Science.gov

Sample records for aberrantly methylated genes

  1. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma.

    PubMed

    Hoebeeck, Jasmien; Michels, Evi; Pattyn, Filip; Combaret, Valérie; Vermeulen, Joëlle; Yigit, Nurten; Hoyoux, Claire; Laureys, Geneviève; De Paepe, Anne; Speleman, Frank; Vandesompele, Jo

    2009-01-18

    CpG island hypermethylation has been recognized as an alternative mechanism for tumor suppressor gene inactivation. In this study, we performed methylation-specific PCR (MSP) to investigate the methylation status of 10 selected tumor suppressor genes in neuroblastoma. Seven of the investigated genes (CD44, RASSF1A, CASP8, PTEN, ZMYND10, CDH1, PRDM2) showed high frequencies (> or =30%) of methylation in 33 neuroblastoma cell lines. In 42 primary neuroblastoma tumors, the frequencies of methylation were 69%, CD44; 71%, RASSF1A; 56%, CASP8; 25%, PTEN; 15%, ZMYND10; 8%, CDH1; and 0%, PRDM2. Furthermore, CASP8 and CDH1 hypermethylation was significantly associated with poor event-free survival. Meta-analysis of 115 neuroblastoma tumors demonstrated a significant correlation between CASP8 methylation and MYCN amplification. In addition, there was a correlation between ZMYND10 methylation and MYCN amplification. The MSP data, together with optimized mRNA re-expression experiments (in terms of concentration and time of treatment and use of proper reference genes) further strengthen the notion that epigenetic alterations could play a significant role in NB oncogenesis. This study thus warrants the need for a global profiling of gene promoter hypermethylation to identify genome-wide aberrantly methylated genes in order to further understand neuroblastoma pathogenesis and to identify prognostic methylation markers. PMID:18819746

  2. Aberrant Gene Promoter Methylation Associated with Sporadic Multiple Colorectal Cancer

    PubMed Central

    Gonzalo, Victoria; Lozano, Juan José; Muñoz, Jenifer; Balaguer, Francesc; Pellisé, Maria; de Miguel, Cristina Rodríguez; Andreu, Montserrat; Jover, Rodrigo; Llor, Xavier; Giráldez, M. Dolores; Ocaña, Teresa; Serradesanferm, Anna; Alonso-Espinaco, Virginia; Jimeno, Mireya; Cuatrecasas, Miriam; Sendino, Oriol; Castellví-Bel, Sergi; Castells, Antoni

    2010-01-01

    Background Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect. Methodology/Principal Findings We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple

  3. ABERRANT PROMOTER METHYLATION OF MULTIPLE GENES IN SPUTUM FROM INDIVIDUALS EXPOSED TO SMOKY COAL EMISSIONS

    EPA Science Inventory

    Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung canc...

  4. Deletion and aberrant CpG island methylation of Caspase 8 gene in medulloblastoma.

    PubMed

    Gonzalez-Gomez, Pilar; Bello, M Josefa; Inda, M Mar; Alonso, M Eva; Arjona, Dolores; Amiñoso, Cinthia; Lopez-Marin, Isabel; de Campos, Jose M; Sarasa, Jose L; Castresana, Javier S; Rey, Juan A

    2004-09-01

    Aberrant methylation of promoter CpG islands in human genes is an alternative genetic inactivation mechanism that contributes to the development of human tumors. Nevertheless, few studies have analyzed methylation in medulloblastomas. We determined the frequency of aberrant CpG island methylation for Caspase 8 (CASP8) in a group of 24 medulloblastomas arising in 8 adult and 16 pediatric patients. Complete methylation of CASP8 was found in 15 tumors (62%) and one case displayed hemimethylation. Three samples amplified neither of the two primer sets for methylated or unmethylated alleles, suggesting that genomic deletion occurred in the 5' flanking region of CASP8. Our findings suggest that methylation commonly contributes to CASP8 silencing in medulloblastomas and that homozygous deletion or severe sequence changes involving the promoter region may be another mechanism leading to CASP8 inactivation in this neoplasm. PMID:15289853

  5. Methylation of tumor suppressor genes is related with copy number aberrations in breast cancer

    PubMed Central

    Murria, Rosa; Palanca, Sarai; de Juan, Inmaculada; Egoavil, Cecilia; Alenda, Cristina; García-Casado, Zaida; Juan, María J; Sánchez, Ana B; Santaballa, Ana; Chirivella, Isabel; Segura, Ángel; Hervás, David; Llop, Marta; Barragán, Eva; Bolufer, Pascual

    2015-01-01

    This study investigates the relationship of promoter methylation in tumor suppressor genes with copy-number aberrations (CNA) and with tumor markers in breast cancer (BCs). The study includes 98 formalin fixed paraffin-embedded BCs in which promoter methylation of 24 tumour suppressor genes were assessed by Methylation-Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA), CNA of 20 BC related genes by MLPA and ER, PR, HER2, CK5/6, CK18, EGFR, Cadherin-E, P53, Ki-67 and PARP expression by immunohistochemistry (IHC). Cluster analysis classed BCs in two groups according to promoter methylation percentage: the highly-methylated group (16 BCs), containing mostly hyper-methylated genes, and the sparsely-methylated group (82 BCs) with hypo-methylated genes. ATM, CDKN2A, VHL, CHFR and CDKN2B showed the greatest differences in the mean methylation percentage between these groups. We found no relationship of the IHC parameters or pathological features with methylation status, except for Catherin-E (p = 0.008). However the highly methylated BCs showed higher CNA proportion than the sparsely methylated BCs (p < 0.001, OR = 1.62; IC 95% [1.26, 2.07]). CDC6, MAPT, MED1, PRMD14 and AURKA showed the major differences in the CNA percentage between the two groups, exceeding the 22%. Methylation in RASSF1, CASP8, DAPK1 and GSTP1 conferred the highest probability of harboring CNA. Our results show a new link between promoter methylation and CNA giving support to the importance of methylation events to establish new BCs subtypes. Our findings may be also of relevance in personalized therapy assessment, which could benefit the hyper methylated BC patients group. PMID:25628946

  6. Aberrant promoter methylation of multiple genes in sputum from individuals exposed to smoky coal emissions

    PubMed Central

    Liu, Yang; Lan, Qing; Shen, Min; Mumford, Judy; Keohavong, Phouthone

    2010-01-01

    Summary Aberrant methylation in the promoter region of cancer-related genes leads to gene transcriptional inactivation and plays an integral role in lung tumorigenesis. Recent studies demonstrated that promoter methylation was detected not only in lung tumors from patients with lung cancer but also in sputum of smokers without the disease, suggesting the potential for aberrant gene promoter methylation in sputum as a predictive marker for lung cancer. In the present study, we investigated promoter methylation of 4 genes frequently detected in lung tumors, including p16, MGMT, RASSF1A and DAPK genes, in sputum samples obtained from 107 individuals, including 34 never-smoking females and 73 mostly smoking males, who had no evidence of lung cancer but who were exposed to smoky coal emission in Xuan Wei County, China, where lung cancer rate is more than 6 times the Chinese national average rate. Forty nine of the individuals showed evidence of chronic bronchitis while the remaining 58 individuals showed no such a symptom. Promoter methylation of p16, MGMT, RASSF1A and DAPK was detected in 51.4% (55/107), 17.8% (19/107), 29.9% (32/107), and 15.9% (17/107) of the sputum samples from these individuals, respectively. There were no differences in promoter methylation frequencies of any of these genes according to smoking status or gender of the subjects or between individuals with chronic bronchitis and those without evidence of such a symptom. Therefore, individuals exposed to smoky coal emissions in this region harbored in their sputum frequent promoter methylation of these genes that have been previously found in lung tumors and implicated in lung cancer development. PMID:18751376

  7. Association of Cigarette Smoking with Aberrant Methylation of the Tumor Suppressor Gene RARβ2 in Papillary Thyroid Cancer.

    PubMed

    Kiseljak-Vassiliades, Katja; Xing, Mingzhao

    2011-01-01

    Aberrant gene methylation is often seen in thyroid cancer, a common endocrine malignancy. Tobacco smoking has been shown to be associated with aberrant gene methylation in several cancers, but its relationship with gene methylation in thyroid cancer has not been examined. In the present study, we investigated the relationship between smoking of patients and aberrant methylation of tumor suppressor genes for TIMP3, SLC5A8, death-associated protein kinase, and retinoic acid receptor β2 (RARβ2) in papillary thyroid cancer (PTC), the most common type of thyroid cancer. The promoter methylation status of these genes was analyzed using quantitative real-time methylation-specific PCR on bisulfite-treated genomic DNA isolated from tumor tissues and correlated with smoking history of the patients. Among the four genes, methylation of the RARβ2 gene was significantly associated with smoking and other three genes showed a trend of association. Specifically, among the 138 patients investigated, 13/42 (31.0%) ever smokers vs. 10/96 (10.4%) never smokers harbored methylation of the RARβ2 gene (P = 0.003). This association was highly significant also in the subset of conventional variant PTC (P = 0.005) and marginally significant in follicular variant PTC (P = 0.06). The results demonstrate that smoking-associated aberrant methylation of the RARβ2 gene is a specific molecular event that may represent an important mechanism in thyroid tumorigenesis in smokers. PMID:22649395

  8. Aberrant methylation during cervical carcinogenesis.

    PubMed

    Virmani, A K; Muller, C; Rathi, A; Zoechbauer-Mueller, S; Mathis, M; Gazdar, A F

    2001-03-01

    We studied the pattern of aberrant methylation during the multistage pathogenesis of cervical cancers. We analyzed a total of 73 patient samples and 10 cervical cancer cell lines. In addition, tissue samples [peripheral blood lymphocytes (n = 10) and buccal epithelial cells (n = 12)] were obtained from 22 healthy volunteers. On the basis of the results of preliminary analysis, the cervical samples were grouped into three categories: (a) nondysplasia/low-grade cervical intraepithelial neoplasia (CIN; n = 37); (b) high-grade CIN (n = 17); and (c) invasive cancer (n = 19). The methylation status of six genes was determined (p16, RARbeta, FHIT, GSTP1, MGMT, and hMLH1). Our main findings are as follows: (a) methylation was completely absent in control tissues; (b) the frequencies of methylation for all of the genes except hMLH1 were >20% in cervical cancers; (c) aberrant methylation commenced early during multistage pathogenesis and methylation of at least one gene was noted in 30% of the nondysplasia/low-grade CIN group; (d) an increasing trend for methylation was seen with increasing pathological change; (e) methylation of RARbeta and GSTP1 were early events, p16 and MGMT methylation were intermediate events, and FHIT methylation was a late, tumor-associated event; and (f) methylation occurred independently of other risk factors including papillomavirus infection, smoking history, or hormone use. Although our findings need to be extended to a larger series, they suggest that the pattern of aberrant methylation in women with or without dysplasia may help identify subgroups at increased risk for histological progression or cancer development. PMID:11297252

  9. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  10. Reversibility of Aberrant Global DNA and Estrogen Receptor-α Gene Methylation Distinguishes Colorectal Precancer from Cancer

    PubMed Central

    Shen, Rulong; Tao, Lianhui; Xu, Yiqing; Chang, Shi; Van Brocklyn, James; Gao, Jian-Xin

    2009-01-01

    Alterations in the global methylation of DNA and in specific regulatory genes are two epigenetic alterations found in cancer. However, the significance of epigenetic changes for diagnosis and/or prognosis of colorectal cancer have not been established, although it has been extensively investigated. Recently we have identified a new type of cancer cell called precancerous stem cells (pCSCs) and proposed that cancer may arise from a lengthy development process of tumor initiating cells (TICs) → pCSCs → cancer stem cells (CSCs) → cancer, which is in parallel to histological changes of hyperplasia (TICs) → precancer (pCSCs) → carcinoma (CSCs/cancer cells), accompanied by clonal evolutionary epigenetic and genetic alterations. In this study, we investigated whether aberrant DNA methylation can be used as a biomarker for the differentiation between premalignant and malignant lesions in the colorectum. The profile of global DNA and estrogen receptor (ER)-α gene methylation during cancer development was determined by analysis of 5-methylcytosine (5-MeC) using immunohistochemical (IHC) staining, dot blot analysis or a quantitative gene methylation assay (QGMA). Herein we show that global DNA hypomethylation and ER-α gene hypermethylation are progressively enhanced from hyperplastic polyps (HPs) → adenomatous polyps (APs) → adenomatous carcinoma (AdCa). The aberrant methylation can be completely reversed in APs, but not in AdCa by a nonsteroidal anti-inflammatory drug (NSAID) celecoxib, which is a selective inhibitor of cyclooxygenase-2 (Cox-2), suggesting that the epigenetic alterations between colorectal precancer (AP) and cancer (AdCa) are fundamentally different in response to anti-cancer therapy. In normal colorectal mucosa, while global DNA methylation was not affected by aging, ER-α gene methylation was significantly increased with aging. However, this increase did not reach the level observed in colorectal APs. Taken together, reversibility of

  11. Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer.

    PubMed

    Galamb, Orsolya; Kalmár, Alexandra; Péterfia, Bálint; Csabai, István; Bodor, András; Ribli, Dezső; Krenács, Tibor; Patai, Árpád V; Wichmann, Barnabás; Barták, Barbara Kinga; Tóth, Kinga; Valcz, Gábor; Spisák, Sándor; Tulassay, Zsolt; Molnár, Béla

    2016-08-01

    The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2'-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis. PMID:27245242

  12. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  13. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer

    PubMed Central

    An, Ning; Yang, Xue; Cheng, Shujun; Wang, Guiqi; Zhang, Kaitai

    2015-01-01

    Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan–Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients. PMID:26691761

  14. Aberrant Methylation of Gene Associated CpG Sites Occurs in Borderline Personality Disorder

    PubMed Central

    Künzel, Natascha; Schmidt, Christian; Kiehl, Steffen; Dammann, Gerhard; Dammann, Reinhard

    2013-01-01

    Borderline personality disorder (BPD) is a complex psychiatric disease with an increased impact in the last years. While the diagnosis and therapy are well established, little is known on the pathogenesis of borderline personality disorder. Previously, a significant increase in DNA methylation of relevant neuropsychiatric genes in BPD patients has been reported. In our study we performed genome wide methylation analysis and revealed specific CpG sites that exhibited increased methylation in 24 female BPD patients compared to 11 female healthy controls. Bead chip technology and quantitative bisulfite pyrosequencing showed a significantly increased methylation at CpG sites of APBA2 (1.1 fold) and APBA3 (1.1 fold), KCNQ1 (1.5 fold), MCF2 (1.1 fold) and NINJ2 (1.2 fold) in BPD patients. For the CpG sites of GATA4 and HLCS an increase in DNA methylation was observed, but was only significant in the bead chip assay. Moreover genome wide methylation levels of blood samples of BPD patients and control samples are similar. In summary, our results show a significant 1.26 fold average increase in methylation at the analyzed gene associated CpG sites in the blood of BPD patients compared to controls samples (p<0.001). This data may provide new insights into epigenetic mechanisms underlying the pathogenesis of BPD. PMID:24367640

  15. Aberrant Methylation of the E-Cadherin Gene Promoter Region in the Endometrium of Women With Uterine Fibroids.

    PubMed

    Li, Yan; Ran, Ran; Guan, Yingxia; Zhu, Xiaoxiong; Kang, Shan

    2016-08-01

    A uterine fibroid is a leiomyoma that originates from the smooth muscle layer of the uterus. A variety of endometrial abnormalities are associated with uterine fibroids. This study aims to investigate the methylation status of the E-cadherin gene (CDH1) promoter region in the endometrium of patients with uterine fibroids. The methylation of CDH1 was studied using methylation-specific polymerase chain reaction in the endometrial tissue of 102 patients with uterine fibroids and 50 control patients. The E-cadherin expression was examined by flow cytometry. The methylation rate of CDH1 promoter region was 33.3% in the endometrium of patients with uterine fibroids and 8% in the endometrium of women without fibroids. The frequency of CDH1 promoter methylation in the endometrium of patients with fibroids was significantly higher than that in the endometrium of women without fibroids (P = .001). Furthermore, the E-cadherin expression level in methylation-positive tissues was significantly lower than that in methylation-negative tissues (P = .017). These results suggest that epigenetic aberration of CDH1 may occur in the endometrium of patients with fibroids, which may be associated with E-cadherin protein expression in endometrial tissue. PMID:26880767

  16. Aberrant Promoter Methylation of p16 and MGMT Genes in Lung Tumors from Smoking and Never-Smoking Lung Cancer Patients1

    PubMed Central

    Liu, Yang; Lan, Qing; Siegfried, Jill M; Luketich, James D; Keohavong, Phouthone

    2006-01-01

    Abstract Aberrant methylation in gene promoter regions leads to transcriptional inactivation of cancer-related genes and plays an integral role in tumorigenesis. This alteration has been investigated in lung tumors primarily from smokers, whereas only a few studies involved never-smokers. Here, we applied methylation-specific polymerase chain reaction to compare the frequencies of the methylated promoter of p16 and O6-methylguanine-DNA methyltransferase (MGMT) genes in lung tumors from 122 patients with non-small cell lung cancer, including 81 smokers and 41 never-smokers. Overall, promoter methylation was detected in 52.5% (64 of 122) and 30.3% (37 of 122) of the p16 and MGMT genes, respectively. Furthermore, the frequency of promoter methylation was significantly higher among smokers, compared with never-smokers, for both the p16 [odds ratio (OR) = 3.28; 95% confidence interval (CI) = 1.28-8.39; P = .013] and MGMT (OR = 3.93; 95% CI = 1.27-12.21; P = .018) genes. The trend for a higher promoter methylation frequency of these genes was also observed among female smokers compared with female never-smokers. Our results suggest an association between tobacco smoking and an increased incidence of aberrant promoter methylation of the p16 and MGMT genes in non-small cell lung cancer. PMID:16533425

  17. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST).

    PubMed

    Balassiano, Karen; Lima, Sheila; Jenab, Mazda; Overvad, Kim; Tjonneland, Anne; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Françoise; Canzian, Federico; Kaaks, Rudolf; Boeing, Heiner; Meidtner, Karina; Trichopoulou, Antonia; Laglou, Pagona; Vineis, Paolo; Panico, Salvatore; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Lund, Eiliv; Bueno-de-Mesquita, H Bas; Numans, Mattjis E; Peeters, Petra H M; Ramon Quirós, J; Sánchez, María-José; Navarro, Carmen; Ardanaz, Eva; Dorronsoro, Miren; Hallmans, Göran; Stenling, Roger; Ehrnström, Roy; Regner, Sara; Allen, Naomi E; Travis, Ruth C; Khaw, Kay-Tee; Offerhaus, G Johan A; Sala, Nuria; Riboli, Elio; Hainaut, Pierre; Scoazec, Jean-Yves; Sylla, Bakary S; Gonzalez, Carlos A; Herceg, Zdenko

    2011-12-01

    Epigenetic events have emerged as key mechanisms in the regulation of critical biological processes and in the development of a wide variety of human malignancies, including gastric cancer (GC), however precise gene targets of aberrant DNA methylation in GC remain largely unknown. Here, we have combined pyrosequencing-based quantitative analysis of DNA methylation in 98 GC cases and 64 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and in cancer tissue and non-tumorigenic adjacent tissue of an independent series of GC samples. A panel of 10 cancer-associated genes (CHRNA3, DOK1, MGMT, RASSF1A, p14ARF, CDH1, MLH1, ALDH2, GNMT and MTHFR) and LINE-1 repetitive elements were included in the analysis and their association with clinicopathological characteristics (sex, age at diagnosis, anatomical sub-site, histological sub-type) was examined. Three out of the 10 genes analyzed exhibited a marked hypermethylation, whereas two genes (ALDH2 and MTHFR) showed significant hypomethylation, in gastric tumors. Among differentially methylated genes, we identified new genes (CHRNA3 and DOK1) as targets of aberrant hypermethylation in GC, suggesting that epigenetic deregulation of these genes and their corresponding cellular pathways may promote the development and progression of GC. We also found that global demethylation of tumor cell genomes occurs in GC, consistent with the notion that abnormal hypermethylation of specific genes occurs concomitantly with genome-wide hypomethylation. Age and gender had no significant influence on methylation states, but an association was observed between LINE-1 and MLH1 methylation levels with histological sub-type and anatomical sub-site. This study identifies aberrant methylation patters in specific genes in GC thus providing information that could be exploited as novel biomarkers in clinics and molecular epidemiology of GC. PMID:21831520

  18. Aberrant CpG methylation of the TFAP2A gene constitutes a mechanism for loss of TFAP2A expression in human metastatic melanoma

    PubMed Central

    Hallberg, Andrea R; Vorrink, Sabine U; Hudachek, Danielle R; Cramer-Morales, Kimberly; Milhem, Mohammed M; Cornell, Robert A; Domann, Frederick E

    2014-01-01

    Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs. PMID:25625848

  19. Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC

    PubMed Central

    Castagliuolo, Ignazio; Erroi, Francesca; Kotsafti, Andromachi; Basato, Silvia; Brun, Paola; D'Incà, Renata; Rugge, Massimo

    2016-01-01

    Background Promoter hypermethylation plays a major role in cancer through transcriptional silencing of critical genes. The aim of our study is to evaluate the methylation status of these genes in the colonic mucosa without dysplasia or adenocarcinoma at the different steps of sporadic and UC-related carcinogenesis and to investigate the possible role of genomic methylation as a marker of CRC. Results The expression of Dnmts 1 and 3A was significantly increased in UC-related carcinogenesis compared to non inflammatory colorectal carcinogenesis. In non-neoplastic colonic mucosa, the number of methylated genes resulted significantly higher in patients with CRC and in those with UC-related CRC compared to the HC and UC patients and patients with dysplastic lesion of the colon. The number of methylated genes in non-neoplastic colonic mucosa predicted the presence of CRC with good accuracy either in non inflammatory and inflammatory related CRC. Methods Colonic mucosal samples were collected from healthy subjects (HC) (n = 30) and from patients with ulcerative colitis (UC) (n = 29), UC and dysplasia (n = 14), UC and cancer (n = 10), dysplastic adenoma (n = 14), and colon adenocarcinoma (n = 10). DNA methyltransferases-1, -3a, -3b, mRNA expression were quantified by real time qRT-PCR. The methylation status of CDH13, APC, MLH1, MGMT1 and RUNX3 gene promoters was assessed by methylation-specific PCR. Conclusions Methylation status of APC, CDH13, MGMT, MLH1 and RUNX3 in the non-neoplastic mucosa may be used as a marker of CRC: these preliminary results could allow for the adjustment of a patient's surveillance interval and to select UC patients who should undergo intensive surveillance. PMID:26862732

  20. Cigarette Smoking, BPDE-DNA Adducts, and Aberrant Promoter Methylations of Tumor Suppressor Genes (TSGs) in NSCLC from Chinese Population.

    PubMed

    Jin, Yongtang; Xu, Peiwei; Liu, Xinneng; Zhang, Chunye; Tan, Cong; Chen, Chunmei; Sun, Xiaoyu; Xu, Yingchun

    2016-01-01

    Non-small cell lung cancer (NSCLC) is related to the genetic and epigenetic factors. The goal of this study was to determine association of cigarette smoking and BPDE-DNA adducts with promoter methylations of several genes in NSCLC. Methylation of the promoters of p16, RARβ, DAPK, MGMT, and TIMP-3 genes of tumor tissues from 199 lung cancer patients was analyzed with methylation-specific PCR (MSP), and BPDE-DNA adduct level in lung cancer tissue was obtained by ELISA. Level of BPDE-DNA adduct increased significantly in males, aged people (over 60 years), and smokers; however, no significant difference was found while comparing the BPDE-DNA adduct levels among different tumor types, locations, and stages. Cigarette smoking was also associated with increased BPDE-DNA adducts level (OR = 2.43, p > .05) and increased methylation level in at least 1 gene (OR = 5.22, p < .01), both in dose-response manner. Similarly, cigarette smoking also significantly increase the risk of p16 or DAPK methylation (OR = 3.02, p < .05 for p16, and 3.66, p < .05 for DAPK). The highest risk of BPDE-DNA adducts was detected among individuals with cigarette smoking for more than 40 pack-years (OR = 4.21, p < .01). Furthermore, the present study did not show that BPDE-DNA adducts are significantly associated with abnormal TSGs methylations in NSCLC, including SCC and AdO, respectively. Conclusively, cigarette smoking is significantly associated with the increase of BPDE-DNA adduct level, promoter hypermethylation of p16 and DAPK genes, while BPDE-DNA adduct was not significantly related to abnormal promoter hypermethylation in TSGs, suggesting that BPDE-DNA adducts and TSGs methylations play independent roles in NSCLC. PMID:27042875

  1. B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P

    PubMed Central

    Inoue, A; Okamoto, K; Fujino, Y; Nakagawa, T; Muguruma, N; Sannomiya, K; Mitsui, Y; Takaoka, T; Kitamura, S; Miyamoto, H; Okahisa, T; Fujimori, T; Imoto, I; Takayama, T

    2015-01-01

    Background: Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor of colon cancer with microsatellite instability (MSI). However, the developmental mechanism of SSA/P remains unknown. We performed genetic analysis and genome-wide DNA methylation analysis in aberrant crypt foci (ACF), SSA/P, and cancer in SSA/P specimens to show a close association between ACF and the SSA/P-cancer sequence. We also evaluated the prevalence and number of ACF in SSA/P patients. Methods: ACF in the right-side colon were observed in 36 patients with SSA/Ps alone, 2 with cancers in SSA/P, and 20 normal subjects and biopsied under magnifying endoscopy. B-RAF mutation and MSI were analysed by PCR–restriction fragment length polymorphism (RFLP) and PCR–SSCP, respectively, in 15 ACF, 20 SSA/P, and 2 cancer specimens. DNA methylation array analysis of seven ACF, seven SSA/P, and two cancer in SSA/P specimens was performed using the microarray-based integrated analysis of methylation by isochizomers (MIAMI) method. Results: B-RAF mutations were frequently detected in ACF, SSA/P, and cancer in SSA/P tissues. The number of methylated genes increased significantly in the order of ACFmethylated genes in SSA/P were PQLC1, HDHD3, RASL10B, FLI1, GJA3, and SLC26A2. Some of these genes were methylated in ACF, whereas all genes were methylated in cancers. Immunohistochemistry revealed their silenced expression. Microsatellite instability and MLH1 methylation were observed only in cancer. The prevalence and number of ACF were significantly higher in SSA/P patients than in normal subjects. A significant correlation was seen between the numbers of SSA/P and ACF in SSA/P patients. Conclusions: Our results suggest that ACF are precursor lesions of the SSA/P-cancer sequence in patients with SSA/P, where ACF arise by B-RAF mutation and methylation of some of the six identified genes and develop into SSA/Ps through accumulated methylation of these genes. PMID

  2. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer

    PubMed Central

    Kumegawa, Kohei; Maruyama, Reo; Yamamoto, Eiichiro; Ashida, Masami; Kitajima, Hiroshi; Tsuyada, Akihiro; Niinuma, Takeshi; Kai, Masahiro; Yamano, Hiro-o; Sugai, Tamotsu; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Suzuki, Hiromu

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA. PMID:27215978

  3. A genomic screen for long noncoding RNA genes epigenetically silenced by aberrant DNA methylation in colorectal cancer.

    PubMed

    Kumegawa, Kohei; Maruyama, Reo; Yamamoto, Eiichiro; Ashida, Masami; Kitajima, Hiroshi; Tsuyada, Akihiro; Niinuma, Takeshi; Kai, Masahiro; Yamano, Hiro-O; Sugai, Tamotsu; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Suzuki, Hiromu

    2016-01-01

    Long noncoding RNAs (lncRNAs) have emerged as key components in multiple cellular processes, although their physiological and pathological functions are not fully understood. To identify cancer-related lncRNAs, we screened for those that are epigenetically silenced in colorectal cancer (CRC). Through a genome-wide analysis of histone modifications in CRC cells, we found that the transcription start sites (TSSs) of 1,027 lncRNA genes acquired trimethylation of histone H3 lysine 4 (H3K4me3) after DNA demethylation. Integrative analysis of chromatin signatures and the DNA methylome revealed that the promoter CpG islands (CGIs) of 66 lncRNA genes contained cancer-specific methylation. By validating the expression and methylation of lncRNA genes in CRC cells, we ultimately identified 20 lncRNAs, including ZNF582-AS1, as targets of epigenetic silencing in CRC. ZNF582-AS1 is frequently methylated in CRC cell lines (87.5%), primary CRCs (77.2%), colorectal adenomas (44.7%) and advanced adenomas (87.8%), suggesting that this methylation is an early event during colorectal tumorigenesis. Methylation of ZNF582-AS1 is associated with poor survival of CRC patients, and ectopic expression of ZNF582-AS1 suppressed colony formation by CRC cells. Our findings offer insight into the association between epigenetic alterations and lncRNA dysregulation in cancer and suggest that ZNF582-AS1 may be a novel tumor-suppressive lncRNA. PMID:27215978

  4. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer

    PubMed Central

    Li, Junnan; Li, Xiaobo; Wang, Dong; Su, Yonghui; Niu, Ming; Zhong, Zhenbin; Wang, Ji; Zhang, Xianyu; Kang, Wenli; Pang, Da

    2016-01-01

    Detection of breast cancer at an early stage is the key for successful treatment and improvement of outcome. However the limitations of mammography are well recognized, especially for those women with premenopausal breast cancer. Novel approaches to breast cancer screening are necessary, especially in the developing world where mammography is not feasible. In this study, we examined the promoter methylation of six genes (SFN, P16, hMLH1, HOXD13, PCDHGB7 and RASSF1a) in circulating free DNA (cfDNA) extracted from serum. We used a high-throughput DNA methylation assay (MethyLight) to examine serum from 749 cases including breast cancer patients, patients with benign breast diseases and healthy women. The six-gene methylation panel test achieved 79.6% and 82.4% sensitivity with a specificity of 72.4% and 78.1% in diagnosis of breast cancer when compared with healthy and benign disease controls, respectively. Moreover, the methylation panel positive group showed significant differences in the following independent variables: (a) involvement of family history of tumors; (b) a low proliferative index, ki-67; (c) high ratios in luminal subtypes. Additionally the panel also complemented some breast cancer cases which were neglected by mammography or ultrasound. These data suggest that epigenetic markers in serum have potential for diagnosis of breast cancer. PMID:26918343

  5. Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer.

    PubMed

    Shan, Ming; Yin, Huizi; Li, Junnan; Li, Xiaobo; Wang, Dong; Su, Yonghui; Niu, Ming; Zhong, Zhenbin; Wang, Ji; Zhang, Xianyu; Kang, Wenli; Pang, Da

    2016-04-01

    Detection of breast cancer at an early stage is the key for successful treatment and improvement of outcome. However the limitations of mammography are well recognized, especially for those women with premenopausal breast cancer. Novel approaches to breast cancer screening are necessary, especially in the developing world where mammography is not feasible. In this study, we examined the promoter methylation of six genes (SFN, P16, hMLH1, HOXD13, PCDHGB7 and RASSF1a) in circulating free DNA (cfDNA) extracted from serum. We used a high-throughput DNA methylation assay (MethyLight) to examine serum from 749 cases including breast cancer patients, patients with benign breast diseases and healthy women. The six-gene methylation panel test achieved 79.6% and 82.4% sensitivity with a specificity of 72.4% and 78.1% in diagnosis of breast cancer when compared with healthy and benign disease controls, respectively. Moreover, the methylation panel positive group showed significant differences in the following independent variables: (a) involvement of family history of tumors; (b) a low proliferative index, ki-67; (c) high ratios in luminal subtypes. Additionally the panel also complemented some breast cancer cases which were neglected by mammography or ultrasound. These data suggest that epigenetic markers in serum have potential for diagnosis of breast cancer. PMID:26918343

  6. Aberrant Methylation of RASSF1A gene Contribute to the Risk of Renal Cell Carcinoma: a Meta-Analysis.

    PubMed

    Yu, Gan-Shen; Lai, Cai-Yong; Xu, Yin; Bu, Chen-Feng; Su, Ze-Xuan

    2015-01-01

    The aim of this study was to assess the diagnostic value of RASSF1A methylation in renal cell carcinoma. Systematically search were performed using the Pubmed, ProQest and Web of Science for all articles on the association between RASSF1A methylation and renal cell carcinoma before 15 April 2015. After the filtration, 13 studies involving 677 cases and 497 controls met our criteria. Our meta-analysis suggested that hypermethylation of RASSF1A gene was associated with the increased risk of RCC(OR:4.14, 95%CI:1.06-16.1). Stratified analyses showed a similar risk in qualitative detection method(OR:28.4, 95%CI:10.2-79.6), body fluid sample(OR:12.8, 95%CI:5.35-30.8), and American(OR:10.5, 95%CI:1.97-55.9). Our result identified that RASSF1A methylation had a strong potential in prediction the risk of Renal cell carcinoma. PMID:26107221

  7. Aberrant DNA methylation reprogramming in bovine SCNT preimplantation embryos

    PubMed Central

    Zhang, Sheng; Chen, Xin; Wang, Fang; An, Xinglan; Tang, Bo; Zhang, Xueming; Sun, Liguang; Li, Ziyi

    2016-01-01

    DNA methylation reprogramming plays important roles in mammalian embryogenesis. Mammalian somatic cell nuclear transfer (SCNT) embryos with reprogramming defects fail to develop. Thus, we compared DNA methylation reprogramming in preimplantation embryos from bovine SCNT and in vitro fertilization (IVF) and analyzed the influence of vitamin C (VC) on the reprogramming of DNA methylation. The results showed that global DNA methylation followed a typical pattern of demethylation and remethylation in IVF preimplantation embryos; however, the global genome remained hypermethylated in SCNT preimplantation embryos. Compared with the IVF group, locus DNA methylation reprogramming showed three patterns in the SCNT group. First, some pluripotency genes (POU5F1 and NANOG) and repeated elements (satellite I and α-satellite) showed insufficient demethylation and hypermethylation in the SCNT group. Second, a differentially methylated region (DMR) of an imprint control region (ICR) in H19 exhibited excessive demethylation and hypomethylation. Third, some pluripotency genes (CDX2 and SOX2) were hypomethylated in both the IVF and SCNT groups. Additionally, VC improved the DNA methylation reprogramming of satellite I, α-satellite and H19 but not that of POU5F1 and NANOG in SCNT preimplantation embryos. These results indicate that DNA methylation reprogramming was aberrant and that VC influenced DNA methylation reprogramming in SCNT embryos in a locus-specific manner. PMID:27456302

  8. Aberrant methylation patterns in cancer: a clinical view

    PubMed Central

    Paska, Alja Videtic; Hudler, Petra

    2015-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explosion of information on aberrantly methylated sequences linking deviations in epigenetic landscape with the initiation and progression of complex diseases. Here, we consider how DNA methylation changes in malignancies, such as breast, pancreatic, colorectal, and gastric cancer could be exploited for the purpose of developing specific diagnostic tools. DNA methylation changes can be applicable as biomarkers for detection of malignant disease in easily accessible tissues. Methylation signatures are already proving to be an important marker for determination of drug sensitivity. Even more, promoter methylation patterns of some genes, such as MGMT, SHOX2, and SEPT9, have already been translated into commercial clinical assays aiding in patient assessment as adjunct diagnostic tools. In conclusion, the changes in DNA methylation patterns in tumour cells are slowly gaining entrance into routine diagnostic tests as promising biomarkers and as potential therapeutic targets. PMID:26110029

  9. Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism in gastric cancer

    PubMed Central

    Song, Binbin; Ai, Jiang; Kong, Xianghong; Liu, Dexin; Li, Jun

    2013-01-01

    Objective: We aimed to explore the association of P16, MGMT and HMLH1 with gastric cancer and their relation with Methylenetetrahydrofolate reductase (MTHFR). Methods: 322 gastric patients who were confirmed with pathological diagnosis were included in our study. Aberrant DNA methylation of P16, MGMT and HMLH1 and polymorphisms of MTHFR C677T and A1298C were detected using PCR-RFLP. Results: The proportions of DNA hypermethylation in P16, MGMT and hMLH1 genes in gastric cancer tissues were 75.2% (242/322), 27.6% (89/322) and 5.3% (17/322), respectively. In the remote normal-appearing tissues, 29.5% (95/322) and 16.1%(52/322) showed hypermethylation in P16 and MGMT genes, respectively. We found a significantly higher proportion of DNA hypermethylation of P16 in patients with N1 TNM stage in cancer tissues and remote normal-appearing tissues (P<0.05). Similarly, we found DNA hypermethylation of MGMT had significantly higher proportion in N1 and M1 TNM stage (P<0.05). Individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues [OR (95% CI)=4.27(1.76-7.84)], and a significant risk was also found in those carrying MTHFR 677CT/TT genotype [OR (95% CI)= 3.27(1.21-4.77)]. Conclusion: We found the aberrant hypermethylation of cancer-related genes, such as P16, MGMT and HMLH1, could be predictive biomarkers for detection of gastric cancer. PMID:24550949

  10. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer.

    PubMed

    Lamy, Aude; Sesboüé, Richard; Bourguignon, Jeannette; Dautréaux, Brigitte; Métayer, Josette; Frébourg, Thierry; Thiberville, Luc

    2002-07-10

    Among the identified factors involved in malignant transformation, abnormal methylation of the CDKN2A/p16(INK4a) gene promoter has been described as an early event, particularly in bronchial cell cancerization. Precancerous bronchial lesions (n = 70) prospectively sampled during fluorescence endoscopy in a series of 37 patients at high risk for lung cancer were studied with respect to the methylation status of the CDKN2A gene. Methylation-specific polymerase chain reaction was performed on DNA extracted from pure bronchial cell populations derived from biopsies and detection of p16 protein was studied by immunohistochemistry on contiguous parallel biopsies. Aberrant methylation of the CDKN2A gene promoter was found in 19% of preinvasive lesions and its frequency increased with the histologic grade of the lesions. Methylation in at least 1 bronchial site was significantly more frequent in patients with cancer history, although there was no difference in the outcome of patients with or without methylation in bronchial epithelium. The other risk factors studied (tobacco and asbestos exposure) did not influence the methylation status. There was no relationship between CDKN2A methylation and the evolutionary character of the lesions. Our results confirm that abnormal methylation of the CDKN2A gene promoter is an early event in bronchial cell cancerization, which can persist for several years after carcinogen exposure cessation, and show that this epigenetic alteration cannot predict the evolution of precancerous lesions within a 2-year follow-up. PMID:12115568

  11. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  12. Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes.

    PubMed

    Sathyanarayana, Ubaradka G; Maruyama, Riichiroh; Padar, Asha; Suzuki, Makoto; Bondaruk, Jolanta; Sagalowsky, Arthur; Minna, John D; Frenkel, Eugene P; Grossman, H Barton; Czerniak, Bogdan; Gazdar, Adi F

    2004-02-15

    Laminin-5 (LN5) anchors epithelial cells to the underlying basement membrane, and it is encoded by three distinct genes: LAMA3, LAMB3, and LAMC2. To metastasize and grow, cancer cells must invade and destroy the basement membrane. Our previous work has shown that epigenetic inactivation is a major mechanism of silencing LN5 genes in lung cancers. We extended our methylation studies to resected bladder tumors (n = 128) and exfoliated cell samples (bladder washes and voided urine; n = 71) and correlated the data with clinicopathologic findings. Nonmalignant urothelium had uniform expression of LN5 genes and lacked methylation. The methylation frequencies for LN5 genes in tumors were 21-45%, and there was excellent concordance between methylation in tumors and corresponding exfoliated cells. Methylation of LAMA3 and LAMB3 and the methylation index were correlated significantly with several parameters of poor prognosis (tumor grade, growth pattern, muscle invasion, tumor stage, and ploidy pattern), whereas methylation of LAMC2 and methylation index were associated with shortened patient survival. Of particular interest, methylation frequencies of LAMA3 helped to distinguish invasive (72%) from noninvasive (12%) tumors. These results suggest that methylation of LN5 genes has potential clinical applications in bladder cancers. PMID:14973053

  13. High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq

    PubMed Central

    2014-01-01

    Background Extensive reprogramming and dysregulation of DNA methylation is an important characteristic of pancreatic cancer (PC). Our study aimed to characterize the genomic methylation patterns in various genomic contexts of PC. The methyl capture sequencing (methylCap-seq) method was used to map differently methylated regions (DMRs) in pooled samples from ten PC tissues and ten adjacent non-tumor (PN) tissues. A selection of DMRs was validated in an independent set of PC and PN samples using methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), and methylation sensitive restriction enzyme-based qPCR (MSRE-qPCR). The mRNA and expressed sequence tag (EST) expression of the corresponding genes was investigated using RT-qPCR. Results A total of 1,131 PC-specific and 727 PN-specific hypermethylated DMRs were identified in association with CpG islands (CGIs), including gene-associated CGIs and orphan CGIs; 2,955 PC-specific and 2,386 PN-specific hypermethylated DMRs were associated with gene promoters, including promoters containing or lacking CGIs. Moreover, 1,744 PC-specific and 1,488 PN-specific hypermethylated DMRs were found to be associated with CGIs or CGI shores. These results suggested that aberrant hypermethylation in PC typically occurs in regions surrounding the transcription start site (TSS). The BSP, MSP, MSRE-qPCR, and RT-qPCR data indicated that the aberrant DNA methylation in PC tissue and in PC cell lines was associated with gene (or corresponding EST) expression. Conclusions Our study characterized the genome-wide DNA methylation patterns in PC and identified DMRs that were distributed among various genomic contexts that might influence the expression of corresponding genes or transcripts to promote PC. These DMRs might serve as diagnostic biomarkers or therapeutic targets for PC. PMID:25276247

  14. Compendium of aberrant DNA methylation and histone modifications in cancer.

    PubMed

    Hattori, Naoko; Ushijima, Toshikazu

    2014-12-01

    Epigenetics now refers to the study or research field related to DNA methylation and histone modifications. Historically, global DNA hypomethylation was first revealed in 1983, and, after a decade, silencing of a tumor suppressor gene by regional DNA hypermethylation was reported. After the proposal of the histone code in the 2000s, alterations of histone methylation were also identified in cancers. Now, it is established that aberrant epigenetic alterations are involved in cancer development and progression, along with mutations and chromosomal losses. Recent cancer genome analyses have revealed a large number of mutations of epigenetic modifiers, supporting their important roles in cancer pathogenesis. Taking advantage of the reversibility of epigenetic alterations, drugs targeting epigenetic regulators and readers have been developed for restoration of normal pattern of the epigenome, and some have already demonstrated clinical benefits. In addition, DNA methylation of specific marker genes can be used as a biomarker for cancer diagnosis, including risk diagnosis, detection of cancers, and pathophysiological diagnosis. In this paper, we will summarize the major concepts of cancer epigenetics, placing emphasis on history. PMID:25194808

  15. Aberrant Vimentin Methylation Is Characteristic of Upper Gastrointestinal Pathologies

    PubMed Central

    Moinova, Helen; Leidner, Rom S.; Ravi, Lakshmeswari; Lutterbaugh, James; Barnholtz-Sloan, Jill S.; Chen, Yanwen; Chak, Amitabh; Markowitz, Sanford D.; Willis, Joseph E.

    2012-01-01

    Background We have previously established aberrant DNA methylation of Vimentin exon-1 (VIM methylation) as a common epigenetic event in colon cancer and as a biomarker for detecting colon neoplasia. We now examine VIM methylation in neoplasia of the upper gastrointestinal tract. Methods Using a quantitative real-time Methylation-Specific PCR assay we tested for VIM methylation in archival specimens of esophageal and gastric neoplasia. Results We find that acquisition of aberrant VIM methylation is highly common in these neoplasms, but largely absent in controls. The highest frequency of VIM methylation was detected in lesions of the distal esophagus, including 91% of Barrett’s esophagus (BE, n=11), 100% of high grade dysplasia (HGD, n=5), and 81% of esophageal adenocarcinoma (EAC, n=26), but absent in controls (n=9). VIM methylation similarly was detected in 87% of signet ring (n=15) and 53% of intestinal type gastric cancers (n=17). Moreover, in tests of cytology brushings VIM methylation proved detectable in 100% of BE cases (n=7), 100% of HGD cases (n=4), and 83% of EAC cases (n=18), but was absent in all controls (n=5). Conclusions These findings establish aberrant VIM methylation as a highly common epigenetic alteration in neoplasia of the upper gastrointestinal tract, and demonstrate that Barrett’s esophagus, even without dysplasia, already contains epigenetic alterations characteristic of adenocarcinoma. Impact These findings suggest VIM methylation as a biomarker of upper gastrointestinal neoplasia with potential for development as molecular cytology in esophageal screening. PMID:22315367

  16. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML. PMID:24944583

  17. Aberrant Promoter Methylation at CpG Cytosines Induce the Upregulation of the E2F5 Gene in Breast Cancer

    PubMed Central

    Ali, Arshad; Ullah, Farman; Ali, Irum Sabir; Faraz, Ahmad; Khan, Mumtaz; Shah, Syed Tahir Ali; Ali, Nawab

    2016-01-01

    Purpose The promoter methylation status of cell cycle regulatory genes plays a crucial role in the regulation of the eukaryotic cell cycle. CpG cytosines are actively subjected to methylation during tumorigenesis, resulting in gain/loss of function. E2F5 gene has growth repressive activities; various studies suggest its involvement in tumorigenesis. This study aims to investigate the epigenetic regulation of E2F5 in breast cancer to better understand tumor biology. Methods The promoter methylation status of 50 breast tumor tissues and adjacent normal control tissues was analyzed. mRNA expression was determined using SYBR® green quantitative polymerase chain reaction (PCR), and methylation-specific PCR was performed for bisulfite-modified genomic DNA using E2F5-specific primers to assess promoter methylation. Data was statistically analyzed. Results Significant (p<0.001) upregulation was observed in E2F5 expression among tumor tissues, relative to the control group. These samples were hypo-methylated at the E2F5 promoter region in the tumor tissues, compared to the control. Change in the methylation status (Δmeth) was significantly lower (p=0.022) in the tumor samples, indicating possible involvement in tumorigenesis. Patients at the postmenopausal stage showed higher methylation (75%) than those at the premenopausal stage (23.1%). Interestingly, methylation levels gradually increased from the early to the advanced stages of the disease (p<0.001), which suggests a putative role of E2F5 methylation in disease progression that can significantly modulate tumor biology at more advanced stage and at postmenopausal age (Pearson's r=0.99 and 0.86, respectively). Among tissues with different histological status, methylation frequency was higher in invasive lobular carcinoma (80.0%), followed by invasive ductal carcinoma (46.7%) and ductal carcinoma in situ (20.0%). Conclusion Methylation is an important epigenetic factor that might be involved in the upregulation of E2F5

  18. Aberrant methylation of PCDH10 and RASSF1A genes in blood samples for non-invasive diagnosis and prognostic assessment of gastric cancer

    PubMed Central

    Pimson, Charinya; Pientong, Chamsai; Promthet, Supannee; Putthanachote, Nuntiput; Suwanrungruang, Krittika; Wiangnon, Surapon

    2016-01-01

    Background. Assessment of DNA methylation of specific genes is one approach to the diagnosis of cancer worldwide. Early stage detection is necessary to reduce the mortality rate of cancers, including those occurring in the stomach. For this purpose, tumor cells in circulating blood offer promising candidates for non-invasive diagnosis. Transcriptional inactivation of tumor suppressor genes, like PCDH10 and RASSF1A, by methylation is associated with progression of gastric cancer, and such methylation can therefore be utilized as a biomarker. Methods. The present research was conducted to evaluate DNA methylation in these two genes using blood samples of gastric cancer cases. Clinicopathological data were also analyzed and cumulative survival rates generated for comparison. Results. High frequencies of PCDH10 and RASSF1A methylations in the gastric cancer group were noted (94.1% and 83.2%, respectively, as compared to 2.97% and 5.45% in 202 matched controls). Most patients (53.4%) were in severe stage of the disease, with a median survival time of 8.4 months after diagnosis. Likewise, the patients with metastases, or RASSF1A and PCDH10 methylations, had median survival times of 7.3, 7.8, and 8.4 months, respectively. A Kaplan–Meier analysis showed that cumulative survival was significantly lower in those cases positive for methylation of RASSF1A than in their negative counterparts. Similarly, whereas almost 100% of patients positive for PCDH10 methylation had died after five years, none of the negative cases died over this period. Notably, the methylations of RASSF1A and PCDH10 were found to be higher in the late-stage patients and were also significantly correlated with metastasis and histology. Conclusions. PCDH10 and RASSF1A methylations in blood samples can serve as potential non-invasive diagnostic indicators in blood for gastric cancer. In addition to RASSF1A methylation, tumor stage proved to be a major prognostic factor in terms of survival rates. PMID

  19. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. PMID:23669186

  20. Analysis of aberrant methylation on promoter sequences of tumor suppressor genes and total DNA in sputum samples: a promising tool for early detection of COPD and lung cancer in smokers

    PubMed Central

    2012-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a disorder associated to cigarette smoke and lung cancer (LC). Since epigenetic changes in oncogenes and tumor suppressor genes (TSGs) are clearly important in the development of LC. In this study, we hypothesize that tobacco smokers are susceptible for methylation in the promoter region of TSGs in airway epithelial cells when compared with non-smoker subjects. The purpose of this study was to investigate the usefulness of detection of genes promoter methylation in sputum specimens, as a complementary tool to identify LC biomarkers among smokers with early COPD. Methods We determined the amount of DNA in induced sputum from patients with COPD (n = 23), LC (n = 26), as well as in healthy subjects (CTR) (n = 33), using a commercial kit for DNA purification, followed by absorbance measurement at 260 nm. The frequency of CDKN2A, CDH1 and MGMT promoter methylation in the same groups was determined by methylation-specific polymerase chain reaction (MSP). The Fisher’s exact test was employed to compare frequency of results between different groups. Results DNA concentration was 7.4 and 5.8 times higher in LC and COPD compared to the (CTR) (p < 0.0001), respectively. Methylation status of CDKN2A and MGMT was significantly higher in COPD and LC patients compared with CTR group (p < 0.0001). Frequency of CDH1 methylation only showed a statistically significant difference between LC patients and CTR group (p < 0.05). Conclusions We provide evidence that aberrant methylation of TSGs in samples of induced sputum is a useful tool for early diagnostic of lung diseases (LC and COPD) in smoker subjects. Virtual slides The abstract MUST finish with the following text: Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1127865005664160 PMID:22818553

  1. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    PubMed Central

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  2. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts.

    PubMed

    Vizoso, Miguel; Puig, Marta; Carmona, F Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-12-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  3. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder.

    PubMed

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5'-external transcribed spacer/5'ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5'ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5'ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  4. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    PubMed Central

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H.

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  5. Aberrant DNA methylation reprogramming during induced pluripotent stem cell generation is dependent on the choice of reprogramming factors.

    PubMed

    Planello, Aline C; Ji, Junfeng; Sharma, Vivek; Singhania, Rajat; Mbabaali, Faridah; Müller, Fabian; Alfaro, Javier A; Bock, Christoph; De Carvalho, Daniel D; Batada, Nizar N

    2014-01-01

    The conversion of somatic cells into pluripotent stem cells via overexpression of reprogramming factors involves epigenetic remodeling. DNA methylation at a significant proportion of CpG sites in induced pluripotent stem cells (iPSCs) differs from that of embryonic stem cells (ESCs). Whether different sets of reprogramming factors influence the type and extent of aberrant DNA methylation in iPSCs differently remains unknown. In order to help resolve this critical question, we generated human iPSCs from a common fibroblast cell source using either the Yamanaka factors (OCT4, SOX2, KLF4 and cMYC) or the Thomson factors (OCT4, SOX2, NANOG and LIN28), and determined their genome-wide DNA methylation profiles. In addition to shared DNA methylation aberrations present in all our iPSCs, we identified Yamanaka-iPSC (Y-iPSC)-specific and Thomson-iPSC (T-iPSC)-specific recurrent aberrations. Strikingly, not only were the genomic locations of the aberrations different but also their types: reprogramming with Yamanaka factors mainly resulted in failure to demethylate CpGs, whereas reprogramming with Thomson factors mainly resulted in failure to methylate CpGs. Differences in the level of transcripts encoding DNMT3b and TET3 between Y-iPSCs and T-iPSCs may contribute partially to the distinct types of aberrations. Finally, de novo aberrantly methylated genes in Y-iPSCs were enriched for NANOG targets that are also aberrantly methylated in some cancers. Our study thus reveals that the choice of reprogramming factors influences the amount, location, and class of DNA methylation aberrations in iPSCs. These findings may provide clues into how to produce human iPSCs with fewer DNA methylation abnormalities. PMID:25408883

  6. Frequent aberrant methylation of p16INK4a in primary rat lung tumors.

    PubMed Central

    Swafford, D S; Middleton, S K; Palmisano, W A; Nikula, K J; Tesfaigzi, J; Baylin, S B; Herman, J G; Belinsky, S A

    1997-01-01

    The p16INK4a (p16) tumor suppressor gene is frequently inactivated by homozygous deletion or methylation of the 5' CpG island in cell lines derived from human non-small-cell lung cancers. However, the frequency of dysfunction in primary tumors appears to be significantly lower than that in cell lines. This discordance could result from the occurrence or selection of p16 dysfunction during cell culture. Alternatively, techniques commonly used to examine tumors for genetic and epigenetic alterations may not be sensitive enough to detect all dysfunctions within the heterogeneous cell population present in primary tumors. If p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in cell lines. The present investigation addressed this issue in primary rat lung tumors and corresponding derived cell lines. A further goal was to determine whether the aberrant p16 gene methylation seen in human tumors is a conserved event in this animal model. The rat p16 gene was cloned and sequenced, and the predicted amino acid sequence of its product found to be 62% homologous to the amino acid sequence of the human analog. Homozygous deletion accounted for loss of p16 expression in 8 of 20 cell lines, while methylation of the CpG island extending throughout exon 1 was observed in 9 of 20 cell lines. 2-Deoxy-5-azacytidine treatment of cell lines with aberrant methylation restored gene expression. The methylated phenotype seen in cell lines showed an absolute correlation with detection of methylation in primary tumors. Aberrant methylation was also detected in four of eight primary tumors in which the derived cell line contained a deletion in p16. These results substantiate the primary tumor as the origin for dysfunction of the p16 gene and implicate CpG island methylation as the major mechanism for inactivating this gene in the rat lung tumors examined. Furthermore, rat

  7. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    PubMed Central

    Dai, Wei; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Cheng, Yue; Zheng, Hong; Ngan, Roger Kai Cheong; Ng, Wai Tong; Lee, Anne Wing Mui; Yau, Chun Chung; Lee, Victor Ho Fu; Lung, Maria Li

    2015-01-01

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10−9), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10−3). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection. PMID:25924914

  8. Impact of aberrant DNA methylation patterns including CYP1B1 methylation in adolescents and young adults with acute lymphocytic leukemia

    PubMed Central

    DiNardo, CD; Gharibyan, V; Yang, H; Wei, Y; Pierce, S; Kantarjian, HM; Garcia-Manero, G; Rytting, M

    2014-01-01

    Introduction Aberrant promoter DNA methylation is a well-described mechanism of leukemogenesis within hematologic malignancies, including acute lymphoblastic leukemia (ALL). However, the importance of methylation patterns among the adolescent and young adult (AYA) ALL population has not been well established. Methods DNA methylation of 18 candidate genes in 33 AYA ALL patients was analyzed at diagnosis and during treatment, to evaluate the frequency and clinical relevance of aberrant methylation in an AYA population treated on a uniform therapeutic regimen. Results Of 16 informative genes, there was a median of 6 methylated genes per AYA ALL patient. Correlations were identified between increasing number of methylated genes with male sex (p=0.04), increased white blood cell (WBC) count (p=0.04) and increased bone-marrow blast percentage (p=0.04). Increasing age was associated with EPHA5 methylation (p=0.05). Overall, patients experienced favorable outcomes with median survival that was not reached. On univariate analysis, methylation of CYP1B1 was associated with worse overall survival (HR 10.7, 95% CI 1.3–87.6, p=0.03), disease-free survival (HR 3.7, 95% CI 1.1–9.2, p=0.04) and correlated with decreased CYP1B1 gene expression. Conclusions A significant incidence of methylation within the AYA ALL population was identified, with increased methylation associated with distinct clinicopathologic features including male gender and elevated WBC count. Our results suggest aberrant methylation among AYA patients is frequent, and may provide a common pathogenic mechanism. The inferior outcome identified with methylation of the cytochrome p450 gene CYP1B1, an enzyme involved in drug metabolism and steroid synthesis, warrants further investigation. PMID:23757320

  9. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation

    PubMed Central

    Zhang, Guoqiang; Estève, Pierre-Olivier; Chin, Hang Gyeong; Terragni, Jolyon; Dai, Nan; Corrêa, Ivan R.; Pradhan, Sriharsa

    2015-01-01

    Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression. PMID:25990724

  10. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation.

    PubMed

    Zhang, Guoqiang; Estève, Pierre-Olivier; Chin, Hang Gyeong; Terragni, Jolyon; Dai, Nan; Corrêa, Ivan R; Pradhan, Sriharsa

    2015-07-13

    Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression. PMID:25990724

  11. Pathway Implications of Aberrant Global Methylation in Adrenocortical Cancer

    PubMed Central

    Legendre, Christophe R.; Demeure, Michael J.; Whitsett, Timothy G.; Gooden, Gerald C.; Bussey, Kimberly J.; Jung, Sungwon; Waibhav, Tembe; Kim, Seungchan; Salhia, Bodour

    2016-01-01

    Context Adrenocortical carcinomas (ACC) are a rare tumor type with a poor five-year survival rate and limited treatment options. Objective Understanding of the molecular pathogenesis of this disease has been aided by genomic analyses highlighting alterations in TP53, WNT, and IGF signaling pathways. Further elucidation is needed to reveal therapeutically actionable targets in ACC. Design In this study, global DNA methylation levels were assessed by the Infinium HumanMethylation450 BeadChip Array on 18 ACC tumors and 6 normal adrenal tissues. A new, non-linear correlation approach, the discretization method, assessed the relationship between DNA methylation/gene expression across ACC tumors. Results This correlation analysis revealed epigenetic regulation of genes known to modulate TP53, WNT, and IGF signaling, as well as silencing of the tumor suppressor MARCKS, previously unreported in ACC. Conclusions DNA methylation may regulate genes known to play a role in ACC pathogenesis as well as known tumor suppressors. PMID:26963385

  12. Dissecting the role of aberrant DNA methylation in human leukemia

    PubMed Central

    Amabile, Giovanni; Di Ruscio, Annalisa; Müller, Fabian; Welner, Robert S; Yang, Henry; Ebralidze, Alexander K; Zhang, Hong; Levantini, Elena; Qi, Lihua; Martinelli, Giovanni; Brummelkamp, Thijn; Le Beau, Michelle M; Figueroa, Maria E; Bock, Christoph; Tenen, Daniel G

    2015-01-01

    Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder characterized by the genetic translocation t(9;22)(q34;q11.2) encoding for the BCR-ABL fusion oncogene. However, many molecular mechanisms of the disease progression still remain poorly understood. A growing body of evidence suggests that epigenetic abnormalities are involved in tyrosine kinase resistance in CML, leading to leukemic clone escape and disease propagation. Here we show that, by applying cellular reprogramming to primary CML cells, aberrant DNA methylation contributes to the disease evolution. Importantly, using a BCR-ABL inducible murine model, we demonstrate that a single oncogenic lesion triggers DNA methylation changes which in turn act as a precipitating event in leukemia progression. PMID:25997600

  13. The role for oxidative stress in aberrant DNA methylation in Alzheimer's disease.

    PubMed

    Fleming, Jessica L; Phiel, Christopher J; Toland, Amanda Ewart

    2012-11-01

    Alzheimer's disease (AD) is a common, progressive neurodegenerative disorder without highly effective therapies. The etiology of AD is heterogeneous with amyloid-beta plaques, neurofibrillary tangles, oxidative stress, and aberrant DNA methylation all implicated in the disease pathogenesis. DNA methylation is a well-established process for regulating gene expression and has been found to regulate a growing number of important genes involved in AD development and progression. Additionally, aberrations in one-carbon metabolism are a common finding in AD patients with individuals exhibiting low S-adenosylmethionine and high homocysteine levels as well as low folate and vitamin B. Oxidative stress is considered one of the earliest events in AD pathogenesis and is thought to contribute largely to neuronal cell death. Emerging evidence suggests an interaction exists between oxidative stress and DNA methylation; however, the mechanism(s) remain unclear. This review summarizes known and potential genes implicated in AD that are regulated by DNA methylation and oxidative stress. We also highlight the evidence for the role of oxidative damage contributing to DNA hypomethylation in AD patients through several mechanisms as well as implications for disease understanding and therapeutic development. PMID:21605062

  14. Aberrant DNA Methylation Is Associated with a Poor Outcome in Juvenile Myelomonocytic Leukemia

    PubMed Central

    Sakaguchi, Hirotoshi; Muramatsu, Hideki; Okuno, Yusuke; Makishima, Hideki; Xu, Yinyan; Furukawa-Hibi, Yoko; Wang, Xinan; Narita, Atsushi; Yoshida, Kenichi; Shiraishi, Yuichi; Doisaki, Sayoko; Yoshida, Nao; Hama, Asahito; Takahashi, Yoshiyuki; Yamada, Kiyofumi; Miyano, Satoru; Ogawa, Seishi; Maciejewski, Jaroslaw P.; Kojima, Seiji

    2015-01-01

    Juvenile myelomonocytic leukemia (JMML), an overlap of myelodysplastic / myeloproliferative neoplasm, is an intractable pediatric myeloid neoplasm. Epigenetic regulation of transcription, particularly by CpG methylation, plays an important role in tumor progression, mainly by repressing tumor-suppressor genes. To clarify the clinical importance of aberrant DNA methylation, we studied the hypermethylation status of 16 target genes in the genomes of 92 patients with JMML by bisulfite conversion and the pryosequencing technique. Among 16 candidate genes, BMP4, CALCA, CDKN2A, and RARB exhibited significant hypermethylation in 72% (67/92) of patients. Based on the number of hypermethylated genes, patients were stratified into three cohorts based on an aberrant methylation score (AMS) of 0, 1–2, or 3–4. In the AMS 0 cohort, the 5-year overall survival (OS) and transplantation-free survival (TFS) were good (69% and 76%, respectively). In the AMS 1–2 cohort, the 5-year OS was comparable to that in the AMS 0 cohort (68%), whereas TFS was poor (6%). In the AMS 3–4 cohort, 5-year OS and TFS were markedly low (8% and 0%, respectively). Epigenetic analysis provides helpful information for clinicians to select treatment strategies for patients with JMML. For patients with AMS 3–4 in whom hematopoietic stem cell transplantation does not improve the prognosis, alternative therapies, including DNA methyltransferase inhibitors and new molecular-targeting agents, should be established as treatment options. PMID:26720758

  15. The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation.

    PubMed

    Wu, Haijing; Zhao, Ming; Tan, Lina; Lu, Qianjin

    2016-07-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organ involvement. It is characterized by abundant autoantibodies that form immune complex with autoantigens and deposit in organs and cause tissue damage by inducing inflammation. The pathogenesis of SLE has been intensively studied but remains unclear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are believed to contribute to the initiation and development of SLE. The up-to-date research findings point to the relationship between abnormal DNA methylation and SLE, which has attracted considerable interest worldwide. Besides the global hypomethylation on lupus T and B cells, the gene specific and site-specific methylation has been identified and documented to be responsible for SLE. The purpose of this review was to present and summarize the association between aberrant DNA methylation of immune cells and SLE, the possible mechanisms of immune dysfunction caused by DNA methylation, and to better understand the roles of aberrant DNA methylation in the initiation and development of SLE and to provide an insight into the related diagnosis biomarkers and therapeutic options in SLE. PMID:26970492

  16. Elucidating the Landscape of Aberrant DNA Methylation in Hepatocellular Carcinoma

    PubMed Central

    Song, Min-Ae; Tiirikainen, Maarit; Kwee, Sandi; Okimoto, Gordon; Yu, Herbert; Wong, Linda L.

    2013-01-01

    Background Hepatocellular carcinoma (HCC) is one of the most common cancers and frequently presents with an advanced disease at diagnosis. There is only limited knowledge of genome-scale methylation changes in HCC. Methods and Findings We performed genome-wide methylation profiling in a total of 47 samples including 27 HCC and 20 adjacent normal liver tissues using the Illumina HumanMethylation450 BeadChip. We focused on differential methylation patterns in the promoter CpG islands as well as in various less studied genomic regions such as those surrounding the CpG islands, i.e. shores and shelves. Of the 485,577 loci studied, significant differential methylation (DM) was observed between HCC and adjacent normal tissues at 62,692 loci or 13% (p<1.03e-07). Of them, 61,058 loci (97%) were hypomethylated and most of these loci were located in the intergenic regions (43%) or gene bodies (33%). Our analysis also identified 10,775 differentially methylated (DM) loci (17% out of 62,692 loci) located in or surrounding the gene promoters, 4% of which reside in known Differentially Methylated Regions (DMRs) including reprogramming specific DMRs and cancer specific DMRs, while the rest (10,315) involving 4,106 genes could be potential new HCC DMR loci. Interestingly, the promoter-related DM loci occurred twice as frequently in the shores than in the actual CpG islands. We further characterized 982 DM loci in the promoter CpG islands to evaluate their potential biological function and found that the methylation changes could have effect on the signaling networks of Cellular development, Gene expression and Cell death (p = 1.0e-38), with BMP4, CDKN2A, GSTP1, and NFATC1 on the top of the gene list. Conclusion Substantial changes of DNA methylation at a genome-wide level were observed in HCC. Understanding epigenetic changes in HCC will help to elucidate the pathogenesis and may eventually lead to identification of molecular markers for liver cancer diagnosis, treatment and

  17. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    PubMed

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  18. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    PubMed Central

    Siegel, Erin M.; Riggs, Bridget M.; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97–1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  19. Aberrant DNA Methylation: Implications in Racial Health Disparity

    PubMed Central

    Wang, Xuefeng; Ji, Ping; Zhang, Yuanhao; LaComb, Joseph F.; Tian, Xinyu; Li, Ellen; Williams, Jennie L.

    2016-01-01

    Background Incidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans (AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations. Materials and Methods Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing were employed to evaluate total genome methylation of 5’-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit. Results DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs). Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4), and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA patients with CRC versus CA patients. Conclusion DNA methylation profile and/or products of its downstream targets could serve as biomarker(s) addressing racial health disparity. PMID:27111221

  20. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors

    PubMed Central

    Olsson, Maja; Beck, Stephan; Kogner, Per; Martinsson, Tommy; Carén, Helena

    2016-01-01

    ABSTRACT Neuroblastoma is a very heterogeneous tumor of childhood. The clinical spectra range from very aggressive metastatic disease to spontaneous regression, even without therapy. Aberrant DNA methylation pattern is a common feature of most cancers. For neuroblastoma, it has been demonstrated both for single genes as well as genome-wide, where a so-called methylator phenotype has been described. Here, we present a study using Illumina 450K methylation arrays on 60 neuroblastoma tumors. We show that aggressive tumors, characterized by International Neuroblastoma Risk Group (INRG) as stage M, are hypermethylated compared to low-grade tumors. On the contrary, INRG stage L tumors display more non-CpG methylation. The genes with the highest number of hypermethylated CpG sites in INRG M tumors are TERT, PCDHGA4, DLX5, and DLX6-AS1. Gene ontology analysis showed a representation of neuronal tumor relevant gene functions among the differentially methylated genes. For validation, we used a set of independent tumors previously analyzed with the Illumina 27K methylation arrays, which confirmed the differentially methylated sites. Top candidate genes with aberrant methylation were analyzed for altered gene expression through the R2 platform (http://r2.amc.nl), and for correlations between methylation and gene expression in a public dataset. Altered expression in nonsurvivors was found for the genes B3GALT4 and KIAA1949, CLIC5, DLX6-AS, TERT, and PIRT, and strongest correlations were found for TRIM36, KIAA0513, and PIRT. Our data indicate that methylation profiling can be used for patient stratification and informs on epigenetically deregulated genes with the potential of increasing our knowledge about the underlying mechanisms of tumor development. PMID:26786290

  1. [THE SOMATIC MUTATIONS AND ABERRANT METHYLATION AS POTENTIAL GENETIC MARKERS OF URINARY BLADDER CANCER].

    PubMed

    Mikhailenko, D S; Kushlinskii, N E

    2016-02-01

    All around the world, more than 330 thousands cases of bladder cancer are registered annually hence representing actual problem of modern oncology. Still in demand are search and characteristic of new molecular markers of bladder cancer detecting in tumor cells from urinary sediment and having high diagnostic accuracy. The studies of last decade, especially using methods of genome-wide sequencing, permitted to receive a large amount of experimental data concerning development and progression of bladder cancer The review presents systematic analysis of publications available in PubMed data base mainly of last five years. The original studies of molecular genetic disorders under bladder cancer and meta-analyzes were considered This approach permitted to detected the most common local alterations of DNA under bladder cancer which can be detected using routine genetic methods indifferent clinical material and present prospective interest for development of test-systems. The molecular genetic markers of disease can be activating missense mutations in 7 and 10 exons of gene of receptor of growth factor of fibroblasts 3 (FGFR3), 9 and 20 exons of gene of Phosphatidylinositol-4,5-bi-phosphate-3-kinase (PIK3CA) and mutation in -124 and -146 nucleotides in promoter of gene of catalytic subunit telomerase (TERT). The development of test-systems on the basis of aberrant methylation of CpG-islets of genes-suppressors still is seemed as a difficult task because of differences in pattern of methylation of different primary tumors at various stages of clonal evolution of bladder cancer though they can be considered as potential markers. PMID:27455559

  2. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  3. The evolution of invertebrate gene body methylation.

    PubMed

    Sarda, Shrutii; Zeng, Jia; Hunt, Brendan G; Yi, Soojin V

    2012-08-01

    DNA methylation of transcription units (gene bodies) occurs in the genomes of many animal and plant species. Phylogenetic persistence of gene body methylation implies biological significance; yet, the functional roles of gene body methylation remain elusive. In this study, we analyzed methylation levels of orthologs from four distantly related invertebrate species, including the honeybee, silkworm, sea squirt, and sea anemone. We demonstrate that in all four species, gene bodies distinctively cluster to two groups, which correspond to high and low methylation levels. This pattern resembles that of sequence composition arising from the mutagenetic effect of DNA methylation. In spite of this effect, our results show that protein sequences of genes targeted by high levels of methylation are conserved relative to genes lacking methylation. Our investigation identified many genes that either gained or lost methylation during the course of invertebrate evolution. Most of these genes appear to have lost methylation in the insect lineages we investigated, particularly in the honeybee. We found that genes that are methylated in all four invertebrate taxa are enriched for housekeeping functions related to transcription and translation, whereas the loss of DNA methylation occurred in genes whose functions include cellular signaling and reproductive processes. Overall, our study helps to illuminate the functional significance of gene body methylation and its impacts on genome evolution in diverse invertebrate taxa. PMID:22328716

  4. DNA Methylation in Cosmc Promoter Region and Aberrantly Glycosylated IgA1 Associated with Pediatric IgA Nephropathy

    PubMed Central

    Sun, Qiang; Zhang, Jianqian; Zhou, Nan; Liu, Xiaorong; Shen, Ying

    2015-01-01

    IgA nephropathy (IgAN) is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc) is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26), other renal diseases (n = 11) and healthy children (n = 13). B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2’-deoxycytidine (AZA). The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113), but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001) or AZA (P<0.0001). Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001). The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001). After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001) with more markedly decreased Cosmc mRNA content (P<0.0001). After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001), while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001). The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated IgA1

  5. Gene aberrations for precision medicine against lung adenocarcinoma.

    PubMed

    Saito, Motonobu; Shiraishi, Kouya; Kunitoh, Hideo; Takenoshita, Seiichi; Yokota, Jun; Kohno, Takashi

    2016-06-01

    Lung adenocarcinoma (LADC), the most frequent histological type of lung cancer, is often triggered by an aberration in a driver oncogene in tumor cells. Examples of such aberrations are EGFR mutation and ALK fusion. Lung adenocarcinoma harboring such mutations can be treated with anticancer drugs that target the aberrant gene products. Additional oncogene aberrations, including RET, ROS1, and NRG1 fusions, skipping of exon 14 of MET, and mutations in BRAF, HER2, NF1, and MEK1, were recently added to the list of such "druggable" driver oncogene aberrations, and their responses to targeted therapies are currently being evaluated in clinical trials. However, approximately 30% and 50% of LADCs in patients in Japan and Europe/USA, respectively, lack the driver oncogene aberrations listed above. Therefore, novel therapeutic strategies, such as those that exploit the vulnerabilities of cancer cells with non-oncogene aberrations, are urgently required. This review summarizes the current status of research on precision medicine against LADC and enumerates the research priorities for the near future. PMID:27027665

  6. Aberrant Vimentin DNA Methylation in Stool — EDRN Public Portal

    Cancer.gov

    The VIM gene encodes a member of the intermediate filament family. VIM proteins are class-III intermediate filaments found in various non-epithelial cells, especially mesenchymal cells. These intermediate filaments, along with microtubules and actin microfilaments, make up the cytoskeleton.

  7. Promoter methylation of candidate genes associated with familial testicular cancer.

    PubMed

    Mirabello, Lisa; Kratz, Christian P; Savage, Sharon A; Greene, Mark H

    2012-01-01

    Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted. PMID:23050052

  8. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma.

    PubMed

    Krause, Lutz; Nones, Katia; Loffler, Kelly A; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J; Watson, David I; Lord, Reginald V; Phillips, Wayne A; Gotley, David; Smithers, B Mark; Whiteman, David C; Hayward, Nicholas K; Grimmond, Sean M; Waddell, Nicola; Barbour, Andrew P

    2016-04-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett's esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. PMID:26905591

  9. Identification of the CIMP-like subtype and aberrant methylation of members of the chromosomal segregation and spindle assembly pathways in esophageal adenocarcinoma

    PubMed Central

    Krause, Lutz; Nones, Katia; Loffler, Kelly A.; Nancarrow, Derek; Oey, Harald; Tang, Yue Hang; Wayte, Nicola J.; Patch, Ann Marie; Patel, Kalpana; Brosda, Sandra; Manning, Suzanne; Lampe, Guy; Clouston, Andrew; Thomas, Janine; Stoye, Jens; Hussey, Damian J.; Watson, David I.; Lord, Reginald V.; Phillips, Wayne A.; Gotley, David; Smithers, B.Mark; Whiteman, David C.; Hayward, Nicholas K.; Grimmond, Sean M.; Waddell, Nicola; Barbour, Andrew P.

    2016-01-01

    The incidence of esophageal adenocarcinoma (EAC) has risen significantly over recent decades. Although survival has improved, cure rates remain poor, with <20% of patients surviving 5 years. This is the first study to explore methylome, transcriptome and ENCODE data to characterize the role of methylation in EAC. We investigate the genome-wide methylation profile of 250 samples including 125 EAC, 19 Barrett’s esophagus (BE), 85 squamous esophagus and 21 normal stomach. Transcriptome data of 70 samples (48 EAC, 4 BE and 18 squamous esophagus) were used to identify changes in methylation associated with gene expression. BE and EAC showed similar methylation profiles, which differed from squamous tissue. Hypermethylated sites in EAC and BE were mainly located in CpG-rich promoters. A total of 18575 CpG sites associated with 5538 genes were differentially methylated, 63% of these genes showed significant correlation between methylation and mRNA expression levels. Pathways involved in tumorigenesis including cell adhesion, TGF and WNT signaling showed enrichment for genes aberrantly methylated. Genes involved in chromosomal segregation and spindle formation were aberrantly methylated. Given the recent evidence that chromothripsis may be a driver mechanism in EAC, the role of epigenetic perturbation of these pathways should be further investigated. The methylation profiles revealed two EAC subtypes, one associated with widespread CpG island hypermethylation overlapping H3K27me3 marks and binding sites of the Polycomb proteins. These subtypes were supported by an independent set of 89 esophageal cancer samples. The most hypermethylated tumors showed worse patient survival. PMID:26905591

  10. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes

    PubMed Central

    Biankin, Andrew V.; Waddell, Nicola; Kassahn, Karin S.; Gingras, Marie-Claude; Muthuswamy, Lakshmi B.; Johns, Amber L.; Miller, David K.; Wilson, Peter J.; Patch, Ann-Marie; Wu, Jianmin; Chang, David K.; Cowley, Mark J.; Gardiner, Brooke B.; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J.; Gill, Anthony J.; Pinho, Andreia V.; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J. Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R. Scott; Humphris, Jeremy L.; Kaplan, Warren; Jones, Marc D.; Colvin, Emily K.; Nagrial, Adnan M.; Humphrey, Emily S.; Chou, Angela; Chin, Venessa T.; Chantrill, Lorraine A.; Mawson, Amanda; Samra, Jaswinder S.; Kench, James G.; Lovell, Jessica A.; Daly, Roger J.; Merrett, Neil D.; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q.; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M.; Fisher, William E.; Brunicardi, F. Charles; Hodges, Sally E.; Reid, Jeffrey G.; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R.; Dinh, Huyen; Buhay, Christian J.; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E.; Yung, Christina K.; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A.; Petersen, Gloria M.; Gallinger, Steven; Hruban, Ralph H.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Schulick, Richard D.; Wolfgang, Christopher L.; Morgan, Richard A.; Lawlor, Rita T.; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A.; Mann, Karen M.; Jenkins, Nancy A.; Perez-Mancera, Pedro A.; Adams, David J.; Largaespada, David A.; Wessels, Lodewyk F. A.; Rust, Alistair G.; Stein, Lincoln D.; Tuveson, David A.; Copeland, Neal G.; Musgrove, Elizabeth A.; Scarpa, Aldo; Eshleman, James R.; Hudson, Thomas J.; Sutherland, Robert L.; Wheeler, David A.; Pearson, John V.; McPherson, John D.; Gibbs, Richard A.; Grimmond, Sean M.

    2012-01-01

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis. PMID:23103869

  11. Reversible histone methylation regulates brain gene expression and behavior

    PubMed Central

    Xu, Jun; Andreassi, Megan

    2011-01-01

    Epigenetic chromatin remodeling, including reversible histone methylation, regulates gene transcription in brain development and synaptic plasticity. Aberrant chromatin modifications due to mutant chromatin enzymes or chemical exposures have been associated with neurological or psychiatric disorders such as mental retardation, schizophrenia, depression, and drug addiction. Some chromatin enzymes, such as histone demethylases JARID1C and UTX, are coded by X-linked genes which are not X-inactivated in females. The higher expression of JARID1C and UTX in females could contribute to sex differences in brain development and behavior. PMID:20816965

  12. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  13. Functional annotation of rare gene aberration drivers of pancreatic cancer.

    PubMed

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J; Eterovic, Karina; Mills, Gordon B; Scott, Kenneth L

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  14. Filtrating colorectal cancer associated genes by integrated analyses of global DNA methylation and hydroxymethylation in cancer and normal tissue.

    PubMed

    Li, Ming; Gao, Fei; Xia, Yudong; Tang, Yi; Zhao, Wei; Jin, Congcong; Luo, Huijuan; Wang, Junwen; Li, Qingshu; Wang, Yalan

    2016-01-01

    Recently, 5-hydroxymethylcytosine patterning across the tumor genome was considered as a hallmark of cancer development and progression. However, locus-specific difference of hydroxymethylation between colorectal cancer and normal tissue is unknown. In this study, we performed a newly developed method, HMST-seq, to profile 726 aberrant methylated loci and 689 aberrant hydroxymethylated loci synchronously in genome wide of colorectal cancers, majority of which presented higher methylation or lower hydroxymethylationin than in normal group. Besides, abnormal hydroxymethylated modification was more frequently occur at proximal regions close to TSSs and TSSs regions than abnormal methylation. Subsequently, we screened four genes (ALOX15, GHRHR, TFPI2 and TKTL1) with aberrant methylation and aberrant hydroxymethylation at some genome position by functional enrichment analysis as candidate genes associated with colorectal cancer. Our results may allow us to select differentially epigenetically modified target genes implicated in colorectal cancer tumorigenesis. PMID:27546520

  15. Filtrating colorectal cancer associated genes by integrated analyses of global DNA methylation and hydroxymethylation in cancer and normal tissue

    PubMed Central

    Li, Ming; Gao, Fei; Xia, Yudong; Tang, Yi; Zhao, Wei; Jin, Congcong; Luo, Huijuan; Wang, Junwen; Li, Qingshu; Wang, Yalan

    2016-01-01

    Recently, 5-hydroxymethylcytosine patterning across the tumor genome was considered as a hallmark of cancer development and progression. However, locus-specific difference of hydroxymethylation between colorectal cancer and normal tissue is unknown. In this study, we performed a newly developed method, HMST-seq, to profile 726 aberrant methylated loci and 689 aberrant hydroxymethylated loci synchronously in genome wide of colorectal cancers, majority of which presented higher methylation or lower hydroxymethylationin than in normal group. Besides, abnormal hydroxymethylated modification was more frequently occur at proximal regions close to TSSs and TSSs regions than abnormal methylation. Subsequently, we screened four genes (ALOX15, GHRHR, TFPI2 and TKTL1) with aberrant methylation and aberrant hydroxymethylation at some genome position by functional enrichment analysis as candidate genes associated with colorectal cancer. Our results may allow us to select differentially epigenetically modified target genes implicated in colorectal cancer tumorigenesis. PMID:27546520

  16. Cigarette smoke extract induces aberrant cytochrome-c oxidase subunit II methylation and apoptosis in human umbilical vascular endothelial cells.

    PubMed

    Yang, Min; Chen, Ping; Peng, Hong; Zhang, Hongliang; Chen, Yan; Cai, Shan; Lu, Qianjin; Guan, Chaxiang

    2015-03-01

    Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0-10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2'-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome-c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs. PMID:25500741

  17. Methylation profiles of genes utilizing newly developed CpG island methylation microarray on colorectal cancer patients

    PubMed Central

    Kimura, Naoki; Nagasaka, Takeshi; Murakami, Jun; Sasamoto, Hiromi; Murakami, Masahiro; Tanaka, Noriaki; Matsubara, Nagahide

    2005-01-01

    Aberrant methylation of DNA has been shown to play an important role in a variety of human cancers, developmental disorders and aging. Hence, aberrant methylation patterns in genes can be a molecular marker for such conditions. Therefore, a reliable but uncomplicated method to detect DNA methylation is preferred, not merely for research purposes but for daily clinical practice. To achieve these aims, we have established a precise system to identify DNA methylation patterns based on an oligonucleotide microarray technology. Our microarray method has an advantage over conventional methods and is unique because it allows the precise measurement of the methylation patterns within a target region. Our simple signal detection system depends on using an avidin–biotinylated peroxidase complex and does not require an expensive laser scanner or hazardous radioisotope. In this study, we applied our technique to detect promoter methylation status of O6-methylguanine-DNA methyltransferase (MGMT) gene. Our easy-handling technology provided reproducible and precise measurement of methylated CpGs in MGMT promoter and, thus, our method may bring about a potential evolution in the handling of a variety of high-throughput DNA methylation analyses for clinical purposes. PMID:15760842

  18. Epigenomic Analysis of Sézary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies Diagnostic Markers.

    PubMed

    van Doorn, Remco; Slieker, Roderick C; Boonk, Stéphanie E; Zoutman, Willem H; Goeman, Jelle J; Bagot, Martine; Michel, Laurence; Tensen, Cornelis P; Willemze, Rein; Heijmans, Bas T; Vermeer, Maarten H

    2016-09-01

    Sézary syndrome (Sz) is a malignancy of skin-homing CD4(+) memory T cells that is clinically characterized by erythroderma, lymphadenopathy, and blood involvement. Distinction of Sz from erythroderma secondary to inflammatory skin diseases (erythrodermic inflammatory dermatosis [EID]) is often challenging. Recent studies identified recurrent mutations in epigenetic enzymes involved in DNA modification in Sz. Here we defined the DNA methylomes of purified CD4(+) T cells from patients with Sz, EID, and healthy control subjects. Sz showed extensive global DNA methylation alterations, with 7.8% of 473,921 interrogated autosomal CpG sites showing hypomethylation and 3.2% hypermethylation. Promoter CpG islands were markedly enriched for hypermethylation. The 126 genes with recurrent promoter hypermethylation in Sz included multiple candidate tumor suppressors that showed transcriptional repression, implicating aberrant methylation in the pathogenesis of Sz. Validation in an independent sample set showed promoter hypermethylation of CMTM2, C2orf40, G0S2, HSPB6, PROM1, and PAM in 94-100% of Sz samples but not in EID samples. Notably, promoter hypermethylation of a single gene, the chemokine-like factor CMTM2, was sufficient to accurately distinguish Sz from EID in all cases. This study shows that Sz is characterized by widespread yet distinct DNA methylation alterations, which can be used clinically as epigenetic diagnostic markers. PMID:27113428

  19. Identification of a Novel Methylated Gene in Nasopharyngeal Carcinoma: TTC40

    PubMed Central

    Ayadi, Wajdi; Allaya, Nesrine; Frikha, Hanèn; Trigui, Emna; Khabir, Abdelmajid; Ghorbel, Abdelmonem; Daoud, Jamel; Frikha, Mounir; Mokdad-Gargouri, Raja

    2014-01-01

    To further explore the epigenetic changes in nasopharyngeal carcinoma (NPC), methylation-sensitive arbitrarily primed PCR was performed on NPC biopsies and nontumor nasopharyngeal samples. We have shown mainly two DNA fragments that appeared to be differentially methylated in NPCs versus nontumors. The first, defined as hypermethylated, corresponds to a CpG island at the 5′-end of the tetratricopeptide repeat domain 40 (TTC40) gene, whereas the second, defined as hypo-methylated, is located on repetitive sequences at chromosomes 16p11.1 and 13.1. Thereafter, the epigenetic alteration on the 5′-TTC40 gene was confirmed by methylation-specific PCR, showing a significant aberrant methylation in NPCs, compared to nontumors. In addition, the bisulfite sequencing analysis has shown a very high density of methylated cytosines in C15, C17, and X666 NPC xenografts. To assess whether TTC40 gene is silenced by aberrant methylation, we examined the gene expression by reverse transcription-PCR. Our analysis showed that the mRNA expression was significantly lower in tumors than in nontumors, which is associated with 5′-TTC40 gene hypermethylation. In conclusion, we found that the 5′-TTC40 gene is frequently methylated and is associated with the loss of mRNA expression in NPCs. Hypermethylation of 5′-TTC40 gene might play a role in NPC development; nevertheless, other studies are needed. PMID:25101295

  20. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  1. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  2. ERα propelled aberrant global DNA hypermethylation by activating the DNMT1 gene to enhance anticancer drug resistance in human breast cancer cells

    PubMed Central

    Lv, Jinghuan; Ding, Haijian; Zhang, Xin A.; Shao, Lipei; Yang, Nan; Cheng, He; Sun, Luan; Zhu, Dongliang; Yang, Yin; Li, Andi; Han, Xiao; Sun, Yujie

    2016-01-01

    Drug-induced aberrant DNA methylation is the first identified epigenetic marker involved in chemotherapy resistance. Understanding how the aberrant DNA methylation is acquired would impact cancer treatment in theory and practice. In this study we systematically investigated whether and how ERα propelled aberrant global DNA hypermethylation in the context of breast cancer drug resistance. Our data demonstrated that anticancer drug paclitaxel (PTX) augmented ERα binding to the DNMT1 and DNMT3b promoters to activate DNMT1 and DNMT3b genes, enhancing the PTX resistance of breast cancer cells. In support of these observations, estrogen enhanced multi-drug resistance of breast cancer cells by up-regulation of DNMT1 and DNMT3b genes. Nevertheless, the aberrant global DNA hypermethylation was dominantly induced by ERα-activated-DNMT1, since DNMT1 over-expression significantly increased global DNA methylation and DNMT1 knockdown reversed the ERα-induced global DNA methylation. Altering DNMT3b expression had no detectable effect on global DNA methylation. Consistently, the expression level of DNMT1 was positively correlated with ERα in 78 breast cancer tissue samples shown by our immunohistochemistry (IHC) analysis and negatively correlated with relapse-free survival (RFS) and distance metastasis-free survival (DMFS) of ERα-positive breast cancer patients. This study provides a new perspective for understanding the mechanism underlying drug-resistance-facilitating aberrant DNA methylation in breast cancer and other estrogen dependent tumors. PMID:26980709

  3. DNA Methylation of BDNF Gene in Schizophrenia

    PubMed Central

    Çöpoğlu, Ümit Sertan; İğci, Mehri; Bozgeyik, Esra; Kokaçya, M. Hanifi; İğci, Yusuf Ziya; Dokuyucu, Recep; Arı, Mustafa; Savaş, Haluk A.

    2016-01-01

    Background Although genetic factors are risk factors for schizophrenia, some environmental factors are thought to be required for the manifestation of disease. Epigenetic mechanisms regulate gene functions without causing a change in the nucleotide sequence of DNA. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic transmission and plasticity. It has been suggested that BDNF may play a role in the pathophysiology of schizophrenia. It is established that methylation status of the BDNF gene is associated with fear learning, memory, and stressful social interactions. In this study, we aimed to investigate the DNA methylation status of BDNF gene in patients with schizophrenia. Material/Methods The study included 49 patients (33 male and 16 female) with schizophrenia and 65 unrelated healthy controls (46 male and 19 female). Determination of methylation pattern of CpG islands was based on the principle that bisulfite treatment of DNA results in conversion of unmethylated cytosine residues into uracil, whereas methylated cytosine residues remain unmodified. Methylation-specific PCR was performed with primers specific for either methylated or unmethylated DNA. Results There was no significant difference in methylated or un-methylated status for BDNF promoters between schizophrenia patients and controls. The mean duration of illness was significantly lower in the hemi-methylated group compared to the non-methylated group for BDNF gene CpG island-1 in schizophrenia patients. Conclusions Although there were no differences in BDNF gene methylation status between schizophrenia patients and healthy controls, there was an association between duration of illness and DNA methylation. PMID:26851233

  4. Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8.

    PubMed

    Bello, M Josefa; De Campos, Jose M; Isla, Alberto; Casartelli, Cacilda; Rey, Juan A

    2006-02-01

    The epigenetic changes in pituitary adenomas were identified by evaluating the methylation status of nine genes (RB1, p14(ARF), p16(INK4a), p73, TIMP-3, MGMT, DAPK, THBS1 and caspase-8) in a series of 35 tumours using methylation-specific PCR analysis plus sequencing. The series included non-functional adenomas (n=23), prolactinomas (n=6), prolactinoma plus thyroid-stimulating hormone adenoma (n=1), growth hormone adenomas (n=4), and adrenocorticotropic adenoma (n=1). All of the tumours had methylation of at least one of these genes and 40% of samples (14 of 35) displayed concurrent methylation of at least three genes. The frequencies of aberrant methylation were: 20% for RB1, 17% for p14(ARF), 34% for p16(INK4a), 29% for p73, 11% for TIMP-3, 23% for MGMT, 6% for DAPK, 43% for THBS1 and 54% for caspase-8. No aberrant methylation was observed in two non-malignant pituitary samples from healthy controls. Although some differences in the frequency of gene methylation between functional and non-functional adenomas were detected, these differences did not reach statistical significance. Our results suggest that promoter methylation is a frequent event in pituitary adenoma tumourigenesis, a process in which inactivation of apoptosis-related genes (DAPK, caspase-8) might play a key role. PMID:16391867

  5. Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers

    PubMed Central

    Tessema, Mathewos; Yu, Yang Y.; Stidley, Christine A.; Machida, Emi O.; Schuebel, Kornel E.; Baylin, Stephen B.; Belinsky, Steven A.

    2009-01-01

    Aberrant promoter hypermethylation is one of the major mechanisms in carcinogenesis and some critical growth regulatory genes have shown commonality in methylation across solid tumors. Twenty-six genes, 14 identified through methylation in colon and breast cancers, were evaluated using primary lung adenocarcinomas (n = 175) from current, former and never smokers. Tumor specificity of methylation was validated through comparison of 14 lung cancer cell lines to normal human bronchial epithelial cells derived from bronchoscopy of 20 cancer-free smokers. Twenty-five genes were methylated in 11–81% of primary tumors. Prevalence for methylation of TNFRSF10C, BHLHB5 and BOLL was significantly higher in adenocarcinomas from never smokers than smokers. The relation between methylation of individual genes was examined using pairwise comparisons. A significant association was seen between 138 (42%) of the possible 325 pairwise comparisons. Most notably, methylation of MMP2, BHLHB4 or p16 was significantly associated with methylation of 16–19 other genes, thus predicting for a widespread methylation phenotype. Kaplan–Meier log-rank test and proportional hazard models identified a significant association between methylation of SULF2 (a pro-growth, -angiogenesis and -migration gene) and better patient survival (hazard ratio = 0.23). These results demonstrate a high degree of commonality for targeted silencing of genes between lung and other solid tumors and suggest that promoter hypermethylation in cancer is a highly co-ordinated event. PMID:19435948

  6. DNMT1 and HDAC2 Cooperate to Facilitate Aberrant Promoter Methylation in Inorganic Phosphate-Induced Endothelial-Mesenchymal Transition

    PubMed Central

    Tan, Xiaoying; Xu, Xingbo; Zeisberg, Michael; Zeisberg, Elisabeth M.

    2016-01-01

    While phosphorus in the form of inorganic or organic phosphate is critically involved in most cellular functions, high plasma levels of inorganic phosphate levels have emerged as independent risk factor for cardiac fibrosis, cardiovascular morbidity and decreased life-expectancy. While the link of high phosphate and cardiovascular disease is commonly explained by direct cellular effects of phospho-regulatory hormones, we here explored the possibility of inorganic phosphate directly eliciting biological responses in cells. We demonstrate that human coronary endothelial cells (HCAEC) undergo an endothelial-mesenchymal transition (EndMT) when exposed to high phosphate. We further demonstrate that such EndMT is initiated by recruitment of aberrantly phosphorylated DNMT1 to the RASAL1 CpG island promoter by HDAC2, causing aberrant promoter methylation and transcriptional suppression, ultimately leading to increased Ras-GTP activity and activation of common EndMT regulators Twist and Snail. Our studies provide a novel aspect for known adverse effects of high phosphate levels, as eukaryotic cells are commonly believed to have lost phosphate-sensing mechanisms of prokaryotes during evolution, rendering them insensitive to extracellular inorganic orthophosphate. In addition, our studies provide novel insights into the mechanisms underlying specific targeting of select genes in context of fibrogenesis. PMID:26815200

  7. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  8. Aberrant expression of homeobox gene SIX1 in Hodgkin lymphoma

    PubMed Central

    Nagel, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A.F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently identified deregulated expression of homeobox genes MSX1 and OTX2 which are physiologically involved in development of the embryonal neural plate border region. Here, we examined in HL homeobox gene SIX1 an additional regulator of this embryonal region mediating differentiation of placodal precursors. SIX1 was aberrantly activated in 12 % of HL patient samples in silico, indicating a pathological role in a subset of this B-cell malignancy. In addition, SIX1 expression was detected in HL cell lines which were used as models to reveal upstream factors and target genes of this basic developmental regulator. We detected increased copy numbers of the SIX1 locus at chromosome 14q23 correlating with enhanced expression while chromosomal translocations were absent. Moreover, comparative expression profiling data and pertinent gene modulation experiments indicated that the WNT-signalling pathway and transcription factor MEF2C regulate SIX1 expression. Genes encoding the transcription factors GATA2, GATA3, MSX1 and SPIB – all basic lymphoid regulators - were identified as targets of SIX1 in HL. In addition, cofactors EYA1 and TLE4, respectively, contrastingly mediated activation and suppression of SIX1 target gene expression. Thus, the protein domain interfaces may represent therapeutic targets in SIX1-positive HL subsets. Collectively, our data reveal a gene regulatory network with SIX1 centrally deregulating lymphoid differentiation and support concordance of lymphopoiesis/lymphomagenesis and developmental processes in the neural plate border region. PMID:26473286

  9. Genomic aberrations frequently alter chromatin regulatory genes in chordoma.

    PubMed

    Wang, Lu; Zehir, Ahmet; Nafa, Khedoudja; Zhou, Nengyi; Berger, Michael F; Casanova, Jacklyn; Sadowska, Justyna; Lu, Chao; Allis, C David; Gounder, Mrinal; Chandhanayingyong, Chandhanarat; Ladanyi, Marc; Boland, Patrick J; Hameed, Meera

    2016-07-01

    Chordoma is a rare primary bone neoplasm that is resistant to standard chemotherapies. Despite aggressive surgical management, local recurrence and metastasis is not uncommon. To identify the specific genetic aberrations that play key roles in chordoma pathogenesis, we utilized a genome-wide high-resolution SNP-array and next generation sequencing (NGS)-based molecular profiling platform to study 24 patient samples with typical histopathologic features of chordoma. Matching normal tissues were available for 16 samples. SNP-array analysis revealed nonrandom copy number losses across the genome, frequently involving 3, 9p, 1p, 14, 10, and 13. In contrast, copy number gain is uncommon in chordomas. Two minimum deleted regions were observed on 3p within a ∼8 Mb segment at 3p21.1-p21.31, which overlaps SETD2, BAP1 and PBRM1. The minimum deleted region on 9p was mapped to CDKN2A locus at 9p21.3, and homozygous deletion of CDKN2A was detected in 5/22 chordomas (∼23%). NGS-based molecular profiling demonstrated an extremely low level of mutation rate in chordomas, with an average of 0.5 mutations per sample for the 16 cases with matched normal. When the mutated genes were grouped based on molecular functions, many of the mutation events (∼40%) were found in chromatin regulatory genes. The combined copy number and mutation profiling revealed that SETD2 is the single gene affected most frequently in chordomas, either by deletion or by mutations. Our study demonstrated that chordoma belongs to the C-class (copy number changes) tumors whose oncogenic signature is non-random multiple copy number losses across the genome and genomic aberrations frequently alter chromatin regulatory genes. © 2016 Wiley Periodicals, Inc. PMID:27072194

  10. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    PubMed Central

    Patel, Nikul; Black, Jennifer; Chen, Xi; Marcondes, A. Mario; Grady, William M.; Lawlor, Elizabeth R.; Borinstein, Scott C.

    2012-01-01

    The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs) using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA)-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1,) and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis. PMID:23024594

  11. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture.

    PubMed

    Tesarova, Lenka; Simara, Pavel; Stejskal, Stanislav; Koutna, Irena

    2016-01-01

    The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types compared to hESCs and hiPSC source cells. After derivation, hiPSC lines compromised a heterogeneous population characterized by variable levels of aberrant DNA methylation. These aberrations were induced during somatic cell reprogramming and their levels were associated with the type of hiPSC source cells. hiPSC population heterogeneity was reduced during prolonged culture and hiPSCs acquired an hESC-like methylation profile. In contrast, the expression of differentiation marker genes in hiPSC lines remained distinguishable from that in hESCs. Taken together, in vitro culture facilitates hiPSC acquisition of hESC epigenetic characteristics. However, differences remain between both pluripotent stem cell types, which must be considered before their use in downstream applications. PMID:27336948

  12. The Aberrant DNA Methylation Profile of Human Induced Pluripotent Stem Cells Is Connected to the Reprogramming Process and Is Normalized During In Vitro Culture

    PubMed Central

    Tesarova, Lenka; Simara, Pavel; Stejskal, Stanislav; Koutna, Irena

    2016-01-01

    The potential clinical applications of human induced pluripotent stem cells (hiPSCs) are limited by genetic and epigenetic variations among hiPSC lines and the question of their equivalency with human embryonic stem cells (hESCs). We used MethylScreen technology to determine the DNA methylation profile of pluripotency and differentiation markers in hiPSC lines from different source cell types compared to hESCs and hiPSC source cells. After derivation, hiPSC lines compromised a heterogeneous population characterized by variable levels of aberrant DNA methylation. These aberrations were induced during somatic cell reprogramming and their levels were associated with the type of hiPSC source cells. hiPSC population heterogeneity was reduced during prolonged culture and hiPSCs acquired an hESC-like methylation profile. In contrast, the expression of differentiation marker genes in hiPSC lines remained distinguishable from that in hESCs. Taken together, in vitro culture facilitates hiPSC acquisition of hESC epigenetic characteristics. However, differences remain between both pluripotent stem cell types, which must be considered before their use in downstream applications. PMID:27336948

  13. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder.

    PubMed

    Dammann, Gerhard; Teschler, Stefanie; Haag, Tanja; Altmüller, Franziska; Tuczek, Frederik; Dammann, Reinhard H

    2011-12-01

    Borderline personality disorder (BPD) is a complex psychiatric disease of increasing importance. Epigenetic alterations are hallmarks for altered gene expression and could be involved in the etiology of BPD. In our study we analyzed DNA methylation patterns of 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH). DNA methylation was analyzed by bisulfite restriction analysis and pyrosequencing in whole blood samples of patients diagnosed with DSM-IV BPD and in controls. Aberrant methylation was not detectable using bisulfite restriction analysis, but a significantly increased methylation of HTR2A, NR3C1, MAOA, MAOB and soluble COMT (S-COMT) was revealed for BPD patients using pyrosequencing. For HTR2A the average methylation of four CpG sites was 0.8% higher in BPD patients compared to controls (p = 0.002). The average methylation of NR3C1 was 1.8% increased in BPD patients compared to controls (p = 0.0003) and was higher at 2 out of 8 CpGs (p ≤ 0.04). In females, an increased average methylation (1.5%) of MAOA was observed in BPD patients compared to controls (p = 0.046). A similar trend (1.4% higher methylation) was observed for MAOB in female BPD patients and increased methylation was significant for 1 out of 6 CpG sites. For S-COMT, a higher methylation of 2 out of 4 CpG sites was revealed in BPD patients (p ≤ 0.02). In summary, methylation signatures of several promoter regions were established and a significant increased average methylation (1.7%) occurred in blood samples of BPD patients (p < 0.0001). Our data suggest that aberrant epigenetic regulation of neuropsychiatric genes may contribute to the pathogenesis of BPD. PMID:22139575

  14. A global profile of gene promoter methylation in treatment-naïve urothelial cancer

    PubMed Central

    Ibragimova, Ilsiya; Dulaimi, Essel; Slifker, Michael J; Chen, David DY; Uzzo, Robert G; Cairns, Paul

    2014-01-01

    The epigenetic alteration of aberrant hypermethylation in the promoter CpG island of a gene is associated with repression of transcription. In neoplastic cells, aberrant hypermethylation is well described as a mechanism of allele inactivation of particular genes with a tumor suppressor function. To investigate the role of aberrant hypermethylation in the biology and progression of urothelial cancer, we examined 101 urothelial (transitional cell) carcinomas (UC), broadly representative of the disease at presentation, with no prior immunotherapy, chemotherapy or radiotherapy, by Infinium HM27 containing 14,495 genes. The genome-wide signature of aberrant promoter hypermethylation in UC consisted of 729 genes significant by a Wilcoxon test, hypermethylated in a CpG island within 1 kb of the transcriptional start site and unmethylated in normal urothelium from aged individuals. We examined differences in gene methylation between the two main groups of UC: the 75% that are superficial, which often recur but rarely progress, and the 25% with muscle invasion and poor prognosis. We further examined pairwise comparisons of the pathologic subgroups of high or low grade, invasive or non-invasive (pTa), and high grade superficial or low grade superficial UC. Pathways analysis indicated over-representation of genes involved in cell adhesion or metabolism in muscle-invasive UC. Notably, the TET2 epigenetic regulator was one of only two genes more frequently methylated in superficial tumors and the sole gene in low grade UC. Other chromatin remodeling genes, MLL3 and ACTL6B, also showed aberrant hypermethylation. The Infinium methylation value for representative genes was verified by pyrosequencing. An available mRNA expression data set indicated many of the hypermethylated genes of interest to be downregulated in UC. Unsupervised clustering of the most differentially methylated genes distinguished muscle invasive from superficial UC. After filtering, cluster analysis showed a Cp

  15. Aberrant expression of the CHFR prophase checkpoint gene in human B-cell non-Hodgkin lymphoma.

    PubMed

    Song, Aiqin; Ye, Junli; Zhang, Kunpeng; Yu, Hongsheng; Gao, Yanhua; Wang, Hongfang; Sun, Lirong; Xing, Xiaoming; Yang, Kun; Zhao, Min

    2015-05-01

    Checkpoint with FHA and Ring Finger (CHFR) is a checkpoint protein that reportedly initiates a cell cycle delay in response to microtubule stress during prophase in mitosis, which has become an interesting target for understanding cancer pathogenesis. Recently, aberrant methylation of the CHFR gene associated with gene silencing has been reported in several cancers. In the present study, we examined the expression of CHFR in B-cell non-Hodgkin lymphoma (B-NHL) in vitro and in vivo. Our results showed that the expression level of CHFR mRNA and protein was reduced in B-NHL tissue samples and B cell lines. Furthermore, CHFR methylation was detected in 39 of 122 B-NHL patients, which was not found in noncancerous reactive hyperplasia of lymph node (RH) tissues. CHFR methylation correlated with the reduced expression of CHFR, high International Prognostic Index (IPI) scores and later pathologic Ann Arbor stages of B-NHL. Treatment with demethylation reagent, 5-Aza-dC, could eliminate the hypermethylation of CHFR, enhance CHFR expression and cell apoptosis and inhibit the cell proliferation of Raji cells, which could be induced by high expression of CHFR in Raji cells. Our results indicated that aberrant methylation of CHFR may be associated with the pathogenesis, progression for B-NHL, which might be a novel molecular marker as prognosis and treatment for B-NHL. PMID:25798877

  16. Aberrant DNA Methylation in Hereditary Non-Polyposis Colorectal Cancer without Mismatch Repair Deficiency

    PubMed Central

    Goel, Ajay; Xicola, Rosa M.; Nguyen, Thuy-Phuong; Doyle, Brian J; Sohn, Vanessa R.; Bandipalliam, Prathap; Reyes, Josep; Cordero, Carmen; Balaguer, Francesc; Castells, Antoni; Jover, Rodrigo; Andreu, Montserrat; Syngal, Sapna; Boland, C. Richard; Llor, Xavier

    2010-01-01

    Background & Aims Approximately half of the families that fulfill Amsterdam criteria for Lynch syndrome or hereditary non-polyposis colorectal cancer (HNPCC) do not have evidence of the germline mismatch repair (MMR) gene mutations that define this syndrome and result in microsatellite instability. The carcinogenic pathways and the best diagnostic approaches to detect microsatellite stable (MSS) HNPCC tumors are unclear. We investigated the contribution of epigenetic alterations to development of MSS HNPCC tumors. Methods Colorectal cancers were divided in four groups: 1. Microsatellite stable, Amsterdam positive (MSS HNPCC) (N=22); 2. Lynch syndrome cancers (identified mismatch repair mutations) (N=21); 3. Sporadic MSS (N=92); 4. Sporadic MSI (N=46). Methylation status was evaluated for CACNAG1, SOCS1, RUNX3, NEUROG1, MLH1, and LINE-1. KRAS and BRAF mutations status was analyzed. Results MSS HNPCC tumors displayed a significantly lower degree of LINE-1 methylation, marker for global methylation, than any other group. Whereas most MSS HNPCC tumors had some degree of CpG island methylation, none presented a high index of methylation. MSS HNPCC tumors had KRAS mutations exclusively in codon 12, but none harbored V600E BRAF mutations. Conclusions Tumors from Amsterdam-positive patients without mismatch repair deficiency (MSS HNPCC) have certain molecular features, including global hypomethylation that distinguish them from all other colorectal cancers. These characteristics could have an important impact on tumor behavior or treatment response. Studies are underway to further assess the cause and effects of these features. PMID:20102720

  17. COMPARISON OF THE METHYL REDUCTASE GENES AND GENE PRODUCTS

    EPA Science Inventory

    The DNA sequences encoding component C of methyl coenzyme M reductase (mcr genes) in Methanothermus fervidus, Methanobacterium thermoautotrophicum, Methanococcus vannielii, and Methanosarcina barkeri have been published. omparisons of transcription initiation and termination site...

  18. The induction of SCE and chromosomal aberrations with relation to specific base methylation of DNA in Chinese hamster cells by N-methyl-N-nitrosourea and dimethyl sulphate.

    PubMed

    Connell, J R; Medcalf, A S

    1982-01-01

    Chinese hamster cells (V79) were treated, either as exponentially proliferating cultures or under conditions where they were density-inhibited, with various doses of the potent carcinogen N-methyl-N-nitrosourea (MNU) or the relatively weak carcinogen dimethylsulphate (DMS). The colony forming ability of these cells and the induced frequencies of sister chromatid exchanges (SCEs) and chromosomal aberrations were assayed. Following the exposure of density-inhibited cells to radio-labelled methylating agents (labelled in the methyl group) these phenomena were related to the levels of 7-methylguanine (7-meGua), O6-methylguanine (O6-meGua) and 3-methyladenine (3-me-Ade) in the DNA. At equitoxic doses MNU and DMS induced similar frequencies of SCEs and chromosomal aberrations. Since, at equitoxic doses, MNU produces approximately 20 times more O6-meGua in V79 cell DNA than does DMS, this indicates that the formation of O6-meGua in DNA is not a major cause of SCEs and chromosomal aberrations. DMS-induced SCEs may be mediated via the production of both 3-meAde and 7-meGua in the DNA; these two methylated purines may also be responsible for MNU-induced SCEs. Therefore, no one specific methylated purine was identified as being solely accountable for the formation of SCEs. Also, the repair of lesions in the DNA of non-replicating V79 cells leads to a reduction in the SCE frequency on their subsequent release from the density-inhibited state, suggesting that repair is not intimately responsible for their formation. No association was discernable between chromosomal aberrations and any of the three methylated purines studied. PMID:7094205

  19. GENE METHYLATION CHANGES IN TUMOR SUPPRESSOR GENES INDUCED BY ARSENIC

    EPA Science Inventory

    The choice of a dose-response model used for extrapolation can be influenced by knowledge of mechanism of action. We have already showed that arsenic affects methylation of the human p53 gene promoter. Evidence that genes other than the p53 tumor suppressor gene are affected woul...

  20. Aberrant methylation of hypermethylated-in-cancer-1 and exocyclic DNA adducts in tobacco smokers.

    PubMed

    Peluso, Marco E M; Munnia, Armelle; Bollati, Valentina; Srivatanakul, Petcharin; Jedpiyawongse, Adisorn; Sangrajrang, Suleeporn; Ceppi, Marcello; Giese, Roger W; Boffetta, Paolo; Baccarelli, Andrea A

    2014-01-01

    Tobacco smoke has been shown to produce both DNA damage and epigenetic alterations. However, the potential role of DNA damage in generating epigenetic changes is largely underinvestigated in human studies. We examined the effects of smoking on the levels of DNA methylation in genes for tumor protein p53, cyclin-dependent kinase inhibitor2A, hypermethylated-in-cancer-1 (HIC1), interleukin-6, Long Interspersed Nuclear Element type1, and Alu retrotransposons in blood of 177 residents in Thailand using bisulfite-PCR andpyrosequencing. Then, we analyzed the relationship of this methylation with the oxidative DNA adduct, M₁dG (a malondialdehyde adduct), measured by ³²P-postlabeling. Multivariate statistical analyses showed that HIC1 methylation levels were significantly increased in smokers compared with nonsmokers (p ≤ .05). A dose response was observed, with the highest HIC1 methylation levels in smokers of ≥ 10 cigarettes/day relative to nonsmokers and intermediate values in smokers of 1-9 cigarettes/day (p for trend ≤ .001). No additional relationships were observed. We also evaluated correlations between M₁dG and the methylation changes at each HIC1 CpG site individually. The levels of this adduct in smokers showed a significant linear correlation with methylation at one of the 3 CpGs evaluated in HIC1: hypermethylation at position 1904864340 was significantly correlated with the adduct M₁dG (covariate-adjusted regression coefficient (β) = .224 ± .101 [SE], p ≤ .05). No other correlations were detected. Our study extends prior work by others associating hypermethylation of HIC1 with smoking; shows that a very specific hypermethylation event can arise from smoking; and encourages future studies that explore a possible role for M₁dG in connecting smoking to this latter hypermethylation. PMID:24154486

  1. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders

    PubMed Central

    Blanco, Sandra; Dietmann, Sabine; Flores, Joana V; Hussain, Shobbir; Kutter, Claudia; Humphreys, Peter; Lukk, Margus; Lombard, Patrick; Treps, Lucas; Popis, Martyna; Kellner, Stefanie; Hölter, Sabine M; Garrett, Lillian; Wurst, Wolfgang; Becker, Lore; Klopstock, Thomas; Fuchs, Helmut; Gailus-Durner, Valerie; Hrabĕ de Angelis, Martin; Káradóttir, Ragnhildur T; Helm, Mark; Ule, Jernej; Gleeson, Joseph G; Odom, Duncan T; Frye, Michaela

    2014-01-01

    Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5′ tRNA-derived small RNA fragments. Accumulation of 5′ tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5′ tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage. PMID:25063673

  2. Towards understanding the breast cancer epigenome: a comparison of genome-wide DNA methylation and gene expression data

    PubMed Central

    Michiels, Stefan; Metzger-Filho, Otto; Saini, Kamal S.

    2016-01-01

    Until recently, an elevated disease risk has been ascribed to a genetic predisposition, however, exciting progress over the past years has discovered alternate elements of inheritance that involve epigenetic regulation. Epigenetic changes are heritably stable alterations that include DNA methylation, histone modifications and RNA-mediated silencing. Aberrant DNA methylation is a common molecular basis for a number of important human diseases, including breast cancer. Changes in DNA methylation profoundly affect global gene expression patterns. What is emerging is a more dynamic and complex association between DNA methylation and gene expression than previously believed. Although many tools have already been developed for analyzing genome-wide gene expression data, tools for analyzing genome-wide DNA methylation have not yet reached the same level of refinement. Here we provide an in-depth analysis of DNA methylation in parallel with gene expression data characteristics and describe the particularities of low-level and high-level analyses of DNA methylation data. Low-level analysis refers to pre-processing of methylation data (i.e. normalization, transformation and filtering), whereas high-level analysis is focused on illustrating the application of the widely used class comparison, class prediction and class discovery methods to DNA methylation data. Furthermore, we investigate the influence of DNA methylation on gene expression by measuring the correlation between the degree of CpG methylation and the level of expression and to explore the pattern of methylation as a function of the promoter region. PMID:26657508

  3. Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size

    PubMed Central

    Asselman, Jana; De Coninck, Dieter I. M.; Pfrender, Michael E.; De Schamphelaere, Karel A. C.

    2016-01-01

    The relation between gene body methylation and gene function remains elusive. Yet, our understanding of this relationship can contribute significant knowledge on how and why organisms target specific gene bodies for methylation. Here, we studied gene body methylation patterns in two Daphnia species. We observed both highly methylated genes and genes devoid of methylation in a background of low global methylation levels. A small but highly significant number of genes was highly methylated in both species. Remarkably, functional analyses indicate that variation in methylation within and between Daphnia species is primarily targeted to small gene families whereas large gene families tend to lack variation. The degree of sequence similarity could not explain the observed pattern. Furthermore, a significant negative correlation between gene family size and the degree of methylation suggests that gene body methylation may help regulate gene family expansion and functional diversification of gene families leading to phenotypic variation. PMID:27017526

  4. Hierarchical Clustering of Breast Cancer Methylomes Revealed Differentially Methylated and Expressed Breast Cancer Genes

    PubMed Central

    Lin, I-Hsuan; Chen, Dow-Tien; Chang, Yi-Feng; Lee, Yu-Ling; Su, Chia-Hsin; Cheng, Ching; Tsai, Yi-Chien; Ng, Swee-Chuan; Chen, Hsiao-Tan; Lee, Mei-Chen; Chen, Hong-Wei; Suen, Shih-Hui; Chen, Yu-Cheng; Liu, Tze-Tze; Chang, Chuan-Hsiung; Hsu, Ming-Ta

    2015-01-01

    Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation. PMID:25706888

  5. HPVbase--a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas.

    PubMed

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  6. HPVbase – a knowledgebase of viral integrations, methylation patterns and microRNAs aberrant expression: As potential biomarkers for Human papillomaviruses mediated carcinomas

    PubMed Central

    Kumar Gupta, Amit; Kumar, Manoj

    2015-01-01

    Human papillomaviruses (HPVs) are extremely associated with different carcinomas. Despite consequential accomplishments, there is still need to establish more promising biomarkers to discriminate cancerous progressions. Therefore, we have developed HPVbase (http://crdd.osdd.net/servers/hpvbase/), a comprehensive resource for three major efficacious cancer biomarkers i.e. integration and breakpoint events, HPVs methylation patterns and HPV mediated aberrant expression of distinct host microRNAs (miRNAs). It includes clinically important 1257 integrants and integration sites from different HPV types i.e. 16, 18, 31, 33 and 45 associated with distinct histological conditions. An inclusive HPV integrant and breakpoints browser was designed to provide easy browsing and straightforward analysis. Our study also provides 719 major quantitative HPV DNA methylation observations distributed in 5 distinct HPV genotypes from higher to lower in numbers namely HPV 16 (495), HPV 18 (113), HPV45 (66), HPV 31 (34) and HPV 33 (11). Additionally, we have curated and compiled clinically significant aberrant expression profile of 341 miRNAs including their target genes in distinct carcinomas, which can be utilized for miRNA therapeutics. A user-friendly web interface has been developed for easy data retrieval and analysis. We foresee that HPVbase an integrated and multi-comparative platform would facilitate reliable cancer diagnostics and prognosis. PMID:26205472

  7. γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells.

    PubMed

    Kim, Sung-Eun; Hinoue, Toshinori; Kim, Michael S; Sohn, Kyoung-Jin; Cho, Robert C; Cole, Peter D; Weisenberger, Daniel J; Laird, Peter W; Kim, Young-In

    2015-01-01

    γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways. PMID:25502219

  8. Alzheimer's disease shares gene expression aberrations with purinergic dysregulation of HPRT deficiency (Lesch-Nyhan disease).

    PubMed

    Kang, Tae Hyuk; Friedmann, Theodore

    2015-03-17

    Transcriptomic studies of murine D3 embryonic stem (ES) cells deficient in the purinergic biosynthetic function hypoxanthine guanine phosphoribosyltransferase (HPRT) and undergoing dopaminergic neuronal differentiation has demonstrated a marked shift from neuronal to glial gene expression and aberrant expression of multiple genes also known to be aberrantly expressed in Alzheimer's and other CNS disorders. Such genetic dysregulations may indicate some shared pathogenic metabolic mechanisms in diverse CNS diseases. PMID:25636690

  9. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features.

    PubMed

    Wang, Lu; Cui, Yun; Zhang, Lian; Sheng, Jindong; Yang, Yang; Kuang, Guanyu; Fan, Yu; Zhang, Qian; Jin, Jie

    2016-01-01

    Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in "normal" human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation. PMID:27583477

  10. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data

    PubMed Central

    Baur, Brittany; Bozdag, Serdar

    2016-01-01

    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes. PMID:26872146

  11. Dual Functions of the RFTS Domain of Dnmt1 in Replication-Coupled DNA Methylation and in Protection of the Genome from Aberrant Methylation

    PubMed Central

    Kimura, Hironobu; Sharif, Jafar; Muto, Masahiro; Koseki, Haruhiko; Takahashi, Saori; Suetake, Isao; Tajima, Shoji

    2015-01-01

    In mammals, DNA methylation plays important roles in embryogenesis and terminal differentiation via regulation of the transcription-competent chromatin state. The methylation patterns are propagated to the next generation during replication by maintenance DNA methyltransferase, Dnmt1, in co-operation with Uhrf1. In the N-terminal regulatory region, Dnmt1 contains proliferating cell nuclear antigen (PCNA)-binding and replication foci targeting sequence (RFTS) domains, which are thought to contribute to maintenance methylation during replication. To determine the contributions of the N-terminal regulatory domains to the DNA methylation during replication, Dnmt1 lacking the RFTS and/or PCNA-binding domains was ectopically expressed in embryonic stem cells, and then the effects were analyzed. Deletion of both the PCNA-binding and RFTS domains did not significantly affect the global DNA methylation level. However, replication-dependent DNA methylation of the differentially methylated regions of three imprinted genes, Kcnq1ot1/Lit1, Peg3, and Rasgrf1, was impaired in cells expressing the Dnmt1 with not the PCNA-binding domain alone but both the PCNA-binding and RFTS domains deleted. Even in the absence of Uhrf1, which is a prerequisite factor for maintenance DNA methylation, Dnmt1 with both the domains deleted apparently maintained the global DNA methylation level, whilst the wild type and the forms containing the RFTS domain could not perform global DNA methylation under the conditions used. This apparent maintenance of the global DNA methylation level by the Dnmt1 lacking the RFTS domain was dependent on its own DNA methylation activity as well as the presence of de novo-type DNA methyltransferases. We concluded that the RFTS domain, not the PCNA-binding domain, is solely responsible for the replication-coupled DNA methylation. Furthermore, the RFTS domain acts as a safety lock by protecting the genome from replication-independent DNA methylation. PMID:26383849

  12. A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis.

    PubMed

    Kang, Keunsoo; Bae, Jin-Han; Han, Kyudong; Kim, Eun Soo; Kim, Tae-Oh; Yi, Joo Mi

    2016-01-01

    The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD. PMID:27517910

  13. A Genome-Wide Methylation Approach Identifies a New Hypermethylated Gene Panel in Ulcerative Colitis

    PubMed Central

    Kang, Keunsoo; Bae, Jin-Han; Han, Kyudong; Kim, Eun Soo; Kim, Tae-Oh; Yi, Joo Mi

    2016-01-01

    The cause of inflammatory bowel disease (IBD) is still unknown, but there is growing evidence that environmental factors such as epigenetic changes can contribute to the disease etiology. The aim of this study was to identify newly hypermethylated genes in ulcerative colitis (UC) using a genome-wide DNA methylation approach. Using an Infinium HumanMethylation450 BeadChip array, we screened the DNA methylation changes in three normal colon controls and eight UC patients. Using these methylation profiles, 48 probes associated with CpG promoter methylation showed differential hypermethylation between UC patients and normal controls. Technical validations for methylation analyses in a larger series of UC patients (n = 79) were performed by methylation-specific PCR (MSP) and bisulfite sequencing analysis. We finally found that three genes (FAM217B, KIAA1614 and RIBC2) that were significantly elevating the promoter methylation levels in UC compared to normal controls. Interestingly, we confirmed that three genes were transcriptionally silenced in UC patient samples by qRT-PCR, suggesting that their silencing is correlated with the promoter hypermethylation. Pathway analyses were performed using GO and KEGG databases with differentially hypermethylated genes in UC. Our results highlight that aberrant hypermethylation was identified in UC patients which can be a potential biomarker for detecting UC. Moreover, pathway-enriched hypermethylated genes are possibly implicating important cellular function in the pathogenesis of UC. Overall, this study describes a newly hypermethylated gene panel in UC patients and provides new clinical information that can be used for the diagnosis and therapeutic treatment of IBD. PMID:27517910

  14. Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas

    PubMed Central

    2013-01-01

    Background High-grade soft tissue sarcomas are a heterogeneous, complex group of aggressive malignant tumors showing mesenchymal differentiation. Recently, soft tissue sarcomas have increasingly been classified on the basis of underlying genetic alterations; however, the role of aberrant DNA methylation in these tumors is not well understood and, consequently, the usefulness of methylation-based classification is unclear. Results We used the Infinium HumanMethylation27 platform to profile DNA methylation in 80 primary, untreated high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 14 representative sarcoma cell lines. The primary samples were partitioned into seven stable clusters. A classification algorithm identified 216 CpG sites, mapping to 246 genes, showing different degrees of DNA methylation between these seven groups. The differences between the clusters were best represented by a set of eight CpG sites located in the genes SPEG, NNAT, FBLN2, PYROXD2, ZNF217, COL14A1, DMRT2 and CDKN2A. By integrating DNA methylation and mRNA expression data, we identified 27 genes showing negative and three genes showing positive correlation. Compared with non-neoplastic fat, NNAT showed DNA hypomethylation and inverse gene expression in myxoid liposarcomas, and DNA hypermethylation and inverse gene expression in dedifferentiated and pleomorphic liposarcomas. Recovery of NNAT in a hypermethylated myxoid liposarcoma cell line decreased cell migration and viability. Conclusions Our analysis represents the first comprehensive integration of DNA methylation and transcriptional data in primary high-grade soft tissue sarcomas. We propose novel biomarkers and genes relevant for pathogenesis, including NNAT as a potential tumor suppressor in myxoid liposarcomas. PMID:24345474

  15. CHST11 gene expression and DNA methylation in breast cancer

    PubMed Central

    HERMAN, DAMIR; LEAKEY, TATIANA I.; BEHRENS, ALICE; YAO-BORENGASSER, AIWEI; COONEY, CRAIG A.; JOUSHEGHANY, FARIBA; PHANAVANH, BOUNLEUT; SIEGEL, ERIC R.; SAFAR, A. MAZIN; KOROURIAN, SOHEILA; KIEBER-EMMONS, THOMAS; MONZAVI-KARBASSI, BEHJATOLAH

    2015-01-01

    Our previously published data link P-selectin-reactive chondroitin sulfate structures on the surface of breast cancer cells to metastatic behavior of cells. We have shown that a particular sulfation pattern mediated by the expression of carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) correlates with P-selectin binding and aggressiveness of human breast cancer cell lines. The present study was performed to evaluate the prognostic value of CHST11 expression and determine whether aberrant DNA methylation controls CHST11 expression in breast cancer. Publicly available datasets were used to examine the association of CHST11 expression to aggressiveness and progression of breast cancer. Methylation status was analyzed using bisulfite genomic sequencing. 5-aza-2′-deoxycytidine (5AzadC) was used for DNA demethylation. Reduced representation bisulfite sequencing was performed in the CpG island of CHST11 with a minimum coverage of 10. Quantitative real-time RT-PCR was employed to confirm the expression profile of CHST11 in breast cancer cell lines. Flow cytometry was also used to confirm the expression of the CHST11 product, chondroitin sulfate A (CS-A). The expression of CHST11 was significantly higher in basal-like and Her2-amplified cell lines compared to luminal cell lines. CHST11 was also highly expressed in cancer tissues compared to normal tissues and the expression levels were significantly associated with tumor progression. We observed very low levels of DNA methylation in a CpG island of CHST11 in basal-like cells but very high levels in the same region in luminal cells. Treatment of MCF7 cells, a luminal cell line with very low expression of CHST11, with 5AzadC increased the expression of CHST11 and its immediate product, CS-A, in a dose-dependent manner. These results suggest that CHST11 may play a direct role in progression of breast cancer and that its expression is controlled by DNA methylation. Therefore, in addition to CHST11 mRNA levels, the

  16. Altered expression of topoisomerase IIα contributes to cross-resistant to etoposide K562/MX2 cell line by aberrant methylation

    PubMed Central

    Asano, T; Nakamura, K; Fujii, H; Horichi, N; Ohmori, T; Hasegawa, K; Isoe, T; Adachi, M; Otake, N; Fukunaga, Y

    2005-01-01

    KRN 8602 (MX2) is a novel morpholino anthracycline derivative having the chemical structure 3′-deamino-3′-morpholino-13-deoxo-10-hydroxycarminomycin hydrochloride. To investigate the mechanisms of resistance to MX2, we established an MX2-resistant phenotype (K562/MX2) of the human myelogeneous leukaemia cell line (K562/P), by continuously exposing a suspension culture to increasing concentrations of MX2. K562/MX2 cells were more resistant to MX2 than the parent cells, and also showed cross-resistance to etoposide and doxorubicin. Topoisomerase (Topo) IIα protein levels in K562/MX2 cells were lower of those in K562/P cells on immunoblot analysis and decreased expression of Topo IIα mRNA was seen in K562/MX2 cells. Topoisomerase II catalytic activity was also reduced in the nuclear extracts from K562/MX2 cells when compared with K562/P cells. Aberrant methylated CpG of Topo IIα gene was observed in K562/MX2 cells when compared with the parent line on methylation-specific restriction enzyme analysis. To overcome the drug resistance to MX2 and etoposide, we investigated treatment with 5-Aza-2′-deoxycytidine (5AZ), which is a demethylating agent, in K562/MX2 cells. 5-Aza-2′-deoxycytidine treatment increased Topo IIα mRNA expression in K562/MX2 cells, but not in K562/P cells, and increased the cytotoxicity of MX2 and etoposide. Methylated CpG was decreased in K562/MX2 cells after 5AZ treatment. We concluded that the mechanism of drug resistance to MX2 and etoposide in K562/MX2 cells might be the combination of decreased expression of Topo IIα gene and increased methylation, and that 5AZ could prove to be a novel treatment for etoposide-resistant cell lines, such as K562/MX2. PMID:15798770

  17. Associations between DNA methylation and schizophrenia-related intermediate phenotypes a gene set enrichment analysis

    PubMed Central

    Hass, Johanna; Walton, Esther; Wright, Carrie; Beyer, Andreas; Scholz, Markus; Turner, Jessica; Liu, Jingyu; Smolka, Michael N.; Roessner, Veit; Sponheim, Scott R.; Gollub, Randy L.; Calhoun, Vince D.; Ehrlich, Stefan

    2015-01-01

    Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, amongst others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behaviour and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia. PMID

  18. Global and gene specific DNA methylation changes during zebrafish development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA methylation is dynamic through the life of an organism. In this study, we measured the global and gene specific DNA methylation changes in zebrafish at different developmental stages. We found that the methylation percentage of cytosines was 11.75 ± 0.96% in 3.3 hour post fertilization (hpf) zeb...

  19. Increased methylation of interleukin 6 gene is associated with obesity in Korean women.

    PubMed

    Na, Yeon Kyung; Hong, Hae Sook; Lee, Won Kee; Kim, Young Hun; Kim, Dong Sun

    2015-05-01

    Obesity is the fifth leading risk for death globally, and a significant challenge to global health. It is a common, complex, non-malignant disease and develops due to interactions between the genes and the environment. DNA methylation can act as a downstream effector of environmental signals; analysis of this process therefore holds substantial promise for identifying mechanisms through which genetic and environmental factors jointly contribute to disease risk. To assess the effects of excessive weight and obesity on gene-specific methylation levels of promoter regions, we determined the methylation status of four genes involved in inflammation and oxidative stress [interleukin 6 (IL6), tumor necrosis factor α (TNFα), mitochondrial transcription factor A (TFAM), and glucose transport 4 (GLUT4)] in blood cell-derived DNA from healthy women volunteers with a range of body mass indices (BMIs) by methylation-specific PCR. Interestingly, the samples from obese individuals (BMI ≥ 30 kg/m(2)) showed significantly increased hypermethylation for IL6 gene compared to normal weight (BMI < 23 kg/m(2)) and overweight samples (23 kg/m(2) ≤ BMI < 30 kg/m(2)) (P = 0.034 and P = 0.026). However, there was no statistically significant difference in promoter methylation of the other 3 genes between each group. These findings suggest that aberrant DNA methylation of IL6 gene promoter may play an important role in the etiology and pathogenesis of obesity and IL6 methylation could be used as molecular biomarker for obesity risk assessment. Further studies are required to elucidate the potential mechanisms underlying this relationship. PMID:25921605

  20. Incomplete methylation of the FMR gene in amniotic cells

    SciTech Connect

    Skare, J.C.; Townes, P.L.

    1994-09-01

    Fragile X mental retardation is usually caused by expansion of triplet repeats near the 5{prime} end of the FMR gene. It has been reported that expansions over 600 bp (full mutations) result in mental retardation of males. Furthermore, FMR genes with full mutations have methylation of certain CpG dinucleotides upstream of the gene, one of which is in an Eag I recognition site. Methylation of the Eag I site correlates with transcriptional inactivation. We report a pregnancy with twin males which were shown to be dizygotic by RFLP analysis. The mother possessed an expansion of 150 bp in one of her FMR genes. Amniocentesis was performed. One fetus had an FMR gene with a 600 bp expansion and the other had a heterogeneous expansion with an average of 1100 bp. The gene with a 600 bp expansion had no methylation of its Eag I site, while about half of the FMR genes with the 1100 bp expansion had methylated Eag I sites. At birth, peripheral blood DNA was examined. The extent of methylation in the newborn with the 600 bp expansion had increased to about 50%. The newborn with the 1000 bp expansion was almost completely methylated. Therefore, methylation of FMR genes progressed prenatally in both, fetuses, and the larger expansion was methylated earliest. Furthermore, it would appear that methylation analysis is of limited value in prenatal diagnosis of fragile X mental retardation.

  1. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed Central

    Melquist, S; Luff, B; Bender, J

    1999-01-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  2. Arabidopsis PAI gene arrangements, cytosine methylation and expression.

    PubMed

    Melquist, S; Luff, B; Bender, J

    1999-09-01

    Previous analysis of the PAI tryptophan biosynthetic gene family in Arabidopsis thaliana revealed that the Wassilewskija (WS) ecotype has four PAI genes at three unlinked sites: a tail-to-tail inverted repeat at one locus (PAI1-PAI4) plus singlet genes at two other loci (PAI2 and PAI3). The four WS PAI genes are densely cytosine methylated over their regions of DNA identity. In contrast, the Columbia (Col) ecotype has three singlet PAI genes at the analogous loci (PAI1, PAI2, and PAI3) and no cytosine methylation. To understand the mechanism of PAI gene duplication at the polymorphic PAI1 locus, and to investigate the relationship between PAI gene arrangement and PAI gene methylation, we analyzed 39 additional ecotypes of Arabidopsis. Six ecotypes had PAI arrangements similar to WS, with an inverted repeat and dense PAI methylation. All other ecotypes had PAI arrangements similar to Col, with no PAI methylation. The novel PAI-methylated ecotypes provide insights into the mechanisms underlying PAI gene duplication and methylation, as well as the relationship between methylation and gene expression. PMID:10471722

  3. DNA Methylation is Developmentally Regulated for Genes Essential for Cardiogenesis

    PubMed Central

    Chamberlain, Alyssa A.; Lin, Mingyan; Lister, Rolanda L.; Maslov, Alex A.; Wang, Yidong; Suzuki, Masako; Wu, Bingruo; Greally, John M.; Zheng, Deyou; Zhou, Bin

    2014-01-01

    Background DNA methylation is a major epigenetic mechanism altering gene expression in development and disease. However, its role in the regulation of gene expression during heart development is incompletely understood. The aim of this study is to reveal DNA methylation in mouse embryonic hearts and its role in regulating gene expression during heart development. Methods and Results We performed the genome‐wide DNA methylation profiling of mouse embryonic hearts using methyl‐sensitive, tiny fragment enrichment/massively parallel sequencing to determine methylation levels at ACGT sites. The results showed that while global methylation of 1.64 million ACGT sites in developing hearts remains stable between embryonic day (E) 11.5 and E14.5, a small fraction (2901) of them exhibit differential methylation. Gene Ontology analysis revealed that these sites are enriched at genes involved in heart development. Quantitative real‐time PCR analysis of 350 genes with differential DNA methylation showed that the expression of 181 genes is developmentally regulated, and 79 genes have correlative changes between methylation and expression, including hyaluronan synthase 2 (Has2). Required for heart valve formation, Has2 expression in the developing heart valves is downregulated at E14.5, accompanied with increased DNA methylation in its enhancer. Genetic knockout further showed that the downregulation of Has2 expression is dependent on DNA methyltransferase 3b, which is co‐expressed with Has2 in the forming heart valve region, indicating that the DNA methylation change may contribute to the Has2 enhancer's regulating function. Conclusions DNA methylation is developmentally regulated for genes essential to heart development, and abnormal DNA methylation may contribute to congenital heart disease. PMID:24947998

  4. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  5. Distributional changes in gene-specific methylation associated with temperature.

    PubMed

    Bind, Marie-Abele C; Coull, Brent A; Baccarelli, Andrea; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-10-01

    Temperature has been related to mean differences in DNA methylation. However, heterogeneity in these associations may exist across the distribution of methylation outcomes. This study examined whether the association between three-week averaged of temperature and methylation differs across quantiles of the methylation distributions in nine candidate genes. We measured gene-specific blood methylation repeatedly in 777 elderly men participating in the Normative Aging Study (1999-2010). We fit quantile regressions for longitudinal data to investigate whether the associations of temperature on methylation (expressed as %5mC) varied across the distribution of the methylation outcomes. We observed heterogeneity in the associations of temperature across percentiles of methylation in F3, TLR-2, CRAT, iNOS, and ICAM-1 genes. For instance, an increase in three-week temperature exposure was associated with a longer left-tail of the F3 methylation distribution. A 5°C increase in temperature was associated with a 0.15%5mC (95% confidence interval (CI): -0.27,-0.04) decrease on the 20th quantile of F3 methylation, but was not significantly related to the 80th quantile of this distribution (Estimate:0.06%5mC, 95%CI: -0.22, 0.35). Individuals with low values of F3, TLR-2, CRAT, and iNOS methylation, as well as a high value of ICAM-1 methylation, may be more susceptible to temperature effects on systemic inflammation. PMID:27236570

  6. Association of epigenetic alterations in the human C7orf24 gene with the aberrant gene expression in malignant cells.

    PubMed

    Ohno, Yuji; Hattori, Akira; Yoshiki, Tatsuhiro; Kakeya, Hideaki

    2013-10-01

    Human chromosome 7 open reading frame 24 (C7orf24)/γ-glutamyl cyclotransferase has been suggested to be a potential diagnostic marker for several cancers, including carcinomas in the bladder urothelium, breast and endometrial epithelium. We here investigated the epigenetic regulation of the human C7orf24 promoter in normal diploid ARPE-19 and IMR-90 cells and in the MCF-7 and HeLa cancer cell lines to understand the transcriptional basis for the malignant-associated high expression of C7orf24. Chromatin immunoprecipitation analysis revealed that histone modifications associated with active chromatin were enriched in the proximal region but not in the distal region of the C7orf24 promoter in HeLa and MCF-7 cells. In contrast, elevated levels of histone modifications leading to transcriptional repression and accumulation of heterochromatin proteins in the C7orf24 promoter were observed in the ARPE-19 and IMR-90 cells, compared to the levels in HeLa and MCF-7 cancer cells. In parallel, the CpG island of the C7orf24 promoter was methylated to a greater extent in the normal cells than in the cancer cells. These results suggest that the transcriptional silencing of the C7orf24 gene in the non-malignant cells is elicited through heterochromatin formation in its promoter region; aberrant expression of C7orf24 associated with malignant alterations results from changes in chromatin dynamics. PMID:23853312

  7. Frequent methylation of eyes absent 4 gene in Barrett's esophagus and esophageal adenocarcinoma.

    PubMed

    Zou, Hongzhi; Osborn, Neal K; Harrington, Jonathan J; Klatt, Kristie K; Molina, Julian R; Burgart, Lawrence J; Ahlquist, David A

    2005-04-01

    Most esophageal adenocarcinomas arise within Barrett's esophagus but the cause of this increasingly prevalent condition remains unknown. Early detection improves survival and discriminant screening markers for Barrett's esophagus and cancer are needed. This study was designed to explore the natural history of eyes absent 4 (EYA4) gene methylation in the neoplastic progression of Barrett's esophagus and to evaluate methylated EYA4 as a candidate marker. Aberrant promoter methylation of EYA4 was studied by methylation-specific PCR using bisulfite-treated DNA from esophageal adenocarcinomas, Barrett's esophagus, and normal epithelia, and then confirmed by sequencing. Eight cancer cell lines were treated with the demethylation agent 5-aza-2'-deoxycytidine, and EYA4 mRNA expression with and without treatment was quantified by real-time reverse-transcription PCR. EYA4 hypermethylation was detected in 83% (33 of 40) of esophageal adenocarcinomas and 77% (27 of 35) of Barrett's tissues, but only in 3% (2 of 58) of normal esophageal and gastric mucosa samples (P < 0.001). The unmethylated cancer cell lines had much higher EYA4 mRNA expression than the methylated cancer cell lines. Demethylation caused by 5-aza-2'-deoxycytidine increased the mRNA expression level by a median of 3.2-fold in methylated cells, but its effect on unmethylated cells was negligible. Results indicate that aberrant promoter methylation of EYA4 is very common during tumorigenesis in Barrett's esophagus, occurs in early metaplasia, seems to be an important mechanism of down-regulating EYA4 expression, and represents an intriguing candidate marker for Barrett's metaplasia and esophageal cancer. PMID:15824152

  8. ∆ DNMT3B4-del Contributes to Aberrant DNA Methylation Patterns in Lung Tumorigenesis

    PubMed Central

    Ma, Mark Z.; Lin, Ruxian; Carrillo, José; Bhutani, Manisha; Pathak, Ashutosh; Ren, Hening; Li, Yaokun; Song, Jiuzhou; Mao, Li

    2015-01-01

    Aberrant DNA methylation is a hallmark of cancer but mechanisms contributing to the abnormality remain elusive. We have previously shown that ∆DNMT3B is the predominantly expressed form of DNMT3B. In this study, we found that most of the lung cancer cell lines tested predominantly expressed DNMT3B isoforms without exons 21, 22 or both 21 and 22 (a region corresponding to the enzymatic domain of DNMT3B) termed DNMT3B/∆DNMT3B-del. In normal bronchial epithelial cells, DNMT3B/ΔDNMT3B and DNMT3B/∆DNMT3B-del displayed equal levels of expression. In contrast, in patients with non-small cell lung cancer NSCLC), 111 (93%) of the 119 tumors predominantly expressed DNMT3B/ΔDNMT3B-del, including 47 (39%) tumors with no detectable DNMT3B/∆DNMT3B. Using a transgenic mouse model, we further demonstrated the biological impact of ∆DNMT3B4-del, the ∆DNMT3B-del isoform most abundantly expressed in NSCLC, in global DNA methylation patterns and lung tumorigenesis. Expression of ∆DNMT3B4-del in the mouse lungs resulted in an increased global DNA hypomethylation, focal DNA hypermethylation, epithelial hyperplastia and tumor formation when challenged with a tobacco carcinogen. Our results demonstrate ∆DNMT3B4-del as a critical factor in developing aberrant DNA methylation patterns during lung tumorigenesis and suggest that ∆DNMT3B4-del may be a target for lung cancer prevention. PMID:26629529

  9. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens.

    PubMed

    Pulling, Leah C; Vuillemenot, Brian R; Hutt, Julie A; Devereux, Theodora R; Belinsky, Steven A

    2004-06-01

    Loss of expression of the death-associated protein (DAP)-kinase gene by aberrant promoter methylation may play an important role in cancer development and progression. The purpose of this investigation was to determine the commonality for inactivation of the DAP-kinase gene in adenocarcinomas induced in mice by chronic exposure to mainstream cigarette smoke, the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and vinyl carbamate, and the occupational carcinogen methylene chloride. The timing for inactivation was also determined in alveolar hyperplasias that arise in lung cancer induced in the A/J mouse by NNK. The DAP-kinase gene was not expressed in three of five NNK-induced lung tumor-derived cell lines or in a spontaneously arising lung tumor-derived cell line. Treatment with 5-aza-2'-deoxycytidine restored expression; dense methylation throughout the DAP-kinase CpG island detected by bisulfite sequencing supported methylation as the inactivating event in these cell lines. Methylation-specific PCR detected inactivation of the DAP-kinase gene in 43% of tumors associated with cigarette smoke, a frequency similar to those reported in human non-small cell lung cancer. In addition, DAP-kinase methylation was detected in 52%, 60%, and 50% of tumors associated with NNK, vinyl carbamate, and methylene chloride, respectively. Methylation was observed at similar prevalence in both NNK-induced hyperplasias and adenocarcinomas (46% versus 52%), suggesting that inactivation of this gene is one pathway for tumor development in the mouse lung. Bisulfite sequencing of both premalignant and malignant lesions revealed dense methylation, substantiating that this gene is functionally inactivated at the earliest histological stages of adenocarcinoma development. This study is the first to use a murine model of cigarette smoke-induced lung cancer and demonstrate commonality for inactivation by promoter hypermethylation of a gene implicated in the development

  10. Aberrant DNA methylation and epigenetic inactivation of Eph receptor tyrosine kinases and ephrin ligands in acute lymphoblastic leukemia

    PubMed Central

    Kuang, Shao-Qing; Bai, Hao; Fang, Zhi-Hong; Lopez, Gonzalo; Yang, Hui; Tong, Weigang; Wang, Zack Z.

    2010-01-01

    Eph receptors and their ephrin ligands are involved in normal hematopoietic development and tumorigenesis. Using methylated CpG island amplification/DNA promoter microarray, we identified several EPH receptor and EPHRIN genes as potential hypermethylation targets in acute lymphoblastic leukemia (ALL). We subsequently studied the DNA methylation status of the Eph/ephrin family by bisulfite pyrosequencing. Hypermethylation of EPHA2, -A4, -A5, -A6, -A7, -A10, EPHB1, -B2, -B3, -B4, EFNA1, -A3, -A5, and EFNB1 and -B2 genes was detected in leukemia cell lines and primary ALL bone marrow samples. Expression analysis of EPHB4, EFNB2, and EFNA5 genes demonstrated that DNA methylation was associated with gene silencing. We cloned the promoter region of EPHB4 and demonstrated that promoter hypermethylation can result in EPHB4 transcriptional silencing. Restoration of EPHB4 expression by lentiviral transduction resulted in reduced proliferation and apoptotic cell death in Raji cells in which EPHB4 is methylated and silenced. Finally, we demonstrated that phosphorylated Akt is down-regulated in Raji cells transduced with EPHB4. These results suggest that epigenetic silencing by hypermethylation of EPH/EPHRIN family genes contributes to ALL pathogenesis and that EPHB4 can function as a tumor suppressor in ALL. PMID:20061560

  11. Methylation of microRNA genes regulates gene expression in bisexual flower development in andromonoecious poplar

    PubMed Central

    Song, Yuepeng; Tian, Min; Ci, Dong; Zhang, Deqiang

    2015-01-01

    Previous studies showed sex-specific DNA methylation and expression of candidate genes in bisexual flowers of andromonoecious poplar, but the regulatory relationship between methylation and microRNAs (miRNAs) remains unclear. To investigate whether the methylation of miRNA genes regulates gene expression in bisexual flower development, the methylome, microRNA, and transcriptome were examined in female and male flowers of andromonoecious poplar. 27 636 methylated coding genes and 113 methylated miRNA genes were identified. In the coding genes, 64.5% of the methylated reads mapped to the gene body region; by contrast, 60.7% of methylated reads in miRNA genes mainly mapped in the 5′ and 3′ flanking regions. CHH methylation showed the highest methylation levels and CHG showed the lowest methylation levels. Correlation analysis showed a significant, negative, strand-specific correlation of methylation and miRNA gene expression (r=0.79, P <0.05). The methylated miRNA genes included eight long miRNAs (lmiRNAs) of 24 nucleotides and 11 miRNAs related to flower development. miRNA172b might play an important role in the regulation of bisexual flower development-related gene expression in andromonoecious poplar, via modification of methylation. Gynomonoecious, female, and male poplars were used to validate the methylation patterns of the miRNA172b gene, implying that hyper-methylation in andromonoecious and gynomonoecious poplar might function as an important regulator in bisexual flower development. Our data provide a useful resource for the study of flower development in poplar and improve our understanding of the effect of epigenetic regulation on genes other than protein-coding genes. PMID:25617468

  12. Importance of Tumour Suppressor Gene Methylation in Sinonasal Carcinomas.

    PubMed

    Chmelařová, M; Sirák, I; Mžik, M; Sieglová, K; Vošmiková, H; Dundr, P; Němejcová, K; Michálek, J; Vošmik, M; Palička, V; Laco, J

    2016-01-01

    Epigenetic changes are considered to be a frequent event during tumour development. Hypermethylation of promoter CpG islands represents an alternative mechanism for inactivation of tumour suppressor genes, DNA repair genes, cell cycle regulators and transcription factors. The aim of this study was to investigate promoter methylation of specific genes in samples of sinonasal carcinoma by comparison with normal sinonasal tissue. To search for epigenetic events we used methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) to compare the methylation status of 64 tissue samples of sinonasal carcinomas with 19 control samples. We also compared the human papilloma virus (HPV) status with DNA methylation. Using a 20% cut-off for methylation, we observed significantly higher methylation in RASSF1, CDH13, ESR1 and TP73 genes in the sinonasal cancer group compared with the control group. HPV positivity was found in 15/64 (23.4 %) of all samples in the carcinoma group and in no sample in the control group. No correlation was found between DNA methylation and HPV status. In conclusion, our study showed that there are significant differences in promoter methylation in the RASSF1, ESR 1, TP73 and CDH13 genes between sinonasal carcinoma and normal sinonasal tissue, suggesting the importance of epigenetic changes in these genes in carcinogenesis of the sinonasal area. These findings could be used as prognostic factors and may have implications for future individualised therapies based on epigenetic changes. PMID:27516190

  13. Expression of DNA methylation genes in secondary progressive multiple sclerosis.

    PubMed

    Fagone, Paolo; Mangano, Katia; Di Marco, Roberto; Touil-Boukoffa, Chafia; Chikovan, Tinatin; Signorelli, Santo; Lombardo, Giuseppe A G; Patti, Francesco; Mammana, Santa; Nicoletti, Ferdinando

    2016-01-15

    Multiple sclerosis (MS) is an immunoinflammatory disease of the central nervous system that seems to be influenced by DNA methylation. We sought to explore the expression pattern of genes involved in the control of DNA methylation in Secondary Progressive (SP) MS patients' PBMCs. We have found that SP MS is characterized by a significant upregulation of two genes belonging to the MBD family genes, MBD2 and MBD4, and by a downregulation of TDG and TET3. PMID:26711572

  14. Exploiting aberrant mRNA expression in autism for gene discovery and diagnosis.

    PubMed

    Guan, Jinting; Yang, Ence; Yang, Jizhou; Zeng, Yong; Ji, Guoli; Cai, James J

    2016-07-01

    Autism spectrum disorder (ASD) is characterized by substantial phenotypic and genetic heterogeneity, which greatly complicates the identification of genetic factors that contribute to the disease. Study designs have mainly focused on group differences between cases and controls. The problem is that, by their nature, group difference-based methods (e.g., differential expression analysis) blur or collapse the heterogeneity within groups. By ignoring genes with variable within-group expression, an important axis of genetic heterogeneity contributing to expression variability among affected individuals has been overlooked. To this end, we develop a new gene expression analysis method-aberrant gene expression analysis, based on the multivariate distance commonly used for outlier detection. Our method detects the discrepancies in gene expression dispersion between groups and identifies genes with significantly different expression variability. Using this new method, we re-visited RNA sequencing data generated from post-mortem brain tissues of 47 ASD and 57 control samples. We identified 54 functional gene sets whose expression dispersion in ASD samples is more pronounced than that in controls, as well as 76 co-expression modules present in controls but absent in ASD samples due to ASD-specific aberrant gene expression. We also exploited aberrantly expressed genes as biomarkers for ASD diagnosis. With a whole blood expression data set, we identified three aberrantly expressed gene sets whose expression levels serve as discriminating variables achieving >70 % classification accuracy. In summary, our method represents a novel discovery and diagnostic strategy for ASD. Our findings may help open an expression variability-centered research avenue for other genetically heterogeneous disorders. PMID:27131873

  15. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  16. Cigarette smoke induces methylation of the tumor suppressor gene NISCH

    PubMed Central

    Ostrow, Kimberly Laskie; Michalidi, Christina; Guerrero-Preston, Rafael; Hoque, Mohammad O.; Greenberg, Alissa; Rom, William; Sidransky, David

    2013-01-01

    We have previously identified a putative tumor suppressor gene, NISCH, whose promoter is methylated in lung tumor tissue as well as in plasma obtained from lung cancer patients. NISCH was observed to be more frequently methylated in smoker lung cancer patients than in non-smoker lung cancer patients. Here, we investigated the effect of tobacco smoke exposure on methylation of the NISCH gene. We tested methylation of NISCH after oral keratinocytes were exposed to mainstream and side stream cigarette smoke extract in culture. Methylation of the promoter region of the NISCH gene was also evaluated in plasma obtained from lifetime non-smokers and light smokers (< 20 pack/year), with and without lung tumors, and heavy smokers (20+ pack/year) without disease. Promoter methylation of NISCH was tested by quantitative fluorogenic real-time PCR in all samples. Promoter methylation of NISCH occurred after exposure to mainstream tobacco smoke as well as to side stream tobacco smoke in normal oral keratinocyte cell lines. NISCH methylation was also detected in 68% of high-risk, heavy smokers without detectable tumors. Interestingly, in light smokers, NISCH methylation was present in 69% of patients with lung cancer and absent in those without disease. Our pilot study indicates that tobacco smoke induces methylation changes in the NISCH gene promoter before any detectable cancer. Methylation of the NISCH gene was also found in lung cancer patients’ plasma samples. After confirming these findings in longitudinally collected plasma samples from high-risk populations (such as heavy smokers), examining patients for hypermethylation of the NISCH gene may aid in identifying those who should undergo additional screening for lung cancer. PMID:23503203

  17. Aberrant crypt foci: detection, gene abnormalities, and clinical usefulness.

    PubMed

    Takayama, Tetsuji; Miyanishi, Koji; Hayashi, Tsuyoshi; Kukitsu, Takehiro; Takanashi, Kunihiro; Ishiwatari, Hirotoshi; Kogawa, Takahiro; Abe, Tomoyuki; Niitsu, Yoshiro

    2005-07-01

    Human aberrant crypt foci (ACF) were first identified as lesions consisting of large thick crypts in colonic mucosa of surgical specimens after staining with methylene blue. Previously we succeeded in identifying ACF by using magnifying endoscopy and analyzed the number, size, and dysplastic features of ACF in normal controls and patients with adenoma or cancer patients. On the basis of these analyses, we strongly suggested that ACF, particularly dysplastic ACF, are precursor lesions of the adenoma-carcinoma sequence in humans. In most sporadic ACF, K-ras mutations were positive, but APC mutations were negative irrespective of nondysplastic or dysplastic features. Conversely, in most ACF from familial adenomatous polyposis patients, APC mutations were positive but K-ras mutations were negative. These results may suggest that the molecular mechanism of sporadic colon carcinogenesis is not necessarily the same as that of familial adenomatous polyposis. It was shown that ACF acquired resistance to apoptosis induced by bile salts, whereas normal colonic epithelial cells are turning over consistently by apoptosis. This apoptosis resistance was closely associated with glutathione S-transferase P1-1 expression. One of the most important clinical applications of ACF observation with magnifying endoscopy is its use as a target lesion for chemoprevention. Because ACF are tiny lesions, they should be eradicated during a short time by administration of chemopreventive agents. In fact, we performed an open chemopreventive trial of sulindac and found that the number of ACF was reduced markedly in 2 months. We currently are proceeding with a randomized double-blind trial targeting ACF. PMID:16012995

  18. Aberrant 5’-CpG Methylation of Cord Blood TNFα Associated with Maternal Exposure to Polybrominated Diphenyl Ethers

    PubMed Central

    Wang, Xiaobin; Tang, Wan-Yee

    2015-01-01

    Growing evidence suggests that maternal exposures to endocrine disrupting chemicals during pregnancy may lead to poor pregnancy outcomes and increased fetal susceptibility to adult diseases. Polybrominated diphenyl ethers (PBDEs), which are ubiquitously used flame-retardants, could leach into the environment; and become persistent organic pollutants via bioaccumulation. In the United States, blood PBDE levels in adults range from 30–100 ng/g- lipid but the alarming health concern revolves around children who have reported blood PBDE levels 3 to 9-fold higher than adults. PBDEs disrupt endocrine, immune, reproductive and nervous systems. However, the mechanism underlying its adverse health effect is not fully understood. Epigenetics is a possible biological mechanism underlying maternal exposure-child health outcomes by regulating gene expression without changes in the DNA sequence. We sought to examine the relationship between maternal exposure to environmental PBDEs and promoter methylation of a proinflammatory gene, tumor necrosis factor alpha (TNFα). We measured the maternal blood PBDE levels and cord blood TNFα promoter methylation levels on 46 paired samples of maternal and cord blood from the Boston Birth Cohort (BBC). We showed that decreased cord blood TNFα methylation associated with high maternal PBDE47 exposure. CpG site-specific methylation showed significantly hypomethylation in the girl whose mother has a high blood PBDE47 level. Consistently, decreased TNFα methylation associated with an increase in TNFα protein level in cord blood. In conclusion, our finding provided evidence that in utero exposure to PBDEs may epigenetically reprogram the offspring’s immunological response through promoter methylation of a proinflammatory gene. PMID:26406892

  19. Methyl-accepting chemotaxis protein III and transducer gene trg.

    PubMed Central

    Hazelbauer, G L; Engström, P; Harayama, S

    1981-01-01

    A comparison of the two-dimensional gel patterns of methyl-3H- and 35S-labeled membrane proteins from trg+ and trg null mutant strains of Escherichia coli indicated that the product of trg is probably methyl-accepting chemotaxis protein III. Like the other known methyl-accepting chemotaxis proteins, the trg product is a membrane protein that migrates as more than one species in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, implying that it too is multiple methylated. It appears likely that all chemoreceptors are linked to the tumble regulator through a single class of membrane protein transducers which are methyl-accepting proteins. Three transducers are coded for by genes tsr, tar, and, probably, trg. Another methyl-accepting protein, which is not related to any of these genes, was observed. Images PMID:7007323

  20. Relationship between promoter methylation & tissue expression of MGMT gene in ovarian cancer

    PubMed Central

    Shilpa, V.; Bhagat, Rahul; Premalata, C.S.; Pallavi, V.R.; Ramesh, G.; Krishnamoorthy, Lakshmi

    2014-01-01

    Background & objectives: Epigenetic alterations, in addition to multiple gene abnormalities, are involved in the genesis and progression of human cancers. Aberrant methylation of CpG islands within promoter regions is associated with transcriptional inactivation of various tumour suppressor genes. O6-methyguanine-DNA methyltransferase (MGMT) is a DNA repair gene that removes mutagenic and cytotoxic adducts from the O6-position of guanine induced by alkylating agents. MGMT promoter hypermethylation and reduced expression has been found in some primary human carcinomas. We studied DNA methylation of CpG islands of the MGMT gene and its relation with MGMT protein expression in human epithelial ovarian carcinoma. Methods: A total of 88 epithelial ovarian cancer (EOC) tissue samples, 14 low malignant potential (LMP) tumours and 20 benign ovarian tissue samples were analysed for MGMT promoter methylation by nested methylation-specific polymerase chain reaction (MSP) after bisulphite modification of DNA. A subset of 64 EOC samples, 10 LMP and benign tumours and five normal ovarian tissue samples were analysed for protein expression by immunohistochemistry. Results: The methylation frequencies of the MGMT gene promoter were found to be 29.5, 28.6 and 20 per cent for EOC samples, LMP tumours and benign cases, respectively. Positive protein expression was observed in 93.8 per cent of EOC and 100 per cent in LMP, benign tumours and normal ovarian tissue samples. Promoter hypermethylation with loss of protein expression was seen only in one case of EOC. Interpretation & conclusions: Our results suggest that MGMT promoter hypermethylation does not always reflect gene expression. PMID:25579142

  1. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    PubMed Central

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  2. Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses

    PubMed Central

    Winans, Bethany; Nagari, Anusha; Chae, Minho; Post, Christina M.; Ko, Chia-I; Puga, Alvaro; Kraus, W. Lee; Lawrence, B. Paige

    2015-01-01

    Successfully fighting infection requires a properly tuned immune system. Recent epidemiological studies link exposure to pollutants that bind the aryl hydrocarbon receptor (AHR) during development with poorer immune responses later in life. Yet, how developmental triggering of AHR durably alters immune cell function remains unknown. Using a mouse model, we show that developmental activation of AHR leads to long-lasting reduction in the response of CD8+ T cells during influenza virus infection, cells critical for resolving primary infection. Combining genome-wide approaches, we demonstrate that developmental activation alters DNA methylation and gene expression patterns in isolated CD8+ T cells prior to and during infection. Altered transcriptional profiles in CD8+ T cells from developmentally exposed mice reflect changes in pathways involved in proliferation and immunoregulation, with an overall pattern that bears hallmarks of T cell exhaustion. Developmental exposure also changed DNA methylation across the genome, but differences were most pronounced following infection, where we observed inverse correlation between promoter methylation and gene expression. This points to altered regulation of DNA methylation as one mechanism by which AHR causes durable changes in T cell function. Discovering that distinct gene sets and pathways were differentially changed in developmentally exposed mice prior to and after infection further reveals that the process of CD8+ T cell activation is rendered fundamentally different by early life AHR signaling. These findings reveal a novel role for AHR in the developing immune system: regulating DNA methylation and gene expression as T cells respond to infection later in life. PMID:25810390

  3. Suppression of aflatoxin B1- or methyl methanesulfonate-induced chromosome aberrations in rat bone marrow cells after treatment with S-methyl methanethiosulfonate.

    PubMed

    Ito, Y; Nakamura, Y; Nakamura, Y

    1997-10-24

    The suppressive effect of S-methyl methanethiosulfonate (MMTS) on aflatoxin B1 (AFB1)- or methyl methanesulfonate (MMS)-induced chromosome aberrations (CA) in rat bone marrow cells was studied. MMTS significantly suppressed CA induced by both AFB1 (an indirect-acting carcinogen) and MMS (a direct-acting carcinogen). Suppression was observed at all periods (6, 12, 18, 24 and 48 h) after AFB1 or MMS treatment and in all doses of AFB1 (5, 10 and 20 mg/kg) or MMS (50, 75 and 100 mg/kg) investigated. AFB1-induced CA was potently suppressed by MMTS given between 2 h before and 6 h after the AFB1 injection. The suppression of AFB1-induced CA by MMTS paralleled the dose of MMTS when MMTS was given in a dose range of 1-20 mg/kg body weight. MMS-induced CA was potently suppressed by MMTS given between 2 h before and 2 h after the MMS injection. The suppressive effect of MMTS on MMS-induced CA paralleled the dose of MMTS when MMTS was given in a dose range of 1-15 mg/kg body weight. Diphenyl disulfide, which modifies -SH groups in proteins like MMTS, also significantly suppressed both AFB1- and MMS-induced CA. Although other mechanisms are not excluded, the suppression of carcinogen-induced CA by MMTS may result from the ability of MMTS to modify -SH groups in proteins. The juices of cabbage and onion, which contain considerable amounts of MMTS and S-methyl-L-cysteinesulfoxide (the precursor of MMTS), also significantly suppressed AFB1- or MMS-induced CA. These results suggest that MMTS is a possible chemopreventive agent against cancer. PMID:9393623

  4. Functional epigenetic approach identifies frequently methylated genes in Ewing sarcoma.

    PubMed

    Alholle, Abdullah; Brini, Anna T; Gharanei, Seley; Vaiyapuri, Sumathi; Arrigoni, Elena; Dallol, Ashraf; Gentle, Dean; Kishida, Takeshi; Hiruma, Toru; Avigad, Smadar; Grimer, Robert; Maher, Eamonn R; Latif, Farida

    2013-11-01

    Using a candidate gene approach we recently identified frequent methylation of the RASSF2 gene associated with poor overall survival in Ewing sarcoma (ES). To identify effective biomarkers in ES on a genome-wide scale, we used a functionally proven epigenetic approach, in which gene expression was induced in ES cell lines by treatment with a demethylating agent followed by hybridization onto high density gene expression microarrays. After following a strict selection criterion, 34 genes were selected for expression and methylation analysis in ES cell lines and primary ES. Eight genes (CTHRC1, DNAJA4, ECHDC2, NEFH, NPTX2, PHF11, RARRES2, TSGA14) showed methylation frequencies of>20% in ES tumors (range 24-71%), these genes were expressed in human bone marrow derived mesenchymal stem cells (hBMSC) and hypermethylation was associated with transcriptional silencing. Methylation of NPTX2 or PHF11 was associated with poorer prognosis in ES. In addition, six of the above genes also showed methylation frequency of>20% (range 36-50%) in osteosarcomas. Identification of these genes may provide insights into bone cancer tumorigenesis and development of epigenetic biomarkers for prognosis and detection of these rare tumor types. PMID:24005033

  5. Methylation Alterations at Imprinted Genes Detected Among Long Term Shiftworkers

    PubMed Central

    Jacobs, Daniel I.; Hansen, Johnni; Fu, Alan; Stevens, Richard G.; Tjonneland, Anne; Vogel, Ulla B.; Zheng, Tongzhang; Zhu, Yong

    2016-01-01

    Exposure to light at night through shiftwork has been linked to alterations in DNA methylation and increased risk of cancer development. Using an Illumina Infinium Methylation Assay, we analyzed methylation levels of 397 CpG sites in the promoter regions of 56 normally imprinted genes to investigate whether shiftwork is associated with alteration of methylation patterns. Methylation was significantly higher at 20 CpG sites and significantly lower at 30 CpG sites (P < 0.05) in 10 female long-term shiftworkers as compared to 10 female age- and folate intake-matched day workers. The strongest evidence for altered methylation patterns in shiftworkers was observed for DLX5, IGF2AS, and TP73 based on the magnitude of methylation change and consistency in the direction of change across multiple CpG sites, and consistent results were observed using quantitative DNA methylation analysis. We conclude that long-term shiftwork may alter methylation patterns at imprinted genes, which may be an important mechanism by which shiftwork has carcinogenic potential and warrants further investigation. PMID:23193016

  6. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  7. Lack of Correlation between Aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 Protein Expression and Promoter Methylation in Squamous Cell Carcinoma Accompanying Candida albicans-Induced Inflammation

    PubMed Central

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2016-01-01

    Hyperplastic candidiasis is characterized by thickening of the mucosal epithelia with Candida albicans infection with occasional progression to squamous cell carcinoma (SCC). C. albicans is a critical factor in tumor development; however, the oncogenic mechanism is unclear. We have previously produced an animal model for hyperplastic candidiasis in the rat forestomach. In the present study, we investigate whether impaired DNA methylation and associated protein expression of tumor suppressor and DNA repair genes are involved in the SCC carcinogenesis process using this hyperplastic candidiasis model. Promoter methylation and protein expression were analyzed by methylation specific PCR and immunohistochemical staining, respectively, of 5 areas in the forestomachs of alloxan-induced diabetic rats with hyperplastic candidiasis: normal squamous epithelia, squamous hyperplasia, squamous hyperplasia adjacent to SCC, squamous hyperplasia transitioning to SCC, and SCC. We observed nuclear p16 overexpression despite increases in p16 gene promoter methylation during the carcinogenic process. TIMP3 and RAR-β2 promoter methylation progressed until the precancerous stage but disappeared upon malignant transformation. In comparison, TIMP3 protein expression was suppressed during carcinogenesis and RAR-β2 expression was attenuated in the cytoplasm but enhanced in nuclei. ERCC1 and BRCA1 promoters were not methylated at any stage; however, their protein expression disappeared beginning at hyperplasia and nuclear protein re-expression in SCC was observed only for ERCC1. These results suggest that aberrant p16, RAR-β2, TIMP3, ERCC1, and BRCA1 expression might occur that is inconsistent with the respective gene promoter methylation status, and that this overexpression might serve to promote the inflammatory carcinogenesis caused by C. albicans infection. PMID:27410681

  8. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia.

    PubMed

    Ashktorab, Hassan; Daremipouran, M; Goel, Ajay; Varma, Sudhir; Leavitt, R; Sun, Xueguang; Brim, Hassan

    2014-04-01

    The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject's colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands-in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)-were significantly hypermethylated in tumor vs. normal tissues (P<0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network-the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated

  9. Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling

    PubMed Central

    Addou-Klouche, Lynda; Finetti, Pascal; Saade, Marie-Rose; Manai, Marwa; Carbuccia, Nadine; Bekhouche, Ismahane; Letessier, Anne; Charafe-Jauffret, Emmanuelle; Jacquemier, Jocelyne; Spicuglia, Salvatore; de The, Hugues; Viens, Patrice; Bertucci, François; Birnbaum, Daniel; Chaffanet, Max

    2014-01-01

    Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype. PMID:24416132

  10. CG gene body DNA methylation changes and evolution of duplicated genes in cassava

    PubMed Central

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J.; Bart, Rebecca; Carrington, James C.; Jacobsen, Steven E.; Ausin, Israel

    2015-01-01

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits. PMID:26483493

  11. CG gene body DNA methylation changes and evolution of duplicated genes in cassava.

    PubMed

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J; Bart, Rebecca; Carrington, James C; Jacobsen, Steven E; Ausin, Israel

    2015-11-01

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits. PMID:26483493

  12. Aberrant silencing of the endocrine peptide gene tachykinin-1 in gastric cancer

    SciTech Connect

    David, Stefan; Kan, Takatsugu; Cheng, Yulan; Agarwal, Rachana; Jin, Zhe; Mori, Yuriko

    2009-01-16

    Tachykinin-1 (TAC1) is the precursor protein for neuroendocrine peptides, including substance P, and is centrally involved in gastric secretion, motility, mucosal immunity, and cell proliferation. Here we report aberrant silencing of TAC1 in gastric cancer (GC) by promoter hypermethylation. TAC1 methylation and mRNA expression in 47 primary GCs and 41 noncancerous gastric mucosae (NLs) were analyzed by utilizing real-time quantitative PCR-based assays. TAC1 methylation was more prevalent in GCs than in NLs: 21 (45%) of 47 GCs versus 6 (15%) of 41 NLs (p < 0.01). Microsatellite instability was also associated with TAC1 methylation in GCs. There was no significant association between TAC1 methylation and age, gender, stage, histological differentiation, or the presence of Helicobacter pylori. TAC1 mRNA was markedly downregulated in GCs relative to NLs. 5-Aza-2'-deoxycytidine-induced demethylation of the TAC1 promoter resulted in TAC1 mRNA upregulation. Further studies are indicated to elucidate the functional involvement of TAC1 in gastric carcinogenesis.

  13. Aberrant immunoglobulin and c-myc gene rearrangements in patients with nonmalignant monoclonal cryoglobulinemia

    SciTech Connect

    Perl, A.; Wang, N.; Williams, J.M.; Hunt, M.J.; Rosenfeld, S.I.; Condemi, J.J.; Packman, C.H.; Abraham, G.N.

    1987-11-15

    The status of the immunoglobulin (Ig) genes was investigated in patients with idiopathic nonmalignant monoclonal IgG cryoglobulinemia (NCG). In NCG, monoclonal antibodies are synthesized at an accelerated rate by nonmalignant B lymphocytes. In order to determine whether this high production rate is related to a clonal B cell expansion, the rearrangement of the Ig genes was investigated by Southern blot analysis of genomic, /sup 32/P-labelled, DNA extracted from the peripheral blood lymphocytes of four NCG patients. In three of four (VI, BR, and CH) clonal expansion of B cells was detected using probes specific for the genes. BamHI digestion of DNA from VI and BR produced three rearranged fragments which cohybridized with two of the probes. This finding suggested the presence of additional nonsecretory B cell clones and/or disruption of the gene segments spanned by and detected with the probes. In addition, the possibility of aberrant gene rearrangements was supported by noting the alteration of the c-myc gene locus in genomic DNA from peripheral blood leukocytes of VI and CH. Northern blot analysis of RNA isolated from peripheral blood B cells of VI and CH demonstrated aberrant transcripts of the c-myc gene, showing an active role of the altered c-myc locus. Detection of c-myc rearrangement in NCG patients clearly shows that this event may not be a final step in malignant B cell transformation.

  14. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells

    PubMed Central

    Xu, Jie; Wang, Yue-Ying; Dai, Yu-Jun; Zhang, Wu; Zhang, Wei-Na; Xiong, Shu-Min; Gu, Zhao-Hui; Wang, Kan-Kan; Zeng, Rong; Chen, Zhu; Chen, Sai-Juan

    2014-01-01

    The gene encoding DNA methyltransferase 3A (DNMT3A) is mutated in ∼20% of acute myeloid leukemia cases, with Arg882 (R882) as the hotspot. Here, we addressed the transformation ability of the DNMT3A-Arg882His (R882H) mutant by using a retroviral transduction and bone marrow transplantation (BMT) approach and found that the mutant gene can induce aberrant proliferation of hematopoietic stem/progenitor cells. At 12 mo post-BMT, all mice developed chronic myelomonocytic leukemia with thrombocytosis. RNA microarray analysis revealed abnormal expressions of some hematopoiesis-related genes, and the DNA methylation assay identified corresponding changes in methylation patterns in gene body regions. Moreover, DNMT3A-R882H increased the CDK1 protein level and enhanced cell-cycle activity, thereby contributing to leukemogenesis. PMID:24497509

  15. DNA Methylation Analysis of the Angiotensin Converting Enzyme (ACE) Gene in Major Depression

    PubMed Central

    Zill, Peter; Baghai, Thomas C.; Schüle, Cornelius; Born, Christoph; Früstück, Clemens; Büttner, Andreas; Eisenmenger, Wolfgang; Varallo-Bedarida, Gabriella; Rupprecht, Rainer; Möller, Hans-Jürgen; Bondy, Brigitta

    2012-01-01

    Background The angiotensin converting enzyme (ACE) has been repeatedly discussed as susceptibility factor for major depression (MD) and the bi-directional relation between MD and cardiovascular disorders (CVD). In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ∼40%–50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. Materials and Methods The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. Results We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008) and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02). Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04). Conclusion The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders. PMID:22808171

  16. Methylization analysis of the FMR1 gene in carrier females

    SciTech Connect

    Meyers, S.; Cappon, S.; Khalifa, M.M.

    1994-09-01

    The fragile X syndrome mutation is associated with an expansion of a CGG repeat sequence and methylation of the CpG island in the promoter of the FMR1 gene. Methylation of the CpG island silences the FMR1 gene, thereby generating the disease phenotypes. Previous studies suggest that the normal FMR1 gene has the properties of an X-linked housekeeping gene that is subject to X inactivation, i.e., its CpG island is unmethylated on the active X chromosome and methylated on the inactive X. Because methylation of the mutant FMR1 gene occurs in both males and females with the full mutation, inactivating the FMR1 gene in these females might be a localized event independent from X inactivation. To test this hypothesis we compared the methylation pattern of two housekeeping genes, PGK1 and androgen receptor (AR) with that of the FMR1 in 46 female carriers of the fragile X syndrome. Twenty eight females were in the premutation range (63-193 repeats) and 16 were carriers of the full mutation (263-996 repeats). The data revealed complete correlation between the methylation pattern of PGK1 and AR. There was also a close correlation between X inactivation pattern detected by PGK1 and/or AR and that detected by FMR1 in female carriers of the premutation. In all female carriers of the full mutation there was complete methylation of the BssHII site in the expanded FMR1 allele. The X chromosome inactivation pattern in these females as detected by PGK1 and/or AR was as follows: in 10 cases the X inactivation was skewed in favor of the mutant FMR1, i.e. the mutant allele was on the inactive X chromosome, in 3 the inactivation was random and in 3 the inactivation was skewed in favor of the normal allele. These data suggest that the methylation of the FMR1 gene in females with the full mutation is a localized event and methylation of the FMR1 gene in these females cannot be used as a predictor of X inactivation.

  17. H19 gene methylation status is associated with male infertility

    PubMed Central

    LI, XIAO-PING; HAO, CHAO-LIANG; WANG, QIAN; YI, XIAO-MEI; JIANG, ZHI-SHENG

    2016-01-01

    The present study investigated the H19 gene methylation status in male infertility. Between March 2013 and June 2014, semen samples were collected from 15 normal fertile males and 15 males experiencing infertility, and routine analysis and sperm morphological assessment were performed. The semen samples were subjected to density gradient centrifugation to separate the sperm fraction, and genomic DNA from the sperms was extracted and treated for bisulfite modification. Following in vitro amplification by polymerase chain reaction (PCR), the purified PCR products were cloned into pMD®18-T vectors and successful cloning was confirmed by restriction enzyme digestion. Positive clones were sequenced and the DNA methylation status was analyzed. The overall methylation rate in the normal fertile group was 100% (270/270), whereas in the infertile group the methylation rate was lower at 94.1% (525/558), revealing a statistically significant decrease in overall methylation rate in the infertile patients compared with the control group (χ2=15.12; P<0.001). The average methylation rates of CpG 1, 3 and 6 in the infertile group were statistically different from those in the normal control group (all P<0.05). The abnormal methylation of imprinted gene H19 is associated with male infertility, suggesting that H19 may serve as a biomarker for the detection of defects in human spermiogenesis. PMID:27347077

  18. Chromosomal Aberrations in Canine Gliomas Define Candidate Genes and Common Pathways in Dogs and Humans.

    PubMed

    Dickinson, Peter J; York, Dan; Higgins, Robert J; LeCouteur, Richard A; Joshi, Nikhil; Bannasch, Danika

    2016-07-01

    Spontaneous gliomas in dogs occur at a frequency similar to that in humans and may provide a translational model for therapeutic development and comparative biological investigations. Copy number alterations in 38 canine gliomas, including diffuse astrocytomas, glioblastomas, oligodendrogliomas, and mixed oligoastrocytomas, were defined using an Illumina 170K single nucleotide polymorphism array. Highly recurrent alterations were seen in up to 85% of some tumor types, most notably involving chromosomes 13, 22, and 38, and gliomas clustered into 2 major groups consisting of high-grade IV astrocytomas, or oligodendrogliomas and other tumors. Tumor types were characterized by specific broad and focal chromosomal events including focal loss of the INK4A/B locus in glioblastoma and loss of the RB1 gene and amplification of the PDGFRA gene in oligodendrogliomas. Genes associated with the 3 critical pathways in human high-grade gliomas (TP53, RB1, and RTK/RAS/PI3K) were frequently associated with canine aberrations. Analysis of oligodendrogliomas revealed regions of chromosomal losses syntenic to human 1p involving tumor suppressor genes, such as CDKN2C, as well as genes associated with apoptosis, autophagy, and response to chemotherapy and radiation. Analysis of high frequency chromosomal aberrations with respect to human orthologues may provide insight into both novel and common pathways in gliomagenesis and response to therapy. PMID:27251041

  19. Methylation-Associated Gene Silencing of RARB in Areca Carcinogens Induced Mouse Oral Squamous Cell Carcinoma

    PubMed Central

    Tsou, Yung-An; Fan, Shin-Ru; Tsai, Ming-Hsui; Chen, Hsiao-Ling; Chang, Nai-Wen; Cheng, Ju-Chien

    2014-01-01

    Regarding oral squamous cell carcinoma (OSCC) development, chewing areca is known to be a strong risk factor in many Asian cultures. Therefore, we established an OSCC induced mouse model by 4-nitroquinoline-1-oxide (4-NQO), or arecoline, or both treatments, respectively. These are the main two components of the areca nut that could increase the occurrence of OSCC. We examined the effects with the noncommercial MCGI (mouse CpG islands) microarray for genome-wide screening the DNA methylation aberrant in induced OSCC mice. The microarray results showed 34 hypermethylated genes in 4-NQO plus arecoline induced OSCC mice tongue tissues. The examinations also used methylation-specific polymerase chain reaction (MS-PCR) and bisulfite sequencing to realize the methylation pattern in collected mouse tongue tissues and human OSCC cell lines of different grades, respectively. These results showed that retinoic acid receptor β (RARB) was indicated in hypermethylation at the promoter region and the loss of expression during cancer development. According to the results of real-time PCR, it was shown that de novo DNA methyltransferases were involved in gene epigenetic alternations of OSCC. Collectively, our results showed that RARB hypermethylation was involved in the areca-associated oral carcinogenesis. PMID:25197641

  20. Chromosome aberrations induced by zebularine in triticale.

    PubMed

    Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun

    2016-07-01

    Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation. PMID:27334255

  1. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    PubMed

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. PMID:23623297

  2. Promoter methylation of APC and RAR-β genes as prognostic markers in non-small cell lung cancer (NSCLC).

    PubMed

    Feng, Hongxiang; Zhang, Zhenrong; Qing, Xin; Wang, Xiaowei; Liang, Chaoyang; Liu, Deruo

    2016-02-01

    Aberrant promoter hypermethylations of tumor suppressor genes are promising markers for lung cancer diagnosis and prognosis. The purpose of this study was to determine methylation status at APC and RAR-β promoters in primary NSCLC, and whether they have any relationship with survival. APC and RAR-β promoter methylation status were determined in 41 NSCLC patients using methylation specific PCR. APC promoter methylation was detectable in 9 (22.0%) tumor samples and 6 (14.6%) corresponding non-tumor samples (P=0.391). RAR-β promoter methylation was detectable in 13 (31.7%) tumor samples and 4 (9.8%) corresponding non-tumor samples (P=0.049) in the NSCLC patients. APC promoter methylation was found to be associated with T stage (P=0.046) and nodal status (P=0.019) in non-tumor samples, and with smoking (P=0.004) in tumor samples. RAR-β promoter methylation was found associated with age (P=0.031) in non-tumor samples and with primary tumor site in tumor samples. Patients with APC promoter methylation in tumor samples showed significantly longer survival than patients without it (Log-rank P=0.014). In a multivariate analysis of prognostic factors, APC methylation in tumor samples was an independent prognostic factor (P=0.012), as were N1 positive lymph node number (P=0.025) and N2 positive lymph node number (P=0.06). Our study shows that RAR-β methylation detected in lung tissue may be used as a predictive marker for NSCLC diagnosis and that APC methylation in tumor sample may be a useful marker for superior survival in NSCLC patients. PMID:26681652

  3. Meta-analyses of gene methylation and smoking behavior in non-small cell lung cancer patients

    PubMed Central

    Huang, Tao; Chen, Xiaoying; Hong, Qingxiao; Deng, Zaichun; Ma, Hongying; Xin, Yanfei; Fang, Yong; Ye, Huadan; Wang, Rujie; Zhang, Cheng; Ye, Meng; Duan, Shiwei

    2015-01-01

    Aberrant DNA methylation can be a potential genetic mechanism in non-small cell lung cancer (NSCLC). However, inconsistent findings existed among the recent association studies between cigarette smoking and gene methylation in lung cancer. The purpose of our meta-analysis was to evaluate the role of gene methylation in the smoking behavior of NSCLC patients. A total of 116 genes were obtained from 97 eligible publications in the current meta-analyses. Our results showed that 7 hypermethylated genes (including CDKN2A, RASSF1, MGMT, RARB, DAPK, WIF1 and FHIT) were significantly associated with the smoking behavior in NSCLC patients. The further population-based subgroup meta-analyses showed that the CDKN2A hypermethylation was significantly associated with cigarette smoking in Japanese, Chinese and Americans. In contrast, a significant association of RARB hypermethylation and smoking behavior was only detected in Chinese but not in Japanese. The genes with altered DNA methylation were likely to be potentially useful biomarkers in the early diagnosis of NSCLC. PMID:25754026

  4. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  5. The APOE Gene is Differentially Methylated in Alzheimer's Disease.

    PubMed

    Foraker, Jessica; Millard, Steven P; Leong, Lesley; Thomson, Zachary; Chen, Sunny; Keene, C Dirk; Bekris, Lynn M; Yu, Chang-En

    2015-01-01

    The ɛ4 allele of the human apolipoprotein E gene (APOE) is a well-proven genetic risk factor for the late onset form of Alzheimer's disease (AD). However, the biological mechanisms through which the ɛ4 allele contributes to disease pathophysiology are incompletely understood. The three common alleles of APOE, ɛ2, ɛ3 and ɛ4, are defined by two single nucleotide polymorphisms (SNPs) that reside in the coding region of exon 4, which overlaps with a well-defined CpG island (CGI). Both SNPs change not only the protein codon but also the quantity of CpG dinucleotides, primary sites for DNA methylation. Thus, we hypothesize that the presence of an ɛ4 allele changes the DNA methylation landscape of the APOE CGI and that such epigenetic alteration contributes to AD susceptibility. To explore the relationship between APOE genotype, AD risk, and DNA methylation of the APOE CGI, we applied bisulfite pyrosequencing and evaluated methylation profiles of postmortem brain from 15 AD and 10 control subjects. We observed a tissue-specific decrease in DNA methylation with AD and identified two AD-specific differentially methylated regions (DMRs), which were also associated with APOE genotype. We further demonstrated that one DMR was completely un-methylated in a sub-population of genomes, possibly due to a subset of brain cells carrying deviated APOE methylation profiles. These data suggest that the APOE CGI is differentially methylated in AD brain in a tissue- and APOE-genotype-specific manner. Such epigenetic alteration might contribute to neural cell dysfunction in AD brain. PMID:26402071

  6. Aberrantly Expressed OTX Homeobox Genes Deregulate B-Cell Differentiation in Hodgkin Lymphoma

    PubMed Central

    Nagel, Stefan; Ehrentraut, Stefan; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G.; MacLeod, Roderick A. F.

    2015-01-01

    In Hodgkin lymphoma (HL) we recently reported that deregulated homeobox gene MSX1 mediates repression of the B-cell specific transcription factor ZHX2. In this study we investigated regulation of MSX1 in this B-cell malignancy. Accordingly, we analyzed expression and function of OTX homeobox genes which activate MSX1 transcription during embryonal development in the neural plate border region. Our data demonstrate that OTX1 and OTX2 are aberrantly expressed in both HL patients and cell lines. Moreover, both OTX loci are targeted by genomic gains in overexpressing cell lines. Comparative expression profiling and subsequent pathway modulations in HL cell lines indicated that aberrantly enhanced FGF2-signalling activates the expression of OTX2. Downstream analyses of OTX2 demonstrated transcriptional activation of genes encoding transcription factors MSX1, FOXC1 and ZHX1. Interestingly, examination of the physiological expression profile of ZHX1 in normal hematopoietic cells revealed elevated levels in T-cells and reduced expression in B-cells, indicating a discriminatory role in lymphopoiesis. Furthermore, two OTX-negative HL cell lines overexpressed ZHX1 in correlation with genomic amplification of its locus at chromosomal band 8q24, supporting the oncogenic potential of this gene in HL. Taken together, our data demonstrate that deregulated homeobox genes MSX1 and OTX2 respectively impact transcriptional inhibition of (B-cell specific) ZHX2 and activation of (T-cell specific) ZHX1. Thus, we show how reactivation of a specific embryonal gene regulatory network promotes disturbed B-cell differentiation in HL. PMID:26406991

  7. Screening targeted testis‑specific genes for molecular assessment of aberrant sperm quality.

    PubMed

    Liu, Xue Xia; Shen, Xiao Fang; Liu, Fu-Jun

    2016-08-01

    Teratospermia is a heterogeneous and complex disorder, which is closely associated with male fertility. Genes and gene products associated with teratospermia may serve as targeted biomarkers that help understand the underlying mechanisms of male infertility; however, systematic information on the subject remains to be elucidated. The present study performed a comparative bioinformatics analysis to identify biomarkers associated with sperm quality, particular focusing on testis‑specific biomarkers. A stepwise screening approach identified 1,085 testis/epididymis‑specific genes and 3,406 teratospermia‑associated genes, resulting in 348 testis‑specific genes associated with aberrant sperm quality. These genes were functionally associated with the reproduction process. Gene products corresponding to heat shock protein family A (Hsp70) member 4 like (HSPA4L) and phosphoglycerate kinase 2 were characterized at the cellular level in human testes and ejaculated spermatozoa. HSPA4L expression in sperm was revealed to be associated with sperm quality. The present study provided a novel insight into the understanding of sperm quality, and a potential method for the diagnosis and assessment of sperm quality in the event of male infertility. PMID:27356588

  8. Screening targeted testis-specific genes for molecular assessment of aberrant sperm quality

    PubMed Central

    Liu, Xue Xia; Shen, Xiao Fang; Liu, Fu-Jun

    2016-01-01

    Teratospermia is a heterogeneous and complex disorder, which is closely associated with male fertility. Genes and gene products associated with teratospermia may serve as targeted biomarkers that help understand the underlying mechanisms of male infertility; however, systematic information on the subject remains to be elucidated. The present study performed a comparative bioinformatics analysis to identify biomarkers associated with sperm quality, particular focusing on testis-specific biomarkers. A stepwise screening approach identified 1,085 testis/epididymis-specific genes and 3,406 teratospermia-associated genes, resulting in 348 testis-specific genes associated with aberrant sperm quality. These genes were functionally associated with the reproduction process. Gene products corresponding to heat shock protein family A (Hsp70) member 4 like (HSPA4L) and phosphoglycerate kinase 2 were characterized at the cellular level in human testes and ejaculated spermatozoa. HSPA4L expression in sperm was revealed to be associated with sperm quality. The present study provided a novel insight into the understanding of sperm quality, and a potential method for the diagnosis and assessment of sperm quality in the event of male infertility. PMID:27356588

  9. Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

    PubMed Central

    Liu, Lin; Tan, Lin; He, Zhenxin

    2016-01-01

    Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was determined by methylation-specific polymerase chain reaction. Automated sequencing technology was used to sequence the amplified products in order to analyze the base methylation sites. mRNA expression levels were determined using real-time fluorescent quantitative polymerase chain reaction. Results: Among the 54 MM patients, the positive methylation rates of the P15, DAPK, and SOCS1 genes were 27.78%, 18.52%, and 16.67%, respectively. The methylation results were confirmed by sequencing. The positive methylation rates of the P15, DAPK, and SOCS1 genes showed no correlation with patient gender, age, typing, staging, and grouping (P>0.05). There was no significant difference in the mRNA expression levels of the P15, DAPK, and SOCS1 genes between the MM patient group and the control group (P>0.05). Conclusions: Aberrant methylation of the P15, DAPK, and SOCS1 genes exists in MM, and these genes may play certain roles in pathogenesis of MM. There was no significant difference in mRNA expression levels between the methylated group and the non-methylated group, suggesting that these genes are regulated by other mechanisms during their transcription.

  10. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate.

    PubMed

    Rank, J; Nielsen, M H

    1997-04-24

    The Allium anaphase-telophase assay was used to show genotoxicity of N-methyl-N-nitrosourea (MNU), maleic hydrazide (MH), sodium azide (NaN3) and ethyl methanesulfonate (EMS). All agents induced chromosome aberrations at statistically significant levels. The rank of the lowest doses with positive effect was as follows: NaN3 0.3 mg/l < MH 1 mg/l < MNU 41 mg/l < EMS 100 mg/l. The results were compared with results from other plant assays (Arabidopsis, Vicia, Tradescantia) and for MH and MNU the values were found to be within the same range, whereas the results in the Allium test for NaN3 and EMS were in a lower range than that found for the other plant assays. EMS and MMS (methyl methanesulfonate), two chemicals used as positive controls in mutagenicity testing, were compared in the Allium test, and MMS was found to be about ten times more potent in inducing chromosome aberrations than EMS. Recording of micronuclei in interphase cells showed that this endpoint does not give more information of clastogenicity than recording of chromosome aberrations in anaphase-telophase cells. PMID:9150760

  11. Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC

    PubMed Central

    Ibragimova, Ilsiya; Maradeo, Marie E.; Dulaimi, Essel; Cairns, Paul

    2013-01-01

    Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC. PMID:23644518

  12. Aberrant Expression of Posterior HOX Genes in Well Differentiated Histotypes of Thyroid Cancers

    PubMed Central

    Cantile, Monica; Scognamiglio, Giosuè; La Sala, Lucia; La Mantia, Elvira; Scaramuzza, Veronica; Valentino, Elena; Tatangelo, Fabiana; Losito, Simona; Pezzullo, Luciano; Chiofalo, Maria Grazia; Fulciniti, Franco; Franco, Renato; Botti, Gerardo

    2013-01-01

    Molecular etiology of thyroid cancers has been widely studied, and several molecular alterations have been identified mainly associated with follicular and papillary histotypes. However, the molecular bases of the complex pathogenesis of thyroid carcinomas remain poorly understood. HOX genes regulate normal embryonic development, cell differentiation and other critical processes in eukaryotic cell life. Several studies have shown that HOX genes play a role in neoplastic transformation of several human tissues. In particular, the genes belonging to HOX paralogous group 13 seem to hold a relevant role in both tumor development and progression. We have identified a significant prognostic role of HOX D13 in pancreatic cancer and we have recently showed the strong and progressive over-expression of HOX C13 in melanoma metastases and deregulation of HOX B13 expression in bladder cancers. In this study we have investigated, by immunohistochemisty and quantitative Real Time PCR, the HOX paralogous group 13 genes/proteins expression in thyroid cancer evolution and progression, also evaluating its ability to discriminate between main histotypes. Our results showed an aberrant expression, both at gene and protein level, of all members belonging to paralogous group 13 (HOX A13, HOX B13, HOX C13 and HOX D13) in adenoma, papillary and follicular thyroid cancers samples. The data suggest a potential role of HOX paralogous group 13 genes in pathogenesis and differential diagnosis of thyroid cancers. PMID:24189220

  13. Quantitative Methylation Analysis of the PCDHB Gene Cluster.

    PubMed

    Banelli, Barbara; Romani, Massimo

    2015-01-01

    Long Range Epigenetic Silencing (LRES) is a repressed chromatin state of large chromosomal regions caused by DNA hypermethylation and histone modifications and is commonly observed in cancer. At 5q31 a LRES region of 800 kb includes three multi-gene clusters (PCDHA@, PCDHB@, and PCDHG@, respectively). Multiple experimental evidences have led to consider the PCDHB cluster as a DNA methylation marker of aggressiveness in neuroblastoma, second most common solid tumor in childhood. Because of its potential involvement not only in neuroblastoma but also in other malignancies, an easy and fast assay to screen the DNA methylation content of the PCDHB cluster might be useful for the precise stratification of the patients into risk groups and hence for choosing the most appropriate therapeutic protocol. Accordingly, we have developed a simple and cost-effective Pyrosequencing(®) assay to evaluate the methylation level of 17 genes in the protocadherin B cluster (PCDHB@). The rationale behind this Pyrosequencing assay can in principle be applied to analyze the DNA methylation level of any gene cluster with high homologies for screening purposes. PMID:26103900

  14. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  15. DNA methylation and differential gene regulation in photoreceptor cell death

    PubMed Central

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  16. DNA methylation and differential gene regulation in photoreceptor cell death.

    PubMed

    Farinelli, P; Perera, A; Arango-Gonzalez, B; Trifunovic, D; Wagner, M; Carell, T; Biel, M; Zrenner, E; Michalakis, S; Paquet-Durand, F; Ekström, P A R

    2014-01-01

    Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP. PMID:25476906

  17. Examining the Impact of Gene Variants on Histone Lysine Methylation

    PubMed Central

    Van Rechem, Capucine; Whetstine, Johnathan R.

    2015-01-01

    In recent years, there has been a boom in the amount of genome-wide sequencing data that has uncovered important and unappreciated links between certain genes, families of genes and enzymatic processes and diseases such as cancer. Such studies have highlighted the impact that chromatin modifying enzymes could have in cancer and other genetic diseases. In this review, we summarize characterized mutations and single nucleotide polymorphisms (SNPs) in histone lysine methyltransferases (KMTs), histone lysine demethylases (KDMs) and histones. We primarily focus on variants with strong disease correlations and discuss how they could impact histone lysine methylation dynamics and gene regulation. PMID:24859469

  18. Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    PubMed Central

    Udensi, Udensi K.; Cohly, Hari H.P.; Graham-Evans, Barbara E.; Ndebele, Kenneth; Garcia-Reyero, Natàlia; Nanduri, Bindu; Tchounwou, Paul B.; Isokpehi, Raphael D.

    2011-01-01

    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene function annotation will identify aberrantly expressed genes in HaCaT keratinocyte cell line after chronic treatment with arsenic trioxide. Microarray data analysis identified 14 up-regulated genes and 21 down-regulated genes in response to arsenic trioxide. The expression of 4 up-regulated genes and 1 down-regulated gene were confirmed by qRT-PCR. The up-regulated genes were AKR1C3 (Aldo-Keto Reductase family 1, member C3), IGFL1 (Insulin Growth Factor-Like family member 1), IL1R2 (Interleukin 1 Receptor, type 2), and TNFSF18 (Tumor Necrosis Factor [ligand] SuperFamily, member 18) and down-regulated gene was RGS2 (Regulator of G-protein Signaling 2). The observed over expression of TNFSF18 (167 fold) coupled with moderate expression of IGFL1 (3.1 fold), IL1R2 (5.9 fold) and AKR1C3 (9.2 fold) with a decreased RGS2 (2.0 fold) suggests that chronic arsenic exposure could produce sustained levels of TNF with modulation by an IL-1 analogue resulting in chronic immunologic insult. A concomitant decrease in growth inhibiting gene (RGS2) and increase in AKR1C3 may contribute to chronic inflammation leading to metaplasia, which may eventually lead to carcinogenicity in the skin keratinocytes. Also, increased expression of IGFL1 may trigger cancer development and progression in HaCaT keratinocytes. PMID:21461292

  19. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  20. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction

    PubMed Central

    Schütte, B; El Hajj, N; Kuhtz, J; Nanda, I; Gromoll, J; Hahn, T; Dittrich, M; Schorsch, M; Müller, T; Haaf, T

    2013-01-01

    Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility. PMID:23996961

  1. Trichloroethylene-Induced Gene Expression and DNA Methylation Changes in B6C3F1 Mouse Liver

    PubMed Central

    Tong, Jian; Chen, Tao

    2014-01-01

    Trichloroethylene (TCE), widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s) for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day) for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis. PMID:25549359

  2. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia

    PubMed Central

    LIAO, QI; WANG, YUNLIANG; CHENG, JIA; DAI, DONGJUN; ZHOU, XINGYU; ZHANG, YUZHENG; LI, JINFENG; YIN, HONGLEI; GAO, SHUGUI; DUAN, SHIWEI

    2015-01-01

    Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required. PMID:26503909

  3. Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis

    PubMed Central

    Marzese, Diego M.; Scolyer, Richard A.; Huynh, Jamie L.; Huang, Sharon K.; Hirose, Hajime; Chong, Kelly K.; Kiyohara, Eiji; Wang, Jinhua; Kawas, Neal P.; Donovan, Nicholas C.; Hata, Keisuke; Wilmott, James S.; Murali, Rajmohan; Buckland, Michael E.; Shivalingam, Brindha; Thompson, John F.; Morton, Donald L.; Kelly, Daniel F.; Hoon, Dave S.B.

    2014-01-01

    Melanoma brain metastasis (MBM) represents a frequent complication of cutaneous melanoma. Despite aggressive multi-modality therapy, patients with MBM often have a survival rate of <1 year. Alteration in DNA methylation is a major hallmark of tumor progression and metastasis; however, it remains largely unexplored in MBM. In this study, we generated a comprehensive DNA methylation landscape through the use of genome-wide copy number, DNA methylation and gene expression data integrative analysis of melanoma progression to MBM. A progressive genome-wide demethylation in low CpG density and an increase in methylation level of CpG islands according to melanoma progression were observed. MBM-specific partially methylated domains (PMDs) affecting key brain developmental processes were identified. Differentially methylated CpG sites between MBM and lymph node metastasis (LNM) from patients with good prognosis were identified. Among the most significantly affected genes were the HOX family members. DNA methylation of HOXD9 gene promoter affected transcript and protein expression and was significantly higher in MBM than that in early stages. A MBM-specific PMD was identified in this region. Low methylation level of this region was associated with active HOXD9 expression, open chromatin and histone modifications associated with active transcription. Demethylating agent induced HOXD9 expression in melanoma cell lines. The clinical relevance of this finding was verified in an independent large cohort of melanomas (n = 145). Patients with HOXD9 hypermethylation in LNM had poorer disease-free and overall survival. This epigenome-wide study identified novel methylated genes with functional and clinical implications for MBM patients. PMID:24014427

  4. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate–Vertebrate Boundary

    PubMed Central

    Keller, Thomas E.; Han, Priscilla; Yi, Soojin V.

    2016-01-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate–vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate–vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. PMID:26715626

  5. Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans.

    PubMed

    Försti, Asta; Frank, Christoph; Smolkova, Bozena; Kazimirova, Alena; Barancokova, Magdalena; Vymetalkova, Veronika; Kroupa, Michal; Naccarati, Alessio; Vodickova, Ludmila; Buchancova, Janka; Dusinska, Maria; Musak, Ludovit; Vodicka, Pavel; Hemminki, Kari

    2016-10-01

    Non-specific chromosomal aberrations (CAs) are microscopically detected in about 1% of lymphocytes drawn from healthy persons. Causes of CAs in general population are not known but they may be related to risk of cancer. In view of the importance of the mitotic checkpoint machinery on maintaining chromosomal integrity we selected 9 variants in main checkpoint related genes (BUB1B, BUB3, MAD2L1, CENPF, ESPL1/separase, NEK2, PTTG1/securin, ZWILCH and ZWINT) for a genotyping study on samples from healthy individuals (N = 330 to 729) whose lymphocytes had an increased number of CAs compared to persons with a low number of CAs. Genetic variation in individual genes played a minor importance, consistent with the high conservation and selection pressure of the checkpoint system. However, gene pairs were significantly associated with CAs: PTTG1-ZWILCH and PTTG1-ZWINT. MAD2L1 and PTTG1 were the most common partners in any of the two-way interactions. The results suggest that interactions at the level of cohesin (PTTG1) and kinetochore function (ZWINT, ZWILCH and MAD2L1) contribute to the frequency of CAs, suggesting that gene variants at different checkpoint functions appeared to be required for the formation of CAs. PMID:27424524

  6. microRNA-199a-3p, DNMT3A, and aberrant DNA methylation in testicular cancer.

    PubMed

    Chen, Bi-Feng; Gu, Shen; Suen, Yick-Keung; Li, Lu; Chan, Wai-Yee

    2014-01-01

    It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3'-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT. PMID:23959088

  7. LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation.

    PubMed

    Iturbide, Ane; Pascual-Reguant, Laura; Fargas, Laura; Cebrià, Joan Pau; Alsina, Berta; García de Herreros, Antonio; Peiró, Sandra

    2015-06-01

    Protein function is often regulated and controlled by posttranslational modifications, such as oxidation. Although oxidation has been mainly considered to be uncontrolled and nonenzymatic, many enzymatic oxidations occur on enzyme-selected lysine residues; for instance, LOXL2 oxidizes lysines by converting the ε-amino groups into aldehyde groups. Using an unbiased proteomic approach, we have identified methylated TAF10, a member of the TFIID complex, as a LOXL2 substrate. LOXL2 oxidation of TAF10 induces its release from its promoters, leading to a block in TFIID-dependent gene transcription. In embryonic stem cells, this results in the inactivation of the pluripotency genes and loss of the pluripotent capacity. During zebrafish development, the absence of LOXL2 resulted in the aberrant overexpression of the neural progenitor gene Sox2 and impaired neural differentiation. Thus, lysine oxidation of the transcription factor TAF10 is a controlled protein modification and demonstrates a role for protein oxidation in regulating pluripotency genes. PMID:25959397

  8. Prognostic value of aberrant promoter hypermethylation of tumor-related genes in early-stage head and neck cancer.

    PubMed

    Misawa, Kiyoshi; Mochizuki, Daiki; Imai, Atsushi; Endo, Shiori; Mima, Masato; Misawa, Yuki; Kanazawa, Takeharu; Carey, Thomas E; Mineta, Hiroyuki

    2016-05-01

    Staging and pathological grading are useful, but imperfect predictors of recurrence in head and neck squamous cell carcinoma (HNSCC). Accordingly, molecular biomarkers that predict the risk of recurrence are necessary to improve clinical outcomes. The methylation statuses of the promoters of 11 tumor-related genes (p16, RASSF1A, E-cadherin, H-cadherin, MGMT, DAPK, DCC, COL1A2, TAC1, SST, and GALR1) were analyzed in 133 HNSCC cases using quantitative methylation-specific PCR. We detected frequent methylation of p16 (44%), RASSF1A (18%), E-cadherin (53%), H-cadherin (35%), MGMT (35%), DAPK (53%), DCC (42%), COL1A2 (44%), TAC1 (61%), SST (64%), and GALR1 (44%) in HNSCC. Disease-free survival was lower in patients with 6-11 methylated genes than in those with 0-5 methylated genes (log-rank test, P = 0.001). In a multivariate Cox proportional hazards analysis, the methylation of E-cadherin, COL1A2, TAC1, and GALR1 was associated with poor survival, with hazard ratios of 4.474 (95% CI, 1.241-16.124). In a joint analysis of these four genes, patients with 2-4 methylated genes had a significantly lower survival rate than those with 0-1 methylated genes in early-stage HNSCC. Importantly, the methylation of some genes was closely related to poor prognosis in early-stage HNSCC, providing strong evidence that these hypermethylated genes are valuable biomarkers for prognostic evaluation. PMID:27027429

  9. [Chromosomal aberrations and genetic polymorphism in genes of the xenobiotic detoxification and DNA repair enzymes in thermoelectric power plant employers].

    PubMed

    Savchenko, Ia A; Minina, V I; Bakanova, M L

    2012-01-01

    The results of the investigation of the interrelationship between frequency of chromosomal aberrations and detoxification enzymes (GSTM1, GSTT1) and DNA repair (hOGG1, XPD) genes in the employees of fuel energy complex in Kemerovo are presented In the group of the workers frequency of metaphases with aberrations (3,9 +/- 0,2%: n = 288) was shown to be significantly higher than in the comparison group (2,1 0, 2%: n = +/- 141). In the group of workers and control donors statistically significant differences were revealed in the frequency of distribution of the GSTT1 and hOGG1 genes. The level of chromosomal aberrations was established to be higher in patients with GSTM1 genotype "0/0" in the group of control donors. PMID:23458003

  10. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer

    PubMed Central

    Rennoll, Sherri; Yochum, Gregory

    2015-01-01

    The Wnt/β-catenin signaling pathway controls intestinal homeostasis and mutations in components of this pathway are prevalent in human colorectal cancers (CRCs). These mutations lead to inappropriate expression of genes controlled by Wnt responsive DNA elements (WREs). T-cell factor/Lymphoid enhancer factor transcription factors bind WREs and recruit the β-catenin transcriptional co-activator to activate target gene expression. Deregulated expression of the c-MYC proto-oncogene (MYC) by aberrant Wnt/β-catenin signaling drives colorectal carcinogenesis. In this review, we discuss the current literature pertaining to the identification and characterization of WREs that control oncogenic MYC expression in CRCs. A common theme has emerged whereby these WREs often map distally to the MYC genomic locus and control MYC gene expression through long-range chromatin loops with the MYC proximal promoter. We propose that by determining which of these WREs is critical for CRC pathogenesis, novel strategies can be developed to treat individuals suffering from this disease. PMID:26629312

  11. Gene Expression and Methylation Pattern in HRK Apoptotic Gene in Myelodysplastic Syndrome

    PubMed Central

    Zaker, Farhad; Amirizadeh, Naser; Nasiri, Nahid; Razavi, Seyed Mohsen; Teimoori-Toolabi, Ladan; Yaghmaie, Marjan; Mehrasa, Roya

    2016-01-01

    Myelodysplastic syndromes (MDSs) are a clonal bone marrow (BM) disease characterized by ineffective hematopoiesis, dysplastic maturation and progression to acute myeloid leukemia (AML). Methylation silencing of HRK has been found in several human malignancies. In this study, we explored the association of HRK methylation status with its expression, clinical parameters and MDS subtypes in MDS patients. To study the methylation status of HRK gene, we applied Methylation Sensitive-High Resolution Melting Curve Analysis (MS-HRM) in MDS patients, as well as healthy controls and EpiTect®PCR Control DNA. Real time RT-PCR was used for gene expression analysis. Methylation frequency in promoter region of HRK in patient samples was 20.37%. Methylation of HRK was significantly related to transcriptional downregulation (P=0.023). The difference in frequency of hypermethylated HRK gene was significant between good (10%) and poor (71.42%) cytogenetic risk groups (P= 0.001), advanced stage MDS patients (66.66%) in comparison with early stage MDS patients (2.56%) (P= 0.00), higher- risk MDS group (61.53%) and lower- risk MDS group (7.31%) (P= 0.00). HRK hypermethylation was associated with advanced- stage MDS and downregulation of HRK gene may play a role in the progression of MDS. PMID:27478805

  12. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells in Behçet’s disease

    PubMed Central

    Hughes, Travis; Ture-Ozdemir, Filiz; Alibaz-Oner, Fatma; Coit, Patrick; Direskeneli, Haner; Sawalha, Amr H

    2014-01-01

    Objective Behçet’s disease (BD) is an inflammatory disease characterized by multi-system involvement including recurrent oral and genital ulcers, cutaneous lesions, and uveitis. The pathogenesis of BD remains poorly understood. We performed a genome-wide DNA methylation study in BD before and after disease remission, and in healthy matched controls. Methods We examined genome-wide DNA methylation in monocytes and CD4+ T cells from a set of 16 untreated male BD patients and age, sex, and ethnicity-matched controls. Additional samples were collected from 12 of the same BD patients after treatment and disease remission. Genome-wide DNA methylation patterns were assessed using the HumanMethylation450 DNA Analysis BeadChip array which includes over 485,000 individual methylation sites across the genome. Results We identified 383 differentially methylated CpG sites between BD patients and controls in monocytes and 125 differentially methylated CpG sites in CD4+ T cells. Bioinformatic analysis revealed a pattern of aberrant DNA methylation among genes that regulate cytoskeletal dynamics suggesting that aberrant DNA methylation of multiple classes of structural and regulatory proteins of the cytoskeleton might contribute to the pathogenesis of BD. Further, DNA methylation changes associated with treatment act to restore methylation differences observed between patients and controls. Indeed, among CpG sites differentially methylated before and after disease remission, there was almost exclusive reversal of the direction of aberrant DNA methylation observed between patients and healthy controls. Conclusions We performed the first epigenome-wide study in BD and provide strong evidence that epigenetic modification of cytoskeletal dynamics underlies the pathogenesis and therapeutic response in BD. PMID:24574333

  13. DIETARY ARSENITE AFFECTS DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION IN COLON AND GLOBAL DNA METHYLATION IN LIVER OF RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work has shown that arsenic (As) affects methionine metabolism. Alterations in methionine metabolism can affect cancer processes. To determine the effect of dietary As on DMH-induced aberrant crypt formation in colon Fisher-344 male, weanling rats (N=20/group) were fed diets containing 0, 0...

  14. Aberrant expression of the candidate tumor suppressor gene DAL-1 due to hypermethylation in gastric cancer

    PubMed Central

    Wang, Hao; Xu, Man; Cui, Xiaobo; Liu, Yixin; Zhang, Yi; Sui, Yu; Wang, Dong; Peng, Lei; Wang, Dexu; Yu, Jingcui

    2016-01-01

    By allelotyping for loss of heterozygosity (LOH), we previously identified a deletion region that harbors the candidate tumor suppressor gene DAL-1 at 18p11.3 in sporadic gastric cancers (GCs). The expression and function of DAL-1 in GCs remained unclear. Here, we demonstrated that the absence of or notable decreases in the expression of DAL-1 mRNA and protein was highly correlated with CpG hypermethylation of the DAL-1 promoter in primary GC tissues and in GC cell lines. Furthermore, abnormal DAL-1 subcellular localization was also observed in GC cells. Exogenous DAL-1 effectively inhibited cancer cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT); exogenous DAL-1 also promoted apoptosis in GC AGS cells. When endogenous DAL-1 was knocked down in GC HGC-27 cells, the cells appeared highly aggressive. Taken together, these findings provide solid evidence that aberrant expression of DAL-1 by hypermethylation in the promoter region results in tumor suppressor gene behavior that plays important roles in the malignancy of GCs. Understanding the role of it played in the molecular pathogenesis of GC, DAL-1 might be a potential biomarker for molecular diagnosis and evaluation of the GC. PMID:26923709

  15. Inter- and Intra-Individual Variation in Allele-Specific DNA Methylation and Gene Expression in Children Conceived using Assisted Reproductive Technology

    PubMed Central

    Turan, Nahid; Katari, Sunita; Gerson, Leigh F.; Chalian, Raffi; Foster, Michael W.; Gaughan, John P.; Coutifaris, Christos; Sapienza, Carmen

    2010-01-01

    Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART), suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs) of the IGF2/H19 and IGF2R loci in a population of children conceived in vitro or in vivo. We found substantial variation in allele-specific methylation at both loci in both groups. Aberrant methylation of the maternal IGF2/H19 DMR was more common in the in vitro group, and the overall variance was also significantly greater in the in vitro group. We estimated the number of trophoblast stem cells in each group based on approximation of the variance of the binomial distribution of IGF2/H19 methylation ratios, as well as the distribution of X chromosome inactivation scores in placenta. Both of these independent measures indicated that placentas of the in vitro group were derived from fewer stem cells than the in vivo conceived group. Both IGF2 and H19 mRNAs were significantly lower in placenta from the in vitro group. Although average birth weight was lower in the in vitro group, we found no correlation between birth weight and IGF2 or IGF2R transcript levels or the ratio of IGF2/IGF2R transcript levels. Our results show that in vitro conception is associated with aberrant methylation patterns at the IGF2/H19 locus. However, very little of the inter- or intra-individual variation in H19 or IGF2 mRNA levels can be explained by differences in maternal DMR DNA methylation, in contrast to the expectations of current transcriptional imprinting models. Extraembryonic tissues of embryos cultured in vitro appear to be derived from fewer trophoblast stem cells. It is possible that this developmental difference has an effect on placental and fetal growth. PMID:20661447

  16. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene

    PubMed Central

    Morano, Annalisa; Angrisano, Tiziana; Russo, Giusi; Landi, Rosaria; Pezone, Antonio; Bartollino, Silvia; Zuchegna, Candida; Babbio, Federica; Bonapace, Ian Marc; Allen, Brittany; Muller, Mark T.; Chiariotti, Lorenzo; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2014-01-01

    We report that homology-directed repair of a DNA double-strand break within a single copy Green Fluorescent Protein (GFP) gene in HeLa cells alters the methylation pattern at the site of recombination. DNA methyl transferase (DNMT)1, DNMT3a and two proteins that regulate methylation, Np95 and GADD45A, are recruited to the site of repair and are responsible for selective methylation of the promoter-distal segment of the repaired DNA. The initial methylation pattern of the locus is modified in a transcription-dependent fashion during the 15–20 days following repair, at which time no further changes in the methylation pattern occur. The variation in DNA modification generates stable clones with wide ranges of GFP expression. Collectively, our data indicate that somatic DNA methylation follows homologous repair and is subjected to remodeling by local transcription in a discrete time window during and after the damage. We propose that DNA methylation of repaired genes represents a DNA damage code and is source of variation of gene expression. PMID:24137009

  17. Antipsychotic drugs attenuate aberrant DNA methylation of DTNBP1 (dysbindin) promoter in saliva and post-mortem brain of patients with schizophrenia and Psychotic bipolar disorder.

    PubMed

    Abdolmaleky, Hamid M; Pajouhanfar, Sara; Faghankhani, Masoomeh; Joghataei, Mohammad Taghi; Mostafavi, Ashraf; Thiagalingam, Sam

    2015-12-01

    Due to the lack of genetic association between individual genes and schizophrenia (SCZ) pathogenesis, the current consensus is to consider both genetic and epigenetic alterations. Here, we report the examination of DNA methylation status of DTNBP1 promoter region, one of the most credible candidate genes affected in SCZ, assayed in saliva and post-mortem brain samples. The Illumina DNA methylation profiling and bisulfite sequencing of representative samples were used to identify methylation status of the DTNBP1 promoter region. Quantitative methylation specific PCR (qMSP) was employed to assess methylation of DTNBP1 promoter CpGs flanking a SP1 binding site in the saliva of SCZ patients, their first-degree relatives and control subjects (30, 15, and 30/group, respectively) as well as in post-mortem brains of patients with SCZ and bipolar disorder (BD) versus controls (35/group). qRT-PCR was used to assess DTNBP1 expression. We found DNA hypermethylation of DTNBP1 promoter in the saliva of SCZ patients (∼12.5%, P = 0.036), particularly in drug-naïve patients (∼20%, P = 0.011), and a trend toward hypermethylation in their first-degree relatives (P = 0.085) versus controls. Analysis of post-mortem brain samples revealed an inverse correlation between DTNBP1 methylation and expression, and normalization of this epigenetic change by classic antipsychotic drugs. Additionally, BD patients with psychotic depression exhibited higher degree of methylation versus other BD patients (∼80%, P = 0.025). DTNBP1 promoter DNA methylation may become a key element in a panel of biomarkers for diagnosis, prevention, or therapy in SCZ and at risk individuals pending confirmatory studies with larger sample sizes to attain a higher degree of significance. PMID:26285059

  18. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies.

    PubMed

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan; An, Han-Xiang; Zhang, Yun

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12-15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42-0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  19. Association between aberrant APC promoter methylation and breast cancer pathogenesis: a meta-analysis of 35 observational studies

    PubMed Central

    Zhou, Dan; Tang, Weiwei; Wang, Wenyi; Pan, Xiaoyan

    2016-01-01

    Background. Adenomatous polyposis coli (APC) is widely known as an antagonist of the Wnt signaling pathway via the inactivation of β-catenin. An increasing number of studies have reported that APC methylation contributes to the predisposition to breast cancer (BC). However, recent studies have yielded conflicting results. Methods. Herein, we systematically carried out a meta-analysis to assess the correlation between APC methylation and BC risk. Based on searches of the Cochrane Library, PubMed, Web of Science and Embase databases, the odds ratio (OR) with 95% confidence interval (CI) values were pooled and summarized. Results. A total of 31 articles involving 35 observational studies with 2,483 cases and 1,218 controls met the inclusion criteria. The results demonstrated that the frequency of APC methylation was significantly higher in BC cases than controls under a random effect model (OR = 8.92, 95% CI [5.12–15.52]). Subgroup analysis further confirmed the reliable results, regardless of the sample types detected, methylation detection methods applied and different regions included. Interestingly, our results also showed that the frequency of APC methylation was significantly lower in early-stage BC patients than late-stage ones (OR = 0.62, 95% CI [0.42–0.93]). Conclusion. APC methylation might play an indispensable role in the pathogenesis of BC and could be regarded as a potential biomarker for the diagnosis of BC. PMID:27478702

  20. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys

  1. CG Methylation Covaries with Differential Gene Expression between Leaf and Floral Bud Tissues of Brachypodium distachyon

    PubMed Central

    Roessler, Kyria; Takuno, Shohei; Gaut, Brandon S.

    2016-01-01

    DNA methylation has the potential to influence plant growth and development through its influence on gene expression. To date, however, the evidence from plant systems is mixed as to whether patterns of DNA methylation vary significantly among tissues and, if so, whether these differences affect tissue-specific gene expression. To address these questions, we analyzed both bisulfite sequence (BSseq) and transcriptomic sequence data from three biological replicates of two tissues (leaf and floral bud) from the model grass species Brachypodium distachyon. Our first goal was to determine whether tissues were more differentiated in DNA methylation than explained by variation among biological replicates. Tissues were more differentiated than biological replicates, but the analysis of replicated data revealed high (>50%) false positive rates for the inference of differentially methylated sites (DMSs) and differentially methylated regions (DMRs). Comparing methylation to gene expression, we found that differential CG methylation consistently covaried negatively with gene expression, regardless as to whether methylation was within genes, within their promoters or even within their closest transposable element. The relationship between gene expression and either CHG or CHH methylation was less consistent. In total, CG methylation in promoters explained 9% of the variation in tissue-specific expression across genes, suggesting that CG methylation is a minor but appreciable factor in tissue differentiation. PMID:26950546

  2. DNA methylation analysis of secreted frizzled-related protein 2 gene for the early detection of colorectal cancer in fecal DNA

    PubMed Central

    Babaei, Hadi; Mohammadi, Mohsen; Salehi, Rasoul

    2016-01-01

    Background: The early detection of colorectal cancer (CRC) with high sensitivity screening is essential for the reduction of cancer-specific mortality. Abnormally methylated genes that are responsible for the pathogenesis of cancers can be used as biomarkers for the detection of CRC. The methylation status of the secreted frizzled-related protein 2 (SFRP2) gene was evaluated for their use as a marker in the noninvasive detection of CRC. Materials and Methods: Methylation-specific polymerase chain reaction was performed to analyze the promoter CpG methylation of SFRP2 in the fecal DNA of 25 patients with CRC and 25 individuals exhibiting normal colonoscopy results. Results: Promoter methylation levels of SFRP2 in CRC patients and in healthy controls were 60% and 8%, respectively. Methylation of the SFRP2 promoter in fecal DNA is associated with the presence of colorectal tumors. Conclusion: Hence, the detection of aberrantly methylated DNA in fecal samples may present a promising, noninvasive screening method for CRC.

  3. Alterations in gene expression and DNA methylation during murine and human lung alveolar septation.

    PubMed

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J; Ambalavanan, Namasivayam

    2015-07-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  4. Alterations in Gene Expression and DNA Methylation during Murine and Human Lung Alveolar Septation

    PubMed Central

    Cuna, Alain; Halloran, Brian; Faye-Petersen, Ona; Kelly, David; Crossman, David K.; Cui, Xiangqin; Pandit, Kusum; Kaminski, Naftali; Bhattacharya, Soumyaroop; Ahmad, Ausaf; Mariani, Thomas J.

    2015-01-01

    DNA methylation, a major epigenetic mechanism, may regulate coordinated expression of multiple genes at specific time points during alveolar septation in lung development. The objective of this study was to identify genes regulated by methylation during normal septation in mice and during disordered septation in bronchopulmonary dysplasia. In mice, newborn lungs (preseptation) and adult lungs (postseptation) were evaluated by microarray analysis of gene expression and immunoprecipitation of methylated DNA followed by sequencing (MeDIP-Seq). In humans, microarray gene expression data were integrated with genome-wide DNA methylation data from bronchopulmonary dysplasia versus preterm and term lung. Genes with reciprocal changes in expression and methylation, suggesting regulation by DNA methylation, were identified. In mice, 95 genes with inverse correlation between expression and methylation during normal septation were identified. In addition to genes known to be important in lung development (Wnt signaling, Angpt2, Sox9, etc.) and its extracellular matrix (Tnc, Eln, etc.), genes involved with immune and antioxidant defense (Stat4, Sod3, Prdx6, etc.) were also observed. In humans, 23 genes were differentially methylated with reciprocal changes in expression in bronchopulmonary dysplasia compared with preterm or term lung. Genes of interest included those involved with detoxifying enzymes (Gstm3) and transforming growth factor-β signaling (bone morphogenetic protein 7 [Bmp7]). In terms of overlap, 20 genes and three pathways methylated during mouse lung development also demonstrated changes in methylation between preterm and term human lung. Changes in methylation correspond to altered expression of a number of genes associated with lung development, suggesting that DNA methylation of these genes may regulate normal and abnormal alveolar septation. PMID:25387348

  5. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes

    PubMed Central

    2013-01-01

    Background Abnormal epigenetic marking is well documented in gene promoters of cancer cells, but the study of distal regulatory siteshas lagged behind.We performed a systematic analysis of DNA methylation sites connected with gene expression profilesacross normal and cancerous human genomes. Results Utilizing methylation and expression data in 58 cell types, we developed a model for methylation-expression relationships in gene promoters and extrapolated it to the genome. We mapped numerous sites at which DNA methylation was associated with expression of distal genes. These sites bind transcription factors in a methylation-dependent manner, and carry the chromatin marks of a particular class of transcriptional enhancers. In contrast to the traditional model of one enhancer site per cell type, we found that single enhancer sites may define gradients of expression levels across many different cell types. Strikingly, the identified sites were drastically altered in cancers: hypomethylated enhancer sites associated with upregulation of cancer-related genes and hypermethylated sites with downregulation. Moreover, the association between enhancer methylation and gene deregulation in cancerwas significantly stronger than the association of promoter methylationwith gene deregulation. Conclusions Methylation of distal regulatory sites is closely related to gene expression levels across the genome. Single enhancers may modulate ranges of cell-specific transcription levels, from constantlyopen promoters. In contrast to the remote relationships between promoter methylation and gene dysregulation in cancer, altered methylation of enhancer sites is closely related to gene expression profiles of transformed cells. PMID:23497655

  6. Corruption of the Intra-Gene DNA Methylation Architecture Is a Hallmark of Cancer

    PubMed Central

    Bartlett, Thomas E.; Zaikin, Alexey; Olhede, Sofia C.; West, James; Teschendorff, Andrew E.; Widschwendter, Martin

    2013-01-01

    Epigenetic processes - including DNA methylation - are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers. PMID:23874574

  7. Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.

    PubMed

    Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin

    2013-01-01

    Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers. PMID:23874574

  8. Focal Chromosomal Copy Number Aberrations Identify CMTM8 and GPR177 as New Candidate Driver Genes in Osteosarcoma

    PubMed Central

    Bras, Johannes; Schaap, Gerard R.; Baas, Frank; Ylstra, Bauke; Hulsebos, Theo J. M.

    2014-01-01

    Osteosarcoma is an aggressive bone tumor that preferentially develops in adolescents. The tumor is characterized by an abundance of genomic aberrations, which hampers the identification of the driver genes involved in osteosarcoma tumorigenesis. Our study aims to identify these genes by the investigation of focal copy number aberrations (CNAs, <3 Mb). For this purpose, we subjected 26 primary tumors of osteosarcoma patients to high-resolution single nucleotide polymorphism array analyses and identified 139 somatic focal CNAs. Of these, 72 had at least one gene located within or overlapping the focal CNA, with a total of 94 genes. For 84 of these genes, the expression status in 31 osteosarcoma samples was determined by expression microarray analysis. This enabled us to identify the genes of which the over- or underexpression was in more than 35% of cases in accordance to their copy number status (gain or loss). These candidate genes were subsequently validated in an independent set and furthermore corroborated as driver genes by verifying their role in other tumor types. We identified CMTM8 as a new candidate tumor suppressor gene and GPR177 as a new candidate oncogene in osteosarcoma. In osteosarcoma, CMTM8 has been shown to suppress EGFR signaling. In other tumor types, CMTM8 is known to suppress the activity of the oncogenic protein c-Met and GPR177 is known as an overexpressed upstream regulator of the Wnt-pathway. Further studies are needed to determine whether these proteins also exert the latter functions in osteosarcoma tumorigenesis. PMID:25551557

  9. Aberrant splicing and truncated-protein expression due to a newly identified XPA gene mutation.

    PubMed

    Sato, M; Nishigori, C; Yagi, T; Takebe, H

    1996-02-15

    A group A xeroderma pigmentosum (XPA) patient, XP2NI, is a compound heterozygote with a newly identified G to C transversion at the last nucleotide in exon 5 in one chromosome, and with the known splicing mutation in intron 3 in another chromosome in the XPA gene. XP2NI had mild skin symptoms and the cells were slightly less sensitive to UV radiation than the cells of typical severe XPA patients who have the splicing mutation in intron 3 homozygously. Reverse transcriptase (RT)-PCR and sequencing of the PCR products revealed that the mutation in exon 5 resulted in producing three types of aberrant mRNA, lacking 7 nucleotides at the end of exon 5, lacking entire exon 5, and lacking exons 3, 4 and 5. A significant amount of a truncated type of protein was produced in XP2NI cells, and the size of the protein indicated that it should have been translated from the mRNA, lacking the 7 nucleotides and retained one of the zinc-finger domains required for the DNA repair activity. The clinical mildness of XP2NI may be due to the residual DNA repair activity of the truncated XPA protein, while no XPA protein was detected in the XPA cells with the homozygous intron 3 splicing mutation. PMID:8596539

  10. Relationship of DNA Methylation and Gene Expression in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Pedersen, Brent S.; Rabinovich, Einat; Hennessy, Corinne E.; Davidson, Elizabeth J.; Murphy, Elissa; Guardela, Brenda Juan; Tedrow, John R.; Zhang, Yingze; Singh, Mandal K.; Correll, Mick; Schwarz, Marvin I.; Geraci, Mark; Sciurba, Frank C.; Quackenbush, John; Spira, Avrum; Kaminski, Naftali; Schwartz, David A.

    2014-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is an untreatable and often fatal lung disease that is increasing in prevalence and is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control gene expression and are likely to regulate the IPF transcriptome. Objectives: To identify methylation marks that modify gene expression in IPF lung. Methods: We assessed DNA methylation (comprehensive high-throughput arrays for relative methylation arrays [CHARM]) and gene expression (Agilent gene expression arrays) in 94 patients with IPF and 67 control subjects, and performed integrative genomic analyses to define methylation–gene expression relationships in IPF lung. We validated methylation changes by a targeted analysis (Epityper), and performed functional validation of one of the genes identified by our analysis. Measurements and Main Results: We identified 2,130 differentially methylated regions (DMRs; <5% false discovery rate), of which 738 are associated with significant changes in gene expression and enriched for expected inverse relationship between methylation and expression (P < 2.2 × 10−16). We validated 13/15 DMRs by targeted analysis of methylation. Methylation–expression quantitative trait loci (methyl-eQTL) identified methylation marks that control cis and trans gene expression, with an enrichment for cis relationships (P < 2.2 × 10−16). We found five trans methyl-eQTLs where a methylation change at a single DMR is associated with transcriptional changes in a substantial number of genes; four of these DMRs are near transcription factors (castor zinc finger 1 [CASZ1], FOXC1, MXD4, and ZDHHC4). We studied the in vitro effects of change in CASZ1 expression and validated its role in regulation of target genes in the methyl-eQTL. Conclusions: These results suggest that DNA methylation may be involved in the pathogenesis of IPF. PMID:25333685

  11. Differential Methylation during Maize Leaf Growth Targets Developmentally Regulated Genes1[C][W][OPEN

    PubMed Central

    Candaele, Jasper; Demuynck, Kirin; Mosoti, Douglas; Beemster, Gerrit T.S.; Inzé, Dirk; Nelissen, Hilde

    2014-01-01

    DNA methylation is an important and widespread epigenetic modification in plant genomes, mediated by DNA methyltransferases (DMTs). DNA methylation is known to play a role in genome protection, regulation of gene expression, and splicing and was previously associated with major developmental reprogramming in plants, such as vernalization and transition to flowering. Here, we show that DNA methylation also controls the growth processes of cell division and cell expansion within a growing organ. The maize (Zea mays) leaf offers a great tool to study growth processes, as the cells progressively move through the spatial gradient encompassing the division zone, transition zone, elongation zone, and mature zone. Opposite to de novo DMTs, the maintenance DMTs were transcriptionally regulated throughout the growth zone of the maize leaf, concomitant with differential CCGG methylation levels in the four zones. Surprisingly, the majority of differentially methylated sequences mapped on or close to gene bodies and not to repeat-rich loci. Moreover, especially the 5′ and 3′ regions of genes, which show overall low methylation levels, underwent differential methylation in a developmental context. Genes involved in processes such as chromatin remodeling, cell cycle progression, and growth regulation, were differentially methylated. The presence of differential methylation located upstream of the gene anticorrelated with transcript expression, while gene body differential methylation was unrelated to the expression level. These data indicate that DNA methylation is correlated with the decision to exit mitotic cell division and to enter cell expansion, which adds a new epigenetic level to the regulation of growth processes. PMID:24488968

  12. An Observational Study on Aberrant Methylation of Runx3 With the Prognosis in Chronic Atrophic Gastritis Patients.

    PubMed

    Zhao, Chunna; Li, Ping; Zhang, Lili; Wang, Bei; Xiao, Lili; Guo, Feng; Wei, Yueguang

    2016-05-01

    The aim of this study is to discuss whether the methylation levels of Runx3 could be used as the early biomarker for predicting the prognosis in chronic atrophic gastritis (CAG) patients. A total of 200 subjects including 60 controls without CAG (Group 1), 70 patients with mild CAG (Group 2), and 70 patients with moderate and severe CAG (Group 3) were recruited for this cross-sectional investigation in the Department of Gastroenterology in Daqing Oilfield General Hospital from July 2013 to May 2014. The MlALDI-TOF-MS was used to measure the methylation levels of Runx3 in all of the subjects. Real-time quantitative reverse transcription polymerase chain reaction and western blotting were chosen to determine the expression levels of Runx3. The correlations between methylation levels of Runx3 among these CAG patients and their prognosis were shown by logistic regression models. The results demonstrated that the methylation levels of CpG13, CpG14, and CpG15 in Runx3 were higher in Group 3 than those in Groups 1 and 2 (P <0.05), whereas the mRNA and protein expression levels of Runx3 were lower in Group 3 than those in Groups 1 and 2 (P <0.05). There were significantly negative correlations between the methylation levels of Runx3 with its expression and the healing prognosis of CAG patients. In brief, this study proved that the hypermethylation modifications of CpG13, CpG14, and CpG15 in the promoter region of Runx3 could result in the down regulation of Runx3 expression to affect the prognosis of CAG. So the methylation levels of these CpG sites in Runx3 in the peripheral blood can be used as the biomarker for predicting the healing prognosis of CAG patients. PMID:27196446

  13. An Observational Study on Aberrant Methylation of Runx3 With the Prognosis in Chronic Atrophic Gastritis Patients

    PubMed Central

    Zhao, Chunna; Li, Ping; Zhang, Lili; Wang, Bei; Xiao, Lili; Guo, Feng; Wei, Yueguang

    2016-01-01

    Abstract The aim of this study is to discuss whether the methylation levels of Runx3 could be used as the early biomarker for predicting the prognosis in chronic atrophic gastritis (CAG) patients. A total of 200 subjects including 60 controls without CAG (Group 1), 70 patients with mild CAG (Group 2), and 70 patients with moderate and severe CAG (Group 3) were recruited for this cross-sectional investigation in the Department of Gastroenterology in Daqing Oilfield General Hospital from July 2013 to May 2014. The MlALDI-TOF-MS was used to measure the methylation levels of Runx3 in all of the subjects. Real-time quantitative reverse transcription polymerase chain reaction and western blotting were chosen to determine the expression levels of Runx3. The correlations between methylation levels of Runx3 among these CAG patients and their prognosis were shown by logistic regression models. The results demonstrated that the methylation levels of CpG13, CpG14, and CpG15 in Runx3 were higher in Group 3 than those in Groups 1 and 2 (P <0.05), whereas the mRNA and protein expression levels of Runx3 were lower in Group 3 than those in Groups 1 and 2 (P <0.05). There were significantly negative correlations between the methylation levels of Runx3 with its expression and the healing prognosis of CAG patients. In brief, this study proved that the hypermethylation modifications of CpG13, CpG14, and CpG15 in the promoter region of Runx3 could result in the down regulation of Runx3 expression to affect the prognosis of CAG. So the methylation levels of these CpG sites in Runx3 in the peripheral blood can be used as the biomarker for predicting the healing prognosis of CAG patients. PMID:27196446

  14. Aberrant Expression of Anaplastic Lymphoma Kinase in Ovarian Carcinoma Independent of Gene Rearrangement.

    PubMed

    Tang, Shaoxian; Yang, Fei; Du, Xiang; Lu, Yongming; Zhang, Ling; Zhou, Xiaoyan

    2016-07-01

    Ovarian carcinoma is the leading cause of death from gynecologic malignancies. The oncogenic role of anaplastic lymphoma kinase (ALK) is well characterized in many hematopoietic and solid tumors. ALK expression in ovarian carcinoma has been reported but the exact status of ALK protein and its association with clinicopathologic features requires further investigation. ALK expression was determined by immunohistochemistry in 110 primary ovarian carcinomas, including 85 cases of serous carcinoma and 25 cases of mucinous carcinoma. Fluorescence in situ hybridization (FISH) and real-time reverse transcription polymerase chain reaction (RT-PCR) were used for evaluating ALK translocation in ALK-positive ovarian carcinomas. Among 110 ovarian carcinomas, 23 (20.9%) cases were ALK positive by immunohistochemistry. All ALK-positive cases were ovarian high-grade serous carcinoma. ALK expression was detected in 23/85 (27.1%) ovarian serous carcinoma and 0/25 (0%) in ovarian mucinous carcinoma. None of the 23 ALK IHC-positive cases harbored ALK gene translocations by FISH or RT-PCR. ALK protein expression was associated with patient age, tumor stage, and histologic type. Specifically, the probability of ALK protein expression was significantly higher in high-grade serous carcinomas in older patients (above 50 y) with advanced disease (FIGO stage III and IV) compared with the low-grade serous and mucinous carcinomas in younger patients with relatively early disease. In conclusion, aberrant ALK expression is observed in ovarian serous carcinoma but not in mucinous carcinoma, is independent of gene translocation, and might be associated with progression and prognosis. PMID:27271776

  15. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2

    PubMed Central

    Kim, Joo Yong; Kwon, Ye Jin; Kim, Sung-Il; Kim, Do Youn; Song, Jong Tae; Seo, Hak Soo

    2016-01-01

    Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammonium had no effect on CMT3 methylation, indicating that ammonium negatively regulates CMT3-mediated NIA2 methylation without affecting CMT3 methylation. Ammonium upregulated NIA2 mRNA expression, which was consistent with the repression of NIA2 methylation by ammonium. Ammonium treatment also reduced the overall genome methylation level of wild-type Arabidopsis. Moreover, CMT3 bound to specific promoter and intragenic regions of NIA2. These combined results indicate that ammonium inhibits CMT3-mediated methylation of NIA2 and that of other target genes, and CMT3 selectively binds to target DNA sequences for methylation. PMID:26834755

  16. Aberrant Promoter Methylation of the Tumour Suppressor RASSF10 and Its Growth Inhibitory Function in Breast Cancer

    PubMed Central

    Richter, Antje M.; Walesch, Sara K.; Dammann, Reinhard H.

    2016-01-01

    Breast cancer is the most common cancer in women, with 1.7 million new cases each year. As early diagnosis and prognosis are crucial factors in cancer treatment, we investigated potential DNA methylation biomarkers of the tumour suppressor family Ras-association domain family (RASSF). Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby promotes cancer development and progression. In this study we analysed the tumour suppressors RASSF1A and RASSF10. Our study shows that RASSF10 is expressed in normal breast but inactivated by methylation in breast cancer. We observed a significant inactivating promoter methylation of RASSF10 in primary breast tumours. RASSF10 is inactivated in 63% of primary breast cancer samples but only 4% of normal control breast tissue is methylated (p < 0.005). RASSF1A also shows high promoter methylation levels in breast cancer of 56% vs. 8% of normal tissue (p < 0.005). Interestingly more than 80% of breast cancer samples harboured a hypermethylation of RASSF10 and/or RASSF1A promoter. Matching samples exhibited a strong tumour specific promoter methylation of RASSF10 in comparison to the normal control breast tissue. Demethylation treatment of breast cancer cell lines MCF7 and T47D reversed RASSF10 promoter hypermethylation and re-established RASSF10 expression. In addition, we could show the growth inhibitory potential of RASSF10 in breast cancer cell lines MCF7 and T47D upon exogenous expression of RASSF10 by colony formation. We could further show, that RASSF10 induced apoptotic changes in MCF7 and T47D cells, which was verified by a significant increase in the apoptotic sub G1 fraction by 50% using flow cytometry for MCF7 cells. In summary, our study shows the breast tumour specific inactivation of RASSF10 and RASSF1A due to DNA methylation of their CpG island promoters. Furthermore RASSF10 was characterised by the ability to block growth of breast cancer cell lines by apoptosis induction. PMID

  17. Frequent methylation of the KLOTHO gene and overexpression of the FGFR4 receptor in invasive ductal carcinoma of the breast.

    PubMed

    Dallol, Ashraf; Buhmeida, Abdelbaset; Merdad, Adnan; Al-Maghrabi, Jaudah; Gari, Mamdooh A; Abu-Elmagd, Muhammad M; Elaimi, Aisha; Assidi, Mourad; Chaudhary, Adeel G; Abuzenadah, Adel M; Nedjadi, Taoufik; Ermiah, Eramah; Alkhayyat, Shadi S; Al-Qahtani, Mohammed H

    2015-12-01

    Invasive ductal carcinoma of the breast is the most common cancer affecting women worldwide. The marked heterogeneity of breast cancer is matched only with the heterogeneity in its associated or causative factors. Breast cancer in Saudi Arabia is apparently an early onset with many of the affected females diagnosed before they reach the age of 50 years. One possible rationale underlying this observation is that consanguinity, which is widely spread in the Saudi community, is causing the accumulation of yet undetermined cancer susceptibility mutations. Another factor could be the accumulation of epigenetic aberrations caused by the shift toward a Western-like lifestyle in the past two decades. In order to shed some light into the molecular mechanisms underlying breast cancer in the Saudi community, we identified KLOTHO (KL) as a tumor-specific methylated gene using genome-wide methylation analysis of primary breast tumors utilizing the MBD-seq approach. KL methylation was frequent as it was detected in 55.3 % of breast cancer cases from Saudi Arabia (n = 179) using MethyLight assay. Furthermore, KL is downregulated in breast tumors with its expression induced following treatment with 5-azacytidine. The involvement of KL in breast cancer led us to investigate its relationship in the context of breast cancer, with one of the protagonists of its function, fibroblast growth factor receptor 4 (FGFR4). Overexpression of FGFR4 in breast cancer is frequent in our cohort and this overexpression is associated with poor overall survival. Interestingly, FGFR4 expression is higher in the absence of KL methylation and lower when KL is methylated and presumably silenced, which is suggestive of an intricate relationship between the two factors. In conclusion, our findings further implicate "metabolic" genes or pathways in breast cancer that are disrupted by epigenetic mechanisms and could provide new avenues for understanding this disease in a new context. PMID:26152288

  18. Global and gene-specific DNA methylation pattern discriminates cholecystitis from gallbladder cancer patients in Chile

    PubMed Central

    Kagohara, Luciane Tsukamoto; Schussel, Juliana L; Subbannayya, Tejaswini; Sahasrabuddhe, Nandini; Lebron, Cynthia; Brait, Mariana; Maldonado, Leonel; Valle, Blanca L; Pirini, Francesca; Jahuira, Martha; Lopez, Jaime; Letelier, Pablo; Brebi-Mieville, Priscilla; Ili, Carmen; Pandey, Akhilesh; Chatterjee, Aditi; Sidransky, David; Guerrero-Preston, Rafael

    2015-01-01

    Aim The aim of the study was to evaluate the use of global and gene-specific DNA methylation changes as potential biomarkers for gallbladder cancer (GBC) in a cohort from Chile. Material & methods DNA methylation was analyzed through an ELISA-based technique and quantitative methylation-specific PCR. Results Global DNA Methylation Index (p = 0.02) and promoter methylation of SSBP2 (p = 0.01) and ESR1 (p = 0.05) were significantly different in GBC when compared with cholecystitis. Receiver curve operator analysis revealed promoter methylation of APC, CDKN2A, ESR1, PGP9.5 and SSBP2, together with the Global DNA Methylation Index, had 71% sensitivity, 95% specificity, a 0.97 area under the curve and a positive predictive value of 90%. Conclusion Global and gene-specific DNA methylation may be useful biomarkers for GBC clinical assessment. PMID:25066711

  19. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas.

    PubMed

    Blanc, J L; Wager, M; Guilhot, J; Kusy, S; Bataille, B; Chantereau, T; Lapierre, F; Larsen, C J; Karayan-Tapon, L

    2004-07-01

    In an effort to extend the potential relationship between the methylation status of MGMT promoter and response to CENU therapy, we examined the methylation status of MGMT promoter in 44 patients with glioblastomas. Tumor specimens were obtained during surgery before adjuvant treatment, frozen and stored at -80 degrees C until for DNA extraction process. DNA methylation patterns in the CpG island of the MGMT gene were determined in every tumor by methylation specific PCR (MSP). These results were then related to overall survival and response to alkylating agents using statistical analysis. Methylation of the MGMT promoter was detected in 68% of tumors, and 96.7% of methylated tumors exhibited also an unmethylated status. There was no relationship between the methylation status of the MGMT promoter and overall survival and response to alkylating agents. Our observations do not lead us to consider promoter methylation of MGMT gene as a prognostic factor of responsiveness to alkylating agents in glioblastomas. PMID:15332332

  20. Exclusive Association of p53 Mutation with Super-High Methylation of Tumor Suppressor Genes in the p53 Pathway in a Unique Gastric Cancer Phenotype

    PubMed Central

    Ema, Akira; Katada, Natsuya; Kikuchi, Shiro; Watanabe, Masahiko

    2015-01-01

    Background A comprehensive search for DNA methylated genes identified candidate tumor suppressor genes that have been proven to be involved in the apoptotic process of the p53 pathway. In this study, we investigated p53 mutation in relation to such epigenetic alteration in primary gastric cancer. Methods The methylation profiles of the 3 genes: PGP9.5, NMDAR2B, and CCNA1, which are involved in the p53 tumor suppressor pathway in combination with p53 mutation were examined in 163 primary gastric cancers. The effect of epigenetic reversion in combination with chemotherapeutic drugs on apoptosis was also assessed according to the tumor p53 mutation status. Results p53 gene mutations were found in 44 primary gastric tumors (27%), and super-high methylation of any of the 3 genes was only found in cases with wild type p53. Higher p53 pathway aberration was found in cases with male gender (p = 0.003), intestinal type (p = 0.005), and non-infiltrating type (p = 0.001). The p53 pathway aberration group exhibited less recurrence in lymph nodes, distant organs, and peritoneum than the p53 non-aberration group. In the NUGC4 gastric cancer cell line (p53 wild type), epigenetic treatment augmented apoptosis by chemotherapeutic drugs, partially through p53 transcription activity. On the other hand, in the KATO III cancer cell line (p53 mutant), epigenetic treatment alone induced robust apoptosis, with no trans-activation of p53. Conclusion In gastric cancer, p53 relevant and non-relevant pathways exist, and tumors with either pathway type exhibited unique clinical features. Epigenetic treatments can induce apoptosis partially through p53 activation, however their apoptotic effects may be explained largely by mechanism other than through p53 pathways. PMID:26447864

  1. Silencing of CHD5 Gene by Promoter Methylation in Leukemia

    PubMed Central

    Zhao, Rui; Meng, Fanyi; Wang, Nisha; Ma, Wenli; Yan, Qitao

    2014-01-01

    Chromodomain helicase DNA binding protein 5 (CHD5) was previously proposed to function as a potent tumor suppressor by acting as a master regulator of a tumor-suppressive network. CHD5 is down-regulated in several cancers, including leukemia and is responsible for tumor generation and progression. However, the mechanism of CHD5 down-regulation in leukemia is largely unknown. In this study, quantitative reverse-transcriptase polymerase chain reaction and western blotting analyses revealed that CHD5 was down-regulated in human leukemia cell lines and samples. Luciferase reporter assays showed that most of the baseline regulatory activity was localized from 500 to 200 bp upstream of the transcription start site. Bisulfite DNA sequencing of the identified regulatory element revealed that the CHD5 promoter was hypermethylated in human leukemia cells and samples. Thus, CHD5 expression was inversely correlated with promoter DNA methylation in these samples. Treatment with DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CHD5 expression in human leukemia cell lines. In vitro luciferase reporter assays demonstrated that methylation of the CHD5 promoter repressed its promoter activity. Furthermore, a chromatin immunoprecipitation assay combined with qualitative PCR identified activating protein 2 (AP2) as a potential transcription factor involved in CHD5 expression and indicated that treatment with DAC increases the recruitment of AP2 to the CHD5 promoter. In vitro transcription-factor activity studies showed that AP2 over-expression was able to activate CHD5 promoter activity. Our findings indicate that repression of CHD5 gene expression in human leukemia is mediated in part by DNA methylation of its promoter. PMID:24454811

  2. A methylation-dependent DNA-binding activity recognising the methylated promoter region of the mouse Xist gene.

    PubMed

    Huntriss, J; Lorenzi, R; Purewal, A; Monk, M

    1997-06-27

    Differential methylation of CpG sites in the promoter region of the mouse Xist gene is correlated with Xist expression and X-chromosome inactivation in the female. Using oligonucleotides encompassing the differentially methylated sites as probes in band-shift assays, we have identified a nuclear protein which binds to a specific region of the promoter (between base pairs -45 and -30 upstream from the transcription start site) only when CpG sites within the CG rich region (GCGCCGCGG, -44 to -36) are methylated. Competition experiments with methylated or unmethylated heterologous oligonucleotides demonstrate that the activity is sequence-specific as well as methylation-dependent. Analysis by Southwestern blot identifies a protein of approximately 100 kDa molecular weight and confirms strong binding to the methylated Xist promoter oligonucleotide. Using a 233bp Xist-promoter luciferase construct in which the cytosines in the three CpG sites in the -44 to -36 region are mutated to thymine, we have established that this region is required for transcription from the mouse Xist promoter. Therefore, we suggest that the binding of the 100kDa protein to the methylated sequence leads to repression of transcription from the methylated Xist allele, thus suggesting a role in the regulation of both imprinted and random Xist transcription and X-chromosome inactivation. PMID:9207230

  3. Glycolic Acid Silences Inflammasome Complex Genes, NLRC4 and ASC, by Inducing DNA Methylation in HaCaT Cells.

    PubMed

    Tang, Sheau-Chung; Yeh, Jih-I; Hung, Sung-Jen; Hsiao, Yu-Ping; Liu, Fu-Tong; Yang, Jen-Hung

    2016-03-01

    AHAs (α-hydroxy acids), including glycolic acid (GA), have been widely used in cosmetic products and superficial chemical peels. Inflammasome complex has been shown to play critical roles in inflammatory pathways in human keratinocytes. However, the anti-inflammatory mechanism of GA is still unknown. The aim of this study is to investigate the relationship between the expression of the inflammasome complex and epigenetic modification to elucidate the molecular mechanism of the anti-inflammatory effect of GA in HaCaT cells. We evaluated NLRP3, NLRC4, AIM2, and ASC inflammasome complex gene expression on real-time polymerase chain reaction (PCR). Methylation changes were detected in these genes following treatment with DNA methyltransferase (DNMT) inhibitor 5-aza-2'-deoxycytidine (5-Aza) with or without the addition of GA using methylation-specific PCR (MSP). GA inhibited the expressions of these inflammasome complex genes, and the decreases in the expressions of mRNA were reversed by 5-Aza treatment. Methylation was detected in NLRC4 and ASC on MSP, but not in NLRP3 or AIM2. GA decreased NLRC4 and ASC gene expression by increasing not only DNA methyltransferase 3B (DNMT-3B) protein level, but also total DNMT activity. Furthermore, silencing of DNMT-3B (shDNMT-3B) increased the expressions of NLRC4 and ASC. Our data demonstrated that GA treatment induces hypermethylation of promoters of NLRC4 and ASC genes, which may subsequently lead to the hindering of the assembly of the inflammasome complex in HaCaT cells. These results highlight the anti-inflammatory potential of GA-containing cosmetic agents in human skin cells and demonstrate for the first time the role of aberrant hypermethylation in this process. PMID:26784358

  4. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes

    PubMed Central

    Lambros, Maryou; Stankiewicz, Elzbieta; Ng, Charlotte K. Y.; Weigelt, Britta; Rajab, Ramzi; Tinwell, Brendan; Corbishley, Cathy; Watkin, Nick; Berney, Dan; Reis-Filho, Jorge S.

    2016-01-01

    Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents. PMID:26901676

  5. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    SciTech Connect

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M.

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  6. MGMT, GATA6, CD81, DR4, and CASP8 gene promoter methylation in glioblastoma

    PubMed Central

    2012-01-01

    Background Methylation of promoter region is the major mechanism affecting gene expression in tumors. Recent methylome studies of brain tumors revealed a list of new epigenetically modified genes. Our aim was to study promoter methylation of newly identified epigenetically silenced genes together with already known epigenetic markers and evaluate its separate and concomitant role in glioblastoma genesis and patient outcome. Methods The methylation status of MGMT, CD81, GATA6, DR4, and CASP8 in 76 patients with primary glioblastomas was investigated. Methylation-specific PCR reaction was performed using bisulfite treated DNA. Evaluating glioblastoma patient survival time after operation, patient data and gene methylation effect on survival was estimated using survival analysis. Results The overwhelming majority (97.3%) of tumors were methylated in at least one of five genes tested. In glioblastoma specimens gene methylation was observed as follows: MGMT in 51.3%, GATA6 in 68.4%, CD81 in 46.1%, DR4 in 41.3% and CASP8 in 56.8% of tumors. Methylation of MGMT was associated with younger patient age (p < 0.05), while CASP8 with older (p < 0.01). MGMT methylation was significantly more frequent event in patient group who survived longer than 36 months after operation (p < 0.05), while methylation of CASP8 was more frequent in patients who survived shorter than 36 months (p < 0.05). Cox regression analysis showed patient age, treatment, MGMT, GATA6 and CASP8 as independent predictors for glioblastoma patient outcome (p < 0.05). MGMT and GATA6 were independent predictors for patient survival in younger patients’ group, while there were no significant associations observed in older patients’ group when adjusted for therapy. Conclusions High methylation frequency of tested genes shows heterogeneity of glioblastoma epigenome and the importance of MGMT, GATA6 and CASP8 genes methylation in glioblastoma patient outcome. PMID:22672670

  7. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  8. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  9. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression

    PubMed Central

    Suter, Melissa; Ma, Jun; Harris, Alan; Patterson, Lauren; Brown, Kathleen A; Shope, Cynthia; Showalter, Lori; Abramovici, Adi

    2011-01-01

    Several studies linking alterations in differential placental methylation with pregnancy disorders have implicated (de) regulation of the placental epigenome with fetal programming and later-in-life disease. We have previously demonstrated that maternal tobacco use is associated with alterations in promoter methylation of placental CYP1A1 and that these changes are correlated with CYP1A1 gene expression and fetal growth restriction. In this study we sought to expand our analysis of promoter methylation by correlating it to gene expression on a genome-wide scale. Employing side-by-side IlluminaHG-12 gene transcription with Infinium27K methylation arrays, we interrogated correlative changes in placental gene expression and DNA methylation associated with maternal tobacco smoke exposure at an epigenome-wide level and in consideration of signature gene pathways. We observed that the expression of 623 genes and the methylation of 1,024 CpG dinucleotides are significantly altered among smokers, with only 38 CpGs showing significant differential methylation (differing by a methylation level of ≥10%). We identified a significant Pearson correlation (≥0.7 or ≤-0.7) between placental transcriptional regulation and differential CpG methylation in only 25 genes among non-smokers but in 438 genes among smokers (18-fold increase, p < 0.0001), with a dominant effect among oxidative stress pathways. Differential methylation at as few as 6 sites was attributed to maternal smoking-mediated birth weight reduction in linear regression models with Bonferroni correction (p < 1.8 × 10−6). These studies suggest that a common perinatal exposure (such as maternal smoking) deregulates placental methylation in a CpG site-specific manner that correlates with meaningful alterations in gene expression along signature pathways. PMID:21937876

  10. Promoter methylation of E-cadherin, p16, and RAR-beta(2) genes in breast tumors and dietary intake of nutrients important in one-carbon metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aberrant DNA methylation plays a critical role in carcinogenesis, and the availability of dietary factors involved in 1-carbon metabolism may contribute to aberrant DNA methylation. We investigated the association of intake of folate, vitamins B(2), B(6), B(12), and methionine with promoter methylat...

  11. Methylation of miRNA genes in the response to temperature stress in Populus simonii.

    PubMed

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  12. Methylation of miRNA genes in the response to temperature stress in Populus simonii

    PubMed Central

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  13. Inflammatory and steroid receptor gene methylation in the human amnion and decidua.

    PubMed

    Mitchell, Carolyn M; Sykes, Shane D; Pan, Xin; Pringle, Kirsty G; Lumbers, Eugenie R; Hirst, Jonathan J; Zakar, Tamas

    2013-04-01

    Correct timing of parturition requires inflammatory gene activation in the gestational tissues at term and repression during pregnancy. Promoter methylation at CpG dinucleotides represses gene activity; therefore, we examined the possibility that DNA methylation is involved in the regulation of labour-associated genes in human pregnancy. Amnion and decidua were collected at 11-17 weeks of gestation and at term following elective Caesarean delivery or spontaneous labour. Methylation of the inflammatory genes PTGS2, BMP2, NAMPT and CXCL2 was analysed using the Methyl-Profiler PCR System and bisulphite sequencing. Methylation of the glucocorticoid, progesterone and oestrogen receptor genes, involved in the hormonal regulation of gestational tissue function, and the expression of the DNA methyltransferases DNMT1, -3A and -3B were also determined. Variable proportions of inflammatory and steroid receptor gene copies, to a maximum of 50.9%, were densely methylated in both tissues consistent with repression. Densely methylated copy proportions were significantly different between genes showing no relationship with varying expression during pregnancy, between tissues and in individuals. Methylated copy proportions of all genes in amnion and most genes in decidua were highly correlated in individuals. DNMT1 and -3A were expressed in both tissues with significantly higher levels in the amnion at 11-17 weeks than at term. We conclude that the unmethylated portion of gene copies is responsible for the full range of regulated expression in the amnion and decidua during normal pregnancy. Dense methylation of individually variable gene copy proportions happens in the first trimester amnion influenced by sequence context and affected strongly by individual circumstances. PMID:23393306

  14. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    SciTech Connect

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrus cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed anymore

  15. Aberrant expression of Notch1, HES1, and DTX1 genes in glioblastoma formalin-fixed paraffin-embedded tissues.

    PubMed

    Narayanappa, Rajeswari; Rout, Pritilata; Aithal, Madhuri G S; Chand, Ashis Kumar

    2016-05-01

    Glioblastoma is the most common malignant brain tumor accounting for more than 54 % of all gliomas. Despite aggressive treatments, median survival remains less than 1 year. This might be due to the unavailability of effective molecular diagnostic markers and targeted therapy. Thus, it is essential to discover molecular mechanisms underlying disease by identifying dysregulated pathways involved in tumorigenesis. Notch signaling is one such pathway which plays an important role in determining cell fates. Since it is found to play a critical role in many cancers, we investigated the role of Notch genes in glioblastoma with an aim to identify biomarkers that can improve diagnosis. Using real-time PCR, we assessed the expression of Notch genes including receptors (Notch1, Notch2, Notch3, and Notch4), ligands (JAG1, JAG2, and DLL3), downstream targets (HES1 and HEY2), regulator Deltex1 (DTX1), inhibitor NUMB along with transcriptional co-activator MAML1, and a component of gamma-secretase complex APH1A in 15 formalin-fixed paraffin-embedded (FFPE) patient samples. Relative quantification was done by the 2(-ΔΔCt) method; the data are presented as fold change in gene expression normalized to an internal control gene and relative to the calibrator. The data revealed aberrant expression of Notch genes in glioblastoma compared to normal brain. More than 85 % of samples showed high Notch1 (P = 0.0397) gene expression and low HES1 (P = 0.011) and DTX1 (P = 0.0001) gene expression. Our results clearly show aberrant expression of Notch genes in glioblastoma which can be used as putative biomarkers together with histopathological observation to improve diagnosis, therapeutic strategies, and patient prognosis. PMID:26662803

  16. Maternal and paternal chromosomes 7 show differential methylation of many genes in lymphoblast DNA.

    PubMed

    Hannula, K; Lipsanen-Nyman, M; Scherer, S W; Holmberg, C; Höglund, P; Kere, J

    2001-04-01

    Genomic imprinting, the differential expression of paternal and maternal alleles, involves many chromosomal regions and plays a role in development and growth. Differential methylation of maternal and paternal alleles is a hallmark of imprinted genes, and thus methylation assays are widely used to support the identification of novel imprinted genes. Either blood or lymphoblast DNAs are most often used in these assays, even though methylation levels may change in cell culture. We undertook a systematic survey of parent-of-origin-specific methylation of chromosome 7 genes and ESTs by comparing DNA samples from cases of maternal and paternal uniparental disomy for chromosome 7 using DNA from fresh blood and lymphoblast cell lines. Our results revealed that up to 41% of genes and ESTs show parent-of-origin-specific methylation differences in lymphoblast DNA after only a short time in culture, whereas methylation differences were not seen in blood DNA. The methylation changes occurred most commonly on paternal chromosome 7, whereas alterations on maternal chromosome 7 were more infrequent and weaker. These findings indicate that methylation patterns may change significantly during cell culture in a parent-of-origin-dependent manner and suggest that methylation is maintained differently on maternal and paternal chromosomes 7. PMID:11352560

  17. Identification of methylated genes in salivary gland adenoid cystic carcinoma xenografts using global demethylation and methylation microarray screening

    PubMed Central

    LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.

    2016-01-01

    Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the

  18. Methylation Status of Vitamin D Receptor Gene Promoter in Benign and Malignant Adrenal Tumors

    PubMed Central

    Pilon, Catia; Rebellato, Andrea; Urbanet, Riccardo; Guzzardo, Vincenza; Cappellesso, Rocco; Sasano, Hironobu; Fassina, Ambrogio

    2015-01-01

    We previously showed a decreased expression of vitamin D receptor (VDR) mRNA/protein in a small group of adrenocortical carcinoma (ACC) tissues, suggesting the loss of a protective role of VDR against malignant cell growth in this cancer type. Downregulation of VDR gene expression may result from epigenetics events, that is, methylation of cytosine nucleotide of CpG islands in VDR gene promoter. We analyzed methylation of CpG sites in the VDR gene promoter in normal adrenals and adrenocortical tumor samples. Methylation of CpG-rich 5′ regions was assessed by bisulfite sequencing PCR using bisulfite-treated DNA from archival microdissected paraffin-embedded adrenocortical tissues. Three normal adrenals and 23 various adrenocortical tumor samples (15 adenomas and 8 carcinomas) were studied. Methylation in the promoter region of VDR gene was found in 3/8 ACCs, while no VDR gene methylation was observed in normal adrenals and adrenocortical adenomas. VDR mRNA and protein levels were lower in ACCs than in benign tumors, and VDR immunostaining was weak or negative in ACCs, including all 3 methylated tissue samples. The association between VDR gene promoter methylation and reduced VDR gene expression is not a rare event in ACC, suggesting that VDR epigenetic inactivation may have a role in adrenocortical carcinogenesis. PMID:26843863

  19. The impact of endurance exercise on global and AMPK gene-specific DNA methylation.

    PubMed

    King-Himmelreich, Tanya S; Schramm, Stefanie; Wolters, Miriam C; Schmetzer, Julia; Möser, Christine V; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. PMID:27103439

  20. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  1. Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley.

    PubMed

    Ayliffe, Michael A; Steinau, Martin; Park, Robert F; Rooke, Lee; Pacheco, Maria G; Hulbert, Scot H; Trick, Harold N; Pryor, Anthony J

    2004-08-01

    The maize Rp1-D gene confers race-specific resistance against Puccinia sorghi (common leaf rust) isolates containing a corresponding avrRp1-D avirulence gene. An Rp1-D genomic clone and a similar Rp1-D transgene regulated by the maize ubiquitin promoter were transformed independently into susceptible maize lines and shown to confer Rp1-D resistance, demonstrating that this resistance can be transferred as a single gene. Transfer of these functional transgenes into wheat and barley did not result in novel resistances when these plants were challenged with isolates of wheat stem rust (P. graminis), wheat leaf rust (P. triticina), or barley leaf rust (P. hordei). Regardless of the promoter employed, low levels of gene expression were observed. When constitutive promoters were used for transgene expression, a majority of Rp1-D transcripts were truncated in the nucleotide binding site-encoding region by premature polyadenylation. This aberrant mRNA processing was unrelated to gene function because an inactive version of the gene also generated such transcripts. These data demonstrate that resistance gene transfer between species may not be limited only by divergence of signaling effector molecules and pathogen avirulence ligands, but potentially also by more fundamental gene expression and transcript processing limitations. PMID:15305606

  2. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  3. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory

    PubMed Central

    Raynal, Noël J.-M.; Si, Jiali; Taby, Rodolphe F.; Gharibyan, Vazganush; Ahmed, Saira; Jelinek, Jaroslav; Estécio, Marcos R.H.; Issa, Jean-Pierre J.

    2012-01-01

    DNA methylation is commonly thought of as a "molecular lock" that leads to permanent gene silencing. To investigate this notion, we tested 24 different HDAC inhibitors (HDACi) on colon cancer cells that harbor a GFP locus stably integrated and silenced by a hypermethylated CMV promoter. We found that HDACi efficiently reactivated expression of GFP and many other endogenous genes silenced by DNA hypermethylation. After treatment, all promoters were marked with active chromatin, yet DNA hypermethylation did not change. Thus, DNA methylation could not prevent gene reactivation by drug-induced resetting of the chromatin state. In evaluating the relative contribution of DNA methylation and histone modifications to stable gene silencing, we followed expression levels of GFP and other genes silenced by DNA hypermethylation over time after treatment with HDACi or DNA demethylating drugs. Reactivation of methylated loci by HDACi was detectable for only 2 weeks, whereas DNA demethylating drugs induced permanent epigenetic reprogramming. Therefore, DNA methylation cannot be considered as a lock for gene expression, but rather as a memory signal for long-term maintenance of gene silencing. These findings define chromatin as an important druggable target for cancer epigenetic therapy and suggest that removal of DNA methylation signals is required to achieve long-term gene reactivation. PMID:22219169

  4. Defining the cutoff value of MGMT gene promoter methylation and its predictive capacity in glioblastoma.

    PubMed

    Brigliadori, Giovanni; Foca, Flavia; Dall'Agata, Monia; Rengucci, Claudia; Melegari, Elisabetta; Cerasoli, Serenella; Amadori, Dino; Calistri, Daniele; Faedi, Marina

    2016-06-01

    Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %. PMID:27029617

  5. A new synthesis in epigenetics: towards a unified function of DNA methylation from invertebrates to vertebrates.

    PubMed

    Mandrioli, M

    2007-10-01

    DNA methylation is generally limited to CpG doublets located at the gene promoter with an involvement in gene silencing. Surprisingly, two recent papers showed an extensive methylation affecting coding portions of transcriptionally active genes in human and plants prompting a rethink of DNA methylation in eukaryotes. Actually, gene body methylation is not surprising since it has been repeatedly reported in invertebrates, where it interferes with transcriptional elongation preventing aberrant transcription initiations. As a whole, the published data suggest that the most ancestral function of DNA methylation is the control of genes that are susceptible to transcriptional interference and not to gene silencing. The recruitment of DNA methylation for silencing represents a successive tinkered use. In view of this additional function, the invertebrate-vertebrate transition has been accompanied by new constraints on DNA methylation that resulted in the strong conservation of the DNA methylation machinery in vertebrates and in the non-viability of mutants lacking DNA methylation. PMID:17712527

  6. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs.

    PubMed

    Steegenga, Wilma T; Boekschoten, Mark V; Lute, Carolien; Hooiveld, Guido J; de Groot, Philip J; Morris, Tiffany J; Teschendorff, Andrew E; Butcher, Lee M; Beck, Stephan; Müller, Michael

    2014-06-01

    Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression. PMID:24789080

  7. Lower Methylation of the ANGPTL2 Gene in Leukocytes from Post-Acute Coronary Syndrome Patients

    PubMed Central

    Nguyen, Albert; Mamarbachi, Maya; Turcot, Valérie; Lessard, Samuel; Yu, Carol; Luo, Xiaoyan; Lalongé, Julie; Hayami, Doug; Gayda, Mathieu; Juneau, Martin; Thorin-Trescases, Nathalie; Lettre, Guillaume; Nigam, Anil; Thorin, Eric

    2016-01-01

    DNA methylation is believed to regulate gene expression during adulthood in response to the constant changes in environment. The methylome is therefore proposed to be a biomarker of health through age. ANGPTL2 is a circulating pro-inflammatory protein that increases with age and prematurely in patients with coronary artery diseases; integrating the methylation pattern of the promoter may help differentiate age- vs. disease-related change in its expression. We believe that in a pro-inflammatory environment, ANGPTL2 is differentially methylated, regulating ANGPTL2 expression. To test this hypothesis we investigated the changes in promoter methylation of ANGPTL2 gene in leukocytes from patients suffering from post-acute coronary syndrome (ACS). DNA was extracted from circulating leukocytes of post-ACS patients with cardiovascular risk factors and from healthy young and age-matched controls. Methylation sites (CpGs) found in the ANGPTL2 gene were targeted for specific DNA methylation quantification. The functionality of ANGPTL2 methylation was assessed by an in vitro luciferase assay. In post-ACS patients, C-reactive protein and ANGPTL2 circulating levels increased significantly when compared to healthy controls. Decreased methylation of specific CpGs were found in the promoter of ANGPTL2 and allowed to discriminate age vs. disease associated methylation. In vitro DNA methylation of specific CpG lead to inhibition of ANGPTL2 promoter activity. Reduced leukocyte DNA methylation in the promoter region of ANGPTL2 is associated with the pro-inflammatory environment that characterizes patients with post-ACS differently from age-matched healthy controls. Methylation of different CpGs in ANGPTL2 gene may prove to be a reliable biomarker of coronary disease. PMID:27101308

  8. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas.

    PubMed

    Zhou, Ruigang; Man, Yigang

    2016-04-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed genes (DEGs) and differentially methylated regions (DMRs), respectively, integrated analysis of the DEGs and DMRs was performed to detect their correlation. Subsequently, the WGCNA algorithm was applied to identify the significant modules and construct the co‑expression network associated with PAs. Furthermore, Gene Ontology enrichment analysis of the associated genes was performed using the Database for Annotation, Visualization and Integrated Discovery. A total number of 2,259 DEGs and 235 DMRs were screened out. Integrated analysis revealed that 30 DEGs were DMRs with prominent negative correlation (cor=‑0.82; P=0.02). Based on the DEGs, the gene co‑expression network was constructed, and nine network modules associated with PAs were identified. The functional analysis results showed that genes relevant to PAs were closely associated with cell differentiation modulation. The screened PA-associated genes were significantly different at the expression and methylation levels. These genes may be used as reliable candidate target genes for the treatment of PAs. PMID:26934913

  9. Integrated analysis of DNA methylation profiles and gene expression profiles to identify genes associated with pilocytic astrocytomas

    PubMed Central

    ZHOU, RUIGANG; MAN, YIGANG

    2016-01-01

    The present study performed an integral analysis of the gene expression and DNA methylation profile of pilocytic astrocytomas (PAs). Weighted gene co-expression network analysis (WGCNA) was also performed to examine and identify the genes correlated to PAs, to identify candidate therapeutic targets for the treatment of PAs. The DNA methylation profile and gene expression profile were downloaded from the Gene Expression Omnibus database. Following screening of the differentially expressed genes (DEGs) and differentially methylated regions (DMRs), respectively, integrated analysis of the DEGs and DMRs was performed to detect their correlation. Subsequently, the WGCNA algorithm was applied to identify the significant modules and construct the co-expression network associated with PAs. Furthermore, Gene Ontology enrichment analysis of the associated genes was performed using the Database for Annotation, Visualization and Integrated Discovery. A total number of 2,259 DEGs and 235 DMRs were screened out. Integrated analysis revealed that 30 DEGs were DMRs with prominent negative correlation (cor=−0.82; P=0.02). Based on the DEGs, the gene co-expression network was constructed, and nine network modules associated with PAs were identified. The functional analysis results showed that genes relevant to PAs were closely associated with cell differentiation modulation. The screened PA-associated genes were significantly different at the expression and methylation levels. These genes may be used as reliable candidate target genes for the treatment of PAs. PMID:26934913

  10. Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer.

    PubMed

    Luo, Xiang; Huang, Rong; Sun, Hongru; Liu, Yupeng; Bi, Haoran; Li, Jing; Yu, Hongyuan; Sun, Jiamei; Lin, Shangqun; Cui, Binbin; Zhao, Yashuang

    2016-01-01

    The relationship between the DNA methylation status of the CpG islands of multiple genes in blood leukocytes in CRC susceptibility and prognosis, as well as possible interactions with dietary factors on CRC risk are unclear. We carried out a case-control study including 421 CRC patients and 506 controls to examine the associations between six genes (AOX-1, RARB2, RERG, ADAMTS9, IRF4, and FOXE-1), multiple CpG site methylation (MCSM) and susceptibility to CRC. High-level MCSM (MCSM-H) was defined as methylation of greater than or equal to 2 of 5 candidate genes (except for RARB2); low-level MCSM (MCSM-L) was when 1 candidate gene was methylated; non-MCSM was when none of the candidate genes were methylated. Blood cell-derived DNA methylation status was detected using methylation-sensitive high-resolution melting analysis. The hypermethylation status of each individual gene was statistically significantly associated with CRC. MCSM status was also associated with CRC (OR = 1.54, 95% CI: 1.15-2.05, P = 0.004). We observed interactions between a high level of dietary intake of cereals, pungent food, and stewed fish with brown sauce, age (older than 60 yrs), smoking and hypermethylation on risk of CRC. MCSM in peripheral blood DNA may be an important biomarker for susceptibility to CRC. PMID:27453436

  11. Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer

    PubMed Central

    Luo, Xiang; Huang, Rong; Sun, Hongru; Liu, Yupeng; Bi, Haoran; Li, Jing; Yu, Hongyuan; Sun, Jiamei; Lin, Shangqun; Cui, Binbin; Zhao, Yashuang

    2016-01-01

    The relationship between the DNA methylation status of the CpG islands of multiple genes in blood leukocytes in CRC susceptibility and prognosis, as well as possible interactions with dietary factors on CRC risk are unclear. We carried out a case-control study including 421 CRC patients and 506 controls to examine the associations between six genes (AOX-1, RARB2, RERG, ADAMTS9, IRF4, and FOXE-1), multiple CpG site methylation (MCSM) and susceptibility to CRC. High-level MCSM (MCSM-H) was defined as methylation of greater than or equal to 2 of 5 candidate genes (except for RARB2); low-level MCSM (MCSM-L) was when 1 candidate gene was methylated; non-MCSM was when none of the candidate genes were methylated. Blood cell-derived DNA methylation status was detected using methylation-sensitive high-resolution melting analysis. The hypermethylation status of each individual gene was statistically significantly associated with CRC. MCSM status was also associated with CRC (OR = 1.54, 95% CI: 1.15–2.05, P = 0.004). We observed interactions between a high level of dietary intake of cereals, pungent food, and stewed fish with brown sauce, age (older than 60 yrs), smoking and hypermethylation on risk of CRC. MCSM in peripheral blood DNA may be an important biomarker for susceptibility to CRC. PMID:27453436

  12. Methylation profiling of 48 candidate genes in tumor and matched normal tissues from breast cancer patients.

    PubMed

    Li, Zibo; Guo, Xinwu; Wu, Yepeng; Li, Shengyun; Yan, Jinhua; Peng, Limin; Xiao, Zhi; Wang, Shouman; Deng, Zhongping; Dai, Lizhong; Yi, Wenjun; Xia, Kun; Tang, Lili; Wang, Jun

    2015-02-01

    Gene-specific methylation alterations in breast cancer have been suggested to occur early in tumorigenesis and have the potential to be used for early detection and prevention. The continuous increase in worldwide breast cancer incidences emphasizes the urgent need for identification of methylation biomarkers for early cancer detection and patient stratification. Using microfluidic PCR-based target enrichment and next-generation bisulfite sequencing technology, we analyzed methylation status of 48 candidate genes in paired tumor and normal tissues from 180 Chinese breast cancer patients. Analysis of the sequencing results showed 37 genes differentially methylated between tumor and matched normal tissues. Breast cancer samples with different clinicopathologic characteristics demonstrated distinct profiles of gene methylation. The methylation levels were significantly different between breast cancer subtypes, with basal-like and luminal B tumors having the lowest and the highest methylation levels, respectively. Six genes (ACADL, ADAMTSL1, CAV1, NPY, PTGS2, and RUNX3) showed significant differential methylation among the 4 breast cancer subtypes and also between the ER +/ER- tumors. Using unsupervised hierarchical clustering analysis, we identified a panel of 13 hypermethylated genes as candidate biomarkers that performed a high level of efficiency for cancer prediction. These 13 genes included CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1, SFRP2, SOX17, TNFRSF10D, and WRN. Our results provide evidence that well-defined DNA methylation profiles enable breast cancer prediction and patient stratification. The novel gene panel might be a valuable biomarker for early detection of breast cancer. PMID:25636590

  13. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene

    SciTech Connect

    Buschhausen, G.; Wittig, B.; Graessmann, M.; Graessmann, A.

    1987-03-01

    Inhibition of herpes simplex virus (HSV) thymidine kinase (TK) gene transcription (pHSV-106, pML-BPV-TK4) by DNA methylation is an indirect effect, which occurs with a latency period of approx. 8 hr microinjection of the DNA into TK/sup -/ rat 2 and mouse LTK/sup -/ cells. The authors have strong evidence that chromatin formation is critical for the transition of the injected DNA from methylation insensitivity to methylation sensitivity. Chromatin was reconstituted in vitro by using methylated and mock-methylated HSV TK DNA and purified chicken histone octamers. After microinjection, the methylated chromatin was always biologically inactive, as tested by autoradiography of the cells after incubation with (/sup 3/H)thymidine and by RNA dot blot analysis. However, in transformed cell lines, reactivation of the methylated chromatic occurred after treatment with 5-azacytidine. Furthermore, integration of the TK chromatin into the host genome is not required to block expression of the methylated TK gene. Mouse cells that contained the pML-BPV-TK4 chromatin permanently in an episomal state also did not support TK gene expression as long as the TK DNA remained methylated.

  14. The Role of Methylation in Breast Cancer Susceptibility and Treatment.

    PubMed

    Pouliot, Marie-Christine; Labrie, Yvan; Diorio, Caroline; Durocher, Francine

    2015-09-01

    DNA methylation is a critical mechanism of epigenetic modification involved in gene expression programming, that can promote the development of several cancers, including breast cancer. The methylation of CpG islands by DNA methyltransferases is reversible and has been shown to modify the transcriptional activity of key proliferation genes or transcription factors involved in suppression or promotion of cell growth. Indeed, aberrant methylation found in gene promoters is a hallmark of cancer that could be used as non-intrusive biomarker in body fluids such as blood and plasma for early detection of breast cancer. Many biomarker genes have been evaluated for breast cancer detection. However, in the absence of a unique biomarker having the sufficient specificity and sensitivity, a panel of multiple genes should be used. Treatments targeting aberrant methylation by DNA methyltransferase inhibitors, which trigger re-expression of silenced genes, are now available and allow for better treatment efficiency. PMID:26254344

  15. Integration and bioinformatics analysis of DNA-methylated genes associated with drug resistance in ovarian cancer

    PubMed Central

    YAN, BINGBING; YIN, FUQIANG; WANG, QI; ZHANG, WEI; LI, LI

    2016-01-01

    The main obstacle to the successful treatment of ovarian cancer is the development of drug resistance to combined chemotherapy. Among all the factors associated with drug resistance, DNA methylation apparently plays a critical role. In this study, we performed an integrative analysis of the 26 DNA-methylated genes associated with drug resistance in ovarian cancer, and the genes were further evaluated by comprehensive bioinformatics analysis including gene/protein interaction, biological process enrichment and annotation. The results from the protein interaction analyses revealed that at least 20 of these 26 methylated genes are present in the protein interaction network, indicating that they interact with each other, have a correlation in function, and may participate as a whole in the regulation of ovarian cancer drug resistance. There is a direct interaction between the phosphatase and tensin homolog (PTEN) gene and at least half of the other genes, indicating that PTEN may possess core regulatory functions among these genes. Biological process enrichment and annotation demonstrated that most of these methylated genes were significantly associated with apoptosis, which is possibly an essential way for these genes to be involved in the regulation of multidrug resistance in ovarian cancer. In addition, a comprehensive analysis of clinical factors revealed that the methylation level of genes that are associated with the regulation of drug resistance in ovarian cancer was significantly correlated with the prognosis of ovarian cancer. Overall, this study preliminarily explains the potential correlation between the genes with DNA methylation and drug resistance in ovarian cancer. This finding has significance for our understanding of the regulation of resistant ovarian cancer by methylated genes, the treatment of ovarian cancer, and improvement of the prognosis of ovarian cancer. PMID:27347118

  16. Methylation of the adenomatous polyposis coli (APC) gene in human placenta and hypermethylation in choriocarcinoma cells.

    PubMed

    Wong, N C; Novakovic, B; Weinrich, B; Dewi, C; Andronikos, R; Sibson, M; Macrae, F; Morley, R; Pertile, M D; Craig, J M; Saffery, R

    2008-09-01

    Methylation of the human APC gene promoter is associated with several different types of cancers and has also been documented in some pre-cancerous tissues. We have examined the methylation of APC gene promoters in human placenta and choriocarcinoma cells. This revealed a general hypomethylation of the APC-1b promoter and a pattern with monoallelic methylation of the APC-1a promoter in full term placental tissue. However, there was no evidence of a parent-of-origin effect, suggesting random post zygotic origin of methylation. Increased methylation of this promoter was observed in all choriocarcinoma-derived trophoblast cell lines, suggesting a trophoblastic origin of placental APC methylation and implicating APC hypermethylation in the development of this group of gestational tumours. Our demonstration of placental methylation of the APC-1a promoter represents the first observation of monoallelic methylation of this gene in early development, and provides further support for a role of canonical Wnt signalling in placental trophoblast invasiveness. This also implicates tumour suppressor gene silencing as an integral part of normal human placental development. PMID:18485586

  17. Protein Methylation and Interaction with the Antiproliferative Gene, BTG2/TIS21/Pc3

    PubMed Central

    Kim, Sangduk

    2014-01-01

    The last one and half a decade witnessed an outstanding re-emergence of attention and remarkable progress in the field of protein methylation. In the present article, we describe the early discoveries in research and review the role protein methylation played in the biological function of the antiproliferative gene, BTG2/TIS21/PC3. PMID:24532495

  18. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera.

    PubMed

    Wedd, Laura; Kucharski, Robert; Maleszka, Ryszard

    2016-01-01

    Differential intragenic methylation in social insects has been hailed as a prime mover of environmentally driven organismal plasticity and even as evidence for genomic imprinting. However, very little experimental work has been done to test these ideas and to prove the validity of such claims. Here we analyze in detail differentially methylated obligatory epialleles of a conserved gene encoding lysosomal α-mannosidase (AmLAM) in the honeybee. We combined genotyping of progenies derived from colonies founded by single drone inseminated queens, ultra-deep allele-specific bisulfite DNA sequencing, and gene expression to reveal how sequence variants, DNA methylation, and transcription interrelate. We show that both methylated and non-methylated states of AmLAM follow Mendelian inheritance patterns and are strongly influenced by polymorphic changes in DNA. Increased methylation of a given allele correlates with higher levels of context-dependent AmLAM expression and appears to affect the transcription of an antisense long noncoding RNA. No evidence of allelic imbalance or imprinting involved in this process has been found. Our data suggest that by generating alternate methylation states that affect gene expression, sequence variants provide organisms with a high level of epigenetic flexibility that can be used to select appropriate responses in various contexts. This study represents the first effort to integrate DNA sequence variants, gene expression, and methylation in a social insect to advance our understanding of their relationships in the context of causality. PMID:26507253

  19. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  20. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer

    PubMed Central

    He, Dong-Xu; Gu, Feng; Gao, Fei; Hao, Jun-jun; Gong, Desheng; Gu, Xiao-Ting; Mao, Ai-Qin; Jin, Jian; Fu, Li; Ma, Xin

    2016-01-01

    Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance. PMID:27094684

  1. DDMGD: the database of text-mined associations between genes methylated in diseases from different species.

    PubMed

    Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B

    2015-01-01

    Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases. PMID:25398897

  2. Genome-wide profiles of methylation, microRNAs, and gene expression in chemoresistant breast cancer.

    PubMed

    He, Dong-Xu; Gu, Feng; Gao, Fei; Hao, Jun-Jun; Gong, Desheng; Gu, Xiao-Ting; Mao, Ai-Qin; Jin, Jian; Fu, Li; Ma, Xin

    2016-01-01

    Cancer chemoresistance is regulated by complex genetic and epigenetic networks. In this study, the features of gene expression, methylation, and microRNA (miRNA) expression were investigated with high-throughput sequencing in human breast cancer MCF-7 cells resistant to adriamycin (MCF-7/ADM) and paclitaxel (MCF-7/PTX). We found that: ① both of the chemoresistant cell lines had similar, massive changes in gene expression, methylation, and miRNA expression versus chemosensitive controls. ② Pairwise integration of the data highlighted sets of genes that were regulated by either methylation or miRNAs, and sets of miRNAs whose expression was controlled by DNA methylation in chemoresistant cells. ③ By combining the three sets of high-throughput data, we obtained a list of genes whose expression was regulated by both methylation and miRNAs in chemoresistant cells; ④ Expression of these genes was then validated in clinical breast cancer samples to generate a 17-gene signature that showed good predictive and prognostic power in triple-negative breast cancer patients receiving anthracycline-taxane-based neoadjuvant chemotherapy. In conclusion, our results have generated a new workflow for the integrated analysis of the effects of miRNAs and methylation on gene expression during the development of chemoresistance. PMID:27094684

  3. PAX8 is transcribed aberrantly in cervical tumors and derived cell lines due to complex gene rearrangements.

    PubMed

    López-Urrutia, Eduardo; Pedroza-Torres, Abraham; Fernández-Retana, Jorge; De Leon, David Cantu; Morales-González, Fermín; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; García-Mendez, Jorge; García-Castillo, Verónica; Bautista-Isidro, Osvaldo; Pérez-Plasencia, Carlos

    2016-07-01

    The transcription factor PAX8, a member of the paired box-containing gene family with an important role in embryogenesis of the kidney, thyroid gland and nervous system, has been described as a biomarker in tumors of the thyroid, parathyroid, kidney and thymus. The PAX8 gene gives rise to four isoforms, through alternative mRNA splicing, but the splicing pattern in tumors is not yet established. Cervical cancer has a positive expression of PAX8; however, there is no available data determining which PAX8 isoform or isoforms are present in cervical cancer tissues as well as in cervical carcinoma-derived cell lines. Instead of a differential pattern of splicing isoforms, we found numerous previously unreported PAX8 aberrant transcripts ranging from 378 to 542 bases and present in both cervical carcinoma-derived cell lines and tumor samples. This is the first report of PAX8 aberrant transcript production in cervical cancer. Reported PAX8 isoforms possess differential transactivation properties; therefore, besides being a helpful marker for detection of cancer, PAX8 isoforms can plausibly exert differential regulation properties during carcinogenesis. PMID:27175788

  4. The Homeobox Gene MEIS1 Is Methylated in BRAFp.V600E Mutated Colon Tumors

    PubMed Central

    Dihal, Ashwin A.; Boot, Arnoud; van Roon, Eddy H.; Schrumpf, Melanie; Fariña-Sarasqueta, Arantza; Fiocco, Marta; Zeestraten, Eliane C. M.; Kuppen, Peter J. K.; Morreau, Hans; van Wezel, Tom; Boer, Judith M.

    2013-01-01

    Development of colorectal cancer (CRC) can occur both via gene mutations in tumor suppressor genes and oncogenes, as well as via epigenetic changes, including DNA methylation. Site-specific methylation in CRC regulates expression of tumor-associated genes. Right-sided colon tumors more frequently have BRAFp.V600E mutations and have higher methylation grades when compared to left-sided malignancies. The aim of this study was to identify DNA methylation changes associated with BRAFp.V600E mutation status. We performed methylation profiling of colon tumor DNA, isolated from frozen sections enriched for epithelial cells by macro-dissection, and from paired healthy tissue. Single gene analyses comparing BRAFp.V600E with BRAF wild type revealed MEIS1 as the most significant differentially methylated gene (log2 fold change: 0.89, false discovery rate-adjusted P-value 2.8*10-9). This finding was validated by methylation-specific PCR that was concordant with the microarray data. Additionally, validation in an independent cohort (n=228) showed a significant association between BRAFp.V600E and MEIS1 methylation (OR: 13.0, 95% CI: 5.2 - 33.0, P<0.0001). MEIS1 methylation was associated with decreased MEIS1 gene expression in both patient samples and CRC cell lines. The same was true for gene expression of a truncated form of MEIS1, MEIS1D27, which misses exon 8 and has a proposed tumor suppression function. To trace the origin of MEIS1 promoter methylation, 14 colorectal tumors were flow-sorted. Four out of eight BRAFp.V600E tumor epithelial fractions (50%) showed MEIS1 promoter methylation, as well as three out of eight BRAFp.V600E stromal fractions (38%). Only one out of six BRAF wild type showed MEIS1 promoter methylation in both the epithelial tumor and stromal fractions (17%). In conclusion, BRAFp.V600E colon tumors showed significant MEIS1 promoter methylation, which was associated with decreased MEIS1 gene expression. PMID:24244575

  5. Racial Differences in DNA-Methylation of CpG Sites Within Preterm-Promoting Genes and Gene Variants.

    PubMed

    Salihu, H M; Das, R; Morton, L; Huang, H; Paothong, A; Wilson, R E; Aliyu, M H; Salemi, J L; Marty, P J

    2016-08-01

    Objective To evaluate the role DNA methylation may play in genes associated with preterm birth for higher rates of preterm births in African-American women. Methods Fetal cord blood samples from births collected at delivery and maternal demographic and medical information were used in a cross-sectional study to examine fetal DNA methylation of genes implicated in preterm birth among black and non-black infants. Allele-specific DNA methylation analysis was performed using a methylation bead array. Targeted maximum likelihood estimation was applied to examine the relationship between race and fetal DNA methylation of candidate preterm birth genes. Receiver-operating characteristic analyses were then conducted to validate the CpG site methylation marker within the two racial groups. Bootstrapping, a method of validation and replication, was employed. Results 42 CpG sites were screened within 20 candidate gene variants reported consistently in the literature as being associated with preterm birth. Of these, three CpG sites on TNFAIP8 and PON1 genes (corresponding to: cg23917399; cg07086380; and cg07404485, respectively) were significantly differentially methylated between black and non-black individuals. The three CpG sites showed lower methylation status among infants of black women. Bootstrapping validated and replicated results. Conclusion for Practice Our study identified significant differences in levels of methylation on specific genes between black and non-black individuals. Understanding the genetic/epigenetic mechanisms that lead to preterm birth may lead to enhanced prevention strategies to reduce morbidity and mortality by eventually providing a means to identify individuals with a genetic predisposition to preterm labor. PMID:27000849

  6. METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS

    EPA Science Inventory

    METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...

  7. Transcriptome Meta-Analysis of Lung Cancer Reveals Recurrent Aberrations in NRG1 and Hippo Pathway Genes

    PubMed Central

    Dhanasekaran, Saravana M.; Balbin, O. Alejandro; Chen, Guoan; Nadal, Ernest; Kalyana-Sundaram, Shanker; Pan, Jincheng; Veeneman, Brendan; Cao, Xuhong; Malik, Rohit; Vats, Pankaj; Wang, Rui; Huang, Stephanie; Zhong, Jinjie; Jing, Xiaojun; Iyer, Matthew; Wu, Yi-Mi; Harms, Paul W.; Lin, Jules; Reddy, Rishindra; Brennan, Christine; Palanisamy, Nallasivam; Chang, Andrew C.; Truini, Anna; Truini, Mauro; Robinson, Dan R.; Beer, David G.; Chinnaiyan, Arul M.

    2014-01-01

    Lung cancer is emerging as a paradigm for disease molecular subtyping, facilitating targeted therapy based on driving somatic alterations. Here, we perform transcriptome analysis of 153 samples representing lung adenocarcinomas, squamous cell carcinomas, large cell lung cancer, adenoid cystic carcinomas and cell lines. By integrating our data with The Cancer Genome Atlas and published sources, we analyze 753 lung cancer samples for gene fusions and other transcriptomic alterations. We show that higher numbers of gene fusions is an independent prognostic factor for poor survival in lung cancer. Our analysis confirms the recently reported CD74-NRG1 fusion and suggests that NRG1, NF1 and Hippo pathway fusions may play important roles in tumors without known driver mutations. In addition, we observe exon skipping events in c-MET, which are attributable to splice site mutations. These classes of genetic aberrations may play a significant role in the genesis of lung cancers lacking known driver mutations. PMID:25531467

  8. Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas

    PubMed Central

    Patai, Árpád V.; Valcz, Gábor; Hollósi, Péter; Kalmár, Alexandra; Péterfia, Bálint; Patai, Árpád; Wichmann, Barnabás; Spisák, Sándor; Barták, Barbara Kinga; Leiszter, Katalin; Tóth, Kinga; Sipos, Ferenc; Kovalszky, Ilona; Péter, Zoltán; Miheller, Pál; Tulassay, Zsolt; Molnár, Béla

    2015-01-01

    Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2’ deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory. PMID:26291085

  9. P15 gene methylation in hepatocellular carcinomas: a systematic review and meta-analysis

    PubMed Central

    Ren, Wei-Hua; Li, Ya-Wei; Li, Rui; Feng, Hong-Bo; Wu, Jun-Long; Wang, Hui-Rui

    2015-01-01

    Objective: This study was performed to investigate the correlation between P15 methylation and hepatocellular carcinoma (HCC) and hepatocirrhosis using a meta-analysis of available case control studies. Methods: Previous studies have primarily evaluated the incidence of P15 methylation in HCC and corresponding control groups, and compared the incidence of P15 methylation in liver cirrhosis and control groups. Data regarding publication information, study characteristics, and incidence of P15 methylation in both groups were collected from these studies and summarized. Results: Ten studies that assessed P15 gene methylation in 824 HCC tumour tissues and five studies analyzing P15 methylation in 155 liver cirrhosis tissues met our inclusion criteria. Our meta-analysis revealed that the rate of P15 methylation was significantly higher in HCCs than in adjacent non-tumour tissues (OR 9.04, 95% CI 5.80-14.09, P < 0.00001). Moreover, P15 methylation was significantly higher in liver cirrhosis tissues than in control tissues (OR 7.82, 95% CI 3.58-17.07, P < 0.00001). Conclusions: we found that P15 methylation was associated with an increased risk of HCC and liver cirrhosis. P15 hypermethylation induced the inactivation of the P15 gene, which played an important role in hepatocarcinogenesis. PMID:26131050

  10. Body Mass Index is Associated with Gene Methylation in Estrogen Receptor-Positive Breast Tumors

    PubMed Central

    Hair, Brionna Y.; Troester, Melissa A.; Edmiston, Sharon N.; Parrish, Eloise A.; Robinson, Whitney R.; Wu, Michael C.; Olshan, Andrew F.; Swift-Scanlan, Theresa; Conway, Kathleen

    2015-01-01

    Background Although obesity is associated with breast cancer incidence and prognosis, the underlying mechanisms are poorly understood. Identification of obesity-associated epigenetic changes in breast tissue may advance mechanistic understanding of breast cancer initiation and progression. The goal of this study, therefore, was to investigate associations between obesity and gene methylation in breast tumors. Methods Using the Illumina GoldenGate Cancer I Panel, we estimated the association between body mass index (BMI) and gene methylation in 345 breast tumor samples from Phase I of the Carolina Breast Cancer Study, a population based case-control study. Multivariable linear regression was used to identify sites that were differentially methylated by BMI. Stratification by tumor estrogen receptor status was also conducted. Results In the majority of the 935 probes analyzed (87%), the average beta value increased with obesity (BMI ≥ 30). Obesity was significantly associated with differential methylation (false discovery rate q-value < 0.05) in just 2 gene loci in breast tumor tissue overall and in 21 loci among estrogen receptor (ER)-positive tumors. Obesity was associated with methylation of genes that function in immune response, cell growth, and DNA repair. Conclusions Obesity is associated with altered methylation overall, and with hypermethylation among ER-positive tumors in particular, suggesting that obesity may influence the methylation of genes with known relevance to cancer. Some of these differences in methylation by obese status may influences levels of gene expression within breast cells. Impact If our results are validated, obesity-associated methylation sites could serve as targets for prevention and treatment research. PMID:25583948

  11. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins

    PubMed Central

    Ostler, KR; Davis, EM; Payne, SL; Gosalia, BB; Expósito-Céspedes, J; Le Beau, MM; Godley, LA

    2008-01-01

    Cancer cells display an altered distribution of DNA methylation relative to normal cells. Certain tumor suppressor gene promoters are hypermethylated and transcriptionally inactivated, whereas repetitive DNA is hypomethylated and transcriptionally active. Little is understood about how the abnormal DNA methylation patterns of cancer cells are established and maintained. Here, we identify over 20 DNMT3B transcripts from many cancer cell lines and primary acute leukemia cells that contain aberrant splicing at the 5′ end of the gene, encoding truncated proteins lacking the C-terminal catalytic domain. Many of these aberrant transcripts retain intron sequences. Although the aberrant transcripts represent a minority of the DNMT3B transcripts present, Western blot analysis demonstrates truncated DNMT3B isoforms in the nuclear protein extracts of cancer cells. To test if expression of a truncated DNMT3B protein could alter the DNA methylation patterns within cells, we expressed DNMT3B7, the most frequently expressed aberrant transcript, in 293 cells. DNMT3B7-expressing 293 cells have altered gene expression as identified by microarray analysis. Some of these changes in gene expression correlate with altered DNA methylation of corresponding CpG islands. These results suggest that truncated DNMT3B proteins could play a role in the abnormal distribution of DNA methylation found in cancer cells. PMID:17353906

  12. Implication of Reprimo and hMLH1 gene methylation in early diagnosis of gastric carcinoma

    PubMed Central

    Liu, Lianhua; Yang, Xiaofeng

    2015-01-01

    DNA methylation has been recently recognized as a novel tumor marker. This study investigated the methylation status of Reprimo and hMLH1 gene in both plasma and tissue samples from gastric cancer patients, in an attempt to investigate their diagnostic implications in gastric cancer. A total of 180 tissue and plasma samples (including 50 cases of gastric cancer, 50 dysplasia, 50 chronic atrophic gastritis with intestinal metaplasia and 30 normal controls) were collected for detecting DNA methylation status of Reprimo and hMLH1 genes using MSP method. Tissue protein expression levels were further tested by immunohistochemical (IHC) staining. The positive rate of DNA methylation rate was, in ascending sequence, gastritis tissue, dysplasia tissue and gastric carcinoma tissue. All those tissues had significantly elevated DNA methylation level compared to normal group (P < 0.05). Expression level of Reprimo and hMLH1 proteins were, however, decreased in pathological tissues compared to normal ones (P < 0.05). A significantly negative relationship existed between protein level and promoter region methylation level. The DNA methylation occurred in promoter regions of both Reprimo and hMLH1 genes depressed the protein expression, and may participate in the occurrence and progression and gastric cancer. The combined assay of serum Reprimo and hMLH1 DNA methylation levels thus had critical importance in the early diagnosis and gastric cancer. PMID:26823831

  13. Differential Methylation of the Oxytocin Receptor Gene in Patients with Anorexia Nervosa: A Pilot Study

    PubMed Central

    Kim, Mi Jeong; Treasure, Janet

    2014-01-01

    Background and Aim Recent studies in patients with anorexia nervosa suggest that oxytocin may be involved in the pathophysiology of anorexia nervosa. We examined whether there was evidence of variation in methylation status of the oxytocin receptor (OXTR) gene in patients with anorexia nervosa that might account for these findings. Methods We analyzed the methylation status of the CpG sites in a region from the exon 1 to the MT2 regions of the OXTR gene in buccal cells from 15 patients and 36 healthy women using bisulfite sequencing. We further examined whether methylation status was associated with markers of illness severity or form. Results We identified six CpG sites with significant differences in average methylation levels between the patient and control groups. Among the six differentially methylated CpG sites, five showed higher than average methylation levels in patients than those in the control group (64.9–88.8% vs. 6.6–45.0%). The methylation levels of these five CpG sites were negatively associated with body mass index (BMI). BMI, eating disorders psychopathology, and anxiety were identified in a regression analysis as factors affecting the methylation levels of these CpG sites with more variation accounted for by BMI. Conclusions Epigenetic misregulation of the OXTR gene may be implicated in anorexia nervosa, which may either be a mechanism linking environmental adversity to risk or may be a secondary consequence of the illness. PMID:24523928

  14. MicroRNA Methylation in Colorectal Cancer.

    PubMed

    Kaur, Sippy; Lotsari-Salomaa, Johanna E; Seppänen-Kaijansinkko, Riitta; Peltomäki, Päivi

    2016-01-01

    Epigenetic alterations such as DNA methylation, histone modifications and non-coding RNA (including microRNA) associated gene silencing have been identified as a major characteristic in human cancers. These alterations may occur more frequently than genetic mutations and play a key role in silencing tumor suppressor genes or activating oncogenes, thereby affecting multiple cellular processes. In recent years, studies have shown that microRNAs, that act as posttranscriptional regulators of gene expression are frequently deregulated in colorectal cancer (CRC), via aberrant DNA methylation. Over the past decade, technological advances have revolutionized the field of epigenetics and have led to the identification of numerous epigenetically dysregulated miRNAs in CRC, which are regulated by CpG island hypermethylation and DNA hypomethylation. In addition, aberrant DNA methylation of miRNA genes holds a great promise in several clinical applications such as biomarkers for early screening, prognosis, and therapeutic applications in CRC. PMID:27573897

  15. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  16. Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis.

    PubMed

    Dunn, Jessilyn; Thabet, Salim; Jo, Hanjoong

    2015-07-01

    Epigenetic mechanisms that regulate endothelial cell gene expression are now emerging. DNA methylation is the most stable epigenetic mark that confers persisting changes in gene expression. Not only is DNA methylation important in rendering cell identity by regulating cell type-specific gene expression throughout differentiation, but it is becoming clear that DNA methylation also plays a key role in maintaining endothelial cell homeostasis and in vascular disease development. Disturbed blood flow causes atherosclerosis, whereas stable flow protects against it by differentially regulating gene expression in endothelial cells. Recently, we and others have shown that flow-dependent gene expression and atherosclerosis development are regulated by mechanisms dependent on DNA methyltransferases (1 and 3A). Disturbed blood flow upregulates DNA methyltransferase expression both in vitro and in vivo, which leads to genome-wide DNA methylation alterations and global gene expression changes in a DNA methyltransferase-dependent manner. These studies revealed several mechanosensitive genes, such as HoxA5, Klf3, and Klf4, whose promoters were hypermethylated by disturbed blood flow, but rescued by DNA methyltransferases inhibitors such as 5Aza-2-deoxycytidine. These findings provide new insight into the mechanism by which flow controls epigenomic DNA methylation patterns, which in turn alters endothelial gene expression, regulates vascular biology, and modulates atherosclerosis development. PMID:25953647

  17. DNA methylation of oxidative stress genes and cancer risk in the Normative Aging Study

    PubMed Central

    Gao, Tao; Joyce, Brian Thomas; Liu, Lei; Zheng, Yinan; Dai, Qi; Zhang, Zhou; Zhang, Wei; Shrubsole, Martha J; Tao, Meng-Hua; Schwartz, Joel; Baccarelli, Andrea; Hou, Lifang

    2016-01-01

    Oxidative stress (OS) is a primary mechanism of carcinogenesis, and methylation of genes related to it may play a role in cancer development. In this study, we examined the prospective association between blood DNA methylation of four oxidative stress genes and cancer incidence. Our study population included a total of 582 participants in the Normative Aging Study (NAS) who had blood drawn during 1-4 visits from 1999-2012 (mean follow up 9.0 years). Promoter DNA methylation of CRAT, iNOS, OGG1 and GCR in blood leukocytes was measured using pyrosequencing. We used Cox regression models to examine prospective associations between cancer incidence and both methylation at the baseline visit and methylation rate of changes over time. Baseline OGG1 methylation was associated with higher risk of all-cancer (HR: 1.43, 95% CI: 1.15-1.78) and prostate cancer (HR: 1.52, 95% CI: 1.03-2.25) incidence. Compared with participants remaining cancer-free, those who eventually developed cancer had significantly accelerated CRAT methylation (p = 0.04) and decelerated iNOS methylation (p<0.01) over time prior to cancer diagnosis. Accelerated CRAT methylation was associated with higher all-cancer incidence (HR: 3.88, 95% CI: 1.06-14.30), whereas accelerated iNOS methylation was associated with lower all-cancer incidence (HR: 0.08, 95% CI 0.02-0.38). Our results suggest that methylation and its dynamic change over time in OS-related genes, including OGG1, CRAT and iNOS, may play an important role in carcinogenesis. These results can potentially facilitate the development of early detection biomarkers and new treatments for a variety of cancers. PMID:27186424

  18. A Two-Gene Blood Test for Methylated DNA Sensitive for Colorectal Cancer

    PubMed Central

    Pedersen, Susanne K.; Baker, Rohan T.; McEvoy, Aidan; Murray, David H.; Thomas, Melissa; Molloy, Peter L.; Mitchell, Sue; Lockett, Trevor; Young, Graeme P.; LaPointe, Lawrence C.

    2015-01-01

    Background Specific genes are methylated with high frequency in colorectal neoplasia, and may leak into blood. Detection of multiple methylated DNA biomarkers in blood may improve assay sensitivity for colorectal cancer (CRC) relative to a single marker. We undertook a case-control study evaluating the presence of two methylation DNA markers, BCAT1 and IKZF1, in circulation to determine if they were complementary for detection of CRC. Methods Methylation-specific PCR assays were developed to measure the level of methylated BCAT1 and IKZF1 in DNA extracted from plasma obtained from colonoscopy-confirmed 144 healthy controls and 74 CRC cases. Results DNA yields ranged from 2 to 730 ng/mL plasma (mean 18.6ng/mL; 95% CI 11-26 ng/mL) and did not correlate with gender, age or CRC status. Methylated BCAT1 and IKZF1 DNA were detected in respectively 48 (65%) and 50 (68%) of the 74 cancers. In contrast, only 5 (4%) and 7 (5%) controls were positive for BCAT1 and IKZF1 DNA methylation, respectively. A two-gene classifier model (“either or” rule) improved segregation of CRC from controls, with 57 of 74 cancers (77%) compared to only 11 of 144 (7.6%) controls being positive for BCAT1 and/or IKZF1 DNA methylation. Increasing levels of methylated DNA were observed as CRC stage progressed. Conclusions Detection of methylated BCAT1 and/or IKZF1 DNA in plasma may have clinical application as a novel blood test for CRC. Combining the results from the two methylation-specific PCR assays improved CRC detection with minimal change in specificity. Further validation of this two-gene blood test with a view to application in screening is now indicated. PMID:25928810

  19. Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens

    PubMed Central

    Coppedè, Fabio; Migheli, Francesca; Lopomo, Angela; Failli, Alessandra; Legitimo, Annalisa; Consolini, Rita; Fontanini, Gabriella; Sensi, Elisa; Servadio, Adele; Seccia, Massimo; Zocco, Giuseppe; Chiarugi, Massimo; Spisni, Roberto; Migliore, Lucia

    2014-01-01

    We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process. PMID:24500500

  20. Methylation of the RARB Gene Increases Prostate Cancer Risk in Black Americans

    PubMed Central

    Tang, Deliang; Kryvenko, Oleksandr N.; Mitrache, Nicoleta; Do, Kieu C.; Jankowski, Michelle; Chitale, Dhananjay A.; Trudeau, Sheri; Rundle, Andrew; Belinsky, Steven A.; Rybicki, Benjamin A.

    2013-01-01

    Purpose Gene promoter hypermethylation may be useful as a biomarker for cancer risk in histopathologically benign prostate specimens. Materials and Methods We performed a nested case-control study of gene promoter methylation status for 5 genes (APC, RARB, CCND2, RASSF1 and MGMT) measured in benign biopsy specimens from 511 prostate cancer case-control pairs. We estimated the overall and race stratified risk of subsequent prostate cancer associated with methylation status. Results On race stratified analysis RARB methylation was associated with a higher cancer risk in black American men (OR 2.18, 95% CI 1.39–3.44). APC methylation was associated with an increased risk of high grade tumors (OR 2.43, 95% CI 1.20–4.90), which was higher in black than in white men (OR 3.21 vs 2.04). In cases RARB and APC gene methylation in benign prostate samples persisted in matched malignant specimens. In black cases the combined risk associated with RARB and APC methylation (OR 3.04, 95% CI 1.44–6.42) was greater than the individual risk of each gene and significantly different from that in white cases (OR 1.14, 95% CI 0.56–2.30). Conclusions RARB gene methylation in histopathologically benign prostate samples was associated with a statistically significant increased risk of subsequent prostate cancer in black men. Methylation data on additional genes may improve risk stratification and clinical decision making algorithms for cancer screening and diagnosis. PMID:23376149

  1. DNA methylation and expression of the folate transporter genes in colorectal cancer.

    PubMed

    Farkas, Sanja A; Befekadu, Rahel; Hahn-Strömberg, Victoria; Nilsson, Torbjörn K

    2015-07-01

    Folate has a central role in the cell metabolism. This study aims to explore the DNA methylation pattern of the folate transporter genes FOLR1, PCFT, and RFC1 as well as the corresponding protein expressions in colorectal cancer (CRC) tissue and adjacent non-cancerous mucosa (ANCM). Our results showed statistically significant differences in the DNA-methylated fraction of all three genes at several gene regions; we identified three differentially methylated CpG sites in the FOLR1 gene, five CpG sites in the PCFT gene, and six CpG sites in the RFC1 gene. There was a pronounced expression of the FRα and RFC proteins in both the CRC and ANCM tissues, though the expression was attenuated in cancer compared to the paired ANCM tissues. The PCFT protein was undetectable or expressed at a very low level in both tissue types. Higher methylated fractions of the CpG sites 3-5 in the RFC1 gene were associated with a lower protein expression, suggestive of epigenetic regulation by DNA methylation of the RFC1 gene in the colorectal cancer. Our results did not show any association between the RFC and FRα protein expression and tumor stage, TNM classification, or tumor location. In conclusion, this is the first study to simultaneously evaluate both DNA methylation and protein expression of all three folate transporter genes, FOLR1, PCFT, and RFC1, in colorectal cancer. The results encourage further investigation into the possible prognostic implications of folate transporter expression and DNA methylation. PMID:25697897

  2. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.

    PubMed Central

    Bokranz, M; Bäumner, G; Allmansberger, R; Ankel-Fuchs, D; Klein, A

    1988-01-01

    The genes coding for methyl coenzyme M reductase were cloned from a genomic library of Methanobacterium thermoautotrophicum Marburg into Escherichia coli by using plasmid expression vectors. When introduced into E. coli, the reductase genes were expressed, yielding polypeptides identical in size to the three known subunits of the isolated enzyme, alpha, beta, and gamma. The polypeptides also reacted with the antibodies raised against the respective enzyme subunits. In M. thermoautotrophicum, the subunits are encoded by a gene cluster whose transcript boundaries were mapped. Sequence analysis revealed two more open reading frames of unknown function located between two of the methyl coenzyme M reductase genes. Images PMID:2448287

  3. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    PubMed

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  4. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation

    PubMed Central

    Reichard, John F; Puga, Alvaro

    2010-01-01

    Arsenic is a nonmutagenic human carcinogen that induces tumors through unknown mechanisms. A growing body of evidence suggests that its carcinogenicity results from epigenetic changes, particularly in DNA methylation. Changes in gene methylation status, mediated by arsenic, have been proposed activate oncogene expression or silence tumor suppressor genes, leading to long-term changes in activity of genes controlling cell transformation. Mostly descriptive, and often contradictory, studies have demonstrated that arsenic exposure is associated with both hypo- and hyper-methylation at various genetic loci in vivo or in vitro. This ambiguity has made it difficult to assess whether the changes induced by arsenic are causally involved in the transformation process or are simply a reflection of the altered physiology of rapidly dividing cancer cells. Here, we discuss the evidence supporting changes in DNA methylation as a cause of arsenic carcinogenesis and highlight the strengths and limitations of these studies, as well areas where consistencies and inconsistencies exist. PMID:20514360

  5. Aberrant Gene Expression Profile of Unaffected Colon Mucosa from Patients with Unifocal Colon Polyp

    PubMed Central

    Lian, Jingjing; Ma, Lili; Yang, Jiayin; Xu, Lili

    2015-01-01

    Background The aim of this study was to evaluate gene expression profiles in unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp to investigate the potential mucosa impairment in normal-appearing colon mucosa from these patients. Material/Methods Colon polyp patients were prospectively recruited. We obtained colon biopsies from the normal-appearing sites and polyp tissue through colonoscopy. Gene expression analysis was performed using microarrays. Gene ontology and clustering were evaluated by bioinformatics. Results We detected a total of 711 genes (274 up-regulated and 437 down-regulated) in polyp tissue and 256 genes (170 up-regulated and 86 down-regulated) in normal-appearing colon mucosa, with at least a 3-fold of change compared to healthy controls. Heatmapping of the gene expression showed similar gene alteration patterns between unaffected colon mucosa and polyp tissue. Gene ontology analyses confirmed the overlapped molecular functions and pathways of altered gene expression between unaffected colon mucosa and polyp tissue from patients with unifocal colon polyp. The most significantly altered genes in normal-appearing tissues in polyp patients include immune response, external side of plasma membrane, nucleus, and cellular response to zinc ion. Conclusions Significant gene expression alterations exist in unaffected colon mucosa from patients with unifocal colon polyp. Unaffected colon mucosa and polyp tissue share great similarity and overlapping of altered gene expression profiles, indicating the potential possibility of recurrence of colon polyps due to underlying molecular abnormalities of colon mucosa in these patients. PMID:26675397

  6. Methionine-dependent histone methylation at developmentally important gene loci in mouse preimplantation embryos.

    PubMed

    Kudo, Mari; Ikeda, Shuntaro; Sugimoto, Miki; Kume, Shinichi

    2015-12-01

    The involvement of specific nutrients in epigenetic gene regulation is a possible mechanism underlying nutrition-directed phenotypic alteration. However, the involvement of nutrients in gene-specific epigenetic regulation remains poorly understood. Methionine has been received attention as a possible nutrient involved in epigenetic modifications, as it is a precursor of the universal methyl donor for epigenetic methylation of DNA and histones. In the present study, the disruption of methionine metabolism by ethionine, an antimetabolite of methionine, induced abnormally higher expression of genes related to cell lineage differentiation and resulted in impaired blastocyst development of mouse preimplantation embryos in vitro. These effects were mitigated by the presence of methionine. Importantly, ethionine treatment induced lower trimethylation of histone H3 lysine 9 but did not affect methylation of DNA in the promoter regions of the examined genes. These results demonstrated that intact methionine metabolism is required for proper epigenetic histone modifications and normal expression of developmentally important genes during preimplantation development. PMID:26372092

  7. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application

    PubMed Central

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  8. Identification of uterine leiomyoma-specific marker genes based on DNA methylation and their clinical application.

    PubMed

    Sato, Shun; Maekawa, Ryo; Yamagata, Yoshiaki; Tamura, Isao; Lee, Lifa; Okada, Maki; Jozaki, Kosuke; Asada, Hiromi; Tamura, Hiroshi; Sugino, Norihiro

    2016-01-01

    Differential diagnosis of uterine leiomyomas and leiomyosarcomas is needed to determine whether the uterus can be retained. Therefore, biomarkers for uterine leiomyomas, and reliable and objective diagnostic methods have been desired besides the pathological diagnosis. In the present study, we identified 12 genes specific to uterine leiomyomas based on DNA methylation. Using these marker genes specific to uterine leiomyomas, we established a hierarchical clustering system based on the DNA methylation level of the marker genes, which could completely differentiate between uterine leiomyomas and normal myometrium. Furthermore, our hierarchical clustering system completely discriminated uterine cancers and differentiated between uterine leiomyosarcomas and leiomyomas with more than 70% accuracy. In conclusion, this study identified DNA methylation-based marker genes specific to uterine leiomyomas, and our hierarchical clustering system using these marker genes was useful for differential diagnosis of uterine leiomyomas and leiomyosarcomas. PMID:27498619

  9. Gene Expression and Methylation Signatures of MAN2C1 are Associated with PTSD

    PubMed Central

    Uddin, Monica; Galea, Sandro; Chang, Shun-Chiao; Aiello, Allison E.; Wildman, Derek E.; de los Santos, Regina; Koenen, Karestan C.

    2011-01-01

    As potential regulators of DNA accessibility and activity, epigenetic modifications offer a mechanism by which the environment can moderate the effects of genes. To date, however, there have been relatively few studies assessing epigenetic modifications associated with post-traumatic stress disorder (PTSD). Here we investigate PTSD-associated methylation differences in 33 genes previously shown to differ in whole blood-derived gene expression levels between those with vs. without the disorder. Drawing on DNA samples similarly obtained from whole blood in 100 individuals, 23 with and 77 without lifetime PTSD, we used methylation microarray data to assess whether these 33 candidate genes showed epigenetic signatures indicative of increased risk for, or resilience to, PTSD. Logistic regression analyses were performed to assess the main and interacting effects of candidate genes’ methylation values and number of potentially traumatic events (PTEs), adjusting for age and other covariates. Results revealed that only one candidate gene–MAN2C1–showed a significant methylation x PTE interaction, such that those with both higher MAN2C1 methylation and greater exposure to PTEs showed a marked increase in risk of lifetime PTSD (OR 4.35, 95% CI: 1.07, 17.77, p = 0.04). These results indicate that MAN2C1 methylation levels modify cumulative traumatic burden on risk of PTSD, and suggest that both gene expression and epigenetic changes at specific loci are associated with this disorder. PMID:21508515

  10. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery.

    PubMed

    Guénard, Frédéric; Deshaies, Yves; Cianflone, Katherine; Kral, John G; Marceau, Picard; Vohl, Marie-Claude

    2013-07-01

    Obesity and overnutrition during pregnancy affect fetal programming of adult disease. Children born after maternal bariatric gastrointestinal bypass surgery (AMS) are less obese and exhibit improved cardiometabolic risk profiles carried into adulthood compared with siblings born before maternal surgery (BMS). This study was designed to analyze the impact of maternal weight loss surgery on methylation levels of genes involved in cardiometabolic pathways in BMS and AMS offspring. Differential methylation analysis between a sibling cohort of 25 BMS and 25 AMS (2-25 y-old) offspring from 20 mothers was conducted to identify biological functions and pathways potentially involved in the improved cardiometabolic profile found in AMS compared with BMS offspring. Links between gene methylation and expression levels were assessed by correlating genomic findings with plasma markers of insulin resistance (fasting insulin and homeostatic model of insulin resistance). A total of 5,698 genes were differentially methylated between BMS and AMS siblings, exhibiting a preponderance of glucoregulatory, inflammatory, and vascular disease genes. Statistically significant correlations between gene methylation levels and gene expression and plasma markers of insulin resistance were consistent with metabolic improvements in AMS offspring, reflected in genes involved in diabetes-related cardiometabolic pathways. This unique clinical study demonstrates that effective treatment of a maternal phenotype is durably detectable in the methylome and transcriptome of subsequent offspring. PMID:23716672

  11. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation

    PubMed Central

    Kirov, Julia V.; Adkisson, Michael; Nava, A. J.; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K.; Lloyd, K. C. Kent; de Jong, Pieter; West, David B.

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  12. Reporter Gene Silencing in Targeted Mouse Mutants Is Associated with Promoter CpG Island Methylation.

    PubMed

    Kirov, Julia V; Adkisson, Michael; Nava, A J; Cipollone, Andreana; Willis, Brandon; Engelhard, Eric K; Lloyd, K C Kent; de Jong, Pieter; West, David B

    2015-01-01

    Targeted mutations in mouse disrupt local chromatin structure and may lead to unanticipated local effects. We evaluated targeted gene promoter silencing in a group of six mutants carrying the tm1a Knockout Mouse Project allele containing both a LacZ reporter gene driven by the native promoter and a neo selection cassette. Messenger RNA levels of the reporter gene and targeted gene were assessed by qRT-PCR, and methylation of the promoter CpG islands and LacZ coding sequence were evaluated by sequencing of bisulfite-treated DNA. Mutants were stratified by LacZ staining into presumed Silenced and Expressed reporter genes. Silenced mutants had reduced relative quantities LacZ mRNA and greater CpG Island methylation compared with the Expressed mutant group. Within the silenced group, LacZ coding sequence methylation was significantly and positively correlated with CpG Island methylation, while promoter CpG methylation was only weakly correlated with LacZ gene mRNA. The results support the conclusion that there is promoter silencing in a subset of mutants carrying the tm1a allele. The features of targeted genes which promote local silencing when targeted remain unknown. PMID:26275310

  13. High-Resolution Mapping of Epigenetic Modifications of the Rice Genome Uncovers Interplay between DNA Methylation, Histone Methylation, and Gene Expression[W

    PubMed Central

    Li, Xueyong; Wang, Xiangfeng; He, Kun; Ma, Yeqin; Su, Ning; He, Hang; Stolc, Viktor; Tongprasit, Waraporn; Jin, Weiwei; Jiang, Jiming; Terzaghi, William; Li, Songgang; Deng, Xing Wang

    2008-01-01

    We present high-resolution maps of DNA methylation and H3K4 di- and trimethylation of two entire chromosomes and two fully sequenced centromeres in rice (Oryza sativa) shoots and cultured cells. This analysis reveals combinatorial interactions between these epigenetic modifications and chromatin structure and gene expression. Cytologically densely stained heterochromatin had less H3K4me2 and H3K4me3 and more methylated DNA than the less densely stained euchromatin, whereas centromeres had a unique epigenetic composition. Most transposable elements had highly methylated DNA but no H3K4 methylation, whereas more than half of protein-coding genes had both methylated DNA and di- and/or trimethylated H3K4. Methylation of DNA but not H3K4 was correlated with suppressed transcription. By contrast, when both DNA and H3K4 were methylated, transcription was only slightly reduced. Transcriptional activity was positively correlated with the ratio of H3K4me3/H3K4me2: genes with predominantly H3K4me3 were actively transcribed, whereas genes with predominantly H3K4me2 were transcribed at moderate levels. More protein-coding genes contained all three modifications, and more transposons contained DNA methylation in shoots than cultured cells. Differential epigenetic modifications correlated to tissue-specific expression between shoots and cultured cells. Collectively, this study provides insights into the rice epigenomes and their effect on gene expression and plant development. PMID:18263775

  14. Correlation between methylation of the E-Cadherin gene and malignancy of prostate cancer.

    PubMed

    Zhang, S Q; Zhang, G Q; Zhang, L

    2016-01-01

    Prostate cancer is a common malignant tumor in males with an unclear pathogenic mechanism. As one epigenetic regulation mechanism, DNA methylation of the whole genome and specific gene(s) plays critical roles in pathogenesis, progression, diagnosis, and treatment of prostate cancer. The E-Cadherin gene is involved in cell metabolism and has been suggested to be related with malignancy of multiple tumors. This study investigated the correlation between E-Cadherin methylation and malignancy of prostate cancer. Gradient concentrations of 5-Aza-CdR (5, 10, and 20 mM) were used to treat the prostate cancer cell line (LNCaP), and mRNA level of E-Cadherin was detected by reverse transcription-polymerase chain reaction (RT-PCR). A total of 82 prostate cancer patients were recruited to detect the methylation status of the promoter region of the E-Cadherin gene by pyrophosphate sequencing. Real-time fluorescent quantitative PCR (qRT-PCR) was employed to determine mRNA levels of E-Cadherin. Methylation and mRNA levels of E-Cadherin were analyzed by the SPSS software. With elevated concentrations of 5-Aza-CdR, mRNA levels of E-Cadherin gradually increased. DNA methylation levels of tumor tissues were significantly elevated with increased Gleason score (P < 0.05) and tumor-node-metastasis stage (P < 0.05) but were not related to age, smoking habits, or alcohol consumption (P > 0.05). DNA methylation level was negatively correlated with mRNA expression of the E-Cadherin gene. Methylation in tumor tissues was significantly higher than that in tumor adjacent tissues (P < 0.05). DNA methylation level of the E-Cadherin gene could be an important predictive index for malignancy of prostate cancer. PMID:27420993

  15. DNA methylation in endometriosis (Review)

    PubMed Central

    KOUKOURA, OURANIA; SIFAKIS, STAVROS; SPANDIDOS, DEMETRIOS A.

    2016-01-01

    Endometriosis is defined by the presence and growth of functional endometrial tissue, outside the uterine cavity, primarily in the ovaries, pelvic peritoneum and rectovaginal septum. Although it is a benign disease, it presents with malignant characteristics, such as invasion to surrounding tissues, metastasis to distant locations and recurrence following treatment. Accumulating evidence suggests that various epigenetic aberrations may play an essential role in the pathogenesis of endometriosis. Aberrant DNA methylation represents a possible mechanism repsonsible for this disease, linking gene expression alterations observed in endometriosis with hormonal and environmental factors. Several lines of evidence indicate that endometriosis may partially be due to selective epigenetic deregulations influenced by extrinsic factors. Previous studies have shed light into the epigenetic component of endometriosis, reporting variations in the epigenetic patterns of genes known to be involved in the aberrant hormonal, immunologic and inflammatory status of endometriosis. Although recent studies, utilizing advanced molecular techniques, have allowed us to further elucidate the possible association of DNA methylation with altered gene expression, whether these molecular changes represent the cause or merely the consequence of the disease is a question which remains to be answered. This review provides an overview of the current literature on the role of DNA methylation in the pathophysiology and malignant evolution of endometriosis. We also provide insight into the mechanisms through which DNA methylation-modifying agents may be the next step in the research of the pharmaceutical treatment of endometriosis. PMID:26934855

  16. DNA methylation in endometriosis (Review).

    PubMed

    Koukoura, Ourania; Sifakis, Stavros; Spandidos, Demetrios A

    2016-04-01

    Endometriosis is defined by the presence and growth of functional endometrial tissue, outside the uterine cavity, primarily in the ovaries, pelvic peritoneum and rectovaginal septum. Although it is a benign disease, it presents with malignant characteristics, such as invasion to surrounding tissues, metastasis to distant locations and recurrence following treatment. Accumulating evidence suggests that various epigenetic aberrations may play an essential role in the pathogenesis of endometriosis. Aberrant DNA methylation represents a possible mechanism repsonsible for this disease, linking gene expression alterations observed in endometriosis with hormonal and environmental factors. Several lines of evidence indicate that endometriosis may partially be due to selective epigenetic deregulations influenced by extrinsic factors. Previous studies have shed light into the epigenetic component of endometriosis, reporting variations in the epigenetic patterns of genes known to be involved in the aberrant hormonal, immunologic and inflammatory status of endometriosis. Although recent studies, utilizing advanced molecular techniques, have allowed us to further elucidate the possible association of DNA methylation with altered gene expression, whether these molecular changes represent the cause or merely the consequence of the disease is a question which remains to be answered. This review provides an overview of the current literature on the role of DNA methylation in the pathophysiology and malignant evolution of endometriosis. We also provide insight into the mechanisms through which DNA methylation-modifying agents may be the next step in the research of the pharmaceutical treatment of endometriosis. PMID:26934855

  17. Stress-induced gene expression and behavior are controlled by DNA methylation and methyl donor availability in the dentate gyrus.

    PubMed

    Saunderson, Emily A; Spiers, Helen; Mifsud, Karen R; Gutierrez-Mecinas, Maria; Trollope, Alexandra F; Shaikh, Abeera; Mill, Jonathan; Reul, Johannes M H M

    2016-04-26

    Stressful events evoke long-term changes in behavioral responses; however, the underlying mechanisms in the brain are not well understood. Previous work has shown that epigenetic changes and immediate-early gene (IEG) induction in stress-activated dentate gyrus (DG) granule neurons play a crucial role in these behavioral responses. Here, we show that an acute stressful challenge [i.e., forced swimming (FS)] results in DNA demethylation at specific CpG (5'-cytosine-phosphate-guanine-3') sites close to the c-Fos (FBJ murine osteosarcoma viral oncogene homolog) transcriptional start site and within the gene promoter region of Egr-1 (early growth response protein 1) specifically in the DG. Administration of the (endogenous) methyl donor S-adenosyl methionine (SAM) did not affect CpG methylation and IEG gene expression at baseline. However, administration of SAM before the FS challenge resulted in an enhanced CpG methylation at the IEG loci and suppression of IEG induction specifically in the DG and an impaired behavioral immobility response 24 h later. The stressor also specifically increased the expression of the de novo DNA methyltransferase Dnmt3a [DNA (cytosine-5-)-methyltransferase 3 alpha] in this hippocampus region. Moreover, stress resulted in an increased association of Dnmt3a enzyme with the affected CpG loci within the IEG genes. No effects of SAM were observed on stress-evoked histone modifications, including H3S10p-K14ac (histone H3, phosphorylated serine 10 and acetylated lysine-14), H3K4me3 (histone H3, trimethylated lysine-4), H3K9me3 (histone H3, trimethylated lysine-9), and H3K27me3 (histone H3, trimethylated lysine-27). We conclude that the DNA methylation status of IEGs plays a crucial role in FS-induced IEG induction in DG granule neurons and associated behavioral responses. In addition, the concentration of available methyl donor, possibly in conjunction with Dnmt3a, is critical for the responsiveness of dentate neurons to environmental stimuli in

  18. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Graham, Deborah S Cunninghame; Pinder, Christopher L; Tombleson, Philip; Behrens, Timothy W; Martín, Javier; Fairfax, Benjamin P; Knight, Julian C; Chen, Lingyan; Replogle, Joseph; Syvänen, Ann-Christine; Rönnblom, Lars; Graham, Robert R; Wither, Joan E; Rioux, John D; Alarcón-Riquelme, Marta E; Vyse, Timothy J

    2015-01-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE. PMID:26502338

  19. FOXA1 positively regulates gene expression by changing gene methylation status in human breast cancer MCF-7 cells

    PubMed Central

    Zheng, Lu; Qian, Bo; Tian, Duo; Tang, Tong; Wan, Shengyun; Wang, Lei; Zhu, Lixin; Geng, Xiaoping

    2015-01-01

    Objective: DNA methylation is an important epigenetic modification with tumor suppressor gene silencing in cancer. The mechanisms underlying DNA methylation patterns are still poorly understood. This study aims to evaluate the potential value of FOXA1 for controlling gene CpG island methylation in breast cancer. Methods: FOXA1 was down-regulated by transfection with siRNA and up-regulated by transfection with plasmid in MCF-7 cell lines. The DNA methylation and mRNA levels were examined by qMSP and qRT-PCR. The cell proliferation and apoptosis was detected by MTT and Flow cytometry. Results: Suppression of FOXA1 enhanced the methylation status of DAPK, MGMT, RASSF1A, p53, and depressed mRNA levels of these tumor suppressor genes, whereas over-expression of FOXA1 showed the opposite effects. DNMT1, DNMT3A and DNMT3B mRNA were up-regulated by siRNA knock-down of FOXA1. At the same time, FOXA1 suppression promoted cell growth and inhibited apoptosis. Conclusions: FOXA1 may be associated with methylation of the tumor suppressor genes promoter through changing DNMTs expression. FOXA1 could be a potential demethylation target for prevention and treatment of breast cancer. PMID:25755696

  20. Differential DNA methylation patterns of homeobox genes in proximal and distal colon epithelial cells.

    PubMed

    Barnicle, Alan; Seoighe, Cathal; Golden, Aaron; Greally, John M; Egan, Laurence J

    2016-04-01

    Region and cell-type specific differences in the molecular make up of colon epithelial cells have been reported. Those differences may underlie the region-specific characteristics of common colon epithelial diseases such as colorectal cancer and inflammatory bowel disease. DNA methylation is a cell-type specific epigenetic mark, essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. Little is known about any region-specific variations in methylation patterns in human colon epithelial cells. Using purified epithelial cells and whole biopsies (n= 19) from human subjects, we generated epigenome-wide DNA methylation data (using the HELP-tagging assay), comparing the methylation signatures of the proximal and distal colon. We identified a total of 125 differentially methylated sites (DMS) mapping to transcription start sites of protein-coding genes, most notably several members of the homeobox (HOX) family of genes. Patterns of differential methylation were validated with MassArray EpiTYPER. We also examined DNA methylation in whole biopsies, applying a computational technique to deconvolve variation in methylation within cell types and variation in cell-type composition across biopsies. Including inferred epithelial proportions as a covariate in differential methylation analysis applied to the whole biopsies resulted in greater overlap with the results obtained from purified epithelial cells compared with when the covariate was not included. Results obtained from both approaches highlight region-specific methylation patterns ofHOXgenes in colonic epithelium. Regional variation in methylation patterns has implications for the study of diseases that exhibit regional expression patterns in the human colon, such as inflammatory bowel disease and colorectal cancer. PMID:26812987

  1. Methylation analysis of multiple genes in blood DNA of Alzheimer's disease and healthy individuals.

    PubMed

    Tannorella, Pierpaola; Stoccoro, Andrea; Tognoni, Gloria; Petrozzi, Lucia; Salluzzo, Maria Grazia; Ragalmuto, Alda; Siciliano, Gabriele; Haslberger, Alexander; Bosco, Paolo; Bonuccelli, Ubaldo; Migliore, Lucia; Coppedè, Fabio

    2015-07-23

    We collected blood DNA from 120 late-onset Alzheimer's disease (AD) patients and 115 healthy matched controls and analysed the methylation levels of genes involved in amyloid-beta peptide production (PSEN1 and BACE1), in DNA methylation (DNMT1, DNMT3A and DNMT3B), and in one-carbon metabolism (MTHFR), searching for correlation with age and gender, with biomarkers of one-carbon metabolism (plasma homocysteine, and serum folate and vitamin B12 levels), and with disease status (being healthy or having AD). We also evaluated the contribution of the APOE ϵ4 allele, the major late-onset AD genetic risk factor, to the studied gene methylation levels. All the genes showed low mean methylation levels (<5%) in both AD and control DNA, no difference between groups, and no correlation with the studied biomarkers, except for MTHFR that showed methylation levels ranging from 5% to 75%, and correlation with circulating biomarkers of one-carbon metabolism. However, mean MTHFR methylation levels were similar between groups (31.1% in AD and 30.7% in controls, P=0.58). Overall, present data suggest that none of the studied regions is differently methylated in blood DNA between AD and control subjects. PMID:26079324

  2. Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat

    PubMed Central

    Williams, Ben P.; Pignatta, Daniela; Henikoff, Steven; Gehring, Mary

    2015-01-01

    Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. PMID:25826366

  3. Placental leptin gene methylation and macrosomia during normal pregnancy.

    PubMed

    Xu, Xinyun; Yang, Xinjun; Liu, Ziwei; Wu, Kele; Liu, Zheng; Lin, Chong; Wang, Yuhuan; Yan, Hongtao

    2014-03-01

    The present study examined the placental leptin (LEP) DNA methylation and mRNA levels in macrosomic infants from normal pregnancies. In total, 49 neonates with macrosomia, i.e., high birth weights of ≥ 4,000 g, and 52 neonates with normal birth weights between 2,500 g and 4,000 g were recruited from The Second Affiliated Hospital of Wenzhou Medical University (Wenzhou, Zhejiang) in China. Placental LEP promoter methylation and LEP transcript levels were determined by Sequenom MassARRAY and quantitative PCR, respectively. LEP promoter methylation and mRNA levels were not significantly different between the individuals with macrosomia and the controls. However, stratification revealed that individual CpG dinucleotides were hypermethylated in macrosomia (P<0.05) in primiparous females and at 39 weeks of gestation (P<0.05). Variations in methylation did not affect placental LEP expression. It was concluded that the methylation of the placental LEP promoter was altered during a specific gestational period in macrosomia following a normal pregnancy and under certain conditions. However, placental LEP expression was not affected. PMID:24452268

  4. Methylation of the mouse hprt gene differs on the active and inactive X chromosomes.

    PubMed Central

    Lock, L F; Melton, D W; Caskey, C T; Martin, G R

    1986-01-01

    It has been proposed that DNA methylation is involved in the mechanism of X inactivation, the process by which equivalence of levels of X-linked gene products is achieved in female (XX) and male (XY) mammals. In this study, Southern blots of female and male DNA digested with methylation-sensitive restriction endonucleases and hybridized to various portions of the cloned mouse hprt gene were compared, and sites within the mouse hprt gene were identified that are differentially methylated in female and male cells. The extent to which these sites are methylated when carried on the active and inactive X chromosomes was directly determined in a similar analysis of DNA from clonal cell lines established from a female embryo derived from a mating of two species of mouse, Mus musculus and Mus caroli. The results revealed two regions of differential methylation in the mouse hprt gene. One region, in the first intron of the gene, includes four sites that are completely unmethylated when carried on the active X and extensively methylated when carried on the inactive X. These same sites are extensively demethylated in hprt genes reactivated either spontaneously or after 5-azacytidine treatment. The second region includes several sites in the 3' 20kilobases of the gene extending from exon 3 to exon 9 that show the converse pattern; i.e., they are completely methylated when carried on the active X and completely unmethylated when carried on the inactive X. At least one of these sites does not become methylated after reactivation of the gene. The results of this study, together with the results of previous studies by others of the human hprt gene, indicate that these regions of differential methylation on the active and inactive X are conserved between mammalian species. Furthermore, the data described here are consistent with the idea that at least the sites in the 5' region of the gene play a role in the X inactivation phenomenon and regulation of expression of the mouse hprt

  5. Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells.

    PubMed

    Singal, Rakesh; vanWert, Jane M; Ferdinand, Larry

    2002-12-01

    The inverse relationship between expression and methylation of beta-type globin genes is well established. However, little is known about the relationship between expression and methylation of avian alpha-type globin genes. The embryonic alpha(pi)-globin promoter was unmethylated, and alpha(pi)-globin RNA was easily detected in 5-day chicken erythroid cells. A progressive methylation of the CpG dinucleotides in the alpha(pi) promoter associated with loss of expression of alpha(pi)-globin gene was seen during development in primary erythroid cells. A 315-bp alpha(pi)-globin promoter region was cloned in an expression construct (alpha(pi)pGL3E) containing a luciferase reporter gene and SV40 enhancer. The alpha(pi)pGL3E construct was transfected into primary erythroid cells derived from 5-day-old chicken embryos. Methylation of alpha(pi)pGL3E plasmid and alpha(pi)-globin promoter alone resulted in a 20-fold and 7-fold inhibition of expression, respectively. The fully methylated but not the unmethylated 315-bp alpha(pi)-globin gene promoter fragment formed a methyl cytosine-binding protein complex (MeCPC). Chromatin immunoprecipitation assays were combined with quantitative real-time polymerase chain reaction to assess histone acetylation associated with the alpha(pi)-globin gene promoter. Slight hyperacetylation of histone H3 but a marked hyperacetylation of histone H4 was seen in 5-day when compared with 14-day erythroid cells. These results demonstrate that methylation can silence transcription of an avian alpha-type embryonic globin gene in homologous primary erythroid cells, possibly by interacting with an MeCPC and histone deacetylase complex. PMID:12393573

  6. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets.

    PubMed

    Zou, C; Fu, Y; Li, C; Liu, H; Li, G; Li, J; Zhang, H; Wu, Y; Li, C

    2016-08-01

    Many studies have proved that DNA methylation can regulate gene expression and further affect skeletal muscle growth and development of pig, whereas the mechanisms of how DNA methylation or gene expression alteration ultimately lead to phenotypical differences between the cloned and natural mating pigs remain elusive. This study aimed to investigate genome-wide gene expression and DNA methylation differences between abnormally cloned and normally natural mating piglets and identify molecular markers related to skeletal muscle growth and development in pig. The DNA methylation and genome-wide gene expression in the two groups of piglets were analysed through methylated DNA immunoprecipitation binding high-throughput sequencing and RNA sequencing respectively. We detected 1493 differentially expressed genes between the two groups, of which 382 genes were also differentially methylated. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative and monotonic correlation with gene expression levels around the transcription start site of genes. By contrast, no notable monotonic correlation was observed in other regions. Furthermore, we identified some interesting genes and signalling pathways (e.g. myosin, heavy chain 7 and mammalian target of rapamycin) which possibly play essential roles in skeletal muscle growth and development. The results of this study provide insights into the relationship of DNA methylation with gene expression in newborn piglets and into the mechanisms in abnormally cloned animals through somatic cell nuclear transfer. PMID:27028246

  7. Altered DNA methylation in PAH deficient phenylketonuria.

    PubMed

    Dobrowolski, Steven F; Lyons-Weiler, James; Spridik, Kayla; Biery, Amy; Breck, Jane; Vockley, Jerry; Yatsenko, Svetlana; Sultana, Tamanna

    2015-01-01

    While phenylalanine (PHE) is the toxic insult in phenylketonuria (PKU), mechanisms underlying PHE toxicity remain ill-defined. Altered DNA methylation in response to toxic exposures is well-recognized. DNA methylation patterns were assessed in blood and brain from PKU patients to determine if PHE toxicity impacts methylation. Methylome assessment, utilizing methylated DNA immunoprecipitation and paired-end sequencing, was performed in DNA obtained from brain tissue of classical PKU patients, leukocytes from poorly controlled PKU patients, leukocytes from well controlled PKU patients, and appropriate control tissues. In PKU brain tissue, expression analysis determined the impact of methylation on gene function. Differential methylation was observed in brain tissue of PKU patients and expression studies identified downstream impact on gene expression. Altered patterns of methylation were observed in leukocytes of well controlled and poorly controlled patients with more extensive methylation in patients with high PHE exposure. Differential methylation of noncoding RNA genes was extensive in patients with high PHE exposure but minimal in well controlled patients. Methylome repatterning leading to altered gene expression was present in brain tissue of PKU patients, suggesting a role in neuropathology. Aberrant methylation is observed in leukocytes of PKU patients and is influenced by PHE exposure. DNA methylation may provide a biomarker relating to historic PHE exposure. PMID:25990862

  8. Site-specific methylation of the rat prolactin and growth hormone promoters correlates with gene expression.

    PubMed Central

    Ngô, V; Gourdji, D; Laverrière, J N

    1996-01-01

    The methylation patterns of the rat prolactin (rPRL) (positions -440 to -20) and growth hormone (rGH) (positions -360 to -110) promoters were analyzed by bisulfite genomic sequencing. Two normal tissues, the anterior pituitary and the liver, and three rat pituitary GH3 cell lines that differ considerably in their abilities to express both genes were tested. High levels of rPRL gene expression were correlated with hypomethylation of the CpG dinucleotides located at positions -277 and -97, near or within positive cis-acting regulatory elements. For the nine CpG sites analyzed in the rGH promoter, an overall hypomethylation-expression coupling was also observed for the anterior pituitary, the liver, and two of the cell lines. The effect of DNA methylation was tested by measuring the transient expression of the chloramphenicol acetyltransferase reporter gene driven by a regionally methylated rPRL promoter. CpG methylation resulted in a decrease in the activity of the rPRL promoter which was proportional to the number of modified CpG sites. The extent of the inhibition was also found to be dependent on the position of methylated sites. Taken together, these data suggest that site-specific methylation may modulate the action of transcription factors that dictate the tissue-specific expression of the rPRL and rGH genes in vivo. PMID:8668139

  9. Genome-Wide Screening of Genes Regulated by DNA Methylation in Colon Cancer Development

    PubMed Central

    Galamb, Orsolya; Wichmann, Barna; Sipos, Ferenc; Péterfia, Bálint; Csabai, István; Kovalszky, Ilona; Semsey, Szabolcs; Tulassay, Zsolt; Molnár, Béla

    2012-01-01

    Tumorigenesis is accompanied by changes in the DNA methylation pattern. Our aim was to test a novel approach for identification of transcripts at whole transcript level which are regulated by DNA methylation. Our approach is based on comparison of data obtained from transcriptome profiling of primary human samples and in vitro cell culture models. Epithelial cells were collected by LCM from normal, adenoma, and tumorous colonic samples. Using gene expression analysis, we identified downregulated genes in the tumors compared to normal tissues. In parallel 3000 upregulated genes were determined in HT-29 colon adenocarcinoma cell culture model after DNA demethylation treatment. Of the 2533 transcripts showing reduced expression in the tumorous samples, 154 had increased expression as a result of DNA demethylation treatment. Approximately 2/3 of these genes had decreased expression already in the adenoma samples. Expression of five genes (GCG, NMES-1, LRMP, FAM161B and PTGDR), was validated using RT-PCR. PTGDR showed ambiguous results, therefore it was further studied to verify the extent of DNA methylation and its effect on the protein level. Results confirmed that our approach is suitable for genome-wide screening of genes which are regulated or inactivated by DNA methylation. Activity of these genes possibly interferes with tumor progression, therefore genes identified can be key factors in the formation and in the progression of the disease. PMID:23049694

  10. Gene-set Analysis with CGI Information for Differential DNA Methylation Profiling

    PubMed Central

    Chang, Chia-Wei; Lu, Tzu-Pin; She, Chang-Xian; Feng, Yen-Chen; Hsiao, Chuhsing Kate

    2016-01-01

    DNA methylation is a well-established epigenetic biomarker for many diseases. Studying the relationships among a group of genes and their methylations may help to unravel the etiology of diseases. Since CpG-islands (CGIs) play a crucial role in the regulation of transcription during methylation, including them in the analysis may provide further information in understanding the pathogenesis of cancers. Such CGI information, however, has usually been overlooked in existing gene-set analyses. Here we aimed to include both pathway information and CGI status to rank competing gene-sets and identify among them the genes most likely contributing to DNA methylation changes. To accomplish this, we devised a Bayesian model for matched case-control studies with parameters for CGI status and pathway associations, while incorporating intra-gene-set information. Three cancer studies with candidate pathways were analyzed to illustrate this approach. The strength of association for each candidate pathway and the influence of each gene were evaluated. Results show that, based on probabilities, the importance of pathways and genes can be determined. The findings confirm that some of these genes are cancer-related and may hold the potential to be targeted in drug development. PMID:27090937

  11. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    PubMed Central

    2011-01-01

    Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD) followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes) and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes) hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease. PMID:21669002

  12. A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation.

    PubMed

    Wee, Eugene J H; Ha Ngo, Thu; Trau, Matt

    2015-01-01

    The challenge of bringing DNA methylation biomarkers into clinic is the lack of simple methodologies as most current assays have been developed for research purposes. To address the limitations of current methods, we describe herein a novel methyl-protein domain (MBD) enrichment protocol for simple yet rapid and highly stringent selection of highly methylated DNA from limiting input samples. We then coupled this with a DNA-mediated flocculation assay for rapid and low cost naked-eye binary evaluation of highly methylated genes in cell line and blood DNA. The low resource requirements of our method may enable widespread adoption of DNA methylation-based diagnostics in clinic and may be useful for small-scale research. PMID:26458746

  13. A simple bridging flocculation assay for rapid, sensitive and stringent detection of gene specific DNA methylation

    PubMed Central

    Wee, Eugene J. H.; Ha Ngo, Thu; Trau, Matt

    2015-01-01

    The challenge of bringing DNA methylation biomarkers into clinic is the lack of simple methodologies as most current assays have been developed for research purposes. To address the limitations of current methods, we describe herein a novel methyl-protein domain (MBD) enrichment protocol for simple yet rapid and highly stringent selection of highly methylated DNA from limiting input samples. We then coupled this with a DNA-mediated flocculation assay for rapid and low cost naked-eye binary evaluation of highly methylated genes in cell line and blood DNA. The low resource requirements of our method may enable widespread adoption of DNA methylation-based diagnostics in clinic and may be useful for small-scale research. PMID:26458746

  14. Genome-wide profiling of DNA methylation and gene expression in esophageal squamous cell carcinoma

    PubMed Central

    Chen, Chen; Peng, Hao; Huang, Xiaojie; Zhao, Ming; Li, Zhi; Yin, Ni; Wang, Xiang; Yu, Fenglei; Yin, Bangliang; Yuan, Yunchang; Lu, Qianjin

    2016-01-01

    Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide. Previous studies have suggested that DNA methylation involved in the development of ESCC. However, the precise mechanisms underlying the regulation and maintenance of the methylome as well as their relationship with ESCC remain poorly understood. Herein, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and RNA-Seq to investigate whole-genome DNA methylation patterns and the genome expression profiles in ESCC samples. The results of MeDIP-Seq analyses identified differentially methylated regions (DMRs) covering almost the entire genome with sufficient depth and high resolution. The gene ontology (GO) analysis showed that the DMRs related genes belonged to several different ontological domains, such as cell cycle, adhesion, proliferation and apoptosis. The RNA-Seq analysis identified a total of 6150 differentially expressed genes (3423 up-regulated and 2727 down-regulated). The significant GO terms showed that these genes belonged to several molecular functions and biological pathways. Moreover, the bisulfite-sequencing of genes MLH1, CDH5, TWIST1 and CDX1 confirmed the methylation status identified by MeDIP-Seq. And the mRNA expression levels of MLH1, TWIST1 and CDX1 were consistent with their DNA methylation profiles. The DMR region of MLH1 was found to correlate with survival. The identification of whole-genome DNA methylation patterns and gene expression profiles in ESCC provides new insight into the carcinogenesis of ESCC and represents a promising avenue through which to investigate novel therapeutic targets. PMID:26683359

  15. Genome-wide profiling of DNA methylation and gene expression in esophageal squamous cell carcinoma.

    PubMed

    Chen, Chen; Peng, Hao; Huang, Xiaojie; Zhao, Ming; Li, Zhi; Yin, Ni; Wang, Xiang; Yu, Fenglei; Yin, Bangliang; Yuan, Yunchang; Lu, Qianjin

    2016-01-26

    Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer-related death worldwide. Previous studies have suggested that DNA methylation involved in the development of ESCC. However, the precise mechanisms underlying the regulation and maintenance of the methylome as well as their relationship with ESCC remain poorly understood. Herein, we used methylated DNA immunoprecipitation sequencing (MeDIP-Seq) and RNA-Seq to investigate whole-genome DNA methylation patterns and the genome expression profiles in ESCC samples. The results of MeDIP-Seq analyses identified differentially methylated regions (DMRs) covering almost the entire genome with sufficient depth and high resolution. The gene ontology (GO) analysis showed that the DMRs related genes belonged to several different ontological domains, such as cell cycle, adhesion, proliferation and apoptosis. The RNA-Seq analysis identified a total of 6150 differentially expressed genes (3423 up-regulated and 2727 down-regulated). The significant GO terms showed that these genes belonged to several molecular functions and biological pathways. Moreover, the bisulfite-sequencing of genes MLH1, CDH5, TWIST1 and CDX1 confirmed the methylation status identified by MeDIP-Seq. And the mRNA expression levels of MLH1, TWIST1 and CDX1 were consistent with their DNA methylation profiles. The DMR region of MLH1 was found to correlate with survival. The identification of whole-genome DNA methylation patterns and gene expression profiles in ESCC provides new insight into the carcinogenesis of ESCC and represents a promising avenue through which to investigate novel therapeutic targets. PMID:26683359

  16. Alpharetroviral Vector-mediated Gene Therapy for X-CGD: Functional Correction and Lack of Aberrant Splicing

    PubMed Central

    Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel

    2013-01-01

    Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695

  17. Methylation of B-hordein genes in barley endosperm is inversely correlated with gene activity and affected by the regulatory gene Lys3.

    PubMed Central

    Sørensen, M B

    1992-01-01

    The methylation status of B-hordein genes in the developing barley endosperm was analyzed by digestion with methylation-sensitive restriction enzymes. Southern blotting revealed specific demethylation of Hpa II sites in DNA from wild-type endosperm, whereas leaf DNA and lys3a mutant endosperm DNA were highly methylated at these sites. Similar methylation patterns were observed at an Ava I site situated at position -260 in the B-hordein promoter. This differential methylation was confirmed by genomic sequencing with ligation-mediated PCR. The analyzed sequence covers most of the B-hordein promoter and includes 10 CpGs from the promoter and 4 CpGs from the adjacent coding region. These sites were all hypomethylated in wild-type endosperm, whereas--except for three partially methylated sites--full methylation was seen in leaf DNA. The four sites in the coding region were partially methylated in lys3a endosperm DNA, but the promoter sites remained highly methylated. The possible role of methylation in the regulatory function of the Lys3 gene product is discussed. Images PMID:1570338

  18. Air pollution and gene-specific methylation in the Normative Aging Study

    PubMed Central

    Bind, Marie-Abele; Lepeule, Johanna; Zanobetti, Antonella; Gasparrini, Antonio; Baccarelli, Andrea A; Coull, Brent A; Tarantini, Letizia; Vokonas, Pantel S; Koutrakis, Petros; Schwartz, Joel

    2014-01-01

    The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation. PMID:24385016

  19. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain

    PubMed Central

    Seymour, Tracy; Twigger, Alecia-Jane; Kakulas, Foteini

    2015-01-01

    Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies. PMID:26580604

  20. Pluripotency Genes and Their Functions in the Normal and Aberrant Breast and Brain.

    PubMed

    Seymour, Tracy; Twigger, Alecia-Jane; Kakulas, Foteini

    2015-01-01

    Pluripotent stem cells (PSCs) attracted considerable interest with the successful isolation of embryonic stem cells (ESCs) from the inner cell mass of murine, primate and human embryos. Whilst it was initially thought that the only PSCs were ESCs, in more recent years cells with similar properties have been isolated from organs of the adult, including the breast and brain. Adult PSCs in these organs have been suggested to be remnants of embryonic development that facilitate normal tissue homeostasis during repair and regeneration. They share certain characteristics with ESCs, such as an inherent capacity to self-renew and differentiate into cells of the three germ layers, properties that are regulated by master pluripotency transcription factors (TFs) OCT4 (octamer-binding transcription factor 4), SOX2 (sex determining region Y-box 2), and homeobox protein NANOG. Aberrant expression of these TFs can be oncogenic resulting in heterogeneous tumours fueled by cancer stem cells (CSC), which are resistant to conventional treatments and are associated with tumour recurrence post-treatment. Further to enriching our understanding of the role of pluripotency TFs in normal tissue function, research now aims to develop optimized isolation and propagation methods for normal adult PSCs and CSCs for the purposes of regenerative medicine, developmental biology, and disease modeling aimed at targeted personalised cancer therapies. PMID:26580604

  1. Role of Morphological Growth State and Gene Expression in Desulfovibrio africanus strain Walvis Bay Mercury Methylation

    SciTech Connect

    Moberly, James G; Miller, Carrie L; Brown, Steven D; Biswas, Abir; Brandt, Craig C; Palumbo, Anthony Vito; Elias, Dwayne A

    2012-01-01

    The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)- reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating -proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production, but decreased when the pinched cocci (persister) form became the major morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. While no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.

  2. Characterization of the IGF2 Imprinted Gene Methylation Status in Bovine Oocytes during Folliculogenesis

    PubMed Central

    Mendonça, Anelise dos Santos; Guimarães, Ana Luíza Silva; da Silva, Naiara Milagres Augusto; Caetano, Alexandre Rodrigues; Dode, Margot Alves Nunes; Franco, Maurício Machaim

    2015-01-01

    DNA methylation reprogramming occurs during mammalian gametogenesis and embryogenesis. Sex-specific DNA methylation patterns at specific CpG islands controlling imprinted genes are acquired during this window of development. Characterization of the DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis is essential for understanding the physiological and genetic aspects of female gametogenesis and to determine the parameters for oocyte competence. This knowledge can be used to improve in vitro embryo production (IVP), specifically because oocyte competence is one of the most important aspects determining the success of IVP. Imprinted genes, such as IGF2, play important roles in embryo development, placentation and fetal growth. The aim of this study was to characterize the DNA methylation profile of the CpG island located in IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%, 65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial follicles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039); spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of this region behaves differently between mature oocytes and spermatozoa. However, while this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Furthermore, our results suggest that this CpG island may have received precocious reprogramming, considering that the hypermethylated pattern was already found in growing oocytes from primordial follicles. These results may contribute to

  3. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGESBeta

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  4. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  5. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  6. Nested methylation-specific polymerase chain reaction cancer detection method

    DOEpatents

    Belinsky, Steven A.; Palmisano, William A.

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  7. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions.

    PubMed

    Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpathanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Whorton, Elbert B

    2015-11-01

    Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 Me

  8. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  9. Adaptation of the targeted capture Methyl-Seq platform for the mouse genome identifies novel tissue-specific DNA methylation patterns of genes involved in neurodevelopment

    PubMed Central

    Hing, Benjamin; Ramos, Enrique; Braun, Patricia; McKane, Melissa; Jancic, Dubravka; Tamashiro, Kellie L K; Lee, Richard S; Michaelson, Jacob J; Druley, Todd E; Potash, James B

    2015-01-01

    Methyl-Seq was recently developed as a targeted approach to assess DNA methylation (DNAm) at a genome-wide level in human. We adapted it for mouse and sought to examine DNAm differences across liver and 2 brain regions: cortex and hippocampus. A custom hybridization array was designed to isolate 99 Mb of CpG islands, shores, shelves, and regulatory elements in the mouse genome. This was followed by bisulfite conversion and sequencing on the Illumina HiSeq2000. The majority of differentially methylated cytosines (DMCs) were present at greater than expected frequency in introns, intergenic regions, near CpG islands, and transcriptional enhancers. Liver-specific enhancers were observed to be methylated in cortex, while cortex specific enhancers were methylated in the liver. Interestingly, commonly shared enhancers were differentially methylated between the liver and cortex. Gene ontology and pathway analysis showed that genes that were hypomethylated in the cortex and hippocampus were enriched for neuronal components and neuronal function. In contrast, genes that were hypomethylated in the liver were enriched for cellular components important for liver function. Bisulfite-pyrosequencing validation of 75 DMCs from 19 different loci showed a correlation of r = 0.87 with Methyl-Seq data. We also identified genes involved in neurodevelopment that were not previously reported to be differentially methylated across brain regions. This platform constitutes a valuable tool for future genome-wide studies involving mouse models of disease. PMID:25985232

  10. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links With Internalizing Behavior Problems.

    PubMed

    Parade, Stephanie H; Ridout, Kathryn K; Seifer, Ronald; Armstrong, David A; Marsit, Carmen J; McWilliams, Melissa A; Tyrka, Audrey R

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, NR3C1, which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of NR3C1 to emerging behavior problems and psychopathology in childhood. This study examined the links between methylation of NR3C1 and behavior problems in preschoolers. Data were drawn from a sample of preschoolers with early adversity (n = 171). Children ranged in age from 3 to 5 years, were racially and ethnically diverse, and nearly all qualified for public assistance. Seventy-one children had child welfare documentation of moderate to severe maltreatment in the past 6 months. Structured record review and interviews in the home were used to assess early adversity. Parents reported on child internalizing and externalizing behavior problems. Methylation of NR3C1 at exons 1D , 1F , and 1H were measured via sodium bisulfite pyrosequencing from saliva DNA. Methylation of NR3C1 at exons 1D and 1F was positively associated with internalizing (r = .21, p < .01 and r = .23, p < .01, respectively), but not externalizing, behavior problems. Furthermore, NR3C1 methylation mediated effects of early adversity on internalizing behavior problems. These results suggest that methylation of NR3C1 contributes to psychopathology in young children, and NR3C1 methylation from saliva DNA is salient to behavioral outcomes. PMID:26822445

  11. Global prevalence and distribution of genes and microorganisms involved in mercury methylation.

    PubMed

    Podar, Mircea; Gilmour, Cynthia C; Brandt, Craig C; Soren, Allyson; Brown, Steven D; Crable, Bryan R; Palumbo, Anthony V; Somenahally, Anil C; Elias, Dwayne A

    2015-10-01

    Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal "dead zones," soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations. PMID:26601305

  12. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    PubMed Central

    Podar, Mircea; Gilmour, Cynthia C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony V.; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal “dead zones,” soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations. PMID:26601305

  13. Methylation of DAPK and THBS1 genes in esophageal gastric-type columnar metaplasia

    PubMed Central

    Herrera-Goepfert, Roberto; Oñate-Ocaña, Luis F; Mosqueda-Vargas, José Luis; Herrera, Luis A; Castro, Clementina; Mendoza, Julia; González-Barrios, Rodrigo

    2016-01-01

    AIM: To explore methylation of DAPK, THBS1, CDH-1, and p14 genes, and Helicobacter pylori (H. pylori) status in individuals harboring esophageal columnar metaplasia. METHODS: Distal esophageal mucosal samples obtained by endoscopy and histologically diagnosed as gastric-type (non-specialized) columnar metaplasia, were studied thoroughly. DNA was extracted from paraffin blocks, and methylation status of death-associated protein kinase (DAPK), thrombospondin-1 (THBS1), cadherin-1 (CDH1), and p14 genes, was examined using a methyl-sensitive polymerase chain reaction (MS-PCR) and sodium bisulfite modification protocol. H. pylori cagA status was determined by PCR. RESULTS: In total, 68 subjects (33 females and 35 males), with a mean age of 52 years, were included. H. pylori cagA positive was present in the esophageal gastric-type metaplastic mucosa of 18 individuals. DAPK, THSB1, CDH1, and p14 gene promoters were methylated by MS-PCR in 40 (58.8%), 33 (48.5%), 46 (67.6%), and 23 (33.8%) cases of the 68 esophageal samples. H. pylori status was associated with methylation of DAPK (P = 0.003) and THBS1 (P = 0.019). CONCLUSION: DNA methylation occurs in cases of gastric-type (non-specialized) columnar metaplasia of the esophagus, and this modification is associated with H. pylori cagA positive infection. PMID:27182166

  14. DNA Methylation Profile and Expression of Surfactant Protein A2 gene in Lung Cancer

    PubMed Central

    Grageda, Melissa; Silveyra, Patricia; Thomas, Neal J.; DiAngelo, Susan L.; Floros, Joanna

    2014-01-01

    Knowledge of the methylation profile of genes allow for the identification of biomarkers that may guide diagnosis and effective treatment of disease. Human surfactant protein A (SP-A) plays an important role in lung homeostasis and immunity, and is encoded by two genes (SFTPA1 and SFTPA2). The goal of this study was to identify differentially methylated CpG sites in the promoter region of the SFTPA2 gene in lung cancer tissue, and to determine the correlation between the promoter’s methylation profile and gene expression. For this, we collected 28 pairs of cancerous human lung tissue and adjacent non-cancerous (NC) lung tissue: 17 adenocarcinoma (AC), 9 squamous cell carcinoma (SCC), and 2 AC with SCC features, and we evaluated DNA methylation of the SFTPA2 promoter region by bisulfite conversion. Our results identified a higher methylation ratio in one CpG site of the SFTPA2 gene in cancerous tissue vs. NC tissue (0.36 vs. 0.11, p=0.001). When assessing AC samples, we also found cancerous tissues associated with a higher methylation ratio (0.43 vs. 0.10, p=0.02). In the SCC group, although cancerous tissue showed a higher methylation ratio (0.22 vs. 0.11), this difference was not statistically significant (p=0.35). Expression of SFTPA2 mRNA and total SP-A protein was significantly lower in cancer tissue when compared to adjacent NC tissue (p<0.001), and correlated with the hypermethylated status of a SFTPA2 CpG site in AC samples. The findings of this pilot study may hold promise for future use of SFTPA2 as a biomarker for the diagnosis of lung cancer. PMID:25514367

  15. Global Methylation Patterns and Their Relationship with Gene Expression and Small RNA in Rice Lines with Different Ploidy

    PubMed Central

    Zhang, Hong-Yu; Zhao, Hui-Xia; Wu, Shao-Hua; Huang, Fang; Wu, Kai-Ting; Zeng, Xiu-Feng; Chen, Xiao-Qiong; Xu, Pei-Zhou; Wu, Xian-Jun

    2016-01-01

    Whole genome duplication (WGD) is a major force in angiosperm evolution. Whether WGD is accompanied by the evolution of epigenetic regulators remains to be explored. Here we investigate whole genome methylation, gene expression, and miRNA regulation among monoploid, diploid, and triploid rice plants isolated from a twin-seedling population. The DNA methylation patterns in the three different ploidy plants were highly similar, with DNA methylation primarily enriched in the promoters. We examined the methylation of single genes and detected around 25,500 methylated genes, of which 22,751 were methylated in all three lines. Significantly divergent DNA methylation patterns between each pair of three lines were only detected in 64 genes, though more genes were found to exhibit differential expression. Analysis of DNA methylation and expression patterns showed that higher DNA methylation levels upstream of the transcription start sites are correlated with higher levels of expression of related genes; whereas higher DNA methylation levels in gene body regions are correlated with lower levels of expression. We also carried out high-throughput sequencing of small RNA libraries and identified 36 new miRNAs. These miRNAs have different expression levels depending on the ploidy. PMID:27493648

  16. Protein expression and methylation of MGMT, a DNA repair gene and their correlation with clinicopathological parameters in invasive ductal carcinoma of the breast.

    PubMed

    Asiaf, Asia; Ahmad, Shiekh Tanveer; Malik, Ajaz Ahmad; Aziz, Shiekh Aejaz; Rasool, Zubaida; Masood, Akbar; Zargar, Mohammad Afzal

    2015-08-01

    Epigenetic mechanisms such as DNA methylation are being increasingly recognized to play an important role in cancer and may serve as a cancer biomarker. The aim of this study was to evaluate the promoter methylation status of MGMT (O6-methylguanine-DNA methyltransferase) and a possible correlation with the expression of MGMT and standard clinicopathological parameters in invasive ductal breast carcinoma patients (IDC) of Kashmir. Methylation-specific PCR was carried out to investigate the promoter methylation status of MGMT in breast tumors paired with the corresponding normal tissue samples from 128 breast cancer patients. The effect of promoter methylation on protein expression in the primary breast cancer and adjacent normal tissues was evaluated by immunohistochemistry (n = 128) and western blotting (n = 30). The frequency of tumor hypermethylation was 39.8 % and a significant difference in methylation frequency among breast tumors were found (p < 0.001) when compared with the corresponding normal tissue. Immunohistochemical analysis showed no detectable expression of MGMT in 68/128 (53.1 %) tumors. MGMT promoter methylation mediated gene silencing was associated with loss of its protein expression (rs = -0.285, p = 0.001, OR = 3.38, 95 % CI = 1.59-7.17). A significant correlation was seen between loss of MGMT and lymph node involvement (p = 0.030), tumor grade (p < 0.0001), loss of estrogen receptors (ER; p = 0.021) and progesterone receptors (PR) (p = 0.016). Also, MGMT methylation was found to be associated with tumor grade (p = 0.011), tumor stage (p = 0.009), and loss of ER (p = 0.003) and PR receptors (p = 0.009). To our knowledge, our findings, for the first time, in Kashmiri population, indicate that MGMT is aberrantly methylated in breast cancer and promoter hypermethylation could be attributed to silencing of MGMT gene expression in breast cancer. Our data suggests that MGMT promoter

  17. Identification of transgenic cloned dairy goats harboring human lactoferrin and methylation status of the imprinted gene IGF2R in their lungs.

    PubMed

    Zhang, Y L; Zhang, G M; Wan, Y J; Jia, R X; Li, P Z; Han, L; Wang, F; Huang, M R

    2015-01-01

    Dairy goat is a good model for production of transgenic proteins in milk using somatic cell nuclear transfer (SCNT). However, animals produced from SCNT are often associated with lung deficiencies. We recently produced six transgenic cloned dairy goats harboring the human lactoferrin gene, including three live transgenic clones and three deceased transgenic clones that died from respiratory failure during the perinatal period. Imprinted genes are important regulators of lung growth, and may be subjected to faulty reprogramming. In the present study, first, microsatellite analysis, PCR, and DNA sequence identification were conducted to confirm that these three dead kids were genetically identical to the transgenic donor cells. Second, the CpG island methylation profile of the imprinted insulin-like growth factor receptor (IGF2R) gene was assessed in the lungs of the three dead transgenic kids and the normally produced kids using bisulfite sequencing PCR. In addition, the relative mRNA level of IGF2R was also determined by real-time PCR. Results showed that the IGF2R gene in the lungs of the dead cloned kids showed abnormal hypermethylation and higher mRNA expression levels than the control, indicating that aberrant DNA methylation reprogramming is one of the important factors in the death of transgenic cloned animals. PMID:26400340

  18. [Neuroepigenetics: Desoxyribonucleic acid methylation in Alzheimer's disease and other dementias].

    PubMed

    Mendioroz Iriarte, Maite; Pulido Fontes, Laura; Méndez-López, Iván

    2015-05-21

    DNA methylation is an epigenetic mechanism that controls gene expression. In Alzheimer's disease (AD), global DNA hypomethylation of neurons has been described in the human cerebral cortex. Moreover, several variants in the methylation pattern of candidate genes have been identified in brain tissue when comparing AD patients and controls. Specifically, DNA methylation changes have been observed in PSEN1 and APOE, both genes previously being involved in the pathophysiology of AD. In other degenerative dementias, methylation variants have also been described in key genes, such as hypomethylation of the SNCA gene in Parkinson's disease and dementia with Lewy bodies or hypermethylation of the GRN gene promoter in frontotemporal dementia. The finding of aberrant DNA methylation patterns shared by brain tissue and peripheral blood opens the door to use those variants as epigenetic biomarkers in the diagnosis of neurodegenerative diseases. PMID:24907105

  19. Epigenetic Characterization of the FMR1 Gene and Aberrant Neurodevelopment in Human Induced Pluripotent Stem Cell Models of Fragile X Syndrome

    PubMed Central

    Reis, Surya A.; Zhou, Fen; Madison, Jon M.; Daheron, Laurence; Loring, Jeanne F.; Haggarty, Stephen J.

    2011-01-01

    Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5′ untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the

  20. P04.18PROGNOSIS IMPACT OF THE REGIONAL DISTRIBUTION OF MGMT GENE METHYLATION ACCORDING TO THE CPGISLAND METHYLATOR PHENOTYPE AND AGE IN HIGH-GRADE GLIOMAS

    PubMed Central

    Mur, P.; de Lope, A. Rodriguez; Hernandez-Iglesias, T.; Diaz, F.; Ribalta, T.; Fiaño, C.; Garcia, J.F.; Rey, J.A.; Mollejo, M.; Meléndez, B.

    2014-01-01

    Clinical and molecular prognostic factors in gliomas include age, IDH mutation, the glioma CpG island methylator phenotype (G-CIMP) and promoter methylation of the O6-methylguanine DNA-methyltransferase (MGMT) gene, among others. Clinical trials supported the predictive value of MGMT promoter methylation for benefit from alkylating chemotherapy in elderly GBM patients. In this study, methylation data were obtained from 46 oligodendroglial samples with the Illumina 450K platform, and were analyzed with external data to reach a total 247 glioma samples. MGMT gene methylation analysis with this platform revealed two significant survival-associated CpG regions, one within the promoter (cg12981137) and the other within the gene body (cg07933035), both significantly associated with better overall survival (OS) and strongly correlated with the G-CIMP+ status. However, although around 50% of G-CIMP- tumors were MGMT methylated on these CpG sites, their prognostic relevance were not observed in these patients. Only the gene body methylation was prognostic, but in the context of age, showing significant differences of OS in elderly patients. The absence of the MGMT promoter prognostic value in G-CIMP- tumors was validated in an independent series of 59 chemoradiated GBM patients by MSP and qMSP assays. Our study suggests that the prognostic value of MGMT methylation should be reviewed in the context of specific G-CIMP profiles and age groups. Further analysis on the impact of MGMT methylation on gene and protein expression is necessary for better clinical treatment settings. The routine use of MGMT methylation for the individual treatment of patients should be still viewed with caution.

  1. Cysteine Dioxygenase 1 Is a Tumor Suppressor Gene Silenced by Promoter Methylation in Multiple Human Cancers

    PubMed Central

    Brait, Mariana; Ling, Shizhang; Nagpal, Jatin K.; Chang, Xiaofei; Park, Hannah Lui; Lee, Juna; Okamura, Jun; Yamashita, Keishi; Sidransky, David; Kim, Myoung Sook

    2012-01-01

    The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer. PMID:23028699

  2. [Epigenetic heredity (deoxyribonucleic acid methylation): Clinical context in neurodegenerative disorders and ATXN2 gene].

    PubMed

    Laffita-Mesa, José Miguel; Bauer, Peter

    2014-10-21

    Epigenetics is the group of changes in the phenotype which are related with the process independently of the primary DNA sequence. These changes are intimately related with changes in the gene expression level and its profile across the body. These are mediated by histone tail modifications, DNA methylation, micro-RNAs, with chromatin remodeling remaining as the foundation of epigenetic changes. DNA methylation involves the covalent addition of methyl group to cytosine of the DNA, which is mediated by methyltransferases enzymes. DNA methylation regulates gene expression by repressing transcription, while de-methylation activates gene transcription. Several human diseases are related with the epigenetic process: cancer, Alzheimer disease, stroke, Parkinson disease, and diabetes. We present here the basis of epigenetic inheritance and show the pathogenic mechanisms relating epigenetics in human diseases, specifically with regard to neurodegeneration. We discuss current concepts aimed at understanding the contribution of epigenetics to human neurodegenerative diseases. We also discuss recent findings obtained in our and other centers regarding the ATXN2 gene that causes spinocerebellar ataxia 2 and amyotrophic lateral sclerosis. Epigenetics play a pivotal role in the pathogenesis of human diseases and in several neurodegenerative disorders, and this knowledge will illuminate the pathways in the diagnostic and therapeutic field, which ultimately will be translated into the clinic context of neurodegenerative diseases. PMID:24485162

  3. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates.

    PubMed

    Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J

    2013-01-01

    Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI:http://dx.doi.org/10.7554/eLife.00348.001. PMID:23467541

  4. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors.

    PubMed

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC. PMID:25961636

  5. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors

    PubMed Central

    Chen, Xiaofei; Liu, Liang; Mims, Jade; Punska, Elizabeth C; Williams, Kristin E; Zhao, Weiling; Arcaro, Kathleen F; Tsang, Allen W; Zhou, Xiaobo; Furdui, Cristina M

    2015-01-01

    Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC. PMID:25961636

  6. A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma

    PubMed Central

    Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander

    2014-01-01

    DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633

  7. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  8. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation.

    PubMed

    Hartig, Ellen I; Zhu, Shusen; King, Benjamin L; Coffman, James A

    2016-01-01

    Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  9. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  10. Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma

    PubMed Central

    Jia, Songwei; Chen, Luonan

    2016-01-01

    As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of differentially methylated genes. By integrating gene expression and DNA methylation data, a pipeline combined with the differential network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data and DNA methylation data. PMID:27610367

  11. Uncovering Driver DNA Methylation Events in Nonsmoking Early Stage Lung Adenocarcinoma.

    PubMed

    Zhang, Xindong; Gao, Lin; Liu, Zhi-Ping; Jia, Songwei; Chen, Luonan

    2016-01-01

    As smoking rates decrease, proportionally more cases with lung adenocarcinoma occur in never-smokers, while aberrant DNA methylation has been suggested to contribute to the tumorigenesis of lung adenocarcinoma. It is extremely difficult to distinguish which genes play key roles in tumorigenic processes via DNA methylation-mediated gene silencing from a large number of differentially methylated genes. By integrating gene expression and DNA methylation data, a pipeline combined with the differential network analysis is designed to uncover driver methylation genes and responsive modules, which demonstrate distinctive expressions and network topology in tumors with aberrant DNA methylation. Totally, 135 genes are recognized as candidate driver genes in early stage lung adenocarcinoma and top ranked 30 genes are recognized as driver methylation genes. Functional annotation and the differential network analysis indicate the roles of identified driver genes in tumorigenesis, while literature study reveals significant correlations of the top 30 genes with early stage lung adenocarcinoma in never-smokers. The analysis pipeline can also be employed in identification of driver epigenetic events for other cancers characterized by matched gene expression data and DNA methylation data. PMID:27610367

  12. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development?

    PubMed

    Upchurch, Garland Michael; Haney, Staci L; Opavsky, Rene

    2016-01-01

    Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL. PMID:27563627

  13. Aberrant Promoter Hypomethylation in CLL: Does It Matter for Disease Development?

    PubMed Central

    Upchurch, Garland Michael; Haney, Staci L.; Opavsky, Rene

    2016-01-01

    Over the last 30 years, studies of aberrant DNA methylation in hematologic malignancies have been dominated by the primary focus of understanding promoter hypermethylation. These efforts not only resulted in a better understanding of the basis of epigenetic silencing of tumor suppressor genes but also resulted in approval of hypomethylating agents for the treatment of several malignancies, such as myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global methylation profiling coupled with the use of mouse models suggest that aberrant promoter hypomethylation is also a frequent event in hematologic malignancies, particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects gene expression and, therefore, may play an important role in disease pathogenesis. Here, we review recent findings and discuss the potential involvement of aberrant promoter hypomethylation in CLL.

  14. Identification of differentially methylated regions in new genes associated with knee osteoarthritis.

    PubMed

    Bonin, Carolina A; Lewallen, Eric A; Baheti, Saurabh; Bradley, Elizabeth W; Stuart, Michael J; Berry, Daniel J; van Wijnen, Andre J; Westendorf, Jennifer J

    2016-01-15

    Epigenetic changes in articular chondrocytes are associated with osteoarthritis (OA) disease progression. Numerous studies have identified differentially methylated cytosines in OA tissues; however, the consequences of altered CpG methylation at single nucleotides on gene expression and phenotypes are difficult to predict. With the objective of detecting novel genes relevant to OA, we conducted a genome-wide assessment of differentially methylated sites (DMSs) and differentially methylated regions (DMRs). DNA was extracted from visually damaged and normal appearing, non-damaged human knee articular cartilage from the same joint and then subjected to reduced representation bisulfite sequencing. DMRs were identified using a genome-wide systematic bioinformatics approach. A sliding-window of 500 bp was used for screening the genome for regions with clusters of DMSs. Gene expression levels were assessed and cell culture demethylation experiments were performed to further examine top candidate genes associated with damaged articular cartilage. More than 1000 DMRs were detected in damaged osteoarthritic cartilage. Nineteen of these contained five or more DMSs and were located in gene promoters or first introns and exons. Gene expression assessment revealed that hypermethylated DMRs in damaged samples were more consistently associated with gene repression than hypomethylated DMRs were with gene activation. Accordingly, a demethylation agent induced expression of most hypermethylated genes in chondrocytes. Our study revealed the utility of a systematic DMR search as an alternative to focusing on single nucleotide data. In particular, this approach uncovered promising candidates for functional studies such as the hypermethylated protein-coding genes FOXP4 and SHROOM1, which appear to be linked to OA pathology in humans and warrant further investigation. PMID:26484395

  15. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    PubMed Central

    Eskandari-Nasab, Ebrahim; Hashemi, Mohammad; Rafighdoost, Firoozeh

    2016-01-01

    Background. Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent nonneoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent nonneoplastic tissue (OR = 2.30, 95% CI = 0.95–5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P = 0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients' clinical characteristics (P > 0.05). Conclusion. Our findings confirmed upregulation of RGC32 in breast cancerous tumors, but it was not associated with promoter methylation patterns. PMID:27118972

  16. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity.

    PubMed

    Dewi, Firli Rahmah Primula; Fatchiyah, Fatchiyah

    2013-01-01

    Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver. Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16 kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of promoter and enhancer region of Epo gene leads to silencing. PMID:24023421

  17. Dopamine transporter gene susceptibility to methylation is associated with impulsivity in nonhuman primates

    PubMed Central

    Rajala, Abigail Z.; Zaitoun, Ismail; Henriques, Jeffrey B.; Converse, Alexander K.; Murali, Dhanabalan; Epstein, Miles L.

    2014-01-01

    Impulsivity, the predisposition to act without regard for negative consequences, is a characteristic of several psychiatric disorders and is thought to result in part from genetic variation in the untranslated region of the dopamine transporter (DAT) gene. As the exact link between genetic mutations and impulsivity has not been established, we used oculomotor behavior to characterize rhesus monkeys as impulsive or calm and genetic/epigenetic analysis and positron emission tomography (PET) to correlate phenotype to DAT genotype, DAT gene methylation, and DAT availability. We found three single nucleotide polymorphisms (SNPs) in the 3′-UTR of the DAT gene, one of which provided a potential site for methylation in the impulsive group. Bisulfite analysis showed that the DNA of the impulsive but not the calm subjects was methylated at one SNP. Because genetic/epigenetic modifications could lead to differences in protein expression, we measured DAT availability using [18F]2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-fluoroethyl)-nortropane ([18F]FECNT) PET and found higher DAT availability in the internal globus pallidus, an output nucleus of the basal ganglia, of the impulsive group. Higher DAT availability lowers dopamine levels, potentially altering neuronal circuits involved in the initiation of action, thus contributing to the impulsive phenotype. The association between increased methylation in the DAT gene and greater DAT availability suggests that mutations to the regulatory portion of the DAT gene lead to a susceptibility to epigenetic modification resulting in a discrete behavioral phenotype. PMID:25122707

  18. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

    PubMed Central

    Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.

    2013-01-01

    Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726

  19. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data

    PubMed Central

    REN, ZHONGLU; WANG, WENHUI; LI, JINMING

    2016-01-01

    Identifying colon cancer subtypes based on molecular signatures may allow for a more rational, patient-specific approach to therapy in the future. Classifications using gene expression data have been attempted before with little concordance between the different studies carried out. In this study we aimed to uncover subtypes of colon cancer that have distinct biological characteristics and identify a set of novel biomarkers which could best reflect the clinical and/or biological characteristics of each subtype. Clustering analysis and discriminant analysis were utilized to discover the subtypes in two different molecular levels on 153 colon cancer samples from The Cancer Genome Atlas (TCGA) Data Portal. At gene expression level, we identified two major subtypes, ECL1 (expression cluster 1) and ECL2 (expression cluster 2) and a list of signature genes. Due to the heterogeneity of colon cancer, the subtype ECL1 can be further subdivided into three nested subclasses, and HOTAIR were found upregulated in subclass 2. At DNA methylation level, we uncovered three major subtypes, MCL1 (methylation cluster 1), MCL2 (methylation cluster 2) and MCL3 (methylation cluster 3). We found only three subtypes of CpG island methylator phenotype (CIMP) in colon cancer instead of the four subtypes in the previous reports, and we found no sufficient evidence to subdivide MCL3 into two distinct subgroups. PMID:26647925

  20. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. PMID:24943920

  1. Identification of a DNA methylation-dependent activator sequence in the pseudoxanthoma elasticum gene, ABCC6.

    PubMed

    Arányi, Tamás; Ratajewski, Marcin; Bardóczy, Viola; Pulaski, Lukasz; Bors, András; Tordai, Attila; Váradi, András

    2005-05-13

    ABCC6 encodes MRP6, a member of the ABC protein family with an unknown physiological role. The human ABCC6 and its two pseudogenes share 99% identical DNA sequence. Loss-of-function mutations of ABCC6 are associated with the development of pseudoxanthoma elasticum (PXE), a recessive hereditary disorder affecting the elastic tissues. Various disease-causing mutations were found in the coding region; however, the mutation detection rate in the ABCC6 coding region of bona fide PXE patients is only approximately 80%. This suggests that polymorphisms or mutations in the regulatory regions may contribute to the development of the disease. Here, we report the first characterization of the ABCC6 gene promoter. Phylogenetic in silico analysis of the 5' regulatory regions revealed the presence of two evolutionarily conserved sequence elements embedded in CpG islands. The study of DNA methylation of ABCC6 and the pseudogenes identified a correlation between the methylation of the CpG island in the proximal promoter and the ABCC6 expression level in cell lines. Both activator and repressor sequences were uncovered in the proximal promoter by reporter gene assays. The most potent activator sequence was one of the conserved elements protected by DNA methylation on the endogenous gene in non-expressing cells. Finally, in vitro methylation of this sequence inhibits the transcriptional activity of the luciferase promoter constructs. Altogether these results identify a DNA methylation-dependent activator sequence in the ABCC6 promoter. PMID:15760889

  2. Cell-specific DNA methylation patterns of retina-specific genes.

    PubMed

    Merbs, Shannath L; Khan, Miriam A; Hackler, Laszlo; Oliver, Verity F; Wan, Jun; Qian, Jiang; Zack, Donald J

    2012-01-01

    Many studies have demonstrated that epigenetic mechanisms are important in the regulation of gene expression during embryogenesis, gametogenesis, and other forms of tissue-specific gene regulation. We sought to explore the possible role of epigenetics, specifically DNA methylation, in the establishment and maintenance of cell type-restricted gene expression in the retina. To assess the relationship between DNA methylation status and expression level of retinal genes, bisulfite sequence analysis of the 1000 bp region around the transcription start sites (TSS) of representative rod and cone photoreceptor-specific genes and gene expression analysis were performed in the WERI and Y79 human retinoblastoma cell lines. Next, the homologous genes in mouse were bisulfite sequenced in the retina and in non-expressing tissues. Finally, bisulfite sequencing was performed on isolated photoreceptor and non-photoreceptor retinal cells isolated by laser capture microdissection. Differential methylation of rhodopsin (RHO), retinal binding protein 3 (RBP3, IRBP) cone opsin, short-wave-sensitive (OPN1SW), cone opsin, middle-wave-sensitive (OPN1MW), and cone opsin, long-wave-sensitive (OPN1LW) was found in the retinoblastoma cell lines that inversely correlated with gene expression levels. Similarly, we found tissue-specific hypomethylation of the promoter region of Rho and Rbp3 in mouse retina as compared to non-expressing tissues, and also observed hypomethylation of retinal-expressed microRNAs. The Rho and Rbp3 promoter regions were unmethylated in expressing photoreceptor cells and methylated in non-expressing, non-photoreceptor cells from the inner nuclear layer. A third regional hypomethylation pattern of photoreceptor-specific genes was seen in a subpopulation of non-expressing photoreceptors (Rho in cones from the Nrl -/- mouse and Opn1sw in rods). These results demonstrate that a number of photoreceptor-specific genes have cell-specific differential DNA methylation that

  3. P07.04PROMOTER METHYLATION OF THE LATS1 AND LATS2 GENES IN SCHWANNOMAS

    PubMed Central

    Ohta, T.; Oh, J.; Mittelbronn, M.; Paulus, W.; Ohgaki, H.

    2014-01-01

    Schwannoma is a benign nerve sheath tumor that is typically encapsulated and composed of well-differentiated Schwann cellswhich comprises 5-10% of all intracranial tumors in adults. Approximately 90% of schwannomas are solitary and sporadic, whereas ∼4% are considered to arise in the setting of neurofibromatosis type 2 (NF2) syndrome by NF2 germline mutations. The molecular basis of sporadic schwannomas is not fully understood, other than frequent NF2 mutations (∼60%). LATS1 and the related LATS2 are downstream molecules of NF2 and negative regulators of the YAP oncogene in the Salvador/Warts/Hippo (SWH) signaling pathway. Expression of these genes is reduced due to promoter methylation in a variety of neoplasms including gliomas. In the present study, methylation-specific PCR revealed promoter methylation of the LATS1 and LATS2 in 15 of 91 (16%) and 32 of 91 (35%) schwannomas, respectively. These alterations were significantly more frequent in spinal than in peripheral schwannomas (23% vs 3% for LATS1, P = 0.0171; 42% vs 21% for LATS2, P = 0.0386). LATS1 methylation was also detected in 3 of 4 schwannomatosis cases. Furthermore, neurofibroma / schwannoma hybrid tumors showed promoter methylation in LATS1 (3/14; 21%) and LATS2 (8/14; 57%). LATS1 and LATS2 promoter methylation were largely mutually exclusive, and there was a significant negative correlation (P = 0.003); only 10 cases had methylation in both genes. These results suggest that LATS1 and LATS2 promoter methylation may be additional molecular mechanisms resulting in an abnormal SWH pathway in schwannomas and related tumors.

  4. Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer

    PubMed Central

    2014-01-01

    Background A colorectal tumor is not an isolated entity growing in a restricted location of the body. The patient’s gut environment constitutes the framework where the tumor evolves and this relationship promotes and includes a complex and tight correlation of the tumor with inflammation, blood vessels formation, nutrition, and gut microbiome composition. The tumor influence in the environment could both promote an anti-tumor or a pro-tumor response. Methods A set of 98 paired adjacent mucosa and tumor tissues from colorectal cancer (CRC) patients and 50 colon mucosa from healthy donors (246 samples in total) were included in this work. RNA extracted from each sample was hybridized in Affymetrix chips Human Genome U219. Functional relationships between genes were inferred by means of systems biology using both transcriptional regulation networks (ARACNe algorithm) and protein-protein interaction networks (BIANA software). Results Here we report a transcriptomic analysis revealing a number of genes activated in adjacent mucosa from CRC patients, not activated in mucosa from healthy donors. A functional analysis of these genes suggested that this active reaction of the adjacent mucosa was related to the presence of the tumor. Transcriptional and protein-interaction networks were used to further elucidate this response of normal gut in front of the tumor, revealing a crosstalk between proteins secreted by the tumor and receptors activated in the adjacent colon tissue; and vice versa. Remarkably, Slit family of proteins activated ROBO receptors in tumor whereas tumor-secreted proteins transduced a cellular signal finally activating AP-1 in adjacent tissue. Conclusions The systems-level approach provides new insights into the micro-ecology of colorectal tumorogenesis. Disrupting this intricate molecular network of cell-cell communication and pro-inflammatory microenvironment could be a therapeutic target in CRC patients. PMID:24597571

  5. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy.

    PubMed

    Lin, Ying-Li; Deng, Qiu-Kui; Wang, Yu-Hao; Fu, Xing-Li; Ma, Jian-Guo; Li, Wen-Ping

    2015-01-01

    BACKGROUND Prostate cancer is a one of the most common malignant diseases in men worldwide. Now it is a challenge to identify patients at higher risk for relapse and progression after surgery, and more novel prognostic biomarkers are needed. The aim of this study was to investigate the clinical significance of protocadherin17 (PCDH17) methylation in serum and its predictive value for biochemical recurrence (BCR) after radical prostatectomy. MATERIAL AND METHODS We evaluated the methylation status of PCDH17 in serum samples of 167 early-stage prostate cancer patients and 44 patients with benign prostatic hyperplasia (BPH) using methylation-specific PCR (MSP), and then evaluated the relationship between PCDH17 methylation and clinicopathologic features. Kaplan-Meier survival analysis and Cox analysis were used to evaluate its predictive value for BCR. RESULTS The ratio of PCDH17 methylation in prostate cancer patients was higher than in patients with BPH. Moreover, PCDH17 methylation was significantly associated with advanced pathological stage, higher Gleason score, higher preoperative PSA levels, and BCR. Kaplan-Meier survival analysis indicated that patients with methylated PCDH17 had shorter BCR-free survival time compared to patients with unmethylated PCDH17. Cox regression analysis indicated that PCDH17 methylation was an independent predictive factor for the BCR of patients after radical prostatectomy. CONCLUSIONS PCDH17 methylation in serum is a frequent event in early-stage prostate cancer, and it is an independent predictor of BCR after radical prostatectomy. PMID:26683656

  6. Aberrant Protocadherin17 (PCDH17) Methylation in Serum is a Potential Predictor for Recurrence of Early-Stage Prostate Cancer Patients After Radical Prostatectomy

    PubMed Central

    Lin, Ying-Li; Deng, Qiu-Kui; Wang, Yu-Hao; Fu, Xing-Li; Ma, Jian-Guo; Li, Wen-Ping

    2015-01-01

    Background Prostate cancer is a one of the most common malignant diseases in men worldwide. Now it is a challenge to identify patients at higher risk for relapse and progression after surgery, and more novel prognostic biomarkers are needed. The aim of this study was to investigate the clinical significance of protocadherin17 (PCDH17) methylation in serum and its predictive value for biochemical recurrence (BCR) after radical prostatectomy. Material/Methods We evaluated the methylation status of PCDH17 in serum samples of 167 early-stage prostate cancer patients and 44 patients with benign prostatic hyperplasia (BPH) using methylation-specific PCR (MSP), and then evaluated the relationship between PCDH17 methylation and clinicopathologic features. Kaplan-Meier survival analysis and Cox analysis were used to evaluate its predictive value for BCR. Results The ratio of PCDH17 methylation in prostate cancer patients was higher than in patients with BPH. Moreover, PCDH17 methylation was significantly associated with advanced pathological stage, higher Gleason score, higher preoperative PSA levels, and BCR. Kaplan-Meier survival analysis indicated that patients with methylated PCDH17 had shorter BCR-free survival time compared to patients with unmethylated PCDH17. Cox regression analysis indicated that PCDH17 methylation was an independent predictive factor for the BCR of patients after radical prostatectomy. Conclusions PCDH17 methylation in serum is a frequent event in early-stage prostate cancer, and it is an independent predictor of BCR after radical prostatectomy. PMID:26683656

  7. Maintenance of Paternal Methylation and Repression of the Imprinted H19 Gene Requires MBD3

    PubMed Central

    Reese, Kimberly J; Lin, Shu; Verona, Raluca I; Schultz, Richard M; Bartolomei, Marisa S

    2007-01-01

    Paternal repression of the imprinted H19 gene is mediated by a differentially methylated domain (DMD) that is essential to imprinting of both H19 and the linked and oppositely imprinted Igf2 gene. The mechanisms by which paternal-specific methylation of the DMD survive the period of genome-wide demethylation in the early embryo and are subsequently used to govern imprinted expression are not known. Methyl-CpG binding (MBD) proteins are likely candidates to explain how these DMDs are recognized to silence the locus, because they preferentially bind methylated DNA and recruit repression complexes with histone deacetylase activity. MBD RNA and protein are found in preimplantation embryos, and chromatin immunoprecipitation shows that MBD3 is bound to the H19 DMD. To test a role for MBDs in imprinting, two independent RNAi-based strategies were used to deplete MBD3 in early mouse embryos, with the same results. In RNAi-treated blastocysts, paternal H19 expression was activated, supporting the hypothesis that MBD3, which is also a member of the Mi-2/NuRD complex, is required to repress the paternal H19 allele. RNAi-treated blastocysts also have reduced levels of the Mi-2/NuRD complex protein MTA-2, which suggests a role for the Mi-2/NuRD repressive complex in paternal-specific silencing at the H19 locus. Furthermore, DNA methylation was reduced at the H19 DMD when MBD3 protein was depleted. In contrast, expression and DNA methylation were not disrupted in preimplantation embryos for other imprinted genes. These results demonstrate new roles for MBD3 in maintaining imprinting control region DNA methylation and silencing the paternal H19 allele. Finally, MBD3-depleted preimplantation embryos have reduced cell numbers, suggesting a role for MBD3 in cell division. PMID:17708683

  8. Association Between Promoter Methylation of Serotonin Transporter Gene and Depressive Symptoms: A Monozygotic Twin Study

    PubMed Central

    Zhao, Jinying; Goldberg, Jack; Bremner, James D.; Vaccarino, Viola

    2013-01-01

    Objective Epigenetic mechanisms have been implicated in the pathogenesis of psychiatric disorders. The serotonin transporter gene (SLC6A4) is a key candidate gene for depression. We examined the association between SLC6A4 promoter methylation variation and depressive symptoms using 84 monozygotic twin pairs. Methods DNA methylation level in the SLC6A4 promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The number of current depressive symptoms was assessed using the Beck Depressive Inventory II (BDI-II). The association between methylation variation and depressive symptoms was examined using matched twin-pair analyses, adjusting for body mass index, smoking, physical activity, and alcohol consumption. Multiple testing was controlled by adjusted false discovery rate (q value). Results Intrapair difference in DNA methylation variation at 10 of the 20 studied CpG sites is significantly correlated with intrapair difference in BDI scores. Linear regression using intrapair differences demonstrates that intrapair difference in BDI score was significantly associated with intrapair differences in DNA methylation variation after adjusting for potential confounders and correction for multiple testing. On average, a 10% increase in the difference in mean DNA methylation level was associated with 4.4 increase in the difference in BDI score (95% confidence interval = 0.9–7.9, p = .01). Conclusions This study provides evidence that variation in methylation level within the promoter region of the serotonin transporter gene is associated with variation in depressive symptoms in a large sample of monozygotic twin pairs. This relationship is not confounded by genetic and shared environment. The 5-HTTLPR genotype also does not modulate this association. PMID:23766378

  9. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans.

    PubMed

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S; Mittelman, David; Sharp, Andrew J

    2016-05-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  10. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans

    PubMed Central

    Quilez, Javier; Guilmatre, Audrey; Garg, Paras; Highnam, Gareth; Gymrek, Melissa; Erlich, Yaniv; Joshi, Ricky S.; Mittelman, David; Sharp, Andrew J.

    2016-01-01

    Despite representing an important source of genetic variation, tandem repeats (TRs) remain poorly studied due to technical difficulties. We hypothesized that TRs can operate as expression (eQTLs) and methylation (mQTLs) quantitative trait loci. To test this we analyzed the effect of variation at 4849 promoter-associated TRs, genotyped in 120 individuals, on neighboring gene expression and DNA methylation. Polymorphic promoter TRs were associated with increased variance in local gene expression and DNA methylation, suggesting functional consequences related to TR variation. We identified >100 TRs associated with expression/methylation levels of adjacent genes. These potential eQTL/mQTL TRs were enriched for overlaps with transcription factor binding and DNaseI hypersensitivity sites, providing a rationale for their effects. Moreover, we showed that most TR variants are poorly tagged by nearby single nucleotide polymorphisms (SNPs) markers, indicating that many functional TR variants are not effectively assayed by SNP-based approaches. Our study assigns biological significance to TR variations in the human genome, and suggests that a significant fraction of TR variations exert functional effects via alterations of local gene expression or epigenetics. We conclude that targeted studies that focus on genotyping TR variants are required to fully ascertain functional variation in the genome. PMID:27060133

  11. ATYPICAL HEMOLYTIC UREMIC SYNDROME AND GENETIC ABERRATIONS IN THE COMPLEMENT FACTOR H RELATED 5 GENE

    PubMed Central

    Westra, Dineke; Vernon, Katherine A.; Volokhina, Elena B.; Pickering, Matthew C.; van de Kar, Nicole C.A.J.; van den Heuvel, Lambert P.

    2012-01-01

    Atypical HUS (aHUS) is a severe renal disorder that is associated with mutations in the genes encoding proteins of the complement alternative pathway. Previously, we identified pathogenic variations in genes encoding complement regulators (CFH, CFI, and MCP) in our aHUS cohort. In this study, we screened for mutations in the alternative pathway regulator CFHR5 in 65 aHUS patients by means of PCR on genomic DNA and sequence analysis. Potential pathogenicity of genetic alterations was determined by published data on CFHR5 variants, evolutionary conservation, and in silico mutation prediction programs. Detection of serum CFHR5 was performed by western blot analysis and ELISA. A potentially pathogenic sequence variation was found in CFHR5 in three patients (4.6%). All variations were located in SCRs that might be involved in binding to C3b, heparin, or CRP. The identified CFHR5 mutations require functional studies to determine their relevance to aHUS, but they might be candidates for an altered genetic profile predisposing to the disease. PMID:22622361

  12. Child Abuse, Depression, and Methylation in Genes Involved with Stress, Neural Plasticity, and Brain Circuitry

    PubMed Central

    Weder, Natalie; Zhang, Huiping; Jensen, Kevin; Yang, Bao Zhu; Simen, Arthur; Jackowski, Andrea; Lipschitz, Deborah; Douglas-Palumberi, Heather; Ge, Margrat; Perepletchikova, Francheska; O’Laughlin, Kerry; Hudziak, James J.; Gelernter, Joel; Kaufman, Joan

    2014-01-01

    Objectives Determine if epigenetic markers predict dimensional ratings of depression in maltreated children. Method A Genome-wide methylation study was completed using the Illumina 450K BeadChip array in 94 maltreated and 96 non-traumatized children with saliva-derived DNA. The 450K BeadChip does not include any methylation sites in the exact location as sites in candidate genes previously examined in the literature, so a test for replication of prior research findings was not feasible. Results Methylation in three genes emerged as genomewide-significant predictors of depression: DNA-Binding Protein Inhibitor ID-3 (ID3); Glutamate Receptor, Ionotropic NMDA 1 (GRIN1); and Tubulin Polymerization Promoting Protein (TPPP) (p<5.0 × 10−7, all analyses). These genes are all biologically relevant–with ID3 involved in the stress response, GRIN1 involved in neural plasticity, and TPPP involved in neural circuitry development. Methylation in CpG sites in candidate genes were not predictors of depression at significance levels corrected for whole genome testing, but maltreated and control children did have significantly different beta values after Bonferroni correction at multiple methylation sites in these candidate genes (e.g., BDNF, NR3C1, FKBP5). Conclusion This study suggests epigenetic changes in ID3, GRIN1, and TPPP genes, in combination with experiences of maltreatment, may confer risk for depression in children. It adds to a growing body of literature supporting a role for epigenetic mechanisms in the pathophysiology of stress-related psychiatric disorders. While epigenetic changes are frequently long lasting, they are not necessarily permanent. Consequently, interventions to reverse the negative biological and behavioral sequelae associated with child maltreatment are briefly discussed. PMID:24655651

  13. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana.

    PubMed

    Ju, Zheng; Wang, Lei; Cao, Dongyan; Zuo, Jinhua; Zhu, Hongliang; Fu, Daqi; Luo, Yunbo; Zhu, Benzhong

    2016-09-01

    Virus-induced gene silencing (VIGS) has been widely used for plant functional genomics study at the post-transcriptional level using various DNA or RNA viral vectors. However, while virus-induced transcriptional gene silencing (VITGS) via DNA methylation of gene promoter was achieved using several plant RNA viral vectors, it has not yet been done using a satellite DNA viral vector. In this study, a viral satellite DNA associated with tomato yellow leaf curl China virus (TYLCCNV), which has been modified as a VIGS vector in previous research, was developed as a VITGS vector. Firstly, the viral satellite DNA VIGS vector was further optimized to a more convenient p1.7A+2mβ vector with high silencing efficiency of the phytoene desaturase (PDS) gene in Nicotiana benthamiana plants. Secondly, the constructed VITGS vector (TYLCCNV:35S), which carried a portion of the cauliflower mosaic virus 35S promoter, could successfully induce heritable transcriptional gene silencing (TGS) of the green fluorescent protein (GFP) gene in the 35S-GFP transgenic N. benthamiana line 16c plants. Moreover, bisulfite sequencing results revealed higher methylated cytosine residues at CG, CHG and CHH sites of the 35S promoter sequence in TYLCCNV:35S-inoculated plants than in TYLCCNV-inoculated line 16c plants (control). Overall, these results demonstrated that the viral satellite DNA vector could be used as an effective VITGS vector to study DNA methylation in plant genomes. PMID:27422476

  14. Methylation changes of H{sub 19} gene in sperms of X-irradiated mouse and maintenance in offspring

    SciTech Connect

    Zhu Bin; Huang Xinghua; Chen Jindong; Lu Yachao; Chen Ying; Zhao Jingyong . E-mail: sudazhaojy@hotmail.com

    2006-02-03

    The nature of imprinting is just differential methylation of imprinted genes. Unlike the non-imprinted genes, the methylation pattern of imprinted genes established during the period of gametogenesis remains unchangeable after fertilization and during embryo development. It implies that gametogenesis is the key stage for methylation pattern of imprinted genes. The imprinting interfered by exogenous factors during this stage could be inherited to offspring and cause genetic effect. Now many studies have proved that ionizing irradiation could disturb DNA methylation. Here we choose BALB/c mice as a research model and X-ray as interfering source to further clarify it. We discovered that the whole-body irradiation of X-ray to male BALB/c mice could influence the methylation pattern of H{sub 19} gene in sperms, which resulted in some cytosines of partial CpG islands in the imprinting control region could not transform to methylated cytosines. Furthermore, by copulating the interfered male mice with normal female, we analyzed the promoter methylation pattern of H{sub 19} in offspring fetal liver and compared the same to the pattern of male parent in sperms. We found that the majority of methylation changes in offspring liver were related to the ones in their parent sperms. Our data proved that the changes of the H{sub 19} gene methylation pattern interfered by X-ray irradiation could be transmitted and maintained in First-generation offspring.

  15. Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization

    PubMed Central

    Buratti, Emanuele; Chivers, Martin; Královičová, Jana; Romano, Maurizio; Baralle, Marco; Krainer, Adrian R.; Vořechovský, Igor

    2007-01-01

    Despite a growing number of splicing mutations found in hereditary diseases, utilization of aberrant splice sites and their effects on gene expression remain challenging to predict. We compiled sequences of 346 aberrant 5′splice sites (5′ss) that were activated by mutations in 166 human disease genes. Mutations within the 5′ss consensus accounted for 254 cryptic 5′ss and mutations elsewhere activated 92 de novo 5′ss. Point mutations leading to cryptic 5′ss activation were most common in the first intron nucleotide, followed by the fifth nucleotide. Substitutions at position +5 were exclusively G>A transitions, which was largely attributable to high mutability rates of C/G>T/A. However, the frequency of point mutations at position +5 was significantly higher than that observed in the Human Gene Mutation Database, suggesting that alterations of this position are particularly prone to aberrant splicing, possibly due to a requirement for sequential interactions with U1 and U6 snRNAs. Cryptic 5′ss were best predicted by computational algorithms that accommodate nucleotide dependencies and not by weight-matrix models. Discrimination of intronic 5′ss from their authentic counterparts was less effective than for exonic sites, as the former were intrinsically stronger than the latter. Computational prediction of exonic de novo 5′ss was poor, suggesting that their activation critically depends on exonic splicing enhancers or silencers. The authentic counterparts of aberrant 5′ss were significantly weaker than the average human 5′ss. The development of an online database of aberrant 5′ss will be useful for studying basic mechanisms of splice-site selection, identifying splicing mutations and optimizing splice-site prediction algorithms. PMID:17576681

  16. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes.

    PubMed

    Atilano, Shari R; Malik, Deepika; Chwa, Marilyn; Cáceres-Del-Carpio, Javier; Nesburn, Anthony B; Boyer, David S; Kuppermann, Baruch D; Jazwinski, S Michal; Miceli, Michael V; Wallace, Douglas C; Udar, Nitin; Kenney, M Cristina

    2015-08-15

    Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2'-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases. PMID:25964427

  17. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States.

    PubMed

    Hopp, Lydia; Löffler-Wirth, Henry; Binder, Hans

    2015-01-01

    Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt's lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. PMID:26371046

  18. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States

    PubMed Central

    Hopp, Lydia; Löffler-Wirth, Henry; Binder, Hans

    2015-01-01

    Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. PMID:26371046

  19. Distinct patterns of gene-specific methylation in mammalian placentas: implications for placental evolution and function.

    PubMed

    Ng, H K; Novakovic, B; Hiendleder, S; Craig, J M; Roberts, C T; Saffery, R

    2010-04-01

    The placenta has arisen relatively recently and is among the most rapidly evolving tissues in mammals. Several different placental barrier and structure types appear to have independently evolved common functional features. Specific patterns of gene expression that determine placental development in humans are predicted to be accompanied by specific profiles of epigenetic modification. However, the stratification of epigenetic modifications into those involved in conserved aspects of placental function, versus those involved in divergent placental features, has yet to begin. As a first step towards this goal, we have investigated the methylation status of a small number of gene-specific methylation events recently identified in human placenta, in a panel of placental tissue from baboon, marmoset, cow, cat, guinea pig and mouse. These represent disparate placental barrier types and structures. In this study we hypothesized that specific epigenetic markings may be associated with placental barrier type or function, independent of phylogeny. However, in contrast to our predictions, the majority of gene-specific methylation appears to track with phylogeny, independent of placental barrier type or other structural features. This suggests that despite the likelihood of epigenetic modification playing a role in the functioning and evolution of different placental subtypes, there is no evidence for an involvement of the gene-specific methylation profiles we have identified, in specifying these differences. Further studies, examining larger numbers of epigenetic modifications across phylogeny, are required to define the role of specific epigenetic modifications in the evolution of distinct placental structures. PMID:20167366

  20. Differential DNA Methylation of MicroRNA Genes in Temporal Cortex from Alzheimer's Disease Individuals

    PubMed Central

    Villela, Darine; Ramalho, Rodrigo F.; Silva, Aderbal R. T.; Brentani, Helena; Suemoto, Claudia K.; Pasqualucci, Carlos Augusto; Grinberg, Lea T.; Krepischi, Ana C. V.; Rosenberg, Carla

    2016-01-01

    This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer's disease (AD). The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB) signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451), the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD. PMID:27213057

  1. Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA methylation is important for gene regulation and is vulnerable to early-life exposure to environmental contaminants. We found that direct waterborne benzo[a]pyrene (BaP) exposure at 24 'g/L from 2.5 to 96 hours post fertilization (hpf) to zebrafish embryos significantly decreased global cytosine...

  2. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    PubMed Central

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  3. Further studies on aberrant gene expression associated with arsenic-induced malignant transformation in rat liver TRL1215 cells

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Benbrahim-Tallaa, Lamia; Qian Xun; Yu, Limei; Xie Yaxiong; Boos, Jennifer; Qu Wei; Waalkes, Michael P.

    2006-11-01

    Chronic arsenic exposure of rat liver epithelial TRL1215 cells induced malignant transformation in a concentration-dependent manner. To further define the molecular events of these arsenic-transformed cells (termed CAsE cells), gene expressions associated with arsenic carcinogenesis or influenced by methylation were examined. Real-time RT-PCR showed that at carcinogenic concentrations (500 nM, and to a less extent 250 nM of arsenite), the expressions of {alpha}-fetoprotein (AFP), Wilm's tumor protein-1 (WT-1), c-jun, c-myc, H-ras, c-met and hepatocyte growth factor, heme oxygenase-1, superoxide dismutase-1, glutathione-S-transferase-{pi} and metallothionein-1 (MT) were increased between 3 to 12-fold, while expressions of insulin-like growth factor II (IGF-II) and fibroblast growth factor receptor (FGFR1) were essentially abolished. These changes were not significant at the non-carcinogenic concentration (125 nM), except for IGF-II. The positive cell-cycle regulators cyclin D1 and PCNA were overexpressed in CAsE cells, while the negative regulators p21 and p16 were suppressed. Western-blot confirmed increases in AFP, WT-1, cyclin D1 and decreases in p16 and p21 protein in CAsE cells. The CAsE cells over-expressed MT but the demethylating agent 5-aza-deoxycytidine (5-aza-dC, 2.5 {mu}M, 72 h) stimulated further MT expression. 5-Aza-deoxycytidine restored the loss of expression of p21 in CAsE cells to control levels, but did not restore the expression of p16, IGF-II, or FGFR1, indicating the loss of expression of these genes is due to factors other than DNA methylation changes. Overall, an intricate variety of gene expression changes occur in arsenic-induced malignant transformation of liver cells including oncogene activation and alterations in expression of genes critical to growth regulation.

  4. Oral decitabine reactivates expression of the methylated gamma-globin gene in Papio anubis.

    PubMed

    Lavelle, Donald; Chin, Janet; Vaitkus, Kestis; Redkar, Sanjeev; Phiasivongsa, Pasit; Tang, Chunlin; Will, Roselle; Hankewych, Maria; Roxas, Bryan; Singh, Mahipal; Saunthararajah, Yogen; Desimone, Joseph

    2007-11-01

    The silencing of tumor suppressor genes associated with increased DNA methylation of the promoter regions is a frequent observation in many forms of cancer. Reactivation of these genes using pharmacological inhibitors of DNA methyltransferase such as 5-aza-2'-deoxycytidine (decitabine) is a worthwhile therapeutic goal. The effectiveness and tolerability of low-dose intravenous and subcutaneous decitabine regimens to demethylate and reactivate expression of the methylated gamma-globin gene in baboons and in patients with sickle cell disease led to successful trials of low-dose regimens of this drug in patients with myelodysplastic syndrome. Since these low-dose regimens are well-tolerated with minimal toxicity, they are suitable for chronic dosing to maintain promoter hypomethylation and expression of target genes. The development of an orally administered therapy using DNA methyltransferase inhibitors would facilitate such chronic approaches to therapy. We tested the ability of decitabine and a new salt derivative, decitabine mesylate, to reactivate the methylated gamma-globin gene in baboons when administered orally. Our results demonstrate that oral administration of these drugs at doses 17-34 times optimal subcutaneous doses of decitabine reactivates fetal hemoglobin, demethylates the epsilon- and gamma-globin gene promoters, and increases histone acetylation of these promoters in baboons (Papio anubis). PMID:17696208

  5. DNA methylation as a regulatory mechanism in rat gamma-crystallin gene expression.

    PubMed Central

    Peek, R; Niessen, R W; Schoenmakers, J G; Lubsen, N H

    1991-01-01

    We have investigated the methylation state of the rat gamma-crystallin genes in DNA from lens cells at different developmental stages as well as from kidney and heart cells. A clear correlation between the extent of demethylation of the promoter and 5' gene regions and the expression of these genes was observed. No change in the methylation state of the far upstream or 3' regions of the genes was seen. The demethylation of the promoter region was shown to occur during the differentiation from the lens epithelial to the lens fiber cell. The effect of cytosine methylation on gamma-crystallin promoter activity was tested by measuring gamma-crystallin promoter/chloramphenicol acetyltransferase fusion gene expression after in vitro primed repair synthesis of the promoter region in the presence of either dCTP or 5mdCTP. The hemimethylated promoter was no longer capable of promoting high CAT activity after introduction into lens-like cells. Taken together, our data suggest that DNA demethylation may be the determining step in the developmental stage-specific expression of the rat gamma-crystallin genes. Images PMID:2011513

  6. High-resolution detection of recurrent aberrations in lung adenocarcinomas by array comparative genomic hybridization and expression analysis of selective genes by quantitative PCR.

    PubMed

    Zhu, Hong; Wong, Maria Pik; Tin, Vicky

    2014-06-01

    Genomic abnormalities are the hallmark of cancers and may harbor potential candidate genes important for cancer development and progression. We performed array comparative genomic hybridization (array CGH) on 36 cases of primary lung adenocarcinoma (AD) using an array containing 2621 BAC or PAC clones spanning the genome at an average interval of 1 Mb. Array CGH identified the commonest aberrations consisting of DNA gains within 1p, 1q, 5p, 5q, 7p, 7q, 8q, 11q, 12p, 13q, 16p, 17q, 20q, and losses with 6q, 9p, 10q and 18q. High-level copy gains involved mainly 7p21-p15 and 20q13.3. Dual color fluorescence in situ hybridization (FISH) was performed on a selective locus for validation of array CGH results. Genomic aberrations were compared with different clinicopathological features and a trend of higher number of aberrations in tumors with aggressive phenotypes and current tobacco exposure was identified. According to array CGH data, 23 candidate genes were selected for quantitative PCR (qPCR) analysis. The concordance observed between the genomic and expression changes in most of the genes suggested that they could be candidate cancer-related genes that contributed to the development of lung AD. PMID:24728343

  7. Aberrant large tumor suppressor 2 (LATS2) gene expression correlates with EGFR mutation and survival in lung adenocarcinomas

    PubMed Central

    Luo, Susan Y.; Sit, Ko-Yung; Sihoe, Alan D.L.; Suen, Wai-Sing; Au, Wing-Kuk; Tang, Ximing; Ma, Edmond S.K.; Chan, Wai-Kong; Wistuba, Ignacio I.; Minna, John D.; Tsao, George S.W.; Lam, David C.L.

    2015-01-01

    Background Large tumor suppressor 2 (LATS2) gene is a putative tumor suppressor gene with potential roles in regulation of cell proliferation and apoptosis in lung cancer. The aim of this study is to explore the association of aberrant LATS2 expression with EGFR mutation and survival in lung adenocarcinoma (AD), and the effects of LATS2 silencing in both lung AD cell lines. Methods LATS2 mRNA and protein expression in resected lung AD were correlated with demographic characteristics, EGFR mutation and survival. LATS2-specific siRNA was transfected into four EGFR wild-type (WT) and three EGFR mutant AD cell lines and the changes in LATS2 expression and relevant signaling molecules before and after LATS2 knockdown were assayed. Results Fifty resected lung AD were included (M:F = 23:27, smokers:non-smokers = 19:31, EGFR mutant:wild-type = 21:29) with LATS2 mRNA levels showed no significant difference between gender, age, smoking and pathological stages while LATS2 immunohistochemical staining on an independent set of 79 lung AD showed similar trend. LATS2 mRNA level was found to be a significant independent predictor for survival status (disease-free survival RR = 0.217; p = 0.003; Overall survival RR = 0.238; p = 0.036). siRNA-mediated suppression of LATS2 expression resulted in augmentation of ERK phosphorylation in EGFR wild-type AD cell lines with high basal LATS2 expression, discriminatory modulation of Akt signaling between EGFR wild-type and mutant cells, and induction of p53 accumulation in AD cell lines with low baseline p53 levels. Conclusions LATS2 expression level is predictive of survival in patients with resected lung AD. LATS2 may modulate and contribute to tumor growth via different signaling pathways in EGFR mutant and wild-type tumors. PMID:24976335

  8. SUVH1, a Su(var)3-9 family member, promotes the expression of genes targeted by DNA methylation.

    PubMed

    Li, Shaofang; Liu, Lin; Li, Shengben; Gao, Lei; Zhao, Yuanyuan; Kim, Yun Ju; Chen, Xuemei

    2016-01-29

    Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3-9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3-9 family that has previously been associated with silencing through H3K9 methylation. PMID:26400170

  9. SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation

    PubMed Central

    Li, Shaofang; Liu, Lin; Li, Shengben; Gao, Lei; Zhao, Yuanyuan; Kim, Yun Ju; Chen, Xuemei

    2016-01-01

    Transposable elements are found throughout the genomes of all organisms. Repressive marks such as DNA methylation and histone H3 lysine 9 (H3K9) methylation silence these elements and maintain genome integrity. However, how silencing mechanisms are themselves regulated to avoid the silencing of genes remains unclear. Here, an anti-silencing factor was identified using a forward genetic screen on a reporter line that harbors a LUCIFERASE (LUC) gene driven by a promoter that undergoes DNA methylation. SUVH1, a Su(var)3–9 homolog, was identified as a factor promoting the expression of the LUC gene. Treatment with a cytosine methylation inhibitor completely suppressed the LUC expression defects of suvh1, indicating that SUVH1 is dispensable for LUC expression in the absence of DNA methylation. SUVH1 also promotes the expression of several endogenous genes with promoter DNA methylation. However, the suvh1 mutation did not alter DNA methylation levels at the LUC transgene or on a genome-wide scale; thus, SUVH1 functions downstream of DNA methylation. Histone H3 lysine 4 (H3K4) trimethylation was reduced in suvh1; in contrast, H3K9 methylation levels remained unchanged. This work has uncovered a novel, anti-silencing function for a member of the Su(var)3–9 family that has previously been associated with silencing through H3K9 methylation. PMID:26400170

  10. Interindividual concordance of methylation profiles in human genes for tumor necrosis factors alpha and beta.

    PubMed Central

    Kochanek, S; Toth, M; Dehmel, A; Renz, D; Doerfler, W

    1990-01-01

    The DNA in mammalian genomes is characterized by complex patterns of DNA methylation that reflect the states of all genetic activities of that genome. The modified nucleotide 5-methyldeoxycytidine (5mdC) can affect the interactions of specific proteins with DNA sequence motifs. The most extensively studied effect of sequence-specific methylations is that of the long-term silencing of eukaryotic (mammalian) promoters. We have initiated studies on the methylation status of parts of the human genome to view patterns of DNA methylation as indicators for genetic activities. In this report, analyses using both restriction enzyme--Southern blotting and the very precise genomic sequencing technique have been done. The genes for tumor necrosis factors (TNF) alpha and beta--in particular, their 5'-upstream and promoter regions--have been investigated in DNA isolated from human lymphocytes, granulocytes, and sperm. The results are characterized by a remarkable interindividual concordance of DNA methylation in specific human cell types. The patterns are identical in the DNA from one cell type for different individuals even of different genetic origins but different in the DNA from different cell types. As an example, in the DNA from human granulocytes of 15 different individuals (ages 20-48 yr, both sexes), 5mdC residues have been localized by the genomic sequencing technique in three identical sequence positions in the 5'-upstream region and in one downstream position of the gene encoding TNF-alpha. The promoter of this gene is free of 5mdC, and TNF-alpha is expressed in human granulocytes. The TNF-beta promoter is methylated in granulocytes from 9 different individuals, and TNF-beta is not expressed. In human lymphocytes, the main source of TNF-beta, the TNF-beta promoter is free of 5mdC residues. All 5'-CG-3' sites studied in the TNF-alpha and -beta genes are methylated in DNA from human sperm. In human cell lines HL-60, Jurkat, and RPMI 1788, the extent of DNA methylation

  11. Changes in methylation pattern of albumin and alpha-fetoprotein genes in developing rat liver and neoplasia.

    PubMed Central

    Vedel, M; Gomez-Garcia, M; Sala, M; Sala-Trepat, J M

    1983-01-01

    To determine whether methylation changes in specific DNA sequences of the albumin and AFP genes are implicated in the modulation of transcriptional activity during rat liver development and neoplasia we have analysed the methylation pattern of C-C-G-G sequences within these genes in DNA isolated from fetal and adult hepatocytes, from adult kidney and from a clonal hepatoma cell line which produces AFP but no albumin. We have assayed for methylation of the internal cytosine of this sequence by using the restriction enzyme isoschizomers HpaII and MspI. 32P-labelled cloned cDNA probes were used to reveal the albumin and AFP gene containing fragments. Genomic subclones of the albumin gene were also utilized as molecular probes to measure quantitatively the level of methylation of 6 specific sites within the albumin gene in the different DNA samples. The results indicate that methylation changes at the sites analysed are not responsible for the changes in gene activity during rat liver development. Further they demonstrate that: 1) extensively methylated genes can be actively transcribed; 2) prominent changes in methylation of specific genes during normal development are not necessarily related to alterations in gene activity. Images PMID:6191280

  12. Association of gene expression and methylation of UQCRC1 to the predisposition of Alzheimer's disease in a Chinese population.

    PubMed

    Ma, Suk Ling; Tang, Nelson Leung Sang; Lam, Linda Chiu Wa

    2016-05-01

    DNA methylation is an important epigenetic mechanism for gene regulation and it is well established there is association between aging and DNA methylation. Alzheimer's disease (AD) is the most common neurodegenerative disease, characterized by amyloid plaque deposition and formation of neurofibrillary tangles. In this study, we examined the correlation between DNA methylation and gene expression of seven genes including CTSB, CTSD, DDT, TSC1, NRD1, UQCRC1 and NDUFA6 and its effect on the risk of AD in a Chinese population. Our finding showed significantly increased gene expression of these 7 genes in AD patients (2.7-fold-8.6-fold). UQCRC1 was highly methylated in AD patients and there was strong positive correlation between gene expression level and methylation status of UQCRC1 (p < 0.001). Further analysis showed the methylation status of UQCRC1 was significantly associated with gene expression of NRD1, DDT, CTSB and CTSD, suggested the regulatory mechanism on these 4 genes by UQCRC1. Our study further suggested the role of methylation in gene regulation and the role in AD. PMID:26943237

  13. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing.

    PubMed

    Zhao, Quan; Rank, Gerhard; Tan, Yuen T; Li, Haitao; Moritz, Robert L; Simpson, Richard J; Cerruti, Loretta; Curtis, David J; Patel, Dinshaw J; Allis, C David; Cunningham, John M; Jane, Stephen M

    2009-03-01

    Mammalian gene silencing is established through methylation of histones and DNA, although the order in which these modifications occur remains contentious. Using the human beta-globin locus as a model, we demonstrate that symmetric methylation of histone H4 arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for subsequent DNA methylation. H4R3me2s serves as a direct binding target for the DNA methyltransferase DNMT3A, which interacts through the ADD domain containing the PHD motif. Loss of the H4R3me2s mark through short hairpin RNA-mediated knockdown of PRMT5 leads to reduced DNMT3A binding, loss of DNA methylation and gene activation. In primary erythroid progenitors from adult bone marrow, H4R3me2s marks the inactive methylated globin genes coincident with localization of PRMT5. Our findings define DNMT3A as both a reader and a writer of repressive epigenetic marks, thereby directly linking histone and DNA methylation in gene silencing. PMID:19234465

  14. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function

    SciTech Connect

    Jobert, Laure; Argentini, Manuela; Tora, Laszlo

    2009-04-15

    TAF15 (formerly TAF{sub II}68) is a nuclear RNA-binding protein that is associated with a distinct population of TFIID and RNA polymerase II complexes. TAF15 harbours an N-terminal activation domain, an RNA recognition motif (RRM) and many Arg-Gly-Gly (RGG) repeats at its C-terminal end. The N-terminus of TAF15 serves as an essential transforming domain in the fusion oncoprotein created by chromosomal translocation in certain human chondrosarcomas. Post-transcriptional modifications (PTMs) of proteins are known to regulate their activity, however, nothing is known on how PTMs affect TAF15 function. Here we demonstrate that endogenous human TAF15 is methylated in vivo at its numerous RGG repeats. Furthermore, we identify protein arginine N-methyltransferase 1 (PRMT1) as a TAF15 interactor and the major PRMT responsible for its methylation. In addition, the RGG repeat-containing C-terminus of TAF15 is responsible for the shuttling between the nucleus and the cytoplasm and the methylation of RGG repeats affects the subcellular localization of TAF15. The methylation of TAF15 by PRMT1 is required for the ability of TAF15 to positively regulate the expression of the studied endogenous TAF15-target genes. Our findings demonstrate that arginine methylation of TAF15 by PRMT1 is a crucial event determining its proper localization and gene regulatory function.

  15. The BLADE-ON-PETIOLE genes of Arabidopsis are essential for resistance induced by methyl jasmonate

    PubMed Central

    2012-01-01

    Background NPR1 is a gene of Arabidopsis thaliana required for the perception of salicylic acid. This perception triggers a defense response and negatively regulates the perception of jasmonates. Surprisingly, the application of methyl jasmonate also induces resistance, and NPR1 is also suspected to be relevant. Since an allelic series of npr1 was recently described, the behavior of these alleles was tested in response to methyl jasmonate. Results The response to methyl jasmonate of different npr1s alleles and NPR1 paralogs null mutants was measured by the growth of a pathogen. We have also tested the subcellular localization of some npr1s, along with the protein-protein interactions that can be measured in yeast. The localization of the protein in npr1 alleles does not affect the response to methyl jasmonate. In fact, NPR1 is not required. The genes that are required in a redundant fashion are the BOPs. The BOPs are paralogs of NPR1, and they physically interact with the TGA family of transcription factors. Conclusions Some npr1 alleles have a phenotype in this response likely because they are affecting the interaction between BOPs and TGAs, and these two families of proteins are responsible for the resistance induced by methyl jasmonate in wild type plants. PMID:23116333

  16. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns.

    PubMed

    Li, Yuan-Yuan; Chen, Tian; Wan, Yanjian; Xu, Shun-qing

    2012-08-01

    It has been suggested that lead (Pb) exposure in early life may increase amyloid precursor protein (APP) expression and promote the pathogenesis of Alzheimer's disease in old age. The current study examined whether the DNA methylation patterns of APP gene in rat pheochromocytoma (PC12) cells changed after Pb acetate exposure. Undifferentiated PC12 cells were exposed to three doses of Pb acetate (50, 250, and 500 nM) and one control for 2 days or 1 week. The methylation patterns of APP promoter and global DNA methylation were analyzed. The DNA methyltransferase 1 (DNMT1) expression and the level of amyloid β peptide (Aβ) were also investigated. The results showed that the exposure of the three concentrations of Pb acetate could make the APP promoter hypomethylated. The global DNA methylation level and the expression of DNMT1 were changed in the 500 nM group after 2 days exposure and in the 250 and 500 nM group after 7 days exposure. Thus, Pb may exert neurotoxic effects through mechanisms that alter the global and promoter methylation patterns of APP gene. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012. PMID:22764079

  17. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing.

    PubMed

    Rodríguez-Negrete, Edgar; Lozano-Durán, Rosa; Piedra-Aguilera, Alvaro; Cruzado, Lucia; Bejarano, Eduardo R; Castillo, Araceli G

    2013-07-01

    Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses. PMID:23614786

  18. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells.

    PubMed

    Kojima-Kita, Kanako; Kuramochi-Miyagawa, Satomi; Nagamori, Ippei; Ogonuki, Narumi; Ogura, Atsuo; Hasuwa, Hidetoshi; Akazawa, Takashi; Inoue, Norimitsu; Nakano, Toru

    2016-09-13

    During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs). Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF) that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon. PMID:27626653

  19. Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression

    PubMed Central

    Zhang, Jie; Liu, Yuan; Xia, En-Hua; Yao, Qiu-Yang; Liu, Xiang-Dong; Gao, Li-Zhi

    2015-01-01

    Polyploidy, or whole-genome duplication (WGD), serves as a key innovation in plant evolution and is an important genomic feature for all eukaryotes. Neopolyploids have to overcome difficulties in meiosis, genomic alterations, changes of gene expression, and epigenomic reorganization. However, the underlying mechanisms for these processes are poorly understood. One of the most interesting aspects is that genome doubling events increase the dosage of all genes. Unlike allopolyploids entangled by both hybridization and polyploidization, autopolyploids, especially artificial lines, in relatively uniform genetic background offer a model system to understand mechanisms of genome-dosage effects. To investigate DNA methylation effects in response to WGD rather than hybridization, we produced autotetraploid rice with its diploid donor, Oryza sativa ssp. indica cv. Aijiaonante, both of which were independently self-pollinated over 48 generations, and generated and compared their comprehensive transcriptomes, base pair-resolution methylomes, and siRNAomes. DNA methylation variation of transposable elements (TEs) was observed as widespread in autotetraploid rice, in which hypermethylation of class II DNA transposons was predominantly noted in CHG and CHH contexts. This was accompanied by changes of 24-nt siRNA abundance, indicating the role of the RNA-directed DNA methylation pathway. Our results showed that the increased methylation state of class II TEs may suppress the expression of neighboring genes in autotetraploid rice that has obtained double alleles, leading to no significant differences in transcriptome alterations for most genes from its diploid donor. Collectively, our findings suggest that chromosome doubling induces methylation variation in TEs that affect gene expression and may become a “genome shock” response factor to help neoautopolyploids adapt to genome-dosage effects. PMID:26621743

  20. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  1. RING finger protein 4 (RNF4) derepresses gene expression from DNA methylation.

    PubMed

    Wang, Yu

    2014-12-01

    RNF4 is an E3 ubiquitin ligase originally identified as a transcription co-activator. The mechanism by which RNF4 promotes transcription remains unclear. In this study, I found that RNF4 antagonizes transcriptional repression mediated by DNA methylation. RNF4 does not promote DNA demethylation, but mediates the ubiquitination of MeCP2, a methyl-CpG-binding domain (MBD) protein. Removal of MeCP2 from gene promoters activates transcription. This study thus not only uncovers how RNF4 functions as a transcription activator, but also reveals the mechanism by which MeCP2 protein stability is regulated. PMID:25355316

  2. Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis

    PubMed Central

    Davis-Richardson, Austin G.; Russell, Jordan T.; Dias, Raquel; McKinlay, Andrew J.; Canepa, Ronald; Fagen, Jennie R.; Rusoff, Kristin T.; Drew, Jennifer C.; Kolaczkowski, Bryan; Emerich, David W.; Triplett, Eric W.

    2016-01-01

    Very little is known about the role of epigenetics in the differentiation of a bacterium from the free-living to the symbiotic state. Here genome-wide analysis of DNA methylation changes between these states is described using the model of symbiosis between soybean and its root nodule-forming, nitrogen-fixing symbiont, Bradyrhizobium diazoefficiens. PacBio resequencing of the B. diazoefficiens genome from both states revealed 43,061 sites recognized by five motifs with the potential to be methylated genome-wide. Of those sites, 3276 changed methylation states in 2921 genes or 35.5% of all genes in the genome. Over 10% of the methylation changes occurred within the symbiosis island that comprises 7.4% of the genome. The CCTTGAG motif was methylated only during symbiosis with 1361 adenosines methylated among the 1700 possible sites. Another 89 genes within the symbiotic island and 768 genes throughout the genome were found to have methylation and significant expression changes during symbiotic development. Of those, nine known symbiosis genes involved in all phases of symbiotic development including early infection events, nodule development, and nitrogenase production. These associations between methylation and expression changes in many B. diazoefficiens genes suggest an important role of the epigenome in bacterial differentiation to the symbiotic state. PMID:27148207

  3. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  4. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation

    PubMed Central

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-01-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  5. On the origin and evolutionary consequences of gene body DNA methylation.

    PubMed

    Bewick, Adam J; Ji, Lexiang; Niederhuth, Chad E; Willing, Eva-Maria; Hofmeister, Brigitte T; Shi, Xiuling; Wang, Li; Lu, Zefu; Rohr, Nicholas A; Hartwig, Benjamin; Kiefer, Christiane; Deal, Roger B; Schmutz, Jeremy; Grimwood, Jane; Stroud, Hume; Jacobsen, Steven E; Schneeberger, Korbinian; Zhang, Xiaoyu; Schmitz, Robert J

    2016-08-01

    In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales. PMID:27457936

  6. Disruption of DNA methylation-dependent long gene repression in Rett syndrome

    PubMed Central

    Gabel, Harrison W.; Kinde, Benyam Z.; Stroud, Hume; Gilbert, Caitlin S.; Harmin, David A.; Kastan, Nathaniel R.; Hemberg, Martin; Ebert, Daniel H.; Greenberg, Michael E.

    2015-01-01

    Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 regulates transcription3–9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain. PMID:25762136

  7. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    PubMed Central

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  8. Identification and characterisation of a novel aberrant pattern of intron 1 inversion with concomitant large insertion and deletion within the F8 gene.

    PubMed

    You, G; Chi, K; Lu, Y; Ding, Q; Dai, J; Xi, X; Wang, H; Wang, X

    2014-08-01

    Intron 1 inversion (Inv1) is a recurrent causative mutation of haemophilia A (HA) and is responsible for 1-5% of severe HA. Inv1 occurs as a result of intra-chromosomal homologous recombination between int1h-1 within intron 1 and int1h-2 located in approximately 125 kb telomeric to the F8 gene. In this report, we presented a previously undescribed aberrant type of Inv1 with complex genomic rearrangement in a pedigree with severe HA. The breakpoints of the rearrangement were identified by the genome walking technique; copy number variations (CNVs) of the F8 gene and X chromosome were detected by AccuCopy technique, Affymetrix CytoScan HD CNV assay and quantitative PCR (qPCR); the F8 transcripts related to the aberrant Inv1 were analysed by reverse transcription PCR (RT-PCR). We have characterised the exact breakpoints of the complex rearrangement, and determined the location and size of the insertion and deletion. The rearrangements can be summarised as an aberrant pattern of Inv1 with a deletion of 2.56 kb and a duplication of 227.3 kb inserted in the rejoining junction within the F8 gene. Our results suggested that this complex genomic rearrangement was generated by two distinct repair mechanisms of fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR) and nonallelic homologous recombination (NAHR). PMID:24696066

  9. Reversion of Aberrant Plants Transformed with Agrobacterium rhizogenes Is Associated with the Transcriptional Inactivation of the TL-DNA Genes 1

    PubMed Central

    Sinkar, Vilas P.; White, Frank F.; Furner, Ian J.; Abrahamsen, Mitchell; Pythoud, Francois; Gordon, Milton P.

    1988-01-01

    Transgenic plants harboring the left transfer DNA (TL-DNA) of the root inducing plasmid of Agrobacterium rhizogenes show many developmental abnormalities. We observed frequent appearance of normal looking lateral (revertant) shoots from such aberrant plants. Unlike aberrant shoots of the plant, revertant shoots exhibited a very high growth rate and set viable seeds. Sexual and vegetative reproduction studies showed inheritance of the revertant phenotype. Southern hybridization experiments demonstrated that the T-DNA pattern was identical in aberrant and revertant shoots, indicating that the revertant phenotype was not due to deletion or rearrangement of the T-DNA genes. Specific T-DNA transcripts were not expressed in revertant shoots. Thus, the revertant phenotype appears to result from the transcriptional inactivation of T-DNA genes. We propose that similar events in the past may have mediated horizontal acquisition of TL-DNA genes by ancestors of the genus Nicotiana, which are still found as silent endogenous T-DNA in present day untransformed Nicotiana species. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16665950

  10. DNA Methylation in Osteoarthritis

    PubMed Central

    den Hollander, Wouter; Meulenbelt, Ingrid

    2015-01-01

    Osteoarthritis (OA) is a prevalent disease of articular joints and primarily characterized by degradation and calcification of articular cartilage. Presently, no effective treatment other than pain relief exists and patients ultimately need to undergo replacement surgery of the affected joint. During dise