA (miRNA) expression is regulated by butyrate induced epigenetic modulation of gene expression in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present evidence that butyrate induced histone acetylation regulates miRNA expression. MicroRNA expression microarray profiling revealed that 35 miRNA transcripts are significantly (p <0.05) differentially expressed after cells were treated with 10 mM butyrate. Among them, 11 transcripts are dif...

  20. MicroRNAs in colorectal cancer as markers and targets: Recent advances

    PubMed Central

    Ye, Jing-Jia; Cao, Jiang

    2014-01-01

    MicroRNAs are evolutionarily conserved small non-coding RNA molecules encoded by eukaryotic genomic DNA, and function in post-transcriptional regulation of gene expression via base-pairing with complementary sequences in target mRNAs, resulting in translational repression or degradation of target mRNAs. They represent one of the major types of epigenetic modification and play important roles in all aspects of cellular activities. Altered expression of microRNAs has been found in various human diseases including cancer. Many efforts have been made to discover the characteristic microRNA expression profiles, to understand the roles of aberrantly expressed microRNAs and underlying mechanisms in different cancers. With the application of DNA microarray, real-time quantitative polymerase chain reaction and other molecular biology techniques, increasing evidence has been accumulated which reveal that aberrant microRNAs can be detected not only intracellularly within the cancer cells, but also extracellularly in plasma of patients, postulating the potential of aberrant microRNAs as promising diagnostic/prognostic markers and attracting therapeutic targets. This review is intended to provide the most recent advances in microRNA studies in one of the most common cancers, colorectal cancer, especially the identification of those specifically altered microRNAs in colorectal cancer, validation for their relevance to clinical pathological parameters of patients, functional analyses and potential applications of these microRNAs. PMID:24764666

  1. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles.

    PubMed

    Shiiyama, Rie; Fukushima, Satoshi; Jinnin, Masatoshi; Yamashita, Junji; Miyashita, Azusa; Nakahara, Satoshi; Kogi, Ai; Aoi, Jun; Masuguchi, Shinichi; Inoue, Yuji; Ihn, Hironobu

    2013-10-01

    Numerous studies have indicated that the serum levels of microRNAs are useful for the diagnosis or evaluation of activity in human diseases. However, determining the level of only one of the nearly 2000 microRNAs identified so far may be less significant. Accordingly, we examined the possibility that the expression pattern of multiple microRNAs in each patient may be a more reliable disease marker for melanoma, especially metastatic disease, focusing on the interaction among microRNAs. Six microRNAs (miR-9, miR-145, miR-150, miR-155, miR-203, and miR-205) were evaluated using real-time PCR in 11 patients with metastatic melanoma and in 16 patients without melanoma. The expression of the six microRNAs was significantly different between the patients with metastasis and those without it. MiR-9 and miR-205 and miR-203 and miR-205 showed significant correlations, and the combination of miR-9, miR-145, miR-150, miR-155, and miR-205 was more sensitive than when each miR was used individually to distinguish the patients with metastasis from those without it. This is the first report demonstrating the expression profiles of multiple microRNAs in melanoma patients. Clarifying the involvement of the microRNA network in the pathogenesis of melanoma may contribute to the development of new diagnostic tools and to advancing the understanding of this disease. PMID:23863473

  2. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    PubMed Central

    Andersen, Rikke Fredslund; Nielsen, Boye Schnack; Sørensen, Flemming Brandt; Appelt, Ane Lindegaard; Jakobsen, Anders; Hansen, Torben Frøstrup

    2016-01-01

    Introduction An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. Materials and Methods The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman’s correlation. Results ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. Conclusion Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630

  3. MicroRNA Expression Signature in Degenerative Aortic Stenosis

    PubMed Central

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  4. MicroRNA Expression Signature in Degenerative Aortic Stenosis.

    PubMed

    Shi, Jing; Liu, Hui; Wang, Hui; Kong, Xiangqing

    2016-01-01

    Degenerative aortic stenosis, characterized by narrowing of the exit of the left ventricle of the heart, has become the most common valvular heart disease in the elderly. The aim of this study was to investigate the microRNA (miRNA) signature in degenerative AS. Through microarray analysis, we identified the miRNA expression signature in the tissue samples from healthy individuals (n = 4) and patients with degenerative AS (n = 4). Six miRNAs (hsa-miR-193a-3p, hsa-miR-29b-1-5p, hsa-miR-505-5p, hsa-miR-194-5p, hsa-miR-99b-3p, and hsa-miR-200b-3p) were overexpressed and 14 (hsa-miR-3663-3p, hsa-miR-513a-5p, hsa-miR-146b-5p, hsa-miR-1972, hsa-miR-718, hsa-miR-3138, hsa-miR-21-5p, hsa-miR-630, hsa-miR-575, hsa-miR-301a-3p, hsa-miR-636, hsa-miR-34a-3p, hsa-miR-21-3p, and hsa-miR-516a-5p) were downregulated in aortic tissue from AS patients. GeneSpring 13.1 was used to identify potential human miRNA target genes by comparing a 3-way comparison of predictions from TargetScan, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to identify potential pathways and functional annotations associated with AS. Twenty miRNAs were significantly differentially expressed between patients with AS samples and normal controls and identified potential miRNA targets and molecular pathways associated with this morbidity. This study describes the miRNA expression signature in degenerative AS and provides an improved understanding of the molecular pathobiology of this disease. PMID:27579316

  5. MicroRNA-208b progressively declines after spinal cord injury in humans and is inversely related to myostatin expression

    PubMed Central

    Boon, Hanneke; Sjögren, Rasmus J O; Massart, Julie; Egan, Brendan; Kostovski, Emil; Iversen, Per O; Hjeltnes, Nils; Chibalin, Alexander V; Widegren, Ulrika; Zierath, Juleen R

    2015-01-01

    The effects of long-term physical inactivity on the expression of microRNAs involved in the regulation of skeletal muscle mass in humans are largely unknown. MicroRNAs are short, noncoding RNAs that fine-tune target expression through mRNA degradation or by inhibiting protein translation. Intronic to the slow, type I, muscle fiber type genes MYH7 and MYH7b, microRNA-208b and microRNA-499-5p are thought to fine-tune the expression of genes important for muscle growth, such as myostatin. Spinal cord injured humans are characterized by both skeletal muscle atrophy and transformation toward fast-twitch, type II fibers. We determined the expression of microRNA-208b, microRNA-499-5p, and myostatin in human skeletal muscle after complete cervical spinal cord injury. We also determined whether these microRNAs altered myostatin expression in rodent skeletal muscle. A progressive decline in skeletal muscle microRNA-208b and microRNA-499-5p expression occurred in humans during the first year after spinal cord injury and with long-standing spinal cord injury. Expression of myostatin was inversely correlated with microRNA-208b and microRNA-499-5p in human skeletal muscle after spinal cord injury. Overexpression of microRNA-208b in intact mouse skeletal muscle decreased myostatin expression, whereas microRNA-499-5p was without effect. In conclusion, we provide evidence for an inverse relationship between expression of microRNA-208b and its previously validated target myostatin in humans with severe skeletal muscle atrophy. Moreover, we provide direct evidence that microRNA-208b overexpression decreases myostatin gene expression in intact rodent muscle. Our results implicate that microRNA-208b modulates myostatin expression and this may play a role in the regulation of skeletal muscle mass following spinal cord injury. PMID:26603456

  6. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome

    PubMed Central

    de la Morena, M. Teresa; Eitson, Jennifer L.; Dozmorov, Igor M.; Belkaya, Serkan; Hoover, Ashley R.; Anguiano, Esperanza; Pascual, M. Virginia; van Oers, Nicolai S.C.

    2013-01-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3 Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance. PMID:23454892

  7. MicroRNA Expression Profiles Associated With Prognosis and Therapeutic Outcome in Colon Adenocarcinoma

    PubMed Central

    Schetter, Aaron J.; Leung, Suet Yi; Sohn, Jane J.; Zanetti, Krista A.; Bowman, Elise D.; Yanaihara, Nozomu; Yuen, Siu Tsan; Chan, Tsun Leung; Kwong, Dora L. W.; Au, Gordon K. H.; Liu, Chang-Gong; Calin, George A.; Croce, Carlo M.

    2008-01-01

    Context MicroRNAs have potential as diagnostic biomarkers and therapeutic targets in cancer. No study has evaluated the association between microRNA expression patterns and colon cancer prognosis or therapeutic outcome. Objective To identify microRNA expression patterns associated with colon adenocarcinomas, prognosis, or therapeutic outcome. Design, Setting, and Patients MicroRNA microarray expression profiling of tumors and paired nontumorous tissues was performed on a US test cohort of 84 patients with incident colon adenocarcinoma, recruited between 1993 and 2002. We evaluated associations with tumor status, TNM staging, survival prognosis, and response to adjuvant chemotherapy. Associations were validated in a second, independent Chinese cohort of 113 patients recruited between 1991 and 2000, using quantitative reverse transcription polymerase chain reaction assays. The final date of follow-up was December 31, 2005, for the Maryland cohort and August 16, 2004, for the Hong Kong cohort. Main Outcome Measures MicroRNAs that were differentially expressed in tumors and microRNA expression patterns associated with survival using cancer-specific death as the end point. Results Thirty-seven microRNAs were differentially expressed in tumors from the test cohort. Selected for validation were miR-20a, miR-21, miR-106a, miR-181b, and miR-203, and all 5 were enriched in tumors from the validation cohort (P<.001). Higher miR-21 expression was present in adenomas (P = .006) and in tumors with more advanced TNM staging (P<.001). In situ hybridization demonstrated miR-21 to be expressed at high levels in colonic carcinoma cells. The 5-year cancer-specific survival rate was 57.5% for the Maryland cohort and was 49.5% for the Hong Kong cohort. High miR-21 expression was associated with poor survival in both the training (hazard ratio, 2.5; 95% confidence interval, 1.2-5.2) and validation cohorts (hazard ratio, 2.4; 95% confidence interval, 1.4-3.9), independent of clinical

  8. Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development.

    PubMed

    Choi, Yoori; Hwang, Do Won; Kim, Mee Young; Kim, Joo Yeon; Sun, Woong; Lee, Dong Soo

    2016-01-01

    MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive element in their luciferase-eGFP reporter transgenes which enabled monitoring the action of miR-124 in the brain and other organs in vivo by the bioluminescence imaging. The mouse model was produced and verified by imaging ex vivo so that luminescence by luciferase shone and then reduced during development with miR-124 expression. Bioluminescence dramatically decreased in the brain between embryonic day 13 and 16 as endogenous miR-124 expression increased, which sustained into adulthood. The inverse relationship of miR-124 expression was observed with luciferase bioluminescence and activity ex vivo as well as in vivo. Taken together, one can use this microRNA-transgenic mouse to investigate the temporal changes of microRNA action in vivo in the brain as well as in other organs. PMID:27462205

  9. Transgenic Mouse Expressing Optical MicroRNA Reporter for Monitoring MicroRNA-124 Action during Development

    PubMed Central

    Choi, Yoori; Hwang, Do won; Kim, Mee Young; Kim, Joo Yeon; Sun, Woong; Lee, Dong Soo

    2016-01-01

    MicroRNAs (miRNAs) fine-tune target protein synthesis by suppressing gene expression, temporally changing along development and possibly in pathological conditions. A method to monitor the action of miRNAs in vivo shall help understand their dynamic behavior during development. In this study, we established a transgenic mouse harboring miR-124 responsive element in their luciferase-eGFP reporter transgenes which enabled monitoring the action of miR-124 in the brain and other organs in vivo by the bioluminescence imaging. The mouse model was produced and verified by imaging ex vivo so that luminescence by luciferase shone and then reduced during development with miR-124 expression. Bioluminescence dramatically decreased in the brain between embryonic day 13 and 16 as endogenous miR-124 expression increased, which sustained into adulthood. The inverse relationship of miR-124 expression was observed with luciferase bioluminescence and activity ex vivo as well as in vivo. Taken together, one can use this microRNA-transgenic mouse to investigate the temporal changes of microRNA action in vivo in the brain as well as in other organs. PMID:27462205

  10. Aberrant expression of laminin-332 promotes cell proliferation and cyst growth in ARPKD.

    PubMed

    Vijayakumar, Soundarapandian; Dang, Suparna; Marinkovich, M Peter; Lazarova, Zelmira; Yoder, Bradley; Torres, Vicente E; Wallace, Darren P

    2014-03-15

    Basement membrane abnormalities have often been observed in kidney cysts of polycystic kidney disease (PKD) patients and animal models. There is an abnormal deposition of extracellular matrix molecules, including laminin-α3,β3,γ2 (laminin-332), in human autosomal dominant PKD (ADPKD). Knockdown of PKD1 paralogs in zebrafish leads to dysregulated synthesis of the extracellular matrix, suggesting that altered basement membrane assembly may be a primary defect in ADPKD. In this study, we demonstrate that laminin-332 is aberrantly expressed in cysts and precystic tubules of human autosomal recessive PKD (ARPKD) kidneys as well as in the kidneys of PCK rats, an orthologous ARPKD model. There was aberrant expression of laminin-γ2 as early as postnatal day 2 and elevated laminin-332 protein in postnatal day 30, coinciding with the formation and early growth of renal cysts in PCK rat kidneys. We also show that a kidney cell line derived from Oak Ridge polycystic kidney mice, another model of ARPKD, exhibited abnormal lumen-deficient and multilumen structures in Matrigel culture. These cells had increased proliferation rates and altered expression levels of laminin-332 compared with their rescued counterparts. A function-blocking polyclonal antibody to laminin-332 significantly inhibited their abnormal proliferation rates and rescued their aberrant phenotype in Matrigel culture. Furthermore, abnormal laminin-332 expression in cysts originating from collecting ducts and proximal tubules as well as in precystic tubules was observed in a human end-stage ADPKD kidney. Our results suggest that abnormal expression of laminin-332 contributes to the aberrant proliferation of cyst epithelial cells and cyst growth in genetic forms of PKD. PMID:24370592

  11. MicroRNA Expression and Clinical Outcome of Small Cell Lung Cancer

    PubMed Central

    Lee, Jih-Hsiang; Voortman, Johannes; Dingemans, Anne-Marie C.; Voeller, Donna M.; Pham, Trung; Wang, Yisong; Giaccone, Giuseppe

    2011-01-01

    The role of microRNAs in small-cell lung carcinoma (SCLC) is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a) in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target. PMID:21731696

  12. MicroRNAs modulated by local mIGF-1 expression in mdx dystrophic mice

    PubMed Central

    Pelosi, Laura; Coggi, Angela; Forcina, Laura; Musarò, Antonio

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a X-linked genetic disease in which the absence of dystrophin leads to progressive lethal skeletal muscle degeneration. It has been demonstrated that among genes which are important for proper muscle development and function, micro-RNAs (miRNAs) play a crucial role. Moreover, altered levels of miRNAs were found in several muscular disorders, including DMD. A specific group of miRNAs, whose expression depends on dystrophin levels and whose deregulation explains several DMD pathogenetic traits, has been identified. Here, we addressed whether the anabolic activity of mIGF-1 on dystrophic muscle is associated with modulation of microRNAs expression. We demonstrated that some microRNAs are strictly linked to the dystrophin expression and are not modulated by mIGF-1 expression. In contrast, local expression of mIGF-1 promotes the modulation of other microRNAs, such as miR-206 and miR-24, along with the modulation of muscle specific genes, which are associated with maturation of regenerating fibers and with the stabilization of the differentiated muscle phenotype. These data suggest that mIGF-1, modifying the expression of some of the active players of muscle homeostasis, is able, even in absence of dystrophin expression, to activate circuitries that confer robustness to dystrophic muscle. PMID:25999854

  13. Ontogenic expression of microRNA in bovine mammary gland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miR) are small RNA molecules (~22 nucleotides) that are important regulators of numerous biological processes, including organ and tissue morphogenesis and function. In this capacity, most miR inhibit protein synthesis by binding to the 3’-untranslated region of targeted mRNA species. H...

  14. MicroRNA-34a inhibits human osteosarcoma proliferation by downregulating ether à go-go 1 expression.

    PubMed

    Wu, Xinyu; Zhong, Daixing; Gao, Quan; Zhai, Wenliang; Ding, Zhenqi; Wu, Jin

    2013-01-01

    Aberrant expression of MicroRNAs (miRNAs) has been implicated in several types of cancer. As a direct target gene of p53, miR-34a has been suggested to mediate the tumor suppressor function of p53. Ether à go-go 1 (Eag1) channel is overexpressed in a variety of cancers and plays important roles in cancer progression. However, the link between miR-34a and Eag1 in cancer is unclear. In this study, we used human osteosarcoma as the model to demonstrate that miR-34a was significantly downregulated in osteosarcoma tissues and cell lines compared with normal brain tissues and osteoblastic cell line. Next we evaluated the role of miR-34a in the regulation of osteosarcoma cell proliferation by CCK-8 and colony formation assays. The results showed that overexpression of miR-34a inhibited the proliferation of MG-63 and Saos-2 cells. Furthermore, xenograft nude mice model showed that miR-34a inhibited osteosarcoma growth in vivo. Mechanistically, we found that overexpression of miR-34a led to decreased Eag1 expression in osteosarcoma cells while inhibition of miR-34a increased Eag1 expression. Taken together, our results suggest that miR-34a could inhibit osteosarcoma growth via the down regulation of Eag1 expression. PMID:23569431

  15. Evolution of microRNA expression during human bronchial squamous carcinogenesis.

    PubMed

    Mascaux, C; Laes, J F; Anthoine, G; Haller, A; Ninane, V; Burny, A; Sculier, J P

    2009-02-01

    MicroRNAs, negative post-transcriptional regulators of gene expression, are involved in cancer. Their role in early bronchial carcinogenesis was analysed in 60 biopsies obtained by fluorescence bronchoscopy (six per stage: normal tissue of nonsmokers, normal normofluorescent and hypofluorescent bronchial tissue of smokers, hyperplasia, metaplasia, mild, moderate and severe dysplasia, in situ carcinoma and invasive squamous cell carcinoma (SQCC)). In total, 69 microRNAs were found to be differentially expressed in the course of bronchial carcinogenesis. Among them, some microRNAs showed a linear evolution of their expression level, such as miR-32 and miR-34c, whose expression progressively decreased from normal bronchial tissues of nonsmokers to SQCC. Others behaved differently at successive stages, such as miR-142-3p or miR-9, or are only altered from a specific stage, such as miR-199a or miR-139. MicroRNAs globally followed a two-step evolution, first decreasing (a reverse of their increase during embryogenesis) during the earliest morphological modifications of bronchial epithelium, and thereafter increasing at later stages of lung carcinogenesis. Moreover, microRNA expression was very efficient for the prediction of the histological classification between low- and high-grade lesions and between in situ and invasive carcinoma. The present data show, for the first time, that microRNAs are involved in bronchial carcinogenesis from the very early steps of this process and, thus, could provide tools for early detection of lung cancer. PMID:19010987

  16. In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency.

    PubMed

    Meshesha, Mesfin K; Bentwich, Zvi; Solomon, Semaria A; Avni, Yonat Shemer

    2016-01-01

    Viral encoded microRNAs play key roles in regulating gene expression and the life cycle of human herpes viruses. Latency is one of the hallmarks of the human cytomegalovirus (HCMV or HHV5) life cycle, and its control may have immense practical applications. The present study aims to identify HCMV encoded microRNAs during the latency phase of the virus. We used a highly sensitive real time PCR (RTPCR) assay that involves a pre-amplification step before RTPCR. It can detect HCMV encoded microRNAs (miRNAs) during latency in purified monocytes and PBMCs from HCMV IgG positive donors and in latently infected monocytic THP-1 cell lines. During the latency phase, only eight HCMV encoded microRNAs were detected in PBMCs, monocytes and in the THP-1 cells. Five originated from the UL region of the virus genome and three from the US region. Reactivation of the virus from latency, in monocytes obtained from the same donor, using dexamethasone restored the expression of all known HCMV encoded miRNAs including those that were absent during latency. We observed a shift in the abundance of the two arms of mir-US29 between the productive and latency stages of the viral life cycle, suggesting that the star "passenger" form of this microRNA is preferentially expressed during latency. As a whole, our study demonstrates that HCMV expresses during the latency phase, both in vivo and in vitro, only a subset of its microRNAs, which may indicate that they play an important role in maintenance and reactivation of latency. PMID:26302752

  17. Aberrantly Expressed lncRNAs in Primary Varicose Great Saphenous Veins

    PubMed Central

    Wang, Jing; Chen, Guo-Jun; Xu, Liang; Xie, Duan-Yang; Yuan, Tian-You; Zhang, Da-Sheng; Zhang, Hong; Chen, Yi-Han

    2014-01-01

    Long non-coding RNAs (lncRNAs) are key regulatory molecules involved in a variety of biological processes and human diseases. However, the pathological effects of lncRNAs on primary varicose great saphenous veins (GSVs) remain unclear. The purpose of the present study was to identify aberrantly expressed lncRNAs involved in the prevalence of GSV varicosities and predict their potential functions. Using microarray with 33,045 lncRNA and 30,215 mRNA probes, 557 lncRNAs and 980 mRNAs that differed significantly in expression between the varicose great saphenous veins and control veins were identified in six pairs of samples. These lncRNAs were sub-grouped and mRNAs expressed at different levels were clustered into several pathways with six focused on metabolic pathways. Quantitative real-time PCR replication of nine lncRNAs was performed in 32 subjects, validating six lncRNAs (AF119885, AK021444, NR_027830, G36810, NR_027927, uc.345-). A coding-non-coding gene co-expression network revealed that four of these six lncRNAs may be correlated with 11 mRNAs and pathway analysis revealed that they may be correlated with another 8 mRNAs associated with metabolic pathways. In conclusion, aberrantly expressed lncRNAs for GSV varicosities were here systematically screened and validated and their functions were predicted. These findings provide novel insight into the physiology of lncRNAs and the pathogenesis of varicose veins for further investigation. These aberrantly expressed lncRNAs may serve as new therapeutic targets for varicose veins. The Human Ethnics Committee of Shanghai East Hospital, Tongji University School of Medicine approved the study (NO.: 2011-DF-53). PMID:24497937

  18. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner.

  19. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure [Poster 2015

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area that promises future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important r...

  20. MicroRNA Expression In Lymphohematopoietic Malignancies And Following Formaldehyde Exposure

    EPA Science Inventory

    Altered microRNA (miRNA) expression is an emerging area promising future identification of epigenetic biomarkers of disease and exposure to environmental agents. In addition to other carcinogenic mechanisms, such as genotoxicity, miRNAs have been shown to play an important role ...

  1. Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a

    PubMed Central

    Kim, Gene H.; Samant, Sadhana A.; Earley, Judy U.; Svensson, Eric C.

    2009-01-01

    MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development. PMID:19582148

  2. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients. PMID:24296270

  3. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves.

    PubMed

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S Y; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  4. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves

    PubMed Central

    Chen, Yei-Tsung; Wang, Juan; Wee, Abby S. Y.; Yong, Quek-Wei; Tay, Edgar Lik-Wui; Woo, Chin Cheng; Sorokin, Vitaly; Richards, Arthur Mark; Ling, Lieng-Hsi

    2016-01-01

    Myxomatous mitral valve prolapse (MMVP) and fibroelastic deficiency (FED) are two common variants of degenerative mitral valve disease (DMVD), which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174). The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN), aggrecan (ACAN), fibromodulin (FMOD), α actin 2 (ACTA2), extracellular matrix protein 2 (ECM2), desmin (DES), endothelial cell specific molecule 1 (ESM1), and platelet/ endothelial cell adhesion molecule 1 (PECAM1), as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics. PMID:27213335

  5. Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data.

    PubMed

    Hossain, Ahmed; Beyene, Joseph

    2013-12-01

    MicroRNAs (miRNAs) are short non-coding RNAs that play critical roles in numerous cellular processes through post-transcriptional functions. The aberrant role of miRNAs has been reported in a number of diseases. A robust computational method is vital to discover novel miRNAs where level of noise varies dramatically across the different miRNAs. In this paper, we propose a flexible rank-based procedure for estimating a weighted log partial area under the receiver operating characteristic (ROC) curve statistic for selecting differentially expressed miRNAs. The statistic combines results taking partial area under the curve (pAUC) and their corresponding variance. The proposed method does not involve complicated formulas and does not require advanced programming skills. Two real datasets are analyzed to illustrate the method and a simulation study is carried out to assess the performance of different miRNA ranking statistics. We conclude that the proposed method offers robust results with large samples for miRNA expression data, and the method can be used as an alternative analytical tool for identifying a list of target miRNAs for further biological and clinical investigation. PMID:24246291

  6. Profiling microRNA expression with the Illumina BeadChip platform.

    PubMed

    Tsao, Julissa; Yau, Patrick; Winegarden, Neil

    2010-01-01

    The complex mechanisms involved in the regulation of both gene and protein expressions are still being understood. When microarray technology was first introduced during the early to mid 1990s, they heralded a tremendous opportunity to study transcription on a global scale. Despite this promise, however, one thing that has become clear is that the expression of protein coding genes is not the only aspect of the transcriptome that researchers need pay attention to. Small noncoding RNAs, such as microRNAs, are now known to play a pivotal role in the control of both gene and protein expressions. Each microRNA may act upon a plurality of different targets, which makes the measurement of their expression levels a highly important part of understanding the entire cellular response. It has only been recently, however, that advancements and modifications to microarray technology have allowed us to study these important molecules in a high throughput and parallel manner. PMID:20217572

  7. Aberrant Expression of COT Is Related to Recurrence of Papillary Thyroid Cancer

    PubMed Central

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-01-01

    Abstract Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated. The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes. Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA). qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAFV600E-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAFV600E mutation (odds ratio, 4.662; 95% confidence interval 1.066 − 21.609; P = 0.045). Moreover, moderate

  8. Aberrant expression of COT is related to recurrence of papillary thyroid cancer.

    PubMed

    Lee, Jandee; Jeong, Seonhyang; Park, Jae Hyun; Lee, Cho Rok; Ku, Cheol Ryong; Kang, Sang-Wook; Jeong, Jong Ju; Nam, Kee-Hyun; Shin, Dong Yeob; Lee, Eun Jig; Chung, Woong Youn; Jo, Young Suk

    2015-02-01

    Aberrant expression of Cancer Osaka Thyroid Oncogene mitogen-activated protein kinase kinase kinase 8 (COT) (MAP3K8) is a driver of resistance to B-RAF inhibition. However, the de novo expression and clinical implications of COT in papillary thyroid cancer (PTC) have not been investigated.The aim of this study is to investigate the expression of A-, B-, C-RAF, and COT in PTC (n = 167) and analyze the clinical implications of aberrant expression of these genes.Quantitative polymerase chain reaction (qPCR) and immunohistochemical staining (IHC) were performed on primary thyroid cancers. Expression of COT was compared with clinicopathological characteristics including recurrence-free survival. Datasets from public repository (NCBI) were subjected to Gene Set Enrichment Analysis (GSEA).qPCR data showed that the relative mRNA expression of A-, B-, C-RAF and COT of PTC were higher than normal tissues (all P < 0.01). In addition, the expression of COT mRNA in PTC showed positive correlation with A- (r = 0.4083, P < 0.001), B- (r = 0.2773, P = 0.0003), and C-RAF (r = 0.5954, P < 0.001). The mRNA expressions of A-, B,- and C-RAF were also correlated with each other (all P < 0.001). In IHC, the staining intensities of B-RAF and COT were higher in PTC than in normal tissue (P < 0.001). Interestingly, moderate-to-strong staining intensities of B-RAF and COT were more frequent in B-RAF-positive PTC (P < 0.001, P = 0.013, respectively). In addition, aberrant expression of COT was related to old age at initial diagnosis (P = 0.045) and higher recurrence rate (P = 0.025). In multivariate analysis, tumor recurrence was persistently associated with moderate-to-strong staining of COT after adjusting for age, sex, extrathyroidal extension, multifocality, T-stage, N-stage, TNM stage, and B-RAF mutation (odds ratio, 4.662; 95% confidence interval 1.066 - 21.609; P = 0.045). Moreover, moderate-to-strong COT expression in PTC

  9. Microarray Analysis of microRNA Expression during Axolotl Limb Regeneration

    PubMed Central

    Holman, Edna C.; Campbell, Leah J.; Hines, John; Crews, Craig M.

    2012-01-01

    Among vertebrates, salamanders stand out for their remarkable capacity to quickly regrow a myriad of tissues and organs after injury or amputation. The limb regeneration process in axolotls (Ambystoma mexicanum) has been well studied for decades at the cell-tissue level. While several developmental genes are known to be reactivated during this epimorphic process, less is known about the role of microRNAs in urodele amphibian limb regeneration. Given the compelling evidence that many microRNAs tightly regulate cell fate and morphogenetic processes through development and adulthood by modulating the expression (or re-expression) of developmental genes, we investigated the possibility that microRNA levels change during limb regeneration. Using two different microarray platforms to compare the axolotl microRNA expression between mid-bud limb regenerating blastemas and non-regenerating stump tissues, we found that miR-21 was overexpressed in mid-bud blastemas compared to stump tissue. Mature A. mexicanum (“Amex”) miR-21 was detected in axolotl RNA by Northern blot and differential expression of Amex-miR-21 in blastema versus stump was confirmed by quantitative RT-PCR. We identified the Amex Jagged1 as a putative target gene for miR-21 during salamander limb regeneration. We cloned the full length 3′UTR of Amex-Jag1, and our in vitro assays demonstrated that its single miR-21 target recognition site is functional and essential for the response of the Jagged1 gene to miR-21 levels. Our findings pave the road for advanced in vivo functional assays aimed to clarify how microRNAs such as miR-21, often linked to pathogenic cell growth, might be modulating the redeployment of developmental genes such as Jagged1 during regenerative processes. PMID:23028429

  10. High expression of microRNA-155 is associated with the aggressive malignant behavior of gallbladder carcinoma.

    PubMed

    Kono, Hiroshi; Nakamura, Masafumi; Ohtsuka, Takao; Nagayoshi, Yosuke; Mori, Yasuhisa; Takahata, Shunichi; Aishima, Shinichi; Tanaka, Masao

    2013-07-01

    The prognosis of gallbladder cancer (GBC) remains poor despite recent advances in diagnostics and therapeutic strategies. Although the role of microRNAs (miRs) in GBC have not been well documented, miR-155 is known to be associated with inflammation-associated carcinogenesis in various types of cancers. The aim of this study was to investigate the clinical significance of miR-155 expression and the biological functions of miR-155 in GBC. The expression levels of miR-155 in surgically resected GBCs and gallbladders with pancreaticobiliary maljunction (PBM) were assessed by quantitative reverse transcription-polymerase chain reaction. The relationship between the expression levels of miR-155 and clinicopathological features of GBCs was analyzed. Human GBC cell lines were transfected with miR-155 inhibitors or mimics, and the effects on proliferation and invasion were assessed. miR-155 was significantly overexpressed in GBCs when compared with that in gallbladders with PBM (p=0.007) and normal gallbladders (p=0.04). The high expression level of miR-155 in GBCs was significantly associated with the presence of lymph node metastasis (p=0.01) and a poor prognosis (p=0.02). In vitro assays showed that aberrant expression of miR-155 significantly enhanced GBC cell proliferation and invasion. In conclusion, high miR-155 expression correlates with the aggressive behavior of GBCs, and miR-155 may become a prognostic marker and therapeutic target for GBC. PMID:23660842

  11. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma

    PubMed Central

    Grosso, Ana R; Leite, Ana P; Carvalho, Sílvia; Matos, Mafalda R; Martins, Filipa B; Vítor, Alexandra C; Desterro, Joana MP; Carmo-Fonseca, Maria; de Almeida, Sérgio F

    2015-01-01

    Aberrant expression of cancer genes and non-canonical RNA species is a hallmark of cancer. However, the mechanisms driving such atypical gene expression programs are incompletely understood. Here, our transcriptional profiling of a cohort of 50 primary clear cell renal cell carcinoma (ccRCC) samples from The Cancer Genome Atlas (TCGA) reveals that transcription read-through beyond the termination site is a source of transcriptome diversity in cancer cells. Amongst the genes most frequently mutated in ccRCC, we identified SETD2 inactivation as a potent enhancer of transcription read-through. We further show that invasion of neighbouring genes and generation of RNA chimeras are functional outcomes of transcription read-through. We identified the BCL2 oncogene as one of such invaded genes and detected a novel chimera, the CTSC-RAB38, in 20% of ccRCC samples. Collectively, our data highlight a novel link between transcription read-through and aberrant expression of oncogenes and chimeric transcripts that is prevalent in cancer. DOI: http://dx.doi.org/10.7554/eLife.09214.001 PMID:26575290

  12. AMPK Promotes Aberrant PGC1β Expression To Support Human Colon Tumor Cell Survival

    PubMed Central

    Fisher, Kurt W.; Das, Binita; Kim, Hyun Seok; Clymer, Beth K.; Gehring, Drew; Smith, Deandra R.; Costanzo-Garvey, Diane L.; Fernandez, Mario R.; Brattain, Michael G.; Kelly, David L.; MacMillan, John

    2015-01-01

    A major goal of cancer research is the identification of tumor-specific vulnerabilities that can be exploited for the development of therapies that are selectively toxic to the tumor. We show here that the transcriptional coactivators peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β) and estrogen-related receptor α (ERRα) are aberrantly expressed in human colon cell lines and tumors. With kinase suppressor of Ras 1 (KSR1) depletion as a reference standard, we used functional signature ontology (FUSION) analysis to identify the γ1 subunit of AMP-activated protein kinase (AMPK) as an essential contributor to PGC1β expression and colon tumor cell survival. Subsequent analysis revealed that a subunit composition of AMPK (α2β2γ1) is preferred for colorectal cancer cell survival, at least in part, by stabilizing the tumor-specific expression of PGC1β. In contrast, PGC1β and ERRα are not detectable in nontransformed human colon epithelial cells, and depletion of the AMPKγ1 subunit has no effect on their viability. These data indicate that Ras oncogenesis relies on the aberrant activation of a PGC1β-dependent transcriptional pathway via a specific AMPK isoform. PMID:26351140

  13. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  14. Stem cells and germ cells: microRNA and gene expression signatures.

    PubMed

    Dyce, Paul William; Toms, Derek; Li, Julang

    2010-04-01

    The study of primordial germ cell development in vivo is hampered by their low numbers and inaccessibility. Recent research has shown the ability of embryonic and adult stem cells to differentiate into primordial germ cells and more mature gametes and this generation of germ cells in vitro may be an attractive model for their study. One of the biggest challenges facing in vitro differentiation of stem cells into primordial germ cells is the lack of markers to clearly distinguish the two. As both cell types originate early in embryonic development they share many pluripotent markers such as OCT4, VASA, FRAGILIS, and NANOG. Genome wide microarray profiling has been used to identify transcriptome patterns unique to primordial germ cells. A more thorough analysis of the temporal and quantitative expression of a panel of genes may be more robust in distinguishing these two cell populations. MicroRNAs, short RNA molecules that have been shown to regulate translation through interactions with mRNA transcripts, have also recently come under investigation for the role they may play in pluripotency. Attempts to elucidate key microRNAs responsible for both stem cell and primordial germ cell characteristics have recently been undertaken. Unique microRNAs, either individually or as global profiles, may also help to distinguish differentiated primordial germ cells from stem cells in vitro. This review will examine gene expression and microRNA signatures in stem cells and germ cells as ways to distinguish these closely related cell types. PMID:20183803

  15. Aberrant expression of liver microRNA in chickens infected with subgroup J avian leukosis virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus primarily causing myeloid leukosis (ML) in broilers. Although ALV is well under control in a few countries including the U.S.A., poultry industry in many parts of the world continues suffering from serious economic loss due to sporad...

  16. Aberrant expression of hSef and Sprouty4 in endometrial adenocarcinoma

    PubMed Central

    ZHANG, HUI; GUO, QIUFEN; WANG, XIA; WANG, CHONG; ZHAO, XINGBO; LI, MINGJIANG

    2016-01-01

    Fibroblast growth factor (FGF) 2-mediated signaling of the mitogen-activated protein kinase/RAS/extracellular signal-regulated kinase 1/2 pathway is a critical modulator in angiogenesis and is therefore essential for the pathogenesis of endometrial carcinoma. Human similar expression to FGFs (hSef) and Sprouty4 have each been reported to be negative regulators of FGF signaling. The aim of the present study was to investigate the expression of hSef and Sprouty4 in human endometrial adenocarcinoma. Using immunohistochemistry analysis, the expression of hSef and Sprouty4 was detected in human endometrial adenocarcinomas. Increased hSef expression was found to be present in endometrial adenocarcinomas. In addition, decreased hSef expression was identified in the blood vessels of endometrial adenocarcinoma samples. However, the expression of Sprouty4 was downregulated in human endometrial adenocarcinoma. Aberrant expression of hSef and Sprouty4 are involved in the pathogenesis of human endometrial adenocarcinoma. PMID:26870165

  17. Aberrant expression of Sonic hedgehog signaling in Peutz-Jeghers syndrome.

    PubMed

    Xu, Xiaoping; Su, Juan; Li, Ran; Wang, Yadong; Zeng, Di; Wu, Baoping

    2016-04-01

    The SHH signaling pathway is critical for gastrointestinal development and organic patterning, and dysregulation of SHH pathway molecules has been detected in multiple gastrointestinal neoplasms. This study investigated the role of the SHH signaling pathway in PJS. Expression of SHH, PTCH, and GLI1 was examined by real-time PCR and immunohistochemistry in 20 normal tissues and 75 colorectal lesions (25 PJPs, 25 adenomas, and 25 adenocarcinomas). Expression of SHH, PTCH, and GLI1 mRNA was higher in PJPs than in normal tissue (P < .05) and gradually increased along the PJP-adenoma-adenocarcinoma sequence (P < .05). Immunostaining indicated that SHH expression was present in 60% of PJPs, 72% of adenomas, and 84% of carcinomas, whereas 68% of PJPs, 72% of adenomas, and 88% of carcinomas exhibited cytoplasmic expression of PTCH. Moreover, high GLI1 expression was detected in 56% of PJPs, 64% of adenomas, and 80% of carcinomas; and high nuclear expression of GLI1 was observed in 8 adenomas with atypia and 15 carcinomas. Increased SHH, PTCH, and GLI1 protein correlated positively with tumor grade (P = .012, P = .003, and P = .007, respectively), tumor depth (P = .024, P = .007, and P = .01), and lymph node metastasis (P = .05, P = .015, and P = .005). This study identified aberrant expression of SHH pathway molecules in PJS, and the findings may supply a novel mechanism for the development of PJ polyps. PMID:26997450

  18. Aberrant expression of interferon regulatory factor 3 in human lung cancer

    SciTech Connect

    Tokunaga, Takayuki; Naruke, Yuki; Shigematsu, Sayuri; Kohno, Tomoko; Yasui, Kiyoshi; Ma, Yuhua; Chua, Koon Jiew; Katayama, Ikuo; Nakamura, Takashi; Hishikawa, Yoshitaka; Koji, Takehiko; Yatabe, Yasushi; Nagayasu, Takeshi; Fujita, Takashi; Matsuyama, Toshifumi; and others

    2010-06-25

    We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S{sup 175}(AGC) {yields} R{sup 175}(CGC) and A{sup 208}(GCC) {yields} D{sup 208}(GAC)). The R{sup 175} variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D{sup 208} variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to I{kappa}B kinase {epsilon} stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D{sup 208} variant may provide clues to elucidate the etiology of primary lung cancer.

  19. Switches in gene expression including microRNA and a large number of distinct mRNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. P.

    2008-12-01

    In eukaryotic cells, the kinetics of gene expression depends on the interplay of messenger RNAs (mRNAs), proteins, and nonprotein coding RNAs, or, more specifically, microRNAs. Some microRNAs may target hundreds of mRNAs. To describe this case, the author proposes a kinetic model implying that the microRNA synthesis is suppressed by the protein produced via the translation of one of the target mRNAs. With physically reasonable model parameters, the model predicts bistability or, in other words, switches in the expression of hundreds of genes.

  20. MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression

    PubMed Central

    Costa, Pedro M.; Pedroso de Lima, Maria C.

    2013-01-01

    The discovery of small RNA molecules with the capacity to regulate messenger RNA (mRNA) stability and translation (and consequently protein synthesis) has revealed an additional level of post-transcriptional gene control. MicroRNAs (miRNAs), an evolutionarily conserved class of small noncoding RNAs that regulate gene expression post-transcriptionally by base pairing to complementary sequences in the 3' untranslated regions of target mRNAs, are part of this modulatory RNA network playing a pivotal role in cell fate. Functional studies indicate that miRNAs are involved in the regulation of almost every biological pathway, while changes in miRNA expression are associated with several human pathologies, including cancer. By targeting oncogenes and tumor suppressors, miRNAs have the ability to modulate key cellular processes that define the cell phenotype, making them highly promising therapeutic targets. Over the last few years, miRNA-based anti-cancer therapeutic approaches have been exploited, either alone or in combination with standard targeted therapies, aiming at enhancing tumor cell killing and, ideally, promoting tumor regression and disease remission. Here we provide an overview on the involvement of miRNAs in cancer pathology, emphasizing the mechanisms of miRNA regulation. Strategies for modulating miRNA expression are presented and illustrated with representative examples of their application in a therapeutic context. PMID:24275848

  1. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy

    PubMed Central

    Li, Yaohua; Huang, Cheng; Feng, Peimin; Jiang, Yanping; Wang, Wei; Zhou, Dong; Chen, Lei

    2016-01-01

    Evidence suggest that overexpression of hypoxia-inducible factor-1α (HIF-1α) is linked to multidrug resistance of epilepsy. Here we explored whether aberrant expression of HIF-1α is regulated by miRNAs. Genome-wide microRNA expression profiling was performed on temporal cortex resected from mesial temporal lobe epilepsy (mTLE) patients and age-matched controls. miRNAs that are putative regulator of HIF-1α were predicted via target scan and confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Mimics or miRNA morpholino inhibitors were transfected in astrocytes and luciferase reporter assay was applied to detect HIF-11α expression. Microarray profiling identified down-regulated miR-153 as a putative regulator of HIF-1α in temporal cortex resected from surgical mTLE patients. RT-qPCR confirmed down-regulation of miR-153 in plasma of mTLE patients in an independent validation cohort. Knockdown of miR-153 significantly enhanced expression of HIF-1α while forced expression of miR-153 dramatically inhibited HIF-1α expression in pharmacoresistant astrocyte model. Luciferase assay established that miR-153 might inhibit HIF-1α expression via directly targeting two binding sites in the 3′UTR region of HIF-1α transcript. These data suggest that down-regulation of miR-153 may contribute to enhanced expression of HIF-1α in mTLE and serve as a novel biomarker and treatment target for epilepsy. PMID:27554040

  2. mRNA and microRNA expression profiles of the NCI-60 integrated with drug activities

    PubMed Central

    Liu, Hongfang; D’Andrade, Petula; Fulmer-Smentek, Stephanie; Lorenzi, Philip; Kohn, Kurt W.; Weinstein, John N.; Pommier, Yves; Reinhold, William C.

    2010-01-01

    As part of the Spotlight on Molecular Profiling series, we present here new profiling studies of mRNA and microRNA expression for the 60 cell lines of the NCI DTP drug screen (NCI-60) using the 41,000-probe Agilent Whole Human Genome Oligo Microarray and the 15,000-feature Agilent Human microRNA Microarray V2. The expression levels of ~21,000 genes and 723 human microRNAs were measured. These profiling studies include quadruplicate technical replicates for six and eight cell lines for mRNA and microRNA, respectively, and duplicates for the remaining cell lines. The resulting data sets are freely available and searchable online in our CellMiner database. The result indicates high reproducibility for both platforms and an essential biological similarity across the various cell types. The mRNA and microRNA expression levels were integrated with our previously published 1,429-compound database of anticancer activity obtained from the NCI DTP drug screen. Large blocks of both mRNAs and microRNAs were identified with predominately unidirectional correlations to ~1,300 drugs including 121 drugs with known mechanisms of action. The data sets presented here will facilitate the identification of groups of mRNAs, microRNAs and drugs that potentially affect and interact with one another. PMID:20442302

  3. Viral Infection Induces Expression of Novel Phased MicroRNAs from Conserved Cellular MicroRNA Precursors

    PubMed Central

    Zhang, Jiayao; Zhao, Shuqi; Zheng, Hong; Gao, Ge; Wei, Liping; Li, Yi

    2011-01-01

    RNA silencing, mediated by small RNAs including microRNAs (miRNAs) and small interfering RNAs (siRNAs), is a potent antiviral or antibacterial mechanism, besides regulating normal cellular gene expression critical for development and physiology. To gain insights into host small RNA metabolism under infections by different viruses, we used Solexa/Illumina deep sequencing to characterize the small RNA profiles of rice plants infected by two distinct viruses, Rice dwarf virus (RDV, dsRNA virus) and Rice stripe virus (RSV, a negative sense and ambisense RNA virus), respectively, as compared with those from non-infected plants. Our analyses showed that RSV infection enhanced the accumulation of some rice miRNA*s, but not their corresponding miRNAs, as well as accumulation of phased siRNAs from a particular precursor. Furthermore, RSV infection also induced the expression of novel miRNAs in a phased pattern from several conserved miRNA precursors. In comparison, no such changes in host small RNA expression was observed in RDV-infected rice plants. Significantly RSV infection elevated the expression levels of selective OsDCLs and OsAGOs, whereas RDV infection only affected the expression of certain OsRDRs. Our results provide a comparative analysis, via deep sequencing, of changes in the small RNA profiles and in the genes of RNA silencing machinery induced by different viruses in a natural and economically important crop host plant. They uncover new mechanisms and complexity of virus-host interactions that may have important implications for further studies on the evolution of cellular small RNA biogenesis that impact pathogen infection, pathogenesis, as well as organismal development. PMID:21901091

  4. Effects of simulated-microgravity on zebrafish embryonic development and microRNA expression

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Zhang, Meng; Li, Hui

    2012-07-01

    Microgravity is a constant physical factor astronauts must meet during space flight. Therefore, the mechanism of microgravity-induced biological effects is one of the most important issues in space biological studies. In this research, zebrafish (Danio rerio) embryos at different development stages were exposed to simulated microgravity, respectively, using a rotary cell culture system (RCCS) designed by NASA. Biological effects of simulated microgravity on zebrafish embryos were investigated at the phenotypic and microRNA expression levels. Malformation rate and mortality rate were found increased after simulated microgravity exposure. Body length and heart rate were also increased during microgravity exposure and after a shot period of gravity recovery, but both returned to normal level after 10 days and 7 days of gravity recovery, respectively. Additionally, significant changes in microRNA expression profiles of zebrafish embryos were observed, depending on the development stages of embyos exposed to simulated microgravity and the exposure time. All together, nine miRNAs showed significant changes after three different microgravity exposures (8-72hpf, 24-72hpf and 24-48hpf). Four miRNAs, dre-miR-738, dre-miR-133a, dre-miR-133b and dre-miR-22a, were up-regulated. Two miRNAs, dre-miR-1 and dre-miR-16a, were down-regulated. The other three miRNAs, dre-miR-204, dre-miR-9* and dre-miR-429, were found up-regulated when microgravity exposures ended at 72hpf, but down-regulated when microgravity exposures ended at 48hpf. Above results demonstrated microRNA expression of zebrafish embryos could be induced by both embryonic development stage and simulated microgravity. Key Words: Danio rerio; Simulated-microgravity; embryonic devlopment; microRNA expression

  5. Discordant Expression of Circulating microRNA from Cellular and Extracellular Sources

    PubMed Central

    Levy, Daniel; Larson, Martin; Gerstein, Mark; Mick, Eric; Rozowsky, Joel; Kitchen, Robert; Murthy, Venkatesh; Mikalev, Ekaterina; Freedman, Jane E.

    2016-01-01

    MicroRNA (miRNA) expression has rapidly grown into one of the largest fields for disease characterization and development of clinical biomarkers. Consensus is lacking in regards to the optimal sample source or if different circulating sources are concordant. Here, using miRNA measurements from contemporaneously obtained whole blood- and plasma-derived RNA from 2391 individuals, we demonstrate that plasma and blood miRNA levels are divergent and may reflect different biological processes and disease associations. PMID:27123852

  6. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    PubMed Central

    Rennoll, Sherri; Yochum, Gregory

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers (CRCs). These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements (WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene (MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review, we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis, novel strategies can be developed to treat individuals suffering from this disease. PMID:26629312

  7. Aberrant expression of miR-127, miR-21 and miR-16 in placentas of deceased cloned sheep.

    PubMed

    Ni, Wei; You, Shuang; Cao, Yang; Li, Cunyuan; Wei, Junchuang; Wang, Dawei; Qiao, Jun; Zhao, Xinxia; Hu, Shengwei; Quan, Renzhe

    2016-04-01

    Placental deficiencies are associated with developmental abnormalities of animal produced by somatic cell nuclear transfer (SCNT). It is reported that aberrant expression of microRNAs (miRNAs) in the common placenta is associated with fetal growth restriction and placental deficiencies. However, an understanding of the expression and function of miRNAs in the placentas of cloned animal is lacking. In this study, we characterized the expression of five growth-associated miRNAs (miR-127, miR-16, miR-21, miR-93 and miR-182) in placentas of deceased transgenic cloned sheep (deceased group, n=7), live transgenic cloned sheep (live group, n=5) and conventionally produced sheep (control group, n=10). Expression levels of miR-127 (P<0.01), miR-21 (P<0.01) and miR-16 (P<0.05) were significantly up-regulated in the placentas of deceased group compared to that of control group. In contrast, the expression of these miRNAs was largely normal in the placentas of live group, except for the expression of miR-21. Furthermore, we confirmed that retrotransposon-like gene (Rtl1), a key gene in placental development, was down-regulated by miR-127 as a target in placenta cells. Our results suggested that the abnormal expression of miR-127, miR-21 and miR-16 in placentas of deceased sheep, through dysregulation of target genes, may result in developmental deficiencies of transgenic cloned sheep. PMID:27033933

  8. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  9. Preliminary studies: differences in microRNA expression in asthma and chronic obstructive pulmonary disease

    PubMed Central

    Pająk, Aneta; Górski, Paweł; Kuna, Piotr; Szemraj, Janusz; Goździńska-Nielepkowicz, Agnieszka; Pietras, Tadeusz

    2016-01-01

    Introduction The asthma- and chronic obstructive pulmonary disease (COPD)-related morbidity has been increasing during the recent years. Both asthma and COPD are diseases of inflammatory etiology. The increasing interest in the pathomechanisms involved in the development of obstructive pulmonary diseases seems to be fully justified. Recent research has attempted to determine the associations of microRNA with the pathogenesis of pulmonary diseases. Aim To assess the expression of microRNA in the blood sera of patients diagnosed with bronchial asthma and chronic obstructive pulmonary disease in comparison with healthy subjects. Material and methods In our study, at the preliminary stage, we compared the expression of miRNA in the groups of patients with asthma and COPD versus the control group of healthy subjects. Results A significant difference in hsa-miRNA-224, hsa-miRNA-339-5p, hsa-miRNA-382 in patients with asthma and COPD as compared with the controls was noted. Conclusions With such difference of expression of specific micro-RNA in serum of patient with asthma and COPD, those small non-coding RNA has to play a significant role in those diseases pathway. Therefore we expect to increase the size and differentation of the study groups in next studies. PMID:27605898

  10. Prenatal Evaluation of MicroRNA Expressions in Pregnancies with Down Syndrome

    PubMed Central

    Erturk, Biray; Karaca, Emin; Guler, Ahmet; Buke, Baris; Yeniel, Ahmet Ozgur; Ozkinay, Ferda; Ozeren, Mehmet; Kazandi, Mert; Akercan, Fuat; Sagol, Sermet; Gunduz, Cumhur

    2016-01-01

    Background. Currently, the data available on the utility of miRNAs in noninvasive prenatal testing is insufficient in the literature. We evaluated the expression levels of 14 miRNAs located on chromosome 21 in maternal plasma and their utility in noninvasive prenatal testing of Down Syndrome. Method. A total of 56 patients underwent invasive prenatal testing; 23 cases were carrying Down Syndrome affected fetuses, and 33 control cases carrying unaffected, normal karyotype fetuses were included for comparison. Indications for invasive prenatal testing were advanced maternal age, increased risk of Down Syndrome in screening tests, and abnormal finding in the sonographic examination. In both the study and control groups, all the pregnant women were at 17th and 18th week of gestation. miRNA expression levels were measured using real-time RT-PCR. Results. Significantly increased maternal plasma levels of miR-3156 and miR-99a were found in the women carrying a fetus with Down Syndrome. Conclusion. Our results provide a basis for multicenter studies with larger sample groups and microRNA profiles, particularly with the microRNAs which were found to be variably expressed in our study. Through this clinical research, the utility of microRNAs in noninvasive prenatal testing can be better explored in future studies. PMID:27110565

  11. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer.

    PubMed

    Chen, Bi-Feng; Gu, Shen; Suen, Yick-Keung; Li, Lu; Chan, Wai-Yee

    2014-01-01

    It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3'-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT. PMID:23959088

  12. Expression of microRNAs in fibroblast of pterygium

    PubMed Central

    Lee, Joon H.; Jung, Sun-Ah; Kwon, Young-A; Chung, Jae-Lim; Kim, Ungsoo Samuel

    2016-01-01

    AIM To screen microRNAs (miRNAs) and set up target miRNAs in pterygium. METHODS Primary fibroblasts were isolated from pterygium and Tenon's capsule and cultured. Immunocytochemical analysis and Western blotting were performed to confirm the culture of fibroblasts. In all, 1733 miRNAs were screened in the first step by using GeneChip® miRNA3.0 Array. Specific miRNAs involved in the pathogenesis of pterygium were subsequently determined using the following criteria: 1) high reproducibility in a repetitive test; 2) base log value of >7.0 for both control and pterygial fibroblasts; and 3) log ratio of >1.0 between pterygial fibroblasts and control fibroblasts. RESULTS Primary screening showed that 887/1733 miRNAs were up-regulated and 846/1733 miRNAs were down-regulated in pterygial fibroblasts compared with those in control fibroblasts. Of the 1733 miRNAs screened, 4 miRNAs, namely, miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p, met the above-mentioned criteria. Primary screening showed that these 4 miRNAs were up-regulated in pterygial fibroblasts compared with control fibroblasts and that miRNA-143a-3p had the highest mean ratio compared with the miRNAs in control fibroblasts. CONCLUSION miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p are up-regulated in pterygial fibroblasts compared with control fibroblasts, suggesting their involvement in the pathogenesis of pterygium. PMID:27500101

  13. CD7 aberrant expression led to a lineage switch at relapsed childhood acute pre-B lymphoblastic leukemia.

    PubMed

    Fallah Azad, Vahid; Hedayati Asl, Amir Abbas; Tashvighi, Maryam; Niktoreh Mofrad, Naghmeh; Haghighi, Mansoureh; Mehrvar, Azim

    2016-03-01

    Immunophenotypic changes and lineage switch between diagnosis and relapse in acute lymphoblastic leukemia are uncommon and accompanied by poor outcomes. In this report, a 12-year-old boy with diagnosis of pre-B ALL with an aberrant expression of CD 7 is described. Patient was treated with the ALL-BFM 2000 protocol and suffered an episode of relapse with a lineage switch from pre-B ALL to T cell ALL. This report concludes that presence of aberrant expression of CD7 at diagnosis of pre-B ALL can have prognostic value of lineage switch to T cell ALL at relapse. PMID:26242204

  14. Aberrant Expression and Secretion of Heat Shock Protein 90 in Patients with Bullous Pemphigoid

    PubMed Central

    Tukaj, Stefan; Kleszczyński, Konrad; Vafia, Katerina; Groth, Stephanie; Meyersburg, Damian; Trzonkowski, Piotr; Ludwig, Ralf J.; Zillikens, Detlef; Schmidt, Enno; Fischer, Tobias W.; Kasperkiewicz, Michael

    2013-01-01

    The cell stress chaperone heat shock protein 90 (Hsp90) has been implicated in inflammatory responses and its inhibition has proven successful in different mouse models of autoimmune diseases, including epidermolysis bullosa acquisita. Here, we investigated expression levels and secretory responses of Hsp90 in patients with bullous pemphigoid (BP), the most common subepidermal autoimmune blistering skin disease. In comparison to healthy controls, the following observations were made: (i) Hsp90 was highly expressed in the skin of BP patients, whereas its serum levels were decreased and inversely associated with IgG autoantibody levels against the NC16A immunodominant region of the BP180 autoantigen, (ii) in contrast, neither aberrant levels of circulating Hsp90 nor any correlation of this protein with serum autoantibodies was found in a control cohort of autoimmune bullous disease patients with pemphigus vulgaris, (iii) Hsp90 was highly expressed in and restrictedly released from peripheral blood mononuclear cells of BP patients, and (iv) Hsp90 was potently induced in and restrictedly secreted from human keratinocyte (HaCaT) cells by BP serum and isolated anti-BP180 NC16A IgG autoantibodies, respectively. Our results reveal an upregulated Hsp90 expression at the site of inflammation and an autoantibody-mediated dysregulation of the intracellular and extracellular distribution of this chaperone in BP patients. These findings suggest that Hsp90 may play a pathophysiological role and represent a novel potential treatment target in BP. PMID:23936217

  15. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    PubMed Central

    Cantile, Monica; Scognamiglio, Giosuè; La Sala, Lucia; La Mantia, Elvira; Scaramuzza, Veronica; Valentino, Elena; Tatangelo, Fabiana; Losito, Simona; Pezzullo, Luciano; Chiofalo, Maria Grazia; Fulciniti, Franco; Franco, Renato; Botti, Gerardo

    2013-01-01

    Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers. PMID:24189220

  16. Aberration of miRNAs Expression in Leukocytes from Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    Chen, YongPing; Wei, QianQian; Chen, XuePing; Li, ChunYu; Cao, Bei; Ou, RuWei; Hadano, Shinji; Shang, Hui-Fang

    2016-01-01

    Background: Accumulating evidence indicates that miRNAs play an important role in the development of amyotrophic lateral sclerosis (ALS). Most of previous studies on miRNA dysregulation in ALS focused on the alterative expression in ALS animal model or in limited samples from European patients with ALS. In the present study, the miRNA expression profiles were investigated in Chinese ALS patients to explore leukocytes miRNAs as a potential biomarker for the diagnosis of ALS. Methods: We analyzed the expression profiles of 1733 human mature miRNAs using microarray technology in leukocytes obtained from 5 patients with sporadic ALS (SALS) and 5 healthy controls. An independent group of 83 SALS patients, 24 Parkinson's disease (PD) patients and 61 controls was used for validation by real-time polymerase chain reaction assay. Area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. In addition, target genes and signaling information of validated differential expression miRNAs were predicted using Bioinformatics. Results: Eleven miRNAs, including four over-expressed and seven under-expressed miRNAs detected in SALS patients compared to healthy controls were selected for validation. Four under-expressed microRNAs, including hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935, were confirmed in validation stage by comparison of 83 SALS patients and 61 HCs. Moreover, we identified a miRNA panel (hsa-miR-183, hsa-miR-193b, hsa-miR-451, and hsa-miR-3935) having a high diagnostic accuracy of SALS (AUC 0.857 for the validation group). However, only hsa-miR-183 was significantly lower in SALS patients than that in PD patients and in HCs, while no differences were found between PD patients and HCs. By bioinformatics analysis, we obtained a large number of target genes and signaling information that are linked to neurodegeneration. Conclusion: This study provided evidence of abnormal miRNA expression patterns in the peripheral

  17. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis.

    PubMed

    Seleit, Iman; Bakry, Ola Ahmed; Abdou, Asmaa Gaber; Dawoud, Noha Mohammed

    2014-06-01

    The etiopathogenetic mechanisms leading to pigment loss in vitiligo are not fully understood. Notch signaling is required for development and maintenance of melanocyte lineage and acts as a key component among keratinocyte-melanocyte interactions. The current study aimed to investigate the possible role of Notch signaling and its effect on the whole melanocyte lineage in vitiligo and correlating it with the different clinicopathologic parameters. Using immunohistochemical technique, Notch-1 expression was evaluated in 50 lesional and 20 perilesional biopsies of patients with vitiligo in comparison with 20 normal skin biopsies as a control group. Lesional biopsies were stained with human melanoma black-45 and tyrosinase-related protein-2 to demonstrate the melanocyte lineage. Membranous and/or nuclear expression of Notch-1 was in favor of control and perilesional skin, whereas cytoplasmic expression appeared only in vitiliginous lesions (P < .05). Membranous and/or nuclear expression of Notch-1 was significantly associated with epidermal human melanoma black-45 positivity (P = .01) and percentage of expression in both epidermis (P = .02) and hair follicles (P = .03) of lesional skin. Cytoplasmic pattern of Notch-1 expression in epidermis was significantly found in lesions with white hair (P = .04) and in cases with marked keratinocyte vacuolization (P = .03). Segmental and acrofacial vitiligo were associated with mild to moderate Notch-1 intensity, whereas generalized vitiligo was associated with strong intensity of expression (P = .02). In conclusion, Notch-1 signaling is inactivated in vitiligo with consequent loss of epidermal and/or follicular active melanocytes. Aberrant Notch signaling in vitiliginous white hair and acral and segmental vitiligo may be the cause of their treatment resistance. PMID:24560443

  18. Long noncoding RNA are aberrantly expressed in human papillary thyroid carcinoma

    PubMed Central

    YANG, MEILIU; TIAN, JINLI; GUO, XIN; YANG, YING; GUAN, RUHUA; QIU, MINGYUE; LI, YUKAI; SUN, XUELING; ZHEN, YANFENG; ZHANG, YAZHONG; CHEN, CHUNYOU; LI, YANBING; FANG, HUI

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key regulatory molecules at almost every level of gene expression regulation. The altered expression of lncRNAs is a characteristic of numerous types of cancer, and lncRNAs have been demonstrated to promote the development, invasion and metastasis of tumors through various mechanisms. However, the role of lncRNAs in papillary thyroid carcinoma (PTC) remain unclear. In the present study, differentially expressed lncRNAs and mRNAs were detected by human lncRNA microarray in three pairs of PTC and adjacent noncancerous samples. The microarray results revealed that 675 lncRNAs and 751 mRNAs were abnormally expressed in the three PTC samples compared with adjacent noncancerous samples (fold change ≥2.0; P<0.05). To validate the microarray results, 8 differentially expressed lncRNAs were randomly selected for quantitative polymerase chain reaction (qPCR). The results of qPCR were consistent with the microarray data; the 8 lncRNAs had an aberrant expression in the PTC samples compared with the adjacent noncancerous samples. Gene ontology and pathway analysis indicated that there were 7 downregulated pathways and 29 upregulated pathways in PTC. LncRNA classification and subgroup analysis revealed 7 pairs of enhancer-like lncRNA-mRNA, 9 pairs of antisense lncRNA-mRNA and 45 pairs of lncRNA-mRNA were differentially expressed between PTC and their paired noncancerous samples. In conclusion, the present study identified a series of novel PTC-associated lncRNAs. Further study with these lncRNAs is instrumental for the identification of novel target molecules that could lead to improved diagnosis and treatment for PTC. PMID:27347178

  19. Microarray expression profile analysis of aberrant long non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Yao, Juan; Huang, Jun-Xing; Lin, Mei; Wu, Zheng-Dong; Yu, Hong; Wang, Peng-Cheng; Ye, Jun; Chen, Ping; Wu, Jing; Zhao, Guo-Jun

    2016-06-01

    Increasing evidence indicates that long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the function and regulatory mechanism of lncRNAs are still unclear in esophageal squamous cell carcinoma (ESCC). To address this challenge, we screened lncRNAs expression profiles in 3 pairs of ESCC and matched non-cancerous tissues by microarray assay and identified the relationship between lncRNAs expression in ESCC tissue and clinicopathological characteristics and prognosis of patients with ESCC. We found 182 lncRNAs that were significantly differently expressed in ESCC tissues versus the matched non-cancerous tissues. Gene ontology and pathway analysis results suggested that the primary biological processes of these genes were involved in extracellular matrix, immune responses, cell differentiation and cell proliferation. Through cis and trans analyzing, we found 4 lncRNAs (ENST00000480669, NONHSAT104436, NONHSAT126998 and NONHSAT112918) may play important roles in tumorigenesis of ESCC. The four lncRNAs were checked in 73 patients with ESCC. The results showed that they mainly related to tumor metastasis. Kaplan-Meier survival analysis showed that high expression of NONHSAT104436, NONHSAT126998 and low expression of ENST00000480669 were related to poor 3-year overall survival (P=0.003, 0.032 and 0.040, respectively). Multivariate analysis showed that NONHSAT104436 was an independent prognostic factor (P=0.017). Thus we concluded that, lncRNAs showed differently expression patterns in ESCC versus matched non-cancerous tissues, and aberrantly expressed lncRNA may play important roles in ESCC development and progression. Interestingly, the overexpression of NONHSAT104436 was tightly correlated with distant metastasis and, poor survival rate, which might indicate that NONHSAT104436 might play a very important part in ESCC tumor progression. PMID:27035335

  20. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  1. Phenotypic heterogeneity and aberrant markers expression in T-cell leukemia.

    PubMed

    Babusíková, O; Glasová, M; Koníková, E; Kusenda, J; Cáp, J; Gyárfás, J; Koubek, K

    1998-01-01

    For exact determination of lineage assessment there is a need of surface membrane and intracellular (cytoplasmic and nuclear) immunophenotyping performed by flow cytometry. We evaluated in detail the results of surface and intracellular immunophenotyping of 34 T-ALL cases. The great heterogeneity of T-cell differentiation markers has been observed which did not allow relevant subclassification of T-ALL according to the existing subclassification schemes and the proposed three-stage model of physiological T-cell differentiation. Therefore, a simplified classification based on the CD3 marker expression either on cell membrane or in cytoplasm has been created with allocation of T-ALL into two main phenotypic groups. From 34 in detail examined T-ALL cases a great deal-27 (79%) belonged to an immature phenotype (Stage I) and only 7 (21%) expressed more mature phenotype (Stage II). Simultaneously the presence of atypical/aberrant T-cell phenotypes has been studied. We showed that in T-ALL it was possible to specify some cases with leukemia-associated phenotype with coexistence of atypical markers which are absent in nonleukemic cells. In a majority of cases early B-lineage marker (CD10) and in a smaller proportion of them non-lineage associated marker (CD34) were observed. Myeloid marker CD13 was observed in one case of the immature T-ALL, together with CD10 and CD34. As these atypical markers were present through all differentiation stages of T-ALL we obtained a strong evidence that they might represent an abnormal rather than an immature phenotype. The prognostic significance of T-ALL subtypes and aberrant markers coexpression have been discussed. Simultaneously it was shown that quantitative immunofluorescence could provide an additional important diagnostic marker also in T-ALL cases. PMID:9717523

  2. Low-temperature microRNA expression in the painted turtle, Chrysemys picta during freezing stress.

    PubMed

    Biggar, Kyle K; Storey, Kenneth B

    2015-11-30

    Natural freeze tolerance depends on cellular adaptations that address the multiple stresses imposed on cells during freezing. These adaptations preserve viability by suppressing energy-expensive cell processes in the frozen state. In this study, we explore the freeze-responsive expression of microRNA in hatchling painted turtles exposed to 20 h freezing. Furthermore, we also explore the possibility of unique temperature-sensitive microRNA targeting programs that aid in adapting turtles for survival in the frozen state. Interestingly, two freeze-responsive 'cryo-miRs' (cpm-miR-16 and cpm-miR-21) were found to have unique low-temperature mRNA targets enriched in biological processes that are known to be part of the stress response. PMID:26519560

  3. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection.

    PubMed

    Hamam, Rimi; Ali, Arwa M; Alsaleh, Khalid A; Kassem, Moustapha; Alfayez, Musaed; Aldahmash, Abdullah; Alajez, Nehad M

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples from 23 BC and 9 normals identified 18 up-regulated miRNAs in BC patients (p(corr) < 0.05). Nine miRNAs (hsa-miR-4270, hsa-miR-1225-5p, hsa-miR-188-5p, hsa-miR-1202, hsa-miR-4281, hsa-miR-1207-5p, hsa-miR-642b-3p, hsa-miR-1290, and hsa-miR-3141) were subsequently validated using qRT-PCR in a cohort of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal subtype. Therefore, we developed a novel approach which led to the identification of a novel microRNA panel which was upregulated in BC patients with potential utilization in disease diagnosis and stratification. PMID:27180809

  4. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection

    PubMed Central

    Hamam, Rimi; Ali, Arwa M.; Alsaleh, Khalid A.; Kassem, Moustapha; Alfayez, Musaed; Aldahmash, Abdullah; Alajez, Nehad M.

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification and management choices. Herein we developed a novel approach which relies on the isolation of circulating microRNAs through an enrichment step using speed-vacuum concentration which resulted in 5-fold increase in microRNA abundance. Global miRNA microarray expression profiling performed on individual samples from 23 BC and 9 normals identified 18 up-regulated miRNAs in BC patients (p(corr) < 0.05). Nine miRNAs (hsa-miR-4270, hsa-miR-1225-5p, hsa-miR-188-5p, hsa-miR-1202, hsa-miR-4281, hsa-miR-1207-5p, hsa-miR-642b-3p, hsa-miR-1290, and hsa-miR-3141) were subsequently validated using qRT-PCR in a cohort of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal subtype. Therefore, we developed a novel approach which led to the identification of a novel microRNA panel which was upregulated in BC patients with potential utilization in disease diagnosis and stratification. PMID:27180809

  5. MicroRNA-223 Expression is Upregulated in Insulin Resistant Human Adipose Tissue.

    PubMed

    Chuang, Tung-Yueh; Wu, Hsiao-Li; Chen, Chen-Chun; Gamboa, Gloria Mabel; Layman, Lawrence C; Diamond, Michael P; Azziz, Ricardo; Chen, Yen-Hao

    2015-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT) from women with polycystic ovary syndrome (PCOS) or controls with insulin resistance (IR) revealed a differentially expressed microRNA (miRNA) profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4) expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3' untranslated region (3'UTR). In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders. PMID:26273679

  6. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression

    PubMed Central

    Wang, Yemin; Huang, Jen-Wei; Li, Ming; Cavenee, Webster K.; Mitchell, Patrick S.; Zhou, Xiaofeng; Tewari, Muneesh; Furnari, Frank B.; Taniguchi, Toshiyasu

    2011-01-01

    Precise regulation of DNA damage response is crucial for cellular survival after DNA damage, and its abrogation often results in genomic instability in cancer. Phosphorylated histone H2AX (γH2AX) forms nuclear foci at sites of DNA damage and facilitates DNA damage response and repair. MicroRNAs are short, non-protein-encoding RNA molecules, which post-transcriptionally regulate gene expression by repressing translation of and/or degrading mRNA. How microRNAs modulate DNA damage response is largely unknown. In this study, we developed a cell-based screening assay utilizing ionizing radiation-induced γH2AX foci formation in a human osteosarcoma cell line, U2OS, as the readout. By screening a library of human microRNA mimics, we identified several microRNAs that inhibited γH2AX foci formation. Among them, miR-138 directly targeted the histone H2AX 3′-UTR, reduced histone H2AX expression and induced chromosomal instability after DNA damage. Overexpression of miR-138 inhibited homologous recombination and enhanced cellular sensitivity to multiple DNA damaging agents (cisplatin, camptothecin, and ionizing radiation). Reintroduction of histone H2AX in miR-138 overexpressing cells attenuated miR-138-mediated sensitization to cisplatin and camptothecin. Our study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA damaging agents. PMID:21693595

  7. The aberrant expression of MEG3 regulated by UHRF1 predicts the prognosis of hepatocellular carcinoma.

    PubMed

    Zhuo, Han; Tang, Junwei; Lin, Zhe; Jiang, Runqiu; Zhang, Xudong; Ji, Jie; Wang, Ping; Sun, Beicheng

    2016-02-01

    MEG3 as a tumor suppressor has been reported to be linked with pathogenesis of malignancies including hepatocellular carcinoma (HCC). However, the mechanism of MEG3 in HCC still remains unclear. In our study, the aberrant decreased level of MEG3 in 72 tumor tissues obtained from HCC patients and cell lines was examined by using real-time PCR. The inhibition affection in proliferation and inducing affection in apoptosis was further confirmed in vivo and vitro, we also demonstrated that MEG3 regulates HCC cell proliferation and apoptosis partially via the accumulation of p53. Besides, the hypermethylation of MEG3 in promoter region was identified by bisulfite sequencing while MEG3 increased with the inhibition of methylation. Subsequently, UHRF1, a new identified oncogene which is required for DNA methylation and recruits, was investigated. A negative correlation of MEG3 and UHRF1 expression was verified in primary HCC tissues. Down-regulation of UHRF1 induced MEG3 expression in HCC cell lines, which could be reversed by the up-regulation of UHRF1. In addition, up-regulation of MEG3 in HCC cells partially diminished the promotion of proliferation induced by UHRF1. Moreover, Kaplan-Meier analysis demonstrated that the patients with low expression of MEG3 indicated worse overall and relapse-free survivals compared with high expression of MEG3. Cox proportional hazards analyses showed that MEG3 expression was an independent prognostic factor for HCC patients. In conclusion, we demonstrated MEG3, acting as a potential biomarker in predicting the prognosis of HCC, was regulated by UHRF1 via recruiting DNMT1 and regulated p53 expression. PMID:25641194

  8. Aberrant Expression of Anaplastic Lymphoma Kinase in Ovarian Carcinoma Independent of Gene Rearrangement.

    PubMed

    Tang, Shaoxian; Yang, Fei; Du, Xiang; Lu, Yongming; Zhang, Ling; Zhou, Xiaoyan

    2016-07-01

    Ovarian carcinoma is the leading cause of death from gynecologic malignancies. The oncogenic role of anaplastic lymphoma kinase (ALK) is well characterized in many hematopoietic and solid tumors. ALK expression in ovarian carcinoma has been reported but the exact status of ALK protein and its association with clinicopathologic features requires further investigation. ALK expression was determined by immunohistochemistry in 110 primary ovarian carcinomas, including 85 cases of serous carcinoma and 25 cases of mucinous carcinoma. Fluorescence in situ hybridization (FISH) and real-time reverse transcription polymerase chain reaction (RT-PCR) were used for evaluating ALK translocation in ALK-positive ovarian carcinomas. Among 110 ovarian carcinomas, 23 (20.9%) cases were ALK positive by immunohistochemistry. All ALK-positive cases were ovarian high-grade serous carcinoma. ALK expression was detected in 23/85 (27.1%) ovarian serous carcinoma and 0/25 (0%) in ovarian mucinous carcinoma. None of the 23 ALK IHC-positive cases harbored ALK gene translocations by FISH or RT-PCR. ALK protein expression was associated with patient age, tumor stage, and histologic type. Specifically, the probability of ALK protein expression was significantly higher in high-grade serous carcinomas in older patients (above 50 y) with advanced disease (FIGO stage III and IV) compared with the low-grade serous and mucinous carcinomas in younger patients with relatively early disease. In conclusion, aberrant ALK expression is observed in ovarian serous carcinoma but not in mucinous carcinoma, is independent of gene translocation, and might be associated with progression and prognosis. PMID:27271776

  9. MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression.

    PubMed

    Ruebel, Katharina; Leontovich, Alexey A; Stilling, Gail A; Zhang, Shuya; Righi, Alberto; Jin, Long; Lloyd, Ricardo V

    2010-03-01

    MicroRNAs (miRNAs) are involved in cell proliferation, differentiation, and apoptosis and can function as tumor suppressor genes or oncogenes. The role of miRNAs in neuroendocrine tumors such as ileal carcinoids is largely unknown. We examined the differential expression of 95 miRNAs by RT-PCR using the QuantiMir System in eight matching primary and metastatic carcinoid tumors from the ileum. All miRNAs chosen for the QuantiMir System array were based on their potential functions related to cancer biology, cell development, and apoptosis. The expression of miRNAs for the samples was normalized to miRNA-197, and the matching primary and metastatic tumors were compared. There was downregulation of miRNA-133a, -145, -146, -222, and -10b in all samples between the primary and matching metastatic tumors and upregulation of miRNA-183, -488, and -19a+b in six of eight metastatic carcinoids compared to the primary tumors. miRNA-133a was further analyzed by TaqMan real-time RT-PCR and northern hybridization using six additional matching primary and metastatic samples, which supported the PCR array findings. There were significant differences in miRNA-133a expression with downregulation in the metastasis compared to the primary in the eight original cases (P<0.009) and in the six additional cases used for validation (P<0.014). Laser capture microdissection and real-time RT-PCR analysis using normal ileum found miRNA-133a expression in normal enterochromaffin cells. In situ hybridization in normal ileum showed that some of the mucosal endocrine cells expressed miRNA-133a. Both primary and metastatic ileal carcinoid tumors expressed miRNA-133a by in situ hybridization. These results provide information about novel marker miRNAs that may be used as biomarkers and/or therapeutic targets in intestinal carcinoid tumors. PMID:20037573

  10. Aberrant expression of the candidate tumor suppressor gene DAL-1 due to hypermethylation in gastric cancer

    PubMed Central

    Wang, Hao; Xu, Man; Cui, Xiaobo; Liu, Yixin; Zhang, Yi; Sui, Yu; Wang, Dong; Peng, Lei; Wang, Dexu; Yu, Jingcui

    2016-01-01

    By allelotyping for loss of heterozygosity (LOH), we previously identified a deletion region that harbors the candidate tumor suppressor gene DAL-1 at 18p11.3 in sporadic gastric cancers (GCs). The expression and function of DAL-1 in GCs remained unclear. Here, we demonstrated that the absence of or notable decreases in the expression of DAL-1 mRNA and protein was highly correlated with CpG hypermethylation of the DAL-1 promoter in primary GC tissues and in GC cell lines. Furthermore, abnormal DAL-1 subcellular localization was also observed in GC cells. Exogenous DAL-1 effectively inhibited cancer cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT); exogenous DAL-1 also promoted apoptosis in GC AGS cells. When endogenous DAL-1 was knocked down in GC HGC-27 cells, the cells appeared highly aggressive. Taken together, these findings provide solid evidence that aberrant expression of DAL-1 by hypermethylation in the promoter region results in tumor suppressor gene behavior that plays important roles in the malignancy of GCs. Understanding the role of it played in the molecular pathogenesis of GC, DAL-1 might be a potential biomarker for molecular diagnosis and evaluation of the GC. PMID:26923709

  11. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  12. microRNA expression signatures of gastrointestinal stromal tumours: associations with imatinib resistance and patient outcome

    PubMed Central

    Akçakaya, P; Caramuta, S; Åhlen, J; Ghaderi, M; Berglund, E; Östman, A; Bränström, R; Larsson, C; Lui, W-O

    2014-01-01

    Background: Gastrointestinal stromal tumour (GIST) is mainly initialised by receptor tyrosine kinase gene mutations. Although the tyrosine kinase inhibitor imatinib mesylate considerably improved the outcome of patients, imatinib resistance still remains a major therapeutic challenge in GIST therapy. Herein we evaluated the clinical impact of microRNAs in imatinib-treated GISTs. Methods: The expression levels of microRNAs were quantified using microarray and RT–qPCR in GIST specimens from patients treated with neoadjuvant imatinib. The functional roles of miR-125a-5p and PTPN18 were evaluated in GIST cells. PTPN18 expression was quantified by western blotting in GIST samples. Results: We showed that overexpression levels of miR-125a-5p and miR-107 were associated with imatinib resistance in GIST specimens. Functionally, miR-125a-5p expression modulated imatinib sensitivity in GIST882 cells with a homozygous KIT mutation but not in GIST48 cells with double KIT mutations. Overexpression of miR-125a-5p suppressed PTPN18 expression, and silencing of PTPN18 expression increased cell viability in GIST882 cells upon imatinib treatment. PTPN18 protein levels were significantly lower in the imatinib-resistant GISTs and inversely correlated with miR-125a-5p. Furthermore, several microRNAs were significantly associated with metastasis, KIT mutational status and survival. Conclusions: Our findings highlight a novel functional role of miR-125a-5p on imatinib response through PTPN18 regulation in GIST. PMID:25349971

  13. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling

    PubMed Central

    Nandety, Raja Sekhar; Sharif, Almas; Kamita, Shizuo G.; Ramasamy, Asokan; Falk, Bryce W.

    2015-01-01

    The glassy-winged sharpshooter (GWSS) Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce’s disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs. PMID:26440407

  14. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling.

    PubMed

    Nandety, Raja Sekhar; Sharif, Almas; Kamita, Shizuo G; Ramasamy, Asokan; Falk, Bryce W

    2015-01-01

    The glassy-winged sharpshooter (GWSS) Homalodisca vitripennis (Hemiptera: Cicadellidae), is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs. PMID:26440407

  15. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites

    PubMed Central

    Ghosal, Suman; Saha, Shekhar; Das, Shaoli; Sen, Rituparno; Goswami, Swagata; Jana, Siddhartha S.; Chakrabarti, Jayprokas

    2016-01-01

    Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3′ end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3′ end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3′ UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites. PMID:26923536

  16. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation.

    PubMed

    Haar, Janina; Contrant, Maud; Bernhardt, Katharina; Feederle, Regina; Diederichs, Sven; Pfeffer, Sébastien; Delecluse, Henri-Jacques

    2016-02-18

    The Epstein-Barr virus (EBV) transforms B cells by expressing latent proteins and the BHRF1 microRNA cluster. MiR-BHRF1-3, its most transforming member, belongs to the recently identified group of weakly expressed microRNAs. We show here that miR-BHRF1-3 displays an unusually low propensity to form a stem-loop structure, an effect potentiated by miR-BHRF1-3's proximity to the BHRF1 polyA site. Cloning miR-BHRF1-2 or a cellular microRNA, but not a ribozyme, 5' of miR-BHRF1-3 markedly enhanced its expression. However, a virus carrying mutated miR-BHRF1-2 seed regions expressed miR-BHRF1-3 at normal levels and was fully transforming. Therefore, miR-BHRF1-2's role during transformation is independent of its seed regions, revealing a new microRNA function. Increasing the distance between miR-BHRF1-2 and miR-BHRF1-3 in EBV enhanced miR-BHRF1-3's expression but decreased its transforming potential. Thus, the expression of some microRNAs must be restricted to a narrow range, as achieved by placing miR-BHRF1-3 under the control of miR-BHRF1-2. PMID:26635399

  17. Diagnostic value of a plasma microRNA signature in gastric cancer: a microRNA expression analysis

    PubMed Central

    Zhou, Xin; Zhu, Wei; Li, Hai; Wen, Wei; Cheng, Wenfang; Wang, Fang; Wu, Yinxia; Qi, Lianwen; Fan, Yong; Chen, Yan; Ding, Yin; Xu, Jing; Qian, Jiaqi; Huang, Zebo; Wang, Tongshan; Zhu, Danxia; Shu, Yongqian; Liu, Ping

    2015-01-01

    The differential expression of microRNAs (miRNAs) in plasma of gastric cancer (GC) patients may serve as a diagnostic biomarker. A total of 33 miRNAs were identified through the initial screening phase (3 GC pools vs. 1 normal control (NC) pool) using quantitative reverse transcription polymerase chain reaction (qRT-PCR) based Exiqon panel (miRCURY-Ready-to-Use-PCR-Human-panel-I + II-V1.M). By qRT-PCR, these miRNAs were further assessed in training (30 GC VS. 30 NCs) and testing stages (71 GC VS. 61 NCs). We discovered a plasma miRNA signature including five up-regulated miRNAs (miR-185, miR-20a, miR-210, miR-25 and miR-92b), and this signature was evaluated to be a potential diagnostic marker of GC. The areas under the receiver operating characteristic curve of the signature were 0.86, 0.74 and 0.87 for the training, testing and the external validation stages (32 GC VS. 18 NCs), respectively. The five miRNAs were consistently dysregulated in GC tissues (n = 30). Moreover, miR-185 was decreased while miR-20a, miR-210 and miR-92b were increased in arterial plasma (n = 38). However, none of the miRNAs in the exosomes showed different expression between 10 GC patients and 10 NCs. In conclusion, we identified a five-miRNA signature in the peripheral plasma which could serve as a non-invasive biomarker in detection of GC. PMID:26059512

  18. Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    PubMed Central

    Udensi, Udensi K.; Cohly, Hari H.P.; Graham-Evans, Barbara E.; Ndebele, Kenneth; Garcia-Reyero, Natàlia; Nanduri, Bindu; Tchounwou, Paul B.; Isokpehi, Raphael D.

    2011-01-01

    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up-regulated genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase family 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 (Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes. PMID:21461292

  19. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression

    PubMed Central

    Edmonds, Mick D.; Hurst, Douglas R.; Vaidya, Kedar S.; Stafford, Lewis J.; Chen, Dongquan; Welch, Danny R.

    2009-01-01

    Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis of multiple tumor types without blocking tumorigenesis. BRMS1 forms complexes with SIN3, histone deacetylases and selected transcription factors that modify metastasis-associated gene expression (e.g., EGFR, OPN, PI4P5K1A, PLAU). microRNA (miRNA) are a recently discovered class of regulatory, noncoding RNA, some of which are involved in neoplastic progression. Based on these data, we hypothesized that BRMS1 may also exert some of its antimetastatic effects by regulating miRNA expression. Micro-RNA arrays were done comparing small RNAs that were purified from metastatic MDA-MB-231 and MDA-MB-435 and their non-metastatic BRMS1-transfected counterparts. miRNA expression changed by BRMS1 were validated using SYBR Green RT-PCR. BRMS1 decreased metastasis-promoting (miR-10b, -373 and -520c) miRNA, with corresponding reduction of their downstream targets (e.g., RhoC which is downstream of miR-10b). Concurrently, BRMS1 increased expression of metastasis suppressing miRNA (miR-146a, -146b and -335). Collectively, these data show that BRMS1 coordinately regulates expression of multiple metastasis-associated miRNA and suggests that recruitment of BRMS1-containing SIN3:HDAC complexes to, as yet undefined, miRNA promoters might be involved in the regulation of cancer metastasis. PMID:19585508

  20. Differential Expression of MicroRNA Species in Human Uterine Leiomyoma versus Normal Myometrium

    PubMed Central

    Marsh, Erica E.; Lin, Zhihong; Yin, Ping; Milad, Magdy; Chakravarti, Debabrata; Bulun, Serdar E.

    2009-01-01

    Objective To determine whether microRNAs are differentially expressed in human leiomyoma versus matched myometrial tissue. Design Microarray with real-time PCR validation. Setting Academic medical center Patients Premenopausal subjects (n=13), who were undergoing hysterectomies for leiomyoma-related symptoms. Interventions none Main Outcome Measure Statistically differential expression of microRNAs in leiomyoma versus myometrium. Results Forty-six miRNA species were differentially expressed in leiomyoma versus normal myometrium with p-values <0.01. Of these, 19 were overexpressed whereas 27 were downregulated in leiomyomas. The fold changes ranged from 1.2 to 11.8. These findings were confirmed using real time RT-PCR for selected miRNAs (miRNAs 21, 34a, 125b, 139 and 323). Conclusions Our findings indicate that miRNAs are differentially expressed between human leiomyoma and matched myometrium. Given this differential expression, miRNAs may play a role in the pathogenesis of uterine leiomyoma and may serve as future therapeutic targets for the treatment of these tumors. PMID:17765232

  1. Altered Gene Expression Associated with microRNA Binding Site Polymorphisms

    PubMed Central

    Võsa, Urmo; Esko, Tõnu; Kasela, Silva; Annilo, Tarmo

    2015-01-01

    Allele-specific gene expression associated with genetic variation in regulatory regions can play an important role in the development of complex traits. We hypothesized that polymorphisms in microRNA (miRNA) response elements (MRE-SNPs) that either disrupt a miRNA binding site or create a new miRNA binding site can affect the allele-specific expression of target genes. By integrating public expression quantitative trait locus (eQTL) data, miRNA binding site predictions, small RNA sequencing, and Argonaute crosslinking immunoprecipitation (AGO-CLIP) datasets, we identified genetic variants that can affect gene expression by modulating miRNA binding efficiency. We also identified MRE-SNPs located in regions associated with complex traits, indicating possible causative mechanisms associated with these loci. The results of this study expand the current understanding of gene expression regulation and help to interpret the mechanisms underlying eQTL effects. PMID:26496489

  2. The altered expression of inflammation-related microRNAs with microRNA-155 expression correlates with Th17 differentiation in patients with acute coronary syndrome.

    PubMed

    Yao, Rui; Ma, Yulan; Du, Youyou; Liao, Mengyang; Li, Huanhuan; Liang, Wei; Yuan, Jing; Ma, Zhijun; Yu, Xian; Xiao, Hong; Liao, Yuhua

    2011-11-01

    MicroRNAs (miRNAs) are a novel class of small, non-coding RNAs that play a significant role in both inflammatory and cardiovascular diseases. Immune cells, especially T helper (Th) cells, are critical in the development of atherosclerosis and the onset of acute coronary syndrome (ACS). To assess whether inflammation-related miRNAs (such as miR-155, 146a, 21, 125a-5p, 125b, 31) are involved in the imbalance of Th cell subsets in patients with ACS, we measured the expression of related miRNAs in patients with acute myocardial infarction (AMI), unstable angina (UA), stable angina (SA) and chest pain syndrome (CPS); analyzed the relationship between miRNA expression and the frequency of Th cell subsets; and observed the co-expression of miR-155 and IL-17A in peripheral blood mononuclear cells (PBMCs) of patients with ACS. The results showed that the expression of miR-155 in the PBMCs of patients with ACS was decreased by approximately 60%, while the expression of both miR-21 and miR-146a was increased by approximately twofold. The expression patterns of miRNAs in plasma correlated with those in PBMCs, except for miR-21, which was increased by approximately sixfold in the AMI group and showed no significant difference between the UA group and the CPS group. We also found that the expression of miR-155 inversely correlated with the frequency of Th17 cells (r=-0.896, P<0.01) and that miR-155 was co-expressed with IL-17A in patients with ACS. In conclusion, our study revealed the expression patterns of inflammation-related miRNAs in patients with ACS and found that miR-155 may be associated with Th17 cell differentiation. PMID:21804579

  3. Systematic enrichment analysis of microRNA expression profiling studies in endometriosis

    PubMed Central

    Wei, Shiyang; Xu, Hong; Kuang, Yan

    2015-01-01

    Objective(s): The purpose of this study was to conduct a meta-analysis on human microRNAs (miRNAs) expression data of endometriosis tissue profiles versus those of normal controls and to identify novel putative diagnostic markers. Materials and Methods: PubMed, Embase, Web of Science, Ovid Medline were used to search for endometriosis miRNA expression profiling studies of endometriosis. The miRNAs expression data were extracted, and study quality of each article was assessed. The frequently reported miRNAs with consistent regulation were screened out by a meta-profiling algorithm. The putative targets of consistently expressed miRNAs were predicted by using four target prediction tools (TargetScan, PicTar, miRanda, miRDB), and gene ontology pathway enrichment analysis (KEGG and Panther pathways) of the miRNA targets were carried out with GeneCodis web tool. Results: A total of 194 related literatures were retrieved in four databases. One hundred and thirty four differentially expressed miRNAs were found in the 12 microRNA expression profiling studies that compared endometriosis tissues with normal tissues, with 28 miRNAs reported in at least two studies, and 9882 candidate genes retrieved for 13 consistently expressed miRNAs. Kyoto encyclopedia of genes and genomes (KEGG) and Panther pathways enrichment analysis showed that endometriosis related differently expressed miRNA targets were mainly enriched in cancer, endocytosis, Wnt signalling pathway, and angiogenesis. It showed that these differently expressed miRNAs and gene are potential biomarkers of endometriosis. Conclusion: miRNAs appear to be potent regulators of gene expression in endometriosis and its associated reproductive disorders, raising the prospect of using miRNAs as biomarkers and therapeutic agent in endometriosis. PMID:26124927

  4. microRNA Expression in Rat Apical Periodontitis Bone Lesion

    PubMed Central

    Gao, Bo; Zheng, Liwei

    2013-01-01

    Apical periodontitis, dominated by dense inflammatory infiltrates and increased osteoclast activities, can lead to alveolar bone destruction and tooth loss. It is believed that miRNA participates in regulating various biological processes, osteoclastogenesis included. This study aims to investigate the differential expression of miRNAs in rat apical periodontitis and explore their functional target genes. Microarray analysis was used to identify differentially expressed miRNAs in apical periodontitis. Bioinformatics technique was applied for predicting the target genes of differentially expressed miRNAs and their biological functions. The result provided us with an insight into the potential biological effects of the differentially expressed miRNAs and showed particular enrichment of target genes involved in the MAPK signaling pathways. These findings may highlight the intricate and specific roles of miRNA in inflammation and osteoclastogenesis, both of which are key aspects of apical periodontitis, thus contributing to the future investigation into the etiology, underlying mechanism and treatment of apical periodontitis. PMID:26273501

  5. A signature microRNA expression profile for the cellular response to thermal stress

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Roth, Caleb C.; Ketchum, Norma; Ibey, Bennett L.; Waterworth, Angela; Suarez, Maria; Roach, William P.

    2009-02-01

    Recently, an extensive layer of intra-cellular signals was discovered that was previously undetected by genetic radar. It is now known that this layer consists primarily of a class of short noncoding RNA species that are referred to as microRNAs (miRNAs). MiRNAs regulate protein synthesis at the post-transcriptional level, and studies have shown that they are involved in many fundamental cellular processes. In this study, we hypothesized that miRNAs may be involved in cellular stress response mechanisms, and that cells exposed to thermal stress may exhibit a signature miRNA expression profile indicative of their functional involvement in such mechanisms. To test our hypothesis, human dermal fibroblasts were exposed to an established hyperthermic protocol, and the ensuing miRNA expression levels were evaluated 4 hr post-exposure using microRNA microarray gene chips. The microarray data shows that 123 miRNAs were differentially expressed in cells exposed to thermal stress. We collectively refer to these miRNAs as thermalregulated microRNAs (TRMs). Since miRNA research is in its infancy, it is interesting to note that only 27 of the 123 TRMs are currently annotated in the Sanger miRNA registry. Prior to publication, we plan to submit the remaining novel 96 miRNA gene sequences for proper naming. Computational and thermodynamic modeling algorithms were employed to identify putative mRNA targets for the TRMs, and these studies predict that TRMs regulate the mRNA expression of various proteins that are involved in the cellular stress response. Future empirical studies will be conducted to validate these theoretical predictions, and to further examine the specific role that TRMs play in the cellular stress response.

  6. Role of microRNAs on HLA-G expression in human tumors.

    PubMed

    Seliger, Barbara

    2016-09-01

    The non-classical human leukocyte antigen G (HLA-G) known to protect the embryo from immune cell destruction leading to fetal maternal tolerance is often overexpressed in human tumors of distinct origin thereby leading to an escape from T and NK cell-mediated immune response. The molecular mechanisms controlling HLA-G expression are complex and involve deregulation at the transcriptional, epigenetic and posttranscriptional level. Using bioinformatics and high through put analyses a number of microRNAs (miRs) have been identified, which were able to bind to the 3' UTR of HLA-G with distinct efficacy. This caused by a downregulation of HLA-G surface expression, which was associated with an increased immune response thereby overcoming the HLA-G-mediated immune tolerance. Reduced expression of HLA-G-specific miRs was associated with tumor progression and metastases and appear to affect directly or indirectly tumor characteristics, such as cell proliferation, apoptosis and resistance to chemotherapy. Recently, an interaction between long non-coding RNAs, such as HOTAIR, and HLA-G-specific miRs has also been demonstrated. This review summarizes the control of HLA-G expression and function by microRNAs as well as its clinical significance. PMID:27142884

  7. Optimal consistency in microRNA expression analysis using reference-gene-based normalization.

    PubMed

    Wang, Xi; Gardiner, Erin J; Cairns, Murray J

    2015-05-01

    Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression. PMID:25797570

  8. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  9. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    SciTech Connect

    Cameron, Jennifer E. Fewell, Claire Yin, Qinyan McBride, Jane Wang Xia Lin Zhen

    2008-12-20

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.

  10. Investigative and extrapolative role of microRNAs' genetic expression in breast carcinoma.

    PubMed

    Usmani, Ambreen; Shoro, Amir Ali; Shirazi, Bushra; Memon, Zahida

    2016-01-01

    MicroRNAs (miRs) are non-coding ribonucleic acids consisting of about 18-22 nucleotide bases. Expression of several miRs can be altered in breast carcinomas in comparison to healthy breast tissue, or between various subtypes of breast cancer. These are regulated as either oncogene or tumor suppressors, this shows that their expression is misrepresented in cancers. Some miRs are specifically associated with breast cancer and are affected by cancer-restricted signaling pathways e.g. downstream of estrogen receptor-α or HER2/neu. Connection of multiple miRs with breast cancer, and the fact that most of these post transcript structures may transform complex functional networks of mRNAs, identify them as potential investigative, extrapolative and predictive tumor markers, as well as possible targets for treatment. Investigative tools that are currently available are RNA-based molecular techniques. An additional advantage related to miRs in oncology is that they are remarkably stable and are notably detectable in serum and plasma. Literature search was performed by using database of PubMed, the keywords used were microRNA (52 searches) AND breast cancer (169 searches). PERN was used by database of Bahria University, this included literature and articles from international sources; 2 articles from Pakistan on this topic were consulted (one in international journal and one in a local journal). Of these, 49 articles were shortlisted which discussed relation of microRNA genetic expression in breast cancer. These articles were consulted for this review. PMID:27375730

  11. Dose-dependent microRNA expression in human fibroblasts after LET irradiation

    NASA Astrophysics Data System (ADS)

    Maes, Olivier Charles; An, Jin; Wu, Honglu; Wang, Eugenia; Sarojini, Harshini

    Humans are exposed to various levels of radiation during spaceflight voyages. In cells, exposure to linear energy transfer (LET) radiation causes cellular damage and triggers responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small ( 22- nucleotide) non-coding RNAs, which regulate gene expression generally by either degrading the messager RNA or inhibiting translation. Their implication in specific cellular response pathways is largely unknown. Here, we investigated the role of radiation-dependent changes in miRNA expression patterns after low (0.1 Gy) and high (2.0 Gy) doses of X-ray exposure in human fibroblasts, and correlated their predicted targets with the cells' genomics and proteomics profiles. A differential miRNA expression pattern was observed between low and high doses of irradiation, with early (0.5 and 2 hrs) significant changes mostly after a high dose and, late (6 and 24 hrs) significant changes after both low and high doses of irradiation. The results suggest that miRNAs may act as ‘hub' regulators of signaling pathways initially to derepress their target genes for cellular responses such as DNA repair, followed by up-regulation to suppress apoptosis, and finally down-regulation to reestablish cellular normalcy. Functional attributions are made to key microRNAs, potentially regulating known radiation biomarkers as well as radiation-responsive mechanisms of cell cycle checkpoint, proliferation and apoptosis. In summary, radiation-responsive miRNAs may have functional roles in the regulation of cell death or survival, and may become biodosimeters for radiation dose exposure. Specific microRNAs may exert a hormetic effect after low-dose radiation, and prove useful in future applications for radiation adaptive therapy and in the prevention and treatment of radiation-induced damage. The confirmation of specific miRNAs as biodosimetry markers with therapeutic applications will be necessary in future functional

  12. The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression

    PubMed Central

    Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David

    2015-01-01

    Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022

  13. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2

  14. MicroRNA-381 Regulates Chondrocyte Hypertrophy by Inhibiting Histone Deacetylase 4 Expression.

    PubMed

    Chen, Weishen; Sheng, Puyi; Huang, Zhiyu; Meng, Fangang; Kang, Yan; Huang, Guangxin; Zhang, Zhiqi; Liao, Weiming; Zhang, Ziji

    2016-01-01

    Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3'-untranslated region (3'-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration. PMID:27563877

  15. Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers.

    PubMed

    Kataoka, Keisuke; Shiraishi, Yuichi; Takeda, Yohei; Sakata, Seiji; Matsumoto, Misako; Nagano, Seiji; Maeda, Takuya; Nagata, Yasunobu; Kitanaka, Akira; Mizuno, Seiya; Tanaka, Hiroko; Chiba, Kenichi; Ito, Satoshi; Watatani, Yosaku; Kakiuchi, Nobuyuki; Suzuki, Hiromichi; Yoshizato, Tetsuichi; Yoshida, Kenichi; Sanada, Masashi; Itonaga, Hidehiro; Imaizumi, Yoshitaka; Totoki, Yasushi; Munakata, Wataru; Nakamura, Hiromi; Hama, Natsuko; Shide, Kotaro; Kubuki, Yoko; Hidaka, Tomonori; Kameda, Takuro; Masuda, Kyoko; Minato, Nagahiro; Kashiwase, Koichi; Izutsu, Koji; Takaori-Kondo, Akifumi; Miyazaki, Yasushi; Takahashi, Satoru; Shibata, Tatsuhiro; Kawamoto, Hiroshi; Akatsuka, Yoshiki; Shimoda, Kazuya; Takeuchi, Kengo; Seya, Tsukasa; Miyano, Satoru; Ogawa, Seishi

    2016-06-16

    Successful treatment of many patients with advanced cancer using antibodies against programmed cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has highlighted the critical importance of PD-1/PD-L1-mediated immune escape in cancer development. However, the genetic basis for the immune escape has not been fully elucidated, with the exception of elevated PD-L1 expression by gene amplification and utilization of an ectopic promoter by translocation, as reported in Hodgkin and other B-cell lymphomas, as well as stomach adenocarcinoma. Here we show a unique genetic mechanism of immune escape caused by structural variations (SVs) commonly disrupting the 3' region of the PD-L1 gene. Widely affecting multiple common human cancer types, including adult T-cell leukaemia/lymphoma (27%), diffuse large B-cell lymphoma (8%), and stomach adenocarcinoma (2%), these SVs invariably lead to a marked elevation of aberrant PD-L1 transcripts that are stabilized by truncation of the 3'-untranslated region (UTR). Disruption of the Pd-l1 3'-UTR in mice enables immune evasion of EG7-OVA tumour cells with elevated Pd-l1 expression in vivo, which is effectively inhibited by Pd-1/Pd-l1 blockade, supporting the role of relevant SVs in clonal selection through immune evasion. Our findings not only unmask a novel regulatory mechanism of PD-L1 expression, but also suggest that PD-L1 3'-UTR disruption could serve as a genetic marker to identify cancers that actively evade anti-tumour immunity through PD-L1 overexpression. PMID:27281199

  16. Expression of microRNAs in HPV negative tonsil cancers and their regulation of PDCD4.

    PubMed

    Khoury, Samantha; Ahadi, Alireza; Zhang, Xiaoying; Tran, Nham

    2016-06-01

    Global rates of tonsil cancer have been increasing since the turn of the millennia, however we still have a limited understanding of the genes and pathways which control this disease. This array dataset which is linked to our publication (Zhang et al., 2015) describes the profiling of human miRNAs in tonsil and normal adjacent tissues. With this dataset, we identified a list of microRNA (miRNA) which were highly over represented in tonsil cancers and showed that several miRNAs were able to regulate the tumour suppressor PDCD4 in a temporal manner. The dataset has been deposited into Gene Expression Omnibus (GSE75630). PMID:27222808

  17. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations

    PubMed Central

    Louten, Jennifer; Beach, Michael; Palermino, Kristina; Weeks, Maria; Holenstein, Gabrielle

    2015-01-01

    MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus. PMID:26819546

  18. Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments.

    PubMed

    Ortman, Crystal L; Dittmar, Kimberly A; Witte, Pamela L; Le, Phong T

    2002-07-01

    Despite playing a critical role in the development of naive T cells, the thymus is involuted with age. Whether a single age-associated defect or multiple aberrations contribute to thymic involution remains controversial. Here, we determined molecular aberrations in the thymocyte and epithelium compartments of the aging thymus. We demonstrated that total thymocyte numbers declined with a stepwise kinetics; clear demarcations occurred at 1.5, 3, 12 and 22 months of age. By quantitative PCR, a 2.4-fold reduction in the copies of signal joint TCR-excised circle (sjTREC)/10(5) thymocytes was first detected at 3 months; no further reduction observed thereafter. Nevertheless, the combined reductions in thymocyte numbers and sjTREC/10(5) cells caused a 7-fold decrease in sjTREC/thymus by 3 months, 21-fold by 18 months and 72-fold by 22 months as compared to 1 month. We showed aberration in expression of E2A, a transcription regulator critical for TCR beta rearrangement. While E2A expression declined 3-fold by 3 months and 18-fold by 7 months, expression of LMO2, a negative regulator of E2A activities, increased 5-fold by 18 months. Interestingly, expression of pre-T alpha and its transcriptional regulator HEB were not reduced with age. Furthermore, keratin-8 expression, specific for cortical thymic epithelium, declined 3-fold by 7 months and remained stable thereafter. In contrast, Foxn1 expression was reduced 3-fold by 3 months, 16-fold by 12 months and 37-fold by 18 months. IL-7 expression was not reduced until 7 months and reached 15-fold reduction by 22 months. Thus, the data demonstrate that thymic involution results not from a single defect, but culminates from an array of molecular aberrations in both the developing thymocytes and thymic epithelials. PMID:12096041

  19. Hierarchical Generative Biclustering for MicroRNA Expression Analysis

    NASA Astrophysics Data System (ADS)

    Caldas, José; Kaski, Samuel

    Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous and yet flexible, and computations feasible. The formulation additionally offers a natural information retrieval relevance measure that allows relating samples in a principled manner. We show that the model outperforms other four biclustering procedures in a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study that highlights the potential and novel role of miR-224 in the association between melanoma and non-Hodgkin lymphoma. Software is publicly available.

  20. Hierarchical generative biclustering for microRNA expression analysis.

    PubMed

    Caldas, José; Kaski, Samuel

    2011-03-01

    Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous yet flexible and computations feasible. The model can additionally be used in information retrieval for relating relevant samples. We show that the model outperforms four other biclustering procedures on a large miRNA data set. We also demonstrate the model's added interpretability and information retrieval capability in a case study. Software is publicly available at http://research.ics.tkk.fi/mi/software/treebic/. PMID:21385032

  1. MicroRNA-33 suppresses CCL2 expression in chondrocytes

    PubMed Central

    Wei, Meng; Xie, Qingyun; Zhu, Jun; Wang, Tao; Zhang, Fan; Cheng, Yue; Guo, Dongyang; Wang, Ying; Mo, Liweng; Wang, Shuai

    2016-01-01

    CCL2-mediated macrophage infiltration in articular tissues plays a pivotal role in the development of the osteoarthritis (OA). miRNAs regulate the onset and progression of diseases via controlling the expression of a series of genes. How the CCL2 gene was regulated by miRNAs was still not fully elucidated. In the present study, we demonstrated that the binding sites of miR-33 in the 3′UTR of CCL2 gene were conserved in human, mouse and rat species. By performing gain- or loss-of-function studies, we verified that miR-33 suppressed CCL2 expression in the mRNA and protein levels. We also found that miR-33 suppressed the CCL2 levels in the supernatant of cultured primary mouse chondrocytes. With reporter gene assay, we demonstrated that miR-33 targeted at AAUGCA in the 3′UTR of CCL2 gene. In transwell migration assays, we demonstrated that the conditional medium (CM) from miR-33 deficient chondrocytes potentiated the monocyte chemotaxis in a CCL2 dependent manner. Finally, we demonstrated that the level of miR-33 was decreased, whereas the CCL2 level was increased in the articular cartilage from the OA patients compared with the control group. In summary, we identified miR-33 as a novel suppressor of CCL2 in chondrocytes. The miR-33/CCL2 axis in chondrocytes regulates monocyte chemotaxis, providing a potential mechanism of macrophage infiltration in OA. PMID:27129293

  2. Dysregulated Serum MicroRNA Expression Profile and Potential Biomarkers in Hepatitis C Virus-infected Patients

    PubMed Central

    Zhang, Shaobo; Ouyang, Xiaoxi; Jiang, Xin; Gu, Dayong; Lin, Yulong; Kong, S.K.; Xie, Weidong

    2015-01-01

    Objectives: Circulating microRNAs (miRNAs) play critical roles in pathogen-host interactions. Aberrant miRNA expression profiles might have specific characteristics for virus strains, and could serve as noninvasive biomarkers for screening and diagnosing infectious diseases. In this study, we aimed to find new potential miRNA biomarkers of hepatitis C virus (HCV) infection. Methods: Expression levels of broad-spectrum miRNAs in serum samples from 10 patients with HCV viremia and 10 healthy volunteers were analyzed using miRNA PCR arrays. Subsequently, the differential expression of four selected miRNAs (miR-122, miR-134, miR-424-3p, and miR-629-5p) was verified by qRT-PCR in the serum of 39 patients compared with that in 29 healthy controls. Receiver operating characteristic (ROC) curve analysis was performed to evaluate their potential for the diagnosis of HCV infection. Results: miRNA PCR array assays revealed differential expression of 106 miRNAs in sera of HCV patients compared with that in healthy controls. Serum hsa-miR-122, miR-134, miR-424-3p, and miR-629-5p were well identified. The ROC curves showed that miR-122, miR-134, miR-424-3p, and miR-629-5p could distinguish HCV patients with preferable sensitivity and specificity. In addition, Correlation analysis indicated serum miR-122 expression was positive correlation with ALT/AST levels. Functional analysis of target proteins of these miRNAs indicated the involvement of viral replication, inflammation, and cell proliferation. Conclusion: HCV patients have a broad 'fingerprint' profile with dysregulated serum miRNAs compared with that in healthy controls. Among these, serum hsa-miR-122, miR-134, miR-424-3p, and miR-629-5p are identified as promising indication factors of the serum miRNA profile of HCV infection. Particularly, miR-122 could be one of serum biomarkers for early pathological process of HCV. However, more miRNA biomarkers and biological functions of these miRNAs require further investigation

  3. Profiling analysis of circulating microRNA expression in cervical cancer

    PubMed Central

    NAGAMITSU, YUZO; NISHI, HIROTAKA; SASAKI, TORU; TAKAESU, YOTARO; TERAUCHI, FUMITOSHI; ISAKA, KEIICHI

    2016-01-01

    MicroRNA (miRNA) expression is altered in cancer cells and is associated with the development and progression of various types of cancer. Accordingly, miRNAs may serve as diagnostic or prognostic biomarkers in cancer patients. In this study, we attempted to analyze circulating exosomal miRNA in patients with cervical cancer. Total RNA was extracted from the serum of healthy subjects, subjects with cervical intraepithelial neoplasia (CIN) and patients with cervical cancer. We first investigated miRNA expression profiles in 6 serum samples from healthy subjects and patients with cervical cancer using the miRCURY LNA microRNA array. miRNAs with significant differences in expression were validated in a larger sample set by quantitative reverse transcription-polymerase chain reaction, using TaqMan gene expression assays. The results of the miRCURY LNA microRNA array indicated that 6 of 1,223 miRNAs found in serum samples from cervical cancer patients and normal controls exhibited a >3.0-fold change in expression level in subjects with cervical cancer, with a P-value of <0.01. In a validation set (n=131) that investigated the expression of 4 of the 6 miRNAs (miR-483-5p, miR-1246, miR-1275 and miR-1290), miR-1290 was found to have significantly higher expression levels in cervical cancer samples (n=45) compared with control samples (n=31). We also found that the median levels of these miRNAs were significantly higher in subjects with cervical cancer (n=45) compared with those in subjects with CIN (n=55). Circulating miRNAs were not correlated with clinicopathological parameters. However, receiver operating characteristic curve analysis suggested that these serum miRNAs may be useful diagnostic markers in cervical cancer. The expression of circulating miR-1290 was significantly higher in the blood of cervical cancer patients compared with that in controls and may thus serve as a useful biomarker in cervical cancer diagnosis. However, larger studies are required to fully

  4. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential*

    PubMed Central

    Wang, Wei; Luo, Yun-ping

    2015-01-01

    MicroRNAs (miRs) are small single-stranded RNA molecules, which function as key negative regulators of post-transcriptional modulation in almost all biological processes. Abnormal expression of microRNAs has been observed in various types of cancer including breast cancer. Great efforts have been made to identify an association between microRNA expression profiles and breast cancer, and to understand the functional role and molecular mechanism of aberrant-expressed microRNAs. As research progressed, ‘oncogenic microRNAs’ and ‘tumor suppressive microRNAs’ became a focus of interest. The potential of candidate microRNAs from both intercellular (tissue) and extracellular (serum) sources for clinical diagnosis and prognosis was revealed, and treatments involving microRNA achieved some amazing curative effects in cancer disease models. In this review, advances from the most recent studies of microRNAs in one of the most common cancers, breast cancer, are highlighted, especially the functions of specifically selected microRNAs. We also assess the potential value of these microRNAs as diagnostic and prognostic markers, and discuss the possible development of microRNA-based therapies. PMID:25559952

  5. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition.

    PubMed

    Cava, Claudia; Bertoli, Gloria; Ripamonti, Marilena; Mauri, Giancarlo; Zoppis, Italo; Della Rosa, Pasquale Anthony; Gilardi, Maria Carla; Castiglioni, Isabella

    2014-01-01

    Defining the aggressiveness and growth rate of a malignant cell population is a key step in the clinical approach to treating tumor disease. The correct grading of breast cancer (BC) is a fundamental part in determining the appropriate treatment. Biological variables can make it difficult to elucidate the mechanisms underlying BC development. To identify potential markers that can be used for BC classification, we analyzed mRNAs expression profiles, gene copy numbers, microRNAs expression and their association with tumor grade in BC microarray-derived datasets. From mRNA expression results, we found that grade 2 BC is most likely a mixture of grade 1 and grade 3 that have been misclassified, being described by the gene signature of either grade 1 or grade 3. We assessed the potential of the new approach of integrating mRNA expression profile, copy number alterations, and microRNA expression levels to select a limited number of genomic BC biomarkers. The combination of mRNA profile analysis and copy number data with microRNA expression levels led to the identification of two gene signatures of 42 and 4 altered genes (FOXM1, KPNA4, H2AFV and DDX19A) respectively, the latter obtained through a meta-analytical procedure. The 42-based gene signature identifies 4 classes of up- or down-regulated microRNAs (17 microRNAs) and of their 17 target mRNA, and the 4-based genes signature identified 4 microRNAs (Hsa-miR-320d, Hsa-miR-139-5p, Hsa-miR-567 and Hsa-let-7c). These results are discussed from a biological point of view with respect to pathological features of BC. Our identified mRNAs and microRNAs were validated as prognostic factors of BC disease progression, and could potentially facilitate the implementation of assays for laboratory validation, due to their reduced number. PMID:24866763

  6. MicroRNA-30b-Mediated Regulation of Catalase Expression in Human ARPE-19 Cells

    PubMed Central

    Haque, Rashidul; Chun, Eugene; Howell, Jennifer C.; Sengupta, Trisha; Chen, Dan; Kim, Hana

    2012-01-01

    Background Oxidative injury to retinal pigment epithelium (RPE) and retinal photoreceptors has been linked to a number of retinal diseases, including age-related macular degeneration (AMD). Reactive oxygen species (ROS)-mediated gene expression has been extensively studied at transcriptional levels. Also, the post-transcriptional control of gene expression at the level of translational regulation has been recently reported. However, the microRNA (miRNA/miR)-mediated post-transcriptional regulation in human RPE cells has not been thoroughly looked at. Increasing evidence points to a potential role of miRNAs in diverse physiological processes. Methodology/Principal Findings We demonstrated for the first time in a human retinal pigment epithelial cell line (ARPE-19) that the post-transcriptional control of gene expression via miRNA modulation regulates human catalase, an important and potent component of cell's antioxidant defensive network, which detoxifies hydrogen peroxide (H2O2) radicals. Exposure to several stress-inducing agents including H2O2 has been reported to alter miRNA expression profile. Here, we demonstrated that a sublethal dose of H2O2 (200 µM) up-regulated the expression of miR-30b, a member of the miR-30 family, which inhibited the expression of endogenous catalase both at the transcript and protein levels. However, antisense (antagomirs) of miR-30b was not only found to suppress the miR-30b mimics-mediated inhibitions, but also to dramatically increase the expression of catalase even under an oxidant environment. Conclusions/Significance We propose that a microRNA antisense approach could enhance cytoprotective mechanisms against oxidative stress by increasing the antioxidant defense system. PMID:22880027

  7. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression

    PubMed Central

    Jeong, B-C; Kang, I-H; Hwang, Y-C; Kim, S-H; Koh, J-T

    2014-01-01

    Osteoblasts and adipocytes are differentiated from common mesenchymal stem cells (MSCs) in processes which are tightly controlled by various growth factors, signaling molecules, transcriptional factors and microRNAs. Recently, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) was identified as a critical regulator of MSC fate. In the present study, we aimed to identify some microRNAs (miR), which target COUP-TFII, and to determine the effects on MSCs fate. During osteoblastic or adipocytic differentiation from MSCs lineage cells, miR-194 expression was found to be reversal. In the cultures of mesenchymal C3H10T1/2 and primary bone marrow stromal cells, osteogenic stimuli increased miR-194 expression with accompanying decreases in COUP-TFII expression, whereas adipogenic stimuli reduced miR-194 expression with accompanying increases in COUP-TFII expression. A luciferase assay with COUP-TFII 3′-untranslated region (UTR) reporter plasmid, including the miR-194 binding sequences, showed that the introduction of miR-194 reduced the luciferase activity. However, it did not affect the activity of mutated COUP-TFII 3′-UTR reporter. Enforced expression of miR-194 significantly enhanced osteoblast differentiation, but inhibited adipocyte differentiation by decreasing COUP-TFII mRNA and protein levels. In contrast, inhibition of the endogenous miR-194 reduced matrix mineralization in the MSCs cultures, promoting the formation of lipid droplets by rescuing COUP-TFII expression. Furthermore, overexpression of COUP-TFII reversed the effects of miR-194 on the cell fates. Taken together, our results showed that miR-194 acts as a critical regulator of COUP-TFII, and can determinate the fate of MSCs to differentiate into osteoblasts and adipocytes. This suggests that miR-194 and COUP-TFII may be good target molecules for controlling bone and metabolic diseases. PMID:25412310

  8. Epigenetic Deregulation of MicroRNAs in Rhabdomyosarcoma and Neuroblastoma and Translational Perspectives

    PubMed Central

    Romania, Paolo; Bertaina, Alice; Bracaglia, Giorgia; Locatelli, Franco; Fruci, Doriana; Rota, Rossella

    2012-01-01

    Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed. PMID:23443118

  9. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations

    PubMed Central

    Dorrance, Adrienne M.; Liu, Shujun; Yuan, Weifeng; Becknell, Brian; Arnoczky, Kristy J.; Guimond, Martin; Strout, Matthew P.; Feng, Lan; Nakamura, Tatsuya; Yu, Li; Rush, Laura J.; Weinstein, Michael; Leone, Gustavo; Wu, Lizhao; Ferketich, Amy; Whitman, Susan P.; Marcucci, Guido; Caligiuri, Michael A.

    2006-01-01

    We previously identified a rearrangement of mixed-lineage leukemia (MLL) gene (also known as ALL-1, HRX, and HTRX1), consisting of an in-frame partial tandem duplication (PTD) of exons 5 through 11 in the absence of a partner gene, occurring in approximately 4%–7% of patients with acute myeloid leukemia (AML) and normal cytogenetics, and associated with a poor prognosis. The mechanism by which the MLL PTD contributes to aberrant hematopoiesis and/or leukemia is unknown. To examine this, we generated a mouse knockin model in which exons 5 through 11 of the murine Mll gene were targeted to intron 4 of the endogenous Mll locus. MllPTD/WT mice exhibit an alteration in the boundaries of normal homeobox (Hox) gene expression during embryogenesis, resulting in axial skeletal defects and increased numbers of hematopoietic progenitor cells. MllPTD/WT mice overexpress Hoxa7, Hoxa9, and Hoxa10 in spleen, BM, and blood. An increase in histone H3/H4 acetylation and histone H3 lysine 4 (Lys4) methylation within the Hoxa7 and Hoxa9 promoters provides an epigenetic mechanism by which this overexpression occurs in vivo and an etiologic role for MLL PTD gain of function in the genesis of AML. PMID:16981007

  10. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions.

    PubMed

    Creighton, Chad J; Nagaraja, Ankur K; Hanash, Samir M; Matzuk, Martin M; Gunaratne, Preethi H

    2008-11-01

    MicroRNAs are short (approximately 22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA-mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs-above what could be observed in randomly generated gene lists-suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net. PMID:18812437

  11. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma

    PubMed Central

    Anwar, Sumadi Lukman; Lehmann, Ulrich

    2014-01-01

    Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC. PMID:24976726

  12. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence.

    PubMed

    Noren Hooten, Nicole; Martin-Montalvo, Alejandro; Dluzen, Douglas F; Zhang, Yongqing; Bernier, Michel; Zonderman, Alan B; Becker, Kevin G; Gorospe, Myriam; de Cabo, Rafael; Evans, Michele K

    2016-06-01

    Metformin, an oral hypoglycemic agent, has been used for decades to treat type 2 diabetes mellitus. Recent studies indicate that mice treated with metformin live longer and have fewer manifestations of age-related chronic disease. However, the molecular mechanisms underlying this phenotype are unknown. Here, we show that metformin treatment increases the levels of the microRNA-processing protein DICER1 in mice and in humans with diabetes mellitus. Our results indicate that metformin upregulates DICER1 through a post-transcriptional mechanism involving the RNA-binding protein AUF1. Treatment with metformin altered the subcellular localization of AUF1, disrupting its interaction with DICER1 mRNA and rendering DICER1 mRNA stable, allowing DICER1 to accumulate. Consistent with the role of DICER1 in the biogenesis of microRNAs, we found differential patterns of microRNA expression in mice treated with metformin or caloric restriction, two proven life-extending interventions. Interestingly, several microRNAs previously associated with senescence and aging, including miR-20a, miR-34a, miR-130a, miR-106b, miR-125, and let-7c, were found elevated. In agreement with these findings, treatment with metformin decreased cellular senescence in several senescence models in a DICER1-dependent manner. Metformin lowered p16 and p21 protein levels and the abundance of inflammatory cytokines and oncogenes that are hallmarks of the senescence-associated secretory phenotype (SASP). These data lead us to hypothesize that changes in DICER1 levels may be important for organismal aging and to propose that interventions that upregulate DICER1 expression (e.g., metformin) may offer new pharmacotherapeutic approaches for age-related disease. PMID:26990999

  13. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato.

    PubMed

    Goetz, Marc; Hooper, Lauren C; Johnson, Susan D; Rodrigues, Julio Carlyle Macedo; Vivian-Smith, Adam; Koltunow, Anna M

    2007-10-01

    Fruit initiation in Arabidopsis (Arabidopsis thaliana) is generally repressed until fertilization occurs. However, mutations in AUXIN RESPONSE FACTOR8 (ARF8) uncouple fruit initiation from fertilization, resulting in the formation of seedless, parthenocarpic fruit. Here we induced parthenocarpy in wild-type Arabidopsis by introducing either the mutant genomic (g) Atarf8-4 sequence or gAtARF8:beta-glucuronidase translational fusion constructs by plant transformation. Silencing of endogenous AtARF8 transcription was not observed, indicating that the introduced, aberrant ARF8 transcripts were compromising the function of endogenous ARF8 and/or associated factors involved in suppressing fruit initiation. To analyze the role of ARF8 in tomato (Solanum lycopersicum) we initially emasculated 23 tomato cultivars to test for background parthenocarpy. Surprisingly, all had a predisposition to initiate fertilization-independent fruit growth. Expression of gAtarf8-4 in transgenic tomato ('Monalbo') resulted in a significant increase in the number and size of parthenocarpic fruit. Isolation of tomato ARF8 cDNA indicated significant sequence conservation with AtARF8. SlARF8 may therefore control tomato fruit initiation in a similar manner as AtARF8 does in Arabidopsis. Two SlARF8 cDNAs differing in size by 5 bp were found, both arising from the same gene. The smaller cDNA is a splice variant and is also present in Arabidopsis. We propose that low endogenous levels of the splice variant products might interfere with efficient formation/function of a complex repressing fruit initiation, thereby providing an explanation for the observed ovary expansion in tomato and also Arabidopsis after emasculation. Increasing the levels of aberrant Atarf8-4 transcripts may further destabilize formation/function of the complex in a dosage-dependent manner enhancing tomato parthenocarpic fruit initiation frequency and size and mimicking the parthenocarpic dehiscent silique phenotype found in

  14. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review)

    PubMed Central

    JIMÉNEZ-WENCES, HILDA; PERALTA-ZARAGOZA, OSCAR; FERNÁNDEZ-TILAPA, GLORIA

    2014-01-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53. PMID:24737381

  15. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review).

    PubMed

    Jiménez-Wences, Hilda; Peralta-Zaragoza, Oscar; Fernández-Tilapa, Gloria

    2014-06-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53. PMID:24737381

  16. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks

    PubMed Central

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Arun, Rajpranap; Santhakumar, Rajalakshmi; Kapadia, Nand Kishore; Kumar, Ravi; Verma, Rama Shanker

    2015-01-01

    Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2. PMID:26295583

  17. Expression Pattern of Inflammatory Response Genes and Their Regulatory MicroRNAs in Bovine Oviductal Cells in Response to Lipopolysaccharide: Implication for Early Embryonic Development

    PubMed Central

    Ibrahim, Sally; Salilew-Wondim, Dessie; Rings, Franca; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development. PMID:25764515

  18. Expression pattern of inflammatory response genes and their regulatory micrornas in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development.

    PubMed

    Ibrahim, Sally; Salilew-Wondim, Dessie; Rings, Franca; Hoelker, Michael; Neuhoff, Christiane; Tholen, Ernst; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2015-01-01

    In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC) were challenged with lipopolysaccharide (LPS) for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL1β) after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1) and insulin-like growth factor 2 (IGF2) was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1), stress response genes (SOD and CAT), mitochondrial activity, reactive oxygen species (ROS) accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development. PMID:25764515

  19. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    PubMed

    Vidyasekar, Prasanna; Shyamsunder, Pavithra; Arun, Rajpranap; Santhakumar, Rajalakshmi; Kapadia, Nand Kishore; Kumar, Ravi; Verma, Rama Shanker

    2015-01-01

    Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2. PMID:26295583

  20. The expression of MMP-14 and microRNA-410 in FFPE tissues of human endometrial adenocarcinoma.

    PubMed

    Rak, Beata; Garbicz, Filip; Paskal, Wiktor; Pełka, Kacper; Marczewska, Janina Maja; Wołosz, Dominika; Włodarski, Paweł

    2016-08-01

    Endometrial cancer (EC) is the most common gynecological malignancy in Europe and North America. It is classified into two types exhibiting different characteristics and prognosis. Type I is an estrogen-dependent tumor, histologically classified as low grade and low stage, usually with an excellent prognosis. Type II EC is unrelated to estrogen stimulation and is characterized by a poor prognosis. MicroRNAs (miRNAs, miRs) are small non-coding RNA polynucleotides that regulate gene expression post-transcriptionally. Various dysregulations in microRNA expression are often considered to have an impact on the diagnosis, prognosis and overall survival in patients diagnosed with different types of cancers. Recent data suggest that microRNAs play an important role in the pathogenesis of EC. The aim of the study was to evaluate the involvement of matrix metaloprotease 14 (MMP-14) and microRNA-410 in formation of the EC tumor. To this end expression of MMP-14 and microRNA-410 was assessed within the cancer, transient and healthy zones in the histological sections of tumours using immunohistochemical staining and laser capture microdissection (LCM) followed by a quantitative real-time PCR. The results revealed significantly higher expression of MMP-14 in the cancer tissue zone in comparison to the healthy tissue zone, as well as a lower expression of microRNA-410 in the cancer zone compared with the healthy zone. This reverse correlation may suggest a regulatory role of miRNA-410 in modulating levels of MMP-14 in EC. This is the first report on such regulation in human endometrial cancer. PMID:26842619

  1. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA (mRNA) and protein synthesis. Recent studies have shown that some miRNAs are involved in the progression of nasopharyngeal carcinoma (NPC). However, the aberrant miRNAs implicated in different clinical stages of NPC remain unknown and their functions have not been systematically studied. Methods In this study, miRNA microarray assay was performed on biopsies from different clinical stages of NPC. TargetScan was used to predict the target genes of the miRNAs. The target gene list was narrowed down by searching the data from the UniGene database to identify the nasopharyngeal-specific genes. The data reduction strategy was used to overlay with nasopharyngeal-specifically expressed miRNA target genes and complementary DNA (cDNA) expression data. The selected target genes were analyzed in the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The microRNA-Gene-Network was build based on the interactions of miRNAs and target genes. miRNA promoters were analyzed for the transcription factor (TF) binding sites. UCSC Genome database was used to construct the TF-miRNAs interaction networks. Results Forty-eight miRNAs with significant change were obtained by Multi-Class Dif. The most enriched GO terms in the predicted target genes of miRNA were cell proliferation, cell migration and cell matrix adhesion. KEGG analysis showed that target genes were significantly involved in adherens junction, cell adhesion molecules, p53 signalling pathway et al. Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-29a/c, miR-34b, miR-34c-3p, miR-34c-5p, miR-429, miR-203, miR-222, miR-1/206, miR-141, miR-18a/b, miR-544, miR-205 and miR-149 may play important roles on the development of NPC. We proposed an integrative strategy for identifying the miRNA-mRNA regulatory modules and

  2. Dysregulated expression of microRNAs and mRNAs in myocardial infarction

    PubMed Central

    Wang, Yaping; Pan, Xiaohong; Fan, Youqi; Hu, Xinyang; Liu, Xianbao; Xiang, Meixiang; Wang, Jian’an

    2015-01-01

    Acute myocardial infarction (AMI) is a major cause of mortality in the general population. However, the molecular phenotypes and therapeutic targets of AMI patients remain unclear. By profiling genome-wide transcripts and microRNAs (miRNAs) in a cohort of 23 AMI patients and 23 non-AMI patients, we found 218 dysregulated genes identified in the infarcted heart tissues from AMI patients relative to non-AMI controls. Pathway enrichment analysis of the dysregulated genes pointed to cell signaling/communication, cell/organism defense and cell structure/motility. We next compared the expression profiles of potential regulating miRNAs, suggesting that dysregulation of a number of AMI-associated genes (e.g., IL12A, KIF1A, HIF1α and CDK13) may be attributed to the dysregulation of their respective regulating miRNAs. One potentially pathogenic miRNA-mRNA pair, miR-210-HIF1α, was confirmed in a mouse model of myocardial infarction (MI). Inhibition of miR-210 expression improved the survival and cardiac function of MI mice. In conclusion, we presented the pathologic relationships between miRNAs and their gene targets in AMI. Such deregulated microRNAs and mRNAs like miR-210 serve as novel therapeutic targets of AMI. PMID:26807177

  3. MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression.

    PubMed

    Hu, Ruozhen; Huffaker, Thomas B; Kagele, Dominique A; Runtsch, Marah C; Bake, Erin; Chaudhuri, Aadel A; Round, June L; O'Connell, Ryan M

    2013-06-15

    Th17 cells are central to the pathogenesis of autoimmune disease, and recently specific noncoding microRNAs have been shown to regulate their development. However, it remains unclear whether microRNAs are also involved in modulating Th17 cell effector functions. Consequently, we examined the role of miR-155 in differentiated Th17 cells during their induction of experimental autoimmune encephalomyelitis. Using adoptive transfer experiments, we found that highly purified, myelin oligodendrocyte glycoprotein Ag-specific Th17 cells lacking miR-155 were defective in their capacity to cause experimental autoimmune encephalomyelitis. Gene expression profiling of purified miR-155(-/-)IL-17F(+) Th17 cells identified a subset of effector genes that are dependent on miR-155 for their proper expression through a mechanism involving repression of the transcription factor Ets1. Among the genes reduced in the absence of miR-155 was IL-23R, resulting in miR-155(-/-) Th17 cells being hyporesponsive to IL-23. Taken together, our study demonstrates a critical role for miR-155 in Th17 cells as they unleash autoimmune inflammation and finds that this occurs through a signaling network involving miR-155, Ets1, and the clinically relevant IL-23-IL-23R pathway. PMID:23686497

  4. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers.

    PubMed

    Wang, Fan; Liu, Wei; Jin, Yihe; Wang, Faqi; Ma, Junsheng

    2015-01-01

    Perfluorooctane sulfonate (PFOS) is an animal carcinogen. However, the underlying mechanism in cancer initiation is still largely unknown. Recently identified microRNAs (miRNAs) may play an important role in toxicant exposure and in the process of toxicant-induced tumorigenesis. We used PFOS to investigate PFOS-induced changes in miRNA expression in developing rat liver and the potential mechanism of PFOS-induced toxic action. Dams received 3.2 mg/kg PFOS in their feed from gestational day 1 (GD1) to postnatal day 7 (PND 7). Pups then had free access to treated feed until PND 7. We isolated RNAs from liver tissues on PND 1 and 7 and analyzed the expression profiles of 387 known rat miRNAs using microarray technology. PFOS exposure induced significant changes in miRNA expression profiles. Forty-six miRNAs had significant expression alterations on PND 1, nine miRNAs on PND 7. Specifically, expression of four miRNAs was up-regulated on PND 7 but down-regulated on PND1 (p < 0.05). Many aberrantly expressed miRNAs were related to various cancers. We found oncogenic and tumor-suppressing miRNAs, which included miR-19b, miR-21*, miR-17-3p, miR-125a-3p, miR-16, miR-26a, miR-1, miR-200c, and miR-451. In addition, four miRNAs were simultaneous significantly expressed on both PND 1 and 7. Functional Annotation analysis of the predicted transcript targets revealed that PFOS exposure potentially alters pathways associated with different cancers (cancer, melanoma, pancreatic cancer, colorectal cancer, and glioma), biological processes which include positive regulation of apoptosis and cell proliferation. Results showed PFOS exposure altered the expression of a suite of miRNAs. © 2014 Wiley Periodicals, Inc. Environ Toxicol 30: 712-723, 2015. PMID:24420840

  5. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns.

    PubMed

    Treece, Amanda L; Duncan, Daniel L; Tang, Weihua; Elmore, Sandra; Morgan, Douglas R; Dominguez, Ricardo L; Speck, Olga; Meyers, Michael O; Gulley, Margaret L

    2016-06-01

    MicroRNA expression in formalin-fixed paraffin-embedded tissue (FFPE) or plasma may add value for cancer management. The GastroGenus miR Panel was developed to measure 55 cancer-specific human microRNAs, Epstein-Barr virus (EBV)-encoded microRNAs, and controls. This Q-rtPCR panel was applied to 100 FFPEs enriched for adenocarcinoma or adjacent non-malignant mucosa, and to plasma of 31 patients. In FFPE, microRNAs upregulated in malignant versus adjacent benign gastric mucosa were hsa-miR-21, -155, -196a, -196b, -185, and -let-7i. Hsa-miR-18a, 34a, 187, -200a, -423-3p, -484, and -744 were downregulated. Plasma of cancer versus non-cancer controls had upregulated hsa-miR-23a, -103, and -221 and downregulated hsa-miR-378, -346, -486-5p, -200b, -196a, -141, and -484. EBV-infected versus uninfected cancers expressed multiple EBV-encoded microRNAs, and concomitant dysregulation of four human microRNAs suggests that viral infection may alter cellular biochemical pathways. Human microRNAs were dysregulated between malignant and benign gastric mucosa and between plasma of cancer patients and non-cancer controls. Strong association of EBV microRNA expression with known EBV status underscores the ability of microRNA technology to reflect disease biology. Expression of viral microRNAs in concert with unique human microRNAs provides novel insights into viral oncogenesis and reinforces the potential for microRNA profiles to aid in classifying gastric cancer subtypes. Pilot studies of plasma suggest the potential for a noninvasive addition to cancer diagnostics. PMID:26950485

  6. Suppression of microRNA-29 Expression by TGF-β1 Promotes Collagen Expression and Renal Fibrosis

    PubMed Central

    Wang, Bo; Komers, Radko; Carew, Rosemarie; Winbanks, Catherine E.; Xu, Bei; Herman-Edelstein, Michal; Koh, Philip; Thomas, Merlin; Jandeleit-Dahm, Karin; Gregorevic, Paul; Cooper, Mark E.

    2012-01-01

    Synthesis and deposition of extracellular matrix (ECM) within the glomerulus and interstitium characterizes renal fibrosis, but the mechanisms underlying this process are incompletely understood. The profibrotic cytokine TGF-β1 modulates the expression of certain microRNAs (miRNAs), suggesting that miRNAs may have a role in the pathogenesis of renal fibrosis. Here, we exposed proximal tubular cells, primary mesangial cells, and podocytes to TGF-β1 to examine its effect on miRNAs and subsequent collagen synthesis. TGF-β1 reduced expression of the miR-29a/b/c/family, which targets collagen gene expression, and increased expression of ECM proteins. In both resting and TGF-β1–treated cells, ectopic expression of miR-29 repressed the expression of collagens I and IV at both the mRNA and protein levels by targeting the 3′untranslated region of these genes. Furthermore, we observed low levels of miR-29 in three models of renal fibrosis representing early and advanced stages of disease. Administration of the Rho-associated kinase inhibitor fasudil prevented renal fibrosis and restored expression of miR-29. Taken together, these data suggest that TGF-β1 inhibits expression of the miR-29 family, thereby promoting expression of ECM components. Pharmacologic modulation of these miRNAs may have therapeutic potential for progressive renal fibrosis. PMID:22095944

  7. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer

    PubMed Central

    He, Dong-Xu; Gu, Feng; Gao, Fei; Hao, Jun-jun; Gong, Desheng; Gu, Xiao-Ting; Mao, Ai-Qin; Jin, Jian; Fu, Li; Ma, Xin

    2016-01-01

    Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance. PMID:27094684

  8. MicroRNA Expression Patterns in Human Astrocytes in Relation to Anatomical Location and Age.

    PubMed

    Rao, Vijayaraghava T S; Ludwin, Samuel K; Fuh, Shih-Chieh; Sawaya, Robin; Moore, Craig S; Ho, Ming-Kai; Bedell, Barry J; Sarnat, Harvey B; Bar-Or, Amit; Antel, Jack P

    2016-02-01

    Anatomic distribution and age are variables linked to functions of astrocytes under physiologic and pathologic conditions. We measured the relative expression of a panel of microRNAs (miRNAs) in astrocytes captured by laser micro-dissection from normal human adult white and grey matter, human fetal white matter and germinal matrix samples. Although expression of most miRNAs was comparable between adult and fetal samples, regional differences were observed. In the adult cerebral cortex, expression of miRNAs in morphologically distinct inter-laminar astrocytes underlying the glial limitans differed from those in deeper cortical layers, suggesting functional specialization possibly related to structural stability and defense from potentially harmful factors in the cerebrospinal fluid. Differences between adult white and grey matter miRNA expression included higher expression of pro-inflammatory miRNAs in the former, potentially contributing to differences in inflammation between grey and white matter plaques in multiple sclerosis. Lower expression of miRNAs in fetal versus adult white matter astrocytes likely reflects the immaturity of these migrating cells. Highly expressed miRNAs in the fetal germinal matrix are probably relevant in development and also recapitulate some responses to injury. Future studies can address regional alterations of miRNA expression in pathological conditions. PMID:26802178

  9. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer.

    PubMed

    He, Dong-Xu; Gu, Feng; Gao, Fei; Hao, Jun-Jun; Gong, Desheng; Gu, Xiao-Ting; Mao, Ai-Qin; Jin, Jian; Fu, Li; Ma, Xin

    2016-01-01

    Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance. PMID:27094684

  10. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis

    PubMed Central

    2013-01-01

    Background The eutopic endometrium of women with endometriosis, compared with disease-free individuals, contains certain molecular alterations, including the differential expression of microRNA (miRNA). The aim of the study was to compare the expression of the most relevant miRNAs in the eutopic endometrium of women with and without ovarian endometriosis. Methods A total of 46 regularly menstruating patients, 21 patients with ovarian endometriosis and 25 controls, underwent surgery in the proliferative phase of the cycle. The eutopic endometrium was collected through aspirating biopsy prior to laparoscopy. Only patients with advanced (stage III and IV) histopathologically confirmed ovarian endometriosis were included. TaqMan MicroRNA Array Cards were applied to examine the expression of 667 human miRNAs in 10 patients with endometriosis and 10 controls. Custom-made, low-density real-time PCR arrays were used to confirm the expression of 15 selected molecules in 21 endometriosis patients and 25 disease-free individuals. Results Of 667 miRNAs, 2 were highly likely to be upregulated and 13 were downregulated in the eutopic endometrium of patients with endometriosis compared with the controls. Validation using real-time PCR showed that hsa-miR-483-5p (p = 0.012) and hsa-miR-629* (p = 0.02) are significantly downregulated in patients with endometriosis. Conclusions Changes in the expression of select miRNAs might lead to or be a consequence of an early defect in the physiological activity of the proliferative endometrium, ultimately resulting in the overgrowth of this tissue outside the uterus. PMID:23945042

  11. MicroRNA-21 Down-regulates Rb1 Expression by Targeting PDCD4 in Retinoblastoma

    PubMed Central

    Shen, Fengmei; Mo, Meng-Hsuan; Chen, Liang; An, Shejuan; Tan, Xiaohui; Fu, Yebo; Rezaei, Katayoon; Wang, Zuoren; Zhang, Lin; Fu, Sidney W.

    2014-01-01

    Retinoblastoma (RB) is a children's ocular cancer caused by mutated retinoblastoma 1 (Rb1) gene on both alleles. Rb1 and other related genes could be regulated by microRNAs (miRNA) via complementarily pairing with their target sites. MicroRNA-21 (miR-21) possesses the oncogenic potential to target several tumor suppressor genes, including PDCD4, and regulates tumor progression and metastasis. However, the mechanism of how miR-21 regulates PDCD4 is poorly understood in RB. We investigated the expression of miRNAs in RB cell lines and identified that miR-21 is one of the most deregulated miRNAs in RB. Using qRT-PCR, we verified the expression level of several miRNAs identified by independent microarray assays, and analyzed miRNA expression patterns in three RB cell lines, including Weri-Rb1, Y79 and RB355. We found that miR-19b, -21, -26a, -195 and -222 were highly expressed in all three cell lines, suggesting their potential role in RB tumorigenesis. Using the TargetScan program, we identified a list of potential target genes of these miRNAs, of which PDCD4 is one the targets of miR-21. In this study, we focused on the regulatory mechanism of miR-21 on PDCD4 in RB. We demonstrated an inverse correlation between miR-21 and PDCD4 expression in Weri-Rb1 and Y79 cells. These data suggest that miR-21 down-regulates Rb1 by targeting PDCD4 tumor suppressor. Therefore, miR-21 could serve as a therapeutic target for retinoblastoma. PMID:25520758

  12. Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers.

    PubMed

    Liu, Zhaowen; Zhang, Junying; Yuan, Xiguo; Liu, Baobao; Liu, Yajun; Li, Aimin; Zhang, Yuanyuan; Sun, Xiaohan; Tuo, Shouheng

    2015-08-01

    MicroRNAs (miRNAs) play an indispensable role in cancer initiation and progression. Different cancers have some common hallmarks in general. Analyzing miRNAs that consistently contribute to different cancers can help us to discover the relationship between miRNAs and traits shared by cancers. Most previous works focus on analyzing single miRNA. However, dysregulation of a single miRNA is generally not sufficient to contribute to complex cancer processes. In this study, we put emphasis on analyzing cooperation of miRNAs across cancers. We assume that miRNAs can cooperatively regulate oncogenic pathways and contribute to cancer hallmarks. Such a cooperation is modeled by a miRNA module referred to as a pan-cancer conserved miRNA module. The module consists of miRNAs which simultaneously regulate cancers and are significantly intra-correlated. A novel computational workflow for the module discovery is presented. Multiple modules are discovered from miRNA expression profiles using the method. The function of top two ranked modules are analyzed using the mRNAs which correlate to all the miRNAs in a module across cancers, inferring that the two modules function in regulating the cell cycle which relates to cancer hallmarks as self sufficiency in growth signals and insensitivity to antigrowth signals. Additionally, two novel miRNAs mir-590 and mir-629 are found to cooperate with well-known onco-miRNAs in the modules to contribute to cancers. We also found that PTEN, which is a well known tumor suppressor that regulates the cell cycle, is a common target of miRNAs in the top-one module and cooperative control of PTEN can be a reason for the miRNAs' cooperation. We believe that analyzing the cooperative mechanism of the miRNAs in modules rather than focusing on only single miRNAs may help us know more about the complicated relationship between miRNAs and cancers and develop more effective treatment strategies for cancers. PMID:26052692

  13. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  14. Effects of Simulated Microgravity on the Expression Profile of Microrna in Human Lymphoblastoid Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda

    2012-07-01

    EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15

  15. Downregulation of Gabra4 expression during alcohol withdrawal is mediated by specific microRNAs in cultured mouse cortical neurons

    PubMed Central

    Bekdash, Rola A; Harrison, Neil L

    2015-01-01

    Background Alcohol abuse and dependence are a serious public health problem. A large number of alcohol-regulated genes, (ARGs) are known to be influenced by alcohol use and withdrawal (AW), and recent evidence suggests that neuroadaptation to alcohol may be due in part to epigenetic changes in the expression of ARGs. Gabra4, which encodes the α4 subunit of GABAA receptors (GABAARs), is one of a number of ARGs that show remarkable plasticity in response to alcohol, being rapidly upregulated by acute alcohol exposure. This study addressed the effects of AW on changes in the expression of Gabra4 and related genes that encode other subunits of GABAARs, and the potential regulation of Gabra4 by microRNAs. Methods We studied gene and microRNAs expression, using RT-PCR and microRNA microarray in cultured cortical neurons treated with alcohol, which was then removed in order to simulate AW in vitro. We also used microRNA mimics or inhibitors, and a promoter-reporter construct carrying the 3′UTR of Gabra4. Results Eleven hours after removal of alcohol, Gabra4 was downregulated, with a modest increase in the expression of Gabrg2, but no change in the expression of Gabra1, Gabrd, or Gabrb2. microRNA profiling in neurons undergoing AW revealed upregulation in the expression of miR-155, miR-186, miR-24, and miR-375 after 8 h of AW. Transfection with molecular mimics of miR-186, miR-24, or miR-375 also downregulated Gabra4 expression, whereas transfection with the corresponding inhibitors of these microRNAs normalized Gabra4 expression in AW neurons to the level measured in control neurons. Promoter-reporter experiments supported the idea that miR-155, miR-186, miR-24, miR-27b, or miR-375 bind to the 3′UTR of Gabra4 and thereby inhibit protein production. Conclusions Our data suggest that AW decreases Gabra4 expression, and that this may be mediated in part by the induction of specific microRNAs in cortical neurons during AW. PMID:26357588

  16. The rolB gene activates the expression of genes encoding microRNA processing machinery.

    PubMed

    Bulgakov, Victor P; Veremeichik, Galina N; Shkryl, Yuri N

    2015-04-01

    The rolB gene of Agrobacterium rhizogenes renders cells more tolerant of environmental stresses and increases their defense potential. However, these effects, coupled with the developmental abnormalities caused by rolB, have not yet been explained. In rolB-transformed Arabidopsis thaliana cells, we detected a 2.2 to 7-fold increase in the expression of genes encoding core and accessory proteins (DCL1, SE, HYL1, AGO1, TGH, DDL, HEN1, AGO4 and RDR2) of the microRNA processing machinery. However, the rolB gene did not affect the expression of DCL2, DCL3 and HST. The diverse and complex effects of rolB on transformed plant cells may be attributable to changes caused by this gene in particular RNA silencing pathways. PMID:25491479

  17. Low expression of microRNA-143 is related to degenerative scoliosis possibly by regulation of cyclooxygenase-2 expression

    PubMed Central

    Zheng, Jie; Yang, Yonghong; Zhao, Kefeng; Wang, Ran

    2015-01-01

    Aims: This study is to determine if expression level of microRNA-143 (miR-143) and cyclooxygenase-2 (COX-2) are related to the occurrence and development of degenerative scoliosis. Methods: A total of 30 patients with degenerative scoliosis, 30 patients with adolescent idiopathic scoliosis were enrolled in this study. For control, 30 patients with spinal burst fractures were also enrolled in this study. Real-time PCR and western blotting was performed to measure the expression levels of COX-2 in intervertebral disc tissues, peripheral blood and cerebrospinal. Expression levels of miR-143 in intervertebral disc tissues, peripheral blood and cerebrospinal were detected by real-time PCR. Results: The expression levels of COX-2 were increased in intervertebral disc tissues, peripheral blood and cerebrospinal of patients with degenerative scoliosis when compared with those of patients with adolescent idiopathic scoliosis and spinal burst fractures (P < 0.05). However, the expression levels of miR-143 were decreased in intervertebral disc tissues, peripheral blood and cerebrospinal of patients with degenerative scoliosis when compared with those of patients with adolescent idiopathic scoliosis and spinal burst fractures (P < 0.05). Conclusions: COX-2 is highly expressed whereas miR-143 is lowly expressed in patients with degenerative scoliosis. Decreased expression of miR-143 may be related to the aggravation of degenerative scoliosis by regulation of COX-2. PMID:26064322

  18. Tetrandrine induces microRNA differential expression in human hypertrophic scar fibroblasts in vitro.

    PubMed

    Ning, P; Peng, Y; Liu, D W; Hu, Y H; Liu, Y; Liu, D M

    2016-01-01

    MicroRNAs (miRNAs) have recently been shown to play a role in normal wound healing process. miRNAs may be linked to pathologic wound healing and closely related to the formation of hypertrophic scars. This study aimed to explore the effects of tetrandrine on the miRNA expression profile in human hypertrophic scar fibroblasts (HSFs) in vitro. HSFs were randomly divided into two groups: the tetrandrine treatment group and the control group. The experimental and control groups were collected and analyzed by miRNA array after a 48-h culture. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to confirm the array results. The targets of differentially expressed miRNA were functionally annotated using bioinformatic approaches. miRNA microarray analysis identified 193 differentially expressed miRNAs and the expression of 186 miRNAs in the experimental group decreased while that of 7 miRNAs increased compared to the control group. The most significantly downregulated miRNA was hsa-miR-1246, and hsa-miR-27b had the highest expression level. Significant differentially expressed miRNAs were predicted to be related to several important signaling pathways related to scar wound healing. The differential miRNA expression identified in this study provides the experimental basis for further understanding the anti-fibrosis effect of tetrandrine. PMID:26909951

  19. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  20. Comparative Analysis of Gene Expression Data Reveals Novel Targets of Senescence-Associated microRNAs

    PubMed Central

    Napolitano, Marco; Comegna, Marika; Succoio, Mariangela; Leggiero, Eleonora; Pastore, Lucio; Faraonio, Raffaella; Cimino, Filiberto; Passaro, Fabiana

    2014-01-01

    In the last decades, cellular senescence is viewed as a complex mechanism involved in different processes, ranging from tumor suppression to induction of age-related degenerative alterations. Senescence-inducing stimuli are myriad and, recently, we and others have demonstrated the role exerted by microRNAs in the induction and maintenance of senescence, by the identification of a subset of Senescence-Associated microRNAs (SAmiRs) up-regulated during replicative or stress-induced senescence and able to induce a premature senescent phenotype when over-expressed in human primary cells. With the intent to find novel direct targets of two specific SAmiRs, SAmiR-494 and -486-5p, and cellular pathways which they are involved in, we performed a comparative analysis of gene expression profiles available in literature to select genes down-regulated upon replicative senescence of human primary fibroblasts. Among them, we searched for SAmiR’s candidate targets by analyzing with different target prediction algorithms their 3’UTR for the presence of SAmiR-binding sites. The expression profiles of selected candidates have been validated on replicative and stress-induced senescence and the targeting of the 3’UTRs was assessed by luciferase assay. Results allowed us to identify Cell Division Cycle Associated 2 (CDCA2) and Inhibitor of DNA binding/differentiation type 4 (ID4) as novel targets of SAmiR-494 and SAmiR-486-5p, respectively. Furthermore, we demonstrated that the over-expression of CDCA2 in human primary fibroblasts was able to partially counteract etoposide-induced senescence by mitigating the activation of DNA Damage Response. PMID:24905922

  1. Role of MicroRNAs in Controlling Gene Expression in Different Segments of the Human Epididymis

    PubMed Central

    Belleannée, Clémence; Calvo, Ezéquiel; Thimon, Véronique; Cyr, Daniel G.; Légaré, Christine; Garneau, Louis; Sullivan, Robert

    2012-01-01

    Background The molecular mechanisms implicated in regionalized gene expression in the human epididymis have not yet been fully elucidated. Interestingly, more than 200 microRNAs (miRNAs) have been identified in the human epididymis and could be involved in the regulation of mRNA stability and post-transcriptional expression in this organ. Methods Using a miRNA microarray approach, we investigated the correlation between miRNA signatures and gene expression profiles found in three distinct regions (caput, corpus and cauda) of human epididymides from 3 donors. In silico prediction of transcript miRNA targets was performed using TargetScan and Miranda software's. FHCE1 immortalized epididymal cell lines were cotransfected with mimic microRNAs and plasmid constructs containing the 3′UTR of predicted target genes downstream of the luciferase gene. Results We identified 35 miRNAs differentially expressed in the distinct segments of the epididymis (fold change ≥2, P-value≤0.01). Among these miRNAs, miR-890, miR-892a, miR-892b, miR-891a, miR-891b belonging to the same epididymis-enriched cluster located on the X chromosome, are significantly more expressed in the corpus and cauda regions than in the caput. Interestingly, a strong negative correlation (r = −0,89, P-value≤0.001) was found between the pattern of expression of miR-892b and its potential mRNA target Esrrg (Estrogen Related Receptor Gamma) and with miR-145 and Cldn10 mRNA (r = −0,92, P-value≤0.001). We confirmed that miR-145 and miR-892b inhibit the expression of the luciferase reporter via Cldn10 and Esrrg 3′ UTRs, respectively. Conclusion Our study shows that the expression of miRNAs is segmented along the human epididymis and correlates with the pattern of target gene expression in different regions. Therefore, epididymal miRNAs may be in control of the maintenance of gene expression profile in the epididymis, which dictates segment-specific secretion of proteins and establishes

  2. Effects of simulated microgravity on expression profile of microRNA in human lymphoblastoid cells.

    PubMed

    Mangala, Lingegowda S; Zhang, Ye; He, Zhenhua; Emami, Kamal; Ramesh, Govindarajan T; Story, Michael; Rohde, Larry H; Wu, Honglu

    2011-09-16

    This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes. PMID:21775437

  3. MicroRNA expression during demosponge dissociation, reaggregation, and differentiation and a evolutionarily conserved demosponge miRNA expression profile.

    PubMed

    Robinson, Jeffrey M

    2015-11-01

    Demosponges share eight orthologous microRNAs (miRNAs), with none in common with Bilateria. Biological functions of these demosponge miRNAs are unknown. Bilaterian miRNAs are key regulators of cellular processes including cell cycle, differentiation, and metabolism. Resolving if demosponge miRNAs participate in such biological functions will provide clues whether these functions are convergent, evidence on the mode of evolution of cellular developmental processes. Here, a quantitative PCR (qPCR) assay was developed and used to test for differential miRNA expression during dissociation and reaggregation in Spongosorites, compare expression profiles between choanosome and cortex in Spongosorites, and compare undifferentiated gemmules to differentiated juveniles in Ephydatia. During Spongosorites dissociation and reaggregation, miRNA expression showed a global decrease in expression across a range of reaggregating cell densities. miRNA differential response could be related to various general cellular responses, potentially related to nutrient-poor conditions of the minimal artificial seawater media, stress response from tissue dissociation, or loss of cell-cell or cell-matrix contact. In Ephydatia, overall increase in miRNA expression in gemmule-hatched stage 4/5 juveniles relative to gemmules is observed, indicating that increased miRNA expression may be related to increased cellular activity such as migration, cell cycle, and/or differentiation. Observed differential miRNA expression of miRNA during dissociation in Spongosorites (lowered global expression), and during activation, and differentiation of Ephydatia gemmules (increased global expression) could indicate that miRNA expression is associated with cell cycle, differentiation, or metabolism pathways. Interspecies comparison was performed, results indicating that orthologous miRNAs share similar relative expression pattern between the four species tested (Spongosorites, Cinachyrella, Haliclona, and Ephydatia

  4. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother

    PubMed Central

    Alsaweed, Mohammed; Hartmann, Peter E.; Geddes, Donna T.; Kakulas, Foteini

    2015-01-01

    Human milk (HM) is the optimal source of nutrition, protection and developmental programming for infants. It is species-specific and consists of various bioactive components, including microRNAs, small non-coding RNAs regulating gene expression at the post-transcriptional level. microRNAs are both intra- and extra-cellular and are present in body fluids of humans and animals. Of these body fluids, HM appears to be one of the richest sources of microRNA, which are highly conserved in its different fractions, with milk cells containing more microRNAs than milk lipids, followed by skim milk. Potential effects of exogenous food-derived microRNAs on gene expression have been demonstrated, together with the stability of milk-derived microRNAs in the gastrointestinal tract. Taken together, these strongly support the notion that milk microRNAs enter the systemic circulation of the HM fed infant and exert tissue-specific immunoprotective and developmental functions. This has initiated intensive research on the origin, fate and functional significance of milk microRNAs. Importantly, recent studies have provided evidence of endogenous synthesis of HM microRNA within the human lactating mammary epithelium. These findings will now form the basis for investigations of the role of microRNA in the epigenetic control of normal and aberrant mammary development, and particularly lactation performance. PMID:26529003

  5. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs

    PubMed Central

    Towler, Benjamin P; Jones, Christopher I; Viegas, Sandra C; Apura, Patricia; Waldron, Joseph A; Smalley, Sarah K; Arraiano, Cecilia M; Newbury, Sarah F

    2015-01-01

    Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a “no wing” phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥2-fold and 6 (5.5%) decreasing in level ≥2-fold. Of these microRNAs, miR-252–5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252–5p for degradation during normal wing development. Another microRNA, miR-982–5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease. PMID:25892215

  6. The 3'-5' exoribonuclease Dis3 regulates the expression of specific microRNAs in Drosophila wing imaginal discs.

    PubMed

    Towler, Benjamin P; Jones, Christopher I; Viegas, Sandra C; Apura, Patricia; Waldron, Joseph A; Smalley, Sarah K; Arraiano, Cecilia M; Newbury, Sarah F

    2015-01-01

    Dis3 is a highly conserved exoribonuclease which degrades RNAs in the 3'-5' direction. Mutations in Dis3 are associated with a number of human cancers including multiple myeloma and acute myeloid leukemia. In this work, we have assessed the effect of a Dis3 knockdown on Drosophila imaginal disc development and on expression of mature microRNAs. We find that Dis3 knockdown severely disrupts the development of wing imaginal discs in that the flies have a "no wing" phenotype. Use of RNA-seq to quantify the effect of Dis3 knockdown on microRNA expression shows that Dis3 normally regulates a small subset of microRNAs, with only 11 (10.1%) increasing in level ≥ 2-fold and 6 (5.5%) decreasing in level ≥ 2-fold. Of these microRNAs, miR-252-5p is increased 2.1-fold in Dis3-depleted cells compared to controls while the level of the miR-252 precursor is unchanged, suggesting that Dis3 can act in the cytoplasm to specifically degrade this mature miRNA. Furthermore, our experiments suggest that Dis3 normally interacts with the exosomal subunit Rrp40 in the cytoplasm to target miR-252-5p for degradation during normal wing development. Another microRNA, miR-982-5p, is expressed at lower levels in Dis3 knockdown cells, while the miR-982 precursor remains unchanged, indicating that Dis3 is involved in its processing. Our study therefore reveals an unexpected specificity for this ribonuclease toward microRNA regulation, which is likely to be conserved in other eukaryotes and may be relevant to understanding its role in human disease. PMID:25892215

  7. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    EPA Science Inventory

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  8. Correlation between EGFR Amplification and the Expression of MicroRNA-200c in Primary Glioblastoma Multiforme

    PubMed Central

    Serna, Eva; Lopez-Gines, Concha; Monleon, Daniel; Muñoz-Hidalgo, Lisandra; Callaghan, Robert C.; Gil-Benso, Rosario; Martinetto, Horacio; Gregori-Romero, Aurelia; Gonzalez-Darder, Jose; Cerda-Nicolas, Miguel

    2014-01-01

    Extensive infiltration of the surrounding healthy brain tissue is a critical feature in glioblastoma. Several miRNAs have been related to gliomagenesis, some of them related with the EGFR pathway. We have evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns, studied by fluorescence in situ hybridization in tissue microarrays, of 30 cases of primary glioblastoma multiforme, whose clinicopathological and immunohistochemical features have also been analyzed. MicroRNA-200c showed a very significant difference between tumors having or not EGFR amplification. This microRNA plays an important role in epithelial-mesenchymal transition, but its implication in the behavior of glioblastoma is largely unknown. With respect to EGFR status our cases were categorized into three groups: high level EGFR amplification, low level EGFR amplification, and no EGFR amplification. Our results showed that microRNA-200c and E-cadherin expression are down-regulated, while ZEB1 is up-regulated, when tumors showed a high level of EGFR amplification. Conversely, ZEB1 mRNA expression levels were significantly lower in the group of tumors without EGFR amplification. Tumors with a low level of EGFR amplification showed ZEB1 expression levels comparable to those detected in the group with a high level of amplification. In this study we provide what is to our knowledge the first report of association between microRNA-200c and EGFR amplification in glioblastomas. PMID:25058589

  9. Larval stage Lymantria dispar microRNAs differentially expressed in response to parasitization by Glyptapanteles flavicoxis parasitoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression by targeting messenger RNAs (mRNAs) and causing mRNA cleavage or blockage of translational. MiRNAs have never been examined in relation to parasitism of a lepidopteran host by a parasitic wasp possessing a symbiotic polydnaviru...

  10. Problem-Solving Test: The Role of a Micro-RNA in the Regulation of "fos" Gene Expression

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    The "fos" proto-oncogene codes for a component of the AP1 transcription factor, an important regulator of gene expression and cell proliferation. Dysregulation of AP1 function may lead to the malignant transformation of the cell. The present test describes an experiment in which the role of a micro-RNA (miR-7b) in the regulation of "fos" gene…

  11. Cloning and characterization of microRNAs from rainbow trout (Oncorhynchus mykiss): their expression during early embryonic development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current literature and our results on expression patterns of oocyte specific genes and transcription factors suggest a global but highly regulated maternal mRNA degradation at the time of embryonic genome activation (EGA). We hypothesized that microRNAs (miRNAs), naturally occurring 19-21bp long pos...

  12. MicroRNAs Expression Profile in Common Bean (Phaseolus vulgaris) under Nutrient Deficiency Stresses and Manganese Toxicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. The information on miRNAs in legumes is scarce. This work analyzes miRNAs in the agronomically important legume common bean (Phaseolus vulgaris. A hybridization approach of miRNAs-macroarrays prin...

  13. MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization

    PubMed Central

    Fan, Yi; Zhou, Yachuan; Zhou, Xuedong; Sun, Feifei; Gao, Bo; Wan, Mian; Zhou, Xin; Sun, Jianxun; Xu, Xin; Cheng, Lei; Crane, Janet

    2015-01-01

    Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3′ untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization. PMID:26055330

  14. MicroRNA 224 Regulates Ion Transporter Expression in Ameloblasts To Coordinate Enamel Mineralization.

    PubMed

    Fan, Yi; Zhou, Yachuan; Zhou, Xuedong; Sun, Feifei; Gao, Bo; Wan, Mian; Zhou, Xin; Sun, Jianxun; Xu, Xin; Cheng, Lei; Crane, Janet; Zheng, Liwei

    2015-08-01

    Enamel mineralization is accompanied by the release of protons into the extracellular matrix, which is buffered to regulate the pH value in the local microenvironment. The present study aimed to investigate the role of microRNA 224 (miR-224) as a regulator of SLC4A4 and CFTR, encoding the key buffering ion transporters, in modulating enamel mineralization. miR-224 was significantly downregulated as ameloblasts differentiated, in parallel with upregulation of SLC4A4 and CFTR. Overexpression of miR-224 downregulated SLC4A4 and CFTR expression in cultured human epithelial cells. A microRNA luciferase assay confirmed the specific binding of miR-224 to the 3' untranslated regions (UTRs) of SLC4A4 and CFTR mRNAs, thereby inhibiting protein translation. miR-224 agomir injection in mouse neonatal incisors resulted in normal enamel length and thickness, but with disturbed organization of the prism structure and deficient crystal growth. Moreover, the enamel Ca/P ratio and microhardness were markedly reduced after miR-224 agomir administration. These results demonstrate that miR-224 plays a pivotal role in fine tuning enamel mineralization by modulating SLC4A4 and CFTR to maintain pH homeostasis and support enamel mineralization. PMID:26055330

  15. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits

    PubMed Central

    Civelek, Mete; Hagopian, Raffi; Pan, Calvin; Che, Nam; Yang, Wen-pin; Kayne, Paul S.; Saleem, Niyas K.; Cederberg, Henna; Kuusisto, Johanna; Gargalovic, Peter S.; Kirchgessner, Todd G.; Laakso, Markku; Lusis, Aldons J.

    2013-01-01

    The genetics of messenger RNA (mRNA) expression has been extensively studied in humans and other organisms, but little is known about genetic factors contributing to microRNA (miRNA) expression. We examined natural variation of miRNA expression in adipose tissue in a population of 200 men who have been carefully characterized for metabolic syndrome (MetSyn) phenotypes as part of the Metabolic Syndrome in Men (METSIM) study. We genotyped the subjects using high-density single-nucleotide polymorphism microarrays and quantified the mRNA abundance using genome-wide expression arrays and miRNA abundance using next-generation sequencing. We reliably quantified 356 miRNA species that were expressed in human adipose tissue, a limited number of which made up most of the expressed miRNAs. We mapped the miRNA abundance as an expression quantitative trait and determined cis regulation of expression for nine of the miRNAs and of the processing of one miRNA (miR-28). The degree of genetic variation of miRNA expression was substantially less than that of mRNAs. For the majority of the miRNAs, genetic regulation of expression was independent of the expression of mRNA from which the miRNA is transcribed. We also showed that for 108 miRNAs, mapped reads displayed widespread variation from the canonical sequence. We found a total of 24 miRNAs to be significantly associated with MetSyn traits. We suggest a regulatory role for miR-204-5p which was predicted to inhibit acetyl coenzyme A carboxylase β, a key fatty acid oxidation enzyme that has been shown to play a role in regulating body fat and insulin resistance in adipose tissue. PMID:23562819

  16. Candidate Gene and MicroRNA Expression in Fetal Membranes and Preterm Delivery Risk.

    PubMed

    Enquobahrie, Daniel A; Hensley, Mark; Qiu, Chunfang; Abetew, Dejene F; Hevner, Karin; Tadesse, Mahlet G; Williams, Michelle A

    2016-06-01

    We investigated candidate gene and microRNA (miRNA) expression in amnion and chorion in relation to risk of preterm delivery (PTD). Amnion and chorion were separated from placenta and collected at delivery from participants who delivered at term (N = 10) and from participants who delivered preterm following spontaneous labor (sPTL-PTD; N = 10), premature rupture of membranes (PPROM-PTD; N = 10), and preeclampsia (PE-PTD; N = 10). Expression of genes (metalloproteinase [MMP] 2, MMP-9, and tissue inhibitors of MMP-1) and miRNAs (miR-199a*, -202*, -210, -214, -223, and -338) was profiled using quantitative real-time polymerase chain reaction approaches. Adjusted multinomial logistic regression models were used to calculate relative risk ratios (RRR), 95% confidence intervals, and P values. Among controls, the expression of miR-199a*, -202*, and -214 was lower in the amnion compared with their expression in the chorion, whereas the expression of miR-210 was higher in the amnion compared with its expression in the chorion (all P values < .05). In the amnion, MMP-9 expression was associated with PTD risk (overall P value = .0092), and MMP-9 expression was positively associated with the risk of PPROM-PTD (RRR: 31.10) and inversely associated with the risk of PE-PTD (RRR:6.55e-6), although individual associations were not statistically significant. In addition, in the amnion, the expression of miR-210 (RRR: 0.45; overall P value = .0039) was inversely associated with the risk of PE-PTD, and miR-223 was inversely associated with all subtypes of PTD (overall P value = .0400). The amnion and chorion differ in their miRNA expression. The expression of MMP-9, miR-210, and -223 in the amnion is associated with PTD risk. PMID:26507872

  17. NOD2 Expression is Regulated by microRNAs in Colonic Epithelial HCT116 Cells

    PubMed Central

    Chuang, Alice Y.; Chuang, Jim C.; Zhai, Zili; Wu, Feng; Kwon, John H.

    2016-01-01

    Background Crohn's disease (CD) is associated with defective sensing of pathogens in genetically susceptible individuals. Nucleotide-binding oligomerization domain containing 2 (NOD2) mutations in coding regions are strongly linked to CD pathogenesis. Our laboratory has reported that microRNAs (miRNAs) are differentially expressed in CD. However, miRNA regulation of NOD2 remains unknown. This study was designed to determine whether miRNAs regulate NOD2 expression as well as downstream nuclear factor kappaB activation and inflammatory responses in colonic epithelial HCT116 cells. Methods NOD2 and miRNA expression in stimulated HCT116 cells were assessed by quantitative reverse transcription–polymerase chain reaction. Regulation of NOD2 expression by miRNAs was determined by luciferase reporter construct assays and transfection of specific miRNA mimics. Regulation of NOD2 signaling and immune response by miRNAs was assessed by transfection of mimics followed by muramyl dipeptide stimulation. Results Muramyl dipeptide-induced increases in NOD2, interleukin-8, and CXCL3 expression were inversely associated with miRNA expression. Overexpression of miR-192, miR-495, miR-512, and miR-671 suppressed NOD2 expression, muramyl dipeptide-mediated NF-κB activation, and messenger RNA expressions of interleukin-8 and CXCL3 in HCT116 cells. A single-nucleotide polymorphism (rs3135500) located in the NOD2 3′-untranslated region significantly reduced miR-192 effects on NOD2 gene expression. Conclusions To our knowledge, this is the first report demonstrating that miRNAs regulate NOD2 and its signaling pathway. Four miRNAs downregulate NOD2 expression, suppress NF-κB activity, and inhibit interleukin-8 and CXCL3 messenger RNA expression. Treatment of CD with miRNAs may represent a potential anti-inflammatory therapeutic strategy in CD patients with and without NOD2 gene mutations. PMID:24297055

  18. Comparison of chromosomal aberrations detected by fluorescence in situ hybridization with clinical parameters, DNA ploidy and Ki 67 expression in renal cell carcinoma.

    PubMed Central

    Wada, Y.; Igawa, M.; Shiina, H.; Shigeno, K.; Yokogi, H.; Urakami, S.; Yoneda, T.; Maruyama, R.

    1998-01-01

    To evaluate the significance of chromosomal aberrations in renal cell carcinoma, fluorescence in situ hybridization (FISH) was used to determine its prevalence and correlation with clinical parameters of malignancy. In addition, correlation of chromosomal aberration with Ki 67 expression was analysed. We performed FISH with chromosome-specific DNA probes, and the signal number of pericentromeric sequences on chromosomes 3, 7, 9 and 17 was detected within interphase nuclei in touch preparations from tumour specimen. The incidence of loss of chromosome 3 was significantly higher than those of chromosomes 7, 9 and 17 (P < 0.001, P = 0.03 and P < 0.001 respectively). Hyperdiploid aberration of chromosomes 3 and 17 was significantly correlated with tumour stage (P = 0.03, P = 0.02 respectively), whereas hyperdiploid aberration of chromosome 9 was associated with nuclear grade (P = 0.04). Disomy of chromosome 7 was correlated with venous involvement (P = 0.04). Ki 67 expression was significantly associated with hyperdiploid aberration of chromosome 17 (P = 0.01), but not with aberration of chromosome 3. There was a significant relationship between hyperdiploid aberration of chromosome 7 and Ki 67 expression (P = 0.01). In conclusions, gain of chromosome 17 may reflect tumour development, and aberration of chromosome 7 may affect metastatic potential of malignancy, whereas loss of chromosome 3 may be associated with early stage of tumour development in renal cell carcinoma. PMID:9667682

  19. Plasma microRNA Expression and Micronuclei Frequency in Workers Exposed to Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Deng, Qifei; Huang, Suli; Zhang, Xiao; Zhang, Wangzhen; Feng, Jing; Wang, Tian; Hu, Die; Guan, Lei; Li, Jun; Dai, Xiayun; Deng, Huaxin; Zhang, Xiaomin

    2014-01-01

    Background: Ubiquitous polycyclic aromatic hydrocarbons (PAHs) have been shown to alter gene expression patterns and elevate micronuclei (MN) frequency, but the underlying mechanisms are largely unknown. MicroRNAs (miRNAs) are key gene regulators that may be influenced by PAH exposures and mediate their effects on MN frequency. Objectives: We sought to identify PAH-associated miRNAs and evaluate their associations with MN frequency. Methods: We performed a two-stage study in healthy male coke oven workers to identify miRNAs associated with PAH exposures quantified using urinary monohydroxy-PAHs and plasma benzo[a]pyrene-r-7,t-8,c-10-tetrahydrotetrol-albumin (BPDE–Alb) adducts. In the discovery stage, we used Solexa sequencing to test differences in miRNA expression profiles between pooled plasma samples from 20 exposed workers and 20 controls. We then validated associations with eight selected miRNAs in 365 workers. We further evaluated associations between the PAH-associated miRNAs and MN frequency. Results: In the discovery stage, miRNA expression profiles differed between the exposed and control groups, with 68 miRNAs significantly down-regulated [fold change (FC) ≤ –5] and 3 miRNAs mildly up-regulated (+2 ≤ FC < +5) in the exposed group. In the validation analysis, urinary 4-hydroxyphenanthrene and/or plasma BPDE–Alb adducts were associated with lower miR-24-3p, miR-27a-3p, miR-142-5p, and miR-28-5p expression (p < 0.030). Urinary 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyphenanthrene, and the sum of monohydroxy-PAHs were associated with higher miR-150-5p expression (p < 0.030). These miRNAs were associated with higher MN frequency (p < 0.005), with stronger associations in drinkers (pinteraction < 0.015). Conclusions: Associations of PAH exposures with miRNA expression, and of miRNA expression with MN frequency, suggest potential mechanisms of adverse effects of PAHs that are worthy of further investigation. Citation: Deng Q, Huang S

  20. Identification of Novel, Highly Expressed Retroviral MicroRNAs in Cells Infected by Bovine Foamy Virus

    PubMed Central

    Whisnant, Adam W.; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin

    2014-01-01

    ABSTRACT While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo. PMID:24522910

  1. Sexually dimorphic effects of gestational endocrine-disrupting chemicals on microRNA expression in the developing rat hypothalamus.

    PubMed

    Topper, Viktoria Y; Walker, Deena M; Gore, Andrea C

    2015-10-15

    This study examined developmental changes and sexual dimorphisms in hypothalamic microRNAs, and whether gestational exposures to environmental endocrine-disrupting chemicals (EDCs) altered their expression patterns. Pregnant rat dams were treated on gestational days 16 and 18 with vehicle, estradiol benzoate, or a mixture of polychlorinated biphenyls. Male and female offspring were euthanized on postnatal days (P) 15, 30, 45, or 90, and microRNA and mRNA targets were quantified in the medial preoptic nucleus (MPN) and ventromedial nucleus (VMN) of the hypothalamus. MicroRNAs showed robust developmental changes in both regions, and were sexually dimorphic in the MPN, but not VMN. Importantly, microRNAs in females were up-regulated by EDCs at P30, and down-regulated in males at P90. Few changes in mRNAs were found. Thus, hypothalamic microRNAs are sensitive to prenatal EDC treatment in a sex-, developmental age-, and brain region-specific manner. PMID:26190835

  2. MicroRNA expression profiling of the porcine developing hypothalamus and pituitary tissue.

    PubMed

    Zhang, Lifan; Cai, Zhaowei; Wei, Shengjuan; Zhou, Huiyun; Zhou, Hongmei; Jiang, Xiaoling; Xu, Ningying

    2013-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our knowledge about spatial

  3. Preliminary examination of microRNA expression profiling in bipolar disorder I patients during antipsychotic treatment.

    PubMed

    Lim, Chor Hong; Zainal, Nor Zuraida; Kanagasundram, Sharmilla; Zain, Shamsul Mohd; Mohamed, Zahurin

    2016-09-01

    Although major progress has been achieved in research and development of antipsychotic medications for bipolar disorder (BPD), knowledge of the molecular mechanisms underlying this disorder and the action of atypical antipsychotics remains incomplete. The levels of microRNAs (miRNAs)-small non-coding RNA molecules that regulate gene expression, including genes involved in neuronal function and plasticity-are frequently altered in psychiatric disorders. This study aimed to examine changes in miRNA expression in bipolar mania patients after treatment with asenapine and risperidone. Using a miRNA microarray, we analyzed miRNA expression in the blood of 10 bipolar mania patients following 12 weeks of treatment with asenapine or risperidone. Selected miRNAs were validated by using real-time PCR. A total of 16 miRNAs were differentially expressed after treatment in the asenapine group, 14 of which were significantly upregulated and the other two significantly downregulated. However, all three differentially expressed miRNAs in the risperidone group were downregulated. MiRNA target gene prediction and gene ontology analysis revealed significant enrichment for pathways associated with immune system response and regulation of programmed cell death and transcription. Our results suggest that candidate miRNAs may be involved in the mechanism of action of both antipsychotics in bipolar mania. © 2016 Wiley Periodicals, Inc. PMID:27177356

  4. RBE controls microRNA164 expression to effect floral organogenesis.

    PubMed

    Huang, Tengbo; López-Giráldez, Francesc; Townsend, Jeffrey P; Irish, Vivian F

    2012-06-01

    The establishment and maintenance of organ boundaries are vital for animal and plant development. In the Arabidopsis flower, three microRNA164 genes (MIR164a, b and c) regulate the expression of CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, which encode key transcriptional regulators involved in organ boundary specification. These three miR164 genes are expressed in distinct spatial and temporal domains that are crucial for their function. Here, we show that the C2H2 zinc finger transcriptional repressor encoded by RABBIT EARS (RBE) regulates the expression of all three miR164 genes. Furthermore, we demonstrate that RBE directly interacts with the promoter of MIR164c and negatively regulates its expression. We also show that the role of RBE in sepal and petal development is mediated in part through the concomitant regulation of the CUC1 and CUC2 gene products. These results indicate that one role of RBE is to fine-tune miR164 expression to regulate the CUC1 and CUC2 effector genes, which, in turn, regulate developmental events required for sepal and petal organogenesis. PMID:22573623

  5. Epstein-Barr Virus MicroRNA Expression Increases Aggressiveness of Solid Malignancies

    PubMed Central

    Pandya, Deep; Mariani, Marisa; He, Shiquan; Andreoli, Mirko; Spennato, Manuela; Dowell-Martino, Candice; Fiedler, Paul; Ferlini, Cristiano

    2015-01-01

    The Cancer Genome Atlas (TCGA) microRNA (miRNA) initiative has revealed a pivotal role for miRNAs in cancer. Utilizing the TCGA raw data, we performed the first mapping of viral miRNA sequences within cancer and adjacent normal tissues. Results were integrated with TCGA RNA-seq to link the expression of viral miRNAs to the phenotype. Using clinical data and viral miRNA mapping results we also performed outcome analysis. Three lines of evidence lend credence to an active role of viral miRNAs in solid malignancies. First, expression of viral miRNA is consistently higher in cancerous compared to adjacent noncancerous tissues. Second, viral miRNA expression is associated with significantly worse clinical outcome among patients with early stage malignancy. These patients are also featured by increased expression of PD1/PD-L1, a pathway implicated in tumors escaping immune destruction. Finally, a particular cluster of EBV-miRNA (miR-BART2, miR-BART4, miR-BART5, miR-BART18, and miR-BART22) is associated with expression of cytokines known to inhibit host response to cancer. Quantification of specific viral miRNAs may help identify patients who are at risk of poor outcome. These patients may be candidates for novel therapeutic strategies incorporating antiviral agents and/or inhibitors of the PD-1/PD-L1 pathway. PMID:26375401

  6. Cryptosporidium parvum Induces B7-H1 Expression in Cholangiocytes by Downregulating MicroRNA-513

    PubMed Central

    Gong, Ai-Yu; Zhou, Rui; Hu, Guoku; Liu, Jun; Sosnowska, Danuta; Drescher, Kristen M.; Dong, Haidong; Chen, Xian-Ming

    2009-01-01

    Expression of B7 costimulatory molecules represents an important compartment of immune response of epithelial cells following microbial infection. We reported here that the protozoan parasite Cryptosporidium parvum induced B7-H1 expression in cultured human cholangiocytes. Induced expression of B7-H1 was identified in cells after exposure to infective C. parvum parasite or parasite lysate. Interestingly, microRNA-513 (miR-513) level was reduced in cells after exposure to C. parvum, resulting in a relief of 3′-untranslated region-mediated translational suppression of B7-H1. Overexpression of miR-513 through transfection of miR-513 precursor inhibited C. parvum-induced B7-H1 protein expression. Moreover, enhanced apoptotic cell death was identified in activated human T cells following co-culture with C. parvum-infected cholangiocytes. The apoptosis of activated T cells was partially blocked by a neutralizing antibody to B7-H1 or transfection of cholangiocytes with miR-513 precursor. These data suggest a role of miR-513 in regulating B7-H1 expression by cholangiocytes in response to C. parvum infection. PMID:19916867

  7. Genome-Wide Expression of MicroRNAs Is Regulated by DNA Methylation in Hepatocarcinogenesis

    PubMed Central

    Shen, Jing; Wang, Shuang; Siegel, Abby B.; Remotti, Helen; Wang, Qiao; Sirosh, Iryna; Santella, Regina M.

    2015-01-01

    Background. Previous studies, including ours, have examined the regulation of microRNAs (miRNAs) by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC) is unclear. Subjects/Methods. Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation. Results. We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6%) showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells. Conclusion. These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis. PMID:25861255

  8. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    PubMed

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. PMID:26980108

  9. The microRNA expression profile in porcine skeletal muscle is changed by constant heat stress.

    PubMed

    Hao, Y; Liu, J R; Zhang, Y; Yang, P G; Feng, Y J; Cui, Y J; Yang, C H; Gu, X H

    2016-06-01

    Heat stress has profound effects on animal performance and muscle function, and microRNAs (miRNAs) play a critical role in muscle development and stress responses. To characterize the changes in miRNAs in skeletal muscle responding to heat stress, the miRNA expression profiles of longissimus dorsi muscles of pigs raised under constant heat stress (30 °C; n = 8) or control temperature (22 °C; n = 8) for 21 days were analyzed by Illumina deep sequencing. A total of 58 differentially expressed miRNAs were identified with 30 down-regulated and 28 up-regulated, and 63 differentially expressed target genes were predicted by miRNA-mRNA joint analysis. GO and KEGG analyses showed that the genes regulated by differentially expressed miRNAs were enriched in glucose metabolism, cytoskeletal structure and function and stress response. Real-time PCR showed that the mRNA levels of PDK4, HSP90 and DES were significantly increased, whereas those of SCD and LDHA significantly decreased by heat exposure. The protein levels of CALM1, DES and HIF1α were also significantly increased by constant heat. These results demonstrated that the change in miRNA expression in porcine longissimus dorsi muscle underlies the changes in muscle structure and metabolism in porcine skeletal muscle affected by constant heat stress. PMID:26857849

  10. MicroRNA-218 inhibits melanogenesis by directly suppressing microphthalmia-associated transcription factor expression

    PubMed Central

    Guo, Jia; Zhang, Jin-Fang; Wang, Wei-Mao; Cheung, Florence Wing-ki; Lu, Ying-fei; Ng, Chi-fai; Kung, Hsiang-fu; Liu, Wing-keung

    2014-01-01

    The microphthalmia-associated transcription factor (MITF) is a pivotal regulator of melanogenic enzymes for melanogenesis, and its expression is modulated by many transcriptional factors at the transcriptional level or post-transcriptional level through microRNAs (miRNAs). Although several miRNAs modulate melanogenic activities, there is no evidence of their direct action on MITF expression. Out of eight miRNAs targeting the 3′-UTR of Mitf predicted by bioinformatic programs, our results show miR-218 to be a novel candidate for direct action on MITF expression. Ectopic miR-218 dramatically reduced MITF expression, suppressed tyrosinase activity, and induced depigmentation in murine immortalized melan-a melanocytes. MiR-218 also suppressed melanogenesis in human pigmented skin organotypic culture (OTC) through the repression of MITF. An inverse correlation between MITF and miR-218 expression was found in human primary skin melanocytes and melanoma cell lines. Taken together, our findings demonstrate a novel mechanism involving miR-218 in the regulation of the MITF pigmentary process and its potential application for skin whitening therapy. PMID:24824743

  11. Age-related changes in microRNA expression and pharmacogenes in human liver

    PubMed Central

    Burgess, Kimberly S.; Philips, Santosh; Benson, Eric A.; Desta, Zeruesenay; Gaedigk, Andrea; Gaedigk, Roger; Segar, Matthew W.; Liu, Yunlong; Skaar, Todd C.

    2015-01-01

    Developmental changes in the liver can significantly impact drug disposition. Due to the emergence of microRNAs (miRNAs) as important regulators of drug disposition gene expression, we studied age-dependent changes in miRNA expression. Expression of 533 miRNAs was measured in 90 human liver tissues (fetal, pediatric (1-17 years), and adult (28-80 years); n=30 each). 114 miRNAs were upregulated and 72 were downregulated from fetal to pediatric, and 2 and 3, respectively, from pediatric to adult. Among the developmentally changing miRNAs, 99 miRNA-mRNA interactions were predicted or experimentally validated (e.g. hsamiR-125b-5p-CYP1A1; hsa-miR-34a-5p-HNF4A). In human liver samples (n=10 each), analyzed by RNA-sequencing, significant negative correlations were observed between the expression of >1000 miRNAs and mRNAs of drug disposition and regulatory genes. Our data suggest a mechanism for the marked changes in hepatic gene expression between the fetal and pediatric developmental periods, and support a role for these age-dependent miRNAs in regulating drug disposition. PMID:25968989

  12. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5.

    PubMed

    Sharma, Nikhil; Kumawat, Kanhaiya L; Rastogi, Meghana; Basu, Anirban; Singh, Sunit K

    2016-01-01

    Japanese encephalitis virus (JEV) is a plus strand RNA virus, which infects brain. MicroRNAs are regulatory non-coding RNAs which regulate the expression of various genes in cells. Viruses modulate the expression of various microRNAs to suppress anti-viral signaling and evade the immune response. SOCS (Suppressor of cytokine signalling) family of proteins are negative regulators of anti-viral Jak-STAT pathway. In this study, we demonstrated the regulatory role of SOCS5 in Jak-STAT signaling and its exploitation by JEV through a microRNA mediated mechanism. JEV infection in human brain microglial cells (CHME3) downregulated the expression of miR-432, and upregulated SOCS5 levels. SOCS5 was validated as a target of miR-432 by using 3'UTR clone of SOCS5 in luciferase vector along with miR-432 mimic. The overexpression of miR-432 prior to JEV infection enhanced the phosphorylation of STAT1 resulting into increased ISRE activity and cellular inflammatory response resulting into diminished viral replication. The knockdown of SOCS5 resulted into increased STAT1 phosphorylation and suppressed viral replication. JEV infection mediated downregulation of miR-432 leads to SOCS5 upregulation, which helps the virus to evade cellular anti-viral response. This study demonstrated that JEV utilizes this microRNA mediated strategy to manipulate cellular immune response promoting JEV pathogenesis. PMID:27282499

  13. Japanese Encephalitis Virus exploits the microRNA-432 to regulate the expression of Suppressor of Cytokine Signaling (SOCS) 5

    PubMed Central

    Sharma, Nikhil; Kumawat, Kanhaiya L.; Rastogi, Meghana; Basu, Anirban; Singh, Sunit K.

    2016-01-01

    Japanese encephalitis virus (JEV) is a plus strand RNA virus, which infects brain. MicroRNAs are regulatory non-coding RNAs which regulate the expression of various genes in cells. Viruses modulate the expression of various microRNAs to suppress anti-viral signaling and evade the immune response. SOCS (Suppressor of cytokine signalling) family of proteins are negative regulators of anti-viral Jak-STAT pathway. In this study, we demonstrated the regulatory role of SOCS5 in Jak-STAT signaling and its exploitation by JEV through a microRNA mediated mechanism. JEV infection in human brain microglial cells (CHME3) downregulated the expression of miR-432, and upregulated SOCS5 levels. SOCS5 was validated as a target of miR-432 by using 3′UTR clone of SOCS5 in luciferase vector along with miR-432 mimic. The overexpression of miR-432 prior to JEV infection enhanced the phosphorylation of STAT1 resulting into increased ISRE activity and cellular inflammatory response resulting into diminished viral replication. The knockdown of SOCS5 resulted into increased STAT1 phosphorylation and suppressed viral replication. JEV infection mediated downregulation of miR-432 leads to SOCS5 upregulation, which helps the virus to evade cellular anti-viral response. This study demonstrated that JEV utilizes this microRNA mediated strategy to manipulate cellular immune response promoting JEV pathogenesis. PMID:27282499

  14. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.

    PubMed

    Zhang, Ye; Lu, Tao; Wong, Michael; Wang, Xiaoyu; Stodieck, Louis; Karouia, Fathi; Story, Michael; Wu, Honglu

    2016-06-01

    Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of

  15. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda).

    PubMed

    Quinn, Christina R; Iriyama, Rie; Fernando, Danilo D

    2014-06-01

    MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis. PMID:24664256

  16. Micro-RNA Expression in the Urinary Sediment of Patients with Chronic Kidney Diseases

    PubMed Central

    Szeto, Cheuk-Chun; Ching-Ha, Kwan Bonnie; Ka-Bik, Lai; Mac-Moune, Lai Fernand; Cheung-Lung, Choi Paul; Gang, Wang; Kai-Ming, Chow; Kam-Tao, Li Philip

    2012-01-01

    Background: Evidence indicates that microRNAs (miRNA) play a role in the pathogenesis of chronic kidney diseases (CKD). We explored the possibility of using urinary miRNA as non-invasive biomarkers for CKD. Methods: We quantified miRNA expression in urinary sediment of 56 CKD patients who underwent kidney biopsy. Patients were followed for 16.2 ± 15.5 months. Results: Patients with diabetic glomerulosclerosis had lower urinary miR-15 expression, while those with IgA nephropathy had higher urinary miR-17 expression, than other diagnosis groups. Baseline proteinuria had significant inverse correlation with urinary expression of miR-15, miR-192, and miR-216a; baseline renal function correlated with urinary expression of miR-15, miR-17, miR-192, and miR-217. The rate of renal function decline correlated with urinary expression of miR-21 (r = 0.301, p = 0.026) and miR-216a (r = 0.515, p < 0.0001). Patients with a high urinary expression of miR-21 and miR-216a had better dialysis-free survival than those with low expression (log rank test, p = 0.005 and p = 0.003, respectively). Conclusions: Urinary miR-21 and miR-216a expression correlated with the rate of renal function decline and risk of progression to dialysis-dependent renal failure. Our results suggest that urinary miRNA profiling has the potential of further development as biomarkers of CKD. PMID:22960330

  17. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes

    PubMed Central

    Braconi, Chiara; Valeri, Nicola; Gasparini, Pierluigi; Huang, Nianyuan; Taccioli, Cristian; Nuovo, Gerard; Suzuki, Tetsuro; Croce, Carlo Maria; Patel, Tushar

    2009-01-01

    Purpose Hepatocellular cancer (HCC) is highly resistant to chemotherapy and is associated with a poor prognosis. Chronic hepatitis C (HCV) infection is a major cause of HCC. However, the effect of viral proteins in mediating chemosensitivity in tumor cells is unknown. We postulated that HCV viral proteins could modulate therapeutic responses by altering host cell microRNA (miRNA) expression. Experimental design HepG2 malignant hepatocytes were stably transfected with full length HCV genome (Hep-394) or an empty vector (Hep-SWX). miRNA profiling was performed by using a custom microarray, and the expression of selected miRNAs was validated by real time PCR. Protein expression was assessed by western blotting, while caspase activation by a luminometric assay. Results The IC50 to sorafenib was lower in Hep-394 compared to Hep-SWX control cells. Alterations in miRNA expression occurred with 10 miRNAs > 2-fold down-regulated and 23 miRNAs > 2-fold up-regulated in Hep-394 cells compared to controls. Of these, miR-193b was over-expressed by 5-fold in Hep-394 cells. miR-193b was predicted to target Mcl-1, an anti-apoptotic protein that can modulate the response to sorafenib. The expression of Mcl-1 expression was decreased and basal caspase-3/7 activity and PARP cleavage were increased in Hep-394 cells compared to controls. Moreover, transfection with precursors to miR-193b decreased both Mcl-1 expression and the IC50 to sorafenib. Conclusions Cellular expression of full length HCV increases sensitivity to sorafenib by miRNA-dependent modulation of Mcl-1 and apoptosis. Modulation of miRNA responses may be a useful strategy to enhance response to chemotherapy in HCC. PMID:20103677

  18. MicroRNA-155 Mediates Augmented CD40 Expression in Bone Marrow Derived Plasmacytoid Dendritic Cells in Symptomatic Lupus-Prone NZB/W F1 Mice

    PubMed Central

    Yan, Sheng; Yim, Lok Yan; Tam, Rachel Chun Yee; Chan, Albert; Lu, Liwei; Lau, Chak Sing; Chan, Vera Sau-Fong

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease characterized by hyperactivated immune responses to self-antigens and persistent systemic inflammation. Previously, we reported abnormalities in circulating and bone marrow (BM)-derived plasmacytoid dendritic cells (pDCs) from SLE patients. Here, we aim to seek for potential regulators that mediate functional aberrations of pDCs in SLE. BM-derived pDCs from NZB/W F1 mice before and after the disease onset were compared for toll-like receptor (TLR) induced responses and microRNA profile changes. While pDCs derived from symptomatic mice were phenotypically comparable to pre-symptomatic ones, functionally they exhibited hypersensitivity to TLR7 but not TLR9 stimulation, as represented by the elevated upregulation of CD40, CD86 and MHC class II molecules upon R837 stimulation. Upregulated induction of miR-155 in symptomatic pDCs following TLR7 stimulation was observed. Transfection of miR-155 mimics in pre-symptomatic pDCs induced an augmented expression of Cd40, which is consistent with the increased CD40 expression in symptomatic pDCs. Overall, our results provide evidence for miR-155-mediated regulation in pDC functional abnormalities in SLE. Findings from this study contribute to a better understanding of SLE pathogenesis and ignite future interests in evaluating the molecular regulation in autoimmunity. PMID:27509492

  19. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  20. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  1. Protein expression profile of celiac disease patient with aberrant T cell by two-dimensional difference gel electrophoresis.

    PubMed

    De Re, Valli; Simula, Maria Paola; Caggiari, Laura; Ortz, Nicoletta; Spina, Michele; Da Ponte, Alessandro; De Appolonia, Leandro; Dolcetti, Riccardo; Canzonieri, Vincenzo; Cannizzaro, Renato

    2007-08-01

    One complication of celiac disease (CD) is refractory CD. These patients frequently show aberrant intraepithelial T cell clones and an increasing risk of evolution into enteropathy-associated T cell lymphoma (EATL). There is debate in the literature whether these cases are actually a smoldering lymphoma from the outset. The mechanism inducing T cell proliferation and prognosis remains unknown. Recently, alemtuzumab has been proposed as a promising new approach to treat these patients. Only few single cases have been tested presently, nevertheless, in all of them a clinical improvement has been observed, while intraepithelial lymphocytes (IELs) effectively targeted by alemtuzumab are still a debated issue. Using 2D-DIGE, we found hyperexpressed proteins specifically associated with aberrant T cell in a patient with CD by comparing the protein expression with that of patients with CD and polyclonal T cell or with that of control subjects (patients with polyclonal T cell and no CD). Proteins with a higher expression in duodenal biopsy of the patient with aberrant T cell were identified as IgM, apolipoprotein C-III, and Charcot-Leyden crystal proteins. These preliminary data allow hypothesizing different clinical effects of alemtuzumab in patients with CD, since besides the probable effect of alemtuzumab on T cell, it could effect inflammatory-associated CD52(+) IgM(+)B cell and eosinophils cells, known to produce IgM and Charcot-Leyden crystal proteins, which we demonstrated to be altered in this patient. Results also emphasize the possible association of apolipoprotein with aberrant T cell proliferation. PMID:17785332

  2. MicroRNA regulation in extreme environments: differential expression of microRNAs in the intertidal snail Littorina littorea during extended periods of freezing and anoxia.

    PubMed

    Biggar, Kyle K; Kornfeld, Samantha F; Maistrovski, Yulia; Storey, Kenneth B

    2012-10-01

    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at -6 °C for 24 h (P<0.05). In addition, in response to anoxia stress for 24 h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P<0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia. PMID:23200140

  3. Increase of microRNA-210, Decrease of Raptor Gene Expression and Alteration of Mammalian Target of Rapamycin Regulated Proteins following Mithramycin Treatment of Human Erythroid Cells

    PubMed Central

    Bianchi, Nicoletta; Finotti, Alessia; Ferracin, Manuela; Lampronti, Ilaria; Zuccato, Cristina; Breveglieri, Giulia; Brognara, Eleonora; Fabbri, Enrica; Borgatti, Monica; Negrini, Massimo; Gambari, Roberto

    2015-01-01

    Expression and regulation of microRNAs is an emerging issue in erythroid differentiation and globin gene expression in hemoglobin disorders. In the first part of this study microarray analysis was performed both in mithramycin-induced K562 cells and erythroid precursors from healthy subjects or β-thalassemia patients producing low or high levels of fetal hemoglobin. We demonstrated that: (a) microRNA-210 expression is higher in erythroid precursors from β-thalassemia patients with high production of fetal hemoglobin; (b) microRNA-210 increases as a consequence of mithramycin treatment of K562 cells and human erythroid progenitors both from healthy and β-thalassemia subjects; (c) this increase is associated with erythroid induction and elevated expression of γ-globin genes; (d) an anti-microRNA against microRNA-210 interferes with the mithramycin-induced changes of gene expression. In the second part of the study we have obtained convergent evidences suggesting raptor mRNA as a putative target of microRNA-210. Indeed, microRNA-210 binding sites of its 3’-UTR region were involved in expression and are targets of microRNA-210-mediated modulation in a luciferase reporter assays. Furthermore, (i) raptor mRNA and protein are down-regulated upon mithramycin-induction both in K562 cells and erythroid progenitors from healthy and β-thalassemia subjects. In addition, (ii) administration of anti-microRNA-210 to K562 cells decreased endogenous microRNA-210 and increased raptor mRNA and protein expression. Finally, (iii) treatment of K562 cells with premicroRNA-210 led to a decrease of raptor mRNA and protein. In conclusion, microRNA-210 and raptor are involved in mithramycin-mediated erythroid differentiation of K562 cells and participate to the fine-tuning and control of γ-globin gene expression in erythroid precursor cells. PMID:25849663

  4. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression

    PubMed Central

    Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs. PMID:26162091

  5. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues.

    PubMed

    Meale, S J; Romao, J M; He, M L; Chaves, A V; McAllister, T A; Guan, L L

    2014-08-01

    Knowledge of the molecular mechanisms that regulate ovine adipogenesis is very limited. MicroRNAs (miRNA) have been reported as one of the regulatory mechanisms of adipogenesis. This study aimed to compare the expression of miRNA related to ovine adipogenesis in different adipose depots and to investigate whether their expression is affected by dietary fatty acid composition. We also investigated the role of miRNA in adipogenic gene regulation. Subcutaneous and visceral adipose tissue samples were collected at slaughter from 12 Canadian Arcott lambs fed a barley-based finishing diet where an algae meal (DHA-Gold; Schizochytrium spp.) replaced flax oil and barley grain at 0 or 3% DM (n = 6). Total RNA from each tissue was subjected to quantitative real time (qRT-) PCR analysis to determine the expression of 15 selected miRNA including 11 identified from bovine adipose tissues and 4 conserved between bovine and ovine species. MicroRNAs were differentially expressed according to diet in each tissue depot (miR-142-5p and miR-376d) in visceral and miR-142-5p, miR-92a, and miR-378 in subcutaneous adipose tissue; P ≤ 0.05) and in each tissue depot depending on diet (miR-101, miR-106, miR-136, miR-16b, miR-196a-1, miR-2368*, miR-2454, miR-296, miR-376d, miR-378, and miR-92a in both control and DHA-G diets and miR-478 in control; P ≤ 0.05). Six miRNA were subjected to functional analysis and 3 genes of interest (ACSL1, PPARα, and C/EBPα) were validated by qRT-PCR. Both diet and tissue depot affected expression levels of all 3 genes (P < 0.05). miR-101, miR-106, and miR-136 were negatively correlated with their respective predicted gene targets C/EBPα, PPARα, and ACSL1 in subcutaneous adipose tissue of lambs fed DHA-G. Yet miR-142-5p and miR-101 showed no correlation with ACSL1 or C/EBPα. The variability in expression patterns of miRNA across adipose depots reflects the tissue specific nature of adipogenic regulation. Although the examined miRNA appear to be

  6. Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients

    SciTech Connect

    Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F.; Barker, Christopher A.; Wolden, Suzanne L.; Smilenov, Lubomir B.

    2011-06-01

    Purpose: MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials: Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results: The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions: Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells

  7. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.

    PubMed

    Eamens, Andrew L; McHale, Marcus; Waterhouse, Peter M

    2014-01-01

    In plants, double-stranded RNA (dsRNA) is an effective trigger of RNA silencing, and several classes of endogenous small RNA (sRNA), processed from dsRNA substrates by DICER-like (DCL) endonucleases, are essential in controlling gene expression. One such sRNA class, the microRNAs (miRNAs) control the expression of closely related genes to regulate all aspects of plant development, including the determination of leaf shape, leaf polarity, flowering time, and floral identity. A single miRNA sRNA silencing signal is processed from a long precursor transcript of nonprotein-coding RNA, termed the primary miRNA (pri-miRNA). A region of the pri-miRNA is partially self-complementary allowing the transcript to fold back onto itself to form a stem-loop structure of imperfectly dsRNA. Artificial miRNA (amiRNA) technology uses endogenous pri-miRNAs, in which the miRNA and miRNA* (passenger strand of the miRNA duplex) sequences have been replaced with corresponding amiRNA/amiRNA* sequences that direct highly efficient RNA silencing of the targeted gene. Here, we describe the rules for amiRNA design, as well as outline the PCR and bacterial cloning procedures involved in the construction of an amiRNA plant expression vector to control target gene expression in Arabidopsis thaliana. PMID:24057368

  8. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury.

    PubMed

    Yao, Li; Lv, Xin; Wang, Xiaohua

    2016-05-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. MicroRNA 26a (Mir-26a) plays important roles in cellular differentiation, cell growth, cell apoptosis and metastasis. Mir-26a has been demonstrated to modulate regulatory T cells expansion and attenuates renal IR injury. However, the role of Mir-26a in the cardiac IR injury has never been investigated. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 hours and then transplanted into syngeneic recipients. The results demonstrate a crucial role for Mir-26a in inhibiting high mobility group box-1 (HMGB1) expression and attenuating cardiac IR injury. Mir-26a overexpression results in attenuated cardiac IR injury and inhibited HMGB1 expression. Mir-26a also inhibits inflammatory cells infiltration and cytokines expression. Furthermore, the attenuated cardiac IR injury induced by Mir-26a was abrogated by additional administration of recombinant HMGB1 (rHMGB1). In conclusion, Mir-26a plays a protective role in cardiomyocyte IR injury and this is associated with inhibited HMGB1 expression. PMID:26320674

  9. Spaceflight alters expression of microRNA during T-cell activation.

    PubMed

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21. PMID:26276131

  10. Paeoniflorin inhibits doxorubicin-induced cardiomyocyte apoptosis by downregulating microRNA-1 expression

    PubMed Central

    LI, JIAN-ZHE; TANG, XIU-NENG; LI, TING-TING; LIU, LI-JUAN; YU, SHU-YI; ZHOU, GUANG-YU; SHAO, QING-RUI; SUN, HUI-PING; WU, CHENG; YANG, YANG

    2016-01-01

    Doxorubicin (DOX) is an effective anthracycline anti-tumor antibiotic. Because of its cardiotoxicity, the clinical application of DOX is limited. Paeoniflorin (PEF), a monoterpene glucoside extracted from the dry root of Paeonia, is reported to exert multiple beneficial effects on the cardiovascular system. The present study was designed to explore the protective effect of PEF against DOX-induced cardiomyocyte apoptosis and the underlying mechanism. In cultured H9c2 cells, PEF (100 µmol/l) was added for 2 h prior to exposure to DOX (5 µmol/l) for 24 h. Cell viability, creatine kinase activity, cardiomyocyte apoptosis, intracellular reactive oxygen species (ROS) levels, and the expression of microRNA-1 (miR-1) and B-cell lymphoma 2 (Bcl-2) were measured following treatment with PEF and/or DOX. The results showed that treatment with DOX notably induced cardiomyocyte apoptosis, concomitantly with enhanced ROS generation, upregulated miR-1 expression and downregulated Bcl-2 expression. These effects of DOX were significantly inhibited by pretreatment of the cells with PEF. These results suggest that the inhibitory effect of PEF on DOX-induced cardiomyocyte apoptosis may be associated with downregulation of miR-1 expression via a reduction in ROS generation. PMID:27284328

  11. MicroRNA Expression Patterns Related to Merkel Cell Polyomavirus Infection in Human Merkel Cell Carcinoma

    PubMed Central

    Xie, Hong; Lee, Linkiat; Caramuta, Stefano; Höög, Anders; Browaldh, Nanna; Björnhagen, Viveca; Larsson, Catharina; Lui, Weng-Onn

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive and lethal type of neuroendocrine skin cancer. Mutated Merkel cell polyomavirus (MCV) is commonly found in MCC, and leads to upregulation of the survivin oncogene. However, ∼20% of MCC tumors do not have detectable MCV, suggesting alternative etiologies for this tumor type. In this study, our aim was to evaluate microRNA (miRNA) expression profiles and their associations with MCV status and clinical outcomes in MCC. We showed that miRNA expression profiles were distinct between MCV-positive (MCV+) and MCV-negative (MCV−) MCCs and further validated that miR-203, miR-30a-3p, miR-769-5p, miR-34a, miR-30a-5p, and miR-375 were significantly different. We also identified a subset of miRNAs associated with tumor metastasis and MCC-specific survival. Functionally, overexpression of miR-203 was found to inhibit cell growth, induce cell cycle arrest, and regulate survivin expression in MCV− MCC cells, but not in MCV+ MCC cells. Our findings reveal a mechanism of survivin expression regulation in MCC cells, and provide insights into the role of miRNAs in MCC tumorigenesis. PMID:23962809

  12. Expression Profiling of Circulating MicroRNAs in Canine Myxomatous Mitral Valve Disease

    PubMed Central

    Li, Qinghong; Freeman, Lisa M.; Rush, John E.; Laflamme, Dorothy P.

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have shown promise as noninvasive biomarkers in cardiac disease. This study was undertaken to investigate the miRNA expression profile in dogs with myxomatous mitral valve disease (MMVD). 277 miRNAs were quantified using RT-qPCR from six normal dogs (American College of Veterinary Internal Medicine Stage A), six dogs with MMVD mild to moderate cardiac enlargement (ACVIM Stage B1/B2) and six dogs with MMVD and congestive heart failure (ACVIM Stage C/D). Eleven miRNAs were differentially expressed (False Discovery Rate < 0.05). Dogs in Stage B1/B2 or C/D had four upregulated miRNAs, including three cfa-let-7/cfa-miR-98 family members, while seven others were downregulated, compared to Stage A. Expression of six of the 11 miRNAs also were significantly different between dogs in Stage C/D and those in Stage B1/B2. The expression changes were greater as disease severity increased. These miRNAs may be candidates for novel biomarkers and may provide insights into genetic regulatory pathways in canine MMVD. PMID:26101868

  13. Mining cancer gene expression databases for latent information on intronic microRNAs.

    PubMed

    Monterisi, Simona; D'Ario, Giovanni; Dama, Elisa; Rotmensz, Nicole; Confalonieri, Stefano; Tordonato, Chiara; Troglio, Flavia; Bertalot, Giovanni; Maisonneuve, Patrick; Viale, Giuseppe; Nicassio, Francesco; Vecchi, Manuela; Di Fiore, Pier Paolo; Bianchi, Fabrizio

    2015-02-01

    Around 50% of all human microRNAs reside within introns of coding genes and are usually co-transcribed. Gene expression datasets, therefore, should contain a wealth of miRNA-relevant latent information, exploitable for many basic and translational research aims. The present study was undertaken to investigate this possibility. We developed an in silico approach to identify intronic-miRNAs relevant to breast cancer, using public gene expression datasets. This led to the identification of a miRNA signature for aggressive breast cancer, and to the characterization of novel roles of selected miRNAs in cancer-related biological phenotypes. Unexpectedly, in a number of cases, expression regulation of the intronic-miRNA was more relevant than the expression of their host gene. These results provide a proof of principle for the validity of our intronic miRNA mining strategy, which we envision can be applied not only to cancer research, but also to other biological and biomedical fields. PMID:25459350

  14. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  15. Characterization of microRNA Expression Profiles in Leishmania Infected Human Phagocytes

    PubMed Central

    Geraci, Nicholas S.; Tan, John C.; McDowell, Mary Ann

    2014-01-01

    Leishmania are intracellular protozoa that influence host immune responses eliciting parasite species specific pathologies. MicroRNAs (miRNA) are short single stranded ribonucleic acids that complement gene transcripts to block protein translation and have been shown to regulate immune system molecular mechanisms. Human monocyte derived dendritic cells (DC) and macrophages (MP) were infected in vitro with Leishmania major or Leishmania donovani parasites. Small RNAs were isolated from total RNA and sequenced to identify mature miRNAs associated with leishmanial infections. Normalized sequence read count profiles revealed a global down-regulation in miRNA expression among host cells following infection. Most identified miRNAs were expressed at higher levels in L. donovani infected cells relative to L. major infected cells. Pathway enrichments using in silico predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal MAP kinase signaling pathway effects. Whereas JAK-STAT and TGF-β signaling pathways were more highly enriched using targets of miRNAs up-regulated in L. donovani infected cells. These data provide evidence in support of a selective influence on host cell miRNA expression and regulation in response to differential Leishmania infections. PMID:25376316

  16. Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts.

    PubMed

    Scarfò, Irene; Pellegrino, Elisa; Mereu, Elisabetta; Kwee, Ivo; Agnelli, Luca; Bergaggio, Elisa; Garaffo, Giulia; Vitale, Nicoletta; Caputo, Manuel; Machiorlatti, Rodolfo; Circosta, Paola; Abate, Francesco; Barreca, Antonella; Novero, Domenico; Mathew, Susan; Rinaldi, Andrea; Tiacci, Enrico; Serra, Sara; Deaglio, Silvia; Neri, Antonino; Falini, Brunangelo; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio; Piva, Roberto

    2016-01-14

    Anaplastic large-cell lymphoma (ALCL) is a clinical and biological heterogeneous disease that includes systemic anaplastic lymphoma kinase (ALK)-positive and ALK-negative entities. To discover biomarkers and/or genes involved in ALK-negative ALCL pathogenesis, we applied the cancer outlier profile analysis algorithm to a gene expression profiling data set including 249 cases of T-cell non-Hodgkin lymphoma and normal T cells. Ectopic coexpression of ERBB4 and COL29A1 genes was detected in 24% of ALK-negative ALCL patients. RNA sequencing and 5' RNA ligase-mediated rapid amplification of complementary DNA ends identified 2 novel ERBB4-truncated transcripts displaying intronic transcription start sites. By luciferase assays, we defined that the expression of ERBB4-aberrant transcripts is promoted by endogenous intronic long terminal repeats. ERBB4 expression was confirmed at the protein level by western blot analysis and immunohistochemistry. Lastly, we demonstrated that ERBB4-truncated forms show oncogenic potentials and that ERBB4 pharmacologic inhibition partially controls ALCL cell growth and disease progression in an ERBB4-positive patient-derived tumorgraft model. In conclusion, we identified a new subclass of ALK-negative ALCL characterized by aberrant expression of ERBB4-truncated transcripts carrying intronic 5' untranslated regions. PMID:26463425

  17. Stromal Expression of MicroRNA-21 in Advanced Colorectal Cancer Patients with Distant Metastases

    PubMed Central

    Lee, Kyu Sang; Nam, Soo Kyung; Koh, Jiwon; Kim, Duck-Woo; Kang, Sung-Bum; Choe, Gheeyoung; Kim, Woo Ho; Lee, Hye Seung

    2016-01-01

    Background: The aim of this study was to determine the regional heterogeneity and clinicopathological significance of microRNA-21 (miR-21) in advanced colorectal cancer (CRC) patients with distant metastasis. Methods: miR-21 expression was investigated by using locked nucleic acid– fluorescence in situ hybridization in the center and periphery of the primary cancer and in distant metastasis from 170 patients with advanced CRC. In addition, α-smooth muscle actin and desmin were evaluated to identify cancer-associated fibroblasts (CAFs) by using immunohistochemistry. Results: The miR-21 signal was observed in the cancer stroma. The expression of miR-21 (a score of 1–4) in the center and periphery of the primary cancer and in distant metastasis was observed in specimens from 133 (78.2%), 105 (61.8%), and 91 (53.5%) patients, respectively. miR-21 expression was heterogeneous in advanced CRC. Discordance between miR-21 expression in the center of the primary cancer and either the periphery of the primary cancer or distant metastasis was 31.7% or 44.7%, respectively. miR-21 stromal expression in the periphery of the primary cancer was significantly associated with a better prognosis (p=.004). miR-21 expression was significantly associated with CAFs in the center of the primary cancer (p=.001) and distant metastases (p=.041). Conclusions: miR-21 expression is observed in cancer stroma related to the CAF quantity and frequently presents regional heterogeneity in CRC. Our findings indicate that the role of miR-21 in predicting prognosis may be controversial but provide a new perspective of miR-21 level measurement in cancer specimens. PMID:27240857

  18. Herpes Virus MicroRNA Expression and Significance in Serous Ovarian Cancer

    PubMed Central

    Pandya, Deep; Mariani, Marisa; McHugh, Mark; Andreoli, Mirko; Sieber, Steven; He, Shiquan; Dowell-Martino, Candice; Fiedler, Paul; Scambia, Giovanni; Ferlini, Cristiano

    2014-01-01

    Serous ovarian cancer (SEOC) is the deadliest gynecologic malignancy. MicroRNAs (miRNAs) are a class of small noncoding RNAs which regulate gene expression and protein translation. MiRNAs are also encoded by viruses with the intent of regulating their own genes and those of the infected cells. This is the first study assessing viral miRNAs in SEOC. MiRNAs sequencing data from 487 SEOC patients were downloaded from the TCGA website and analyzed through in-house sequencing pipeline. To cross-validate TCGA analysis, we measured the expression of miR-H25 by quantitative immunofluorescence in an additional cohort of 161 SEOC patients. Gene, miRNA expression, and cytotoxicity assay were performed on multiple ovarian cancer cell lines transfected with miR-H25 and miR-BART7. Outcome analysis was performed using multivariate Cox and Kaplan-Meier method. Viral miRNAs are more expressed in SEOC than in normal tissues. Moreover, Herpetic viral miRNAs (miR-BART7 from EBV and miR-H25 from HSV-2) are significant and predictive biomarkers of outcome in multivariate Cox analysis. MiR-BART7 correlates with resistance to first line chemotherapy and early death, whereas miR-H25 appears to impart a protective effect and long term survival. Integrated analysis of gene and viral miRNAs expression suggests that miR-BART7 induces directly cisplatin-resistance, while miR-H25 alters RNA processing and affects the expression of noxious human miRNAs such as miR-143. This is the first investigation linking viral miRNA expression to ovarian cancer outcome. Viral miRNAs can be useful to develop biomarkers for early diagnosis and as a potential therapeutic tool to reduce SEOC lethality. PMID:25485872

  19. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  20. A comprehensive expression profile of micrornas in rat’s pituitary

    PubMed Central

    Yuan, Bao; Han, Dong-Xu; Dai, Li-Sheng; Gao, Yan; Ding, Yu; Yu, Xian-Feng; Chen, Jian; Jiang, Hao; Chen, Cheng-Zhen; Zhang, Jia-Bao

    2015-01-01

    MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that act as a negative regulator of most mRNAs. miRNAs influence the gene expression as transcriptional regulators and play an important role in many fundamental biological processes. It is generally acknowledged that miRNAs have a very important affection on mammalian pituitary. However, the answers of which role miRNAs play in the development of sexual function or how much they contribute to the pituitary function are not exactly. In our study, we used three female 21-day-old rats and three female 12-month-old rats to analysis the function of miRNAs. By the analyses of microarray data, we finished the stem-loop real-time RT-PCR for the differentially expressed miRNAs. We detected a total of 93 differentially expressed miRNAs between 21-day-old rats’ pituitary and 12-month-old rats’. Stem-loop real-time RT-PCR suggests that the obtained data is of high credibility. Among these miRNAs, 7 miRNAs’ expression (rno-miR-880, rno-miR-503, rno-miR-125a-3p, rno-miR-3596b, rno-miR-30e, rno-miR-214 and rno-miR-22) are significant different (P≤0.05). In a word, this study identified a number of specific changes in the expression of miRNAs, in rats by detecting the expression profile of miRNAs in rat’s pituitary, and all of that lay the foundation for elucidating the regulatory mechanisms of miRNAs in rat’s reproduction process. These differentially expressed miRNAs may play a very important role in rat’s reproduction process. PMID:26550255

  1. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons.

    PubMed

    LeGates, Tara A; Altimus, Cara M; Wang, Hui; Lee, Hey-Kyoung; Yang, Sunggu; Zhao, Haiqing; Kirkwood, Alfredo; Weber, E Todd; Hattar, Samer

    2012-11-22

    The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells. PMID:23151476

  2. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos

    SciTech Connect

    Jenny, Matthew J.; Aluru, Neelakanteswar; Hahn, Mark E.

    2012-10-15

    Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular

  3. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development.

    PubMed

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-04-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development. PMID:25638647

  4. Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition

    PubMed Central

    Lee, Seungwoo; Hwang, Seungwoo; Yu, Hee Jeong; Oh, Dayoung; Choi, Yu Jung; Kim, Myung-Chul; Kim, Yongbaek; Ryu, Doug-Young

    2016-01-01

    MicroRNAs (miRNAs) in blood plasma are stable under high levels of ribonuclease activity and could function in tissue-to-tissue communication, suggesting that they may have distinctive structural characteristics compared with non-circulating miRNAs. In this study, the expression of miRNAs in horse plasma and their characteristic nucleotide composition were examined and compared with non-plasma miRNAs. Highly expressed plasma miRNA species were not part of the abundant group of miRNAs in non-plasma tissues, except for the eca-let-7 family. eca-miR-486-5p, -92a, and -21 were among the most abundant plasma miRNAs, and their human orthologs also belong to the most abundant group of miRNAs in human plasma. Uracil and guanine were the most common nucleotides of both plasma and non-plasma miRNAs. Cytosine was the least common in plasma and non-plasma miRNAs, although levels were higher in plasma miRNAs. Plasma miRNAs also showed higher expression levels of miRNAs containing adenine and cytosine repeats, compared with non-plasma miRNAs. These observations indicate that miRNAs in the plasma have a unique nucleotide composition. PMID:26731407

  5. Identification of microRNAs differentially expressed involved in male flower development.

    PubMed

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees. PMID:25576251

  6. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs.

    PubMed

    Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu

    2016-01-01

    It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes. PMID:26843174

  7. MirZ: an integrated microRNA expression atlas and target prediction resource

    PubMed Central

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-01-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens. PMID:19468042

  8. MicroRNAs expression profile in CCR6+ regulatory T cells

    PubMed Central

    Hu, Yan; Chen, Chao; Zhou, Ya; Tao, Yijin; Guo, Mengmeng; Qin, Nalin

    2014-01-01

    Backgroud. CCR6+ CD4+ regulatory T cells (CCR6+ Tregs), a distinct Tregs subset, played an important role in various immune diseases. Recent evidence showed that microRNAs (miRNAs) are vital regulators in the function of immune cells. However, the potential role of miRNAs in the function of CCR6+ Tregs remains largely unknown. In this study, we detected the expression profile of miRNAs in CCR6+ Tregs. Materials and Methods. The expression profile of miRNAs as well as genes in CCR6+ Tregs or CCR6- Tregs from Balb/c mice were detected by microarray. The signaling pathways were analyzed using the Keggs pathway library. Results. We found that there were 58 miRNAs significantly upregulated and 62 downregulated up to 2 fold in CCR6+ Tregs compared with CCR6- Tregs. Moreover, 1,391 genes were observed with 3 fold change and 20 signaling pathways were enriched using the Keggs pathway library. Conclusion. The present data showed CCR6+ Tregs expressed specific miRNAs pattern, which provides insight into the role of miRNAs in the biological function of distinct Tregs subsets. PMID:25279261

  9. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells

    PubMed Central

    Tabet, Fatiha; Vickers, Kasey C.; Cuesta Torres, Luisa F.; Wiese, Carrie B.; Shoucri, Bassem M.; Lambert, Gilles; Catherinet, Claire; Prado-Lourenco, Leonel; Levin, Michael G.; Thacker, Seth; Sethupathy, Praveen; Barter, Philip J.; Remaley, Alan T.; Rye, Kerry-Anne

    2014-01-01

    High-density lipoproteins (HDL) have many biological functions, including reducing endothelial activation and adhesion molecule expression. We recently reported that HDL transport and deliver functional microRNAs (miRNA). Here we show that HDL suppresses expression of intercellular adhesion molecule 1 (ICAM-1) through the transfer of miR-223 to endothelial cells. After incubation of endothelial cells with HDL, mature miR-223 levels are significantly increased in endothelial cells and decreased on HDL. However, miR-223 is not transcribed in endothelial cells and is not increased in cells treated with HDL from miR-223−/− mice. HDL inhibit ICAM-1 protein levels, but not in cells pretreated with miR-223 inhibitors. ICAM-1 is a direct target of HDL-transferred miR-223 and this is the first example of an extracellular miRNA regulating gene expression in cells where it is not transcribed. Collectively, we demonstrate that HDL’s anti-inflammatory properties are conferred, in part, through HDL-miR-223 delivery and translational repression of ICAM-1 in endothelial cells. PMID:24576947

  10. Dysregulated microRNA Expression in Serum of Non-Vaccinated Children with Varicella

    PubMed Central

    Qi, Yuhua; Zhu, Zheng; Shi, Zhiyang; Ge, Yiyue; Zhao, Kangchen; Zhou, Minghao; Cui, Lunbiao

    2014-01-01

    Circulating microRNAs (miRNAs) may play an important role in pathogen-host interactions and can serve as molecular markers for the detection of infectious diseases. To date, the relationship between circulating miRNAs and varicella-zoster virus (VZV) caused varicella has not been reported. Using TaqMan Low-Density Array (TLDA) analysis, expression levels of miRNAs in serum samples from 29 patients with varicella and 60 patients with Bordetella pertussis (BP), measles virus (MEV) and enterovirus (EV) were analyzed. The array results showed that 247 miRNAs were differentially expressed in sera of the varicella patients compared with healthy controls (215 up-regulated and 32 down-regulated). Through the following qRT-PCR confirmation and receiver operational characteristic (ROC) curve analysis, five miRNAs (miR-197, miR-629, miR-363, miR-132 and miR-122) were shown to distinguish varicella patients from healthy controls and other microbial infections with moderate sensitivity and specificity. A number of significantly enriched pathways regulated by these circulating miRNAs were predicted, and some of them were involved in inflammatory response, nervous system and respiratory system development. Our results, for the first time, revealed that a number of miRNAs were differentially expressed during VZV infection, and these five serum miRNAs have great potential to serve as biomarkers for the diagnosis of VZV infection in varicella patients. PMID:24759212

  11. MicroRNA-24 inhibits serotonin reuptake transporter expression and aggravates irritable bowel syndrome.

    PubMed

    Liao, Xiu-Jun; Mao, Wei-Ming; Wang, Qin; Yang, Guan-Gen; Wu, Wen-Jing; Shao, Shu-Xian

    2016-01-01

    Irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder. MicroRNAs (miRNAs) have been widely demonstrated to take part in various physiological and pathological processes. In the present study, the role of miR-24 in the pathogenesis of IBS and the potential mechanism in this process were evaluated. Human intestinal mucosa epithelial cells of colon from IBS patients and healthy subjects were collected. An IBS mouse model was established with the induction of trinitro-benzene-sulfonic acid (TNBS). The expression levels of miR-24 and serotonin reuptake transporter (SERT) were analyzed using Real-time PCR and western blot in both human specimen and mice. miR-24 was upregulated in IBS patients and mice intestinal mucosa epithelial cells. Luciferase reporter assay showed that SERT was a potential target gene of miR-24. The treatment of miR-24 inhibitor increased pain threshold and nociceptive threshold levels and reduced MPO activity in proximal colon of IBS mice, and up-regulated the mRNA and protein expression levels of SERT in intestinal mucosa epithelial cells. miR-24 played a role in the pathogenesis of IBS probably through regulating SERT expression. PMID:26631964

  12. Expression of microRNAs in Horse Plasma and Their Characteristic Nucleotide Composition.

    PubMed

    Lee, Seungwoo; Hwang, Seungwoo; Yu, Hee Jeong; Oh, Dayoung; Choi, Yu Jung; Kim, Myung-Chul; Kim, Yongbaek; Ryu, Doug-Young

    2016-01-01

    MicroRNAs (miRNAs) in blood plasma are stable under high levels of ribonuclease activity and could function in tissue-to-tissue communication, suggesting that they may have distinctive structural characteristics compared with non-circulating miRNAs. In this study, the expression of miRNAs in horse plasma and their characteristic nucleotide composition were examined and compared with non-plasma miRNAs. Highly expressed plasma miRNA species were not part of the abundant group of miRNAs in non-plasma tissues, except for the eca-let-7 family. eca-miR-486-5p, -92a, and -21 were among the most abundant plasma miRNAs, and their human orthologs also belong to the most abundant group of miRNAs in human plasma. Uracil and guanine were the most common nucleotides of both plasma and non-plasma miRNAs. Cytosine was the least common in plasma and non-plasma miRNAs, although levels were higher in plasma miRNAs. Plasma miRNAs also showed higher expression levels of miRNAs containing adenine and cytosine repeats, compared with non-plasma miRNAs. These observations indicate that miRNAs in the plasma have a unique nucleotide composition. PMID:26731407

  13. MicroRNA expression in hepatitis C virus-related malignancies: A brief review

    PubMed Central

    Gragnani, Laura; Piluso, Alessia; Fognani, Elisa; Zignego, Anna Linda

    2015-01-01

    Not only is chronic hepatitis C virus (HCV) infection a major public health problem, but also it can cause hepatocellular carcinoma and, more rarely, non-Hodgkin’s lymphoma. These characteristics mean that HCV is the only virus infecting humans that is able to cause two different cancers. The fine pathogenetic and molecular mechanisms by which HCV induces these two malignancies are not completely clear. In the last decade, it has been shown that microRNAs (miRNAs), a class of 21-23-nucleotide molecules modulating post-transcriptional gene expression, make an important contribution to the pathogenesis of several cancers and are also considered highly promising biomarkers. Here, we briefly describe the current knowledge about microRNAs’ involvement in HCV-related molecular oncogenesis. We decided to focus our attention on studies fully conducted on ex vivo samples with this specific etiology, and on cultured cell lines partially or completely expressing the HCV genome. Some of the results reported in this review are controversial, possibly because of methodological issues, differences in sampling size and features, and ethnicity of patients. What is certain is that miRNAs play a remarkable role in regulating gene expression during oncogenetic processes and in viral infection. A clear understanding of their effects is fundamental to elucidating the mechanisms underlying virus-induced malignancies. PMID:26229398

  14. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    SciTech Connect

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S.; Arbuthnot, Patrick

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  15. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  16. MicroRNA GENE EXPRESSION SIGNATURES IN THE DEVELOPING NEURAL TUBE

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Appana, Savitri; Webb, Cynthia; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube (NT) defects. MicroRNAs are key modulators of cell and tissue differentiation. In order to define potential roles of miRNAs in development of the murine NT, miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0 and 9.5 were defined and compared utilizing miRXplore™ microarrays from Miltenyi Biotech GmbH. Gene expression changes were verified by TaqMan™ quantitative Real-Time PCR. clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS miRXplore™ chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biological networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs may direct expression of numerous genes encoding proteins which have been shown to be indispensable

  17. MicroRNA-21 Exhibits Antiangiogenic Function by Targeting RhoB Expression in Endothelial Cells

    PubMed Central

    Bovy, Nicolas; Deroanne, Christophe; Lambert, Vincent; Gonzalez, Maria-Luz Alvarez; Colige, Alain; Rakic, Jean-Marie; Noël, Agnès; Martial, Joseph A.; Struman, Ingrid

    2011-01-01

    Background MicroRNAs (miRNAs) are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. Methodology/Principal Findings We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. Conclusions/Significance Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB. PMID:21347332

  18. Altered microRNA expression in bovine skeletal muscle with age.

    PubMed

    Sun, J; Sonstegard, T S; Li, C; Huang, Y; Li, Z; Lan, X; Zhang, C; Lei, C; Zhao, X; Chen, H

    2015-06-01

    Age-dependent decline in skeletal muscle function leads to several inherited and acquired muscular disorders in elderly individuals. The levels of microRNAs (miRNAs) could be altered during muscle maintenance and repair. We therefore performed a comprehensive investigation for miRNAs from five different periods of bovine skeletal muscle development using next-generation small RNA sequencing. In total, 511 miRNAs, including one putatively novel miRNA, were identified. Thirty-six miRNAs were differentially expressed between prenatal and postnatal stages of muscle development including several myomiRs (miR-1, miR-206 and let-7 families). Compared with miRNA expression between different muscle tissues, 14 miRNAs were up-regulated and 22 miRNAs were down-regulated in the muscle of postnatal stage. In addition, a novel miRNA was predicted and submitted to the miRBase database as bta-mir-10020. A dual luciferase reporter assay was used to demonstrate that bta-mir-10020 directly targeted the 3'-UTR of the bovine ANGPT1 gene. The overexpression of bta-mir-10020 significantly decreased the DsRed fluorescence in the wild-type expression cassette compared to the mutant type. Using three computational approaches - miranda, pita and rnahybrid - these differentially expressed miRNAs were also predicted to target 3609 bovine genes. Disease and biological function analyses and the KEGG pathway analysis revealed that these targets were statistically enriched in functionality for muscle growth and disease. Our miRNA expression analysis findings from different states of muscle development and aging significantly expand the repertoire of bovine miRNAs now shown to be expressed in muscle and could contribute to further studies on growth and developmental disorders in this tissue type. PMID:25703017

  19. Ultra-Deep Sequencing Reveals the microRNA Expression Pattern of the Human Stomach

    PubMed Central

    Ribeiro-dos-Santos, Ândrea; Khayat, André S.; Silva, Artur; Alencar, Dayse O.; Lobato, Jessé; Luz, Larissa; Pinheiro, Daniel G.; Varuzza, Leonardo; Assumpção, Monica; Assumpção, Paulo; Santos, Sidney; Zanette, Dalila L.; Silva, Wilson A.; Burbano, Rommel; Darnet, Sylvain

    2010-01-01

    Background While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia. Methodology/Principal Findings A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue. Conclusions/Significance This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide. PMID:20949028

  20. First feed affects the expressions of microRNA and their targets in Atlantic cod.

    PubMed

    Bizuayehu, Teshome Tilahun; Furmanek, Tomasz; Karlsen, Ørjan; van der Meeren, Terje; Edvardsen, Rolf Brudvik; Rønnestad, Ivar; Hamre, Kristin; Johansen, Steinar D; Babiak, Igor

    2016-04-14

    To our knowledge, there is no report on microRNA (miRNA) expression and their target analysis in relation to the type of the first feed and its effect on the further growth of fish. Atlantic cod (Gadus morhua) larvae have better growth and development performance when fed natural zooplankton as a start-feed, as compared with those fed typical aquaculture start-feeds. In our experiment, two groups of Atlantic cod larvae were fed reference feed (zooplankton, mostly copepods, filtered from a seawater pond) v. aquaculture feeds: enriched rotifers (Brachionus sp.) and later brine shrimp (Artemia salina). We examined the miRNA expressions of six defined developmental stages as determined and standardised by body length from first feeding for both diet groups. We found eight miRNA (miR-9, miR-19a, miR-130b, miR-146, miR-181a, miR-192, miR-206 and miR-11240) differentially expressed between the two feeding groups in at least one developmental stage. We verified the next-generation sequencing data using real-time RT-PCR. We found 397 putative targets (mRNA) to the differentially expressed miRNA; eighteen of these mRNA showed differential expression in at least one stage. The patterns of differentially expressed miRNA and their putative target mRNA were mostly inverse, but sometimes also concurrent. The predicted miRNA targets were involved in different pathways, including metabolic, phototransduction and signalling pathways. The results of this study provide new nutrigenomic information on the potential role of miRNA in mediating nutritional effects on growth during the start-feeding period in fish larvae. PMID:26857476

  1. Identification of differentially expressed microRNAs in metastatic melanoma using next-generation sequencing technology

    PubMed Central

    QI, MIN; HUANG, XIAOYUAN; ZHOU, LEI; ZHANG, JIANGLIN

    2014-01-01

    In this study, we investigated differentially expressed microRNAs (miRNAs or miRs) and their functions in metastatic melanoma using next-generation sequencing technology. The GSE36236 data set was downloaded from the Gene Expression Omnibus (GEO) database and 4 primary cutaneous melanoma samples (used as controls) and 3 metastatic melanoma samples were selected from 31 samples for further analysis. Firstly, the differentially expressed miRNAs were screened by limma package in R language. Secondly, the target genes of the miRNAs were retrieved with TargetScanHuman 6.2, and the interactions among these genes were identified by String and an interaction network was established. Finally, functional and pathway analyses were performed for the genes in the network using Expression Analysis Systematic Explorer (EASE). A total of 4 differentially expressed miRNAs (hsa-miR-146, hsa-miR-27, hsa-miR-877 and hsa-miR-186) were obtained between the metastatic melanoma and primary cutaneous melanoma samples. We predicted 101 high-confidence target genes of hsa-miR-27 and obtained a network with 41 interactions. Finally, functional and pathway analyses revealed that the genes in the network were significantly enriched at the transcriptional level. Differentially expressed miRNAs were identified in the metastatic melanoma compared with the primary cutaneous melanoma samples and the target genes of hsa-miR-27 were found to be significantly enriched at the transcriptional level. The results presented in our study may prove helpful in the diagnosis and treatment of metastatic melanoma. PMID:24573402

  2. MicroRNA-378 Regulates Adiponectin Expression in Adipose Tissue: A New Plausible Mechanism

    PubMed Central

    Ishida, Masayoshi; Shimabukuro, Michio; Yagi, Shusuke; Nishimoto, Sachiko; Kozuka, Chisayo; Fukuda, Daiju; Soeki, Takeshi; Masuzaki, Hiroaki; Tsutsui, Masato; Sata, Masataka

    2014-01-01

    Aims Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression. Methods and Results First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3'UTR) of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3'UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3′-UTR binding site. Addition of tumor necrosis factor-α (TNFα) led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = −0.624, p = 0.004). Conclusions We found that levels of miRNA-378 could modulate adiponectin expression via the 3'UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression. PMID:25379946

  3. MicroRNA expression changes during zebrafish development induced by perfluorooctane sulfonate.

    PubMed

    Zhang, Ling; Li, Yuan-Yuan; Zeng, Huai-Cai; Wei, Jie; Wan, Yan-Jian; Chen, Jun; Xu, Shun-Qing

    2011-04-01

    Perfluorooctane sulfonate (PFOS), a kind of widely distributed environmentally organic compound, has been found to cause developmental toxicity. Although microRNAs (miRNAs) play an important role in many metabolic tasks, whether and how they are involved in the process of PFOS-induced toxicity is largely unknown. To address this problem, PFOS-induced changes in miRNAs and target gene expression in zebrafish embryos, and the potential mechanism of PFOS-induced toxic action were studied in this research. Zebrafish embryos were exposed to 1 µg ml(-1) PFOS or DMSO control from 6 h post-fertilization (hpf) to 24 or 120 hpf. Subsequently, RNA was isolated from the embryo pool and the expression profiles of 219 known zebrafish miRNAs were analyzed using microarray. Finally, quantitative real-time polymerase chain reaction was used to validate several miRNAs expression of microarray data. The analysis revealed that PFOS exposure induced significant changes in miRNA expression profiles. A total of 39 and 81 miRNAs showed significantly altered expression patterns after PFOS exposure 24 and 120 hpf. Of the changed miRNAs, 20 were significantly up-regulated and 19 were significantly down-regulated (p < 0.01) at 24 hpf, whereas 41 were significantly up-regulated and 40 were significantly down-regulated (p < 0.01) at 120 hpf. These miRNAs were involved in development, apoptosis and cell signal pathway, cell cycle progression and proliferation, oncogenesis, adipose metabolism and hormone secretion, whereas there is still little functional information available for 32 miRNAs. Our results demonstrate that PFOS exposure alters the expression of a suite of miRNAs and may induce developmental toxicity. PMID:20878907

  4. MicroRNA expression profiling of human blood monocyte subsets highlights functional differences

    PubMed Central

    Dang, Truong-Minh; Wong, Wing-Cheong; Ong, Siew-Min; Li, Peng; Lum, Josephine; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Wong, Siew-Cheng

    2015-01-01

    Within human blood there are two subsets of monocytes that can be identified by differential expression of CD16. Although numerous phenotypic and functional differences between the subsets have been described, little is known of the mechanisms underlying the distinctive properties of the two subsets. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate gene expression through promoting mRNA degradation or repressing translation, leading to alterations in cellular processes. Their potential influence on the functions of monocyte subsets has not been investigated. In this study, we employed microarray analysis to define the miRNA expression profile of human monocyte subsets. We identified 66 miRNAs that were differentially expressed (DE) between CD16+ and CD16− monocytes. Gene ontology analysis revealed that the predicted targets of the DE miRNAs were predominantly associated with cell death and cellular movement. We validated the functional impacts of selected DE miRNAs in CD16− monocytes, over-expression of miR-432 significantly increases apoptosis, and inhibiting miR-19a significantly reduces cell motility. Furthermore, we found that miR-345, another DE miRNA directly targets the transcription factor RelA in monocytes, which resulted in the differential expression of RelA in monocyte subsets. This implicates miR-345 indirect regulation of many genes downstream of RelA, including important inflammatory mediators. Together, our data show that DE miRNAs could contribute substantially to regulating the functions of human blood monocytes. PMID:25707426

  5. MicroRNA-21 expression is associated with overall survival in patients with glioma

    PubMed Central

    2013-01-01

    Background MicroRNA-21 has been proved to be associated with glioma proliferation and invasion; thus, we sought to clarify the clinical value of miR-21 expression in glioma tissues with WHO grade I to IV. Methods One hundred and fifty-two pairs of human gliomas and non-neoplastic brain tissues were evaluated using real-time PCR. The association of miR-21 expression with clinicopathological factors or the prognosis of glioma patients was also analyzed. In this study, survival analysis was performed using the Kaplan-Meier method and Cox’s proportional hazards model. Results MiR-21 was more greatly expressed in glioma tissues compared to the corresponding non-neoplastic brain tissues (P < 0.001). This observed high miR-21 expression was significantly associated with high pathological grades and the Karnofsky performance score of glioma patients. In addition, overall patient survival for those with low miR-21 expression was significantly longer than those patients with high miR-21 expression (P < 0.001). Moreover, multivariate Cox regression analysis indicated that miR-21 might be an independent prognostic marker for glioma patient survival. Conclusions Our data show that miR-21 may be a candidate independent marker for gliomas, especially those with high pathological grades, and this could also be a potential therapeutic target for molecular glioma therapy. Virtual slide The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1445749171109834. PMID:24326156

  6. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    PubMed Central

    Lu, Yu; Jian, Min-Yu; Ouyang, Yi-Bing; Han, Ru-Quan

    2015-01-01

    Background: Sevoflurane and propofol are widely used anesthetics for surgery. Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid. MicroRNAs (miRNAs) regulate neural function by altering protein expression. We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain, expect to understand the mechanism of anesthetic agents. Methods: Rats were randomly assigned to a 2% sevoflurane group, 600 μg·kg−1·min−1 propofol group, and a control group without anesthesia (n = 4, respectively). Treatment group was under anesthesia for 6 h, and all rats breathed spontaneously with continuous monitoring of respiration and blood gases. Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR). Differential expression of miRNA using qRT-PCR among the control, sevoflurane, and propofol groups were compared using one-way analysis of variance (ANOVA). Results: Of 677 preloaded rat miRNAs, the microarray detected the expression of 277 miRNAs in rat cortex (40.9%), of which 9 were regulated by propofol and (or) sevoflurane. Expression levels of three miRNAs (rno-miR-339-3p, rno-miR-448, rno-miR-466b-1*) were significantly increased following sevoflurane and six (rno-miR-339-3p, rno-miR-347, rno-miR-378*, rno-miR-412*, rno-miR-702-3p, and rno-miR-7a-2*) following propofol. Three miRNAs (rno-miR-466b-1*, rno-miR-3584-5p and rno-miR-702-3p) were differentially expressed by the two anesthetic treatment groups. Conclusions: Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns, suggesting differential regulation of protein expression. Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological function. PMID:26021509

  7. Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine

    PubMed Central

    2013-01-01

    Background Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical methods for expression analysis are focused on differences between experimental groups, the performance of approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods for the identification of genes that are dysregulated relative to a single sample in a given set of experimental samples, to our knowledge, has not been performed. Methods We systematically evaluated several methods including variations on the nearest neighbor based outlying degree method, as well as the Zscore and a robust variant for their suitability to detect patient-specific events. The methods were assessed using both simulations and expression data from a cohort of pediatric acute B lymphoblastic leukemia patients. Results We first assessed power and false discovery rates using simulations and found that even under optimal conditions, high effect sizes (>4 unit differences) were necessary to have acceptable power for any method (>0.9) though high false discovery rates (>0.1) were pervasive across simulation conditions. Next we introduced a technical factor into the simulation and found that performance was reduced for all methods and that using weights with the outlying degree could provide performance gains depending on the number of samples and genes affected by the technical factor. In our use case that highlights the integration of functional assays and aberrant expression in a patient cohort (the identification of gene dysregulation events associated with the targets from a siRNA screen), we demonstrated that both the outlying degree and the Zscore can successfully identify genes dysregulated in one patient sample. However, only the outlying degree can identify genes dysregulated across several patient samples

  8. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    PubMed

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis. PMID:26662803

  9. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells.

    PubMed

    Chen, Bo-Zhi; Yu, Sung-Liang; Singh, Sher; Kao, Li-Pin; Tsai, Zong-Yun; Yang, Pan-Chyr; Chen, Bai-Hsiun; Shoei-Lung Li, Steven

    2011-01-01

    Type 1 diabetes is an autoimmune destruction of pancreatic islet beta cell disease, making it important to find a new alternative source of the islet beta cells to replace the damaged cells. hES (human embryonic stem) cells possess unlimited self-renewal and pluripotency and thus have the potential to provide an unlimited supply of different cell types for tissue replacement. The hES-T3 cells with normal female karyotype were first differentiated into EBs (embryoid bodies) and then induced to generate the T3pi (pancreatic islet-like cell clusters derived from T3 cells), which expressed pancreatic islet cell-specific markers of insulin, glucagon and somatostatin. The expression profiles of microRNAs and mRNAs from the T3pi were analysed and compared with those of undifferentiated hES-T3 cells and differentiated EBs. MicroRNAs negatively regulate the expression of protein-coding mRNAs. The T3pi showed very high expression of microRNAs, miR-186, miR-199a and miR-339, which down-regulated the expression of LIN28, PRDM1, CALB1, GCNT2, RBM47, PLEKHH1, RBPMS2 and PAK6. Therefore, these microRNAs and their target genes are very likely to play important regulatory roles in the development of pancreas and/or differentiation of islet cells, and they may be manipulated to increase the proportion of beta cells and insulin synthesis in the differentiated T3pi for cell therapy of type I diabetics. PMID:20735361

  10. Increased microRNA-155 expression in the serum and peripheral monocytes in chronic HCV infection

    PubMed Central

    2012-01-01

    Background Hepatitis C Virus (HCV), a single stranded RNA virus, affects millions of people worldwide and leads to chronic infection characterized by chronic inflammation in the liver and in peripheral immune cells. Chronic liver inflammation leads to progressive liver damage. MicroRNAs (miRNA) regulate inflammation (miR-155, -146a and -125b) as well as hepatocyte function (miR-122). Methods Here we hypothesized that microRNAs are dysregulated in chronic HCV infection. We examined miRNAs in the circulation and in peripheral monocytes of patients with chronic HCV infection to evaluate if specific miRNA expression correlated with HCV infection. Results We found that monocytes from chronic HCV infected treatment-naïve (cHCV) but not treatment responder patients showed increased expression of miR-155, a positive regulator of TNFα, and had increased TNFα production compared to monocytes of normal controls. After LPS stimulation, miR-155 levels were higher in monocytes from cHCV patients compared to controls. MiR-125b, which has negative regulatory effects on inflammation, was decreased in cHCV monocytes compared to controls. Stimulation of normal monocytes with TLR4 and TLR8 ligands or HCV core, NS3 and NS5 recombinant proteins induced a robust increase in both miR-155 expression and TNFα production identifying potential mechanisms for in vivo induction of miR-155. Furthermore, we found increased serum miR-155 levels in HCV patients compared to controls. Serum miR-125b and miR-146a levels were also increased in HCV patients. Serum levels of miR-122 were elevated in cHCV patients and correlated with increased ALT and AST levels and serum miR-155 levels. Conclusion In conclusion, our novel data demonstrate that miR-155, a positive regulator of inflammation, is upregulated both in monocytes and in the serum of patients with chronic HCV infection. Our study suggests that HCV core, NS3, and NS5 proteins or TLR4 and TLR8 ligands can mediate increased miR-155 and TNF

  11. MicroRNA-99 Family Members Suppress Homeobox A1 Expression in Epithelial Cells

    PubMed Central

    Chen, Dan; Chen, Zujian; Jin, Yi; Dragas, Dragan; Zhang, Leitao; Adjei, Barima S.; Wang, Anxun; Dai, Yang; Zhou, Xiaofeng

    2013-01-01

    The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during

  12. Altered microRNA expression profiles in a rat model of spina bifida.

    PubMed

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Ying-Zhong; Wang, Jia-Xiang

    2016-03-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  13. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells.

    PubMed

    Chen, Yinghua; Mohammed, Arshad; Oubaidin, Maysaa; Evans, Carla A; Zhou, Xiaofeng; Luan, Xianghong; Diekwisch, Thomas G H; Atsawasuwan, Phimon

    2015-07-15

    MicroRNAs (miRs) play an important role in the development and remodeling of tissues through the regulation of large cohorts of extracellular matrix (ECM) genes. The purpose of the present study was to determine the response of miR-29 family expression to loading forces and their effects on ECM gene expression in periodontal ligament cells, the key effector cell population during orthodontic tooth movement. In a comparison between miRs from human periodontal ligament cells (PDLCs) and alveolar bone cells (ABCs) from healthy human subjects, the ABC cohort of miRs was substantially greater than the corresponding PDLC cohort. Cyclic mechanical stretch forces at 12% deformation at 0.1Hz for 24h decreased expression of miR-29 family member miRs about 0.5 fold while 2g/cm(2) compression force for 24h increased miR-29 family member expression in PDLCs 1.8-4 folds. Cyclic stretch up-regulated major ECM genes in PDLCs, such as COL1A1, COL3A1 and COL5A1, while the compression force resulted in a down-regulation of these ECM genes. Direct interactions of miR-29 and Col1a1, Col3a1 and Col5a1 were confirmed using a dual luciferase reporter gene assay. In addition, transient transfection of a miR-29b mimic in mouse PDLCs down-regulated Col1a1, Col3a1 and Col5a1 while the transfection of miR-29b inhibitor up-regulated these genes compared to control transfection indicating that these target ECM genes directly responded to the altered level of miR-29b. These results provided a possible explanation for the effects of the miR-29 family on loaded PDLCS and their roles in extracellular matrix gene expression. PMID:25827718

  14. Ionizing radiation-induced microRNA expression changes in cultured RGC-5 cells

    PubMed Central

    WANG, KAIJUN; ZHU, MEIJUAN; YE, PANPAN; CHEN, GUODI; WANG, WEI; CHEN, MIN

    2015-01-01

    MicroRNAs (miRNAs) are a class of short non-coding RNAs that regulate gene expression at the post-transcriptional level. It has been demonstrated that miRNAs serve a crucial role in tissue development and the pathogenesis of numerous diseases. The aim of the current study was to investigate the alterations in miRNA expression in a cultured retinal ganglion cell line (RGC-5 cells) following ionizing radiation injury. Cultured RGC-5 cells were exposed to X-rays at doses of 2, 4, 6 and 8 Gy using a medical linear accelerator. Alterations in cellular morphology were observed under a phase contrast microscope and cell viability was measured using the MTT assay. Subsequent to exposure to X-ray radiation for 5 days, the viability of RGC-5 cells was significantly reduced in the 6 and 8 Gy groups, accompanied by morphological alterations. Total RNA was then extracted from RGC-5 cells and subjected to miRNA microarray analysis subsequent to exposure to 6 Gy X-ray radiation for 5 days. The results of the microarray analysis indicated that the expression levels of 12 miRNAs were significantly different between the 6 Gy and control groups, including 6 upregulated miRNAs and 6 downregulated miRNAs. To verify microarray results, a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was performed. The data obtained from RT-qPCR analysis was similar to that of the the microarray analysis for alterations in the expression of the 12 miRNAs. The results of the current study indicated that miRNA expression was sensitive to ionizing radiation, which may serve an important role in mechanisms of radiation injury in retinal ganglion cells. PMID:26081562

  15. Altered microRNA expression profiles in a rat model of spina bifida

    PubMed Central

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-liang; Chen, Xin-rang; Yang, He-ying; Fan, Ying-zhong; Wang, Jia-xiang

    2016-01-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida. PMID:27127493

  16. MicroRNA expression profiles in response to drought stress in Sorghum bicolor.

    PubMed

    Hamza, Nada Babiker; Sharma, Neha; Tripathi, Anita; Sanan-Mishra, Neeti

    2016-03-01

    The regulatory role of small non-coding RNAs that are 20-24 nucleotides in length has become the foremost area of research for biologists. A major class of small RNAs represented by the microRNAs (miRNAs), has been implicated in various aspects of plant development including leaf pattering, meristem function, root patterning etc. Recent findings support that miRNAs are regulated by drought and other abiotic stresses in various plant species. In this study, were report the expression profiling of 8 known abiotic stress deregulated miRNAs in 11 elite sorghum genotypes, under watered and drought conditions. Significant deregulation was observed with miR396, miR393, miR397-5p, miR166, miR167 and miR168. Among these, the expression levels of sbi-miR396 and sbi-miR398 were the highest in all the genotypes. The expression of sbi-miR396 was maximum in the grain sorghum HSD3226 under well-watered conditions and the profile shifted towards HSD3221 under drought stress. Forage accessions, N98 and Atlas, showed an opposite behavior in expression patterns of miR397-5p in drought physiologies. Such dynamic expression patterns could be indicative of prevailing drought tolerant mechanisms present in these sorghum accessions. This data provides insights into sorghum miRNAs which may have potential use in improving drought tolerance in sorghum and other cereal crops. PMID:26772909

  17. Differential expression of microRNAs as predictors of glioblastoma phenotypes

    PubMed Central

    2014-01-01

    Background Glioblastoma is the most aggressive primary central nervous tumor and carries a very poor prognosis. Invasion precludes effective treatment and virtually assures tumor recurrence. In the current study, we applied analytical and bioinformatics approaches to identify a set of microRNAs (miRs) from several different human glioblastoma cell lines that exhibit significant differential expression between migratory (edge) and migration-restricted (core) cell populations. The hypothesis of the study is that differential expression of miRs provides an epigenetic mechanism to drive cell migration and invasion. Results Our research data comprise gene expression values for a set of 805 human miRs collected from matched pairs of migratory and migration-restricted cell populations from seven different glioblastoma cell lines. We identified 62 down-regulated and 2 up-regulated miRs that exhibit significant differential expression in the migratory (edge) cell population compared to matched migration-restricted (core) cells. We then conducted target prediction and pathway enrichment analysis with these miRs to investigate potential associated gene and pathway targets. Several miRs in the list appear to directly target apoptosis related genes. The analysis identifies a set of genes that are predicted by 3 different algorithms, further emphasizing the potential validity of these miRs to promote glioblastoma. Conclusions The results of this study identify a set of miRs with potential for decreased expression in invasive glioblastoma cells. The verification of these miRs and their associated targeted proteins provides new insights for further investigation into therapeutic interventions. The methodological approaches employed here could be applied to the study of other diseases to provide biomedical researchers and clinicians with increased opportunities for therapeutic interventions. PMID:24438171

  18. MicroRNA Expression Signature Is Altered in the Cardiac Remodeling Induced by High Fat Diets.

    PubMed

    Guedes, Elaine Castilho; França, Gustavo Starvaggi; Lino, Caroline Antunes; Koyama, Fernanda Christtanini; Moreira, Luana do Nascimento; Alexandre, Juliana Gomes; Barreto-Chaves, Maria Luiza M; Galante, Pedro Alexandre Favoretto; Diniz, Gabriela Placoná

    2016-08-01

    Recent studies have revealed the involvement of microRNAs (miRNAs) in the control of cardiac hypertrophy and myocardial function. In addition, several reports have demonstrated that high fat (HF) diet induces cardiac hypertrophy and remodeling. In the current study, we investigated the effect of diets containing different percentages of fat on the cardiac miRNA expression signature. To address this question, male C57Bl/6 mice were fed with a low fat (LF) diet or two HF diets, containing 45 kcal% fat (HF45%) and 60 kcal% fat (HF60%) for 10 and 20 weeks. HF60% diet promoted an increase on body weight, fasting glycemia, insulin, leptin, total cholesterol, triglycerides, and induced glucose intolerance. HF feeding promoted cardiac remodeling, as evidenced by increased cardiomyocyte transverse diameter and interstitial fibrosis. RNA sequencing analysis demonstrated that HF feeding induced distinct miRNA expression patterns in the heart. HF45% diet for 10 and 20 weeks changed the abundance of 64 and 26 miRNAs in the heart, respectively. On the other hand, HF60% diet for 10 and 20 weeks altered the abundance of 27 and 88 miRNAs in the heart, respectively. Bioinformatics analysis indicated that insulin signaling pathway was overrepresented in response to HF diet. An inverse correlation was observed between cardiac levels of GLUT4 and miRNA-29c. Similarly, we found an inverse correlation between expression of GSK3β and the expression of miRNA-21a-3p, miRNA-29c-3p, miRNA-144-3p, and miRNA-195a-3p. In addition, miRNA-1 overexpression prevented cardiomyocyte hypertrophy. Taken together, our results revealed differentially expressed miRNA signatures in the heart in response to different HF diets. J. Cell. Physiol. 231: 1771-1783, 2016. © 2015 Wiley Periodicals, Inc. PMID:26638879

  19. microRNA expression in the cervix during pregnancy is associated with length of gestation.

    PubMed

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Svensson, Katherine; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Wright, Robert O; Baccarelli, Andrea A

    2015-01-01

    Preterm birth is a leading cause of infant mortality and can lead to poor life-long health and adverse neurodevelopmental outcomes. The pathophysiologic mechanisms that precede preterm labor remain elusive, and the role that epigenetic phenomena play is largely unstudied. The objective of this study was to assess the association between microRNA (miRNA) expression levels in cervical cells obtained from swabs collected during pregnancy and the length of gestation. We analyzed cervical samples obtained between 16 and 19 weeks of gestation from 53 women in a prospective cohort from Mexico City, and followed them until delivery. Cervical miRNA was extracted and expression was quantified using the NanoString nCounter Analysis System. Linear regression models were used to examine the association between miRNA expression levels and gestational age at delivery, adjusted for maternal age, education, parity, body mass index, smoke exposure, and inflammation assessed on a Papanicolaou smear. We identified 6 miRNAs that were significantly associated with gestational age at the time of delivery, including miR-21, 30e, 142, 148b, 29b, and 223. Notably, per each doubling in miR-21 expression, gestations were 0.9 (95% CI: 0.2-1.5) days shorter on average (P = 0.009). Per each doubling in miR-30e, 142, 148b, 29b, and 223 expression, gestations were shorter by 1.0 to 1.6 days. The predicted targets of the miRNAs were enriched for molecules involved in DNA replication and inflammatory processes. The levels of specific miRNAs in the human cervix during pregnancy are predictive of gestational age at delivery, and should be validated in future studies as potential biomarkers of preterm birth risk. PMID:25611922

  20. MicroRNA expressions associated with progression of prostate cancer cells to antiandrogen therapy resistance

    PubMed Central

    2014-01-01

    Background Development of resistance to androgen deprivation therapy (ADT) is a major obstacle for the management of advanced prostate cancer. Therapies with androgen receptor (AR) antagonists and androgen withdrawal initially regress tumors but development of compensatory mechanisms including AR bypass signaling leads to re-growth of tumors. MicroRNAs (miRNAs) are small regulatory RNAs that are involved in maintenance of cell homeostasis but are often altered in tumor cells. Results In this study, we determined the association of genome wide miRNA expression (1113 unique miRNAs) with development of resistance to ADT. We used androgen sensitive prostate cancer cells that progressed to ADT and AR antagonist Casodex (CDX) resistance upon androgen withdrawal and treatment with CDX. Validation of expression of a subset of 100 miRNAs led to identification of 43 miRNAs that are significantly altered during progression of cells to treatment resistance. We also show a correlation of altered expression of 10 proteins targeted by some of these miRNAs in these cells. Conclusions We conclude that dynamic alterations in miRNA expression occur early on during androgen deprivation therapy, and androgen receptor blockade. The cumulative effect of these altered miRNA expression profiles is the temporal modulation of multiple signaling pathways promoting survival and acquisition of resistance. These early events are driving the transition to castration resistance and cannot be studied in already developed CRPC cell lines or tissues. Furthermore our results can be used a prognostic marker of cancers with a potential to be resistant to ADT. PMID:24387052

  1. Expression inactivation of SMARCA4 by microRNAs in lung tumors

    PubMed Central

    Coira, Isabel F.; Rufino-Palomares, Eva E.; Romero, Octavio A.; Peinado, Paola; Metheetrairut, Chanatip; Boyero-Corral, Laura; Carretero, Julian; Farez-Vidal, Esther; Cuadros, Marta; Reyes-Zurita, Fernando J.; Lupiáñez, Jose A.; Sánchez-Cespedes, Montse; Slack, Frank J.; Medina, Pedro P.

    2015-01-01

    SMARCA4 is the catalytic subunit of the SWI/SNF chromatin-remodeling complex, which alters the interactions between DNA and histones and modifies the availability of the DNA for transcription. The latest deep sequencing of tumor genomes has reinforced the important and ubiquitous tumor suppressor role of the SWI/SNF complex in cancer. However, although SWI/SNF complex plays a key role in gene expression, the regulation of this complex itself is poorly understood. Significantly, an understanding of the regulation of SMARCA4 expression has gained in importance due to recent proposals incorporating it in therapeutic strategies that use synthetic lethal interactions between SMARCA4-MAX and SMARCA4-SMARCA2. In this report, we found that the loss of expression of SMARCA4 observed in some primary lung tumors, whose mechanism was largely unknown, can be explained, at least partially by the activity of microRNAs (miRNAs). We reveal that SMARCA4 expression is regulated by miR-101, miR-199 and especially miR-155 through their binding to two alternative 3′UTRs. Importantly, our experiments suggest that the oncogenic properties of miR-155 in lung cancer can be largely explained by its role inhibiting SMARCA4. This new discovered functional relationship could explain the poor prognosis displayed by patients that independently have high miR-155 and low SMARCA4 expression levels. In addition, these results could lead to application of incipient miRNA technology to the aforementioned synthetic lethal therapeutic strategies. PMID:25355421

  2. Characterization of the role of microRNA-517a expression in low birth weight infants.

    PubMed

    Song, G Y; Song, W W; Han, Y; Wang, D; Na, Q

    2013-12-01

    The purpose of this study was to analyze the expression of the placenta-specific microRNA miR-517a in maternal serum and in placental tissue from low birth weight newborns and try to detect the effects of miR-517a expression on invasion potential of trophoblasts. Placental tissue and maternal serum were collected from both low birth weight newborns (n = 10) and normal birth weight newborns (n = 20). Expression of miR-517a was assessed in placenta and serum samples by real-time qRT-PCR. In addition, human trophoblast HTR8/SVneo cells were transfected with a miR-517a 2'-O-methyl oligonucleotide or a negative control RNA, and invasion was measured using transwell migration assays. Expression of miR-517a was significantly increased in placentas from low birth weight newborns (61.79 ± 23.06) in comparison with those of normal birth weight newborns (5.01 ± 1.97; P < 0.05). The expression of miR-517a was also increased in maternal serum isolated from the low birth weight newborn (25.78 ± 8.69) compared with the normal birth weight newborn (3.21 ± 1.07; P < 0.05). Overexpression of miR-517a significantly inhibited invasion of HTR8/SVneo cells (P < 0.05). These data indicate that miR-517a overexpression could potentially lead to low birth weight, likely through the inhibition of trophoblast invasion. PMID:24924231

  3. Expression and regulatory effects of microRNA-182 in osteosarcoma cells: A pilot study

    PubMed Central

    BIAN, DONG-LIN; WANG, XUE-MEI; HUANG, KUN; ZHAI, QI-XI; YU, GUI-BO; WU, CHENG-HUA

    2016-01-01

    The aim of the present study was to evaluate the expression level of microRNA-182 (miRNA-182) in human osteosarcoma (OS) MG-63 cells and OS tissues, and to elucidate the effect of miRNA-182 on the biological activity of tumors. In the present study, the expression of miRNA-182 in human OS MG-63 cells, OS tissues and normal osteoblast hFOB1.19 cells was determined using quantitative polymerase chain reaction. Subsequently, a miRNA-182 mimic and inhibitor were utilized to regulate the expression level of this miRNA in MG-63 cells. Cell viability and proliferation were examined using cell counting kit-8 assays, and cell apoptosis was detected by flow cytometry. Cell invasion and migration assays were performed using Transwell chambers to analyze the biological functions of miRNA-182 in vitro. The present study demonstrated that the expression level of miRNA-182 in MG-63 cells and OS tissues was significantly increased compared with the hFOB1.19 cell line (P<0.05). The present study successfully performed cell transfections of miRNA-182 inhibitor and miRNA-182 mimic into MG-63 cells and achieved the desired transfection efficiency. The present study confirmed that upregulation of miRNA-182 promotes cell apoptosis and inhibits cell viability, proliferation, invasion and migration. The present findings additionally demonstrated that miRNA-182 is a tumor suppressor gene in OS. Therefore, regulating the expression of miRNA-182 may affect the biological behavior of OS cells, which suggests a potential role for miRNA-182 in molecular therapy for malignant tumors. PMID:27123060

  4. Plasma microRNA expression profiles in Chinese patients with rheumatoid arthritis

    PubMed Central

    Wang, Wenhong; Zhang, Yingying; Zhu, Bo; Duan, Tanghai; Xu, Qiugui; Wang, Rui; Lu, Liwei; Jiao, Zhijun

    2015-01-01

    The outstanding characteristics of circulatory microRNAs (miRNAs) attract much attention in research on disease biomarkers and disease pathogenesis. This study aimed to identify the expression profiles of plasma miRNAs in patients with rheumatoid arthritis (RA). Thirty-three miRNAs were screened using an miRNA array, of which 9 miRNAs were validated as differentially expressed in the plasma of RA patients compared with healthy controls (HCs). miRNA-4634 (miR-4634), miR-181d and miR-4764-5p expression levels were increased, whereas miR-342-3p, miR-3926, miR-3925-3p, miR-122-3p, miR-9-5p and miR-219-2-3p expression levels were decreased in RA patients. The areas under the curve (AUCs) were generated to estimate the sensitivity and specificity of each miRNA or the panel of all 9 miRNAs as biomarkers for RA. AUCs for 9 individual miRNAs ranged from 0.6254 to 0.818; however, the AUC for the panel of 9 miRNAs reached 0.964. Levels of miR-122-3p, miR-3925-3p, miR-342-3p and miR-4764-5p expression showed significant differences between RA and other control groups. miR-4764-5p, miR-4634, miR-9-5p and miR-219-2-3p exhibited significant correlations with either plasma cytokine and chemokine levels or clinical features. In conclusion, this study identified 9-plasma miRNAs signature in Chinese patients with RA which may serve as noninvasive biomarkers for the diagnosis of RA. PMID:26637811

  5. microRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma

    PubMed Central

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie; Shen, Yulei; Dabrowska, Magdalena Julia; Dybkaer, Karen; Lim, Megan S.; Piva, Roberto; Barreca, Antonella; Pellegrino, Elisa; Spaccarotella, Elisa; Lachel, Cynthia M.; Kucuk, Can; Jiang, Chun-Sun; Hu, Xiaozhou; Bhagavathi, Sharathkumar; Greiner, Timothy C.; Weisenburger, Dennis D.; Aoun, Patricia; Perkins, Sherrie L.; McKeithan, Timothy W.; Inghirami, Giorgio

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[−]) ALCLs, 9 angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated distinct clustering of ALCL, PTCL-NOS, and the AITL subtype of PTCL. Cases of ALK(+) ALCL and ALK(–) ALCL were interspersed in unsupervised analysis, suggesting a close relationship at the molecular level. We identified an miRNA signature of 7 miRNAs (5 upregulated: miR-512-3p, miR-886-5p, miR-886-3p, miR-708, miR-135b; 2 downregulated: miR-146a, miR-155) significantly associated with ALK(+) ALCL cases. In addition, we derived an 11-miRNA signature (4 upregulated: miR-210, miR-197, miR-191, miR-512-3p; 7 downregulated: miR-451, miR-146a, miR-22, miR-455-3p, miR-455-5p, miR-143, miR-494) that differentiates ALK(–) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, the miR-17∼92 cluster and its paralogues were also highly expressed in ALK(+) ALCL and may represent important downstream effectors of the ALK oncogenic pathway. PMID:23801630

  6. Placental microRNA expression in pregnancies complicated by superimposed pre-eclampsia on chronic hypertension

    PubMed Central

    VASHUKOVA, ELENA S.; GLOTOV, ANDREY S.; FEDOTOV, PAVEL V.; EFIMOVA, OLGA A.; PAKIN, VLADIMIR S.; MOZGOVAYA, ELENA V.; PENDINA, ANNA A.; TIKHONOV, ANDREI V.; KOLTSOVA, ALLA S.; BARANOV, VLADISLAV S.

    2016-01-01

    Pre-eclampsia (PE) is a complication of pregnancy that affects 5–8% of women after 20 weeks of gestation. It is usually diagnosed based on the de novo onset of hypertension and proteinuria. Preexisting hypertension in women developing PE, also known as superimposed PE on chronic hypertension (SPE), leads to elevated risk of maternal and fetal mortality. PE is associated with an altered microRNA (miRNA) expression pattern in the placenta, suggesting that miRNA deregulation is involved in the pathogenesis of PE. Whether and how the miRNA expression pattern is changed in the SPE placenta remains unclear. The present study analyzed the placental miRNA expression profile in pregnancies complicated by SPE. miRNA expression profiles in SPE and normal placentas were investigated using an Ion Torrent sequencing system. Sequencing data were processed using a comprehensive analysis pipeline for deep miRNA sequencing (CAP-miRSeq). A total of 22 miRNAs were identified to be deregulated in placentas from patients with SPE. They included 16 miRNAs previously known to be associated with PE and 6 novel miRNAs. Among the 6 novel miRNAs, 4 were upregulated (miR-518a, miR-527, miR-518e and miR-4532) and 2 downregulated (miR-98 and miR-135b) in SPE placentas compared with controls. The present results suggest that SPE is associated with specific alterations in the placental miRNA expression pattern, which differ from alterations detected in PE placentas, and therefore, provide novel targets for further investigation of the molecular mechanisms underlying SPE pathogenesis. PMID:27176897

  7. Placental microRNA expression in pregnancies complicated by superimposed pre‑eclampsia on chronic hypertension.

    PubMed

    Vashukova, Elena S; Glotov, Andrey S; Fedotov, Pavel V; Efimova, Olga A; Pakin, Vladimir S; Mozgovaya, Elena V; Pendina, Anna A; Tikhonov, Andrei V; Koltsova, Alla S; Baranov, Vladislav S

    2016-07-01

    Pre-eclampsia (PE) is a complication of pregnancy that affects 5‑8% of women after 20 weeks of gestation. It is usually diagnosed based on the de novo onset of hypertension and proteinuria. Preexisting hypertension in women developing PE, also known as superimposed PE on chronic hypertension (SPE), leads to elevated risk of maternal and fetal mortality. PE is associated with an altered microRNA (miRNA) expression pattern in the placenta, suggesting that miRNA deregulation is involved in the pathogenesis of PE. Whether and how the miRNA expression pattern is changed in the SPE placenta remains unclear. The present study analyzed the placental miRNA expression profile in pregnancies complicated by SPE. miRNA expression profiles in SPE and normal placentas were investigated using an Ion Torrent sequencing system. Sequencing data were processed using a comprehensive analysis pipeline for deep miRNA sequencing (CAP‑miRSeq). A total of 22 miRNAs were identified to be deregulated in placentas from patients with SPE. They included 16 miRNAs previously known to be associated with PE and 6 novel miRNAs. Among the 6 novel miRNAs, 4 were upregulated (miR‑518a, miR‑527, miR‑518e and miR‑4532) and 2 downregulated (miR‑98 and miR‑135b) in SPE placentas compared with controls. The present results suggest that SPE is associated with specific alterations in the placental miRNA expression pattern, which differ from alterations detected in PE placentas, and therefore, provide novel targets for further investigation of the molecular mechanisms underlying SPE pathogenesis. PMID:27176897

  8. MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells

    PubMed Central

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Marincola, Francesco M; Stroncek, David F

    2009-01-01

    Background The unique features of human embryonic stem (hES) cells make them the best candidate resource for both cell replacement therapy and development research. However, the molecular mechanisms responsible for the simultaneous maintenance of their self-renewal properties and undifferentiated state remain unclear. Non-coding microRNAs (miRNA) which regulate mRNA cleavage and inhibit encoded protein translation exhibit temporal or tissue-specific expression patterns and they play an important role in development timing. Results In this study, we analyzed miRNA and gene expression profiles among samples from 3 hES cell lines (H9, I6 and BG01v), differentiated embryoid bodies (EB) derived from H9 cells at different time points, and 5 adult cell types including Human Microvascular Endothelial Cells (HMVEC), Human Umbilical Vein Endothelial Cells (HUVEC), Umbilical Artery Smooth Muscle Cells (UASMC), Normal Human Astrocytes (NHA), and Lung Fibroblasts (LFB). This analysis rendered 104 miRNAs and 776 genes differentially expressed among the three cell types. Selected differentially expressed miRNAs and genes were further validated and confirmed by quantitative real-time-PCR (qRT-PCR). Especially, members of the miR-302 cluster on chromosome 4 and miR-520 cluster on chromosome 19 were highly expressed in undifferentiated hES cells. MiRNAs in these two clusters displayed similar expression levels. The members of these two clusters share a consensus 7-mer seed sequence and their targeted genes had overlapping functions. Among the targeted genes, genes with chromatin structure modification function are enriched suggesting a role in the maintenance of chromatin structure. We also found that the expression level of members of the two clusters, miR-520b and miR-302c, were negatively correlated with their targeted genes based on gene expression analysis Conclusion We identified the expression patterns of miRNAs and gene transcripts in the undifferentiation of human embryonic

  9. Expression of Adipose MicroRNAs Is Sensitive to Dietary Conjugated Linoleic Acid Treatment in Mice

    PubMed Central

    Parra, Pilar; Serra, Francisca; Palou, Andreu

    2010-01-01

    Background Investigation of microRNAs (miRNAs) in obesity, their genetic targets and influence by dietary modulators is of great interest because it may potentially identify novel pathways involved in this complex metabolic disorder and influence future therapeutic approaches. This study aimed to determine whether miRNAs expression may be influenced by conjugated linoleic acid (CLA), currently used to induce fat loss. Methodology/Principal Findings We determined retroperitoneal adipose tissue (rWAT) expression of five miRNAs related to adipocyte differentiation (miRNA-143) and lipid metabolism (miRNA-103 and -107) and altered in obesity (miRNA-221 and -222), using the TaqMan®MicroRNA Assay (Applied-Biosystems). In the first experiment, mice were fed with a standard fat diet and orally treated with sunflower oil (control group) and 3 or 10 mg CLA/day for 37 days. In the second experiment, mice were fed with a high fat diet for 65 days. For the first 30 days, mice received the same doses of CLA described above and, from that time onwards, animals received a double dose. Results showed that expression of selected miRNAs was modified in response to CLA treatment and metabolic status. Interestingly, a strong correlation was observed between miR-103 and -107 expression, as well as miR-221 and -222 in both experiments. Moreover, changes in miRNAs expression correlated with several adipocyte gene expressions: miR-103 and -107 correlated with genes involved in fatty acid metabolism whereas miR-221 and miR-222 correlated with the expression of adipocytokines. Regarding the minor changes observed in miR-143 expression, no differences in expression of adipogenic markers were observed. Conclusions/Significance Although elucidating the functional implications of miRNAs is beyond the scope of this study, these findings provide the first evidence that miRNAs expression may be influenced by dietary manipulation, reflecting or even contributing to the new metabolic state originated

  10. SNP Regulation of microRNA Expression and Subsequent Colon Cancer Risk

    PubMed Central

    Mullany, Lila E.; Wolff, Roger K.; Herrick, Jennifer S.; Buas, Matthew F.; Slattery, Martha L.

    2015-01-01

    Introduction MicroRNAs (miRNAs) regulate messenger RNAs (mRNAs) and as such have been implicated in a variety of diseases, including cancer. MiRNAs regulate mRNAs through binding of the miRNA 5’ seed sequence (~7–8 nucleotides) to the mRNA 3’ UTRs; polymorphisms in these regions have the potential to alter miRNA-mRNA target associations. SNPs in miRNA genes as well as miRNA-target genes have been proposed to influence cancer risk through altered miRNA expression levels. Methods MiRNA-SNPs and miRNA-target gene-SNPs were identified through the literature. We used SNPs from Genome-Wide Association Study (GWAS) data that were matched to individuals with miRNA expression data generated from an Agilent platform for colon tumor and non-tumor paired tissues. These samples were used to evaluate 327 miRNA-SNP pairs for associations between SNPs and miRNA expression levels as well as for SNP associations with colon cancer. Results Twenty-two miRNAs expressed in non-tumor tissue were significantly different by genotype and 21 SNPs were associated with altered tumor/non-tumor differential miRNA expression across genotypes. Two miRNAs were associated with SNP genotype for both non-tumor and tumor/non-tumor differential expression. Of the 41 miRNAs significantly associated with SNPs all but seven were significantly differentially expressed in colon tumor tissue. Two of the 41 SNPs significantly associated with miRNA expression levels were associated with colon cancer risk: rs8176318 (BRCA1), ORAA 1.31 95% CI 1.01, 1.78, and rs8905 (PRKAR1A), ORGG 2.31 95% CI 1.11, 4.77. Conclusion Of the 327 SNPs identified in the literature as being important because of their potential regulation of miRNA expression levels, 12.5% had statistically significantly associations with miRNA expression. However, only two of these SNPs were significantly associated with colon cancer. PMID:26630397

  11. Gender and Obesity Specific MicroRNA Expression in Adipose Tissue from Lean and Obese Pigs.

    PubMed

    Mentzel, Caroline M Junker; Anthon, Christian; Jacobsen, Mette J; Karlskov-Mortensen, Peter; Bruun, Camilla S; Jørgensen, Claus B; Gorodkin, Jan; Cirera, Susanna; Fredholm, Merete

    2015-01-01

    Obesity is a complex condition that increases the risk of life threatening diseases such as cardiovascular disease and diabetes. Studying the gene regulation of obesity is important for understanding the molecular mechanisms behind the obesity derived diseases and may lead to better intervention and treatment plans. MicroRNAs (miRNAs) are short non-coding RNAs regulating target mRNA by binding to their 3'UTR. They are involved in numerous biological processes and diseases, including obesity. In this study we use a mixed breed pig model designed for obesity studies to investigate differentially expressed miRNAs in subcutaneous adipose tissue by RNA sequencing (RNAseq). Both male and female pigs are included to explore gender differences. The RNAseq study shows that the most highly expressed miRNAs are in accordance with comparable studies in pigs and humans. A total of six miRNAs are differentially expressed in subcutaneous adipose tissue between the lean and obese group of pigs, and in addition gender specific significant differential expression is observed for a number of miRNAs. The differentially expressed miRNAs have been verified using qPCR. The results of these studies in general confirm the trends found by RNAseq. Mir-9 and mir-124a are significantly differentially expressed with large fold changes in subcutaneous adipose tissue between lean and obese pigs. Mir-9 is more highly expressed in the obese pigs with a fold change of 10 and a p-value < 0.001. Mir-124a is more highly expressed in the obese pigs with a fold change of 114 and a p-value < 0.001. In addition, mir-124a is significantly higher expressed in abdominal adipose tissue in male pigs with a fold change of 119 and a p-value < 0.05. Both miRNAs are also significantly higher expressed in the liver of obese male pigs where mir-124a has a fold change of 12 and mir-9 has a fold change of 1.6, both with p-values < 0.05. PMID:26222688

  12. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types

    PubMed Central

    Zheng, Lin; Leung, Eric; Lee, Nelson; Lui, Grace; To, Ka-Fai; Chan, Raphael C. Y.; Ip, Margaret

    2015-01-01

    Objectives The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. Results The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. Conclusion We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections. PMID:26053546

  13. Difference in microRNA expression and editing profile of lung tissues from different pig breeds related to immune responses to HP-PRRSV.

    PubMed

    Li, Jia; Chen, Zhisheng; Zhao, Junlong; Fang, Liurong; Fang, Rui; Xiao, Jiang; Chen, Xing; Zhou, Ao; Zhang, Yingyin; Ren, Liming; Hu, Xiaoxiang; Zhao, Yaofeng; Zhang, Shujun; Li, Ning

    2015-01-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating diseases for the pig industry. Our goal was to identify microRNAs involved in the host immune response to PRRS. We generated microRNA expression profiles of lung tissues from Tongcheng or Landrace pigs infected with a highly pathogenic PRRS virus (PRRSV) at 3, 5, 7 dpi (day post infection) and control individuals from these two breeds. Our data showed that 278 known and 294 novel microRNAs were expressed in these combined microRNA transcriptomes. Compared with control individuals, almost half of the known microRNAs (116 in Tongcheng and 153 in Landrace) showed significantly differential expression (DEmiRNAs) at least once. The numbers of down-regulated DEmiRNAs were larger than the corresponding number of up-regulated DEmiRNAs in both breeds. Interestingly, miR-2320-5p, which was predicted to bind to conserved sequences of the PRRSV genome, was down-regulated significantly at 3 dpi after PRRSV infection in both breeds. In addition, PRRSV infection induced a significant increase of microRNA editing level in both breeds. Our results provide novel insight into the role of microRNA in response to PRRSV infection in vivo, which will aid the research for developing novel therapies against PRRSV. PMID:25856272

  14. Comparative analysis of microRNA expression in human mesenchymal stem cells from umbilical cord and cord blood.

    PubMed

    Meng, Xianhui; Sun, Bo; Xue, Mengying; Xu, Peng; Hu, Feihu; Xiao, Zhongdang

    2016-04-01

    Human mesenchymal stem cells (MSCs) derived from both umbilical cord (UC) and cord blood (CB) share similar characteristics, and their differences are largely unknown. Besides the significant difference in cell morphology, differentiation ability and development processes of the two different origin MSCs, a different expression pattern of microRNAs between the two kinds of MSCs was also obtained. By comprehensively annotating the differently expressed global microRNAs (miRNAs), a series of biological pathways were predicted. We found that miRNAs significantly repressed insulin signaling in UCMSCs, while neural related processes were more repressed in CBMSCs. Particularly, TGF-β and Notch signaling were differently activated in both MSCs, unveiling their distinct angiogenesis potentials. Taken together, this study illustrates that MSCs from UC and CB display distinct properties, which indicates different potentials for clinical usage. PMID:26921857

  15. Plasma microRNAs expression profile in female workers occupationally exposed to mercury

    PubMed Central

    Ding, Enmin; Zhao, Qiuni; Bai, Ying; Xu, Ming; Pan, Liping; Liu, Qingdong; Wang, Bosheng; Song, Xianping; Wang, Jun; Chen, Lin

    2016-01-01

    Background Circulating microRNAs (miRNAs) have attracted interests as non-invasive biomarkers of physiological and pathological conditions. Several studies have examined the potential effects of mercury exposure on miRNAs expression profiles of general population environmentally exposed to mercury. The objective is to identify mercury-related miRNAs of female workers occupationally exposed to mercury. Methods In this case-control study, we used a microarray assay to detect the miRNA expression profiles in pooled plasma samples between (I) chronic mercury poisoning group; (II) mercury absorbing group and (III) control group in the discovery stage. Each group has ten individuals. In addition, we conducted a validation of eight candidate miRNAs in the same 30 workers by quantitative real-time PCR. Results In the discovery stage, eight miRNAs were conformed following our selection criteria. In the validation stage, RT-PCR confirmed up-regulation of miR-92a and miR-486 in the mercury poisoned group (P<0.05) compared to the other two groups. The results were consistent with the microarray analysis. Conclusions Plasma miR-92a-3p and miR-486-5p might prove to be potential biomarkers to indicate responses to mercury exposure. However, further studies are necessary to prove the causal association between miRNAs changes and mercury exposure, and to determine whether these two miRNAs are clear biomarkers to mercury exposure. PMID:27162656

  16. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium).

    PubMed

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Du, Xinping; Sheng, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation. PMID:26650759

  17. MicroRNA Expression Profiles in Papillary Thyroid Carcinoma, Benign Thyroid Nodules and Healthy Controls

    PubMed Central

    Yoruker, Ebru Esin; Terzioglu, Duygu; Teksoz, Serkan; Uslu, Fatma Ezel; Gezer, Ugur; Dalay, Nejat

    2016-01-01

    MicroRNAs (miRNAs) represent a class of short endogenous non-coding RNAs that negatively regulate gene expression at the post-transcriptional level in many biological processes, including proliferation, differentiation, stress response and apoptosis. In this study we analyzed a set of seven miRNA molecules in sera of patients with papillary thyroid cancer, multinodular goiter and healthy controls to identify miRNA molecules that may have utility as markers for PTC. MiR-21 serum levels in the preoperative PTC and MG groups were significantly higher than the control group. Likewise, postoperative levels of miR-151-5p, miR-221 and miR-222 were significantly lower in patients with PTC. When serum miRNA levels were evaluated according to stage, postoperative levels of miR-151-5p and miR-222 were significantly lower in patients with advanced stages of the disease. The miRNA levels were also found associated with the size of the primary tumor. Our data imply that specific miRNA molecules which are differentially expressed in thyroid tumors may play role in the development of papillary thyroid carcinoma. PMID:27162538

  18. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity

    PubMed Central

    Hou, Qingming; Ruan, Hongyu; Gilbert, James; Wang, Guan; Ma, Qi; Yao, Wei-Dong; Man, Heng-Ye

    2015-01-01

    Homeostatic synaptic plasticity is a compensatory response to alterations in neuronal activity. Chronic deprivation of neuronal activity results in an increase in synaptic AMPA receptors (AMPARs) and postsynaptic currents. The biogenesis of GluA2-lacking, calcium-permeable AMPARs (CP-AMPARs) plays a crucial role in the homeostatic response; however, the mechanisms leading to CP-AMPAR formation remain unclear. Here we show that the microRNA, miR124, is required for the generation of CP-AMPARs and homeostatic plasticity. miR124 suppresses GluA2 expression via targeting its 3′-UTR, leading to the formation of CP-AMPARs. Blockade of miR124 function abolishes the homeostatic response, whereas miR124 overexpression leads to earlier induction of homeostatic plasticity. miR124 transcription is controlled by an inhibitory transcription factor EVI1, acting by association with the deacetylase HDAC1. Our data support a cellular cascade in which inactivity relieves EVI1/HDAC-mediated inhibition of miR124 gene transcription, resulting in enhanced miR124 expression, formation of CP-AMPARs and subsequent induction of homeostatic synaptic plasticity. PMID:26620774

  19. MicroRNA 140 Promotes Expression of Long Noncoding RNA NEAT1 in Adipogenesis.

    PubMed

    Gernapudi, Ramkishore; Wolfson, Benjamin; Zhang, Yongshu; Yao, Yuan; Yang, Peixin; Asahara, Hiroshi; Zhou, Qun

    2016-01-01

    More than 40% of the U.S. population are clinically obese and suffer from metabolic syndrome with an increased risk of postmenopausal estrogen receptor-positive breast cancer. Adipocytes are the primary component of adipose tissue and are formed through adipogenesis from precursor mesenchymal stem cells. While the major molecular pathways of adipogenesis are understood, little is known about the noncoding RNA signaling networks involved in adipogenesis. Using adipocyte-derived stem cells (ADSCs) isolated from wild-type and microRNA 140 (miR-140) knockout mice, we identify a novel miR-140/long noncoding RNA (lncRNA) NEAT1 signaling network necessary for adipogenesis. miR-140 knockout ADSCs have dramatically decreased adipogenic capabilities associated with downregulation of NEAT1 expression. We identified a miR-140 binding site in NEAT1 and found that mature miR-140 in the nucleus can physically interact with NEAT1, leading to increased NEAT1 expression. We demonstrated that reexpression of NEAT1 in miR-140 knockout ADSCs is sufficient to restore their ability to undergo differentiation. Our results reveal an exciting new noncoding RNA signaling network that regulates adipogenesis and that is a potential new target in the prevention or treatment of obesity. PMID:26459763

  20. MicroRNA 140 Promotes Expression of Long Noncoding RNA NEAT1 in Adipogenesis

    PubMed Central

    Gernapudi, Ramkishore; Wolfson, Benjamin; Zhang, Yongshu; Yao, Yuan; Yang, Peixin; Asahara, Hiroshi

    2015-01-01

    More than 40% of the U.S. population are clinically obese and suffer from metabolic syndrome with an increased risk of postmenopausal estrogen receptor-positive breast cancer. Adipocytes are the primary component of adipose tissue and are formed through adipogenesis from precursor mesenchymal stem cells. While the major molecular pathways of adipogenesis are understood, little is known about the noncoding RNA signaling networks involved in adipogenesis. Using adipocyte-derived stem cells (ADSCs) isolated from wild-type and microRNA 140 (miR-140) knockout mice, we identify a novel miR-140/long noncoding RNA (lncRNA) NEAT1 signaling network necessary for adipogenesis. miR-140 knockout ADSCs have dramatically decreased adipogenic capabilities associated with downregulation of NEAT1 expression. We identified a miR-140 binding site in NEAT1 and found that mature miR-140 in the nucleus can physically interact with NEAT1, leading to increased NEAT1 expression. We demonstrated that reexpression of NEAT1 in miR-140 knockout ADSCs is sufficient to restore their ability to undergo differentiation. Our results reveal an exciting new noncoding RNA signaling network that regulates adipogenesis and that is a potential new target in the prevention or treatment of obesity. PMID:26459763

  1. mRAP, a sensitive method for determination of microRNA expression profiles.

    PubMed

    Mano, Hiroyuki; Takada, Shuji

    2007-10-01

    MicroRNAs (miRNAs) are noncoding RNA molecules of 21-24 nucleotides that regulate the expression of target genes in a posttranscriptional manner. Although evidence indicates that miRNAs play essential roles in embryogenesis, cell differentiation, and pathogenesis of human diseases, extensive miRNA profiling in cells or tissues has been hampered by the lack of sensitive cloning methods. Here we describe a highly efficient profiling strategy, termed miRNA amplification profiling (mRAP), that relies on the use of a long, optimized 5' adaptor, the SMART (switching mechanism at the 5' end of RNA templates of reverse transcriptase) method, the polymerase chain reaction, and cDNA concatamerization after BanI digestion. This approach is highly sensitive, readily allowing the isolation of > 1 x 10(4) independent miRNA-derived cDNAs from < or = 1 x 10(4) cells. The mRAP method thus makes it possible to analyze miRNA expression profiles for small quantities of tissue or cells such as fresh clinical specimens. PMID:17889798

  2. Expression of microRNA-370 in human breast cancer compare with normal samples

    PubMed Central

    Mollainezhad, Halimeh; Eskandari, Nahid; Pourazar, Abbasali; Salehi, Mansoor; Andalib, Alireza

    2016-01-01

    Background: Breast cancer is the second leading cause of deaths from cancer in the woman. MicroRNAs (miRNAs) are endogenous noncoding RNAs that are known critical player in carcinogenesis. The role of miR-370 in malignancies remains controversial because of its levels varying in different cancers according to its targets while the role of miR-370 in breast cancer has not been addressed so far. The aim of this study was to identify the expression pattern of miR-370 in human breast cancer tissue compared to adjacent healthy tissue. Materials and Methods: Twenty-two fresh frozen tissues (normal and malignant) from patients with breast cancer were examined for miR-370 by quantitative real-time polymerase chain reaction method at 2013. Results: We observed up-regulation (six-fold higher) of miR-370 in breast cancer tissue compared with normal adjacent tissue. Tumor samples in stage III, invasive ductal type, larger tumor size, human epidermal growth-factor receptor 2+, estrogen receptor/progesterone receptor−, P53 − status showed significantly increased expression in miR-370. Conclusion: Together, miR-370 may acts as an onco-miRNA, and it may have a novel role in breast cancer. Detection of miR-370 and its targets could be helpful as a diagnostic biomarker and therapeutic target. PMID:27563639

  3. Validation of Suitable Reference Genes for Assessing Gene Expression of MicroRNAs in Lonicera japonica.

    PubMed

    Wang, Yaolong; Liu, Juan; Wang, Xumin; Liu, Shuang; Wang, Guoliang; Zhou, Junhui; Yuan, Yuan; Chen, Tiying; Jiang, Chao; Zha, Liangping; Huang, Luqi

    2016-01-01

    MicroRNAs (miRNAs), which play crucial regulatory roles in plant secondary metabolism and responses to the environment, could be developed as promising biomarkers for different varieties and production areas of herbal medicines. However, limited information is available for miRNAs from Lonicera japonica, which is widely used in East Asian countries owing to various pharmaceutically active secondary metabolites. Selection of suitable reference genes for quantification of target miRNA expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of secondary metabolic regulation in different tissues and varieties of L. japonica. For precise normalization of gene expression data in L. japonica, 16 candidate miRNAs were examined in three tissues, as well as 21 cultivated varieties collected from 16 production areas, using GeNorm, NormFinder, and RefFinder algorithms. Our results revealed combination of u534122 and u3868172 as the best reference genes across all samples. Their specificity was confirmed by detecting the cycling threshold (C t) value ranges in different varieties of L. japonica collected from diverse production areas, suggesting the use of these two reference miRNAs is sufficient for accurate transcript normalization with different tissues, varieties, and production areas. To our knowledge, this is the first report on validation of reference miRNAs in honeysuckle (Lonicera spp.). Restuls from this study can further facilitate discovery of functional regulatory miRNAs in different varieties of L. japonica. PMID:27507983

  4. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium)

    PubMed Central

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Du, Xinping; Sheng, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation. PMID:26650759

  5. Bioinformatic identification and expression analysis of Nelumbo nucifera microRNA and their targets1

    PubMed Central

    Pan, Lei; Wang, Xiaolei; Jin, Jing; Yu, Xiaolu; Hu, Jihong

    2015-01-01

    Premise of the study: Sacred lotus (Nelumbo nucifera) is a perennial aquatic herbaceous plant of ecological, ornamental, and economic importance. MicroRNAs (miRNAs) play an important role in plant development. However, reports of miRNAs and their role in sacred lotus have been limited. Methods: Using the homology search of known miRNAs with genome and transcriptome contig sequences, we employed a pipeline to identify miRNAs in N. nucifera. We also predicted the targets of these miRNAs. Results: We found 106 conserved miRNAs in N. nucifera, and 456 of their miRNA targets were annotated. Quantitative real-time PCR (qRT-PCR) analysis revealed the different expression levels of the 10 selected conserved miRNAs in tissues of young leaves, stems, and flowers of N. nucifera. Negative correlation of expression level between five miRNAs and their target genes was also revealed. Discussion: Combining bioinformatics and experiment analysis, we identified the miRNAs in N. nucifera. The results can be used as a workbench for further investigation of the roles of miRNAs in N. nucifera. PMID:26421251

  6. Lactation-Related MicroRNA Expression Profiles of Porcine Breast Milk Exosomes

    PubMed Central

    Liang, Yan; Zhong, Zhijun; Wang, Xiaoyan; Zhou, Qi; Chen, Lei; Lang, Qiulei; He, Zhiping; Chen, Xiaohui; Gong, Jianjun; Gao, Xiaolian; Li, Xuewei; Lv, Xuebin

    2012-01-01

    Breast milk is the primary source of nutrition for newborns, and is rich in immunological components. MicroRNAs (miRNAs) are present in various body fluids and are selectively packaged inside the exosomes, a type of membrane vesicles, secreted by most cell types. These exosomal miRNAs could be actively delivered into recipient cells, and could regulate target gene expression and recipient cell function. Here, we analyzed the lactation-related miRNA expression profiles in porcine milk exosomes across the entire lactation period (newborn to 28 days after birth) by a deep sequencing. We found that immune-related miRNAs are present and enriched in breast milk exosomes (p<10−16, χ2 test) and are generally resistant to relatively harsh conditions. Notably, these exosomal miRNAs are present in higher numbers in the colostrums than in mature milk. It was higher in the serum of colostrum-only fed piglets compared with the mature milk-only fed piglets. These immune-related miRNA-loaded exosomes in breast milk may be transferred into the infant body via the digestive tract. These observations are a prelude to in-depth investigations of the essential roles of breast milk in the development of the infant’s immune system. PMID:22937080

  7. Expression and function of microRNA-497 in human osteosarcoma.

    PubMed

    Liu, Qi; Wang, Huan; Singh, Ankit; Shou, Fenyong

    2016-07-01

    The expression and function of microRNA-497 (miR-497) has previously been reported in various types of human cancer; however, miR-497 has not previously been investigated in human osteosarcoma (OS). In the present study, the expression levels of miR‑497 were analyzed by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in OS tissues and cell lines. In addition, post-transfection with miR‑497, RT‑qPCR, cell proliferation, migration and invasion assays, western blot analysis, and luciferase assays were performed in OS cell lines. The results of the present study demonstrated that miR‑497 was downregulated in OS tissues and cells compared with normal controls. Furthermore, upregulation of miR‑497 inhibited cell proliferation, migration and invasion in osteosarcoma cell lines compared with the negative control group. In addition, the present study demonstrated that miR‑497 may function by directly targeting insulin‑like growth factor 1 receptor in OS cells. These findings indicated that miR‑497 may be useful as a therapeutic target for the treatment of OS. PMID:27176490

  8. Identification, Expression and Target Gene Analyses of MicroRNAs in Spodoptera litura

    PubMed Central

    Rao, Zhongchen; He, Wenyin; Liu, Lin; Zheng, Sichun; Huang, Lihua; Feng, Qili

    2012-01-01

    MicroRNAs (miRNAs) are small RNAs widely present in animals and plants and involved in post-transcriptional regulation of gene transcripts. In this study we identified and validated 58 miRNAs from an EST dataset of Spodoptera litura based on the computational and experimental analysis of sequence conservation and secondary structure of miRNA by comparing the miRNA sequences in the miRbase. RT-PCR was conducted to examine the expression of these miRNAs and stem-loop RT-PCR assay was performed to examine expression of 11 mature miRNAs (out of the 58 putative miRNA) that showed significant changes in different tissues and stages of the insect development. One hundred twenty eight possible target genes against the 11 miRNAs were predicted by using computational methods. Binding of one miRNA (sli-miR-928b) with the three possible target mRNAs was confirmed by Southern blotting, implying its possible function in regulation of the target genes. PMID:22662202

  9. Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets

    PubMed Central

    Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions. PMID:25856313

  10. Validation of Suitable Reference Genes for Assessing Gene Expression of MicroRNAs in Lonicera japonica

    PubMed Central

    Wang, Yaolong; Liu, Juan; Wang, Xumin; Liu, Shuang; Wang, Guoliang; Zhou, Junhui; Yuan, Yuan; Chen, Tiying; Jiang, Chao; Zha, Liangping; Huang, Luqi

    2016-01-01

    MicroRNAs (miRNAs), which play crucial regulatory roles in plant secondary metabolism and responses to the environment, could be developed as promising biomarkers for different varieties and production areas of herbal medicines. However, limited information is available for miRNAs from Lonicera japonica, which is widely used in East Asian countries owing to various pharmaceutically active secondary metabolites. Selection of suitable reference genes for quantification of target miRNA expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of secondary metabolic regulation in different tissues and varieties of L. japonica. For precise normalization of gene expression data in L. japonica, 16 candidate miRNAs were examined in three tissues, as well as 21 cultivated varieties collected from 16 production areas, using GeNorm, NormFinder, and RefFinder algorithms. Our results revealed combination of u534122 and u3868172 as the best reference genes across all samples. Their specificity was confirmed by detecting the cycling threshold (Ct) value ranges in different varieties of L. japonica collected from diverse production areas, suggesting the use of these two reference miRNAs is sufficient for accurate transcript normalization with different tissues, varieties, and production areas. To our knowledge, this is the first report on validation of reference miRNAs in honeysuckle (Lonicera spp.). Restuls from this study can further facilitate discovery of functional regulatory miRNAs in different varieties of L. japonica. PMID:27507983

  11. MicroRNA-16 suppresses epithelial-mesenchymal transition‑related gene expression in human glioma.

    PubMed

    Wang, Qin; Li, Xu; Zhu, Yu; Yang, Ping

    2014-12-01

    Glioma is one of the most prevalent types of brain tumor and is associated with the highest mortality rate of all CNS cancers. Epithelial‑mesenchymal transition (EMT) has been recognized as an important factor in tumor metastasis. Previously, it has been demonstrated that microRNA-16 (miR-16) has an important role in tumor metastasis in human cancer cell lines. However, the role of miR-16 in epithelial‑mesenchymal transition of human glioma cells remains unclear. In the present study, U87 and U251 glioma cell lines overexpressing miR-16 were established and it was identified that miR-16 suppressed invasion, adhesion, cell cycle, production of interleukin (IL)-6, IL-8 and transforming growth factor-β, and EMT-related gene expression, including vimentin, β-catenin and E-cadherin in miR-16 overexpressing U87 and U251 glioma cells. Furthermore, miR-16 suppressed EMT mainly through the downregulation of p-FAK and p-Akt expression, and nuclear factor-κB and Slug transcriptional activity. Therefore, miR-16 may be an important therapeutic target and predictor for glioma therapy. PMID:25242314

  12. Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels

    PubMed Central

    Wu, Cheng-Wei; Biggar, Kyle K.; Storey, Kenneth B.

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05), which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control), while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P < 0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked

  13. Expression profiling and structural characterization of microRNAs in adipose tissues of hibernating ground squirrels.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2014-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT) and white adipose tissue (WAT) during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P<0.05), which was 16%-54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32-2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%-70% of control), while only expression of miR-138 was significantly upregulated (2.91±0.8-fold of the control, P<0.05). Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK) signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ) signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may be linked to distinct

  14. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients

    PubMed Central

    Singh, Prashant K.; Preus, Leah; Hu, Qiang; Yan, Li; Long, Mark D.; Morrison, Carl D.; Nesline, Mary; Johnson, Candace S.; Koochekpour, Shahriar; Kohli, Manish; Liu, Song; Trump, Donald L.

    2014-01-01

    We aimed to identify microRNA (miRNA) expression patterns in the serum of prostate cancer (CaP) patients that predict the risk of early treatment failure following radical prostatectomy (RP). Microarray and Q-RT-PCR analyses identified 43 miRNAs as differentiating disease stages within 14 prostate cell lines and reflectedpublically available patient data. 34 of these miRNA were detectable in the serum of CaP patients. Association with time to biochemical progression was examined in a cohort of CaP patients following RP. A greater than two-fold increase in hazard of biochemical progression associated with altered expression of miR-103, miR-125b and miR-222 (p <.0008) in the serum of CaP patients. Prediction models based on penalized regression analyses showed that the levels of the miRNAs and PSA together were better at detecting false positives than models without miRNAs, for similar level of sensitivity. Analyses of publically available data revealed significant and reciprocal relationships between changes in CpG methylation and miRNA expression patterns suggesting a role for CpG methylation to regulate miRNA. Exploratory validation supported roles for miR-222 and miR-125b to predict progression risk in CaP. The current study established that expression patterns of serum-detectable miRNAs taken at the time of RP are prognostic for men who are at risk of experiencing subsequent early biochemical progression. These non-invasive approaches could be used to augment treatment decisions. PMID:24583788

  15. Profiling the expression domains of a rice-specific microRNA under stress

    PubMed Central

    Sharma, Neha; Tripathi, Anita; Sanan-Mishra, Neeti

    2015-01-01

    Plant microRNAs (miRs) have emerged as important regulators of gene expression under normal as well as stressful environments. Rice is an important cereal crop whose productivity is compromised due to various abiotic stress factors such as salt, heat and drought. In the present study, we have investigated the role of rice-specific Osa-miR820, in indica rice cultivars showing contrasting response to salt stress. The dissection of expression patterns indicated that the miR is present in all the tissues but is enriched in the anther tissues. In salinity, the miR levels are up-regulated in the leaf tissues but down-regulated in the root tissues. To map the deregulation under salt stress comprehensive time kinetics of expression was performed in the leaf and root tissues. The reproductive stages were also analyzed under salt stress. It emerged that a common regulatory scheme for Osa-miR820 expression is present in the salt-susceptible Pusa Basmati 1 and salt-tolerant Pokkali varieties, although there is a variation in the levels of the miR and its target transcript, OsDRM2. The regulation of Osa-miR820 and its target were also studied under other abiotic stresses. This study thus captures the window for the miR-target correlation and the putative role of this regulation is discussed. This will help in gaining useful insights on the role of species specific miRs in plant development and abiotic stress response. PMID:26029232

  16. MicroRNA target prediction by expression analysis of host genes.

    PubMed

    Gennarino, Vincenzo Alessandro; Sardiello, Marco; Avellino, Raffaella; Meola, Nicola; Maselli, Vincenza; Anand, Santosh; Cutillo, Luisa; Ballabio, Andrea; Banfi, Sandro

    2009-03-01

    MicroRNAs (miRNAs) are small noncoding RNAs that control gene expression by inducing RNA cleavage or translational inhibition. Most human miRNAs are intragenic and are transcribed as part of their hosting transcription units. We hypothesized that the expression profiles of miRNA host genes and of their targets are inversely correlated and devised a novel procedure, HOCTAR (host gene oppositely correlated targets), which ranks predicted miRNA target genes based on their anti-correlated expression behavior relative to their respective miRNA host genes. HOCTAR is the first tool for systematic miRNA target prediction that utilizes the same set of microarray experiments to monitor the expression of both miRNAs (through their host genes) and candidate targets. We applied the procedure to 178 human intragenic miRNAs and found that it performs better than currently available prediction softwares in pinpointing previously validated miRNA targets. The high-scoring HOCTAR predicted targets were enriched in Gene Ontology categories, which were consistent with previously published data, as in the case of miR-106b and miR-93. By means of overexpression and loss-of-function assays, we also demonstrated that HOCTAR is efficient in predicting novel miRNA targets and we identified, by microarray and qRT-PCR procedures, 34 and 28 novel targets for miR-26b and miR-98, respectively. Overall, we believe that the use of HOCTAR significantly reduces the number of candidate miRNA targets to be tested compared to the procedures based solely on target sequence recognition. Finally, our data further confirm that miRNAs have a significant impact on the mRNA levels of most of their targets. PMID:19088304

  17. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    SciTech Connect

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  18. Gamma-Retroviral Vector Design for the Co-Expression of Artificial microRNAs and Therapeutic Proteins

    PubMed Central

    Park, Tristen S.; Zhang, Ling; Zheng, Zhili; Morgan, Richard A.

    2014-01-01

    To generate γ-retroviral vectors for stable conjoint expression of artificial microRNAs (amiR) and therapeutic genes in primary human lymphocytes, and to identify the design parameters that are key for successful vector generation. Gamma-retroviral vectors were designed to co-express both amiRs and a linked reporter gene, truncated CD34 (tCD34). Artificial miRs based on microRNAs miR-16, miR-142, miR-146b, miR-150, miR155, and miR-223 were inserted into sites within the intron of the vector and tested for tCD34 expression by flow cytometry (FACS). Different constructs were assembled with amiRs targeted to knockdown expression of suppressor of cytokine signaling 1 (SOCS1) or programmed cell death 1 (PDCD1, PD-1). Three of the six amiRs maintained tCD34 expression. Expansion of primary human T cells transduced with these amiR vectors, as well as transgene expression, were equivalent to control engineered T cells over a 40-day period. Knockdown of SOCS1 RNA and PD-1 expression by FACS was shown to vary between constructs, dependent on either the specific short interfering RNA sequence used in the amiR, or the microRNA backbone and location in the vector intron. Gamma-retroviral vectors that both efficiently knockdown endogenous gene expression and maintain linked transgene production can be produced, but empirical vector evaluations were best suited for optimal construct analysis. PMID:25019196

  19. Expression of MicroRNAs in the Urinary Sediment of Patients with IgA Nephropathy

    PubMed Central

    Wang, Gang; Kwan, Bonnie Ching-Ha; Lai, Fernand Mac-Moune; Chow, Kai-Ming; Kam-Tao Li, Philip; Szeto, Cheuk-Chun

    2010-01-01

    Background: Micro-RNAs (miRNAs) regulate one-third of all protein-coding genes and are fundamental in the pathophysiology of a wide range of diseases. We studied the expression of several miRNA species (miR-200 family, miR-205 and miR-192) in the urinary sediment of patients with IgA nephropathy (IgAN). Methods: We studied 43 patients with biopsy-proven IgAN. Urinary expression of miRNAs was determined and compared to that from 13 healthy controls. Results: The levels of urinary miR-200a, miR-200b and miR-429, but not miR-200c, miR-141, miR-205, or miR-192, were down-regulated in patients with IgAN. Proteinuria significantly correlated with urinary expression of miR-200a (r = −0.483, P < 0.001), miR-200b (r = −0.448, P = 0.001) and miR-429 (r = −0.466, P = 0.001). Baseline renal function significantly correlated with urinary expression of miR-200b (r = 0.512, P < 0.001) and miR-429 (r = 0.425, P = 0.005). Urinary gene expression of ZEB2 inversely correlated with miR-200b (r = −0.321, P = 0.017); and vimentin expression inversely correlated with that of miR-200a (r = −0.360, P = 0.007), miR-200b (r = −0.416, P = 0.002) and miR-429 (r = −0.375, P = 0.005). After 33.4 ± 12.6 months, the rate of renal function decline significantly correlated with urinary expression of miR-200b (r = 0.316, P = 0.034). Conclusions: Urinary expression of miR-200a, miR-200b and miR-429 were down-regulated in patients with IgAN, and the degree of reduction correlated with disease severity and rate of progression. The results suggested that these miRNA species might play important roles in the pathophysiology of IgAN. Further studies are needed to clarify the role of urinary miRNA repression as a non-invasive marker of IgAN. PMID:20364043

  20. Prognostic value of microRNA-203a expression in breast cancer.

    PubMed

    Gomes, Bruno Costa; Martins, Manuela; Lopes, Paulina; Morujão, Inês; Oliveira, Mário; Araújo, António; Rueff, José; Rodrigues, António Sebastião

    2016-09-01

    Tumor heterogeneity and the poor outcome of breast cancer (BC) patients have led researchers to define new markers of this disease. In recent years, microRNA expression patterns have proven to be valuable disease indicators. The level of miR-203a, in particular, was shown to be altered in different types of cancer. The objective of the present study was to assess the relationship between miR-203a expression and clinicopathological features of BC in a Portuguese cohort. The expression levels of miR‑203a were analyzed in 109 formalin‑fixed paraffin-embedded paired normal and tumor tissue samples. Significant overexpression of miR‑203a in the tumor tissues was found (1.7-fold higher) compared to the expression in the normal adjacent tissues (p=0.003). In addition, several clinicopathological characteristics presented an association with higher miR-203a expression levels. Tumors with diameter ≤18.5 mm (1.5-fold; p=0.019), tumors positive for estrogen receptor (fold-change, 1.71; p=0.042), progesterone receptor (fold-change, 1.50; p=0.046) and negative for HER2 (fold-change, 1.50; p=0.016) and high Ki-67 index (fold-change, 2.60; p=0.024) presented a significant difference in miR-203a expression compared with adjacent normal tissues. Tumors without invasion of lymph nodes also presented higher expression of miR-203a (fold-change, 2.40; p=0.004). With regard to histological classification, ductal carcinomas in situ (fold-change, 2.20; p=0.028) and invasive carcinoma NOS (fold-change, 1.71; p=0.009) displayed significantly higher expression of miR-203a. Moreover, we found a significant downregulation of miR-203a with increased stage in invasive lobular carcinomas, suggesting that miR-203a could represent a potential marker to discriminate stages in invasive lobular carcinomas. PMID:27431784

  1. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    SciTech Connect

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a

  2. A Viral microRNA Cluster Regulates the Expression of PTEN, p27 and of a bcl-2 Homolog.

    PubMed

    Bernhardt, Katharina; Haar, Janina; Tsai, Ming-Han; Poirey, Remy; Feederle, Regina; Delecluse, Henri-Jacques

    2016-01-01

    The Epstein-Barr virus (EBV) infects and transforms B-lymphocytes with high efficiency. This process requires expression of the viral latent proteins and of the 3 miR-BHRF1 microRNAs. Here we show that B-cells infected by a virus that lacks these non-coding RNAs (Δ123) grew more slowly between day 5 and day 20, relative to wild type controls. This effect could be ascribed to a reduced S phase entry combined with a moderately increased apoptosis rate. Whilst the first phenotypic trait was consistent with an enhanced PTEN expression in B-cells infected with Δ123, the second could be explained by very low BHRF1 protein and RNA levels in the same cells. Indeed, B-cells infected either by a recombinant virus that lacks the BHRF1 protein, a viral bcl-2 homolog, or by Δ123 underwent a similar degree of apoptosis, whereas knockouts of both BHRF1 microRNAs and protein proved transformation-incompetent. We find that that the miR-BHRF1-3 seed regions, and to a lesser extent those of miR-BHRF1-2 mediate these stimulatory effects. After this critical period, B-cells infected with the Δ123 mutant recovered a normal growth rate and became more resistant to provoked apoptosis. This resulted from an enhanced BHRF1 protein expression relative to cells infected with wild type viruses and correlated with decreased p27 expression, two pro-oncogenic events. The upregulation of BHRF1 can be explained by the observation that large BHRF1 mRNAs are the source of BHRF1 protein but are destroyed following BHRF1 microRNA processing, in particular of miR-BHRF1-2. The BHRF1 microRNAs are unlikely to directly target p27 but their absence may facilitate the selection of B-cells that express low levels of this protein. Thus, the BHRF1 microRNAs allowed a time-restricted expression of the BHRF1 protein to innocuously expand the virus B-cell reservoir during the first weeks post-infection without increasing long-term immune pressure. PMID:26800049

  3. A Viral microRNA Cluster Regulates the Expression of PTEN, p27 and of a bcl-2 Homolog

    PubMed Central

    Bernhardt, Katharina; Haar, Janina; Tsai, Ming-Han; Poirey, Remy

    2016-01-01

    The Epstein-Barr virus (EBV) infects and transforms B-lymphocytes with high efficiency. This process requires expression of the viral latent proteins and of the 3 miR-BHRF1 microRNAs. Here we show that B-cells infected by a virus that lacks these non-coding RNAs (Δ123) grew more slowly between day 5 and day 20, relative to wild type controls. This effect could be ascribed to a reduced S phase entry combined with a moderately increased apoptosis rate. Whilst the first phenotypic trait was consistent with an enhanced PTEN expression in B-cells infected with Δ123, the second could be explained by very low BHRF1 protein and RNA levels in the same cells. Indeed, B-cells infected either by a recombinant virus that lacks the BHRF1 protein, a viral bcl-2 homolog, or by Δ123 underwent a similar degree of apoptosis, whereas knockouts of both BHRF1 microRNAs and protein proved transformation-incompetent. We find that that the miR-BHRF1-3 seed regions, and to a lesser extent those of miR-BHRF1-2 mediate these stimulatory effects. After this critical period, B-cells infected with the Δ123 mutant recovered a normal growth rate and became more resistant to provoked apoptosis. This resulted from an enhanced BHRF1 protein expression relative to cells infected with wild type viruses and correlated with decreased p27 expression, two pro-oncogenic events. The upregulation of BHRF1 can be explained by the observation that large BHRF1 mRNAs are the source of BHRF1 protein but are destroyed following BHRF1 microRNA processing, in particular of miR-BHRF1-2. The BHRF1 microRNAs are unlikely to directly target p27 but their absence may facilitate the selection of B-cells that express low levels of this protein. Thus, the BHRF1 microRNAs allowed a time-restricted expression of the BHRF1 protein to innocuously expand the virus B-cell reservoir during the first weeks post-infection without increasing long-term immune pressure. PMID:26800049

  4. Aberrant activation-induced cytidine deaminase expression in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia.

    PubMed

    Shi, Yang; Zhao, Xiaoxian; Durkin, Lisa; Rogers, Heesun Joyce; Hsi, Eric D

    2016-06-01

    Activation-induced cytidine deaminase (AID) is expressed in germinal center B cells and plays a critical role in somatic hypermutation and class-switch recombination of immunoglobulin genes. Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) carries a poor prognosis and is specifically treated with tyrosine kinase inhibitors. Interestingly, AID has been shown to be aberrantly expressed and functional in Ph+ ALL and is thought to contribute to genetic instability. We hypothesized that AID might be detectable in routinely processed bone marrow biopsies by immunohistochemistry (IHC) and assist in identifying Ph+ ALL. We found that AID was expressed in 26 (70%) of 37 cases of Ph+ ALL but only 1 (2.9%) of 38 cases of Ph- ALL cases. There was a significant difference in AID expression between these 2 ALL groups (P < .001, Fisher exact test). The expression of AID was confirmed by RT-PCR (reverse-transcriptase polymerase chain reaction) and correlated with IHC scoring. AID protein is expressed in a large proportion of Ph+ ALL cases at levels detectable by IHC in clinical samples and might be useful to rapidly identify cases likely to have a BCR/ABL1 fusion. PMID:26980048

  5. Potassium channel ether à go-go1 is aberrantly expressed in human liposarcoma and promotes tumorigenesis.

    PubMed

    Wu, Jin; Zhong, Daixing; Wei, Yujian; Wu, Xinyu; Kang, Liangqi; Ding, Zhenqi

    2014-01-01

    The ether à go-go1 (Eag1) channel is overexpressed in a variety of cancers. However, the expression and function of Eag1 in liposarcoma are poorly understood. In the present study, the mRNA expression of Eag1 in different adipose tissue samples was examined by real-time PCR. Then, the protein expression of Eag1 in 131 different adipose tissues from 109 patients was detected by immunohistochemistry. Next, the associations between Eag1 expression and clinicopathological features of liposarcoma were analyzed. In addition, the effects of Eag1 on liposarcoma cell proliferation and cycle were evaluated by CCK-8, colony formation, xenograft mouse model, and flow cytometry, respectively. Finally, the activation of p38 mitogen-activated protein kinase (MAPK) was detected by Western blot analysis to explain the detailed mechanisms of oncogenic potential of Eag1 in liposarcoma. It was found that Eag1 was aberrantly expressed in over 67% liposarcomas, with a higher frequency than in lipoma, hyperplasia, inflammation, and normal adipose tissues. However, Eag1 expression was not correlated with clinicopathological features of liposarcoma. Eag1 inhibitor imipramine or Eag1-shRNA significantly suppressed the proliferation of liposarcoma cells in vitro and in vivo, accompanying with accumulation of cells in the G1 phase. These results suggest that Eag1 plays an important role in regulating the proliferation and cell cycle of liposarcoma cells and might be a potential therapeutic target for liposarcoma. PMID:25136578

  6. Potassium Channel Ether à go-go1 Is Aberrantly Expressed in Human Liposarcoma and Promotes Tumorigenesis

    PubMed Central

    Wu, Jin; Zhong, Daixing; Wei, Yujian; Wu, Xinyu; Kang, Liangqi; Ding, Zhenqi

    2014-01-01

    The ether à go-go1 (Eag1) channel is overexpressed in a variety of cancers. However, the expression and function of Eag1 in liposarcoma are poorly understood. In the present study, the mRNA expression of Eag1 in different adipose tissue samples was examined by real-time PCR. Then, the protein expression of Eag1 in 131 different adipose tissues from 109 patients was detected by immunohistochemistry. Next, the associations between Eag1 expression and clinicopathological features of liposarcoma were analyzed. In addition, the effects of Eag1 on liposarcoma cell proliferation and cycle were evaluated by CCK-8, colony formation, xenograft mouse model, and flow cytometry, respectively. Finally, the activation of p38 mitogen-activated protein kinase (MAPK) was detected by Western blot analysis to explain the detailed mechanisms of oncogenic potential of Eag1 in liposarcoma. It was found that Eag1 was aberrantly expressed in over 67% liposarcomas, with a higher frequency than in lipoma, hyperplasia, inflammation, and normal adipose tissues. However, Eag1 expression was not correlated with clinicopathological features of liposarcoma. Eag1 inhibitor imipramine or Eag1-shRNA significantly suppressed the proliferation of liposarcoma cells in vitro and in vivo, accompanying with accumulation of cells in the G1 phase. These results suggest that Eag1 plays an important role in regulating the proliferation and cell cycle of liposarcoma cells and might be a potential therapeutic target for liposarcoma. PMID:25136578

  7. Identification and Pathway Analysis of microRNAs with No Previous Involvement in Breast Cancer

    PubMed Central

    Rebollar-Vega, Rosa; Quintanar-Jurado, Valeria; Maffuz-Aziz, Antonio; Jimenez-Sanchez, Gerardo; Bautista-Piña, Veronica; Arellano-Llamas, Rocio; Hidalgo-Miranda, Alfredo

    2012-01-01

    microRNA expression signatures can differentiate normal and breast cancer tissues and can define specific clinico-pathological phenotypes in breast tumors. In order to further evaluate the microRNA expression profile in breast cancer, we analyzed the expression of 667 microRNAs in 29 tumors and 21 adjacent normal tissues using TaqMan Low-density arrays. 130 miRNAs showed significant differential expression (adjusted P value = 0.05, Fold Change = 2) in breast tumors compared to the normal adjacent tissue. Importantly, the role of 43 of these microRNAs has not been previously reported in breast cancer, including several evolutionary conserved microRNA*, showing similar expression rates to that of their corresponding leading strand. The expression of 14 microRNAs was replicated in an independent set of 55 tumors. Bioinformatic analysis of mRNA targets of the altered miRNAs, identified oncogenes like ERBB2, YY1, several MAP kinases, and known tumor-suppressors like FOXA1 and SMAD4. Pathway analysis identified that some biological process which are important in breast carcinogenesis are affected by the altered microRNA expression, including signaling through MAP kinases and TP53 pathways, as well as biological processes like cell death and communication, focal adhesion and ERBB2-ERBB3 signaling. Our data identified the altered expression of several microRNAs whose aberrant expression might have an important impact on cancer-related cellular pathways and whose role in breast cancer has not been previously described. PMID:22438871

  8. MicroRNA expression profiling studies on bronchopulmonary dysplasia: a systematic review and meta-analysis.

    PubMed

    Yang, Y; Qiu, J; Kan, Q; Zhou, X-G; Zhou, X-Y

    2013-01-01

    Over the past several years, several microRNA (miRNA) expression profiling studies have been carried out on bronchopulmonary dysplasia (BPD) in mammalian lung tissues. The most effective way to identify these important miRNAs is to systematically search for similar signatures identified in multiple independent studies. Accordingly, a meta-analysis was conducted to review published miRNA expression profiling studies that compared miRNA expression profiles between BPD lung tissues and normal lung tissues. A vote-counting strategy that considered the total number of studies and time points reporting differential expression was applied. Furthermore, cut-off criteria of statistically significant differentially expressed miRNAs as defined by the author and their predicted target genes, if available, as well as the list of up- and down-regulated miRNA features, were collected and recorded. Results of the meta-analysis revealed that four up-regulated miRNAs (miRNA-21, miRNA-34a, miRNA-431, and Let-7f) and one down-regulated miRNA (miRNA-335) were differentially expressed in BPD lung tissues compared with normal groups. In addition, eight miRNAs (miRNA-146b, miRNA-29a, miRNA-503, miRNA-411, miRNA-214, miRNA-130b, miRNA-382, and miRNA-181a-1*) were found to show differential expression not only in the process of normal lung development, but also during the progress of BPD. Finally, several meaningful target genes (such as the HPGD and NTRK genes) of common miRNAs (such as miRNA-21 and miRNA-141) were systematically predicted. These specific miRNAs may provide clues of the potential mechanisms involved in BPD. Further mechanistic and external validation studies are needed to confirm the clinical significance of these miRNAs in the development of BPD. PMID:24301780

  9. MicroRNA Expression Profiling of Oligodendrocyte Differentiation from Human Embryonic Stem Cells

    PubMed Central

    Letzen, Brian S.; Liu, Cyndi; Thakor, Nitish V.; Gearhart, John D.; All, Angelo H.; Kerr, Candace L.

    2010-01-01

    Background Cells of the oligodendrocyte (OL) lineage play a vital role in the production and maintenance of myelin, a multilamellar membrane which allows for saltatory conduction along axons. These cells may provide immense therapeutic potential for lost sensory and motor function in demyelinating conditions, such as spinal cord injury, multiple sclerosis, and transverse myelitis. However, the molecular mechanisms controlling OL differentiation are largely unknown. MicroRNAs (miRNAs) are considered the “micromanagers” of gene expression with suggestive roles in cellular differentiation and maintenance. Although unique patterns of miRNA expression in various cell lineages have been characterized, this is the first report documenting their expression during oligodendrocyte maturation from human embryonic stem (hES) cells. Here, we performed a global miRNA analysis to reveal and identify characteristic patterns in the multiple stages leading to OL maturation from hES cells including those targeting factors involved in myelin production. Methodology/Principal Findings We isolated cells from 8 stages of OL differentiation. Total RNA was subjected to miRNA profiling and validations preformed using real-time qRT-PCR. A comparison of miRNAs from our cultured OLs and OL progenitors showed significant similarities with published results from equivalent cells found in the rat and mouse central nervous system. Principal component analysis revealed four main clusters of miRNA expression corresponding to early, mid, and late progenitors, and mature OLs. These results were supported by correlation analyses between adjacent stages. Interestingly, the highest differentially-expressed miRNAs demonstrated a similar pattern of expression throughout all stages of differentiation, suggesting that they potentially regulate a common target or set of targets in this process. The predicted targets of these miRNAs include those with known or suspected roles in oligodendrocyte development

  10. Global microRNA expression is essential for murine mast cell development in vivo

    PubMed Central

    Oh, Sun Young; Brandal, Stephanie; Kapur, Reuben; Zhu, Zhou; Takemoto, Clifford M.

    2014-01-01

    microRNAs (miRNAs) are small, non-coding RNAs that have been shown to play a critical role in normal physiology and disease, such as hematopoietic development and cancer. However, their role in mast cell function and development is poorly understood. The major objective of this study was to determine how global miRNA expression affects mast cell physiology. The RNase III endonuclease, Dicer, is required for the processing of pre-miRNAs into mature miRNAs. To investigate the effect of global miRNA depletion on mast cells in vivo, we generated a mast cell-specific knock out of Dicer in mice. Transgenic mice (Mcpt5-Cre) that express Cre selectively in connective tissue mast cells were crossed with mice carrying the floxed conditional Dicer allele (Dicer fl/fl). Mcpt5-Cre x Dicer fl/fl mice with homozygous Dicer gene deletion in mast cells were found to have a profound mast cell deficiency with near complete loss of peritoneal, gastrointestinal, and skin mast cells. We examined the in vivo functional consequence of mast cell-specific Dicer deletion using an IgE-dependent passive systemic anaphylaxis (PSA) murine model. IgE sensitized wild type Mcpt5-Cre x Dicer +/+ and heterozygous Mcpt5-Cre x Dicer fl/+ mice show marked hypothermia with antigen; however, homozygous Mcpt5-Cre x Dicer fl/fl mice were completely unresponsive to antigen challenge. These studies suggest a critical role for Dicer and miRNA expression for establishment of tissue compartments of functional mast cells in vivo. PMID:25201754

  11. A Comprehensive Expression Profile of MicroRNAs in Porcine Pituitary

    PubMed Central

    Cheng, Xiao; Qi, Qien; Yang, Lin; Shu, Gang; Wang, Songbo; Wang, Lina; Gao, Ping; Zhu, Xiaotong; Jiang, Qingyan; Zhang, Yongliang; Yuan, Li

    2011-01-01

    MicroRNAs (miRNAs) are an abundant class of small RNAs that regulate expressions of most genes. miRNAs play important roles in the pituitary, the “master” endocrine organ.However, we still don't know which role miRNAs play in the development of pituitary tissue or how much they contribute to the pituitary function. By applying a combination of microarray analysis and Solexa sequencing, we detected a total of 450 miRNAs in the porcine pituitary. Verification with RT-PCR showed a high degree of confidence for the obtained data. According to the current miRBase release17.0, the detected miRNAs included 169 known porcine miRNAs, 163 conserved miRNAs not yet identified in the pig, and 12 potentially new miRNAs not yet identified in any species, three of which were revealed using Northern blot. The pituitary might contain about 80.17% miRNA types belonging to the animal. Analysis of 10 highly expressed miRNAs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that the enriched miRNAs were involved not only in the development of the organ but also in a variety of inter-cell and inner cell processes or pathways that are involved in the function of the organ. We have revealed the existence of a large number of porcine miRNAs as well as some potentially new miRNAs and established for the first time a comprehensive miRNA expression profile of the pituitary. The pituitary gland contains unexpectedly many miRNA types and miRNA actions are involved in important processes for both the development and function of the organ. PMID:21969866

  12. A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig

    PubMed Central

    Shang, Peng; Wang, Zhixiu; Ma, Jun; Wang, Liyuan; Zhang, Hao

    2015-01-01

    Tibetan pigs live between 2500 and 4300 m above sea level on the Tibetan Plateau, and are better adapted to hypoxia than lowland pigs. MicroRNAs (miRNAs) are involved in a wide variety of cellular processes; however, their regulatory role in hypoxia adaptation remains unclear. In this study, miRNA-seq was used to identify differentially expressed miRNAs (DE miRNAs) in the cardiac muscle of Tibetan and Yorkshire pigs, which were both raised in high elevation environments. We obtained 108 M clean reads and 372 unique miRNAs, which included 210 known porcine miRNAs, 136 conserved in other mammals, and 26 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 up-regulated and 10 down-regulated miRNAs, were also found after comparison between Tibetan and Yorkshire pigs. We predicted miRNA targets based on differential expression and abundance in the two populations. Furthermore, the results of a Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DE miRNAs in Tibetan and Yorkshire pigs are involved in hypoxia-related signaling pathways such as the mitogen-activated protein kinase, which is the mechanistic target of rapamycin, and the vascular endothelial growth factor, as well as cancer-related signaling pathways. Five DE miRNAs were randomly selected to validate the results of miRNA-seq using real-time polymerase chain reaction, and the results corresponded to those from the miRNA-seq, confirming that deep-sequencing methods are feasible and efficient. In our study, we identified various previously unknown hypoxia-related miRNAs in pigs, and the data obtained suggest that hypoxia-related miRNA expression patterns are significantly altered in the Tibetan pig compared to other species. Therefore, DE miRNAs may play an important role in organisms that have adapted to hypoxic environments. PMID:26571238

  13. Discovery of Novel and Differentially Expressed MicroRNAs between Fetal and Adult Backfat in Cattle

    PubMed Central

    Sun, Jiajie; Zhou, Yang; Cai, Hanfang; Lan, Xianyong; Lei, Chuzhao; Zhao, Xin; Zhang, Chunlei; Chen, Hong

    2014-01-01

    The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. Recently, a large number of miRNAs and their expression patterns have been identified. However, to date, limited miRNAs have been reported to modulate adipogenesis and lipid deposition in beef cattle. Total RNAs from Chinese Qinchuan bovine backfat at fetal and adult stages were used to construct small RNA libraries for Illumina next-generation sequencing. A total of 13,915,411 clean reads were obtained from a fetal library and 14,244,946 clean reads from an adult library. In total, 475 known and 36 novel miRNA candidates from backfat were identified. The nucleotide bias, base editing, and family of the known miRNAs were also analyzed. Based on stem-loop qPCR, 15 specific miRNAs were detected, and the results showed that bta-miRNAn25 and miRNAn26 were highly expressed in backfat tissue, suggesting these small RNAs play a role in the development and maintenance of bovine subcutaneous fat tissue. Putative targets for miRNAn25 and miRNAn26 were predicted, and the 61 most significant target transcripts were related to lipid and fatty acid metabolism. Of interest, the canonical pathway and gene networks analyses revealed that PPARα/RXRα activation and LXR/RXR activation were important components of the gene interaction hierarchy results. In the present study, we explored the backfat miRNAome differences between cattle of different developmental stages, expanding the expression repertoire of bovine miRNAs that could contribute to further studies on the fat development of cattle. Predication of target genes analysis of miRNA25 and miRNA26 also showed potential gene networks that affect lipid and fatty acid metabolism. These results may help in the design of new intervention strategies to improve beef quality. PMID:24587298

  14. MicroRNAs associated with osteoarthritis differently expressed in bone matrix gelatin (BMG) rat model

    PubMed Central

    Min, Zixin; zhang, Rui; Yao, Jianfeng; Jiang, Congshan; Guo, Yuanxu; Cong, Fei; Wang, Wei; Tian, Jia; Zhong, Nannan; Sun, Jian; Ma, Jie; Lu, Shemin

    2015-01-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage, limited intraarticular inflammation with synovitis, and changes in peri-articular and subchondral bone. In recent years, more and more evidence demonstrated that microRNAs (miRNAs) play important roles in the molecular mechanisms in OA by suppressing gene expression at the post-transcriptional level. In current study, histological staining of toluidine blue and cartilage-specific gene express revealed that the bone matrix gelatin (BMG) rat model could demonstrate the different development of cartilage. In current study, we tested whether some miRNAs associated with OA differently expressed in BMG rat model. We verified that miR-140 and miR-455 were associated with cartilage development, and further revealed that miR-140-5p and miR-455-3p might play more important function than miR-140-3p and miR-455-5p in the BMG rat model. Moreover, we found that miR-9 and miR-98 were involved in the endochondral ossification, suggesting they may be also the key regulators in the process of endochondral ossification. In fact, many miRNAs worked as a miRNA-mediated regulatory network in the process of cartilage development and OA. Further functional discovery will clarify the roles of individual miRNAs and their targets, and serve as a strong foundation for translating these findings to the clinic therapy for OA. PMID:25785087

  15. A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig.

    PubMed

    Zhang, Bo; Qiangba, Yangzong; Shang, Peng; Wang, Zhixiu; Ma, Jun; Wang, Liyuan; Zhang, Hao

    2015-01-01

    Tibetan pigs live between 2500 and 4300 m above sea level on the Tibetan Plateau, and are better adapted to hypoxia than lowland pigs. MicroRNAs (miRNAs) are involved in a wide variety of cellular processes; however, their regulatory role in hypoxia adaptation remains unclear. In this study, miRNA-seq was used to identify differentially expressed miRNAs (DE miRNAs) in the cardiac muscle of Tibetan and Yorkshire pigs, which were both raised in high elevation environments. We obtained 108 M clean reads and 372 unique miRNAs, which included 210 known porcine miRNAs, 136 conserved in other mammals, and 26 novel pre-miRNAs. In addition, 20 DE miRNAs, including 10 up-regulated and 10 down-regulated miRNAs, were also found after comparison between Tibetan and Yorkshire pigs. We predicted miRNA targets based on differential expression and abundance in the two populations. Furthermore, the results of a Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DE miRNAs in Tibetan and Yorkshire pigs are involved in hypoxia-related signaling pathways such as the mitogen-activated protein kinase, which is the mechanistic target of rapamycin, and the vascular endothelial growth factor, as well as cancer-related signaling pathways. Five DE miRNAs were randomly selected to validate the results of miRNA-seq using real-time polymerase chain reaction, and the results corresponded to those from the miRNA-seq, confirming that deep-sequencing methods are feasible and efficient. In our study, we identified various previously unknown hypoxia-related miRNAs in pigs, and the data obtained suggest that hypoxia-related miRNA expression patterns are significantly altered in the Tibetan pig compared to other species. Therefore, DE miRNAs may play an important role in organisms that have adapted to hypoxic environments. PMID:26571238

  16. Clinical significance and expression of microRNA in diabetic patients with erectile dysfunction

    PubMed Central

    JIANG, XI; LUO, YONG; ZHAO, SHULI; CHEN, QICHAO; JIANG, CHAO; DAI, YUTIAN; CHEN, YUN; CAO, ZHIGANG

    2015-01-01

    The aim of the present study was to investigate the expression of microRNA (miR)-93, miR-320 and miR-16 and to assess their diagnostic value in diabetic patients with erectile dysfunction (ED). A total of 120 individuals were divided into three groups, which included the diabetics with ED group (ED group), the diabetics without ED group (NED group) and the healthy volunteers group (control group). Each group included 40 individuals. Serum samples were collected and reverse transcription quantitative polymerase chain reaction detection of the three types of miRNA was performed and the sensitivity of ED was analyzed by receiver operating characteristic curves. A negative correlation was identified between the incidence of ED in patients with diabetes and serum total testosterone levels (r=0.302, P<0.05); however, a positive correlation was observed between the incidence of ED in diabetics and the HbA1c level (r=0.231, P<0.05). Additionally, the relative expression levels of the three types of miRNA were higher in the ED group when compared with the NED and control groups (P<0.05). When compared with the control group, the area under the curve (AUC) values for miR-93, miR-320 and miR-16 were 0.793, 0.818 and 0.810, respectively, in the ED group and 0.576, 0.532 and 0.542 in the NED group, respectively. Furthermore, when compared with the NED group, the AUC value for miR-93, miR-320 and miR-16 was 0.707, 0.810 and 0.833, respectively, in the ED group. Therefore, the expression levels of miR-93, miR-320 and miR-16 may be useful for the early diagnosis of ED in patients with diabetes. PMID:26170937

  17. Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen.

    PubMed

    Ghosh, Sanchita P; Pathak, Rupak; Kumar, Parameet; Biswas, Shukla; Bhattacharyya, Sharmistha; Kumar, Vidya P; Hauer-Jensen, Martin; Biswas, Roopa

    2016-05-01

    Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation. PMID:27128741

  18. MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients.

    PubMed

    Ogata, Yorimasa; Matsui, Sari; Kato, Ayako; Zhou, Liming; Nakayama, Yohei; Takai, Hideki

    2014-12-01

    Periodontitis is a chronic inflammatory disease caused by specific bacteria and viruses. Local, systemic, and environmental factors affect the rate of disease progression. Immune responses to bacterial products, and the subsequent production of inflammatory cytokines, are crucial in the destruction of periodontal tissue. MicroRNAs (miRNAs) are a class of small RNAs that control various cell processes by negatively regulating protein-coding genes. In this study, we compared miRNA expression in inflamed and noninflamed gingival tissues from Japanese dental patients. Total RNAs were isolated from inflamed and noninflamed gingival tissues. miRNA expression profiles were examined by an miRNA microarray, and the data were analyzed by GeneSpring GX, Ingenuity Pathways Analysis, and the TargetScan databases. Observed miRNA expression levels in inflamed gingiva were confirmed by real-time PCR. The three most overexpressed (by >2.72-fold) miRNAs were hsa-miR-150, hsa-miR-223, and hsa-miR-200b, and the three most underexpressed (by <0.39-fold) miRNAs were hsa-miR-379, hsa-miR-199a-5p, and hsa-miR-214. In IPA analysis, hsa-miR-150, hsa-miR-223, and hsa-miR-200b were associated with inflammatory disease, organismal injury, abnormalities, urological disease, and cancer. The present findings suggest that miRNAs are associated with chronic periodontitis lesions in Japanese. PMID:25500922

  19. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration

    PubMed Central

    ZHAO, BO; YU, QIANG; LI, HAOPENG; GUO, XIONG; HE, XIJING

    2014-01-01

    Intervertebral disc degeneration (IDD) is associated with lower back pain and is a global burden with severe healthcare and socioeconomic consequences. However, the underlying mechanisms of IDD remain largely unelucidated. Accumulating evidence has indicasted that newly defined gene regulators, microRNAs (miRNAs), play a vital role in neurodegenerative, pathophysiological and certain reproductive disorders. To characterize the differential miRNA expression profiles between IDD and spinal cord injury, specimens from 3 patients with IDD and 3 with spinal cord injury were selected for microarray analysis. Total RNA from these 6 specimens was extracted and subjected to global miRNA expression analysis using the Exiqon miRCURY™ LNA Array (v.16.0). The microarray data were then validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, bioinformatics analysis was performed to investigate the dysregulated miRNA target genes and signaling pathways involved. Among the miRNAs analyzed, 25 miRNAs were found to be upregulated and 26 were found to be downregulated in the IDD group compared with the spinal cord injury group. The qRT-PCR results validated the microarray data. Bioinformatics analysis indicated that the signaling pathways most likely to be controlled by these miRNAs were the phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR; ErbB) and Wnt pathways. Our results demonstrated that the miRNA expression in patients with IDD differed significantly from that in patients who sustained injury to the intervertebral disc. Our data indicate that the dysregulated miRNAs control the signaling pathways important for the maintenance of IDD. Further studies on miRNA target gene identification and biological functions may address the specific regulatory mechanisms of miRNAs in IDD, and may provide valuable insight into the diagnosis and treatment of IDD. PMID:24173697

  20. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration.

    PubMed

    Zhao, Bo; Yu, Qiang; Li, Haopeng; Guo, Xiong; He, Xijing

    2014-01-01

    Intervertebral disc degeneration (IDD) is associated with lower back pain and is a global burden with severe healthcare and socioeconomic consequences. However, the underlying mechanisms of IDD remain largely unelucidated. Accumulating evidence has indicasted that newly defined gene regulators, microRNAs (miRNAs), play a vital role in neurodegenerative, pathophysiological and certain reproductive disorders. To characterize the differential miRNA expression profiles between IDD and spinal cord injury, specimens from 3 patients with IDD and 3 with spinal cord injury were selected for microarray analysis. Total RNA from these 6 specimens was extracted and subjected to global miRNA expression analysis using the Exiqon miRCURY™ LNA Array (v.16.0). The microarray data were then validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, bioinformatics analysis was performed to investigate the dysregulated miRNA target genes and signaling pathways involved. Among the miRNAs analyzed, 25 miRNAs were found to be upregulated and 26 were found to be downregulated in the IDD group compared with the spinal cord injury group. The qRT-PCR results validated the microarray data. Bioinformatics analysis indicated that the signaling pathways most likely to be controlled by these miRNAs were the phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR; ErbB) and Wnt pathways. Our results demonstrated that the miRNA expression in patients with IDD differed significantly from that in patients who sustained injury to the intervertebral disc. Our data indicate that the dysregulated miRNAs control the signaling pathways important for the maintenance of IDD. Further studies on miRNA target gene identification and biological functions may address the specific regulatory mechanisms of miRNAs in IDD, and may provide valuable insight into the diagnosis and treatment of IDD. PMID:24173697

  1. MicroRNA-382 expression is elevated in the olfactory neuroepithelium of schizophrenia patients.

    PubMed

    Mor, Eyal; Kano, Shin-Ichi; Colantuoni, Carlo; Sawa, Akira; Navon, Ruth; Shomron, Noam

    2013-07-01

    Schizophrenia is a common neuropsychiatric disorder that has a strong genetic component. MicroRNAs (miRNAs) have been implicated in neurodevelopmental and psychiatric disorders including schizophrenia, as indicated by their dysregulation in post-mortem brain tissues and in peripheral blood of schizophrenia patients. The olfactory epithelium (OE) is one of the few accessible neural tissues that contain neurons and their stem cells. Previous studies showed that OE-derived tissues and cells can be safely and easily collected from live human subjects and may provide a "window" into neuronal processes involved in disorders such as schizophrenia, while avoiding the limitations of using postmortem brain samples or non-neuronal tissues. In this study, we found that the brain-enriched miR-382 (miR-382-5p) expression was elevated in in vitro cultured olfactory cells, in a cohort of seven schizophrenia patients compared with seven non-schizophrenic controls. MiR-382 elevation was further confirmed in laser-capture microdissected OE neuronal tissue (LCM-OE), enriched for mature olfactory neurons, in a cohort of 18 schizophrenia patients and 18 non-schizophrenic controls. In sharp contrast, miR-382 expression could not be detected in lymphoblastoid cell lines generated from schizophrenic or non-schizophrenic individuals. We further found that miR-382 directly regulates the expression of two genes, FGFR1 and SPRY4, which are downregulated in both the cultured olfactory cells and LCM-OE derived from schizophrenia patients. These genes are involved in the fibroblast growth factor (FGF) signaling pathway, while impairment of this pathway may underlie abnormal brain development and function associated with schizophrenia. Our data suggest that miR-382 elevation detected in patients' OE-derived samples might serve to strengthen current biomarker studies in schizophrenia. This study also illustrates the potential utility of OE-derived tissues and cells as surrogate samples for the

  2. PUFA diets alter the microRNA expression profiles in an inflammation rat model

    PubMed Central

    ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI

    2015-01-01

    Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643

  3. Subtype-specific micro-RNA expression signatures in breast cancer progression.

    PubMed

    Haakensen, Vilde D; Nygaard, Vegard; Greger, Liliana; Aure, Miriam R; Fromm, Bastian; Bukholm, Ida R K; Lüders, Torben; Chin, Suet-Feung; Git, Anna; Caldas, Carlos; Kristensen, Vessela N; Brazma, Alvis; Børresen-Dale, Anne-Lise; Hovig, Eivind; Helland, Åslaug

    2016-09-01

    Robust markers of invasiveness may help reduce the overtreatment of in situ carcinomas. Breast cancer is a heterogeneous disease and biological mechanisms for carcinogenesis vary between subtypes. Stratification by subtype is therefore necessary to identify relevant and robust signatures of invasive disease. We have identified microRNA (miRNA) alterations during breast cancer progression in two separate datasets and used stratification and external validation to strengthen the findings. We analyzed two separate datasets (METABRIC and AHUS) consisting of a total of 186 normal breast tissue samples, 18 ductal carcinoma in situ (DCIS) and 1,338 invasive breast carcinomas. Validation in a separate dataset and stratification by molecular subtypes based on immunohistochemistry, PAM50 and integrated cluster classifications were performed. We propose subtype-specific miRNA signatures of invasive carcinoma and a validated signature of DCIS. miRNAs included in the invasive signatures include downregulation of miR-139-5p in aggressive subtypes and upregulation of miR-29c-5p expression in the luminal subtypes. No miRNAs were differentially expressed in the transition from DCIS to invasive carcinomas on the whole, indicating the need for subtype stratification. A total of 27 miRNAs were included in our proposed DCIS signature. Significant alterations of expression included upregulation of miR-21-5p and the miR-200 family and downregulation of let-7 family members in DCIS samples. The signatures proposed here can form the basis for studies exploring DCIS samples with increased invasive potential and serum biomarkers for in situ and invasive breast cancer. PMID:27082076

  4. Evidence for the expression of abundant microRNAs in the locust genome

    PubMed Central

    Wang, Yanli; Jiang, Feng; Wang, Huimin; Song, Tianqi; Wei, Yuanyuan; Yang, Meiling; Zhang, Jianzhen; Kang, Le

    2015-01-01

    Substantial accumulation of neutral sequences accounts for genome size expansion in animal genomes. Numerous novel microRNAs (miRNAs), which evolve in a birth and death manner, are considered evolutionary neutral sequences. The migratory locust is an ideal model to determine whether large genomes contain abundant neutral miRNAs because of its large genome size. A total of 833 miRNAs were discovered, and several miRNAs were randomly chosen for validation by Northern blot and RIP-qPCR. Three additional verification methods, namely, processing-dependent methods of miRNA biogenesis using RNAi, evolutionary comparison with closely related species, and evidence supported by tissue-specific expression, were applied to provide compelling results that support the authenticity of locust miRNAs. We observed that abundant local duplication events of miRNAs, which were unique in locusts compared with those in other insects with small genome sizes, may be responsible for the substantial acquisition of miRNAs in locusts. Together, multiple evidence showed that the locust genome experienced a burst of miRNA acquisition, suggesting that genome size expansion may have considerable influences of miRNA innovation. These results provide new insight into the genomic dynamics of miRNA repertoires under genome size evolution. PMID:26329925

  5. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    PubMed

    Jung, Il Lae; Ryu, Moonyoung; Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  6. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana

    PubMed Central

    Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  7. Differential expression of microRNAs in 2-cell and 4-cell mouse embryos.

    PubMed

    Wang, Pei; Cui, Ji; Zhao, Chun; Zhou, Lin; Guo, Xirong; Shen, Rong; Zhang, Junqiang; Ling, Xiufeng

    2014-11-01

    In vitro fertilized (IVF) human embryos have a high incidence of developmental arrest before the blastocyst stage, therefore characterization of the molecular mechanisms that regulate embryo development is urgently required. Post-transcriptional control by microRNAs (miRNAs) is one of the most investigated RNA control mechanisms, and is hypothesized to be involved actively in developmental arrest in preimplantation embryos. In this study, we extracted total RNA from mouse 2-cell and 4-cell embryos. Using a miRNA microarray, 192 miRNAs were found to be differentially expressed in 4-cell embryos and 2-cell embryos; 122 miRNAs were upregulated and 70 were downregulated in 4-cell embryos. The microarray results were confirmed by real-time quantitative RT-PCR for six miRNAs (mmu-miR-467h, mmu-miR-466d-3p, mmu-miR-292-5p, mmu-miR-154, mmu-miR-2145, and mmu-miR-706). Cdca4 and Tcf12 were identified as miR-154 target genes by target prediction analysis. This study provides a developmental map for a large number of miRNAs in 2-cell and 4-cell embryos. The function of these miRNAs and the mechanisms by which they modulate embryonic developmental arrest require further study. The results of this study have potential applications in the field of reproductive medicine. PMID:23731853

  8. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder.

    PubMed

    O'Connell, Ryan M; Rao, Dinesh S; Chaudhuri, Aadel A; Boldin, Mark P; Taganov, Konstantin D; Nicoll, John; Paquette, Ronald L; Baltimore, David

    2008-03-17

    Mammalian microRNAs are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the miR-155-induced GM populations displayed pathological features characteristic of myeloid neoplasia. Of possible relevance to human disease, miR-155 was found to be overexpressed in the bone marrow of patients with certain subtypes of acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress. PMID:18299402

  9. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system

    PubMed Central

    Wang, Lu; Bammler, Theo K.; Beyer, Richard P.; Gallagher, Evan P.

    2016-01-01

    Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g. let-7, miR-7a, miR-128 and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g. miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system, and identify novel miRNA biomarkers of metal exposures. PMID:23745839

  10. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system.

    PubMed

    Wang, Lu; Bammler, Theo K; Beyer, Richard P; Gallagher, Evan P

    2013-07-01

    Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g., let-7, miR-7a, miR-128, and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g., miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system and identify novel miRNA biomarkers of metal exposures. PMID:23745839

  11. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes

    PubMed Central

    2014-01-01

    Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal

  12. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  13. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  14. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression.

    PubMed

    Jiang, J-J; Liu, C-M; Zhang, B-Y; Wang, X-W; Zhang, M; Saijilafu; Zhang, S-R; Hall, P; Hu, Y-W; Zhou, F-Q

    2015-01-01

    MicroRNAs are emerging to be important epigenetic factors that control axon regeneration. Here, we report that microRNA-26a (miR-26a) is a physiological regulator of mammalian axon regeneration in vivo. We demonstrated that endogenous miR-26a acted to target specifically glycogen synthase kinase 3β (GSK3β) in adult mouse sensory neurons in vitro and in vivo. Inhibition of endogenous miR-26a in sensory neurons impaired axon regeneration in vitro and in vivo. Moreover, the regulatory effect of miR-26a was mediated by increased expression of GSK3β because downregulation or pharmacological inhibition of GSK3β fully rescued axon regeneration. Our results also suggested that the miR-26a-GSK3β pathway regulated axon regeneration at the neuronal soma by controlling gene expression. We provided biochemical and functional evidences that the regeneration-associated transcription factor Smad1 acted downstream of miR-26a and GSK3β to control sensory axon regeneration. Our study reveals a novel miR-26a-GSK3β-Smad1 signaling pathway in the regulation of mammalian axon regeneration. Moreover, we provide the first evidence that, in addition to inhibition of GSK3β kinase activity, maintaining a lower protein level of GSK3β in neurons by the microRNA is necessary for efficient axon regeneration. PMID:26313916

  15. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer

    PubMed Central

    Yuan, Cuncun; Yang, Haiyan; Wang, Lei; Wang, Liwei

    2016-01-01

    Previous studies showed that aberrant CDH1 or/and HDAC3 localization is essential for the progression of some human cancers. Here, we investigate the prognostic significance of aberrant CDH1 and HDAC3 localization in 84 pancreatic cancer patients. Our results show that increases in both membrane and cytoplasmic CDH1 correlate with lymph node metastasis (P = 0.026 and P < 0.001, respectively) and clinical stage (P = 0.020 and P < 0.001, respectively). Increased nuclear HDAC3 correlates with lymph node metastasis (P < 0.001) and advanced clinical stage (P < 0.001), but increased cytoplasmic HDAC3 does not (P > 0.05). Multivariate analysis showed that nuclear HDAC3 and cytoplasmic CDH1 (P = 0.001 and P = 0.010, respectively), as well as tumor differentiation (P = 0.009) are independent prognostic factors. Most importantly, patients with high co-expression of nuclear HDAC3 and cytoplasmic CDH1 had shorter survival times (P < 0.001), more frequent lymph node metastasis (P < 0.001), and advanced clinical stage (P < 0.001). Our studies provide convincing evidence that nuclear HDAC3 and cytoplasmic CDH1 have independent prognostic value in pancreatic cancer and provide novel targets for prognostic therapeutics. PMID:26918727

  16. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression.

    PubMed

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P; Chang, Shou-Mei; Cousins, Robert J; Fisher, William E; Brunicardi, F Charles; Logsdon, Craig D; Chen, Changyi; Yao, Qizhi

    2007-11-20

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth. PMID:18003899

  17. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression

    PubMed Central

    Li, Min; Zhang, Yuqing; Liu, Zijuan; Bharadwaj, Uddalak; Wang, Hao; Wang, Xinwen; Zhang, Sheng; Liuzzi, Juan P.; Chang, Shou-Mei; Cousins, Robert J.; Fisher, William E.; Brunicardi, F. Charles; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi

    2007-01-01

    Zinc is an essential trace element and catalytic/structural component used by many metalloenzymes and transcription factors. Recent studies indicate a possible correlation of zinc levels with the cancer risk; however, the exact role of zinc and zinc transporters in cancer progression is unknown. We have observed that a zinc transporter, ZIP4 (SLC39A4), was substantially overexpressed in 16 of 17 (94%) clinical pancreatic adenocarcinoma specimens compared with the surrounding normal tissues, and ZIP4 mRNA expression was significantly higher in human pancreatic cancer cells than human pancreatic ductal epithelium (HPDE) cells. This indicates that aberrant ZIP4 up-regulation may contribute to the pancreatic cancer pathogenesis and progression. We studied the effects of ZIP4 overexpression in pancreatic cancer cell proliferation in vitro and pancreatic cancer progression in vivo. We found that forced expression of ZIP4 increased intracellular zinc levels, increased cell proliferation by 2-fold in vitro, and significantly increased tumor volume by 13-fold in the nude mice model with s.c. xenograft compared with the control cells. In the orthotopic nude mice model, overexpression of ZIP4 not only increased the primary tumor weight (7.2-fold), it also increased the peritoneal dissemination and ascites incidence. Moreover, increased cell proliferation and higher zinc content were also observed in the tumor tissues that overexpressed ZIP4. These data reveal an important outcome of aberrant ZIP4 expression in contributing to pancreatic cancer pathogenesis and progression. It may suggest a therapeutic strategy whereby ZIP4 is targeted to control pancreatic cancer growth. PMID:18003899

  18. The expression and function of microRNA-203 in lung cancer.

    PubMed

    Jin, Jianhua; Deng, Jianzhong; Wang, Fang; Xia, Xiyi; Qiu, Tiefeng; Lu, Wenbin; Li, Xianwen; Zhang, Hua; Gu, Xiaoyan; Liu, Yungang; Cao, Weiguo; Shao, Wenlong

    2013-02-01

    We aimed to determine the expression of microRNA-203 (miR-203) in human lung cancer cell lines and to evaluate the effects of miR-203 by targeting survivin, on the lung cancer cell line 95-D to provide potential new strategies for treating lung cancer. The expression of miR-203 was detected using quantitative real-time PCR (qRT-PCR) in the in vitro cultured lung cancer cells A549, HCC827, NCI-H1299, and 95-D as well as in normal human bronchial epithelial cells. Following a 72-h transfection with the miR-203 precursor in 95-D lung cancer cells, the change in miR-203 expression was detected using qRT-PCR and the resulting effect on survivin protein expression was ascertained by Western blot analysis. The influence of miR-203 on the viability of 95-D lung cancer cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The effect of miR-203 on 95-D cell proliferation was analyzed using flow cytometry. The consequences of miR-203 expression on 95-D cell apoptosis were analyzed by Annexin V/propidium iodide double staining coupled with flow cytometry. The role of miR-203 in the invasive potential of 95-D cells was studied using a transwell chamber assay. A luciferase reporter gene system was used to verify that survivin is a target gene for miR-203. By qRT-PCR, the expression of miR-203 was lower in lung cancer cells than in normal bronchial epithelial cells (p < 0.01), and the expression of miR-203 in 95-D lung cancer cells was significantly higher after a 72-h transfection with the miR-203 precursor (p < 0.01). After a 72-h transfection with the miR-203 precursor, survivin protein levels in 95-D cells were significantly decreased (p < 0.01). Cell viability, as assessed with an MTT assay, decreased following an increase in miR-203 expression (p < 0.05). The flow cytometry results indicated that after miR-203 expression increased, the cell proliferation index decreased (p < 0.05) and the number of apoptotic

  19. Expression Profile of C19MC microRNAs in Placental Tissue in Pregnancy-Related Complications

    PubMed Central

    Kotlabova, Katerina; Ondrackova, Marketa; Pirkova, Petra; Kestlerova, Andrea; Novotna, Veronika; Hympanova, Lucie; Krofta, Ladislav

    2015-01-01

    To demonstrate that pregnancy-related complications are associated with alterations in placental microRNA expression. Gene expression of 15 C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525, miR-526a, and miR-526b) was assessed in placental tissues, compared between groups (21 gestational hypertension [GH], 63 preeclampsia, 36 fetal growth restriction [FGR], and 42 normal pregnancies), and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. The expression profile of microRNAs was different between pregnancy-related complications and controls. The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p, and miR-525), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, and miR-525), and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525, and miR-526a) microRNAs was associated with GH, FGR, and preeclampsia, respectively. Sudden onset of severe preeclampsia requiring immediate termination of gestation and mild forms of preeclampsia (persisting for several weeks) were associated with similar microRNA expression profile (downregulation of miR-517-5p, miR-520a-5p, miR-524-5p, and miR-525). In addition, miR-519a was found to be associated with severe preeclampsia. The longer the pregnancy-related disorder lasted, the more extensive was the downregulation of microRNAs (miR-515-5p, miR-518b, miR-518f-5p, miR-519d, and miR-520h). The downregulation of some C19MC microRNAs is a common phenomenon shared between GH, preeclampsia, and FGR. On the other hand, some of the C19MC microRNAs are only downregulated just in preeclampsia. PMID:25825993

  20. MicroRNA degeneracy and pluripotentiality within a Lavallière-tie architecture confers robustness to gene expression networks.

    PubMed

    Bhajun, Ricky; Guyon, Laurent; Gidrol, Xavier

    2016-08-01

    Modularity, feedback control, functional redundancy and bowtie architecture have been proposed as key factors that confer robustness to complex biological systems. MicroRNAs (miRNAs) are highly conserved but functionally dispensable. These antinomic properties suggest that miRNAs fine-tune gene expression rather than act as genetic switches. We synthesize published and unpublished data and hypothesize that miRNA pluripotentiality acts to buffer gene expression, while miRNA degeneracy tunes the expression of targets, thus providing robustness to gene expression networks. Furthermore, we propose a Lavallière-tie architecture by integrating signal transduction, miRNAs and protein expression data to model complex gene expression networks. PMID:27038488

  1. Magnetofection Based on Superparamagnetic Iron Oxide Nanoparticles Weakens Glioma Stem Cell Proliferation and Invasion by Mediating High Expression of MicroRNA-374a

    PubMed Central

    Pan, Zhiguang; Shi, Zhifeng; Wei, Hua; Sun, Fengyan; Song, Jianping; Huang, Yongyi; Liu, Te; Mao, Ying

    2016-01-01

    Glioma stem cells belong to a special subpopulation of glioma cells that are characterized by strong proliferation, invasion and drug resistance capabilities. Magnetic nanoparticles are nanoscale biological materials with magnetic properties. In this study, CD133+ primary glioma stem cells were isolated from patients and cultured. Then, magnetic nanoparticles were used to mediate the transfection and expression of a microRNA-374a overexpression plasmid in the glioma stem cells. Transmission electron microscopy detected the presence of significant magnetic nanoparticle substances within the CD133+ glioma stem cells after transfection. The qRT-PCR and Northern blot results showed that the magnetic nanoparticles could be used to achieve the transfection of the microRNA-374a overexpression plasmid into glioma stem cells and the efficient expression of mature microRNA-374a. The MTT and flow cytometry results showed that the proliferation inhibition rate was significantly higher in cells from the microRNA-374a transfection group than in cells from the microRNA-mut transfection group; additionally, the former cells presented significant cell cycle arrest. The Transwell experiments confirmed that the overexpression of microRNA-374a could significantly reduce the invasiveness of CD133+ glioma stem cells. Moreover, the high expression of microRNA-374a mediated by the magnetic nanoparticles effectively reduced the tumourigenicity of CD133+ glioma stem cells in nude mice. The luciferase assays revealed that mature microRNA-374a fragments could bind to the 3'UTR of Neuritin (NRN1), thereby interfering with Neuritin mRNA expression. The qRT-PCR and Western blotting results showed that the overexpression of microRNA-374a significantly reduced the expression of genes such as NRN1, CCND1, CDK4 and Ki67 in glioma stem cells. Thus, magnetic nanoparticles can efficiently mediate the transfection and expression of microRNA expression plasmids in mammalian cells. The overexpression of

  2. Sarcoma Cell Line Screen of Oncology Drugs and Investigational Agents Identifies Patterns Associated with Gene and microRNA Expression.

    PubMed

    Teicher, Beverly A; Polley, Eric; Kunkel, Mark; Evans, David; Silvers, Thomas; Delosh, Rene; Laudeman, Julie; Ogle, Chad; Reinhart, Russell; Selby, Michael; Connelly, John; Harris, Erik; Monks, Anne; Morris, Joel

    2015-11-01

    The diversity in sarcoma phenotype and genotype make treatment of this family of diseases exceptionally challenging. Sixty-three human adult and pediatric sarcoma lines were screened with 100 FDA-approved oncology agents and 345 investigational agents. The investigational agents' library enabled comparison of several compounds targeting the same molecular entity allowing comparison of target specificity and heterogeneity of cell line response. Gene expression was derived from exon array data and microRNA expression was derived from direct digital detection assays. The compounds were screened against each cell line at nine concentrations in triplicate with an exposure time of 96 hours using Alamar blue as the endpoint. Results are presented for inhibitors of the following targets: aurora kinase, IGF-1R, MEK, BET bromodomain, and PARP1. Chemical structures, IC50 heat maps, concentration response curves, gene expression, and miR expression heat maps are presented for selected examples. In addition, two cases of exceptional responders are presented. The drug and compound response, gene expression, and microRNA expression data are publicly available at http://sarcoma.cancer.gov. These data provide a unique resource to the cancer research community. PMID:26351324

  3. The Expression of LEP, LEPR, IGF1 and IL10 in Obesity and the Relationship with microRNAs

    PubMed Central

    Viesti A. Collares, Renata; Salgado, Wilson; Pretti da Cunha Tirapelli, Daniela; dos Santos, José Sebastião

    2014-01-01

    Obesity is a multifactorial disease, with epigenetic alterations. Have been described modifications in the expression of some microRNAs, and some proteins related to obesity. The objective was to determine and correlate, in obese patients, the gene expression of LEP, LEPR, IGF1, IL10 and of miR-27a, miR-27b, miR-143 and miR-145. RNA was extracted from biopsies of subcutaneous fat, liver and visceral fat of 15 obese subjects submitted to bariatric surgery and of 15 non-obese subjects submitted to cholecystectomy for cDNA synthesis and for RT-PCR. The microRNAs were chosen using the TargetScan software. An increased expression of LEP and IGF1 was detected in the subcutaneous fat of the obese group compared to control, while the expression of IGF1 was higher in the control group than in the obese one. MiRNA-27a had a higher expression in the omentum of the obese patients and there was also a correlation in the expression of miRNA-145 and LEPR in the omentum of this group. PMID:24690978

  4. MicroRNAs Expression in Triple Negative vs Non Triple Negative Breast Cancer in Tunisia: Interaction with Clinical Outcome

    PubMed Central

    Medimegh, Imen; Omrane, Ines; Privat, Maud; Uhrhummer, Nancy; Ayari, Hajer; Belaiba, Fadoua; Benayed, Farhat; Benromdhan, Khaled; Mader, Sylvie; Bignon, Ives-Jean; Elgaaied, Amel Benammar

    2014-01-01

    Introduction MicroRNAs are small, non coding regulatory molecules containing approximately 21 to 25 nucleotides. They function as controllers of expression at post transcriptional levels of most human protein-coding genes and play an essential role in cell signaling pathways. The objective of the present study is to evaluate the expression profile of the following micro-RNAs: miR-10b, miR-17, miR-21, miR-34a, miR-146a, miR-148a and miR-182, and to determine their possible interaction in triple-negative and non triple-negative primary breast cancers based on clinical outcome. Methods 60 triple-negative and non triple-negative breast cancer cases, along with their corresponding normal samples were investigated in relation to the expression of the seven studied miRNAs using qPCR Syber Green. Results We observed that miR-21, miR-146a and miR-182 were significantly over expressed in triple negative breast cancer. Moreover, miR-10b, miR-21 and miR-182 were significantly associated to lymph node metastases occurrence in triple negative breast carcinoma while only miR-10b was associated with grade III in non triple negative breast cancer cases. Almost all the analyzed microRNAs were strongly associated with patients’ genico-obstetric history in non triple negative breast cancer cases except for miR-34a. All the studied microRNAs were strongly correlated with the use of the contraceptive pills in non triple negative breast cancer groups. The additive effect of hormonal factors in triple negative breast cancer cases showed an association with all the studied miRs except for miR-34 and miR-146a. Conclusion The studied microRNAs are strongly influenced by environmental factors especially with hormonal patients’ history. Moreover, miR-10b, miR-21 and miR-182 could be defined as biomarkers in breast cancer to predict both lymph node metastases and grade III occurrence. PMID:25369070

  5. Diversity and Expression of MicroRNAs in the Filarial Parasite, Brugia malayi

    PubMed Central

    Poole, Catherine B.; Gu, Weifeng; Kumar, Sanjay; Jin, Jingmin; Davis, Paul J.; Bauche, David; McReynolds, Larry A.

    2014-01-01

    Human filarial parasites infect an estimated 120 million people in 80 countries worldwide causing blindness and the gross disfigurement of limbs and genitals. An understanding of RNA-mediated regulatory pathways in these parasites may open new avenues for treatment. Toward this goal, small RNAs from Brugia malayi adult females, males and microfilariae were cloned for deep-sequencing. From ∼30 million sequencing reads, 145 miRNAs were identified in the B. malayi genome. Some microRNAs were validated using the p19 RNA binding protein and qPCR. B. malayi miRNAs segregate into 99 families each defined by a unique seed sequence. Sixty-one of the miRNA families are highly conserved with homologues in arthropods, vertebrates and helminths. Of those miRNAs not highly conserved, homologues of 20 B. malayi miRNA families were found in vertebrates. Nine B. malayi miRNA families appear to be filarial-specific as orthologues were not found in other organisms. The miR-2 family is the largest in B. malayi with 11 members. Analysis of the sequences shows that six members result from a recent expansion of the family. Library comparisons found that 1/3 of the B. malayi miRNAs are differentially expressed. For example, miR-71 is 5–7X more highly expressed in microfilariae than adults. Studies suggest that in C.elegans, miR-71 may enhance longevity by targeting the DAF-2 pathway. Characterization of B. malayi miRNAs and their targets will enhance our understanding of their regulatory pathways in filariads and aid in the search for novel therapeutics. PMID:24824352

  6. Characterization of microRNAs Expressed during Secondary Wall Biosynthesis in Acacia mangium

    PubMed Central

    Ong, Seong Siang; Wickneswari, Ratnam

    2012-01-01

    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324

  7. MicroRNA Expression Profiling in CCl₄-Induced Liver Fibrosis of Mus musculus.

    PubMed

    Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl₄) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl₄-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl₄-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl₄ induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257

  8. Similar Squamous Cell Carcinoma Epithelium microRNA Expression in Never Smokers and Ever Smokers

    PubMed Central

    Kolokythas, Antonia; Zhou, Yalu; Schwartz, Joel L.; Adami, Guy R.

    2015-01-01

    The incidence of oral tumors in patients who never used mutagenic agents such as tobacco is increasing. In an effort to better understand these tumors we studied microRNA (miRNA) expression in tumor epithelium of never tobacco users, tumor epithelium of ever tobacco users, and nonpathological control oral epithelium. A comparison of levels among 372 miRNAs in 12 never tobacco users with oral squamous cell carcinoma (OSCC) versus 10 healthy controls was made using the reverse transcription quantitative polymerase chain reaction. A similar analysis was done with 8 ever tobacco users with OSCC. These comparisons revealed miR-10b-5p, miR-196a-5p, and miR-31-5p as enriched in the tumor epithelium in OSCC of both never and ever tobacco users. Examination of The Cancer Genome Atlas (TCGA) project miRNA data on 305 OSCCs and 30 controls revealed 100% of those miRNAs enriched in never smoker OSCCs in this patient group were also enriched in ever smoker OSCCs. Nonsupervised clustering of TCGA OSCCs was suggestive of two or four subgroups of tumors based on miRNA levels with limited evidence for differences in tobacco exposure among the groups. Results from both patient groups together stress the importance of miR196a-5p in OSCC malignancy in both never and ever smokers, and emphasize the overall similarity of miRNA expression in OSCCs in these two risk groups. It implies that there may be great similarity in etiology of OSCC in never and ever smokers and that classifying OSCC based on tobacco exposure may not be helpful in the clinic. PMID:26544609

  9. Identification and expression analysis of infectious laryngotracheitis virus encoding microRNAs.

    PubMed

    Rachamadugu, Rakesh; Lee, Jeong Yoon; Wooming, Ann; Kong, Byung-Whi

    2009-12-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a pivotal role in the regulation of gene expression at the post transcriptional level. Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus belonging to the herpesviridae family. It causes an acute respiratory disorder in chicken resulting in high mortality rates. ILTV encoding miRNAs have been identified in cell cultures infected by ILTV. Seven candidates ILTV encoding miRNAs were identified by the 454 FLX genome sequencing method. Five ILTV miRNAs identified in this study were identical to those previously reported by Waidner et al. (Virology 388:128, 2009). Two unique ILTV miRNAs, iltv-miR-I1-3p and iltv-miR-I7-3p, were identified in this study. The iltv-miR-I1-3p is the passenger strand of I1-5p, which was previously known. The iltv-miR-I7-3p showed a perfect match with the complementary passenger strand in contrast to other miRNA species showing imperfect complementarity with the passenger strand. The I7-3p was mapped in the replication origin (oriL) of the palindrome stem loop sequence of the ILTV genome. Expression of all ILTV miRNAs were confirmed by the end point PCR using small RNA libraries generated from either ILTV infected or uninfected control chicken embryo kidney (CEK) cells. PMID:19728068

  10. Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration.