Science.gov

Sample records for aberration corrected electron

  1. Prospects for aberration corrected electron precession.

    PubMed

    Own, C S; Sinkler, W; Marks, L D

    2007-01-01

    Recent developments in aberration control in the TEM have yielded a tremendous enhancement of direct imaging capabilities for studying atomic structures. However, aberration correction also has substantial benefits for achieving ultra-resolution in the TEM through reciprocal space techniques. Several tools are available that allow very accurate detection of the electron distribution in surfaces allowing precise atomic-scale characterization through statistical inversion techniques from diffraction data. The precession technique now appears to extend this capability to the bulk. This article covers some of the progress in this area and details requirements for a next-generation analytical diffraction instrument. An analysis of the contributions offered by aberration correction for precision electron precession is included. PMID:17207934

  2. The correction of electron lens aberrations.

    PubMed

    Hawkes, P W

    2015-09-01

    The progress of electron lens aberration correction from about 1990 onwards is chronicled. Reasonably complete lists of publications on this and related topics are appended. A present for Max Haider and Ondrej Krivanek in the year of their 65th birthdays. By a happy coincidence, this review was completed in the year that both Max Haider and Ondrej Krivanek reached the age of 65. It is a pleasure to dedicate it to the two leading actors in the saga of aberration corrector design and construction. They would both wish to associate their colleagues with such a tribute but it is the names of Haider and Krivanek (not forgetting Joachim Zach) that will remain in the annals of electron optics, next to that of Harald Rose. I am proud to know that both regard me as a friend as well as a colleague. PMID:26025209

  3. Adaptive aberration correction using a triode hyperbolic electron mirror.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. PMID:21930022

  4. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy.

    PubMed

    Chou, Yi-Chia; Panciera, Federico; Reuter, Mark C; Stach, Eric A; Ross, Frances M

    2016-04-14

    We visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas. PMID:27041654

  5. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Joseph P. S.

    Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.

  6. Seeing Inside Materials by Aberration-Corrected Electron Microscopy

    SciTech Connect

    Pennycook, Stephen J

    2011-01-01

    The recent successful correction of lens aberrations in the electron microscope has improved resolution by more than a factor of two in just a few years, bringing many benefits for the study of materials. These benefits extend significantly beyond enhanced resolution alone. Aberration correction gives higher resolution by allowing the objective lens to have a wider aperture, which also results in a reduced depth of field. This effect can be used to only focus specific sections inside materials for the first time. In this contribution we describe recent results exploiting this capability. Additionally, we show how combining the microscopy data with first-principles theory gives new insights into materials properties. We cover two applications, both involving heavy atoms in a lighter host. The first shows how single Hf atoms can be mapped in three dimensions inside the 1 nm-wide SiO2 region of a high dielectric constant device structure, and how a link to macroscopic device properties results through theoretical calculations. The second example is from the field of nanoscience, where individual Au atoms are imaged inside Si nanowires grown by a vapor-liquid-solid mechanism. The majority of Au atoms are probably injected by the highly energetic electron beam. However, their observed sites and atomic configurations represent at least meta-stable configurations and match well to results from density functional calculations.

  7. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    PubMed

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. PMID:27155359

  8. The Aberration Corrected SEM

    SciTech Connect

    Joy, David C.

    2005-09-09

    The performance of the conventional low-energy CD-SEM is limited by the aberrations inherent in the probe forming lens. Multi-pole correctors are now available which can reduce or eliminate these aberrations. An SEM equipped with such a corrector offers higher spatial resolution and more probe current from a given electron source, and other aspects of the optical performance are also improved, but the much higher numerical aperture associated with an aberration corrected lens results in a reduction in imaging depth of field.

  9. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  10. Historical aspects of aberration correction.

    PubMed

    Rose, Harald H

    2009-06-01

    A brief history of the development of direct aberration correction in electron microscopy is outlined starting from the famous Scherzer theorem established in 1936. Aberration correction is the long story of many seemingly fruitless efforts to improve the resolution of electron microscopes by compensating for the unavoidable resolution-limiting aberrations of round electron lenses over a period of 50 years. The successful breakthrough, in 1997, can be considered as a quantum step in electron microscopy because it provides genuine atomic resolution approaching the size of the radius of the hydrogen atom. The additional realization of monochromators, aberration-free imaging energy filters and spectrometers has been leading to a new generation of analytical electron microscopes providing elemental and electronic information about the object on an atomic scale. PMID:19254915

  11. An aberration corrected photoemission electron microscope at the advanced light source

    SciTech Connect

    Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2003-11-01

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.

  12. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    SciTech Connect

    Borisevich, Albina Y; Lupini, Andrew R; Pennycook, Stephen J

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed.

  13. Materials Characterization in the Aberration-Corrected Scanning Transmission Electron Microscope

    SciTech Connect

    Varela del Arco, Maria; Lupini, Andrew R; van Benthem, Klaus; Borisevich, Albina Y; Chisholm, Matthew F; Shibata, Naoya; Abe, E.; Pennycook, Stephen J

    2005-01-01

    In the nanoscience era, the properties of many exciting new materials and devices will depend on the details of their composition down to the level of single atoms. Thus the characterization of the structure and electronic properties of matter at the atomic scale is becoming ever more vital for economic and technological as well as for scientific reasons. The combination of atomic-resolution Z-contrast scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) represents a powerful method to link the atomic and electronic structure to macroscopic properties, allowing materials, nanoscale systems, and interfaces to be probed in unprecedented detail. Z-contrast STEM uses electrons that have been scattered to large angles for imaging. The relative intensity of each atomic column is roughly proportional to Z{sup 2}, where Z is the atomic number. Recent developments in correcting the aberrations of the lenses in the electron microscope have pushed the achievable spatial resolution and the sensitivity for imaging and spectroscopy in the STEM into the sub-Angstrom (sub-{angstrom}) regime, providing a new level of insight into the structure/property relations of complex materials. Images acquired with an aberration-corrected instrument show greatly improved contrast. The signal-to-noise ratio is sufficiently high to allow sensitivity even to single atoms in both imaging and spectroscopy. This is a key achievement because the detection and measurement of the response of individual atoms has become a challenging issue to provide new insight into many fields, such as catalysis, ceramic materials, complex oxide interfaces, or grain boundaries. In this article, the state-of-the-art for the characterization of all of these different types of materials by means of aberration-corrected STEM and EELS are reviewed.

  14. Sub-Angstrom Low Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope

    PubMed Central

    Bell, David C.; Russo, Christopher J.; Benner, Gerd

    2011-01-01

    Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements, and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: 1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; 2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; 3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science. PMID:20598206

  15. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L.; Chase, George G.; Reneker, Darrell H.

    2015-12-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of

  16. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. PMID:22726263

  17. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy.

    PubMed

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L; Chase, George G; Reneker, Darrell H

    2016-01-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. PMID:26369731

  18. Bright-field imaging of compound semiconductors using aberration-corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aoki, Toshihiro; Lu, Jing; McCartney, Martha R.; Smith, David J.

    2016-09-01

    This study reports the observation of six different zincblende compound semiconductors in [110] projection using large-collection-angle bright-field (LABF) imaging with an aberration-corrected scanning transmission electron microscope. Phase contrast is completely suppressed when the collection semi-angle is set equal to the convergence semi-angle and there are no reversals in image contrast with changes in defocus or thickness. The optimum focus for imaging closely separated pairs of atomic columns (‘dumbbells’) is unique and easily recognized, and the positions of atomic columns occupied by heavier atoms always have darker intensity than those occupied by lighter atoms. Thus, the crystal polarity of compound semiconductors can be determined unambiguously. Moreover, it is concluded that the LABF imaging mode will be highly beneficial for studying other more complicated heterostructures at the atomic scale.

  19. Observations of Carbon Nanotube Oxidation in an Aberration-Corrected, Environmental Transmission Electron Microscope

    PubMed Central

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-01-01

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in-situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for much scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate their structure or prevent their oxidation. PMID:23360330

  20. Dark-field electron holography for the mapping of strain in nanostructures: correcting artefacts and aberrations

    NASA Astrophysics Data System (ADS)

    Hÿtch, M. J.; Houdellier, F.; Hüe, F.; Snoeck, E.

    2010-07-01

    We present details of the new electron holographic dark-field technique (HoloDark) for mapping strain in nanostructures. A diffracted beam emanating from an unstrained region of crystal is interfered (with the aid of an electrostatic biprism) with a diffracted beam from the strained region of interest. Geometric phase analysis (GPA) of the holographic fringes determines the relative deformation of the two crystalline lattices. Strain can be measured to high precision, with nanometre spatial resolution and for micron fields of view. Experiments are carried out on the SACTEM-Toulouse, a Tecnai F20 (FEI) equipped with imaging aberration corrector (CEOS), field-emission gun and rotatable biprism (FEI). We operate the microscope in free-lens control with the main objective lens switched off and using the corrector transfer lenses as a Lorentz lens. We will present measurements of strain in test nanostructures and show how artefacts from thickness variations can be removed. Finally, we show our first results using a recently developed aberration-corrected Lorentz mode (CEOS).

  1. The first observation of titanate nanotubes by spherical aberration corrected high-resolution transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miao, L.; Tanemura, S.; Jiang, T.; Tanemura, M.; Yoshida, K.; Tanaka, N.; Xu, G.

    2009-07-01

    Multi-wall titanate nanotubes (MW-TNNTs) with high aspect ratio, large surface area and good uniformity were produced by alkaline hydrothermal treatment of grounded TiO 2 aerogels and further by applying freeze-drying. Not only the crystal phase and diameter, but also morphology of the starting materials impact on the aspect ratio and transformation efficiency of the obtained nanotubes. Other parameters, such as pH value during neutralization process and drying method for the final products, are important to control length and dispersion of MW-TNNTs. By spherical aberration corrected high-resolution transmission-electron-microscopy (Cs-corrected HRTEM) with lateral space resolution of 0.14 nm at 200 kV accelerating voltage and electron energy loss spectrum (EELS), the detailed structural analysis of MW-TNNTs reveals that (1) diameters of inner and outer tubes are about 4-7 nm and 10 nm, respectively, (2) numbers of layers are different from part to part along the longitudinal tube axis, (3) the walls of the tubes have interlayer spacing of 0.70-0.80 nm and the lateral fringes which are vertical to the walls have spacing of 0.32 nm, (4) each layer of MW-TNNT is the nanosheet composed by the arrayed TiO 6 octahedrons, and respective octahedron being slightly strained, and (5) no chirality of MW-TNNT tubular structure is observed.

  2. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca , Sr)Fe2O5 Brownmillerite superlattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debangshu; Stone, Greg; Moon, Eun Ju; Young, Joshua; Gopalan, Venkatraman; Rondinelli, James; May, Steven; Alem, Nasim

    The brownmillerite phase A2B2O5 consists of ordered oxygen vacancies in alternate perovskite layers forming chiral tetrahedral chains. The handedness of these tetrahedral chains control the polarization of the structure. The current study focuses on 1-1 brownmillerite superlattices grown on a SrTiO3 substrates using molecular beam epitaxy. The B-site in this structure is iron throughout the superlattice film, while the A-site alternates between calcium and strontium in the superlattice layers. In this study, we use atomic resolution aberration corrected scanning transmission electron microscopy (STEM) to investigate the structure and chemistry of the film-substrate interface as well as the chemical structure of the superlattice. Atom positions are determined to measure displacement vectors of A-site cations in the superlattice structure. D.M., G.A.S., V.G. and N.A. were supported by the National Science Foundation under Grant No. DMR-1420620. E.J.M. and S.J.M. were supported by the National Science Foundation under Grant No. DMR-1151649.

  3. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    SciTech Connect

    MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E.; Kelez, N.; Marcus, M.A.; Miller, T.; Padmore, H.A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  4. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  5. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    SciTech Connect

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki; Müller, Heiko; Haider, Maximilian; Tonomura, Akira

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  6. Aberration correction past and present.

    PubMed

    Hawkes, P W

    2009-09-28

    Electron lenses are extremely poor: if glass lenses were as bad, we should see as well with the naked eye as with a microscope! The demonstration by Otto Scherzer in 1936 that skillful lens design could never eliminate the spherical and chromatic aberrations of rotationally symmetric electron lenses was therefore most unwelcome and the other great electron optician of those years, Walter Glaser, never ceased striving to find a loophole in Scherzer's proof. In the wartime and early post-war years, the first proposals for correcting C(s) were made and in 1947, in a second milestone paper, Scherzer listed these and other ways of correcting lenses; soon after, Dennis Gabor invented holography for the same purpose. These approaches will be briefly summarized and the work that led to the successful implementation of quadupole-octopole and sextupole correctors in the 1990 s will be analysed. In conclusion, the elegant role of image algebra in describing image formation and processing and, above all, in developing new methods will be mentioned. PMID:19687058

  7. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  8. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    SciTech Connect

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-05-21

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  9. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Lotnyk, Andriy Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd

    2014-02-17

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  10. Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-04-01

    We present a theoretical analysis of an electrostatic triode mirror combined with an einzel lens for the correction of spherical and chromatic aberration. We show that this device adaptively corrects spherical and chromatic aberration simultaneously and independently. Chromatic aberration can be compensated over a relative range of -38% to +100%, and spherical aberration over ±100% range. We compare the analytic calculation with a numerical simulation and show that the two descriptions agree to within 5% in the relevant operating regime of the device. PMID:22459116

  11. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  12. The Stanford Nanocharacterization Laboratory (SNL) and Recent Applications of an Aberration-Corrected Environmental Transmission Electron Microscope**

    PubMed Central

    Sinclair, Robert; Kempen, Paul Joseph; Chin, Richard; Koh, Ai Leen

    2014-01-01

    This article describes the establishment, over a period of ten years or so, of a multi-user, institution-wide facility for the characterization of materials and devices at the nano-scale. Emphasis is placed on the type of equipment that we have found to be most useful for our users, and the business strategy that maintains its operations. A central component of our facility is an aberration-corrected environmental transmission electron microscope and its application is summarized in the studies of plasmon energies of silver nanoparticles, the band gap of PbS quantum dots, atomic site occupancy near grain boundaries in yttria stabilized zirconia, the lithiation of silicon nanoparticles, in situ observations on carbon nanotube oxidation and the electron tomography of varicella zoster virus nucleocapsids. PMID:25364299

  13. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-28

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  14. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction

    SciTech Connect

    Matsuda, Junko; Yoshida, Kenta; Sasaki, Yukichi; Uchiyama, Naoki; Akiba, Etsuo

    2014-08-25

    In situ transmission electron microscopy (TEM) was performed to observe the hydrogenation of Mg-Ni films in a hydrogen atmosphere of 80–100 Pa. An aberration-corrected environmental TEM with a differential pumping system allows us to reveal the Angstrom-scale structure of the films in the initial stage of hydrogenation: first, nucleation and growth of Mg{sub 2}NiH{sub 4} crystals with a lattice spacing of 0.22 nm in an Mg-rich amorphous matrix of the film occurs within 20 s after the start of the high-resolution observation, then crystallization of MgH{sub 2} with a smaller spacing of 0.15 nm happens after approximately 1 min. Our in situ TEM method is also applicable to the analysis of other hydrogen-related materials.

  15. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  16. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  17. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lozano, J. G.; Pennycook, T. J.; Jones, L.; Hirsch, P. B.; Nellist, P. D.

    2015-06-01

    Screw dislocations play an important role in materials' mechanical, electrical and optical properties. However, imaging the atomic displacements in screw dislocations remains challenging. Although advanced electron microscopy techniques have allowed atomic-scale characterization of edge dislocations from the conventional end-on view, for screw dislocations, the atoms are predominantly displaced parallel to the dislocation line, and therefore the screw displacements are parallel to the electron beam and become invisible when viewed end-on. Here we show that screw displacements can be imaged directly with the dislocation lying in a plane transverse to the electron beam by optical sectioning using annular dark field imaging in a scanning transmission electron microscope. Applying this technique to a mixed [a+c] dislocation in GaN allows direct imaging of a screw dissociation with a 1.65-nm dissociation distance, thereby demonstrating a new method for characterizing dislocation core structures.

  18. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Reneker, Darrell; Gorse, Joseph; Lolla, Dinesh; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip; Chase, George

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed. Electron micrographs of thin, self-supporting PVDF nanofibers showed conformations and relative locations of atoms in segments of polymer molecules. Rows of CF2 atomic groups, at 0.25 nm intervals, marked the paths of segments of the PVDF molecules. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, provide quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Synergism between high resolution electron micrographs and images created by molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. Support from Coalescence Filtration Nanofiber Consortium and from the Office of Basic Energy Sciences Contract No. DE-AC02-05CH11231.

  19. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  20. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.

    PubMed

    Nelayah, Jaysen; Nguyen, Nhat Tai; Alloyeau, Damien; Wang, Guillaume Yangshu; Ricolleau, Christian

    2014-09-01

    Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures. PMID:25079393

  1. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  2. Correcting aberration in aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Ahmed, K.; Khan, A. N.; Rauf, A.; Gul, A.

    2014-06-01

    New technique eases aspheric lens fabrication and overcome traditional limitation. An aspheric lens has been designed by using optical designing software to replace the achromat (Doublet) lens of eyepiece assembly of telescope. The devised physical parameters of aspheric lens have been incorporated into the CNC Aspheric machine to fabricate the lens. The antireflection coating for visible region has been carried out on lens by employing PVD technique. In this report diminished aberration effects due to non-spherical surface profile and comparison of optical parameters of achromat (doublet) and aspheric lens is presented.

  3. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  4. Aberrations in asymmetrical electron lenses.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-08-01

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. PMID:22206603

  5. Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy.

    PubMed

    Sales, D L; Varela, M; Pennycook, S J; Galindo, P L; González, L; González, Y; Fuster, D; Molina, S I

    2010-08-13

    Evolution of the size, shape and composition of self-assembled InAs/InP quantum wires through the Stranski-Krastanov transition has been determined by aberration-corrected Z-contrast imaging. High resolution compositional maps of the wires in the initial, intermediate and final formation stages are presented. (001) is the main facet at their very initial stage of formation, which is gradually reduced in favour of [114] or [118], ending with the formation of mature quantum wires with {114} facets. Significant changes in wire dimensions are measured when varying slightly the amount of InAs deposited. These results are used as input parameters to build three-dimensional models that allow calculation of the strain energy during the quantum wire formation process. The observed morphological evolution is explained in terms of the calculated elastic energy changes at the growth front. Regions of the wetting layer close to the nanostructure perimeters have higher strain energy, causing migration of As atoms towards the quantum wire terraces, where the structure is partially relaxed; the thickness of the wetting layer is reduced in these zones and the island height increases until the (001) facet is removed. PMID:20647625

  6. Studies of a magnetically focused electrostatic mirror. II. Aberration corrections

    PubMed

    Tsai

    2000-02-01

    A magnetically focused electrostatic mirror is shown to be able to correct the spherical and chromatic aberrations of a probe forming system simultaneously. The probe forming system comprises a uniform magnetic lens and a uniform electrostatic mirror. Previous theoretical investigations showed that the spherical and chromatic aberration coefficients of these two components are the same values but with opposite sign, whose combination will therefore be free from aberrations. The experimental arrangement used a solenoid to produce a uniform magnetic field, and a series of plate electrodes to produce a uniform electrostatic field. These fields are shown to satisfy the experimental requirements. By deliberately changing the extraction voltage to defocus the electron beam, the author is able to observe correction of chromatic aberration by one order of magnitude. By deliberately changing the lens field and the mirror field, the author is able to observe the reduction of the asymmetry caused by the spherical aberration, which the author believes also indicates correction by one order of magnitude. PMID:10652006

  7. Effect of oxygen stoichiometry in LuFe2O(4-δ) and its microstructure observed by aberration-corrected transmission electron microscopy.

    PubMed

    Yang, H X; Tian, H F; Wang, Z; Qin, Y B; Ma, C; Li, J Q; Cheng, Z Y; Yu, R; Zhu, J

    2012-10-31

    A series of oxygen deficient LuFe(2)O(4-δ) materials have been prepared under a controlled oxygen partial-pressure atmosphere. Measurements of magnetization reveal that the increase of oxygen deficiencies could evidently depress the ferrimagnetic phase transition temperature (T(N)). In additional to the well-known charge ordering within the (11(-)0) crystal plane, a visible structural modulation with q = (0,1/4.2,7/8) commonly appears on the (100) plane in the oxygen deficient samples. An aberration-corrected transmission electron microscopy study on the oxygen deficient samples demonstrates the presence of oxygen vacancies and local structural distortion. The atomic structural features in correlation with the structural modulation, distortion of the FeO(5) polyhedron and the (001) twinning domains have been also examined. PMID:23032863

  8. A ‘jump-to-coalescence’ mechanism during nanoparticle growth revealed by in situ aberration-corrected transmission electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Neng, Wan; Shuang-ying, Lei; Jun, Xu; Martini, Matteo

    2016-05-01

    In this work, we used in situ aberration-corrected transmission electron microscopy (AC-TEM) to observe the coalescence of gold nanoparticles. We observed a critical edge-to-edge distance {d}ec∼ 0.5 {nm} below which the two particles will coalesce rapidly (jump-to-coalescence). A model based on the single-atom-triggered rapid particle contraction was proposed and verified by first-principles calculations, in which evident energy decrease was detected when adding a gold atom between two gold nanoparticles. Our ex situ TEM study of sputtering-deposited gold nanoparticles on different substrates with varied time also supports the jump-to-contact mechanism. This observation afforded physical insight into the fundamental growth mechanism during dynamic particle coalescence processes.

  9. Restoring defect structures in 3C-SiC/Si (001) from spherical aberration-corrected high-resolution transmission electron microscope images by means of deconvolution processing.

    PubMed

    Wen, C; Wan, W; Li, F H; Tang, D

    2015-04-01

    The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. PMID:25637810

  10. Local symmetry breaking of a thin crystal structure of β-Si3N4 as revealed by spherical aberration corrected high-resolution transmission electron microscopy images.

    PubMed

    Kim, Hwang Su; Zhang, Zaoli; Kaiser, Ute

    2012-06-01

    This report is an extension of the study for structural imaging of 5-6 nm thick β-Si(3)N(4) [0001] crystal with a spherical aberration corrected transmission electron microscope by Zhang and Kaiser [2009. Structure imaging of β-Si(3)N(4) by spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 109, 1114-1120]. In this work, a local symmetry breaking with an uneven resolution of dumbbells in the six-membered rings revealed in the reported images in the study of Zhang and Kaiser has been analyzed in detail. It is found that this local asymmetry in the image basically is not relevant to a slight mistilt of the specimen and/or a beam tilt (coma). Rather the certain variation of the tetrahedral bond length of Si-N(4) in the crystal structure is found to be responsible for the uneven resolution with a local structural variation from region to region. This characteristic of the variation is also supposed to give a distorted lattice of apparently 2°-2.5° deviations from the perfect hexagonal unit cell as observed in the reported image in the work of Zhang and Kaiser. It is discussed that this variation may prevail only in a thin specimen with a thickness ranging ~≤ 5-6 nm. At the same time, it is noted that the average of the bond length variation is close to the fixed length known in a bulk crystal of β-Si(3)N(4). PMID:22499470

  11. Harmonic source wavefront aberration correction for ultrasound imaging

    PubMed Central

    Dianis, Scott W.; von Ramm, Olaf T.

    2011-01-01

    A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images. PMID:21303031

  12. New Views of Materials through Aberration-corrected STEM

    SciTech Connect

    Pennycook, Stephen J; Varela del Arco, Maria

    2011-01-01

    The successful correction of third-order and, more recently, fifth-order aberrations has enormously enhanced the capabilities of the scanning transmission electron microscope (STEM), by not only achieving record resolution, but also allowing near 100% efficiency for electron energy loss spectroscopy, and higher currents for two-dimensional spectrum imaging. These advances have meant that the intrinsic advantages of the STEM, incoherent imaging and simultaneous collection of multiple complementary images can now give new insights into many areas of materials physics. Here, we review a number of examples, mostly from the field of complex oxides, and look towards new directions for the future.

  13. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001) interface by aberration-corrected high-resolution transmission electron microscopy

    SciTech Connect

    Wen, C.; Ge, B. H.; Cui, Y. X.; Li, F. H.; Zhu, J.; Yu, R.; Cheng, Z. Y.

    2014-11-15

    The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ε{sub xx} and ε{sub yy}, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ε{sub xx} and ε{sub yy} strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  14. The structure of an Al-Rh-Cu decagonal quasicrystal studied by spherical aberration (Cs)-corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Hiraga, Kenji; Yasuhara, Akira; Yamamoto, Kazuki; Yubuta, Kunio

    2015-05-01

    The structure of an Al-Rh-Cu decagonal quasicrystal formed with two quasiperiodic planes along the periodic axis in an Al63Rh18.5Cu18.5 alloy has been studied by spherical aberration (Cs)-corrected high-angle annular detector dark-field (HAADF)- and annular bright-field (ABF)-scanning transmission electron microscopy (STEM). Heavy atoms of Rh and mixed sites (MSs) of Al and Cu atoms projected along the periodic axis can be clearly represented as separate bright dots in observed HAADF-STEM images, and consequently arrangements of Rh atoms and MSs on the two quasiperiodic planes can be directly determined from those of bright dots in the observed HAADF-STEM image. The Rh atoms are arranged in pentagonal tiling formed with pentagonal and star-shaped pentagonal tiles with an edge-length of 0.76 nm, and also MSs with a pentagonal arrangement are located in the pentagonal tiles with definite orientations. The star-shaped pentagonal tiles in the pentagonal tiling are arranged in τ2(τ: golden ratio)-inflated pentagonal tiling with a bond-length of 2 nm. From arrangements of Rh atoms placed in pentagonal tilings with a bond-length of 2 nm, which are generated by the projection of a five-dimensional hyper-cubic lattice, occupation domains in the perpendicular space are derived. Al atoms as well as Rh atoms and MSs are represented as dark dots in an observed ABF-STEM image, and arrangements of Al atoms in well-symmetric regions are discussed.

  15. A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; Browning, N; Gates , B

    2010-01-01

    Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C{sub 2}H{sub 4}){sub 2}(acac) (acac is CH{sub 3}COCHCOCH{sub 3}) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C{sub 2}H{sub 4}){sub 2}, formed by the dissociation of the acac ligand from Ir(C{sub 2}H{sub 4}){sub 2}(acac) and bonding of the Ir(C{sub 2}H{sub 4}){sub 2} species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO){sub 2} complexes on the MgO surface. The breadth of the {nu}{sub CO} bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

  16. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  17. Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels

    SciTech Connect

    J.A. Maloney, B. Erdelyi, A. Afanaciev, R.P. Johnson, Y.S. Derbenev, V.S. Morozov

    2011-03-01

    Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.

  18. Sextupole system for the correction of spherical aberration

    DOEpatents

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  19. Isoplanatic patch size for aberration correction in ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Pilkington, Wayne C.

    Methods and experimental results are described for determination of the region size in an aberrating medium over which a single set of aberration estimates can achieve satisfactory b-scan resolution ( i.e., the isoplanatic patch) using time-shift compensation for aberration correction of ultrasonic transmit and receive beams. Based on twenty percent allowable increases in the -12 dB width of the receive or transmit beam focus using cross-correction compared to self-correction, the isoplanatic patch sizes were found to between 3 and 5 millimeters laterally for a linearly-scanned transducer, and at least 12 millimeters axially for a target distance of 55 millimeters and aberration comparable to human abdominal wall. These sizes depend on the aberration severity, reference site axial position, and allowable resolution degradation with cross-correction. The lateral isoplanatic patch size of a linearly scanned image can be more than doubled to match that of a beam-steered acquisition using aberration estimate position matching relative to the tissue surface. Further expansion of the lateral isoplanatic patch size by an additional 50 to 100 percent for both scanning methods is also shown through propagation path matched cross-correction mapping of aberration estimates. The specific mapping required to achieve the best propagation path match depends on the axial distribution of the aberrating structures, the focal depth being imaged, and the cross-correction distance. The effectiveness of alternate methods to derive propagation path matching maps with and without a priori knowledge of aberrator spatial distribution are contrasted; and a means to dynamically adjust correction maps to maximize isoplanatic patch sizes is proposed and verified. Lateral cross-correction mapping and the map changes required for each cross-correction distance can all be implemented with simple shifting of aberration estimates within the transducer aperture. Therefore, use of optimally mapped

  20. Correction of spherochromatic aberration by system of thin layers

    NASA Astrophysics Data System (ADS)

    Miks, A.; Novak, J.

    2005-08-01

    It is well-known from the theory of optical imaging that optical systems generally show a presence of a chromatic aberration, which originates from a variation of the refraction index of glass on the wavelength of light. The chromatic aberration must be well corrected in order to obtain a good quality of optical image. In practice, it is used a proper combination of optical elements manufactured from different types of optical glass with a different dispersion in order to suppress the chromatic aberration. Our work shows a way how to correct spherochromatic aberration using a system of thin aspherical layers. The equations are derived for determination of parameters of thin layers with respect to a required spherochromatic aberration.

  1. Automated computational aberration correction method for broadband interferometric imaging techniques.

    PubMed

    Pande, Paritosh; Liu, Yuan-Zhi; South, Fredrick A; Boppart, Stephen A

    2016-07-15

    Numerical correction of optical aberrations provides an inexpensive and simpler alternative to the traditionally used hardware-based adaptive optics techniques. In this Letter, we present an automated computational aberration correction method for broadband interferometric imaging techniques. In the proposed method, the process of aberration correction is modeled as a filtering operation on the aberrant image using a phase filter in the Fourier domain. The phase filter is expressed as a linear combination of Zernike polynomials with unknown coefficients, which are estimated through an iterative optimization scheme based on maximizing an image sharpness metric. The method is validated on both simulated data and experimental data obtained from a tissue phantom, an ex vivo tissue sample, and an in vivo photoreceptor layer of the human retina. PMID:27420526

  2. Electron Vortex Production and Control Using Aberration Induced Diffraction Catastrophes

    NASA Astrophysics Data System (ADS)

    Petersen, T. C.; Weyland, M.; Paganin, D. M.; Simula, T. P.; Eastwood, S. A.; Morgan, M. J.

    2013-01-01

    An aberration corrected electron microscope is used to create electron diffraction catastrophes, containing arrays of intensity zeros threading vortex cores. Vortices are ascribed to these arrays using catastrophe theory, scalar diffraction integrals, and experimentally retrieved phase maps. From measured wave function phases, obtained using focal-series phase retrieval, the orbital angular momentum density is mapped for highly astigmatic electron probes. We observe vortex rings and topological reconnections of nodal lines by tracking the vortex cores using the retrieved phases.

  3. Calculations of spherical aberration-corrected imaging behaviour.

    PubMed

    Chang, Lan Yun; Chen, Fu Rong; Kirkland, Angus I; Kai, Ji Jung

    2003-01-01

    Different optimal operating conditions for a C3-corrected transmission electron microscope were compared for both conventional field emission sources and for the next generation of monochromated instruments. In particular, the contrast transfer functions and corresponding wave aberration functions for two previously proposed optimal conditions in which C3 is adjusted to compensate, respectively, C5 or Cc are critically compared. The results indicate that in the presence of a small positive C5 the former provides flat transfer to the information limit whereas the latter shows oscillatory transfer at high spatial frequencies, which is more pronounced for the monochromated instrument. The effects of this behaviour were further investigated through multislice simulations of Si [110] and diamond [110] under the C5-limited condition. These confirm that for the former structure with an interatomic separation of 0.14 nm this aberration has little influence, but that for the latter with a sub-0.1 nm interatomic separation its presence leads to a restricted defocus range over which the structure is faithfully resolved. PMID:14599096

  4. Towards Aberration Correction of Transcranial Ultrasound Using Acoustic Droplet Vaporization

    PubMed Central

    Haworth, Kevin J.; Fowlkes, J. Brian; Carson, Paul L.; Kripfgans, Oliver D.

    2008-01-01

    We report on the first experiments demonstrating the transcranial acoustic formation of stable gas bubbles that can be used for transcranial ultrasound aberration correction. It is demonstrated that the gas bubbles can be formed transcranially by phase-transitioning single, superheated, micron-size, liquid dodecafluoropentane droplets with ultrasound, a process known as acoustic droplet vaporization (ADV). ADV was performed at 550 kHz, where the skull is less attenuating and aberrating, allowing for higher-amplitudes to be reached at the focus. Additionally, it is demonstrated that time-reversal focusing at 1 MHz can be used to correct for transcranial aberrations with a single gas bubble acting as a point beacon. Aberration correction was performed using a synthetic aperture approach and verified by the realignment of the scattered waveforms. Under the conditions described below, time-reversal aberration correction using gas bubbles resulted in a gain of 1.9 ± 0.3 in an introduced focusing factor. This is a small fraction of the gain anticipated from complete transmit-receive of a fully-populated two-dimensional array with sub-wavelength elements. PMID:17935872

  5. Brief history of the Cambridge STEM aberration correction project and its progeny.

    PubMed

    Brown, L Michael; Batson, Philip E; Dellby, Niklas; Krivanek, Ondrej L

    2015-10-01

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper "In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday", recently published in Ultramicroscopy. PMID:26094204

  6. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  7. Aberration corrected STEM of iron rhodium nanoislands

    NASA Astrophysics Data System (ADS)

    McLaren, M. J.; Hage, F. S.; Loving, M.; Ramasse, Q. M.; Lewis, L. H.; Marrows, C. H.; Brydson, R. M. D.

    2014-06-01

    Iron-rhodium (FeRh) nanoislands of equiatomic composition have been analysed using scanning transmission electron microscopy (STEM) electron energy loss spec-troscopy(EELS) and high angle annular dark field (HAADF) techniques. Previous magne-tometry results have lead to a hypothesis that at room temperature the core of the islands are antiferromagnetic while the shell has a small ferromagnetic signal. The causes of this effect are most likely to be a difference in composition at the edges or a strain on the island that stretches the lattice and forces the ferromagnetic transition. The results find, at the film-substrate interface, an iron-rich layer ~ 5 Å thick that could play a key role in affecting the magnetostructural transition around the interfacial region and account for the room temperature ferromagnetism.

  8. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  9. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  10. Direct imaging of crystal structure and defects in metastable Ge{sub 2}Sb{sub 2}Te{sub 5} by quantitative aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Ross, Ulrich; Lotnyk, Andriy Thelander, Erik; Rauschenbach, Bernd

    2014-03-24

    Knowledge about the atomic structure and vacancy distribution in phase change materials is of foremost importance in order to understand the underlying mechanism of fast reversible phase transformation. In this Letter, by combining state-of-the-art aberration-corrected scanning transmission electron microscopy with image simulations, we are able to map the local atomic structure and composition of a textured metastable Ge{sub 2}Sb{sub 2}Te{sub 5} thin film deposited by pulsed laser deposition with excellent spatial resolution. The atomic-resolution scanning transmission electron microscopy investigations display the heterogeneous defect structure of the Ge{sub 2}Sb{sub 2}Te{sub 5} phase. The obtained results are discussed. Highly oriented Ge{sub 2}Sb{sub 2}Te{sub 5} thin films appear to be a promising approach for further atomic-resolution investigations of the phase change behavior of this material class.

  11. Correction of axial optical aberrations in hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    In hyper-spectral imaging systems with a wide spectral range, axial optical aberrations may lead to a significant blurring of image intensities in certain parts of the spectral range. Axial optical aberrations arise from the indexof- refraction variations that is dependent on the wavelength of incident light. To correct axial optical aberrations the point-spread function (PSF) of the image acquisition system needs to be identified. We proposed a multiframe joint blur identification and image restoration method that maximizes the likelihood of local image energy distributions between spectral images. Gaussian mixture model based density estimate provides a link between corresponding spatial information shared among spectral images so as to find and restore the image edges via a PSF update. Model of the PSF was assumed to be a linear combination of Gaussian functions, therefore the blur identification process had to find only the corresponding scalar weights of each Gaussian function. Using the identified PSF, image restoration was performed by the iterative Richardson-Lucy algorithm. Experiments were conducted on four different biological samples using a hyper-spectral imaging system based on acousto-optic tunable filter in the visible spectral range (0.55 - 1.0 μm). By running the proposed method, the quality of raw spectral images was substantially improved. Image quality improvements were quantified by a measure of contrast and demonstrate the potential of the proposed method for the correction of axial optical aberrations.

  12. Spherical Aberration Corrections for the Electrostatic Gridded Lens

    SciTech Connect

    Pikin,A.

    2008-05-01

    Two methods of spherical aberration corrections of an electrostatic gridded lens have been studied with ray tracing simulations. Both methods are based on modifying electrostatic field on the periphery of the lens. In a simplest case such modification is done by extending the part of the grid support on its radial periphery in axial direction. In alternative method the electric field on the radial periphery of the lens is modified by applying an optimum voltage on an electrically isolated correcting electrode. It was demonstrated, that for a given focal length the voltage on this lens can be optimized for minimum aberration The performance of lenses is presented as a lens contribution to the beam RMS normalized emittance.

  13. An adaptive optic for correcting low-order wavefront aberrations

    SciTech Connect

    Thompson, C A; Wilhelmsen, J

    1999-09-02

    Adaptive Optics used for correcting low-order wavefront aberrations were tested and compared using interferometry, beam propagation, and a far-field test. Results confirm that the design and manufacturing specifications were met. Experimental data also confirms theoretical performance expectations, indicating the usefulness of these optics (especially in a laser-beam processing system), and identifying the resulting differences between the two fabrication methods used to make the optics.

  14. Aberration-Corrected Scanning Transmission Electron Microscope (STEM) Through-Focus Imaging for Three-Dimensional Atomic Analysis of Bismuth Segregation on Copper [001]/33° Twist Bicrystal Grain Boundaries.

    PubMed

    Wade, Charles Austin; McLean, Mark J; Vinci, Richard P; Watanabe, Masashi

    2016-06-01

    Scanning transmission electron microscope (STEM) through-focus imaging (TFI) has been used to determine the three-dimensional atomic structure of Bi segregation-induced brittle Cu grain boundaries (GBs). With TFI, it is possible to observe single Bi atom distributions along Cu [001] twist GBs using an aberration-corrected STEM operating at 200 kV. The depth resolution is ~5 nm. Specimens with GBs intentionally inclined with respect to the microscope's optic axis were used to investigate Bi segregant atom distributions along and through the Cu GB. It was found that Bi atoms exist at most once per Cu unit cell along the GB, meaning that no continuous GB film is present. Therefore, the reduced fracture toughness of this particular Bi-doped Cu boundary would not be caused by fracture of Bi-Bi bonds. PMID:27145975

  15. Research on stitching interferometry aspheric surface with correcting systemic aberration

    NASA Astrophysics Data System (ADS)

    Qiao, Yujing; Han, Guihua

    2010-10-01

    Sub-aperture stitching interferometry was originally used for measurement of large-diameter plane and spherical, it is a technological means that uses small-caliber interferometer to test each parts of optical component, and then all the subaperture data are combined or stitched together to create a map of the full surface. Correcting adjust errors of three directions is currently stitching algorithm for realizing the stitching testing aspheric surface. But without spatial analysis for bias errors of positioning mechanism, we can't know exactly the actual appearance of bias errors, consequently will not be able to implement a accuracy stitching.. Because the accuracy of individual stitching can't meet the accuracy requirements, the test result of stitching interferometry aspheric surface will not meet requirements of accuracy due to the errors accumulation. Correcting systemic aberration method is presented to solve the problem mentioned above. It is based on the analysis of the actual impact appearance of location components' bias error in interferometry. The actual appearance is exactly the same after comparing with the Seidle aberration. a correction bias errors model of stitching measure is found based on the analysis, and it proposed an accuracy stitching measurement for quadric surface measurement. It gets the stitching coefficients with least square fitting method, and acquires the estimate values of bias errors in sub-aperture stitching components, and corrects the high-order systemic aberration, therefore improve the fitting accuracy in sub-apertures overlap zone. The experiment result shows, the stitching accuracy of this stitching method is higher than traditional stitching method.

  16. A proposal for the holographic correction of incoherent aberrations by tilted reference waves.

    PubMed

    Röder, Falk; Lubk, Axel

    2015-05-01

    The recently derived general transfer theory for off-axis electron holography provides a new approach for reconstructing the electron wave beyond the conventional sideband information limit. Limited ensemble coherence of the electron beam between object and reference area leads to an attenuation of spatial frequencies of the object exit wave in the presence of aberrations of the objective lens. Concerted tilts of the reference wave under the condition of an invariant object exit wave are proposed to diminish the aberration impact on spatial frequencies even beyond the sideband information limit allowing its transfer with maximum possible contrast. In addition to the theoretical considerations outlined in detail, an experimental proof-of-principle is presented. A fully controlled tilt of the reference wave, however, remains as a promising task for the future. The use of a hologram series with varying reference wave tilt is considered for linearly synthesizing an effective aperture for the transfer into the sideband with broader bandwidth compared to conventional off-axis electron holography allowing us to correct the incoherent aberrations in transmission electron microscopy. Furthermore, tilting a reference wave with respect to a plane wave is expected to be an alternative way for measuring the coherent and incoherent aberrations of a transmission electron microscope. The capability of tilting the reference wave is expected to be beneficial for improving the signal-to-noise ratio in dark-field off-axis electron holography as well. PMID:25680104

  17. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields

    PubMed Central

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael

    2009-01-01

    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This

  18. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron

  19. Correcting for Beam Aberrations in a Beam-Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Franco, Manuel; Slobin, Stephen; Veruttipong, Watt

    2003-01-01

    A method for correcting the aim of a beam-waveguide microwave antenna compensates for the beam aberration that occurs during radio tracking of a target that has a component of velocity transverse to the line of sight from the tracking station. The method was devised primarily for use in tracking of distant target spacecraft by large terrestrial beam-waveguide antennas of NASA's Deep Space Network (DSN). The method should also be adaptable to tracking, by other beam-waveguide antennas, of targets that move with large transverse velocities at large distances from the antennas.

  20. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    PubMed

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations. PMID:27563976

  1. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

    NASA Astrophysics Data System (ADS)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-01

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  2. Transcranial phase aberration correction using beam simulations and MR-ARFI

    SciTech Connect

    Vyas, Urvi Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.

  3. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  4. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens

    PubMed Central

    Kretz, Florian T A; Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd U

    2015-01-01

    AIM To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting, monofocal intraocular lens (IOL). METHODS Twenty-one patients (34 eyes) aged 50 to 83y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL (Tecnis ZCB00, Abbott Medical Optics). Three months after surgery they were examined for uncorrected (UDVA) and corrected distance visual acuity (CDVA), contrast sensitivity (CS) under photopic and mesopic conditions with and without glare source, ocular high order aberrations (HOA, Zywave II) and retinal straylight (C-Quant). RESULTS Postoperatively, patients achieved a postoperative CDVA of 0.0 logMAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27 (primary coma components) and -0.04±0.16 (spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed (P≥0.28). CONCLUSION The implantation of an aspherical aberration correcting monofocal IOL after cataract surgery resulted in very low residual higher order aberration (HOA) and normal straylight. PMID:26309872

  5. The atomic structural dynamics of γ-Al2O3 supported Ir-Pt nanocluster catalysts prepared from a bimetallic molecular precursor: a study using aberration-corrected electron microscopy and X-ray absorption spectroscopy.

    PubMed

    Small, Matthew W; Sanchez, Sergio I; Menard, Laurent D; Kang, Joo H; Frenkel, Anatoly I; Nuzzo, Ralph G

    2011-03-16

    This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions. PMID:21341654

  6. Electronic measurement correction devices

    SciTech Connect

    Mahns, R.R.

    1984-04-01

    The electronics semi-conductor revolution has touched every industry and home in the nation. The gas industry is no exception. Sophisticated gas measurement instrumentation has been with us for several decades now, but only in the last 10 years or so has it really begun to boom. First marketed were the flow computers dedicated to orifice meter measurement; but with steadily decreasing manufacturing costs, electronic instrumentation is now moving into the area of base volume, pressure and temperature correction previously handled almost solely by mechanical integrating instruments. This paper takes a brief look at some of the features of the newcomers on the market and how they stack up against the old standby mechanical base volume/pressure/temperature correctors.

  7. Electron Optics for Biologists: Physical Origins of Spherical Aberrations

    ERIC Educational Resources Information Center

    Geissler, Peter; Zadunaisky, Jose

    1974-01-01

    Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)

  8. Retinal image contrast obtained by a model eye with combined correction of chromatic and spherical aberrations

    PubMed Central

    Ohnuma, Kazuhiko; Kayanuma, Hiroyuki; Lawu, Tjundewo; Negishi, Kazuno; Yamaguchi, Takefumi; Noda, Toru

    2011-01-01

    Correcting spherical and chromatic aberrations in vitro in human eyes provides substantial visual acuity and contrast sensitivity improvements. We found the same improvement in the retinal images using a model eye with/without correction of longitudinal chromatic aberrations (LCAs) and spherical aberrations (SAs). The model eye included an intraocular lens (IOL) and artificial cornea with human ocular LCAs and average human SAs. The optotypes were illuminated using a D65 light source, and the images were obtained using two-dimensional luminance colorimeter. The contrast improvement from the SA correction was higher than the LCA correction, indicating the benefit of an aspheric achromatic IOL. PMID:21698008

  9. Correcting the wavefront aberration of membrane mirror based on liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Wei, Yin; Chen, Xinhua; Tang, Minxue

    2014-11-01

    Membrane mirror with flexible polymer film substrate is a new-concept ultra lightweight mirror for space applications. Compared with traditional mirrors, membrane mirror has the advantages of lightweight, folding and deployable, low cost and etc. Due to the surface shape of flexible membrane mirror is easy to deviate from the design surface shape, it will bring wavefront aberration to the optical system. In order to solve this problem, a method of membrane mirror wavefront aberration correction based on the liquid crystal spatial light modulator (LCSLM) will be studied in this paper. The wavefront aberration correction principle of LCSLM is described and the phase modulation property of a LCSLM is measured and analyzed firstly. Then the membrane mirror wavefront aberration correction system is designed and established according to the optical properties of a membrane mirror. The LCSLM and a Hartmann-Shack sensor are used as a wavefront corrector and a wavefront detector, respectively. The detected wavefront aberration is calculated and converted into voltage value on LCSLM for the mirror wavefront aberration correction by programming in Matlab. When in experiment, the wavefront aberration of a glass plane mirror with a diameter of 70 mm is measured and corrected for verifying the feasibility of the experiment system and the correctness of the program. The PV value and RMS value of distorted wavefront are reduced and near diffraction limited optical performance is achieved. On this basis, the wavefront aberration of the aperture center Φ25 mm in a membrane mirror with a diameter of 200 mm is corrected and the errors are analyzed. It provides a means of correcting the wavefront aberration of membrane mirror.

  10. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  11. Correction of chromatic aberrations at television registration of image through protective viewing systems

    NASA Astrophysics Data System (ADS)

    Kulyas, Oleg L.; Nikitin, Konstantin A.

    2016-03-01

    Ways of chromatic aberration in images are examined and analyzed which are generated at television supervision through protective glasses of a considerable thickness. The results of experimental check up of the given method of correction is introduced and described.

  12. Cationic surface reconstructions on cerium oxide nanocrystals: an aberration-corrected HRTEM study.

    PubMed

    Bhatta, Umananda M; Ross, Ian M; Sayle, Thi X T; Sayle, Dean C; Parker, Stephen C; Reid, David; Seal, Sudipta; Kumar, Amit; Möbus, Günter

    2012-01-24

    Instabilities of nanoscale ceria surface facets are examined on the atomic level. The electron beam and its induced atom migration are proposed as a readily available probe to emulate and quantify functional surface activity, which is crucial for, for example, catalytic performance. In situ phase contrast high-resolution transmission electron microscopy with spherical aberration correction is shown to be the ideal tool to analyze cationic reconstruction. Hydrothermally prepared ceria nanoparticles with particularly enhanced {100} surface exposure are explored. Experimental analysis of cationic reconstruction is supported by molecular dynamics simulations where the Madelung energy is shown to be directly related to the binding energy, which enables one to generate a visual representation of the distribution of "reactive" surface oxygen. PMID:22148265

  13. Resolving 45-pm-separated Si-Si atomic columns with an aberration-corrected STEM.

    PubMed

    Sawada, Hidetaka; Shimura, Naoki; Hosokawa, Fumio; Shibata, Naoya; Ikuhara, Yuichi

    2015-06-01

    Si-Si atomic columns separated by 45 pm were successfully resolved with a 300-kV aberration-corrected scanning transmission electron microscope (STEM) equipped with a cold-field emission gun. Using a sufficiently small Gaussian effective source size and a 0.4-eV energy spread at 300 kV, the focused electron probe on the specimen was simulated to be sub-50 pm. Image simulation showed that the present probe condition was sufficient to resolve 45 pm Si-Si dumbbells. A silicon crystalline specimen was observed from the [114] direction with a high-angle annular dark field STEM and the intensity profile showed 45 pm separation. A spot corresponding to (45 pm)(-1) was confirmed in the power spectrum of the Fourier transform. PMID:25825509

  14. An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers

    NASA Astrophysics Data System (ADS)

    Bowman, Richard W.; Wright, Amanda J.; Padgett, Miles J.

    2010-12-01

    Holographic optical tweezers allow the creation of multiple optical traps in 3D configurations through the use of dynamic diffractive optical elements called spatial light modulators (SLMs). We show that, in addition to controlling traps, the SLM in a holographic tweezers system can be both the principal element of a wavefront sensor and the corrective element in a closed-loop adaptive optics system. This means that aberrations in such systems can be estimated and corrected without altering the experimental setup. Aberrations are estimated using the Shack-Hartmann method, where an array of spots is projected into the sample plane and the distortion of this array is used to recover the aberration. The system can recover aberrations of up to ten wavelengths peak-peak, and is sensitive to aberrations much smaller than a wavelength. The spot pattern could also be analysed by eye, as a tool for aligning the system.

  15. Interfacial atomic structure analysis at sub-angstrom resolution using aberration-corrected STEM

    PubMed Central

    2014-01-01

    The atomic structure of a SiGe/Si epitaxial interface grown via molecular beam epitaxy on a single crystal silicon substrate was investigated using an aberration-corrected scanning transmittance electron microscope equipped with a high-angle annular dark-field detector and an energy-dispersive spectrometer. The accuracy required for compensation of the various residual aberration coefficients to achieve sub-angstrom resolution with the electron optics system was also evaluated. It was found that the interfacial layer was composed of a silicon single crystal, connected coherently to epitaxial SiGe nanolaminates. In addition, the distance between the dumbbell structures of the Si and Ge atoms was approximately 0.136 nm at the SiGe/Si interface in the [110] orientation. The corresponding fast Fourier transform exhibited a sub-angstrom scale point resolution of 0.78 Å. Furthermore, the relative positions of the atoms in the chemical composition line scan signals could be directly interpreted from the corresponding incoherent high-angle annular dark-field image. PMID:25426003

  16. Aberration corrected aspheric grating for far ultraviolet spectrographs - Conventional approach

    NASA Technical Reports Server (NTRS)

    Content, David; Trout, Catherine; Davila, Pam; Wilson, Mark

    1991-01-01

    Two approaches to reducing optical aberrations of concave grating spectrographs have been used, holographically controlling the groove curvature and spacing and reshaping the optical substrate while ruling the grooves conventionally. The latter approach, slightly deforming an ellipsoidal grating blank, can lead to diffraction-limited performance at a single FUV wavelength. When such a grating is used in a slitted Rowland circle spectrograph, the result is an extremely efficient spectrograph with spectral resolving power of about 30,000 and low astigmatism. Optical fabrication technology has advanced to the point where these exotic surface gratings are becoming practical.

  17. Aberration corrected imaging of a carbon nanotube encapsulated Lindqvist Ion and correlation with Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Sloan, J.; Bichoutskaia, E.; Liu, Z.; Kuganathan, N.; Faulques, E.; Suenaga, K.; Shannon, I. J.

    2012-07-01

    80 kV aberration-corrected transmission electron microscopy (AC-TEM) of discrete [W6O19]2- polyoxometalate ions mounted within double walled carbon nanotubes (DWNTs) allow high precision structural studies to be performed. W atom column separations within the octahedral W6 tungsten template can be visualized with sufficient clarity that correlation with full-scale density functional theory (DFT) can be achieved. Calculations performed on the gas phase and DWNT-mounted [W6O19]2- anions show good agreement, in the latter case, with measured separations between pairs of W2 atom columns imaged within equatorial WO6 octahedra and single W atoms within axial WO6 octahedra. Structural data from the tilted chiral encapsulating DWNT was also determined simultaneously with the anion structural measurements, allowing the nanotube conformation to be addressed in the DFT calculations.

  18. Temporal integration property of stereopsis after higher-order aberration correction

    PubMed Central

    Kang, Jian; Dai, Yun; Zhang, Yudong

    2015-01-01

    Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010

  19. Temporal integration property of stereopsis after higher-order aberration correction.

    PubMed

    Kang, Jian; Dai, Yun; Zhang, Yudong

    2015-11-01

    Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about -0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010

  20. Surgical correction of an aberrant right subclavian artery in a dog

    PubMed Central

    Yoon, Hun-Young; Jeong, Soon-wuk

    2011-01-01

    A diagnosis of an aberrant right subclavian artery was made in a 3-month-old Boston terrier. Surgical correction was performed after confirming adequate collateral circulation. Reports of surgical correction and evaluation of the perioperative thoracic limb blood pressure are rare in dogs. PMID:22467968

  1. Aberration-Free Imaging for Light and Electrons

    SciTech Connect

    Fluegel, B.; Mascarenhas, A.

    2008-01-01

    The equations for refraction of either the extraordinary wave of light or the wavefunction of an electron at a planar boundary between two misoriented uniaxially anisotropic materials are shown via raytracing to yield a transverse displacement of the object point. The displacement is independent of ray incidence angle and is thus free from spherical aberration, yielding a perfect virtual image which can have applications in birefringent optics. The general conditions for this aberration-free imaging are found to be identical to those required for amphoteric total refraction.

  2. Effect of correction of aberration dynamics on chaos in human ocular accommodation.

    PubMed

    Hampson, Karen M; Cufflin, Matthew P; Mallen, Edward A H

    2013-11-15

    We used adaptive optics to determine the effect of monochromatic aberration dynamics on the level of chaos in the accommodation control system. Four participants viewed a stationary target while the dynamics of their aberrations were either left uncorrected, defocus was corrected, or all aberrations except defocus were corrected. Chaos theory analysis was used to discern changes in the accommodative microfluctuations. We found a statistically significant reduction in the chaotic nature of the accommodation microfluctuations during correction of defocus, but not when all aberrations except defocus were corrected. The Lyapunov exponent decreased from 0.71 ± 0.07 D/s (baseline) to 0.55 ± 0.03 D/s (correction of defocus fluctuations). As the reduction of chaos in physiological signals is indicative of stress to the system, the results indicate that for the participants included in this study, fluctuations in defocus have a more profound effect than those of the other aberrations. There were no changes in the power spectrum between experimental conditions. Hence chaos theory analysis is a more subtle marker of changes in the accommodation control system and will be of value in the study of myopia onset and progression. PMID:24322122

  3. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  4. Ultrahigh-vacuum third-order spherical aberration (Cs) corrector for a scanning transmission electron microscope.

    PubMed

    Mitsuishi, Kazutaka; Takeguchi, Masaki; Kondo, Yukihito; Hosokawa, Fumio; Okamoto, Kimiharu; Sannomiya, Takumi; Hori, Madoka; Iwama, Takeshi; Kawazoe, Muneyuki; Furuya, Kazuo

    2006-12-01

    Initial results from an ultrahigh-vacuum (UHV) third-order spherical aberration (Cs) corrector for a dedicated scanning transmission electron microscopy, installed at the National Institute for Materials Science, Tsukuba, Japan, are presented here. The Cs corrector is of the dual hexapole type. It is UHV compatible and was installed on a UHV column. The Ronchigram obtained showed an extension of the sweet spot area, indicating a successful correction of the third-order spherical aberration Cs. The power spectrum of an image demonstrated that the resolution achieved was 0.1 nm. A first trial of the direct measurement of the fifth-order spherical aberration C5 was also attempted on the basis of a Ronchigram fringe measurement. PMID:19830936

  5. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  6. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  7. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  8. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles. PMID:27139665

  9. Adaptive temporal and wavefront aberration correction for ultrafast lasers with a membrane deformable mirror

    NASA Astrophysics Data System (ADS)

    Sherman, Leah Bruner

    Two adaptive optic systems for correction of either temporal phase error and wavefront errors for ultrafast pulses are demonstrated. These systems consists of a computer controlled micromachined membrane deformable mirror (MMDM) and a genetic learning algorithm (GA). Nonlinear excitation such as two-photon fluorescence or second harmonic generation are used as feedback to the GA to determine the appropriate correction to apply to the mirror. Two MMDMs are used, a 30 x 8 mm, 39 actuator linear MMDM for pulse-shaping applications and a 15 mm diameter, 37 actuator wavefront MMDM. Linear pre-compensation of self-phase modulation (SPM) was experimentally demonstrated utilizing the linear MMDM in a linear pulse-shaper for ultrafast pulses. The nonlinear nature of SPM makes arbitrary polynomial compensation necessary. Pre-compensation of SPM generated in an optical fiber by a 10 fs pulse reduced the pulse from 30fs to 20fs. We demonstrates adaptive correction with the wavefront MMDM by corrected for coma and astigmatism in a reflective multiphoton scanning microscope. An f1, parabola produces a very tight focus with no aberration when it is perfectly aligned. However, when beam scanning is used for two-dimensional imaging the image is severely aberrated. The MMDM and the GA are able to find the best possible wavefront for aberration correction for each scanning position. The horizontal scanning range was increased from 60 mum without the adaptive correction to 170 mum, ≈3 times the uncorrected scanning range, and the vertical scanning range was increased by a comparable amount. This resulted in an increase in scanning area of 9 times. The wavefront MMDM was also used for adaptive correction of spherical aberration from focusing from air, deep into a water-based sample. This depth-based aberration results from an index of refraction mismatch between the sample and the immersion medium of the objective and occurs regardless of beam scanning or sample scanning. By

  10. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses

    NASA Astrophysics Data System (ADS)

    Zhong, Xing; Zhang, Yuan; Jin, Guang

    2015-03-01

    The design of the high performance imaging spectrometer using low-cost plane grating is researched in this paper. In order to correct the aberrations well, under the guidance of the vector aberration theory, the modification of Czerny-Turner system with inserted tilt lenses is proposed. The novel design of a short-wave infrared imaging spectrometer working at between wavelengths of 1-2.5 μm is shown as an example, whose numerical aperture achieves 0.15 in image space. The aberrations are corrected well and the Modulation Transfer Function (MTF) performance is the same as the convex gratings systems. The smiles and keystones of the spectral image are acceptable. Advantages of the proposed design with a plane grating are obviously that the diffraction efficiency is high while the cost is very low.

  11. The correction of aberrations computed in the aperture plane of multifrequency microwave radiometer antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1984-01-01

    An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.

  12. A lateral chromatic aberration correction system for ultrahigh-definition color video camera

    NASA Astrophysics Data System (ADS)

    Yamashita, Takayuki; Shimamoto, Hiroshi; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed color camera for an 8k x 4k-pixel ultrahigh-definition video system, which is called Super Hi- Vision, with a 5x zoom lens and a signal-processing system incorporating a function for real-time lateral chromatic aberration correction. The chromatic aberration of the lens degrades color image resolution. So in order to develop a compact zoom lens consistent with ultrahigh-resolution characteristics, we incorporated a real-time correction function in the signal-processing system. The signal-processing system has eight memory tables to store the correction data at eight focal length points on the blue and red channels. When the focal length data is inputted from the lens control units, the relevant correction data are interpolated from two of eights correction data tables. This system performs geometrical conversion on both channels using this correction data. This paper describes that the correction function can successfully reduce the lateral chromatic aberration, to an amount small enough to ensure the desired image resolution was achieved over the entire range of the lens in real time.

  13. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Dubra, Alfredo

    2014-01-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth. PMID:25401020

  14. Aberration-Corrected Stem of Q-Rich Separates from the Saratov (L4) Meteorite

    NASA Astrophysics Data System (ADS)

    Stroud, R. M.; Chisholm, M. F.; Amari, A.; Matsuda, J.

    2012-09-01

    TEM and aberration-corrected STEM analysis of two nanodiamond- and SiC-free Saratov (L4) separates, AJ (most Q-rich) and AI (Q-rich), show that the carrier is porous carbon consisting of nanoscale graphene platelets.

  15. Correcting spherical aberrations in confocal light sheet microscopy: a theoretical study.

    PubMed

    Silvestri, L; Sacconi, L; Pavone, F S

    2014-07-01

    In the last years, fluorescence light sheet microscopy has attracted an increasing interest among the microscopy community. One of the most promising applications of this technique is the reconstruction of macroscopic biological specimens with microscopic resolution, without physical sectioning. To this aim, light sheet microscopy is combined with clearing protocols based on refractive index matching, which render the tissue transparent. However, these protocols lead to a huge drop in the fluorescence signal, limiting their practical applicability. The reduction of signal to background ratio is commonly ascribed to chemical degradation of the fluorophores by the organic solvents used for clearing. This view however completely neglects another important factor of contrast loss, i.e., optical aberrations. In fact, commercially available objectives suitable for light sheet microscopy are not designed for the refractive index of the clearing solutions, and this mismatch introduces severe spherical aberration. Here we simulated the aberrated point spread function (PSF) of a light sheet microscope with confocal slit detection. We investigated the variation of the PSF as a function of objective numerical aperture (NA) and of imaging depth inside the clearing solution. We also explored the possibility of correcting such spherical aberration by introducing extra optical devices in the detection path. By correcting up to the second order spherical aberration, a quasi-diffraction-limited regime can be recovered, and image quality is restored. PMID:24395714

  16. Comparison of spherical aberration and small pupil profiles in improving depth of focus for presbyopic corrections

    PubMed Central

    Hickenbotham, Adam; Tiruveedhula, Pavan; Roorda, Austin

    2012-01-01

    PURPOSE To compare the validity and effectiveness of 2 methods for expanding depth of focus to correct for presbyopia; that is, induction of spherical aberration and small pupil apertures. SETTING University of California, Berkeley, California, USA. DESIGN Comparative case series. METHODS A random 4-alternative forced-choice acuity task was performed. Visual performance and depth of focus was compared using adaptive optics–corrected distance visual acuity (CDVA) values and mean visual acuity over a 3.0 diopter (D) range of defocus using the following 3 adaptive optics–corrected profiles: 2.0 mm pupil, 5.0 mm pupil, and 5.0 mm pupil with −0.274 µm of spherical aberration. RESULTS The study enrolled 13 subjects. The 5.0 mm pupil profile had a CDVA of −0.218 logMAR and a mean visual acuity through focus of 0.156 logMAR. The 2.0 mm pupil profile had a worse CDVA (0.012 logMAR) but an improved mean visual acuity (0.061 logMAR). The 5.0 mm pupil profile with −0.274 µm of spherical aberration measured a CDVA of −0.082 logMAR and a mean visual acuity 0.103 logMAR. CONCLUSIONS The spherical aberration and small-pupil profiles improved the mean visual acuity across a 3.0 D range of defocus but resulted in decreased CDVA at the plane of best focus in comparison to an adaptive optics–corrected 5.0 mm pupil. Small-pupil profiles are a better choice than spherical aberration profiles for presbyopic corrections due to expected accuracy, predictability, and patient satisfaction. PMID:23031641

  17. Adaptive, spatially-varying aberration correction for real-time holographic projectors.

    PubMed

    Kaczorowski, Andrzej; Gordon, George S D; Wilkinson, Timothy D

    2016-07-11

    A method of generating an aberration- and distortion-free wide-angle holographically projected image in real time is presented. The target projector is first calibrated using an automated adaptive-optical mechanism. The calibration parameters are then fed into the hologram generation program, which applies a novel piece-wise aberration correction algorithm. The method is found to offer hologram generation times up to three orders of magnitude faster than the standard method. A projection of an aberration- and distortion-free image with a field of view of 90x45 degrees is demonstrated. The implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The presented methods are automated and can be performed on any holographic projector. PMID:27410846

  18. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light.

    PubMed

    Schwarz, Christina; Cánovas, Carmen; Manzanera, Silvestre; Weeber, Henk; Prieto, Pedro M; Piers, Patricia; Artal, Pablo

    2014-01-01

    Correction of spherical (SA) and longitudinal chromatic aberrations (LCA) significantly improves monocular visual acuity (VA). In this work, the visual effect of SA correction in polychromatic and monochromatic light on binocular visual performance is investigated. A liquid crystal based binocular adaptive optics visual analyzer capable of operating in polychromatic light is employed in this study. Binocular VA improves when SA is corrected and LCA effects are reduced separately and in combination, resulting in the highest value for SA correction in monochromatic light. However, the binocular summation ratio is highest for the baseline condition of uncorrected SA in polychromatic light. Although SA correction in monochromatic light has a greater impact monocularly than binocularly, bilateral correction of both SA and LCA may further improve binocular spatial visual acuity which may support the use of aspheric-achromatic ophthalmic devices, in particular, intraocular lenses (IOLs). PMID:24520150

  19. Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Boyes, E. D.; Gai, P. L.

    2014-06-01

    Environmental scanning transmission electron microscopy (ESTEM) with aberration correction (AC) has recently been added to the capabilities of the more established ETEM for analysis of heterogeneous nanoparticle based catalysts. It has helped to reveal the importance and potentially unique properties of individual atoms as active sites in their own right as well as pathways between established nanoparticles. A new capability is introduced for dynamic in-situ experiments under controlled conditions of specimen temperature and gas environment related to real world conditions pertinent to a range of industrial and societal priorities for new and improved chemical processes, materials, fuels, pharmaceutical products and processes, and in control or remediation of environmental emissions.

  20. Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics.

    PubMed

    Bauer, Aaron; Rolland, Jannick P

    2015-11-01

    The newly formulated theory of aberration fields of freeform surfaces describes the aberrations that freeform Zernike polynomial surfaces can correct within folded powered optical systems. This theory has guided the design of an OLED-based reflective freeform electronic viewfinder covering a 25° full field-of-view with a 12 mm eyebox, which is reported together with a detailed methodology that begins with developing an unobscured starting point and ends with an optimized freeform design, analyzed both in display and visual spaces. In addition, tolerancing of the system points to the potential low sensitivity of these systems to manufacturing tilt (10 arcmin), decenter and despace (100 µm), and figure errors (λ/2 @ 0.632 µm). PMID:26561085

  1. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, R.H.

    1996-09-17

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface. 8 figs.

  2. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, Richard H.

    1996-01-01

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface.

  3. Effects of higher-order aberration correction on stereopsis at different viewing durations

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Xiao, Fei; Zhao, Junlei; Zhao, Haoxin; Hu, Yiyun; Tang, Guomao; Dai, Yun; Zhang, Yudong

    2015-07-01

    To better understand how the eye's optics affects stereopsis, we measured stereoacuity before and after higher-order aberration (HOA) correction with a binocular adaptive optics visual simulator. The HOAs were corrected either binocularly or monocularly in the better eye (the eye with better contrast sensitivity). A two-line stereo pattern served as the visual stimulus. Stereo thresholds at different viewing durations were obtained with the psychophysical method of constant stimuli. Binocular HOA correction led to significant improvement in stereoacuity. However, better eye HOA correction could bring either a bad degradation or a slight improvement in stereoacuity. As viewing duration increased, the stereo benefit approached the level of 1.0 for both binocular and better eye correction, suggesting that long viewing durations might weaken the effects of the eye's optical quality on stereopsis.

  4. Effects of higher-order aberration correction on stereopsis at different viewing durations.

    PubMed

    Kang, Jian; Xiao, Fei; Zhao, Junlei; Zhao, Haoxin; Hu, Yiyun; Tang, Guomao; Dai, Yun; Zhang, Yudong

    2015-07-01

    To better understand how the eye's optics affects stereopsis, we measured stereoacuity before and after higher-order aberration (HOA) correction with a binocular adaptive optics visual simulator. The HOAs were corrected either binocularly or monocularly in the better eye (the eye with better contrast sensitivity). A two-line stereo pattern served as the visual stimulus. Stereo thresholds at different viewing durations were obtained with the psychophysical method of constant stimuli. Binocular HOA correction led to significant improvement in stereoacuity. However, better eye HOA correction could bring either a bad degradation or a slight improvement in stereoacuity. As viewing duration increased, the stereo benefit approached the level of 1.0 for both binocular and better eye correction, suggesting that long viewing durations might weaken the effects of the eye's optical quality on stereopsis. PMID:26172611

  5. Reply to L.M. Brown et al. "Brief history of the Cambridge STEM aberration correction project and its progeny" in Ultramicroscopy 157, 88 (2015).

    PubMed

    Urban, K W; Rose, H

    2016-02-01

    We comment on a Short Communication recently published in Ultramicroscopy in which Brown et al. criticize our description of the time sequence of events in the development of aberration correction systems in electron optics during the 1990s put forward in the introduction to the Ultramicroscopy April 2015 Special Issue. We present an analysis of the published literature furnishing evidence that our description is correct. PMID:26624509

  6. Optimizing wavefront-guided corrections for highly aberrated eyes in the presence of registration uncertainty

    PubMed Central

    Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.

    2013-01-01

    Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512

  7. In-situ aberration correction of Bessel beams using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Jákl, Petr; Arzola, Alejandro V.; Zemánek, Pavel

    2015-01-01

    A spatial light modulator (SLM) is a versatile device capable of real-time generation of diffractive phase gratings. Employing the SLM in an optical setup opens the possibility of dynamic modification of properties of the incident laser beam, such as its splitting into an arbitrary number of diffracted beams, changing its convergence or its modification into non-traditional laser beam profiles. Advanced feedback procedures enable resolving complex phase masks correcting aberrations inherent to the whole optical system, such as imprecisions of manufacturing process, inhomogeneity of refractive index of materials used or misalignment of optical elements. In this work, generation of Bessel beams (BB) using the SLM is presented. The BB quality is very sensitive to the optical aberrations of the system, especially when higher topological charge is applied to create so-called optical vortices. Therefore, the method compensating those aberrations is applied and the corrected beam is inspected by a CCD camera and optical micro-manipulations of micro-particles. Our experimental results demonstrate successful trapping, rotation and translation of micrometer-sized particles purely by optical forces.

  8. Correction of axial chromatic aberrations in confocal Raman microspectroscopic measurements of a single microbial spore.

    PubMed

    Lasch, Peter; Hermelink, Antje; Naumann, Dieter

    2009-06-01

    Herein we describe a strategy for correcting the longitudinal or axial component of chromatic aberration in confocal Raman microspectroscopy. The method is based on measuring a vertical series of confocal Raman sections of samples by a high numerical aperture Raman microscope. Using the known characteristics of the wavelength-dependent focal shift of the optical system, the Raman intensities can be corrected to allow the rearrangement of Raman data from different focal planes. In the present study the computational correction routine was applied to an experimental data set of 4-dimensional (xyz spatial and the spectral dimension) confocal Raman spectra collected from single spores of Bacillus cereus. After correcting the axial component of the chromatic aberration, univariate and multivariate spectral parameters were obtained and used in the following for 3D segmentation and volume rendering on the basis of the structural and compositional information contained in the Raman spectra of the spore. Using univariate Raman intensities from defined functional group frequencies or k-means cluster membership values as a multivariate parameter for volume rendering, we demonstrate a high degree of correlation between confocal Raman microspectroscopy and the spores' morphology. In this paper we will also present cluster mean spectra which will be discussed in light of the presence of proteins and Ca-DPA, a calcium chelate of dipicolinic acid in the spore. PMID:19475143

  9. Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons

    PubMed Central

    Azucena, Oscar; Crest, Justin; Cao, Jian; Sullivan, William; Kner, Peter; Gavel, Donald; Dillon, Daren; Olivier, Scot; Kubby, Joel

    2010-01-01

    We present a new method to directly measure and correct the aberrations introduced when imaging through thick biological tissue. A Shack-Hartmann wavefront sensor is used to directly measure the wavefront error induced by a Drosophila embryo. The wavefront measurements are taken by seeding the embryo with fluorescent microspheres used as “artificial guide-stars.” The wavefront error is corrected in ten millisecond steps by applying the inverse to the wavefront error on a micro-electro-mechanical deformable mirror in the image path of the microscope. The results show that this new approach is capable of improving the Strehl ratio by 2 times on average and as high as 10 times when imaging through 100 μm of tissue. The results also show that the isoplanatic half-width is approximately 19 μm resulting in a corrected field of view 38 μm in diameter around the guide-star. PMID:20721137

  10. A Hemispherical Sparse Phased Array Design For Low Frequency Transcranial Focused Ultrasound Applications Without Skull-Specific Phase Aberration Correction

    NASA Astrophysics Data System (ADS)

    Yin, Xiangtao; Hynynen, Kullervo

    2006-05-01

    A sparse large-element hemispherical phased array scheme was investigated for low frequency transcranial focused ultrasound applications without skull-specific phase aberration correction. The simulated transcranial focused beams in brain from the randomly distributed sparse array elements (0.25 MHz, 125 mm radius of curvature, 250 mm diameter, 50% sparsity of 953 square elements of 10 mm spacing) could be steered without skull specific aberration correction at 0.25 MHz. The 28 foci were on average 1.7±1.2 mm shifted from their intended locations. The average -3 dB beam width and length were 3.3±1.2 mm and 6.3±2.2 mm, respectively. The sidelobe levels ranged from 28% to 62% of the peak pressure values. The focal beam was steerable 35 mm laterally away from the transducer center axis and 30 mm axially in the transducer center axis when the sidelobe pressure values were 50% of or less than the peak pressure values. This allows the array to be mechanically aimed to one quarter of the brain and then electronically steered. The sparse array design offers a tradeoff between the best beam steering range and the manageable number of elements for a practical clinical system.

  11. Design and progress toward a multi-conjugate adaptive optics system for distributed aberration correction

    SciTech Connect

    Baker, K; Olivier, S; Tucker, J; Silva, D; Gavel, D; Lim, R; Gratrix, E

    2004-08-17

    This article investigates the use of a multi-conjugate adaptive optics system to improve the field-of-view for the system. The emphasis of this research is to develop techniques to improve the performance of optical systems with applications to horizontal imaging. The design and wave optics simulations of the proposed system are given. Preliminary results from the multi-conjugate adaptive optics system are also presented. The experimental system utilizes a liquid-crystal spatial light modulator and an interferometric wave-front sensor for correction and sensing of the phase aberrations, respectively.

  12. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Wei, Dan; Wei, Ling; He, Yi; Shi, Guohua; Wei, Xunbin; Zhang, Yudong

    2014-08-01

    We have demonstrated adaptive correction of specimen-induced aberration during in vivo imaging of mouse bone marrow vasculature with confocal fluorescence microscopy. Adaptive optics system was completed with wavefront sensorless correction scheme based on stochastic parallel gradient descent algorithm. Using image sharpness as the optimization metric, aberration correction was performed based upon Zernike polynomial modes. The experimental results revealed the improved signal and resolution leading to a substantially enhanced image contrast with aberration correction. The image quality of vessels at 38- and 75-μm depth increased three times and two times, respectively. The corrections allowed us to detect clearer bone marrow vasculature structures at greater contrast and improve the signal-to-noise ratio.

  13. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  14. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  15. Pitch–Catch Phase Aberration Correction of Multiple Isoplanatic Patches for 3-D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2013-01-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° × 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke. PMID:23475914

  16. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  17. Atomic-Scale Observation of Migration and Coalescence of Au Nanoclusters on YSZ Surface by Aberration-Corrected STEM

    PubMed Central

    Li, Junjie; Wang, Zhongchang; Chen, Chunlin; Huang, Sumei

    2014-01-01

    Unraveling structural dynamics of noble metal nanoclusters on oxide supports is critical to understanding reaction process and origin of catalytic activity in heterogeneous catalysts. Here, we show that aberration-corrected scanning transmission electron microscopy can provide direct atomic-resolution imaging of surface migration, coalescence, and atomic rearrangement of Au clusters on an Y:ZrO2 (YSZ) support. The high resolution enables us to reveal migration and coalescence process of Au clusters at the atomic scale, and to demonstrate that the coalesced clusters undergo a cooperative atomic rearrangement, which transforms the coherent into incoherent Au/YSZ interface. This approach can help to elucidate atomistic mechanism of catalytic activities and to develop novel catalysts with enhanced functionality. PMID:24980655

  18. Phase aberration correction by multi-stencils fast marching method using sound speed image in ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Imoto, Haruka; Tamano, Satoshi; Takagi, Shu; Umemura, Shin-Ichiro; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-04-01

    Reflection image from ultrasound computed tomography (USCT) system can be obtained by synthetic aperture technique, however its quality is decreased by phase aberration caused by inhomogeneous media. Therefore, phase aberration correction is important to improve image quality. In this study, multi-stencils fast marching method (MSFMM) is employed for phase correction. The MSFMM is an accurate and fast solution of Eikonal equation which considers the refraction. The proposed method includes two steps. First, the MSFMM is used to compute sound propagation time from each element to each image gird point using sound speed image of USCT. Second, synthetic aperture technique is employed to obtain reflection image using the computed propagation time. To evaluate the proposed method, both numerical simulation and phantom experiment were conducted. With regard to numerical simulation, both quantitative and qualitative comparisons between reflection images with and without phase aberration correction were given. In the quantitative comparison, the diameters of point spread function (PSF) in reflection images of a two layer structure were presented. In the qualitative comparison, reflection images of simple circle and complex breast modes with phase aberration correction show higher quality than that without the correction. In respect to phantom experiment, a piece of breast phantom with artificial glandular structure inside was scanned by a USCT prototype, and the artificial glandular structure is able to be visible more clearly in the reflection image with phase aberration correction than in that without the correction. In this study, a phase aberration correction method by the MSFMM are proposed for reflection image of the USCT.

  19. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction

    PubMed Central

    Zawadzki, Robert J.; Cense, Barry; Zhang, Yan; Choi, Stacey S.; Miller, Donald T.; Werner, John S.

    2008-01-01

    We have developed an improved adaptive optics - optical coherence tomography (AO-OCT) system and evaluated its performance for in vivo imaging of normal and pathologic retina. The instrument provides unprecedented image quality at the retina with isotropic 3D resolution of 3.5 × 3.5 × 3.5 μm3. Critical to the instrument's resolution is a customized achromatizing lens that corrects for the eye's longitudinal chromatic aberration and an ultra broadband light source (Δλ=112nm λ0=∼836 nm). The eye's transverse chromatic aberrations is modeled and predicted to be sufficiently small for the imaging conditions considered. The achromatizing lens was strategically placed at the light input of the AO-OCT sample arm. This location simplifies use of the achromatizing lens and allows straightforward implementation into existing OCT systems. Lateral resolution was achieved with an AO system that cascades two wavefront correctors, a large stroke bimorph deformable mirror (DM) and a micro-electromechanical system (MEMS) DM with a high number of actuators. This combination yielded diffraction-limited imaging in the eyes examined. An added benefit of the broadband light source is the reduction of speckle size in the axial dimension. Additionally, speckle contrast was reduced by averaging multiple B-scans of the same proximal patch of retina. The combination of improved micron-scale 3D resolution, and reduced speckle size and contrast were found to significantly improve visibility of microscopic structures in the retina. PMID:18545525

  20. Comparison of 3-D Multi-Lag Cross-Correlation and Speckle Brightness Aberration Correction Algorithms on Static and Moving Targets

    PubMed Central

    Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.

    2010-01-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503

  1. Multiwavelength phase unwrapping and aberration correction using depth filtered digital holography.

    PubMed

    Jaedicke, Volker; Goebel, Sebastian; Koukourakis, Nektarios; Gerhardt, Nils C; Welp, Hubert; Hofmann, Martin R

    2014-07-15

    In this Letter, we present a new approach to processing data from a standard spectral domain optical coherence tomography (OCT) system using depth filtered digital holography (DFDH). Intensity-based OCT processing has an axial resolution of the order of a few micrometers. When the phase information is used to obtain optical path length differences, subwavelength accuracy can be achieved, but this limits the resolvable step heights to half of the wavelength of the system. Thus there is a metrology gap between phase- and intensity-based methods. Our concept addresses this metrology gap by combining DFHD with multiwavelength phase unwrapping. Additionally, the measurements are corrected for aberrations. Here, we present proof of concept measurements of a structured semiconductor sample. PMID:25121676

  2. In-flight aberrations corrections for large space telescopes using active optics

    NASA Astrophysics Data System (ADS)

    Laslandes, M.; Ferrari, M.; Hugot, E.; Lemaitre, G.

    2010-07-01

    The need for both high quality images and light structures is a constant concern in the conception of space telescopes. The goal here is to determine how an active optics system could be embarked on a satellite in order to correct the wave front deformations of the optical train. The optical aberrations appearing in a space environment are due to mirrors' deformations, with three main origins: the thermal variations, the weightlessness in space with respect to the Assemblage, Integration and Testing (AIT) conditions on ground and the use of large weightlighted primary mirrors. We are developing a model of deformable mirror as minimalist as possible, especially in term of number of actuators, which is able to correct the first Zernike polynomials in the specified range of amplitude and precision. Flight constraints as weight, volume and power consumption have to be considered. Firstly, such a system is designed according to the equations from the elasticity theory: we determine the geometrical and mechanical characteristics of the mirror, the location of the forces to be applied and the way to apply them. The concept is validated with a Finite Element Analysis (FEA), allowing optimizing the system by taking into account parameters absent from the theory. At the end of the program the mirror will be realized and characterized in a representative optical configuration.

  3. Application of polymer graded-index materials for aberration correction of progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Shitanoki, Yuki; Tagaya, Akihiro; Koike, Yasuhiro

    2009-02-01

    Graded-index (GRIN) progressive addition lens (PAL) was successfully fabricated, and GRIN's potential for aberration correction of PAL was confirmed. GRIN material was prepared by partial diffusion of methyl methacrylate (MMA (nd at polymer = 1.492)) monomer into cross-linked benzyl methacrylate (BzMA (nd at polymer=1.568)) flat gel, and GRINPAL was prepared by polymerization of the GRIN material attached to a mold of commercially available PAL. GRIN polymer materials have been used for various applications such as rod lenses and optical fibers. GRIN represents gradual change of refractive index in a material, which adds or reduces light focusing power of the material. PAL is a multifocal spectacle lens for presbyopia. However, some localized aberrations (especially astigmatism) in PAL have not yet been reduced satisfactorily for decades by optimizing surface geometry of a lens. In this research, we propose to employ GRIN materials for astigmatism reduction of PALs. BzMA flat gel was prepared by UV polymerization of BzMA, crosslinking agent ethylene glycol dimethacrylate (EDMA) and photopolymerization initiator DAROCURE 1173. MMA monomer was diffused into BzMA flat gel from a portion of periphery for several hours. The obtained GRIN material was attached to a mold of commercially available PAL and polymerized by UV. As a result, reduction of astigmatism was confirmed locally in the fabricated PAL and GRIN-PAL using lens meter. In conclusion, GRIN-PAL was successfully fabricated. The validity of GRIN employment for the astigmatism reduction in PAL was demonstrated experimentally.

  4. Prospects of atomic resolution imaging with an aberration-corrected STEM.

    PubMed

    Ishizuka, K

    2001-01-01

    We investigated high-resolution scanning transmission electron microscope (STEM) images obtained from a microscope equipped with a spherical aberration corrector. The probe size (full-width at half-maximum) is reduced to 0.76 A at 200 kV by assuming the fifth-order spherical aberration coefficient C5 = 100 mm. For the simulation we have used the recently developed scheme for a STEM image simulation based on the Fast Fourier Transform (FFT) multislice algorithm. The peak-to-background (P/B) ratio of the high-angle annular dark-field (HAADF) image is significantly improved at a thin specimen region. Although the P/B ratio becomes worse at a thicker region, the resolution is kept high even at such a region. An almost true HAADF signal will be obtained even from a weak-scattering phosphorous column in InP [001] when the background is subtracted. In the bright-field image the coherent character of elastic scattering is suppressed by averaging over a large convergence angle, making the specimen effectively self-luminous. The claim that HAADF imaging is relatively insensitive to a defocus as well as a specimen thickness is valid only qualitatively, and a detailed image simulation will be required for a quantitative analysis as in the case of the conventional transmission electron microscope. It was noted that the delta function approximation for the object function may not be applicable for a very fine probe, and that the achievable resolution of the HAADF imaging will be limited by the widths of the high-angle thermal diffuse scattering potential. PMID:11592674

  5. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  6. Dispersion corrections to parity violating electron scattering

    SciTech Connect

    Gorchtein, M.; Horowitz, C. J.; Ramsey-Musolf, M. J.

    2010-08-04

    We consider the dispersion correction to elastic parity violating electron-proton scattering due to {gamma}Z exchange. In a recent publication, this correction was reported to be substantially larger than the previous estimates. In this paper, we study the dispersion correction in greater detail. We confirm the size of the disperion correction to be {approx}6% for the QWEAK experiment designed to measure the proton weak charge. We enumerate parameters that have to be constrained to better than relative 30% in order to keep the theoretical uncertainty for QWEAK under control.

  7. A two-stage method to correct aberrations induced by slide slant in bright-field microscopy.

    PubMed

    Fan, Yilun; Bradley, Andrew P

    2016-08-01

    To achieve optimal image quality in bright field microscopy, the slide surface should be perpendicular to the optical axis of the microscope. However, in the recently proposed "slanted scan" slide acquisition technique, scan speed is increased by purposely slanting the slide by a small angle (of 3-5°) so that multiple focal depths can be imaged simultaneously. In this case, the slanted slide introduces a bend in the point spread function (PSF), resulting in a coma and other aberrations that degrade image quality. In this paper, we propose a two-stage deconvolution method specifically designed to correct the aberrations induced by a slanted scan, but with general applicability to high-resolution bright-field microscopy. Specifically, we initially apply phase deconvolution to correct the dominating coma aberration, before applying a conventional semi-blind deconvolution method to further improve image resolution and contrast. We also propose a novel method to estimate the degree of coma aberration and the PSF of the optics utilising actual cytology specimens. The efficacy of the proposed algorithm is demonstrated quantitatively on simulated data, against a ground-truth (object) image, and qualitatively on cervical cytology specimens. Results demonstrate both improved convergence speed of the two-stage approach, especially when correcting the bend in the PSF, and a resultant image quality that is comparable to a conventionally (flat) scanned specimen. PMID:27182660

  8. Aberration correction for direct laser written waveguides in a transverse geometry.

    PubMed

    Huang, L; Salter, P S; Payne, F; Booth, M J

    2016-05-16

    The depth dependent spherical aberration is investigated for ultrafast laser written waveguides fabricated in a transverse writing geometry using the slit beam shaping technique in the low pulse repetition rate regime. The axial elongation of the focus caused by the aberration leads to a distortion of the refractive index change, and waveguides designed as single mode become multimode. We theoretically estimate a depth range over which the aberration effects can be compensated simply by adjusting the incident laser power. If deeper fabrication is required, it is demonstrated experimentally that the aberration can be successfully removed using adaptive optics to fabricate single mode optical waveguides over a depth range > 1 mm. PMID:27409879

  9. Simple system of aberration correction for very large spherical primary mirrors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2000-10-01

    Several large telescopes are now being proposed that would benefit from the cost reduction due to the use of spherical primary mirror. However, structural cost constraints require compact formats that tend to impose very high speeds, e.g. f/1.5, which renders difficult the correction of the resulting very large spherical aberration. A technique is described here in which a spherical concentric Cassegrain-like primary-secondary combination is followed by a simple catadioptric focal modifier. The spherical primary is 9m diameter, f/1.5, and the final focus is f/5 with a sub-arcsecond resolution over a 5 arcminute angular field for a passband of 480-850nm. Primary- secondary separation is only 11m and central obscuration is only 11% of pupil area. The two relatively small corrector components provide the functions of concentric meniscus and zonal corrector plate and are made from the same single glass- BK7 is the example given, but silica or any other preferred glass is possible. The relatively small zonal corrector is the only aspheric surface in the entire system. A related system is described elsewhere in which a 30 arcminute angular field can be achieved with a similar resolution, but with more complex glass requirements. However, supply of such exotic glasses may be difficult in large diameters, and the system presented here may find a place in some specialized applications.

  10. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    DOE PAGESBeta

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less

  11. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    PubMed Central

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-01-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D. PMID:26868264

  12. Multi-focus microscopy for aberration-corrected multi-color three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Sara

    Due to the classical conflict between spatial and temporal resolution, microscopy studies of fast events in living samples are often performed in 2D even when 3D imaging would be desirable and could provide new insights to biological function. This dissertation describes an instant 3D imaging system - a multi-focus microscope (MFM) - which provides high- resolution, aberration-corrected, multi-color fluorescence images of multiple focal planes simultaneously. Forming an instant focal series eliminates the need for multiple camera exposures and mechanical refocusing, allowing 3D imaging limited only by sample signal strength and the camera read-out rate for a single frame. A module containing the MFM optical components can easily be appended to the camera port of a commercial wide-field microscope. The excellent resolution and sensitivity of MFM is demonstrated on two different 3D biological imaging problems; neuronal imaging in the entire C.elegans embryo and mRNA imaging in cultured mammalian cells.

  13. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.

    PubMed

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-01-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D. PMID:26868264

  14. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  15. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations. PMID:25482192

  16. A method for evaluating aberration in the crossover image in mask irradiation optics of electron beam

    NASA Astrophysics Data System (ADS)

    Sohda, Yasunari; Ohta, Hiroya; Saitou, Norio

    2002-02-01

    A method for evaluating aberration in the crossover image in a cell projection lithography system has been developed. In an electron-beam lithography system of projection-type such as a cell projection lithography system, the aberration in the crossover image causes the electron beam to pass off-axis in the electron optics. Optical simulation has quantitatively shown that the aberration in the crossover image causes an electron-beam blur and a positioning error on a writing sample. The evaluating method consists of four square apertures and a mark-detection function in a cell projection system. By measuring each position of the images of the four square apertures on the writing sample at difference focuses, the aberration can be calculated. The field curvature and the astigmatism in a cell projection system were evaluated by using this method. The field curvature agrees with the simulation. In addition, the measurement of the effect of beam alignment is also demonstrated. It is thus concluded that the method can effectively evaluate the aberration in the crossover image. This method is also useful for other projection-type lithographies of charged particles—like ion and electron beams.

  17. Structural investigation of precipitates with Cu and Zn atomic columns in Al-Mg-Si alloys by aberration-corrected HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Marioara, Calin D.; Andersen, Sigmund J.; Lefebvre, Williams; Holmestad, Randi

    2014-06-01

    Precipitates in Al-Mg-Si alloys with Cu addition (~0.1 wt%) and Zn addition (~1 wt%) were investigated by aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Most precipitates had no overall unit cell but contained ordered network of Si atomic columns for both the Cu and the Zn containing precipitates. It was found that both Cu and Zn atomic columns are located at specific sites and producing characteristic local configurations on the Si atomic columns.

  18. Sub-micron spatial resolution of a micro-XAFS electrostatic microscope with bending magnet radiation: Performance assessments and prospects for aberration correction

    NASA Astrophysics Data System (ADS)

    Tonner, B. P.; Dunham, D.

    1994-08-01

    The X-ray photoemission electron microscope (XPEEM) has been shown to be a valuable tool for small-area X-ray absorption fine-structure (XAFS) spectroscopy, and for state-selected imaging. The instrument currently in regular operation on bending-magnet monochromators uses electrostatic optics to create an image of a sample surface in vacuum. The instrument can be operated on a wide variety of X-ray and VUV beamlines, and the spectral resolution is determined by the beamline monochromator. The spatial resolution is determined primarily by the aberrations of the immersion lens accelerating field and the objective lens, although other factors such as surface roughness play an important, though less fundamental role. We have tested the spatial resolution of micro-XAFS with a high quality test object, consisting of a free-standing circular zone plate made of gold. These tests confirm the assessment that chromatic aberration limits the performance of the optics, because of the wide range of kinetic energies of secondary electrons produced in XAFS spectroscopy, and the highly asymmetric intensity distribution of these secondaries. One attempt at solving the chromatic aberration problem is the use of an energy filter, which solves the problem by allowing only a narrow band of electrons to produce an image. We describe an alternative approach, based on chromatic aberration correction, which has great potential for an XPEEM instrument with extremely high transmission, and spatial resolution below 10 nm. We also point out the performance improvements to be expected when XPEEM is adapted to high-throughput undulator beamlines.

  19. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept

  20. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    PubMed Central

    Huang, Chao; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-01-01

    Abstract. A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT. PMID:22734772

  1. AO-OCT for in vivo mouse retinal imaging: Application of adaptive lens in wavefornt sensorless aberration correction

    NASA Astrophysics Data System (ADS)

    Bonora, Stefano; Jian, Yifan; Pugh, Edward N.; Sarunic, Marinko V.; Zawadzki, Robert J.

    2014-03-01

    We demonstrate Adaptive optics - Optical Coherence Tomography (OCT) with modal sensorless Adaptive Optics correction with the use of novel Adaptive Lens (AL) applied for in-vivo imaging of mouse retinas. The AL can generate low order aberrations: defocus, astigmatism, coma and spherical aberration that were used in an adaptive search algorithm. Accelerated processing of the OCT data with a Graphic Processing Unit (GPU) permitted real time extraction of image projection total intensity for arbitrarily selected retinal depth plane to be optimized. Wavefront sensorless control is a viable option for imaging biological structures for which AOOCT cannot establish a reliable wavefront that could be corrected by wavefront corrector. Image quality improvements offered by adaptive lens with sensorless AO-OCT was evaluated on in vitro samples followed by mouse retina data acquired in vivo.

  2. Multiple sextupole system for the correction of third and higher order aberration

    DOEpatents

    Crewe, Albert V.

    1983-01-01

    A means is provided for compensating for third and higher order aberration in charged particle beam devices. The means includes two sextupoles with an intermediate focusing lens, all positioned between two focusing lenses.

  3. Direct observation of atomic columns in a Bi-2223 polycrystal by aberration-corrected STEM using a low accelerating voltage

    NASA Astrophysics Data System (ADS)

    Nagai, Takuro; Haruta, Mitsutaka; Kikuchi, Masashi; Zhang, Weizhu; Takeguchi, Masaki; Kimoto, Koji

    2014-05-01

    Aberration correction in scanning transmission electron microscopy (STEM) enables an atomic-scale probe size of ˜0.1 nm at a low accelerating voltage of 80 kV that avoids knock-on damage in materials including light elements such as oxygen. We used this advanced method of microscopy to directly observe atomic columns in a (Bi,Pb)2Sr2Ca2Cu3O10+δ (Bi-2223) superconducting wire produced by a powder-in-tube method. Using the atomic-number (Z) contrast mechanism, incoherent high-angle annular dark-field (HAADF) imaging clearly showed the atomic columns. Atomic displacements toward the boundary with a maximum magnitude of ˜0.26 nm enable each atomic layer to be continuous at edge grain boundaries (EGBs). The grains tend to be terminated with deficient (Bi,Pb)-O single layers at c-axis twist boundaries (TWBs) and small-angle asymmetrical tilt boundaries (ATBs); a quantitative HAADF analysis showed that the occupancies of the (Bi,Pb) sites around these boundaries are ˜0.66 and ˜0.72, respectively. Electron energy-loss spectroscopy (EELS) mapping successfully visualized atomic columns in the half-unit cell intergrowth of (Bi,Pb)2Sr2CaCu2O8+δ (Bi-2212) and (Bi,Pb)2Sr2Ca3Cu4O12+δ (Bi-2234) phases. Furthermore, the HAADF analysis indicated that the occupancy of the (Bi,Pb) sites is modulated between ˜0.88 and 1.0 along the diagonal direction of the primitive perovskite cell with the same period as the structural modulation.

  4. Higher-order aberrations and best-corrected visual acuity in Native American children with a high prevalence of astigmatism

    PubMed Central

    Miller, Joseph M.; Harvey, Erin M.; Schwiegerling, Jim

    2016-01-01

    Purpose To determine whether higher-order aberrations (HOAs) in children from a highly astigmatic population differ from population norms and whether HOAs are associated with astigmatism and reduced best-corrected visual acuity. Methods Subjects were 218 Tohono O’odham Native American children 5–9 years of age. Noncycloplegic HOA measurements were obtained with a handheld Shack-Hartmann sensor (SHS). Signed (z06s to z14s) and unsigned (z06u to z14u) wavefront aberration Zernike coefficients Z(3,−3) to Z(4,4) were rescaled for a 4 mm diameter pupil and compared to adult population norms. Cycloplegic refraction and best-corrected logMAR letter visual acuity (BCVA) were also measured. Regression analyses assessed the contribution of astigmatism (J0) and HOAs to BCVA. Results The mean root-mean-square (RMS) HOA of 0.191 ± 0.072 μm was significantly greater than population norms (0.100 ± 0.044 μm. All unsigned HOA coefficients (z06u to z14u) and all signed coefficients except z09s, z10s, and z11s were significantly larger than population norms. Decreased BCVA was associated with astigmatism (J0) and spherical aberration (z12u) but not RMS coma, with the effect of J0 about 4 times as great as z12u. Conclusions Tohono O’odham children show elevated HOAs compared to population norms. Astigmatism and unsigned spherical aberration are associated with decreased acuity, but the effects of spherical aberration are minimal and not clinically significant. PMID:26239206

  5. Discrete Chromatic Aberrations Arising from Photoinduced Electron-Photon Interactions in Ultrafast Electron Microscopy.

    PubMed

    Plemmons, Dayne A; Flannigan, David J

    2016-05-26

    In femtosecond ultrafast electron microscopy (UEM) experiments, the initial excitation period is composed of spatiotemporal overlap of the temporally commensurate pump photon pulse and probe photoelectron packet. Generation of evanescent near-fields at the nanostructure specimens produces a dispersion relation that enables coupling of the photons (ℏω = 2.4 eV, for example) and freely propagating electrons (200 keV, for example) in the near-field. Typically, this manifests as discrete peaks occurring at integer multiples (n) of the photon energy in the low-loss/gain region of electron-energy spectra (i.e., at 200 keV ± nℏω eV). Here, we examine the UEM imaging resolution implications of the strong inelastic near-field interactions between the photons employed in optical excitation and the probe photoelectrons. We find that the additional photoinduced energy dispersion occurring when swift electrons pass through intense evanescent near-fields results in a discrete chromatic aberration that limits the spatial resolving power to several angstroms during the excitation period. PMID:27111530

  6. Effect of Higher-Order Spherical Aberration Term on Transfer Function in Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Uchida, Yuji; Fujimoto, Fuminori

    1986-04-01

    The effect of the higher-order spherical aberration coefficient on the transfer function in transmission electron microscopy was calculated. In order to simplify the system, the optical illumination system was assumed to be perfectly coherent and axially symmetric. The result shows that the effect of the fifth-order spherical aberration coefficient, C5, on the usual transfer function with the third-order spherical aberration coefficient Cs\\equivC3{=}0.5 mm for 100 keV electrons cannot be neglected, if high-order Bragg reflections from net planes with smaller lattice spacings than 0.1 nm are utilized for lattice imaging. The effect of the higher-order term due to the defocussing on the transfer function is also discussed.

  7. Open-loop wavefront sensing scheme for specimen aberrations correction in two-photon excited fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Andilla, Jordi; Porcar-Guezenec, Rafael; Levecq, Xavier; Artigas, David; Loza-Alvarez, Pablo

    2011-07-01

    The recent linkage between adaptive optics, a technique borrowed from astronomy and various imaging devices, has enabled to push forward their imaging capabilities by improving its contrast and resolution. A specific case is nonlinear microscopy (NLM) that, although it brings several inherent advantages (compared to linear fluorescence techniques) due to its nonlinear dependence on the excitation beam, its enhanced capabilities can be limited by the sample inhomogeneous structure. In this work, we demonstrate how these imaging capabilities can be enhanced by, employing adaptive optics in a two step correction process. Firstly, a closed-loop methodology aided by Shack-Hartman Wavefront sensing scheme is implemented for compensating the aberrations produced by the laser and the optical elements before the high numerical aperture microscope objective, resulting in a one-time calibration process. Then the residual aberrations are produced by the microscope objective and the sample. These are measured in a similar way as it is done in astronomy (employing a laser guide-star), using the two-photon excited fluorescence. The properties of this incoherent emission produced inside a test sample are compared to a genetically modified Caenorhabditis. elegans nematode expressing GFP showing that the emission of this protein (at 810nm) can be sensed efficiently with our WFS by modifying the exposure time. Therefore the recorded wavefront will capture the sample aberrations which are used to shape a deformable mirror in an open-loop configuration. This correction principle is demonstrated in a test sample by correcting aberrations in a "single-shot" resulting in a reduced sample exposure.

  8. Optical alignment influenced aberrations in laser beam delivery systems and their correction

    NASA Astrophysics Data System (ADS)

    Scaggs, Michael; Haas, Gil

    2015-03-01

    Industrial high power laser systems are often evaluated based upon spatial profile of the beam before they are brought to focus for processing materials. It is therefore often assumed that if the raw beam profile is good that the focus is equally as good. The possibility of having good optics and poor alignment or bad optics and good alignment and therefore not achieve a good focal spot is quite high due to the fact that a raw beam spatial profile does not manifest third order aberrations. In such instances the focal spot will contain aberrations when there are slightly misaligned, poor quality, high power optics in the system such as a beam expander or eye piece and objective of a 3-axis galvo. Likewise, if the beam itself is not on axis, the third order aberrations of astigmatism and coma are likely to appear but again not be seen in the unfocused beams spatial profile. The third order aberrations of astigmatism, coma and spherical aberration can significantly alter both the size and spatial profile at the focus resulting in out of spec performance. The impact of beam and zoom expanders and their alignment in beam delivery systems is investigated by measuring both the far field unfocused and the far field focus beams using an all passive beam waist analyzer system.

  9. Aberration-corrected concave grating for the mid-infrared spectrometer aboard the Infrared Telescope in Space.

    PubMed

    Onaka, T

    1995-02-01

    A mechanically ruled aberration-corrected concave grating was developed for use in the low-resolution mid-infrared spectrometer aboard the cryogenically cooled Infrared Telescope in Space. The design and the performance testing of the grating are reported. The spectrometer requires a wide spectral range (4.5-11.7 µm) and a wide field of view (8 × 8 arcmin) with a low wavelength resolution (Δλ ≤ 0.3 µm). The aberration-corrected concave grating provides a flat focal plane with a small aberration in the spatial direction compared with those caused by the finite size of the entrance slit. It also permits a simple design for the spectrometer, which is advantageous for applications in space cryogenic instruments. The measurements of the wavelength resolution and the spatial resolution are shown to be in good agreement with the predicted performance. The diffraction efficiency of the grating is more than 80% at the blaze wavelength (6 µm) and fairly high (>30%) over the entire wavelength range in question. The grating produces polarization of less than 10% for λ < 6.4 µm and of 10-20% for 6.7 µm <λ 9.7 µm. These results indicate the potential applicability of this type of grating to the wide-field IR spectroscopic observations. PMID:20963166

  10. Correlation-based aberration correction in the presence of inoperable elements.

    PubMed

    O'Donnell, M; Engeler, W E

    1992-01-01

    Estimation of phase aberrations using correlation processing between neighboring elements in a phased array is explored in the presence of inoperable elements. Using a CORDIC-based implementation of a complex baseband correlator, inactive elements can be identified simultaneous with correlation processing. Following detection of inoperable elements, a simple rerouting of the adaptive beam former is used to eliminate these elements from correlation analysis. Experimental results on a 3.33-MHz, 64-element array system with four contiguous, inactive elements demonstrate the robustness of the simple rerouting method for accurate phase aberration estimation. PMID:18267685

  11. Increase of penetration depth in real-time clinical epi-optoacoustic imaging: clutter reduction and aberration correction

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Gashi, Kujtim; Peeters, Sara; Held, Gerrit; Preisser, Stefan; Gruenig, Michael; Frenz, Martin

    2014-03-01

    Optoacoustic (OA) imaging will experience broadest clinical application if implemented in epi-style with the irradiation optics and the acoustic probe integrated in a single probe. This will allow most flexible imaging of the human body in a combined system together with echo ultrasound (US). In such a multimodal combination, the OA signal could provide functional information within the anatomical context shown in the US image, similar to what is already done with colour flow imaging. Up to date, successful deep epi-OA imaging was difficult to achieve, owing to clutter and acoustic aberrations. Clutter signals arise from strong optical absorption in the region of tissue irradiation and strongly reduce contrast and imaging depth. Acoustic aberrations are caused by the inhomogeneous speed of sound and degrade the spatial resolution of deep tissue structures, further reducing contrast and thus imaging depth. In past years we have developed displacement-compensated averaging (DCA) for clutter reduction based on the clutter decorrelation that occurs when palpating the tissue using the ultrasound probe. We have now implemented real-time DCA on a research ultrasound system to evaluate its clutter reduction performance in freehand scanning of human volunteers. Our results confirm that DCA significantly improves image contrast and imaging depth, making clutter reduction a basic requirement for a clinically successful combination of epi-OA and US imaging. In addition we propose a novel technique which allows automatic full aberration correction of OA images, based on measuring the effect of aberration spatially resolved using echo US. Phantom results demonstrate that this technique allows spatially invariant diffraction-limited resolution in presence of a strong aberrator.

  12. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  13. A computational investigation of the impact of aberrated Gaussian laser pulses on electron beam properties in laser-wakefield acceleration experiments

    SciTech Connect

    Cummings, P.; Thomas, A. G. R.

    2011-05-15

    Critical to the performance of any future accelerator based on the laser wakefield accelerator is the response of the system to perturbations from ideal. In this paper, we use particle-in-cell simulation using a modified version of the OSIRIS 2.0 framework to demonstrate that comatic optical aberrations in a nominally Gaussian laser pulse are self-corrected by the plasma response, leading to stable propagation and therefore little variation in peak energy, energy spread, or peak current of the accelerated bunch, even for serious aberrations. However, the comatic aberration does lead to enhanced transverse beam emittance in the direction of the coma. Although this may be deleterious to the performance of an accelerator, one useful outcome is that the increased oscillation amplitude of electrons in the wake structure may lead to increased synchrotron radiation emission, which would be partially polarized in the direction of coma.

  14. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  15. Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites

    SciTech Connect

    Fontanarosa, Davide; Meer, Skadi van der; Bloemen-van Gurp, Esther; Stroian, Gabriela; Verhaegen, Frank

    2012-08-15

    Purpose: The purpose of this work is to assess the magnitude of speed of sound (SOS) aberrations in three-dimensional ultrasound (US) imaging systems in image guided radiotherapy. The discrepancy between the fixed SOS value of 1540 m/s assumed by US systems in human soft tissues and its actual nonhomogeneous distribution in patients produces small but systematic errors of up to a few millimeters in the positions of scanned structures. Methods: A correction, provided by a previously published density-based algorithm, was applied to a set of five prostate, five liver, and five breast cancer patients. The shifts of the centroids of target structures and the change in shape were evaluated. Results: After the correction the prostate cases showed shifts up to 3.6 mm toward the US probe, which may explain largely the reported positioning discrepancies in the literature on US systems versus other imaging modalities. Liver cases showed the largest changes in volume of the organ, up to almost 9%, and shifts of the centroids up to more than 6 mm either away or toward the US probe. Breast images showed systematic small shifts of the centroids toward the US probe with a maximum magnitude of 1.3 mm. Conclusions: The applied correction in prostate and liver cancer patients shows positioning errors of several mm due to SOS aberration; the errors are smaller in breast cancer cases, but possibly becoming more important when breast tissue thickness increases.

  16. [Aberration corrected intraocular lens for microincision cataract surgery (MICS). Intraindividual comparison with a conventional lens - 1-year follow-up].

    PubMed

    Möglich, M; Häberle, H; Pham, D T; Wirbelauer, C

    2009-10-01

    Microincision cataract surgery (MICS) is an important advancement in the field of cataract surgery. This article compares an aberration corrected hydrophilic acrylic intraocular lens (IOL) having a hydrophobic surface for MICS with a one-piece hydrophobic acrylic IOL with respect to capsule sac stability, image quality, and after-cataract formation over the course of 1 year. The operations were performed as bimanual MICS or coaxial phacoemulsification. Overall the results after implantation of the IOL by MICS can be regarded as positive in comparison to the standard operation. PMID:18836727

  17. The use of symmetry to correct Larmor phase aberrations in spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Pynn, Roger; Lee, W. T.; Stonaha, P.; Shah, V. R.; Washington, A. L.; Kirby, B. J.; Majkrzak, C. F.; Maranville, B. B.

    2008-06-01

    Spin echo scattering angle measurement (SESAME) is a sensitive interference technique for measuring neutron diffraction. The method uses waveplates or birefringent prisms to produce a phase separation (the Larmor phase) between the "up" and "down" spin components of a neutron wavefunction that is initially prepared in a state that is a linear combination of in-phase up and down components. For neutrons, uniformly birefringent optical elements can be constructed from closed solenoids with appropriately shaped cross sections. Such elements are inconvenient in practice, however, both because of the precision they demand in the control of magnetic fields outside the elements and because of the amount of material required in the neutron beam. In this paper, we explore a different option in which triangular-cross-section solenoids used to create magnetic fields for SESAME have gaps in one face, allowing the lines of magnetic flux to "leak out" of the solenoid. Although the resulting field inhomogeneity produces aberrations in the Larmor phase, the symmetry of the solenoid gaps causes the aberrations produced by neighboring pairs of triangular solenoids to cancel to a significant extent. The overall symmetry of the SESAME apparatus leads to further cancellations of aberrations, providing an architecture that is easy to construct and robust in performance.

  18. Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Robinson, Elise; Günhan Akarçay, H.; Frenz, Martin

    2015-06-01

    Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.

  19. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-07-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  20. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  1. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  2. Tuning fifth-order aberrations in a Quadrupole-Octupole Corrector

    SciTech Connect

    Lupini, Andrew R; Pennycook, Stephen J

    2012-01-01

    The resolution of conventional electron microscopes is usually limited by spherical aberration. Microscopes equipped with aberration-correctors are then primarily limited by higher-order, chromatic, and misalignment aberrations. In particular the Nion third-order aberration correctors installed on machines with a low energy spread and possessing sophisticated alignment software were limited by the uncorrected fifth-order aberrations. Here we show how the Nion fifth-order aberration corrector can be used to adjust and reduce some of the fourth and fifth-order aberrations in a probe-corrected scanning transmission electron microscope.

  3. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy.

    PubMed

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2015-10-01

    Two-photon excitation laser scanning microscopy has enabled the visualization of deep regions in a biospecimen. However, refractive-index mismatches in the optical path cause spherical aberrations that degrade spatial resolution and the fluorescence signal, especially during observation at deeper regions. Recently, we developed transmissive liquid-crystal devices for correcting spherical aberration without changing the basic design of the optical path in a conventional laser scanning microscope. In this study, the device was inserted in front of the objective lens and supplied with the appropriate voltage according to the observation depth. First, we evaluated the device by observing fluorescent beads in single- and two-photon excitation laser scanning microscopes. Using a 25× water-immersion objective lens with a numerical aperture of 1.1 and a sample with a refractive index of 1.38, the device recovered the spatial resolution and the fluorescence signal degraded within a depth of 0.6 mm. Finally, we implemented the device for observation of a mouse brain slice in a two-photon excitation laser scanning microscope. An optical clearing reagent with a refractive index of 1.42 rendered the fixed mouse brain transparent. The device improved the spatial resolution and the yellow fluorescent protein signal within a depth of 0-0.54 mm. PMID:26244766

  4. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2015-10-01

    Two-photon excitation laser scanning microscopy has enabled the visualization of deep regions in a biospecimen. However, refractive-index mismatches in the optical path cause spherical aberrations that degrade spatial resolution and the fluorescence signal, especially during observation at deeper regions. Recently, we developed transmissive liquid-crystal devices for correcting spherical aberration without changing the basic design of the optical path in a conventional laser scanning microscope. In this study, the device was inserted in front of the objective lens and supplied with the appropriate voltage according to the observation depth. First, we evaluated the device by observing fluorescent beads in single- and two-photon excitation laser scanning microscopes. Using a 25× water-immersion objective lens with a numerical aperture of 1.1 and a sample with a refractive index of 1.38, the device recovered the spatial resolution and the fluorescence signal degraded within a depth of ±0.6 mm. Finally, we implemented the device for observation of a mouse brain slice in a two-photon excitation laser scanning microscope. An optical clearing reagent with a refractive index of 1.42 rendered the fixed mouse brain transparent. The device improved the spatial resolution and the yellow fluorescent protein signal within a depth of 0-0.54 mm.

  5. Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens.

    PubMed

    Wong, Alexander; Kazemzadeh, Farnoud; Jin, Chao; Wang, Xiao Yu

    2015-05-15

    Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ∼25% over the standard method, and improvements in SNR of 2.8 and 8.2 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively. PMID:26393707

  6. Observation of Cu nanometre scale clusters formed in Fe85Si2B8P4Cu1 nanocrystalline soft magnetic alloy by a spherical aberration-corrected TEM/STEM

    NASA Astrophysics Data System (ADS)

    Nishijima, Masahiko; Matsuura, Makoto; Zhang, Yan; Makino, Akihiro

    2015-05-01

    Microstructure of a nanocrystalline soft magnetic Fe85Si2B8P4Cu1 alloy (NANOMET®) was investigated by the state of the art spherical aberration-corrected TEM/STEM. Observation by TEM shows that the microstructure of NANOMET® heat treated at 738 K for 600 s which exhibits the optimum soft magnetic properties has homogeneously distributed bcc-Fe nanocrystallites with the average grain size of 30 nm embedded in an amorphous matrix. Elemental mappings indicate that P is excluded from bcc-Fe grains and enriched outside the grains, which causes to retard the grain growth of bcc-Fe crystallites. The aberration-corrected STEM-EDS analysis with the ultrafine electron probe successfully proved that Cu atoms form nanometre scale clusters inside and/or outside the bcc-Fe nanocrystallites.

  7. High resolution structural and compositional mapping of the SrTiO3/LaFeO3 interface using chromatic aberration corrected energy filtered imaging

    NASA Astrophysics Data System (ADS)

    Kabius, Bernd; Houben, Lothar; Dwyer, Christian; Colby, Robert; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2014-03-01

    Interfaces between insulating polar perovskites have demonstrated a wealth of electronic and magnetic properties. Understanding and predicting the properties of a specific interface requires atomic level knowledge of interface structure and chemistry. Electron microscopy is capable of this task, and has been frequently applied to oxide interfaces using a combination of high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and electron energy-loss spectroscopy (EELS). Energy-filtered TEM (EFTEM) captures a full image for a given energy losses, allowing a larger field of view than typical for STEM-EELS in far less time. However, EFTEM has not, to date, demonstrated the spatial resolution of STEM-EELS due to the limits set by chromatic aberration Cc. This study of LaFeO3/SrTiO3 demonstrates that Cc correction enhances the resolution of EFTEM for elemental mapping, allowing a unit cell-by-unit cell analysis of the concentration gradients across the SrTiO3/LaFeO3 interface. The charge distribution at the interface will be discussed. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory

  8. Letter: A method for the chromatic aberration correction of a laser time of-flight mass analyzer.

    PubMed

    Sysoeva, Elizaveta A; Sysoev, Alexander A

    2016-01-01

    The new ion-optical system of the laser time-of-flight (TOF) mass spectrometer on the basis of two tandem wedge-shape reflectors has been offered and implemented. A new method of correcting chromatic aberration by the ion energy was proposed that used a wire electrode unit with adjustable potentials. This unit allows one to adjust the local TOF of the ions in a narrow energy range ± (1-2)% within the total ion packet with an energy spread of ± 20%. The method reduces the duration of the ion packets by up to 1.5ns, which enables us to obtain the restriction of resolution at a level not worse than R ~ 10500 for a TOF ~35 µs. The aim of the project is to increase the separation of isobaric ions to improve the limit of detection of the laser TOF-MS for the analysis of high-purity samples. PMID:27553736

  9. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT

    PubMed Central

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-01-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 μmfor a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 μmat a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue. PMID:25908999

  10. Three-dimensional transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: A pilot human study with microbubble contrast enhancement

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on healthcare outcomes and costs. While clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well-suited to the task of examining blood flow dynamics in real-time and may allow for localization of a clot. A prototype bilateral 3D ultrasound imaging system utilizing two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in 5 healthy volunteers with Definity® microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3D color flow mode. The number of color flow voxels above a common threshold increased due to aberration correction in 5/5 subjects, with a mean increase of 33.9%. The percentage of large arteries visualized in 3D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. PMID:24239360

  11. Alpharetroviral Vector-mediated Gene Therapy for X-CGD: Functional Correction and Lack of Aberrant Splicing

    PubMed Central

    Kaufmann, Kerstin B.; Brendel, Christian; Suerth, Julia D.; Mueller-Kuller, Uta; Chen-Wichmann, Linping; Schwäble, Joachim; Pahujani, Shweta; Kunkel, Hana; Schambach, Axel; Baum, Christopher; Grez, Manuel

    2013-01-01

    Comparative integrome analysis has revealed that the most neutral integration pattern among retroviruses is attributed to alpharetroviruses. We chose X-linked chronic granulomatous disease (X-CGD) as model to evaluate the potential of self-inactivating (SIN) alpharetroviral vectors for gene therapy of monogenic diseases. Therefore, we combined the alpharetroviral vector backbone with the elongation factor-1α short promoter, both considered to possess a low genotoxic profile, to drive transgene (gp91phox) expression. Following efficient transduction transgene expression was sustained and provided functional correction of the CGD phenotype in a cell line model at low vector copy number. Further analysis in a murine X-CGD transplantation model revealed gene-marking of bone marrow cells and oxidase positive granulocytes in peripheral blood. Transduction of human X-CGD CD34+ cells provided functional correction up to wild-type levels and long-term expression upon transplantation into a humanized mouse model. In contrast to lentiviral vectors, no aberrantly spliced transcripts containing cellular exons fused to alpharetroviral sequences were found in transduced cells, implying that the safety profile of alpharetroviral vectors may extend beyond their neutral integration profile. Taken together, this highlights the potential of this SIN alpharetroviral system as a platform for new candidate vectors for future gene therapy of hematopoietic disorders. PMID:23207695

  12. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  13. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  14. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  15. Canopy induced aberration correction in airborne electro-optical imaging systems

    NASA Astrophysics Data System (ADS)

    Harder, James A.; Sprague, Michaelene W.

    2011-11-01

    An increasing number of electro-optical systems are being used by pilots in tactical aircraft. This means that the afore mentioned systems must operate through the aircrafts canopy, unfortunately the canopy functions as a less than ideal lens element in the electro-optical sensor optical path. The canopy serves first and foremost as an aircraft structural component, considerations like minimizing the drag co-efficient and the ability to survive bird strikes take precedence over achieving optimal optical characteristics. This paper describes how the authors characterized the optical characteristics of an aircraft canopy. Families of modulation transfer functions were generated, for various viewing geometries through the canopy and for various electro-optical system entrance pupil diameters. These functions provided us with the means to significantly reduce the effect of the canopy "lens" on the performance of a representative electro-optical system, using an Astigmatic Corrector Lens. A comparison of the electro-optical system performance with and without correction is also presented.

  16. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  17. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  18. Utilization of the excimer laser and a moving piezoelectric mirror to accomplish the customized contact lens ablation to correct high-order aberrations

    NASA Astrophysics Data System (ADS)

    de Matos, Luciana; Yasuoka, Fátima M. M.; Schor, Paulo; de Oliveira, Enos; Bagnato, Vanderlei S.; Carvalho, Luis A. V.

    2014-02-01

    The use of the Hartman-Shack sensor in ophthalmology allowed the identification of higher-order aberrations, which make possible the search for methods to correct them. Customized refractive surgery is one of the most successful methods, although there are patients which cannot be submitted to this surgery due to a variety of abnormal limiting factors such as cornea thickness and quantity of higher-order aberrations. Being this an irreversible process, the alternative is to develop a non-surgical method. This work proposes a method to obtain personalized contact lenses to correct high-order aberrations via the development of a customized ablation system using an excimer laser and a moving piezoelectric mirror. The process to produce such lenses consists of four steps. 1) The map of total aberrations of the patient's eye is measured by using an aberrometer with a Hartman-Shack sensor. 2) The measured aberration map is used to determine the maps for correction and related distribution of laser pulses for the ablation process with the excimer laser. 3) The lens production is performed following the same principle as customized refractive surgery. 4) The quality control of the lens is evaluated by two tests. 4.1) The lens is measured by a non-commercial lensometer, which is assembled specially for this measurement, as the ones commercially available are not capable of measuring asymmetric and irregular surfaces. 4.2) The evaluation of the lens-eye system is made using the aberrometer of the first step in order to verify the residual aberrations. Here, the lenses are ablated with a customized refractive surgery system.

  19. Double-aberration corrected TEM/STEM of solid acid nanocatalysts in the development of pharmaceutical NSAIDS

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N.; Brown, R.; Wright, I.; Boyes, E. D.; Gai, P. L.

    2012-07-01

    We report nanostructural and physico-chemical studies in the development of an efficient low temperature heterogeneous catalytic process for nonsteroidal anti-inflammatory drugs (NSAIDS) such as N-acetyl-p-aminophenol (paracetamol or acetaminophen) on tungstated zirconia nanocatalysts. Using a double-aberration corrected TEM/STEM, modified in-house for in-situ studies at the sub-Angstrom level, we directly observed in real-time, the dynamic precursor transformation to the active catalyst. We quantified the observations with catalytic activity studies for the NSAIDS. The studies have provided the direct evidence for single tungsten promoter atoms and surface WOx species of <= 0.35 nm, with nanoclusters of WOx (0.6 to 1nm), located at grain boundaries on the surface of the zirconia nanoparticles. The correlation between the nanostructure and catalytic activity indicates that the species create Brønsted acid sites highly active for the low temperature process. The results open up opportunities for developing green heterogeneous methods for pharmaceuticals.

  20. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT

    SciTech Connect

    Miller, Michael K; Parish, Chad M

    2014-01-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  1. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT.

    PubMed

    Parish, Chad M; Miller, Michael K

    2014-04-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, that are resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized cavities such as helium bubbles from the Ti-Y-O rich nanoclusters (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging, have been used for such a purpose. Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs. MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs. PMID:24598435

  2. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    SciTech Connect

    Han, Chang W.; Iddir, Hakim; Uzun, Alper; Curtiss, Larry A.; Browning, Nigel D.; Gates, Bruce C.; Ortalan, Volkan

    2015-11-06

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  3. Resolution of 5.4 nm from a Photoemission Electron Microscope Corrected with an Electrostatic Mirror

    NASA Astrophysics Data System (ADS)

    Word, R. C.; Rempfer, G. F.; Almaraz, L.; Dixon, T.; Konenkamp, R.

    2010-03-01

    We report resolution of 5.4 +/- 0.5 nm for a photoemission electron microscope (PEEM) that employs an electrostatic mirror that simultaneously corrects chromatic and spherical aberration. This is a marked improvement over the 8 to 10nm resolution obtained by uncorrected PEEMs, which suffer particularly from chromatic aberration resulting from the acceleration of low energy photoelectrons from the specimen surface. The resolution was obtained in a biological application using sarcoplasmic reticulum from skeletal muscle as a specimen. The sample was deposited on a low photoemission substrate of chromium-coated glass and illuminated with UV light from a 100-mW 244-nm Ar laser. Resolution was determined using the 0.1 to 0.9 contrast change in intensity line profiles as well as by a 2-dimensional Fast Fourier Transform method. The PEEM employs a Y-branched beam separator, three deflection magnets, and twelve electrostatic lenses all heavily filtered to suppress voltage instabilities. Spherical and chromatic aberration coefficients were determined by computer modeling and in-situ experiments to be 1 cm. Once the instrument is perfected, the resolution should be 2 nm.

  4. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  5. Automatic transmission electronic gearshift control having altitude corrected shift criteria

    SciTech Connect

    Baltusis, P.A.; Greene, T.L.; Palansky, B.J.

    1990-07-24

    This patent describes a method for controlling gearshifts in an automatic transmission of a motor vehicle having an engine, electronic computer, electronic memory accessible to the computer. It comprises: generating an engine speed signal; storing in memory engine speeds corresponding to a wide open throttle condition at which gearshifts are scheduled to occur at a reference barometric pressure; calculating a engine speed barometric pressure correction to account for a difference between reference barometric pressure and current ambient barometric pressure; generating, in response to the engine speed barometric pressure correction, an altitude corrected engine speed signal representing engine speed corresponding to a wide open throttle condition at which gearshifts are to occur at current ambient barometric pressure; comparing the current engine speed signal to the barometric pressure corrected engine speed signal; and producing a gearshift when the comparison indicates current engine speed exceeds the barometric pressure corrected engine speed.

  6. Observation of lens aberrations for high resolution electron microscopy II: simple expressions for optimal estimates.

    PubMed

    Saxton, W Owen

    2015-04-01

    This paper lists simple closed-form expressions estimating aberration coefficients (defocus, astigmatism, three-fold astigmatism, coma / misalignment, spherical aberration) on the basis of image shift or diffractogram shape measurements as a function of injected beam tilt. Simple estimators are given for a large number of injected tilt configurations, optimal in the sense of least-squares fitting of all the measurements, and so better than most reported previously. Standard errors are given for most, allowing different approaches to be compared. Special attention is given to the measurement of the spherical aberration, for which several simple procedures are given, and the effect of foreknowledge of this on other aberration estimates is noted. Details and optimal expressions are also given for a new and simple method of analysis, requiring measurements of the diffractogram mirror axis direction only, which are simpler to make than the focus and astigmatism measurements otherwise required. PMID:25728295

  7. Aberrations of the cathode objective lens up to fifth order.

    PubMed

    Tromp, R M; Wan, W; Schramm, S M

    2012-08-01

    In this paper we discuss a topic that was close to Prof. Gertrude Rempfer s interests for many years. On this occasion of her 100th birthday, we remember and honor Gertrude for her many outstanding contributions, and for the inspiring example that she set. We derive theoretical expressions for the aberration coefficients of the uniform electrostatic field up to 5th order and compare these with raytracing calculations for the cathode lens used in Low Energy Electron Microscopy and Photo Electron Emission Microscopy experiments. These higher order aberration coefficients are of interest for aberration corrected experiments in which chromatic (C(c)) and spherical (C₃) aberrations of the microscope are set to zero. The theoretical predictions are in good agreement with the results of raytracing. Calculations of image resolution using the Contrast Transfer Function method show that sub-nanometer resolution is achievable in an aberration corrected LEEM system. PMID:22188906

  8. Radiative corrections to polarization observables in electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Borisyuk, Dmitry; Kobushkin, Alexander

    2014-08-01

    We consider radiative corrections to polarization observables in elastic electron-proton scattering, in particular, for the polarization transfer measurements of the proton form factor ratio μGE/GM. The corrections are of two types: two-photon exchange (TPE) and bremsstrahlung (BS); in the present work we pay special attention to the latter. Assuming small missing energy or missing mass cutoff, the correction can be represented in a model-independent form, with both electron and proton radiation taken into account. Numerical calculations show that the contribution of the proton radiation is not negligible. Overall, at high Q2 and energies, the total correction to μGE/GM grows, but is dominated by TPE. At low energies both TPE and BS may be significant; the latter amounts to ˜0.01 for some reasonable cut-off choices.

  9. Synthesis and Cs-Corrected Scanning Transmission Electron Microscopy Characterization of Multimetallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, Jesus; Jose-Yacaman, Miguel; Subarna Khanal Team

    2014-03-01

    Multimetallic nanoparticles have been attracted greater attention both in materials science and nanotechnology due to its unique electronic, optical, biological, and catalytic properties lead by physiochemical interactions among different atoms and phases. The distinct features of multimetallic nanoparticles enhanced synergetic properties, large surface to volume ratio and quantum size effects ultimately lead to novel and wide range of possibilities for different applications than monometallic counterparts. For instance, PtPd, Pt/Cu, Au-Au3Cu, AgPd/Pt, AuCu/Pt and many other multimetallic nanoparticles have raised interest for their various applications in fuel cells, ethanol and methanol oxidation reactions, hydrogen storage, and so on. The nanostructures were analyzed by transmission electron microscopy (TEM) and by aberration-corrected scanning transmission electron microscopy (Cs-corrected STEM), in combination with high angle annular dark field (HAADF), bright field (BF), energy dispersive X-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) detectors. These techniques allowed us to probe the structure at the atomic level of the nanoparticles revealing new structural information and elemental composition of the nanoparticles. The authors would like to acknowledge NSF grants DMR-1103730, ``Alloys at the Nanoscale: The Case of Nanoparticles Second Phase'' and NSF PREM Grant # DMR 0934218.

  10. Rapid correction of electron microprobe data for multicomponent metallic systems

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Sivakumar, R.

    1973-01-01

    This paper describes an empirical relation for the correction of electron microprobe data for multicomponent metallic systems. It evaluates the empirical correction parameter, a for each element in a binary alloy system using a modification of Colby's MAGIC III computer program and outlines a simple and quick way of correcting the probe data. This technique has been tested on a number of multicomponent metallic systems and the agreement with the results using theoretical expressions is found to be excellent. Limitations and suitability of this relation are discussed and a model calculation is also presented in the Appendix.

  11. Aberration-corrected aspheric grating designs for the Lyman/Far-Ultraviolet Spectroscopic Explorer high-resolution spectrograph - A comparison

    NASA Technical Reports Server (NTRS)

    Trout, Catherine; Content, David; Davila, Pam

    1992-01-01

    Two approaches to reducing the optical aberrations of concave diffraction gratings have been studied to obtain candidate grating designs for the Lyman/Far-Ultraviolet Spectroscopic Explorer mission. The first approach involves shaping the grating substrate while using straight and equally spaced grooves. The second approach involves using a gating substrate with a relatively simple figure and holographically controlling the groove curvature and spacing. Specific designs derived from both approaches are analyzed and compared.

  12. 75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... 23, 2010 (75 FR 51707), contain errors that may prove to be misleading and are in need of... notice of public hearing (REG-153340-09), which was the subject of FR Doc. 2010-20737, is corrected as... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer...

  13. Correction of electronic record for weighing bucket precipitation gauge measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electronic sensors generate valuable streams of forcing and validation data for hydrologic models, but are often subject to noise, which must be removed as part of model input and testing database development. We developed Automated Precipitation Correction Program (APCP) for weighting bucket preci...

  14. POES MEPED differential flux retrievals and electron channel contamination correction

    NASA Astrophysics Data System (ADS)

    Peck, E. D.; Randall, C. E.; Green, J. C.; Rodriguez, J. V.; Rodger, C. J.

    2015-06-01

    A correction method to remove proton contamination from the electron channels of the Polar-orbiting Operational Environmental Satellites Medium Energy Proton/Electron Detector (MEPED) is described. Proton contamination estimates are based on measurements in five of the MEPED proton spectral channels. A constrained inversion of the MEPED proton channel response function matrix is used to calculate proton differential flux spectra. In this inversion, the proton energy distribution is described by a weighted combination of exponential, power law, and Maxwellian distributions. Proton contamination in the MEPED electron spectral channels is derived by applying the electron channel proton sensitivities to the proton fluxes from the best fit proton spectra. Once the electron channel measurements are corrected for proton contamination, an inversion of the electron channel response function matrix is used to calculate electron differential flux spectra. A side benefit of the method is that it yields an estimate for the integrated electron flux in the energy range from 300 keV to 2.5 MeV with a center energy at ~800 keV. The final product is a differential spectrum of electron flux covering the energy range from about 10 keV to 2.5 MeV that is devoid of proton contamination except during large solar proton events. Comparisons of corrected MEPED differential fluxes to the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions Instrument for Detecting Particles show that MEPED fluxes are greater than what is expected from altitude-induced particle population changes; this is attributed at least partially to measurement differences in pitch angle range.

  15. Technique for narrow-band imaging in the far ultraviolet based on aberration-corrected holographic gratings.

    PubMed

    Wilkinson, E; Indebetouw, R; Beasley, M

    2001-07-01

    We have developed a new family of imaging spectrometer designs that combine the imaging power of two-element telescopes with the aberration control of first-generation holographic gratings. The resulting optical designs provide high spatial resolution over modest fields of view at selectable wavelengths. These all-reflective designs are particularly suited for narrow-band imaging below 1050 A, the wavelength below which there are no transmitting materials in the UV. We have developed designs to efficiently map the spatial distribution of UV-emitting material. This mapping capability is absent in current and future astronomical instruments but is crucial to the understanding of the nature of a variety of astrophysical phenomena. Although our examples focus on UV wavelengths, the design concept is applicable to any wavelength. PMID:11958267

  16. The Electron Ronchigram

    SciTech Connect

    Lupini, Andrew R

    2011-01-01

    The electron Ronchigram is a form of inline hologram that offers a convenient way to directly see and measure electron optical aberrations. Any user of an aberration-corrected STEM is likely to benefit from a basic understanding of how such an image is formed and used. This chapter will review the formation of the electron Ronchigram with a particular emphasis on the effects and measurement of aberrations. This review will be largely based on our own approach and previously published work.

  17. Design and Performance Characteristics of the ORNL AdvancedMicroscopy Laboratory and JEOL 2200FS-AC Aberration-CorrectedSTEM/TEM

    SciTech Connect

    Allard, Lawrence F.; Blom, Douglas A.; O'Keefe, Michael A.; Mishina, S.

    2005-02-15

    At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. The installed JEOL 2200FS-AC has demonstrated aTEM information limit of 0.9A. This limit is expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. In STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in<110>zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect. The microscope is fitted with three magnetically levitated turbo pumps (one on the column at about the specimen position,and two near floor level) that pump the Omega energy filter and detector chamber. These pumps run at 48,000 rpm, precisely equivalent to 800Hz. It was determined that the upper turbo pump was contributing essentially all of the 800Hz signal to the image, and in fact that the pump was defective. After replacing the pump with one significantly quieter than the original, the Si atomic column image and associated diffractogram(Fig. 4b) show a much-reduced effect of the 800Hz signal, but still some residual effect from the turbo pump. The upper pump will be removed from the main column to an adjacent frame on the floor, and will have a large-diameter, well-damped, pump line to the original connection to the column to effectively isolate the pump from the column. If the 800Hz signal results from mechanical vibrations, they will be damped, and if the signal results from acoustic coupling to the column, it can be damped by appropriate acoustic materials.

  18. Dispersion-Corrected Mean-Field Electronic Structure Methods.

    PubMed

    Grimme, Stefan; Hansen, Andreas; Brandenburg, Jan Gerit; Bannwarth, Christoph

    2016-05-11

    Mean-field electronic structure methods like Hartree-Fock, semilocal density functional approximations, or semiempirical molecular orbital (MO) theories do not account for long-range electron correlation (London dispersion interaction). Inclusion of these effects is mandatory for realistic calculations on large or condensed chemical systems and for various intramolecular phenomena (thermochemistry). This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications. The most prominent correction schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii) semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well as pros and cons of these methods are critically discussed, and typical examples and benchmarks on molecular complexes and crystals are provided. Although there are some areas for further improvement (robustness, many-body and short-range effects), the situation regarding the overall accuracy is clear. Various approaches yield long-range dispersion energies with a typical relative error of 5%. For many chemical problems, this accuracy is higher compared to that of the underlying mean-field method (i.e., a typical semilocal (hybrid) functional like B3LYP). PMID:27077966

  19. Comparison of Adaptive Optics and Phase-Conjugate Mirrors for Correction of Aberrations in Double-Pass Amplifiers

    NASA Astrophysics Data System (ADS)

    Jackel, Steven; Moshe, Inon; Lavi, Raphy

    2003-02-01

    Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optics imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optics retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration /bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power /beam-quality results.

  20. Comparison of adaptive optics and phase-conjugate mirrors for correction of aberrations in double-pass amplifiers.

    PubMed

    Jackel, Steven; Moshe, Inon; Lavi, Raphy

    2003-02-20

    Correction of birefringence-induced effects (depolarization and bipolar focusing) were achieved in double-pass amplifiers by use of a Faraday rotator between the laser rod and the retroreflecting optic. A necessary condition was ray retrace. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal refractive indices. We compared various retroreflectors: stimulated-Brillouin-scatter phase-conjugate mirrors (PCMs), PCMs with rod-to-PCM relay imaging (IPCM), IPCMs with astigmatism-correcting adaptive optics, and all-adaptive-optic imaging variable-radius mirrors. Results with flash-lamp-pumped, Nd:Cr:GSGG double-pass amplifiers showed the superiority of adaptive optics over nonlinear optic retroreflectors in terms of maximum average power, improved beam quality, and broader oscillator pulse duration/bandwidth operating range. Hybrid PCM-adaptive optics retroreflectors yielded intermediate power/beam-quality results. PMID:12617213

  1. Eucken correction in high-temperature gases with electronic excitation

    SciTech Connect

    Istomin, V. A.; Kustova, E. V. Mekhonoshina, M. A.

    2014-05-14

    In the present paper, thermal conductivity coefficient of high-temperature molecular and atomic gases with excited electronic states is studied using both the kinetic theory algorithm developed by authors earlier and the well known simple expression for the thermal conductivity coefficient proposed by Eucken and generalized by Hirschfelder. The influence of large collision diameters of excited states on the thermal conductivity is discussed. The limit of validity of the Eucken correction is evaluated on the basis of the kinetic theory calculations; an improved model suitable for air species under high-temperature conditions is proposed.

  2. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    DOE PAGESBeta

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  3. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    NASA Astrophysics Data System (ADS)

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-01

    It was recently proposed that electron magnetic circular dichroism can be measured in scanning transmission electron microscopy with atomic resolution by tuning the phase distribution of an electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. We present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  4. Aberrated electron probes for novel spectroscopy with atomic resolution: theory and practical aspects

    SciTech Connect

    Rusz, Jan; Idrobo Tapia, Juan Carlos

    2016-01-01

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. We present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  5. Intrinsic corrections to optical guiding in a free electron laser

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; Scharlemann, E. T.; Sessler, A. M.

    1988-10-01

    The effect on optical guiding of the undulations of an electron beam in an FEL is investigated, and a model for a fully saturated FEL amplifier with no remaining gain is developed. The density of the electrom beam in the model fully includes the effects of both transverse and longitudinal undulation of the beam. The longitudinal density modulation is expressed in terms of the Bessel functions of ζ, where ζ = {a w2}/{2(1 + a w2}) is the shift of the electron phase in the electron bucket caused by its longitudinal undulation. The transverse density modulation is evaluated to second order in the ratio of undulation amplitude δr to beam radial scale length rb. The radiation field from the modeled beam is calculated in terms of spatial modes proportional to exp[i( k + δk + lkw) z - i ωt], where l is an arbitrary integer. Here, δk is the change of the wavenumber of the radiation caused by the electron bunches. Radially radiating modes with intensity on the order of ( {δk}/{k w)ζ 2} are found. Optical guiding is found to be modified by the transverse undulations of the beam at second order in {δr}/{r b}, and by the longitudinal undulations to first order in {δk}/{k w}. For the usual FEL parameters, the correction is quite small.

  6. Axial ultrasound B-scans of the entire eye with a 20-MHz linear array: correction of crystalline lens phase aberration by applying Fermat's principle.

    PubMed

    Mateo, Tony; Chang, Alexandre; Mofid, Yassine; Pisella, Pierre-Jean; Ossant, Frederic

    2014-11-01

    In ophthalmic ultrasonography the crystalline lens is known to be the main source of phase aberration, causing a significant decrease in resolution and distortion effects on axial B-scans. This paper proposes a computationally efficient method to correct the phase aberration arising from the crystalline lens, including refraction effects using a bending ray tracing approach based on Fermat's principle. This method is used as a basis to perform eye-adapted beamforming (BF), with appropriate focusing delays for a 128-element 20-MHz linear array in both emission and reception. Implementation was achieved on an in-house developed experimental ultrasound scanning device, the ECODERM. The proposed BF was tested in vitro by imaging a wire phantom through an eye phantom consisting of a synthetic gelatin lens anatomically set up in an appropriate liquid (turpentine) to approach the in vivo velocity ratio. Both extremes of accommodation shapes of the human crystalline lens were investigated. The performance of the developed BF was evaluated in relation to that in homogeneous medium and compared to a conventional delay-and-sum (DAS) BF and a second adapted BF which was simplified to ignore the lens refraction. Global expectations provided by our method with the transducer array are reviewed by an analysis quantifying both image quality and spatial fidelity, as well as the detrimental effects of a crystalline lens in conventional reconstruction. Compared to conventional array imaging, the results indicated a two-fold improvement in the lateral resolution, greater sensitivity and a considerable reduction of spatial distortions that were sufficient to envisage reliable biometry directly in B-mode, especially phakometry. PMID:24988589

  7. Generation mechanism of distortion aberration in a symmetric magnetic doublet for an electron beam projection system

    SciTech Connect

    Nakasuji, M.; Shimizu, H.

    1996-07-01

    Radial and azimuthal distortion aberrations are increasingly a function of the image side lens bore radius in the range from 1.25 to 5 times as large as the maximum image field radius. This phenomenon is inconsistent with our previous understanding. An assumption is made that these large distortions for the large bore radii come from the influence of the magnetic field of one on the other, thereby destroying the symmetry. This assumption is confirmed from the following simulation. When these distortions are calculated for the ideal case where the magnetic fields are calculated in the condition without the other lens, they are decreased to around 1/10 of those for the case where the magnetic fields are calculated in the real condition with the lenses in proximity. When the object{endash}image distance is 800 mm and the bore radii of lens 1 are 100 and 20 mm, the residual radial and azimuthal distortions are 1.5 and 0.7 nm, the beam blur is smaller than 45 nm for the beam semiangle from 0.05 to 0.7 mrad, where the main-field and subfield sizes in the image plane are 20 mm and 250 {mu}m, respectively, the beam energy is 100 keV, and the space charge effects are neglected. {copyright} {ital 1996 American Vacuum Society}

  8. Carbon-metal interfaces analyzed by aberration-corrected TEM: how copper and nickel nanoparticles interact with MWCNTs.

    PubMed

    Ilari, Gabriele M; Hage, Fredrik S; Zhang, Yucheng; Rossell, Marta D; Ramasse, Quentin M; Niederberger, Markus; Erni, Rolf

    2015-05-01

    Experimental confirmation for the stronger interaction of Ni with multi-walled carbon nanotubes (MWCNTs) compared to Cu with MWCNTs is presented. The interfaces between Cu (Ni) nanoparticles side-on oriented onto MWCNTs are analyzed with high spatial resolution electron energy-loss spectroscopy (EELS) of the carbon K-edge. The EEL spectra reveal a rehybridization from sp(2) to sp(3) hybridized carbon of the outermost MWCNT layer at the Ni interface, but no such rehybridization can be observed at the Cu interface. The EELS results are supported by transmission electron microscopy (TEM) images, which show a better wetting behavior of Ni and a smaller gap at the Ni-MWCNT interface, as compared to the corresponding Cu interfaces. The different behavior of Cu and Ni can be explained in terms of differing valence d-orbital occupancy. For the successful experimental demonstration of this effect the use of a soft chemical metal deposition technique is crucial. PMID:25836722

  9. Aberration correction in double-pass amplifiers through the use of phase-conjugate mirrors and/or adaptive optics

    NASA Astrophysics Data System (ADS)

    Jackel, Steven M.; Moshe, Inon; Lavi, Raphael

    2001-04-01

    Corrrection of birefringence induced effects (depolarization and bipolar focusing) was achieved in double-pass amplifiers using a Faraday rotator placed between the laser rod and the retroreflecting optic. A necessary condition was that each ray in the beam retraced its path through the amplifying medium. Retrace was limited by imperfect conjugate-beam fidelity and by nonreciprocal double-pass indices of refraction. We compare various retroreflectors: stimulated Brillouin scatter phase-conjugate-mirrors (PCMs), PCMs with relay lenses to image the rod principal plane onto the PCM entrance aperture (IPCMs), IPCMs with external, adaptively-adjusted, astigmatism-correcting cylindrical doublets, and all adaptive optics imaging variable-radius-mirrors (IVRMs). Results with flashlamp pumped, Nd:Cr:GSGG double-pass amplifiers show that average output power increased fivefold with a Faraday rotator plus complete nonlinear optics retroreflector package (IPCM+cylindrical zoom), and that this represents an 80% increase over the power achieved using just a PCM. Far better results are, however, achieved with an IVRM.

  10. Computed Ultrasound Tomography in Echo mode (CUTE) of speed of sound for diagnosis and for aberration correction in pulse-echo sonography

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Held, Gerrit; Preisser, Stefan; Peeters, Sara; Grünig, Michael; Frenz, Martin

    2014-03-01

    Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound.

  11. Practical correction procedures for elastic electron scattering effects in ARXPS

    NASA Astrophysics Data System (ADS)

    Lassen, T. S.; Tougaard, S.; Jablonski, A.

    2001-06-01

    Angle-resolved XPS and AES (ARXPS and ARAES) are widely used for determination of the in-depth distribution of elements in the surface region of solids. It is well known that elastic electron scattering has a significant effect on the intensity as a function of emission angle and that this has a great influence on the determined overlayer thicknesses by this method. However the applied procedures for ARXPS and ARAES generally neglect this because no simple and practical procedure for correction has been available. However recently, new algorithms have been suggested. In this paper, we have studied the efficiency of these algorithms to correct for elastic scattering effects in the interpretation of ARXPS and ARAES. This is done by first calculating electron distributions by Monte Carlo simulations for well-defined overlayer/substrate systems and then to apply the different algorithms. We have found that an analytical formula based on a solution of the Boltzmann transport equation provides a good account for elastic scattering effects. However this procedure is computationally very slow and the underlying algorithm is complicated. Another much simpler algorithm, proposed by Nefedov and coworkers, was also tested. Three different ways of handling the scattering parameters within this model were tested and it was found that this algorithm also gives a good description for elastic scattering effects provided that it is slightly modified so that it takes into account the differences in the transport properties of the substrate and the overlayer. This procedure is fairly simple and is described in detail. The model gives a much more accurate description compared to the traditional straight-line approximation (SLA). However it is also found that when attenuation lengths instead of inelastic mean free paths are used in the simple SLA formalism, the effects of elastic scattering are also reasonably well accounted for. Specifically, from a systematic study of several

  12. Cosmic Aberration, and Its Correction

    ERIC Educational Resources Information Center

    Dixon, Robert

    2011-01-01

    Because the speed of light is finite, the further we look into space, the earlier we see. A galaxy seen 50 million light years away is 50 million years ago. How far out in space and how far back in time can we expect to see, and what should it look like? To a first approximation and ignoring local galactic interactions, the Hubble model of the…

  13. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  14. 46 CFR 530.10 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Amendment, correction, cancellation, and electronic... SHIPPING IN FOREIGN COMMERCE SERVICE CONTRACTS Filing Requirements § 530.10 Amendment, correction, cancellation, and electronic transmission errors. (a) Terms. When used in this section, the following...

  15. 46 CFR 530.10 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Amendment, correction, cancellation, and electronic... SHIPPING IN FOREIGN COMMERCE SERVICE CONTRACTS Filing Requirements § 530.10 Amendment, correction, cancellation, and electronic transmission errors. (a) Terms. When used in this section, the following...

  16. Correction.

    PubMed

    2015-11-01

    In the article by Heuslein et al, which published online ahead of print on September 3, 2015 (DOI: 10.1161/ATVBAHA.115.305775), a correction was needed. Brett R. Blackman was added as the penultimate author of the article. The article has been corrected for publication in the November 2015 issue. PMID:26490278

  17. 78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Federal Register on Wednesday, May 22, 2013. 78 FR 30662. The 2013 Final Rule modifies the final rules...\\ 77 FR 6194 (February 7, 2012), 77 FR 40459 (July 10, 2012), and 77 FR 50244 (August 20, 2012). The.... Corrections to FR Doc. 2013-10604 In FR Doc. 2013-10604 appearing on page 30661 in the Federal Register...

  18. 76 FR 709 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Federal Register on Tuesday, December 7, 2010 (75 FR 75897) providing guidance relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The temporary and final regulations provide rules under... Internal Revenue Service 26 CFR Parts 40 and 301 RIN 1545-BJ13 Electronic Funds Transfer of...

  19. Correction.

    PubMed

    2015-12-01

    In the article by Narayan et al (Narayan O, Davies JE, Hughes AD, Dart AM, Parker KH, Reid C, Cameron JD. Central aortic reservoir-wave analysis improves prediction of cardiovascular events in elderly hypertensives. Hypertension. 2015;65:629–635. doi: 10.1161/HYPERTENSIONAHA.114.04824), which published online ahead of print December 22, 2014, and appeared in the March 2015 issue of the journal, some corrections were needed.On page 632, Figure, panel A, the label PRI has been corrected to read RPI. In panel B, the text by the upward arrow, "10% increase in kd,” has been corrected to read, "10% decrease in kd." The corrected figure is shown below.The authors apologize for these errors. PMID:26558821

  20. On the correct electronic ground state of Tc( g )

    SciTech Connect

    Rard, J.A. ); Rand, M.H. ); Thornback, J.R. ); Wanner, H. )

    1991-05-01

    The electronic ground state of Tc({ital g}) is {sup 6}{ital S}{sub 5/2}, which arises from a 4{ital d}{sup 5}5{ital s}{sup 2} valence electron configuration. However, there are several treatises and review articles in which the ground state is incorrectly given as {ital S}{sub 9/2} with a valence electron configuration of 4{ital d}{sup 6}5{ital s}{sup 1}. The origin of this incorrect assignment was traced to the misinterpretation of a paper on the hyperfine splitting of the optical spectrum of technetium, and to confusion between nuclear and electronic spins.

  1. Correction

    NASA Astrophysics Data System (ADS)

    1995-04-01

    Seismic images of the Brooks Range, Arctic Alaska, reveal crustal-scale duplexing: Correction Geology, v. 23, p. 65 68 (January 1995) The correct Figure 4A, for the loose insert, is given here. See Figure 4A below. Corrected inserts will be available to those requesting copies of the article from the senior author, Gary S. Fuis, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025. Figure 4A. P-wave velocity model of Brooks Range region (thin gray contours) with migrated wide-angle reflections (heavy red lines) and migreated vertical-incidence reflections (short black lines) superimposed. Velocity contour interval is 0.25 km/s; 4,5, and 6 km/s contours are labeled. Estimated error in velocities is one contour interval. Symbols on faults shown at top are as in Figure 2 caption.

  2. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    SciTech Connect

    Zare, S.; Sadighi-Bonabi, R. Anvari, A.; Yazdani, E.; Hora, H.

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  3. Constrained γZ correction to parity-violating electron scattering

    SciTech Connect

    Hall, N. L.; Thomas, A. W.; Young, R. D.; Blunden, P. G.; Melnitchouk, W.

    2013-11-07

    We update the calculation of γZ interference corrections to the weak charge of the proton. We show how constraints from parton distributions, together with new data on parity-violating electron scattering in the resonance region, significantly reduce the uncertainties on the corrections compared to previous estimates.

  4. Constrained {gamma}Z correction to parity-violating electron scattering

    SciTech Connect

    Hall, Nathan Luk; Blunden, Peter Gwithian; Melnitchouk, Wally; Thomas, Anthony W.; Young, Ross D.

    2013-11-01

    We update the calculation of {gamma}Z interference corrections to the weak charge of the proton. We show how constraints from parton distributions, together with new data on parity-violating electron scattering in the resonance region, significantly reduce the uncertainties on the corrections compared to previous estimates.

  5. Analysis of approximations used in calculations of radiative corrections to electron-proton scattering cross section

    SciTech Connect

    Gerasimov, R. E. Fadin, V. S.

    2015-01-15

    An analysis of approximations used in calculations of radiative corrections to electron-proton scattering cross section is presented. We investigate the difference between the relatively recent Maximon and Tjon result and the Mo and Tsai result, which was used in the analysis of experimental data. We also discuss the proton form factors ratio dependence on the way we take into account radiative corrections.

  6. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ..., the Bureau published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act... changes made to Sec. 1005.3(a) in the interim final rule published on December 27, 2011 (76 FR 81020). The... on December 27, 2011 (76 FR 81020) for which the Bureau found good cause to conclude that...

  7. 76 FR 708 - Electronic Funds Transfer of Depository Taxes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... regulations (TD 9507) that were published in the Federal Register on Tuesday, December 7, 2010 (75 FR 75897... Accordingly, the final and temporary regulations (TD 9507), that are the subject of FR Doc. 2010-30526, are... Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 RIN 1545-BJ13 Electronic Funds Transfer...

  8. Correction.

    PubMed

    2016-02-01

    Neogi T, Jansen TLTA, Dalbeth N, et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2015;74:1789–98. The name of the 20th author was misspelled. The correct spelling is Janitzia Vazquez-Mellado. We regret the error. PMID:26881284

  9. High-energy electrons from the muon decay in orbit: Radiative corrections

    SciTech Connect

    Szafron, Robert; Czarnecki, Andrzej

    2015-12-07

    We determine the Ο(α) correction to the energy spectrum of electrons produced in the decay of muons bound in atoms. We focus on the high-energy end of the spectrum that constitutes a background for the muon-electron conversion and will be precisely measured by the upcoming experiments Mu2e and COMET. As a result, the correction suppresses the background by about 20%.

  10. Analysis and improvements of fringe jump corrections by electronics on the JET tokamak far infrared interferometer

    SciTech Connect

    Gil, C.; Barbuti, A.; Spuig, P.; Boboc, A.; Dorling, S.; Collaboration: JET EFDA Contributors

    2010-10-15

    For the Tore Supra interferometer phase measurements, an electronics had been developed electronics using field programmable gate array processors. The embedded algorithm can correct the fringe jumps. For comparison, the electronics ran at JET during the 2009 campaign. The first analysis concluded that the electronics was not correcting all the fringe jumps. An analysis of the failures led to improvements in the algorithm, which was tested during the rest of the campaign. In this article, we evaluate the increases in the performance. From the analysis of the remaining faults, further improvements are discussed for designing future boards that are foreseen for JET using the second wavelength and the Cotton-Mouton effect information.

  11. Correction.

    PubMed

    2016-02-01

    In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error. PMID:26763012

  12. Correcting for 3D distortion when using backscattered electron detectors in a scanning electron microscope.

    PubMed

    Proctor, Jacob M

    2009-01-01

    A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two-dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore-space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59-64, 2009. (c) 2009 Wiley Periodicals, Inc. PMID:19204999

  13. Herramientas y tecnicas para corregir composiciones electronicamente (Tools and Techniques for Correcting Compositions Electronically).

    ERIC Educational Resources Information Center

    Larsen, Mark D.

    2001-01-01

    Although most teachers use word processors and electronic mail on a daily basis, they still depend on paper and pencil for correcting their students' compositions. This article suggests some tools and techniques for submitting, editing, and returning written work electronically. (BD) (Author/VWL)

  14. 46 CFR 530.10 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Amendment, correction, cancellation, and electronic..., cancellation, and electronic transmission errors. (a) Terms. When used in this section, the following terms will have these meanings: (1) Amendment means any change to a service contract which has...

  15. Direct imaging of local atomic ordering in a Pd-Ni-P bulk metallic glass using Cs-corrected transmission electron microscopy.

    PubMed

    Hirata, Akihiko; Hirotsu, Yoshihiko; Nieh, T G; Ohkubo, Tadakatsu; Tanaka, Nobuo

    2007-01-01

    In amorphous alloys, crystalline atomic clusters as small as 1-2 nm are frequently observed as local lattice fringe images by high-resolution electron microscopy (HREM). These clusters can be understood as local structures of amorphous alloys corresponding to "medium-range-order (MRO)". The MRO structure can be observed only under suitable defocusing conditions of the objective lens in HREM. A clear imaging of the MRO structure is difficult in conventional TEMs, mainly due to the delocalization of the image, caused mainly by the spherical aberration of the objective lens and eventually by the chosen defocus. In the present study, we have examined MRO in a Pd-based bulk metallic glass (Pd(40)Ni(40)P(20)) using a high-resolution TEM (acceleration voltage 200 kV) fitted with a spherical aberration constant corrector (Cs corrector) for aberration correction. We found that when Cs was close to zero and defocus values were near the Gaussian focus, MRO regions with an FCC-Pd structure could be clearly observed with a low image disturbance. Under these conditions, the phase-contrast transfer function was understood to act as an ideal filter function, which distinctly selects specific lattice periods of the FCC-Pd clusters. The obtained atomic images of the glass structure including the FCC-Pd clusters are in good agreement with those expected from image simulation according to our amorphous structure model. In this study, we have demonstrated that the Cs-corrected HREM is a powerful tool to directly image locally ordered structures in metallic glasses. PMID:16872747

  16. Correction.

    PubMed

    2015-05-22

    The Circulation Research article by Keith and Bolli (“String Theory” of c-kitpos Cardiac Cells: A New Paradigm Regarding the Nature of These Cells That May Reconcile Apparently Discrepant Results. Circ Res. 2015:116:1216-1230. doi: 10.1161/CIRCRESAHA.116.305557) states that van Berlo et al (2014) observed that large numbers of fibroblasts and adventitial cells, some smooth muscle and endothelial cells, and rare cardiomyocytes originated from c-kit positive progenitors. However, van Berlo et al reported that only occasional fibroblasts and adventitial cells derived from c-kit positive progenitors in their studies. Accordingly, the review has been corrected to indicate that van Berlo et al (2014) observed that large numbers of endothelial cells, with some smooth muscle cells and fibroblasts, and more rarely cardiomyocytes, originated from c-kit positive progenitors in their murine model. The authors apologize for this error, and the error has been noted and corrected in the online version of the article, which is available at http://circres.ahajournals.org/content/116/7/1216.full ( PMID:25999426

  17. Correction

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars Geology, v. 26, p. 947 950 (October 1998) This article had the following printing errors: p. 947, Abstract, line 11, “sepia” should be “septa” p. 947, 1st paragraph under Introduction, line 2, “creep” should be “deep” p. 948, column 1, 2nd paragraph, line 7, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 1, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 5, “19774” should be “1977)” p. 949, column 1, 4th paragraph, line 7, “in particular” should be “In particular” CORRECTION Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming Geology, v. 26, p. 1011 1014 (November 1998) An error appeared in the References Cited. The correct reference appears below: Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D., 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, p. 193 208.

  18. Rooting Out Aberrant Behavior in Training.

    ERIC Educational Resources Information Center

    Kokalis, Jerry, Jr.; Paquin, Dave

    1989-01-01

    Discusses aberrant, or disruptive, behavior in an industrial/business, classroom-based, instructor-led training setting. Three examples of aberrant behavior are described, typical case studies are provided for each, and preventive (long-term) and corrective (on-the-spot) strategies for dealing with the problems are discussed. (LRW)

  19. Bremsstrahlung radiation from slow electrons in a Coulomb field: Classical limit and quantum correction

    SciTech Connect

    Manakov, N. L. Krylovetsky, A. A.; Marmo, S. I.

    2015-11-15

    Compact analytic expressions have been derived by a direct expansion in ħ → 0 for the nonrelativistic amplitude of Coulomb bremsstrahlung radiation (BR), the differential (in frequency and angles of the scattered electron) BR cross section, and the triply differential BR cross section that takes into account the bremsstrahlung photon direction and polarization and the scattered electron direction. They contain the classical limit and a quantum correction of the order of ħ at an arbitrary BR frequency ω. An explicit expression has been found for the quantum correction of the order of ħ to the classical BR spectrum.

  20. QED Correction to Asymmetry for Polarized ep Scattering from the Method of Electron Structure Functions

    SciTech Connect

    Andrei Afanasev; Igor Akushevich; Nikolai Merenkov

    2004-03-01

    The electron structure function method is applied to calculate model-independent radiative corrections to an asymmetry of electron-proton scattering. The representations for both spin-independent and spin-dependent parts of the cross-section are derived. Master formulae take into account the leading corrections in all orders and the main contribution of the second order next-to-leading ones and have accuracy at the level of one per mille. Numerical calculations illustrate our analytical results for both elastic and deep inelastic events.

  1. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  2. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGESBeta

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; et al

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  3. Constrained gamma-Z interference corrections to parity-violating electron scattering

    SciTech Connect

    Hall, Nathan Luke; Blunden, Peter Gwithian; Melnitchouk, Wally; Thomas, Anthony W.; Young, Ross D.

    2013-07-01

    We present a comprehensive analysis of gamma-Z interference corrections to the weak charge of the proton measured in parity-violating electron scattering, including a survey of existing models and a critical analysis of their uncertainties. Constraints from parton distributions in the deep-inelastic region, together with new data on parity-violating electron scattering in the resonance region, result in significantly smaller uncertainties on the corrections compared to previous estimates. At the kinematics of the Qweak experiment, we determine the gamma-Z box correction to be Re\\box_{gamma-Z}^V = (5.61 +- 0.36) x 10^{-3}. The new constraints also allow precise predictions to be made for parity-violating deep-inelastic asymmetries on the deuteron.

  4. 75 FR 81885 - Medicare and Medicaid Programs; Electronic Health Record Incentive Program; Correcting Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    .... Background In FR Doc. 2010-17207 (75 FR 44314) the final rule entitled ``Medicare and Medicaid Programs... rule (75 FR 16236) on the electronic prescribing of controlled substances. We are aligning our... the Preamble In FR Doc. 2010-17207 of July 28, 2010, we make the following corrections: ] 1. On...

  5. 15 CFR 30.9 - Transmitting and correcting Electronic Export Information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Transmitting and correcting Electronic Export Information. 30.9 Section 30.9 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade BUREAU OF THE CENSUS, DEPARTMENT OF COMMERCE FOREIGN TRADE REGULATIONS General...

  6. RABBIT: an electron microprobe data-reduction program using empirical corrections

    USGS Publications Warehouse

    Goff, Fraser E.

    1977-01-01

    RABBIT is a FORTRAN IV computer Program that uses Bence-Albee empirical corrections for the reduction of electron microprobe data of silicates, oxides, sulphates, carbonates, and phosphates. RABBIT efficiently reduces large volumes of data collected on 3-11 channel microprobes.

  7. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  8. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography.

    PubMed

    Galaz-Montoya, Jesús G; Hecksel, Corey W; Baldwin, Philip R; Wang, Eryu; Weaver, Scott C; Schmid, Michael F; Ludtke, Steven J; Chiu, Wah

    2016-06-01

    Single particle cryo-electron tomography (cryoSPT) extracts features from cryo-electron tomograms, followed by 3D classification, alignment and averaging to generate improved 3D density maps of such features. Robust methods to correct for the contrast transfer function (CTF) of the electron microscope are necessary for cryoSPT to reach its resolution potential. Many factors can make CTF correction for cryoSPT challenging, such as lack of eucentricity of the specimen stage, inherent low dose per image, specimen charging, beam-induced specimen motions, and defocus gradients resulting both from specimen tilting and from unpredictable ice thickness variations. Current CTF correction methods for cryoET make at least one of the following assumptions: that the defocus at the center of the image is the same across the images of a tiltseries, that the particles all lie at the same Z-height in the embedding ice, and/or that the specimen, the cryo-electron microscopy (cryoEM) grid and/or the carbon support are flat. These experimental conditions are not always met. We have developed a CTF correction algorithm for cryoSPT without making any of the aforementioned assumptions. We also introduce speed and accuracy improvements and a higher degree of automation to the subtomogram averaging algorithms available in EMAN2. Using motion-corrected images of isolated virus particles as a benchmark specimen, recorded with a DE20 direct detection camera, we show that our CTF correction and subtomogram alignment routines can yield subtomogram averages close to 4/5 Nyquist frequency of the detector under our experimental conditions. PMID:27016284

  9. Corrected electron inelastic mean free paths (IMFPs) for selected wide band semiconductors

    NASA Astrophysics Data System (ADS)

    Krawczyk, M.

    2008-03-01

    Elastic peak electron spectroscopy (EPES) has been widely used to determine the electron inelastic mean free paths (IMFPs) in solids. In this work, we investigated quantitatively the influence of surface excitations on electron IMFPs determined by EPES. We used IMFPs obtained from the early EPES measurements of the electron elastic backscattering probability from GaN and Cd0.88Mn0.12 Te wideband-gap semiconductors, and the Ni standard in the energy range 200-2000 eV. The total surface-excitation parameter (SEP) was evaluated using Chen and Werner approaches, and was applied for correcting the EPES IMFPs. These corrected values were then compared with those predicted by the TPP-2M formula. We found that implementation of the surface-excitation correction improved agreement between the resulting IMFPs for selected wide band semiconductors and the TPP-2M values at low-energy (E > 500 eV) electrons. The extent to which the IMFPs measured by EPES differ from the corresponding bulk values (on account of surface excitations) was found to depend on the semiconductor material with finite surface. Our results also clearly demonstrated the importance of accounting for surface excitations for accuracy of the IMFPs measured for GaN.

  10. Migdal's theorem and electron-phonon vertex corrections in Dirac materials

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.; Das Sarma, S.

    2014-04-01

    Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.

  11. A neural network based error correction method for radio occultation electron density retrieval

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Cuong; Juang, Jyh-Ching

    2015-12-01

    Abel inversion techniques have been widely employed to retrieve electron density profiles (EDPs) from radio occultation (RO) measurements, which are available by observing Global Navigation Satellite System (GNSS) satellites from low-earth-orbit (LEO) satellites. It is well known that the ordinary Abel inversion might introduce errors in the retrieval of EDPs when the spherical symmetry assumption is violated. The error, however, is case-dependent; therefore it is desirable to associate an error index or correction coefficient with respect to each retrieved EDP. Several error indices have been proposed but they only deal with electron density at the F2 peak and suffer from some drawbacks. In this paper we propose an artificial neural network (ANN) based error correction method for EDPs obtained by the ordinary Abel inversion. The ANN is first trained to learn the relationship between vertical total electron content (TEC) measurements and retrieval errors at the F2 peak, 220 km and 110 km altitudes; correction coefficients are then estimated to correct the retrieved EDPs at these three altitudes. Experiments using the NeQuick2 model and real FORMOSAT-3/COSMIC RO geometry show that the proposed method outperforms existing ones. Real incoherent scatter radar (ISR) measurements at the Jicamarca Radio Observatory and the global TEC map provided by the International GNSS Service (IGS) are also used to valid the proposed method.

  12. Electronic platelet counts with the Coulter counter. Reassessment of a correction factor.

    PubMed

    Gottfried, E L; Wehman, J; Wall, B

    1976-09-01

    Platelet counts are determined on the Coulter electronic counter by counting the diluted platelet-rich plasma obtained by sedimentation or centrifugation of whole blood. In calculating the whole-blood platelet count, an empirical correction factor for platelet-free plasma trapped by sedimented erythrocytes has been recommended, and a widely-distributed circular slide rule calculator incorporates the correction factor. In this study, visual and electronic platelet counts were compared in 100 specimens with counts ranging from 10 to 1,100 X 10(3) per mul and hematocrits ranging from 17.5 to 48.5%. Platelet-rich plasma samples prepared by a centrifugation method (Plateletfuge) gave machine counts in close agreement with those of samples prepared by sedimentation. Whole-blood platelet counts determined with the circular calculator were consistently lower than visual counts, with an average difference of -17%. The electronic counts were recalculated after elimination of the correction factor, and agreement then improved to an average difference of only +1.6%. The correction factor for trapped platelet-free plasma leads to erroneously low values and should not be used. PMID:961629

  13. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 1ST QUARTER 2010 MILESTONE REPORT: Simulations of fast correction of chromatic aberrations to establish physics specifications for implementation on NDCX-1 and NDCX-2

    SciTech Connect

    LIDIA, S.M.; LUND, S.M.; SEIDL, P.A.

    2010-01-04

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. Focal spot differences at the target plane between the compressed and uncompressed regions of the beam pulse have been modeled and measured on NDCX-1. Time-dependent focusing and energy sweep from the induction bunching module are seen to increase the compressed pulse spot size at the target plane by factors of two or more, with corresponding scaled reduction in the peak intensity and fluence on target. A time-varying beam envelope correction lens has been suggested to remove the time-varying aberration. An Einzel (axisymmetric electric) lens system has been analyzed and optimized for general transport lines, and as a candidate correction element for NDCX-1. Attainable high-voltage holdoff and temporal variations of the lens driving waveform are seen to effect significant changes on the beam envelope angle over the duration of interest, thus confirming the utility of such an element on NDCX-1. Modeling of the beam dynamics in NDCX-1 was performed using a time-dependent (slice) envelope code and with the 3-D, self-consistent, particle-in-cell code WARP. Proof of concept was established with the slice envelope model such that the spread in beam waist positions relative to the target plane can be minimized with a carefully designed

  14. Two-photon exchange correction in elastic unpolarized electron-proton scattering at small momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, O.; Vanderhaeghen, M.

    2016-01-01

    We evaluate the two-photon exchange (TPE) correction to the unpolarized elastic electron-proton scattering at small momentum transfer Q2 . We account for the inelastic intermediate states approximating the double virtual Compton scattering by the unpolarized forward virtual Compton scattering. The unpolarized proton structure functions are used as input for the numerical evaluation of the inelastic contribution. Our calculation reproduces the leading terms in the Q2 expansion of the TPE correction and goes beyond this approximation by keeping the full Q2 dependence of the proton structure functions. In the range of small momentum transfer, our result is in good agreement with the empirical TPE fit to existing data.

  15. Atomically resolved structure of ligand-protected Au9 clusters on TiO2 nanosheets using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Al Qahtani, Hassan S.; Kimoto, Koji; Bennett, Trystan; Alvino, Jason F.; Andersson, Gunther G.; Metha, Gregory F.; Golovko, Vladimir B.; Sasaki, Takayoshi; Nakayama, Tomonobu

    2016-03-01

    Triphenylphosphine ligand-protected Au9 clusters deposited onto titania nanosheets show three different atomic configurations as observed by scanning transmission electron microscopy. The configurations observed are a 3-dimensional structure, corresponding to the previously proposed Au9 core of the clusters, and two pseudo-2-dimensional (pseudo-2D) structures, newly found by this work. With the help of density functional theory (DFT) calculations, the observed pseudo-2D structures are attributed to the low energy, de-ligated structures formed through interaction with the substrate. The combination of scanning transmission electron microscopy with DFT calculations thus allows identifying whether or not the deposited Au9 clusters have been de-ligated in the deposition process.

  16. Atomic electron affinities and the role of symmetry between electron addition and subtraction in a corrected Koopmans approach.

    PubMed

    Teale, A M; De Proft, F; Geerlings, P; Tozer, D J

    2014-07-28

    The essential aspects of zero-temperature grand-canonical ensemble density-functional theory are reviewed in the context of spin-density-functional theory and are used to highlight the assumption of symmetry between electron addition and subtraction that underlies the corrected Koopmans approach of Tozer and De Proft (TDP) for computing electron affinities. The issue of symmetry is then investigated in a systematic study of atomic electron affinities, comparing TDP affinities with those from a conventional Koopmans evaluation and electronic energy differences. Although it cannot compete with affinities determined from energy differences, the TDP expression yields results that are a significant improvement over those from the conventional Koopmans expression. Key insight into the results from both expressions is provided by an analysis of plots of the electronic energy as a function of the number of electrons, which highlight the extent of symmetry between addition and subtraction. The accuracy of the TDP affinities is closely related to the nature of the orbitals involved in the electron addition and subtraction, being particularly poor in cases where there is a change in principal quantum number, but relatively accurate within a single manifold of orbitals. The analysis is then extended to a consideration of the ground state Mulliken electronegativity and chemical hardness. The findings further emphasize the key role of symmetry in determining the quality of the results. PMID:24406854

  17. Radiative corrections to polarization observables in elastic electron-deuteron scattering in leptonic variables

    SciTech Connect

    Gakh, G. I.; Konchatnij, M. I. Merenkov, N. P.

    2012-08-15

    The model-independent QED radiative corrections to polarization observables in elastic scattering of unpolarized and longitudinally polarized electron beams by a deuteron target are calculated in leptonic variables. The experimental setup when the deuteron target is arbitrarily polarized is considered and the procedure for applying the derived results to the vector or tensor polarization of the recoil deuteron is discussed. The calculation is based on taking all essential Feynman diagrams into account, which results in the form of the Drell-Yan representation for the cross section, and the use of the covariant parameterization of the deuteron polarization state. Numerical estimates of the radiative corrections are given in the case where event selection allows undetected particles (photons and electron-positron pairs) and the restriction on the lost invariant mass is used.

  18. Energy correction for the BGO calorimeter of DAMPE using an electron beam

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Ying; Zhang, Zhi-Yong; Wei, Yi-Feng; Wang, Chi; Zhang, Yun-Long; Wen, Si-Cheng; Wang, Xiao-Lian; Xu, Zi-Zong; Huang, Guang-Shun

    2016-08-01

    The DArk Matter Particle Explorer is an orbital indirect dark matter search experiment which measures the spectra of photons, electrons and positrons originating from deep space. The electromagnetic calorimeter (ECAL), made of bismuth germinate (BGO), is one of the key sub-detectors of DAMPE, and is designed for energy measurement with a large dynamic range from 5 GeV to 10 TeV. In this paper, methods for energy correction are discussed, in order to reconstruct the primary energy of the incident electrons. Different methods are chosen for the appropriate energy ranges. The correction results of Geant4 simulation and beam test data (at CERN) are presented. Supported by the Chinese 973 Program (2010CB833002), the Strategic Priority Research Program on Space Science of the Chinese Academy of Science (XDA04040202-4) and 100 Talents Program of CAS

  19. Implementation of electronic crosstalk correction for terra MODIS PV LWIR bands

    NASA Astrophysics Data System (ADS)

    Geng, Xu; Madhavan, Sriharsha; Chen, Na; Xiong, Xiaoxiong

    2015-09-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the fleet of NASA's Earth Observing Systems (EOS) in space. Terra MODIS has completed 15 years of operation far exceeding its design lifetime of 6 years. The MODIS Level 1B (L1B) processing is the first in the process chain for deriving various higher level science products. These products are used mainly in understanding the geophysical changes occurring in the Earth's land, ocean, and atmosphere. The L1B code is designed to carefully calibrate the responses of all the detectors of the 36 spectral bands of MODIS and provide accurate L1B radiances (also reflectances in the case of Reflective Solar Bands). To fulfill this purpose, Look Up Tables (LUTs), that contain calibration coefficients derived from both on-board calibrators and Earth-view characterized responses, are used in the L1B processing. In this paper, we present the implementation mechanism of the electronic crosstalk correction in the Photo Voltaic (PV) Long Wave InfraRed (LWIR) bands (Bands 27-30). The crosstalk correction involves two vital components. First, a crosstalk correction modular is implemented in the L1B code to correct the on-board Blackbody and Earth-View (EV) digital number (dn) responses using a linear correction model. Second, the correction coefficients, derived from the EV observations, are supplied in the form of LUTs. Further, the LUTs contain time stamps reflecting to the change in the coefficients assessed using the Noise Equivalent difference Temperature (NEdT) trending. With the algorithms applied in the MODIS L1B processing it is demonstrated that these corrections indeed restore the radiometric balance for each of the affected bands and substantially reduce the striping noise in the processed images.

  20. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography.

    PubMed

    Eibauer, Matthias; Hoffmann, Christian; Plitzko, Jürgen M; Baumeister, Wolfgang; Nickell, Stephan; Engelhardt, Harald

    2012-12-01

    Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å. PMID:23000705

  1. 3D resolved mapping of optical aberrations in thick tissues

    PubMed Central

    Zeng, Jun; Mahou, Pierre; Schanne-Klein, Marie-Claire; Beaurepaire, Emmanuel; Débarre, Delphine

    2012-01-01

    We demonstrate a simple method for mapping optical aberrations with 3D resolution within thick samples. The method relies on the local measurement of the variation in image quality with externally applied aberrations. We discuss the accuracy of the method as a function of the signal strength and of the aberration amplitude and we derive the achievable resolution for the resulting measurements. We then report on measured 3D aberration maps in human skin biopsies and mouse brain slices. From these data, we analyse the consequences of tissue structure and refractive index distribution on aberrations and imaging depth in normal and cleared tissue samples. The aberration maps allow the estimation of the typical aplanetism region size over which aberrations can be uniformly corrected. This method and data pave the way towards efficient correction strategies for tissue imaging applications. PMID:22876353

  2. Electron capture in 163Ho, overlap plus exchange corrections and neutrino mass

    NASA Astrophysics Data System (ADS)

    Faessler, Amand; Gastaldo, Loredana; Šimkovic, F.

    2015-01-01

    Holmium 163 offers perhaps the best chance to determine the neutrino mass by electron capture (EC). This contribution treats the EC in 163Holmium completely relativistic for the overlap and exchange corrections and the description of the bolometer spectrum. The theoretical expressions are derived consistently in second quantization with the help of Wick's theorem assuming single Slater determinants for the initial Ho and the final Dy atoms with holes in the final n{{s}1/2} and n{{p}1/2} states. One needs no hand waving arguments to derive the exchange terms. It seems, that for the first time the multiplicity of electrons in the orbital overlaps are included in the numerical treatment. Electron capture {{e}-}+p\\to n+{{ν }e} is proportional to the probability to find the captured electron in the parent atom at the nucleus. Non-relativistically this is only possible for n{{s}1/2} electron states. Relativistically also {{p}1/2} electrons have a probability due to the lower part of the relativistic electron spinor, which does not disappear at the origin. Moreover relativistic effects increase by contraction the electron probability at the nucleus. Capture from other states are suppressed. However they can be allowed with smaller intensity due to finite nuclear size. These probabilities are at least three orders smaller than the EC from 3{{s}1/2} and 3{{p}1/2} states. The purpose of this work is to give a consistent relativistic formulation and treatment of the overlap and exchange corrections for EC in 67163Ho to excited atomic states in 66163Dy and to show the influence of the different configurations in the final Dy states. The overlap and exchange corrections are essential for the calorimetric spectrum of the de-excitation of the hole states in dysprosium. The slope of the upper end of the spectrum, which contains the information on the electron neutrino mass, is different. In addition the effect of the finite energy resolution on the spectrum and on the

  3. Image-based EUVL aberration metrology

    NASA Astrophysics Data System (ADS)

    Fenger, Germain Louis

    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. As resolution of nanolithography systems increases, effects of wavefront aberrations on aerial image become more influential. The tolerance of such aberrations is governed by the requirements of features that are being imaged, often requiring lenses that can be corrected with a high degree of accuracy and precision. Resolution of lithographic systems is driven by scaling wavelength down and numerical aperture (NA) up. However, aberrations are also affected from the changes in wavelength and NA. Reduction in wavelength or increase in NA result in greater impact of aberrations, where the latter shows a quadratic dependence. Current demands in semiconductor manufacturing are constantly pushing lithographic systems to operate at the diffraction limit; hence, prompting a need to reduce all degrading effects on image properties to achieve maximum performance. Therefore, the need for highly accurate in-situ aberration measurement and correction is paramount. In this work, an approach has been developed in which several targets including phase wheel, phase disk, phase edges, and binary structures are used to generate optical images to detect and monitor aberrations in extreme ultraviolet (EUV) lithographic systems. The benefit of using printed patterns as opposed to other techniques is that the lithography system is tested under standard operating conditions. Mathematical models in conjunction with iterative lithographic simulations are used to determine pupil phase wavefront errors and describe them as combinations of Zernike polynomials.

  4. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    NASA Astrophysics Data System (ADS)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  5. Bulk Quantum Computation with Pulsed Electron Paramagnetic Resonance: Simulations of Single-Qubit Error Correction Schemes

    NASA Astrophysics Data System (ADS)

    Ishmuratov, I. K.; Baibekov, E. I.

    2015-12-01

    We investigate the possibility to restore transient nutations of electron spin centers embedded in the solid using specific composite pulse sequences developed previously for the application in nuclear magnetic resonance spectroscopy. We treat two types of systematic errors simultaneously: (i) rotation angle errors related to the spatial distribution of microwave field amplitude in the sample volume, and (ii) off-resonance errors related to the spectral distribution of Larmor precession frequencies of the electron spin centers. Our direct simulations of the transient signal in erbium- and chromium-doped CaWO4 crystal samples with and without error corrections show that the application of the selected composite pulse sequences can substantially increase the lifetime of Rabi oscillations. Finally, we discuss the applicability limitations of the studied pulse sequences for the use in solid-state electron paramagnetic resonance spectroscopy.

  6. New continuous-input current charge pump power-factor-correction electronic ballast

    SciTech Connect

    Qian, J.; Lee, F.C.; Yamauchi, Tokushi

    1999-03-01

    Continuous-input current charge pump power-factor-correction (CIC-CPPFC) electronic ballasts are proposed in this paper. The CPPFC circuit and unity power factor condition using the charge pump concept are derived and analyzed. The average lamp current control with switching frequency modulation was developed so that the low crest factor and constant lamp power operation can be achieved. The developed electronic ballast has continuous input current, so that a small line input filter can be used. The proposed CIC-CPPFC electronic ballast was implemented and tested with two 45-W fluorescent lamps. It is shown that the measured line input current harmonics satisfy IEC 1000-3-2 Class C requirements.

  7. Distributions and averages of electron density parameters: Explaining the effects of gradient corrections

    NASA Astrophysics Data System (ADS)

    Zupan, Ales; Burke, Kieron; Ernzerhof, Matthias; Perdew, John P.

    1997-06-01

    We analyze the electron densities n(r) of atoms, molecules, solids, and surfaces. The distributions of values of the Seitz radius rs=(3/4πn)1/3 and the reduced density gradient s=|∇n|/(2(3π2)1/3n4/3) in an electron density indicate which ranges of these variables are significant for physical processes. We also define energy-weighted averages of these variables, and , from which local spin density (LSD) and generalized gradient approximation (GGA) exchange-correlation energies may be estimated. The changes in these averages upon rearrangement of the nuclei (atomization of molecules or solids, stretching of bond lengths or lattice parameters, change of crystal structure, etc.) are used to explain why GGA corrects LSD in the way it does. A thermodynamic-like inequality (essentially d/>d/2) determines whether the gradient corrections drive a process forward. We use this analysis to explain why gradient corrections usually stretch bonds (but not for example H-H bonds), reduce atomization and surface energies, and raise energy barriers to formation at transition states.

  8. Combination of optical and electronic logic gates for error correction in multipath differential demodulation.

    PubMed

    Lize, Yannick K; Christen, Louis; Nazarathy, Moshe; Nuccio, Scott; Wu, Xiaoxia; Willner, Alan E; Kashyap, Raman

    2007-05-28

    We present an optical multipath error correction technique for differentially encoded modulation formats such as differential-phase-shift-keying (DPSK) and differential polarization shift keying (DPolSK) for fiber-based and free-space communication. This multipath error correction method combines optical and electronic logic gates. The scheme can easily be implemented using commercially available interferometers and high speed logic gates and does not require any data overhead therefore does not affect the effective bandwidth of the transmitted data. It is not merely compatible but also complementary to error correction codes commonly used in optical transmission systems such as forward-error-correction (FEC). The technique consists of separating the demodulation at the receiver in multiple paths. Each path consists of a Mach-Zehnder interferometer with a different integer bit delay used in each path. Some basic logic operations follow and the three paths are compared using a simple majority vote algorithm. Experimental results show that the scheme improves receiver sensitivity by 1.5 dB at BER of 10(-3),in back-to-back configuration. Numerical results indicate a 1.6 dB improvement in the presence of Chromatic Dispersion for a 25% increase in tolerance for a 3dB penalty from +/-1220 ps/nm to +/-1520 ps/nm. and a 0.35 dB improvement for back-to-back operation. PMID:19546995

  9. Combination of optical and electronic logic gates for error correction in multipath differential demodulation

    NASA Astrophysics Data System (ADS)

    Lize, Yannick K.; Christen, Louis; Nazarathy, Moshe; Nuccio, Scott; Wu, Xiaoxia; Willner, Alan E.; Kashyap, Raman

    2007-05-01

    We present an optical multipath error correction technique for differentially encoded modulation formats such as differential-phase-shift-keying (DPSK) and differential polarization shift keying (DPolSK) for fiber-based and free-space communication. This multipath error correction method combines optical and electronic logic gates. The scheme can easily be implemented using commercially available interferometers and high speed logic gates and does not require any data overhead therefore does not affect the effective bandwidth of the transmitted data. It is not merely compatible but also complementary to error correction codes commonly used in optical transmission systems such as forward-error-correction (FEC). The technique consists of separating the demodulation at the receiver in multiple paths. Each path consists of a Mach-Zehnder interferometer with a different integer bit delay used in each path. Some basic logic operations follow and the three paths are compared using a simple majority vote algorithm. Experimental results show that the scheme improves receiver sensitivity by 1.5 dB at BER of 10-3,in back-to-back configuration. Numerical results indicate a 1.6 dB improvement in the presence of Chromatic Dispersion for a 25% increase in tolerance for a 3dB penalty from ±1220 ps/nm to ±1520 ps/nm. and a 0.35 dB improvement for back-to-back operation.

  10. A new method for measuring absolute total electron-impact cross sections with forward scattering corrections

    SciTech Connect

    Ma, C.; Liescheski, P.B.; Bonham, R.A. )

    1989-12-01

    In this article we describe an experimental technique to measure the total electron-impact cross section by measurement of the attenuation of an electron beam passing through a gas at constant pressure with the unwanted forward scattering contribution removed. The technique is based on the different spatial propagation properties of scattered and unscattered electrons. The correction is accomplished by measuring the electron beam attenuation dependence on both the target gas pressure (number density) and transmission length. Two extended forms of the Beer--Lambert law which approximately include the contributions for forward scattering and for forward scattering plus multiple scattering from the gas outside the electron beam were developed. It is argued that the dependence of the forward scattering on the path length through the gas is approximately independent of the model used to describe it. The proposed methods were used to determine the total cross section and forward scattering contribution from argon (Ar) with 300-eV electrons. Our results are compared with those in the literature and the predictions of theory and experiment for the forward scattering and multiple scattering contributions. In addition, Monte Carlo simulations were performed as a further test of the method.

  11. Intrinsic corrections to optical guiding in a free-electron laser: Beam Research Program

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Jiuan; Scharlemann, E. T.; Sessler, A. M.

    The effect on optical guiding of the undulations of an electron beam in a free electron laser (FEL) is investigated. A model for a fully saturated FEL amplifier with no remaining gain is developed. The density of the electron beam includes the effects of both transverse and longitudinal undulation. The longitudinal density modulation is expressed in terms of the Bessel functions of zeta, where zeta = a(sub w)/2(1 + a(sub w)) is the shift of the electron phase in the electron bucket caused by its longitudinal undulation. The transverse density modulation is evaluated to second order in the ratio of undulation amplitude delta r to beam radial scale length r(sub b). The radiation field is calculated in terms of spatial modes proportional to exp(i(k + delta k + lk(sub w)z - iwt)), where l is an arbitrary integer. Here, delta k is the change of the wavenumber of the radiation caused by the electron bunches. Radially radiating modes with intensity on the order of (delta k/k(sub w))zeta sup 2 are found. Optical guiding is modified by the transverse undulations of the beam at second order in delta r(sub b), and by the longitudinal undulations to first order in delta k/k (sub w). For the usual FEL parameters, the correction is quite small.

  12. Monte Carlo calculations of correction factors for plastic phantoms in clinical photon and electron beam dosimetry.

    PubMed

    Araki, Fujio; Hanyu, Yuji; Fukuoka, Miyoko; Matsumoto, Kenji; Okumura, Masahiko; Oguchi, Hiroshi

    2009-07-01

    The purpose of this study is to calculate correction factors for plastic water (PW) and plastic water diagnostic-therapy (PWDT) phantoms in clinical photon and electron beam dosimetry using the EGSnrc Monte Carlo code system. A water-to-plastic ionization conversion factor k(pl) for PW and PWDT was computed for several commonly used Farmer-type ionization chambers with different wall materials in the range of 4-18 MV photon beams. For electron beams, a depth-scaling factor c(pl) and a chamber-dependent fluence correction factor h(pl) for both phantoms were also calculated in combination with NACP-02 and Roos plane-parallel ionization chambers in the range of 4-18 MeV. The h(pl) values for the plane-parallel chambers were evaluated from the electron fluence correction factor phi(pl)w and wall correction factors P(wall,w) and P(wall,pl) for a combination of water or plastic materials. The calculated k(pl) and h(pl) values were verified by comparison with the measured values. A set of k(pl) values computed for the Farmer-type chambers was equal to unity within 0.5% for PW and PWDT in photon beams. The k(pl) values also agreed within their combined uncertainty with the measured data. For electron beams, the c(pl) values computed for PW and PWDT were from 0.998 to 1.000 and from 0.992 to 0.997, respectively, in the range of 4-18 MeV. The phi(pl)w values for PW and PWDT were from 0.998 to 1.001 and from 1.004 to 1.001, respectively, at a reference depth in the range of 4-18 MeV. The difference in P(wall) between water and plastic materials for the plane-parallel chambers was 0.8% at a maximum. Finally, h(pl) values evaluated for plastic materials were equal to unity within 0.6% for NACP-02 and Roos chambers. The h(pl) values also agreed within their combined uncertainty with the measured data. The absorbed dose to water from ionization chamber measurements in PW and PWDT plastic materials corresponds to that in water within 1%. Both phantoms can thus be used as a

  13. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    NASA Astrophysics Data System (ADS)

    Hahn, Torsten; Liebing, Simon; Kortus, Jens; Pederson, Mark

    The correction of the self-interaction error that is inherent to all standard density functional theory (DFT) calculations is an object of increasing interest. We present our results on the application of the recently developed Fermi-orbital based approach for the self-interaction correction (FO-SIC) to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. Our focus lies on the direct estimation of the ionization potential from orbital eigenvalues and on the ordering of electronic levels in metal-organic molecules. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable. Support by DFG FOR1154 is greatly acknowledged.

  14. The free electron laser: a system capable of determining the gold standard in laser vision correction

    NASA Astrophysics Data System (ADS)

    Fowler, W. Craig; Rose, John G.; Chang, Daniel H.; Proia, Alan D.

    1999-06-01

    Introduction. In laser vision correction surgery, lasers are generally utilized based on their beam-tissue interactions and corneal absorption characteristics. Therefore, the free electron laser, with its ability to provide broad wavelength tunability, is a unique research tool for investigating wavelengths of possible corneal ablation. Methods. Mark III free electron laser wavelengths between 2.94 and 6.7 μm were delivered in serial 0.1 μm intervals to corneas of freshly enucleated porcine globes. Collateral damage, ablation depth, and ablation diameter were measured in histologic sections. Results. The least collateral damage (12-13 μm) was demonstrated at three wavelengths: 6.0, 6.1 (amide I), and 6.3 μm. Minimal collateral damage (15 μm) was noted at 2.94 μm (OH-stretch) and at 6.2 μm. Slightly greater collateral damage was noted at 6.45 μm (amide II), as well as at the 5.5-5.7 μm range, but this was still substantially less than the collateral damage noted at the other wavelengths tested. Conclusions. Our results suggest that select mid-infrared wavelengths have potential for keratorefractive surgery and warrant additional study. Further, the free electron laser's ability to allow parameter adjustment in the far-ultraviolet spectrum may provide unprecedented insights toward establishing the gold-standard parameters for laser vision correction surgery.

  15. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry

    SciTech Connect

    Araki, Fujio

    2008-09-15

    Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R{sub 50}<4 g/cm{sup 2}. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, P{sub wall}, in water is assumed to be unity and the replacement correction factor, P{sub repl}, is taken to be unity for well-guarded plane-parallel chambers, at all measurement depths. This study calculated P{sub wall} and P{sub repl} for NACP-02, Markus, and Roos plane-parallel chambers in clinical electron dosimetry using the EGSnrc Monte Carlo code system. The P{sub wall} values for the plane-parallel chambers increased rapidly as a function of depth in water, especially at lower energy. The value around R{sub 50} for NACP-02 was about 10% greater than unity at 4 MeV. The effect was smaller for higher electron energies. Similarly, P{sub repl} values with depth increased drastically at the region with the steep dose gradient for lower energy. For Markus P{sub repl} departed more than 10% from unity close to R{sub 50} due to the narrow guard ring width. P{sub repl} for NACP-02 and Roos was close to unity in the plateau region of depth-dose curves that includes a reference depth, d{sub ref}. It was also found that the ratio of the dose to water and the dose to the sensitive volume in the air cavity for the plane-parallel chambers, D{sub w}/[D{sub air}]{sub pp}, at d{sub ref} differs significantly from that assumed by electron dosimetry protocols.

  16. Effects, determination, and correction of count rate nonlinearity in multi-channel analog electron detectors

    SciTech Connect

    Reber, T. J.; Plumb, N. C.; Waugh, J. A.; Dessau, D. S.

    2014-04-15

    Detector counting rate nonlinearity, though a known problem, is commonly ignored in the analysis of angle resolved photoemission spectroscopy where modern multichannel electron detection schemes using analog intensity scales are used. We focus on a nearly ubiquitous “inverse saturation” nonlinearity that makes the spectra falsely sharp and beautiful. These artificially enhanced spectra limit accurate quantitative analysis of the data, leading to mistaken spectral weights, Fermi energies, and peak widths. We present a method to rapidly detect and correct for this nonlinearity. This algorithm could be applicable for a wide range of nonlinear systems, beyond photoemission spectroscopy.

  17. Self-Energy Correction to Momentum-Density Distribution of Positron-Electron Pairs

    NASA Astrophysics Data System (ADS)

    Tang, Z.; Nagai, Y.; Inoue, K.; Toyama, T.; Chiba, T.; Saito, M.; Hasegawa, M.

    2005-03-01

    Positron two-dimensional angular correlation of annihilation radiation (2D ACAR), i.e., the 2D projection of the electron momentum densities sampled by positron, in Si is employed to verify the prediction of the density functional theory within the local-density approximation (LDA). Carefully conducted test shows that the LDA introduces small but definite discrepancies to the 2D-ACAR anisotropies. Self-energy calculation using the GW method indicates that density-fluctuation contributes anisotropic momentum-density correction and thus improves the agreement between theory and experiment. These results provide valuable annotations to the arguments concerning the accuracy and validity of the LDA and GW schemes.

  18. $ANBA; a rapid, combined data acquisition and correction program for the SEMQ electron microprobe

    USGS Publications Warehouse

    McGee, James J.

    1983-01-01

    $ANBA is a program developed for rapid data acquisition and correction on an automated SEMQ electron microprobe. The program provides increased analytical speed and reduced disk read/write operations compared with the manufacturer's software, resulting in a doubling of analytical throughput. In addition, the program provides enhanced analytical features such as averaging, rapid and compact data storage, and on-line plotting. The program is described with design philosophy, flow charts, variable names, a complete program listing, and system requirements. A complete operating example and notes to assist in running the program are included.

  19. Optical and electronic error correction schemes for highly parallel access memories

    NASA Astrophysics Data System (ADS)

    Neifeld, Mark A.; Hayes, Jerry D.

    1993-11-01

    We have fabricated and tested an optically addressed, parallel electronic Reed-Solomon decoder for use with parallel access optical memories. A comparison with various serial implementations has demonstrated that for many instances of code block size and error correction capability, the parallel approach is superior from the perspectives of VLSI layout area and decoding latency. The demonstrated Reed-Solomon parallel pipeline decoder operates on 60 bit input words and has been demonstrated at a clock rate of 5 MHz yielding a demonstrated data rate of 300 Mbps.

  20. Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms

    SciTech Connect

    Thierfelder, C.; Schwerdtfeger, P.

    2010-12-15

    We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al. [Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.

  1. Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms

    NASA Astrophysics Data System (ADS)

    Thierfelder, C.; Schwerdtfeger, P.

    2010-12-01

    We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.59.2707 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.

  2. Electron affinity of (7)Li calculated with the inclusion of nuclear motion and relativistic corrections.

    PubMed

    Stanke, Monika; Kedziera, Dariusz; Bubin, Sergiy; Adamowicz, Ludwik

    2007-10-01

    Explicitly correlated Gaussian functions have been used to perform very accurate variational calculations for the ground states of (7)Li and (7)Li(-). The nuclear motion has been explicitly included in the calculations (i.e., they have been done without assuming the Born-Oppenheimer (BO) approximation). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. This led to a noticeable improvement of the previously determined variational upper bound to the nonrelativistic energy of Li(-). The Li energy obtained in the calculations matches those of the most accurate results obtained with Hylleraas functions. The finite-mass (non-BO) wave functions were used to calculate the alpha(2) relativistic corrections (alpha=1c). With those corrections and the alpha(3) and alpha(4) corrections taken from Pachucki and Komasa [J. Chem. Phys. 125, 204304 (2006)], the electron affinity (EA) of (7)Li was determined. It agrees very well with the most recent experimental EA. PMID:17919011

  3. Statistical analysis of the electronic crosstalk correction in Terra MODIS Band 27

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Sun, Junqiang; Xiong, Xiaoxiong; Wenny, Brian N.; Wu, Aisheng

    2014-10-01

    The first MODerate-resolution Imaging Spectroradiometer (MODIS), also known as the Proto-Flight model (PFM), is on-board the Terra spacecraft and has completed 14 years of on orbit flight as of December 18, 2013. MODIS remotely senses the Earth in 36 spectral bands, with a wavelength range from 0.4 μm to 14.4 μm. The 36 bands can be subdivided into two groups based on their spectral responsivity as Reflective Solar Bands (RSBs) and Thermal Emissive Bands (TEBs). Band 27 centered at 6.77 μm is a TEB used to study the global water vapor distribution. It was found recently that this band has been severely affected by electronic crosstalk. The electronic crosstalk magnitude, its on-orbit change and calibration impact have been well characterized in our previous studies through the use of regularly scheduled lunar observations. Further, the crosstalk correction was implemented in Earth view (EV) images and quantified the improvements of the same. However, improvements remained desirable on several fronts. Firstly, the effectiveness of the correction needed to be analyzed spatially and radiometrically over a number of scenes. Also, the temporal aspect of the correction had to be investigated in a rigorous manner. In order to address these issues, a one-orbit analysis was performed on the Level 1A (L1A) scene granules over a ten year period from 2003 through 2012. Results have been quantified statistically and show a significant reduction of image striping, as well as removal of leaked signal features from the neighboring bands. Statistical analysis was performed by analyzing histograms of the one-orbit granules at a scene and detector level before and after correction. The comprehensive analysis and results reported in this paper will be very helpful to the scientific community in understanding the impacts of crosstalk correction on various scenes and could potentially be applied for future improvements of band 27 calibration and, therefore, its retrieval for the

  4. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  5. Sensing Phase Aberrations behind Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  6. Comparison of Aberrations After Standard and Customized Refractive Surgery

    NASA Astrophysics Data System (ADS)

    Fang, L.; He, X.; Wang, Y.

    2013-09-01

    To detect possible differences in residual wavefront aberrations between standard and customized laser refractive surgery based onmathematical modeling, the residual optical aberrations after conventional and customized laser refractive surgery were compared accordingto the ablation profile with transition zone. The results indicated that ablation profile has a significant impact on the residual aberrations.The amount of residual aberrations for conventional correction is higher than that for customized correction. Additionally, the residualaberrations for high myopia eyes are markedly larger than those for moderate myopia eyes. For a 5 mm pupil, the main residual aberrationterm is coma and yet it is spherical aberration for a 7 mm pupil. When the pupil diameter is the same as optical zone or greater, themagnitudes of residual aberrations is obviously larger than that for a smaller pupil. In addition, the magnitudes of the residual fifth orsixth order aberrations are relatively large, especially secondary coma in a 6 mm pupil and secondary spherical aberration in a 7 mm pupil.Therefore, the customized ablation profile may be superior to the conventional correction even though the transition zone and treatmentdecentration are taken into account. However, the customized ablation profile will still induce significant amount of residual aberrations.

  7. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  8. Unitarily Invariant Self-Interaction Corrections to the Uniform Electron Gas

    NASA Astrophysics Data System (ADS)

    Pederson, Mark; Sun, Jianwei

    2015-03-01

    A new formulation of the self-interaction correction (SIC) to density functional theory (DFT) based upon symmetrically orthogonalized ``Fermi-Löwdin orbitals'' (FLO) is reviewed. This method leads to an energy that is explicitly unitarily invariant and size extensive and allows for implementation of SIC with the same efficient scaling offered by DFT. Initial applications to small molecules provided orbitals that are similar to past results but yielded SIC-LDA cohesive energies that are competitive with GGA results. Investigations on a uniform electron gas (UEG) provide an additional challenging limit to consider. Results from FLO-based SIC calculations on the UEG, enclosed in a finite box, are presented. In accord with Ref., the FLO-based formulation of SIC finds that localized Wannier orbitals lead to lower energies than plane waves in the exchange-only limit We compare total energies of the uniform electron gas, calculated within DFT, FLO-SIC-DFT, and HF, as a function of functional (including MGGAs), electron number, volume, and Fermi-surface shape.

  9. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson-Gilford progeria syndrome.

    PubMed

    Finley, Jahahreeh

    2015-09-01

    AMPK, a master regulator of cellular metabolism which has been shown to activate PKC-theta (θ) and is essential for T cell activation, may modulate the splicing activities of SRp55 as well as enhance a p32-mediated inhibition of ASF/SF2-induced alternative splicing, potentially correcting aberrant alternative splicing in the LMNA gene and reactivating latent viral HIV-1 reservoirs. Moreover, similar epigenetic modifications and cell cycle regulators also characterize the analogous stages of premature senescence in progeroid cells and latency in HIV-1 infected T cells. AMPK-activating compounds including metformin and resveratrol may thus embody a novel treatment paradigm linking the pathophysiology of HGPS with that of HIV-1 latency. PMID:26115946

  10. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers

    NASA Astrophysics Data System (ADS)

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-01

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  11. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers.

    PubMed

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-01

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons. PMID:27155619

  12. Covariance Matrix Adaptation Evolutionary Strategy for Drift Correction of Electronic Nose Data

    NASA Astrophysics Data System (ADS)

    Di Carlo, S.; Falasconi, M.; Sanchez, E.; Sberveglieri, G.; Scionti, A.; Squillero, G.; Tonda, A.

    2011-09-01

    Electronic Noses (ENs) might represent a simple, fast, high sample throughput and economic alternative to conventional analytical instruments [1]. However, gas sensors drift still limits the EN adoption in real industrial setups due to high recalibration effort and cost [2]. In fact, pattern recognition (PaRC) models built in the training phase become useless after a period of time, in some cases a few weeks. Although algorithms to mitigate the drift date back to the early 90 this is still a challenging issue for the chemical sensor community [3]. Among other approaches, adaptive drift correction methods adjust the PaRC model in parallel with data acquisition without need of periodic calibration. Self-Organizing Maps (SOMs) [4] and Adaptive Resonance Theory (ART) networks [5] have been already tested in the past with fair success. This paper presents and discusses an original methodology based on a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [6], suited for stochastic optimization of complex problems.

  13. Note: An improved calibration system with phase correction for electronic transformers with digital output

    NASA Astrophysics Data System (ADS)

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  14. Note: An improved calibration system with phase correction for electronic transformers with digital output

    SciTech Connect

    Cheng, Han-miao Li, Hong-bin

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  15. Note: An improved calibration system with phase correction for electronic transformers with digital output.

    PubMed

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications. PMID:26329248

  16. Techniques for the correction of topographical effects in scanning Auger electron microscopy

    NASA Technical Reports Server (NTRS)

    Prutton, M.; Larson, L. A.; Poppa, H.

    1983-01-01

    A number of ratioing methods for correcting Auger images and linescans for topographical contrast are tested using anisotropically etched silicon substrates covered with Au or Ag. Thirteen well-defined angles of incidence are present on each polyhedron produced on the Si by this etching. If N1 electrons are counted at the energy of an Auger peak and N2 are counted in the background above the peak, then N1, N1 - N2, (N1 - N2)/(N1 + N2) are measured and compared as methods of eliminating topographical contrast. The latter method gives the best compensation but can be further improved by using a measurement of the sample absorption current. Various other improvements are discussed.

  17. Nuclear and QED corrections to the bound-electron g factor

    NASA Astrophysics Data System (ADS)

    Zatorski, Jacek; Oreshkina, Natalia S.; Keitel, Christoph H.; Harman, Zoltán

    2012-06-01

    We calculate nuclear shape and quantum electrodynamic corrections to the g factor of a bound electron [1,2]. These theoretical studies are motivated by the current improvement of experimental possibilities: on the one hand, in a recent Penning trap measurement [2], the g factor of ^28Si^13+ has been determined with an unprecedented 5 .10-10 relative uncertainty. A novel experimental technique will further improve accuracy to the 10-11 level. On the other hand, experiments with ions as heavy as ^238U^91+ will be performed soon at the HITRAP-FAIR facility. For such heavy ions, nuclear effects play an important role. The leading relativistic nuclear deformation correction has been derived analytically and also its influence on one-loop quantum electrodynamic terms has been evaluated. We present results for medium- and high-Z hydrogenlike ions, which become significant already for mid-Z ions, and for very heavy elements it even reaches the 10-6 level, as we show in [1].[4pt] [1] J. Zatorski, N. S. Oreshkina, C. H. Keitel, and Z. Harman, Phys. Rev. Lett., in press; arXiv:1110.3330 [2] S. Sturm, A. Wagner, B. Schabinger, J. Zatorski, et al., Phys. Rev. Lett. 107, 023002 (2011).

  18. Mask CD uniformity improvement by electron scanning exposure based Global Loading Effect Correction

    NASA Astrophysics Data System (ADS)

    Li, Rivan; Tian, Eric; Shi, Irene; Guo, Eric; Lu, Max

    2015-07-01

    Critical Dimension (CD) Uniformity is one of the necessary parameters to assure good performance and reliable functionality of any integrated circuit (IC), and towards the advanced technology node 28nm and beyond, corresponding CD Uniformity becomes more and more crucial. It is found that bad mask CD Uniformity is a significant error source at 28nm process. The CD Uniformity on mask, if not controlled well, will badly impact wafer CD performance, and it has been well-studied that CD Uniformity issue from gate line-width in transistors would affect the device performance directly. In this paper we present a novel solution for mask global CD uniformity error correction, which is called as global loading effect correction (GLEC) method and applied nesting in the mask exposure map during the electron beam exposure. There are factors such as global chip layout, writing sequence and chip pattern density distribution (Global Loading), that work on the whole mask CD Uniformity, especially Global Loading is the key factor related to mask global CD error. From our experimental results, different pattern density distribution on mask significantly influenced the final mask CD Uniformity: the mask with undulating pattern density distribution provides much worse CD Uniformity than that with uniform one. Therefore, a GLEC model based on pattern density has been created to compensate the global error during the electron beam exposure, which has been proved to be efficacious to improve mask global CD Uniformity performance. Furthermore, it 's also revealed that pattern type is another important impact factor, and GLEC coefficient need be modified due to the specific pattern type (e.g. dense line-space only, iso-space only or an average of them) to improve the corresponding mask CD uniformity.

  19. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States.

    PubMed

    Tuna, Deniz; Lu, You; Koslowski, Axel; Thiel, Walter

    2016-09-13

    The semiempirical orthogonalization-corrected OMx methods have recently been shown to perform well in extensive ground-state benchmarks. They can also be applied to the computation of electronically excited states when combined with a suitable multireference configuration interaction (MRCI) treatment. We report on a comprehensive evaluation of the performance of the OMx/MRCI methods for electronically excited states. The present benchmarks cover vertical excitation energies, excited-state equilibrium geometries (including an analysis of significant changes between ground- and excited-state geometries), minimum-energy conical intersections, ground- and excited-state zero-point vibrational energies, and 0-0 transition energies for a total of 520 molecular structures and 412 excited states. For comparison, we evaluate the TDDFT/B3LYP method for all benchmark sets, and the CC2, MRCISD, and CASPT2 methods for some of them. We find that the current OMx/MRCI methods perform reasonably well for many of the excited-state properties. However, in comparison to the first-principles methods, there are also a number of shortcomings that should be addressed in future developments. PMID:27380455

  20. Determination of the ion recombination correction factor for intraoperative electron beams.

    PubMed

    Ghorbanpour Besheli, Majid; Simiantonakis, Ioannis; Zink, Klemens; Budach, Wilfried

    2016-03-01

    The ion recombination correction factor (ks) is determined for the Advanced Markus chamber exposed to electron beams produced by a dedicated intraoperative radiation therapy (IORT) accelerator at medium dose-per-pulse values. The authors evaluate five different methods. Three of them are known as Boag's modified expressions, which are based on the two-voltage-analysis method and include the free-electron component. In the fourth method the IAEA TRS-398 protocol is applied, which uses the same two-voltage-analysis method but ignores the free-electron component, and finally the fifth approach is known as the Jaffé plot. ks values were obtained in the range of 4 mGy/pulse to 42 mGy/pulse and were compared with ks values determined by means of radiochromic films, which are independent of the dose rate. It was found that ks values that resulted from the three Boag's modified expressions and the TRS-398 protocol deviated by on average 1.5% and 1.4%, respectively, from the reference ks values based on film dosimetry. These results are within the estimated relative uncertainty of ±3%. On the other hand, the absolute deviation of each method depends on the dose-per-pulse value at which the method is investigated. In conclusion, in the medium dose-per-pulse range all Boag's modified expressions could be used for ks determination. Above a dose-per-pulse value of 35 mGy/pulse, the TRS-398 approach should be avoided. At 27 mGy/pulse and a maximum operation voltage of 300 V the ks value resulting from the Jaffé plot showed a 0.3% deviation from the reference value. More investigation on the Jaffé plot is necessary at higher dose-per-pulse values. PMID:26164499

  1. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CORRECTING ELECTRONIC DATA (HAND ENTRY AND SCANNED) (UA-D-25.0)

    EPA Science Inventory

    The purpose of this SOP is to define the procedure to provide a standard method for correcting electronic data errors. The procedure defines (1) when electronic data may be corrected and by whom, (2) the process of correcting the data, and (3) the process of documenting the corr...

  2. Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Blanco, Francisco; Ellis-Gibbings, Lilian; García, Gustavo

    2016-02-01

    An improvement of the screening-corrected Additivity Rule (SCAR) is proposed for calculating electron and positron scattering cross sections from polyatomic molecules within the independent atom model (IAM), following the analysis of numerical solutions to the three-dimensional Lippmann-Schwinger equation for multicenter potentials. Interference contributions affect all the considered energy range (1-300 eV); the lower energies where the atomic screening is most effective and higher energies, where interatomic distances are large compared to total cross sections and electron wavelengths. This correction to the interference terms provides a significant improvement for both total and differential elastic cross sections at these energies.

  3. 15 CFR 30.9 - Transmitting and correcting Electronic Export Information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal... fatal error messages or otherwise transmit corrections to the AES constitutes a violation of...

  4. 15 CFR 30.9 - Transmitting and correcting Electronic Export Information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal... fatal error messages or otherwise transmit corrections to the AES constitutes a violation of...

  5. 15 CFR 30.9 - Transmitting and correcting Electronic Export Information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal... fatal error messages or otherwise transmit corrections to the AES constitutes a violation of...

  6. 15 CFR 30.9 - Transmitting and correcting Electronic Export Information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... authorized agent has received an error message from AES, the corrections shall take place as required. Fatal... fatal error messages or otherwise transmit corrections to the AES constitutes a violation of the... message from AES, the corrections shall take place as required. Fatal error messages are sent to...

  7. An electronic nose for reliable measurement and correct classification of beverages.

    PubMed

    Mamat, Mazlina; Samad, Salina Abdul; Hannan, Mahammad A

    2011-01-01

    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results. PMID:22163964

  8. An Electronic Nose for Reliable Measurement and Correct Classification of Beverages

    PubMed Central

    Mamat, Mazlina; Samad, Salina Abdul; Hannan, Mahammad A.

    2011-01-01

    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results. PMID:22163964

  9. Enabling scanning electron microscope contour-based optical proximity correction models

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Jantzen, Kenneth

    2015-04-01

    A scanning electron microscope (SEM) is the metrology tool used to accurately characterize very fine structures on wafers, usually by extracting one critical dimension (CD) per SEM image. This approach for optical proximity correction (OPC) modeling requires many measurements resulting in a lengthy cycle time for data collection, review, and cleaning, and faces reliability issues when dealing with critical two-dimensional (2-D) structures. An alternative to CD-based metrology is to use SEM image contours for OPC modeling. To calibrate OPC models with contours, reliable contours matched to traditional CD-SEM measurements are required along with a method to choose structure and site selections (number, type, and image space coverage) specific to a contour-based OPC model calibration. The potential of SEM contour model-based calibration is illustrated by comparing two contour-based models to reference models, one empirical model and a second rigorous simulation-based model. The contour-based models are as good as or better than a CD-based model with a significant advantage in the prediction of complex 2-D configurations with a reduced metrology work load.

  10. Properties of second-order geometrical aberrations

    NASA Astrophysics Data System (ADS)

    Grammatin, A. P.

    1994-08-01

    This paper analyzes the properties of second-order aberrations that arise in centered optical systems that contain an aspherical surface whose sagittal equation contains a term proportional to the cube of the distance from a surface point to the optical axis. It is shown that the second-order spherical aberration decreases from the center of the field to its edge. No astigmatism appears in wide, oblique beams in the central part of the field. Coma increases linearly from zero at the center of the field to a value equal to the spherical aberration, and then remains constant over the field. A proof is given of the possibility of correcting the image curvature by using an aspherical surface of the type described above.

  11. Electron holography for fields in solids: problems and progress.

    PubMed

    Lichte, Hannes; Börrnert, Felix; Lenk, Andreas; Lubk, Axel; Röder, Falk; Sickmann, Jan; Sturm, Sebastian; Vogel, Karin; Wolf, Daniel

    2013-11-01

    Electron holography initially was invented by Dennis Gabor for solving the problems raised by the aberrations of electron lenses in Transmission Electron Microscopy. Nowadays, after hardware correction of aberrations allows true atomic resolution of the structure, for comprehensive understanding of solids, determination of electric and magnetic nanofields is the most challenging task. Since fields are phase objects in the TEM, electron holography is the unrivaled method of choice. After more than 40 years of experimental realization and steady improvement, holography is increasingly contributing to these highly sophisticated and essential questions in materials science, as well to the understanding of electron waves and their interaction with matter. PMID:23831133

  12. Profile correction to electron temperature and enhancement factor in soft x-ray pulse-height-analysis measurements in tokamaks

    SciTech Connect

    Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.

    1988-04-01

    Because soft x-ray pulse-height-analysis (PHA) spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. Assuming that the profile Ansatz for the electron temperature and density is of the form n/sub eo/(1-(ra)/sup 2/)/sup ..cap alpha../ and kT/sub eo/(1--(ra)/sup 2/)/sup ..beta../, we obtain the correction factors for the electron temperature and the enhancement factor as a function of the profile coefficients ..cap alpha.. and ..beta.. and the energy at which the evaluation was made. The corrected values of the temperature are typically between 1 to 10% higher than the values derived from the raw chordal spectra. We also correct the measured radiation intensity for the profile effects. Finally, the spectrum distortion due to pulse pile-up effects is evaluated. A set of curves is given from which the distortion of the spectrum can be obtained, if the electron temperature, the Be or Al filter thickness, and the electronic parameters of the acquisition system are known. 7 refs., 23 figs.

  13. 46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SHIPPING IN FOREIGN COMMERCE NVOCC SERVICE ARRANGEMENTS Filing Requirements § 531.8 Amendment, correction... the NSA shall be re-rated according to the otherwise applicable tariff provisions. (e) If the... 46 Shipping 9 2010-10-01 2010-10-01 false Amendment, correction, cancellation, and...

  14. Electrostatic mirror objective with eliminated spherical and axial chromatic aberrations.

    PubMed

    Bimurzaev, Seitkerim B; Serikbaeva, Gulnur S; Yakushev, Evgeniy M

    2003-01-01

    Computational formulae for the coefficients of the third-order spherical aberration and the second-order axial chromatic aberration are presented for an axially symmetric electrostatic electron mirror. A technique for eliminating the high-order derivatives of the potential axial distribution in mirror systems from the integrands is described. Conditions for elimination of spherical and axial chromatic aberrations, either separately or simultaneously, are found for a three-electrode axially symmetric mirror composed of coaxial cylinders of the same diameter. A principal scheme of the transmission electron microscope, where an electrostatic electron mirror serves as its objective, is presented. PMID:14599097

  15. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams

    SciTech Connect

    Zink, K.; Wulff, J.

    2011-02-15

    Purpose: In recent years, several Monte Carlo studies have been published concerning the perturbation corrections of a parallel-plate chamber in clinical electron beams. In these studies, a strong depth dependence of the relevant correction factors (p{sub wall} and p{sub cav}) for depth beyond the reference depth is recognized and it has been shown that the variation with depth is sensitive to the choice of the chamber's effective point of measurement. Recommendations concerning the positioning of parallel-plate ionization chambers in clinical electron beams are not the same for all current dosimetry protocols. The IAEA TRS-398 as well as the IPEM protocol and the German protocol DIN 6800-2 interpret the depth of measurement within the phantom as the water equivalent depth, i.e., the nonwater equivalence of the entrance window has to be accounted for by shifting the chamber by an amount {Delta}z. This positioning should ensure that the primary electrons traveling from the surface of the water phantom through the entrance window to the chamber's reference point sustain the same energy loss as the primary electrons in the undisturbed phantom. The objective of the present study is the determination of the shift {Delta}z for a NACP-02 chamber and the calculation of the resulting wall perturbation correction as a function of depth. Moreover, the contributions of the different chamber walls to the wall perturbation correction are identified. Methods: The dose and fluence within the NACP-02 chamber and a wall-less air cavity is calculated using the Monte Carlo code EGSnrc in a water phantom at different depths for different clinical electron beams. In order to determine the necessary shift to account for the nonwater equivalence of the entrance window, the chamber is shifted in steps {Delta}z around the depth of measurement. The optimal shift {Delta}z is determined from a comparison of the spectral fluence within the chamber and the bare cavity. The wall perturbation

  16. Effect of optical aberrations on image quality and visual performance

    NASA Astrophysics Data System (ADS)

    Ravikumar, Sowmya

    In addition to the effects of diffraction, retinal image quality in the human eye is degraded by optical aberrations. Although the paraxial geometric optics description of defocus consists of a simple blurred circle whose size determines the extent of blur, in reality the interactions between monochromatic and chromatic aberrations create a complex pattern of retinal image degradation. My thesis work hypothesizes that although both monochromatic and chromatic optical aberrations in general reduce image quality from best achievable, the underlying causes of retinal image quality degradation are characteristic of the nature of the aberration, its interactions with other aberrations as well as the composition of the stimulus. To establish a controlled methodology, a computational model of the retinal image with various levels of aberrations was used to create filters equivalent to those produced by real optical aberrations. Visual performance was measured psychophysically by using these special filters that separately modulated amplitude and phase in the retinal image. In order to include chromatic aberration into the optical interactions, a computational polychromatic model of the eye was created and validated. The model starts with monochromatic wavefront maps and derives a composite white light point-spread function whose quality was assessed using metrics of image quality. Finally, in order to assess the effectiveness of simultaneous multifocal intra-ocular lenses in correcting the eye's optical aberrations, a polychromatic computational model of a pseudophakic eye was constructed. This model incorporated the special chromatic properties unique to an eye corrected with hybrid refractive-diffractive optical elements. Results showed that normal optical aberrations reduced visual performance not only by reducing image contrast but also by altering the phase structure of the image. Longitudinal chromatic aberration had a greater effect on image quality in isolation

  17. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  18. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules II: Non-Empirically Tuned Long-Range Corrected Hybrid Functionals.

    PubMed

    Gallandi, Lukas; Marom, Noa; Rinke, Patrick; Körzdörfer, Thomas

    2016-02-01

    The performance of non-empirically tuned long-range corrected hybrid functionals for the prediction of vertical ionization potentials (IPs) and electron affinities (EAs) is assessed for a set of 24 organic acceptor molecules. Basis set-extrapolated coupled cluster singles, doubles, and perturbative triples [CCSD(T)] calculations serve as a reference for this study. Compared to standard exchange-correlation functionals, tuned long-range corrected hybrid functionals produce highly reliable results for vertical IPs and EAs, yielding mean absolute errors on par with computationally more demanding GW calculations. In particular, it is demonstrated that long-range corrected hybrid functionals serve as ideal starting points for non-self-consistent GW calculations. PMID:26731340

  19. Anisoplanatism in adaptive optics systems due to pupil aberrations

    SciTech Connect

    Bauman, B

    2005-08-01

    Adaptive optics systems typically include an optical relay that simultaneously images the science field to be corrected and also a set of pupil planes conjugate to the deformable mirror of the system. Often, in the optical spaces where DM's are placed, the pupils are aberrated, leading to a displacement and/or distortion of the pupil that varies according to field position--producing a type of anisoplanatism, i.e., a degradation of the AO correction with field angle. The pupil aberration phenomenon is described and expressed in terms of Seidel aberrations. An expression for anisoplanatism as a function of pupil distortion is derived, an example of an off-axis parabola is given, and a convenient method for controlling pupil-aberration-generated anisoplanatism is proposed.

  20. ESFRAD. FORTRAN code for calculation of QED corrections to polarized ep-scattering by the electron structure function method

    SciTech Connect

    A. Afanasev, I. Akushevich, A. Ilyichev, N. Merenkov

    2003-09-01

    The main features of the electron structure method for calculations of the higher order QED radiative effects to polarized deep-inelastic ep-scattering are presented. A new FORTRAN code ESFRAD based on this method was developed. A detailed quantitative comparison between the results of ESFRAD and other methods implemented in the codes POLRAD and RADGEN for calculation of the higher order radiative corrections is performed.

  1. Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM

    PubMed Central

    Li, Xueming; Mooney, Paul; Zheng, Shawn; Booth, Chris; Braunfeld, Michael B.; Gubbens, Sander; Agard, David A.; Cheng, Yifan

    2013-01-01

    In recent work with large high symmetry viruses, single particle electron cryomicroscopy (cryoEM) has reached the milestone of determining near atomic resolution structures by allowing direct fitting of atomic models into experimental density maps. However, achieving this goal with smaller particles of lower symmetry remains extraordinarily challenging. Using a newly developed single electron counting detector, we confirm that electron beam induced motion significantly degrades resolution and, importantly, show how the combination of rapid readout and nearly noiseless electron counting allow image blurring to be corrected to subpixel accuracy. Thus, intrinsic image information can be restored to high resolution (Thon rings visible to ~3 Å). Using this approach we determined a 3.3 Å resolution structure of a ~700 kDa protein with D7 symmetry showing clear side chain density. Our method greatly enhances image quality and data acquisition efficiency - key bottlenecks in applying near atomic resolution cryoEM to a broad range of protein samples. PMID:23644547

  2. Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions

    SciTech Connect

    Wendelen, W.; Bogaerts, A.; Mueller, B. Y.; Rethfeld, B.; Autrique, D.

    2012-06-01

    A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two- and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission.

  3. Nuclear-polarization correction to the bound-electron g factor in heavy hydrogenlike ions.

    PubMed

    Nefiodov, A V; Plunien, G; Soff, G

    2002-08-19

    The influence of nuclear polarization on the bound-electron g factor in heavy hydrogenlike ions is investigated. Numerical calculations are performed for the K- and L-shell electrons taking into account the dominant virtual nuclear excitations. This determines the ultimate limit for tests of QED utilizing measurements of the bound-electron g factor in highly charged ions. PMID:12190457

  4. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  5. A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions

    NASA Technical Reports Server (NTRS)

    Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu

    1994-01-01

    A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.

  6. Automatic estimation and correction of anisotropic magnification distortion in electron microscopes.

    PubMed

    Grant, Timothy; Grigorieff, Nikolaus

    2015-11-01

    We demonstrate a significant anisotropic magnification distortion, found on an FEI Titan Krios microscope and affecting magnifications commonly used for data acquisition on a Gatan K2 Summit detector. We describe a program (mag_distortion_estimate) to automatically estimate anisotropic magnification distortion from a set of images of a standard gold shadowed diffraction grating. We also describe a program (mag_distortion_correct) to correct for the estimated distortion in collected images. We demonstrate that the distortion present on the Titan Krios microscope limits the resolution of a set of rotavirus VP6 images to ∼7 Å, which increases to ∼3 Å following estimation and correction of the distortion. We also use a 70S ribosome sample to demonstrate that in addition to affecting resolution, magnification distortion can also interfere with the classification of heterogeneous data. PMID:26278979

  7. Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

    PubMed Central

    Bittencourt, Carla; Van Tendeloo, Gustaaf

    2015-01-01

    Summary A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms. PMID:26425406

  8. Cosmological parameter estimation: impact of CMB aberration

    SciTech Connect

    Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  9. Cosmological parameter estimation: impact of CMB aberration

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Notari, Alessio

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  10. Weak charge of the proton: loop corrections to parity-violating electron scattering

    SciTech Connect

    Wally Melnitchouk

    2011-05-01

    I review the role of two-boson exchange corrections to parity-violating elastic electron–proton scattering. Direct calculations of contributions from nucleon and Delta intermediate states show generally small, [script O](1–2%), effects over the range of kinematics relevant for proton strangeness form factor measurements. For the forward angle Qweak experiment at Jefferson Lab, which aims to measure the weak charge of the proton, corrections from the gammaZ box diagram are computed within a dispersive approach and found to be sizable at the E~1 GeV energy scale of the experiment.

  11. Differential algebraic method for aberration analysis of typical electrostatic lenses.

    PubMed

    Liu, Zhixiong

    2006-02-01

    In this paper up to fifth-order geometric and third-order chromatic aberration coefficients of typical electrostatic lenses are calculated by means of the charged particle optics code, COSY INFINITY, based on the differential algebraic (DA) method. A two-tube immersion lens and a symmetric einzel lens have been chosen as two examples, whose axial potential distributions are numerically calculated by a FORTRAN program using the finite difference method. The DA results are in good agreement with those evaluated by the aberration integrals in electron optics. The DA method presented here can easily be extended to aberration analysis of other numerically computed electron lenses, including magnetic lenses. PMID:16125845

  12. Model independent radiative corrections in processes of polarized electron-nucleon elastic scattering

    SciTech Connect

    Igor Akushevich; Andrei Afanasev; Mykola Merenkov

    2001-12-01

    The explicit formulae for radiative correction (RC) calculation for elastic ep-scattering is presented. Two typical measurements of polarization observables such as beam-target asymmetry or recoil proton polarization, are considered. Possibilities to take into account realistic experimental acceptances are discussed. The Fortran code MASCARAD for providing the RC procedure is presented. Numerical analysis is done for kinematical conditions of TJNAF.

  13. Model independent radiative corrections in processes of polarized electron-nucleon elastic scattering

    NASA Astrophysics Data System (ADS)

    Afanasev, A.; Akushevich, I.; Merenkov, N.

    2001-12-01

    Explicit formulas for radiative correction (RC) calculations for elastic ep scattering are presented. Two typical measurements of polarization observables, such as beam-target asymmetry or recoil proton polarization, are considered. The possibilities of taking into account realistic experimental acceptances are discussed. The FORTRAN code MASCARAD for providing the RC procedure is presented. A numerical analysis is done for the kinematical conditions of CEBAF.

  14. 77 FR 64755 - Medicare and Medicaid Programs; Electronic Health Record Incentive Program-Stage 2; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ..., 2012, except that the correction to instruction 8.NN (77 FR 54149) is effective October 23, 2012. FOR FURTHER INFORMATION CONTACT: Travis Broome, (214) 767-4450. SUPPLEMENTARY INFORMATION: I. Background In FR Doc. 2012-21050 of September 4, 2012 (77 FR 53968), the final rule entitled ``Medicare and...

  15. Beam spot shift in a dynamic astigmatism correction type (DQ-DAF) electron gun

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Sukeno, M.; Suzuki, H.

    This paper presents the results of an investigation to avoid the convergence error in color CRT guns operating with a dynamic focus correction. The dynamic spot shift as well as the spot coma can be avoided at the same time with a proper arrangement of the quadrupole and main lenses with an oblique incidence of the side beam. The design confirmation is also presented.

  16. Higher-order corrections to electron-nucleus bremsstrahlung cross sections above a few MeV

    NASA Astrophysics Data System (ADS)

    Mangiarotti, A.; Martins, M. N.

    2016-08-01

    Despite the fact that the first calculations of nuclear bremsstrahlung cross sections were performed for relativistic electrons more than 80 years ago by Sauter, Bethe and Heitler, and Racah, a fully satisfactory solution to this problem is still missing up to the present day. Numerical approaches are impractical for electrons with energies above a few MeV because they require a prohibitively large number of partial waves. Analytic formulae need to describe simultaneously and accurately the interaction with the Coulomb field of the nucleus and the screening effect of the atomic electrons. In the present paper, a state-of-the-art analytic calculation will be discussed. In particular, higher-order corrections to the interaction with the Coulomb field of the nucleus, a subject seldom tackled in the past, are included and compared extensively with published data. The emerged difficulties will be highlighted, but unfortunately they can be overcome only with future large coordinated theoretical and experimental efforts.

  17. 46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transmission errors. 531.8 Section 531.8 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of.... (c) Electronic transmission errors. (1) An authorized person who experiences a purely...

  18. 46 CFR 530.10 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transmission errors. 530.10 Section 530.10 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN..., cancellation, and electronic transmission errors. (a) Terms. When used in this section, the following terms... in appendix A to this part. (d) Electronic transmission errors. An authorized person who...

  19. 46 CFR 530.10 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmission errors. 530.10 Section 530.10 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN..., cancellation, and electronic transmission errors. (a) Terms. When used in this section, the following terms... in appendix A to this part. (d) Electronic transmission errors. An authorized person who...

  20. 46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transmission errors. 531.8 Section 531.8 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AFFECTING OCEAN..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of.... (c) Electronic transmission errors. (1) An authorized person who experiences a purely...

  1. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    DOE PAGESBeta

    Kilcrease, D. P.; Brookes, S.

    2013-08-19

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure formore » the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.« less

  2. Correction of the near threshold behavior of electron collisional excitation cross-sections in the plane-wave Born approximation

    SciTech Connect

    Kilcrease, D. P.; Brookes, S.

    2013-08-19

    The modeling of NLTE plasmas requires the solution of population rate equations to determine the populations of the various atomic levels relevant to a particular problem. The equations require many cross sections for excitation, de-excitation, ionization and recombination. Additionally, a simple and computational fast way to calculate electron collisional excitation cross-sections for ions is by using the plane-wave Born approximation. This is essentially a high-energy approximation and the cross section suffers from the unphysical problem of going to zero near threshold. Various remedies for this problem have been employed with varying degrees of success. We present a correction procedure for the Born cross-sections that employs the Elwert–Sommerfeld factor to correct for the use of plane waves instead of Coulomb waves in an attempt to produce a cross-section similar to that from using the more time consuming Coulomb Born approximation. We compare this new approximation with other, often employed correction procedures. Furthermore, we also look at some further modifications to our Born Elwert procedure and its combination with Y.K. Kim's correction of the Coulomb Born approximation for singly charged ions that more accurately approximate convergent close coupling calculations.

  3. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    NASA Astrophysics Data System (ADS)

    Hahn, T.; Liebing, S.; Kortus, J.; Pederson, Mark R.

    2015-12-01

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.

  4. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    SciTech Connect

    Hahn, T. Liebing, S.; Kortus, J.; Pederson, Mark R.

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbital positions in structurally similar molecules appear to be transferable.

  5. Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods.

    PubMed

    Brandenburg, Jan Gerit; Grimme, Stefan

    2016-08-01

    We analyze the energy landscape of the sixth crystal structure prediction blind test targets with various first principles and semi-empirical quantum chemical methodologies. A new benchmark set of 59 crystal structures (termed POLY59) for testing quantum chemical methods based on the blind test target crystals is presented. We focus on different means to include London dispersion interactions within the density functional theory (DFT) framework. We show the impact of pairwise dispersion corrections like the semi-empirical D2 scheme, the Tkatchenko-Scheffler (TS) method, and the density-dependent dispersion correction dDsC. Recent methodological progress includes higher-order contributions in both the many-body and multipole expansions. We use the D3 correction with Axilrod-Teller-Muto type three-body contribution, the TS based many-body dispersion (MBD), and the nonlocal van der Waals density functional (vdW-DF2). The density functionals with D3 and MBD correction provide an energy ranking of the blind test polymorphs in excellent agreement with the experimentally found structures. As a computationally less demanding method, we test our recently presented minimal basis Hartree-Fock method (HF-3c) and a density functional tight-binding Hamiltonian (DFTB). Considering the speed-up of three to four orders of magnitudes, the energy ranking provided by the low-cost methods is very reasonable. We compare the computed geometries with the corresponding X-ray data where TPSS-D3 performs best. The importance of zero-point vibrational energy and thermal effects on crystal densities is highlighted. PMID:27484372

  6. Finite-temperature electron correlations in the framework of a dynamic local-field correction

    SciTech Connect

    Schweng, H.K.; Boehm, H.M. )

    1993-07-15

    The quantum-mechanical version of the Singwi-Tosi-Land-Sjoelander (STLS) approximation is applied to finite temperatures. This approximation has two main advantages. First, it includes a dynamic local-field correction and second, it gives positive values for the pair-distribution function in the short-range region at zero temperature. This is even valid for rather low densities. After a description of the numerical difficulties arising with the use of a dynamic approximation, the results for the static-structure factor and the pair-distribution function are discussed thoroughly. Detailed work is performed on the static part of the local-field correction, with special emphasis put on the investigation of its structure. A peak is found at a wave vector [ital q][approx]2.8 (in units of the Fermi wave vector) for small temperatures, which tends towards higher values of [ital q] with increasing temperature. This peak causes an attractive particle-hole interaction in a certain [ital q] region and thus gives rise to the appearance of a charge-density wave. A parametric description is given for the static local-field correction in order to simplify further applications. Furthermore, the exchange-and-correlation free energy is considered. The results are compared with the STLS results and with the modified convolution approach.

  7. Two-Photon-Exchange and {gamma}Z-Exchange Corrections to Parity-Violating Elastic Electron-Proton Scattering

    SciTech Connect

    Zhou Haiqing; Kao Chungwen; Yang Shinnan

    2007-12-31

    Leading electroweak corrections play an important role in precision measurements of the strange form factors. We calculate the two-photon-exchange (TPE) and {gamma}Z-exchange corrections to the parity-violating asymmetry of the elastic electron-proton scattering in a simple hadronic model including the finite size of the proton. We find both can reach a few percent and are comparable in size with the current experimental measurements of strange-quark effects in the proton neutral weak current. The effect of {gamma}Z exchange is in general larger than that of TPE, especially at low momentum transfer Q{sup 2}{<=}1 GeV{sup 2}. Their combined effects on the values of G{sub E}{sup s}+G{sub M}{sup s} extracted in recent experiments can be as large as -40% in certain kinematics.

  8. Correction to the Alfven-Lawson criterion for relativistic electron beams

    SciTech Connect

    Dodin, I. Y.; Fisch, N. J.

    2006-10-15

    The Alfven-Lawson criterion for relativistic electron beams is revised. The parameter range is found, in which a stationary beam can carry arbitrarily large current, regardless of its transverse structure.

  9. Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field

    SciTech Connect

    Arefiev, Alexey V.; Cochran, Ginevra E.; Schumacher, Douglass W.; Robinson, Alexander P. L.; Chen, Guangye

    2015-01-15

    Particle-in-cell codes are now standard tools for studying ultra-intense laser-plasma interactions. Motivated by direct laser acceleration of electrons in sub-critical plasmas, we examine temporal resolution requirements that must be satisfied to accurately calculate electron dynamics in strong laser fields. Using the motion of a single electron in a perfect plane electromagnetic wave as a test problem, we show surprising deterioration of the numerical accuracy with increasing wave amplitude a{sub 0} for a given time-step. We go on to show analytically that the time-step must be significantly less than λ/ca{sub 0} to achieve good accuracy. We thus propose adaptive electron sub-cycling as an efficient remedy.

  10. Detecting magnetic ordering with atomic size electron probes

    DOE PAGESBeta

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Cantoni, Claudia; Lupini, Andrew R.

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  11. Analysis of the failures and corrective actions for the LHC cryogenics radiation tolerant electronics and its field instruments

    SciTech Connect

    Balle, Christoph; Casas, Juan; Vauthier, Nicolas

    2014-01-29

    The LHC cryogenic system radiation tolerant electronics and their associated field instruments have been in nominal conditions since before the commissioning of the first LHC beams in September 2008. This system is made of about 15’000 field instruments (thermometers, pressure sensors, liquid helium level gauges, electrical heaters and position switches), 7’500 electronic cards and 853 electronic crates. Since mid-2008 a software tool has been deployed, this allows an operator to report a problem and then lists the corrective actions. The tool is a great help in detecting recurrent problems that may be tackled by a hardware or software consolidation. The corrective actions range from simple resets, exchange of defective equipment, repair of electrical connectors, etc. However a recurrent problem that heals by itself is present on some channels. This type of fault is extremely difficult to diagnose and it appears as a temporary opening of an electrical circuit; its duration can range from a few minutes to several months. This paper presents the main type of problems encountered during the last four years, their evolution over time, the various hardware or software consolidations that have resulted and whether they have had an impact in the availability of the LHC beam.

  12. Electronic and magnetic properties of T i4O7 predicted by self-interaction-corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Rungger, I.; Zapol, P.; Heinonen, O.

    2015-03-01

    Understanding electronic properties of substoichiometric phases of titanium oxide such as Magnéli phase T i4O7 is crucial in designing and modeling resistive switching devices. Here we present our study on Magnéli phase T i4O7 together with rutile Ti O2 and T i2O3 using density functional theory methods with atomic-orbital-based self-interaction correction (ASIC). We predict a new antiferromagnetic (AF) ground state in the low temperature (LT) phase, and we explain energy difference with a competing AF state using a Heisenberg model. The predicted energy ordering of these states in the LT phase is calculated to be robust in a wide range of modeled isotropic strain. We have also investigated the dependence of the electronic structures of the Ti-O phases on stoichiometry. The splitting of titanium t2 g orbitals is enhanced with increasing oxygen deficiency as Ti-O is reduced. The electronic properties of all these phases can be reasonably well described by applying ASIC with a "standard" value for transition metal oxides of the empirical parameter α of 0.5 representing the magnitude of the applied self-interaction correction.

  13. Influences of reference plane and direction of measurement on eye aberration measurement

    NASA Astrophysics Data System (ADS)

    Atchison, David A.; Charman, W. Neil

    2005-12-01

    We explored effects of measurement conditions on wave aberration estimates for uncorrected, axially myopic model eyes. Wave aberrations were initially referenced to either the anterior corneal pole or the natural entrance pupil of symmetrical eye models, with rays traced into the eye from infinity (into the eye) to simulate normal vision, into the eye from infinity and then back out of the eye from the retinal intercepts (into/out of the eye), or out of the eye from the retinal fovea (out of the eye). The into-the-eye and out-of-the-eye ray traces gave increases in spherical aberration as myopia increased, but the into/out-of-the-eye ray trace showed little variation in spherical aberration. Reference plane choice also affected spherical aberration. Corresponding residual aberrations were calculated after the models had been optically corrected, either by placing the object or image plane at the paraxial far point or by modifying corneas to simulate laser ablation corrections. Correcting aberrations by ablation was more complete if the original aberrations were referenced to the cornea rather than to the entrance pupil. For eyes corrected by spectacle lenses, failure to allow for effects of pupil magnification on apparent entrance pupil diameter produced larger changes in measured aberrations. The general findings regarding choice of reference plane and direction of measurement were found to be equally applicable to eyes that lacked rotational symmetry.

  14. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method. PMID:26716724

  15. The effects and correction of the geometric factor for the POES/MEPED electron flux instrument using a multisatellite comparison

    NASA Astrophysics Data System (ADS)

    Whittaker, Ian C.; Rodger, Craig J.; Clilverd, Mark A.; Sauvaud, Jean-André

    2014-08-01

    Measurements from the Polar-Orbiting Environmental Satellite (POES) Medium Energy Proton and Electron Detector (MEPED) instrument are widely used in studies into radiation belt dynamics and atmospheric coupling. However, this instrument has been shown to have a complex energy-dependent response to incident particle fluxes, with the additional possibility of low-energy protons contaminating the electron fluxes. We test the recent Monte Carlo theoretical simulation of the instrument by comparing the responses against observations from an independent experimental data set. Our study examines the reported geometric factors for the MEPED electron flux instrument against the high-energy resolution Instrument for Detecting Particles (IDPs) on the Detection of Electromagnetic Emissions Transmitted from Earthquake Regions satellite when they are located at similar locations and times, thereby viewing the same quasi-trapped population of electrons. We find that the new Monte Carlo-produced geometric factors accurately describe the response of the POES MEPED instrument. We go on to develop a set of equations such that integral electron fluxes of a higher accuracy are obtained from the existing MEPED observations. These new MEPED integral fluxes correlated very well with those from the IDP instrument (>99.9% confidence level). As part of this study we have also tested a commonly used algorithm for removing proton contamination from MEPED instrument observations. We show that the algorithm is effective, providing confirmation that previous work using this correction method is valid.

  16. Atomic Resolution Imaging with a sub-50 pm Electron Probe

    SciTech Connect

    Erni, Rolf P.; Rossell, Marta D.; Kisielowski, Christian; Dahmen, Ulrich

    2009-03-02

    Using a highly coherent focused electron probe in a 5th order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29percent contrast. Our experimental data show the 47 pm spacing of a Ge 114 crystal imaged with 11-18percent contrast at a 60-95percent confidence level, providing the first direct evidence for sub 50-pm resolution in ADF STEM imaging.

  17. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  18. Erratum: cosmological parameter estimation: impact of CMB aberration Erratum: cosmological parameter estimation: impact of CMB aberration

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Notari, Alessio

    2013-07-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles alm's via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In ref. [1] we checked the validity of this assumption in parameter estimation for a Planck-like angular resolution, both for a full-sky ideal experiment and also when sky cuts are included to model CMB foreground contaminations with a sky fraction similar to the Planck satellite. The result to this analysis was that aberration and Doppler have a sizable impact on a CMB based parameter estimation. In this erratum we correct an error made in ref. [1] when comparing pseudo angular power spectra computed in the CMB rest frame with the ones measured by a moving observer. Properly comparing the two spectra we find now that although the corrections to the Cl due to aberration and Doppler are larger than the cosmic variance at l > 1000 and potentially important, the resulting bias on the parameters is negligible for Planck.

  19. Bandwidth efficient bidirectional 5 Gb/s overlapped-SCM WDM PON with electronic equalization and forward-error correction.

    PubMed

    Buset, Jonathan M; El-Sahn, Ziad A; Plant, David V

    2012-06-18

    We demonstrate an improved overlapped-subcarrier multiplexed (O-SCM) WDM PON architecture transmitting over a single feeder using cost sensitive intensity modulation/direct detection transceivers, data re-modulation and simple electronics. Incorporating electronic equalization and Reed-Solomon forward-error correction codes helps to overcome the bandwidth limitation of a remotely seeded reflective semiconductor optical amplifier (RSOA)-based ONU transmitter. The O-SCM architecture yields greater spectral efficiency and higher bit rates than many other SCM techniques while maintaining resilience to upstream impairments. We demonstrate full-duplex 5 Gb/s transmission over 20 km and analyze BER performance as a function of transmitted and received power. The architecture provides flexibility to network operators by relaxing common design constraints and enabling full-duplex operation at BER ∼ 10(-10) over a wide range of OLT launch powers from 3.5 to 8 dBm. PMID:22714504

  20. Using the electron localization function to correct for confinement physics in semi-local density functional theory

    SciTech Connect

    Hao, Feng Mattsson, Ann E.; Armiento, Rickard

    2014-05-14

    We have previously proposed that further improved functionals for density functional theory can be constructed based on the Armiento-Mattsson subsystem functional scheme if, in addition to the uniform electron gas and surface models used in the Armiento-Mattsson 2005 functional, a model for the strongly confined electron gas is also added. However, of central importance for this scheme is an index that identifies regions in space where the correction provided by the confined electron gas should be applied. The electron localization function (ELF) is a well-known indicator of strongly localized electrons. We use a model of a confined electron gas based on the harmonic oscillator to show that regions with high ELF directly coincide with regions where common exchange energy functionals have large errors. This suggests that the harmonic oscillator model together with an index based on the ELF provides the crucial ingredients for future improved semi-local functionals. For a practical illustration of how the proposed scheme is intended to work for a physical system we discuss monoclinic cupric oxide, CuO. A thorough discussion of this system leads us to promote the cell geometry of CuO as a useful benchmark for future semi-local functionals. Very high ELF values are found in a shell around the O ions, and take its maximum value along the Cu–O directions. An estimate of the exchange functional error from the effect of electron confinement in these regions suggests a magnitude and sign that could account for the error in cell geometry.

  1. The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Graf, Benedikt W.; Ahmad, Adeel; Darbarsyah, Budiman; Boppart, Stephen A.; Carney, P. Scott

    2011-03-01

    Interferometric synthetic aperture microscopy (ISAM) reconstructs the scattering potential of a sample with spatially invariant resolution, based on the incident beam profile, the beam scan pattern, the physical model of light sample interaction, and subsequent light collection by the system. In practice, aberrations may influence the beam profile, particularly at higher NA, when ISAM is expected to provide maximum benefit over optical coherence microscopy. Thus it is of interest to determine the effects of aberrations on ISAM reconstructions. In this paper we present the forward model incorporating the effects of aberrations, which forms the basis for aberration correction in ISAM. Simulations and experimental results show that when operating far from focus, modest amounts of spherical aberration can introduce artifacts to the point-spread function, even at relatively low NA ~ 0.1-0.2. Further work will investigate computational methods to correct the effects of aberrations, i.e. to perform virtual adaptive optics.

  2. 77 FR 72993 - Atlantic Highly Migratory Species; Electronic Dealer Reporting Requirements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... Atlantic HMS dealers. On August 8, 2012 (77 FR 47303), the final rule for electronic dealer reporting was published, with a delayed implementation of January 1, 2013. On June 22, 2012 (77 FR 37647), NMFS published... Wilson at 240-338-3936. SUPPLEMENTARY INFORMATION: Background On June 28, 2011 (76 FR 37750),...

  3. 46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall...

  4. 46 CFR 531.8 - Amendment, correction, cancellation, and electronic transmission errors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., cancellation, and electronic transmission errors. (a) Amendment. (1) NSAs may be amended by mutual agreement of... § 531.5 and Appendix A to this part. (i) Where feasible, NSAs should be amended by amending only the affected specific term(s) or subterms. (ii) Each time any part of an NSA is amended, the filer shall...

  5. 76 FR 27606 - Technical Corrections To Remove Obsolete References to Non-Automated Carriers From Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ...) in the Federal Register (67 FR 66318) amending 19 CFR 4.7 pertaining to vessel manifests to require... 5, 2003, CBP published a final rule (2003 final rule) in the Federal Register (68 FR 68140) further... FR 68145). In order to conform the regulation to the statute's mandatory electronic...

  6. 78 FR 2437 - Corrected: Certain Cases For Portable Electronic Devices; Notice of Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Cases For Portable Electronic Devices, DN 2927; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR...

  7. Effect of background thermal radiation on radiative correction to elastic scattering of electrons

    SciTech Connect

    Zaleski, H. )

    1989-11-01

    Calculations of the energy dependence of the electron-scattering cross section in the presence of thermal background radiation (Planck's field) are done in the semiclassical approximation. It is shown that the cross section remains finite and is peaked around the initial energy with the width proportional to the radiation temperature.

  8. Irradiance-based emissivity correction in infrared thermography for electronic applications.

    PubMed

    Vellvehi, M; Perpiñà, X; Lauro, G L; Perillo, F; Jordà, X

    2011-11-01

    This work analyzes, discusses, and proposes a solution to the problem of the emissivity correction present in infrared thermography when coatings with known emissivity cannot be deposited on the inspected surface. It is shown that the conventional technique based on two reference thermal images and the linearization of the blackbody radiation dependence on temperature is not a reliable and accurate solution when compared with the coating procedure. In this scenario, a new approach based on the direct processing of the output signal of the infrared camera (which is proportional to the detected irradiance) is proposed to obtain an accurate emissivity and surrounding reflections map, perfectly compensating the thermal maps. The results obtained have been validated using a module as a test vehicle containing two thermal test chips which incorporate embedded temperature sensors. PMID:22128998

  9. Irradiance-based emissivity correction in infrared thermography for electronic applications

    NASA Astrophysics Data System (ADS)

    Vellvehi, M.; Perpiñà, X.; Lauro, G. L.; Perillo, F.; Jordà, X.

    2011-11-01

    This work analyzes, discusses, and proposes a solution to the problem of the emissivity correction present in infrared thermography when coatings with known emissivity cannot be deposited on the inspected surface. It is shown that the conventional technique based on two reference thermal images and the linearization of the blackbody radiation dependence on temperature is not a reliable and accurate solution when compared with the coating procedure. In this scenario, a new approach based on the direct processing of the output signal of the infrared camera (which is proportional to the detected irradiance) is proposed to obtain an accurate emissivity and surrounding reflections map, perfectly compensating the thermal maps. The results obtained have been validated using a module as a test vehicle containing two thermal test chips which incorporate embedded temperature sensors.

  10. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    SciTech Connect

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-07-15

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers.

  11. Hexapod kinematics for secondary mirror aberration control .

    NASA Astrophysics Data System (ADS)

    Schipani, P.

    This work deals with active correction of the aberrations in a telescope by moving the secondary mirror. A special attention is dedicated to the case of a secondary mirror whose motions are controlled by a 6-6 Stewart Platform (generally called by astronomers simply "hexapod", even if this term is more general). The kinematics of the device is studied. The non trivial forward kinematics problem is solved by an iterative algorithm fitting the necessities of an active optics system and fast enough to be used in a closed loop feedback control.

  12. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  13. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    SciTech Connect

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  14. High-performance electronic image stabilisation for shift and rotation correction

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, D. L.; Wu, F.

    2014-06-01

    A novel low size, weight and power (SWaP) video stabiliser called HALO™ is presented that uses a SoC to combine the high processing bandwidth of an FPGA, with the signal processing flexibility of a CPU. An image based architecture is presented that can adapt the tiling of frames to cope with changing scene dynamics. A real-time implementation is then discussed that can generate several hundred optical flow vectors per video frame, to accurately calculate the unwanted rigid body translation and rotation of camera shake. The performance of the HALO™ stabiliser is comprehensively benchmarked against the respected Deshaker 3.0 off-line stabiliser plugin to VirtualDub. Eight different videos are used for benchmarking, simulating: battlefield, surveillance, security and low-level flight applications in both visible and IR wavebands. The results show that HALO™ rivals the performance of Deshaker within its operating envelope. Furthermore, HALO™ may be easily reconfigured to adapt to changing operating conditions or requirements; and can be used to host other video processing functionality like image distortion correction, fusion and contrast enhancement.

  15. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    PubMed

    Hong, Jeongmin; Stefanescu, Eugenia; Liang, Ping; Joshi, Nikhil; Xue, Song; Litvinov, Dmitri; Khizroev, Sakhrat

    2012-01-01

    This letter describes the use of vertically aligned carbon nanotubes (CNT)-based arrays with estimated 2-nm thick cobalt (Co) nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS). PMID:22808192

  16. Solutions with precise prediction for thermal aberration error in low-k1 immersion lithography

    NASA Astrophysics Data System (ADS)

    Fukuhara, Kazuya; Mimotogi, Akiko; Kono, Takuya; Aoyama, Hajime; Ogata, Taro; Kita, Naonori; Matsuyama, Tomoyuki

    2013-04-01

    Thermal aberration becomes a serious problem in the production of semiconductors for which low-k1 immersion lithography with a strong off-axis illumination, such as dipole setting, is used. The illumination setting localizes energy of the light in the projection lens, bringing about localized temperature rise. The temperature change varies lens refractive index and thus generates aberrations. The phenomenon is called thermal aberration. For realizing manufacturability of fine patterns with high productivity, thermal aberration control is important. Since heating areas in the projection lens are determined by source shape and distribution of diffracted light by a mask, the diffracted pupilgram convolving illumination source shape with diffraction distribution can be calculated using mask layout data for the thermal aberration prediction. Thermal aberration is calculated as a function of accumulated irradiation power. We have evaluated the thermal aberration computational prediction and control technology "Thermal Aberration Optimizer" (ThAO) on a Nikon immersion system. The thermal aberration prediction consists of two steps. The first step is prediction of the diffraction map on the projection pupil. The second step is computing thermal aberration from the diffraction map using a lens thermal model and an aberration correction function. We performed a verification test for ThAO using a mask of 1x-nm memory and strong off-axis illumination. We clarified the current performance of thermal aberration prediction, and also confirmed that the impacts of thermal aberration of NSR-S621D on CD and overlay for our 1x-nm memory pattern are very small. Accurate thermal aberration prediction with ThAO will enable thermal aberration risk-free lithography for semiconductor chip production.

  17. Noise models and cryo-EM drift correction with a direct-electron camera

    PubMed Central

    Shigematsu, H.; Sigworth, F. J.

    2013-01-01

    Blurring due to specimen-holder drift is a common occurrence in cryo-EM images. Cameras employing active-pixel sensors are capable of high frame rates such that a single low-dose exposure can be acquired as a series of frames. In this paper we consider the possibility of tracking and compensating for overall drift in typical single-particle specimens through the analysis of frame sequences. A problem that arises in tracking through cross-correlation of frames obtained with the DE-12 camera from Direct Electron LLC is the presence of “hot-pixel noise”. This random pattern of bright pixels is highly correlated among frames. We show how a model of this noise can be employed to greatly reduce its effects. A filter function is derived that optimizes the tracking of image shifts by cross-correlation, and we demonstrate the tracking of specimen drift in typical cryo-EM specimens. PMID:23748163

  18. Metallic state of the free-electron gas within the self-interaction-corrected local-spin-density approximation

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Heaton, Richard A.; Harrison, Joseph G.

    1989-01-01

    The uniform-density electron gas is studied within the framework of the Wannier-function (WF) formulation of the self-interaction-corrected local-spin-density approximation (SIC-LSD). While the results of the present work follow rigorously from a variational formulation, they may also be qualitatively understood in terms of the local-bonding-site concept introduced by Mott in his theory of the metal-insulator transition. SIC-LSD admits metallic-state solutions at ordinary electron densities just as in traditional LSD theory. The result of introducing SIC to the metallic state is an overall downward shift of the LSD eigenvalues. This shift is largest for states near k=0 and vanishes for states near the Fermi energy ɛF. As such, the orbital energies at ɛF are found to be in exact agreement with both the exchange-only version of LSD and Hartree-Fock (HF). Beyond metallic-state solutions, this formulation of SIC-LSD also admits insulator solutions at very low electron densities and may thus have important application to the problem of Wigner crystallization.

  19. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  20. Electronic structure of novel charge transfer compounds: application of Fermi orbital self-interaction corrected density functional theory

    NASA Astrophysics Data System (ADS)

    Hahn, Torsten; Rückerl, Florian; Liebing, Simon; Pederson, Mark

    We present our experimental and theoretical results on novel Picene/F4TCNQ and Manganese-Phthalocyanine/F4TCNQ donor / acceptor systems. We apply the recently developed Fermi-orbital based approach for self-interaction corrected density functional theory (FO-SIC DFT) to these materials and compare the results to standard DFT calculations and to experimental data obtained by photoemission spectroscopy. We focus our analysis on the description of the magnitude of the ground state charge transfer and on the details of the formed hybrid orbitals. Further, we show that for weakly bound donor / acceptor systems the FO-SIC approach delivers a more realistic description of the electronic structure compared to standard DFT calculations Support by DFG FOR1154 is greatly acknowledged.

  1. Linear optics correction and observation of electron proton instability in the SNS accumulator ring

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng

    The accumulator ring of the Spallation Neutron Source is a high intensity proton storage ring. The choice of its operating tunes is critical. There was a relatively large tune discrepancy ˜ 0.2 between model prediction and real measurement. As a consequence, it was not possible to set the lattice using the model calculation. The orbit response matrix (ORM) method, as programmed in the application code LOCO, was employed to solve the optics discrepancy and calibrate the linear model. Offline study shows that we can attribute most of the tune discrepancy to the errors of quadrupole magnet power supplies, which is up to 2.9%. The results and discussions of proved and potential optics improvement are presented in detail in the thesis. Due to the high intensity of proton beam and the similarity of SNS and PSR, collective instabilities, especially the electron-proton (e-p) instability, pose potential limitations on the peak intensity and therefore become major concerns in the SNS power-up plan. Therefore, although the e-p instability has not emerged in the normal neutron productions yet, we have manipulated the machine setting to observe it in a series of experiments. It shows that, the buncher voltage has little effect on instability threshold and that the instability has a strong dependence on proton bunch shape. Moreover, a potential mitigation of the e-p instability involves the use of a flat top current profile with a short tail. Detailed observation and discussion can be found in the thesis.

  2. Image Ellipticity from Atmospheric Aberrations

    SciTech Connect

    de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-03-06

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.

  3. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms. PMID:26836873

  4. Coating-induced wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Reiley, Daniel J.; Chipman, Russell A.

    1992-12-01

    The coatings which are used on telescope mirrors and other optical interfaces can have a profound effect on the image quality formed by an optical system. This paper evaluates the defocus and astigmatism which are caused by the s- and p-phase shifts of coatings. These coating-induced wavefront aberrations are usually insignificant, but can, under certain circumstances, overshadow the geometric wavefront aberrations of the system. The wavefront aberrations induced by reflection-enhanced coatings on an f/1.5 Cassegrain telescope are numerically evaluated as an example.

  5. Probing interfacial electronic structures in atomic layer LaMnO{sub3} and SrTiO{sub 3} superlattices.

    SciTech Connect

    Shah, A. B.; Ramasse, Q. M.; Zhai, X.; Wen, J. G.; May, S. J.; Petrov, I.; Bhattacharya, A.; Abbamonte, P.; Eckstein, J. N.; Zuo, J.-M.; Univ. of Illinois; LBNL

    2010-01-01

    The interfacial electronic structure characterization of a m x (LaMnO{sub 3})/n x (SrTiO{sub 3}) superlattice based on scanning transmission electron microscopy and electron energy loss spectroscopy. Evidence of interfacial band alignment and electron transfer are presented based on the observation of O K edge of individual transition metal and oxygen atomic columns. Electron probe aberration correction was essential for the high spatial resolution mapping of interfacial electronic states.

  6. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  7. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  8. Active Optical Control of Quasi-Static Aberrations for ATST

    NASA Astrophysics Data System (ADS)

    Johnson, L. C.; Upton, R.; Rimmele, T. R.; Hubbard, R.; Barden, S. C.

    2012-12-01

    The Advanced Technology Solar Telescope (ATST) requires active control of quasi-static telescope aberrations in order to achieve the image quality set by its science requirements. Four active mirrors will be used to compensate for optical misalignments induced by changing gravitational forces and thermal gradients. These misalignments manifest themselves primarily as low-order wavefront aberrations that will be measured by a Shack-Hartmann wavefront sensor. When operating in closed-loop with the wavefront sensor, the active optics control algorithm uses a linear least-squares reconstructor incorporating force constraints to limit force applied to the primary mirror while also incorporating a neutral-point constraint on the secondary mirror to limit pointing errors. The resulting system compensates for astigmatism and defocus with rigid-body motion of the secondary mirror and higher-order aberrations with primary mirror bending modes. We demonstrate this reconstruction method and present simulation results that apply the active optics correction to aberrations generated by finite-element modeling of thermal and gravitational effects over a typical day of ATST operation. Quasi-static wavefront errors are corrected to within limits set by wavefront sensor noise in all cases with very little force applied to the primary mirror surface and minimal pointing correction needed.

  9. Impact of astigmatism and high-order aberrations on subjective best focus.

    PubMed

    Marcos, Susana; Velasco-Ocana, Miriam; Dorronsoro, Carlos; Sawides, Lucie; Hernandez, Martha; Marin, Gildas

    2015-08-01

    We studied the role of native astigmatism and ocular aberrations on best-focus setting and its shift upon induction of astigmatism in 42 subjects (emmetropes, myopes, hyperopes, with-the-rule [WTR] and against-the-rule [ATR] myopic astigmats). Stimuli were presented in a custom-developed adaptive optics simulator, allowing correction for native aberrations and astigmatism induction (+1 D; 6-mm pupil). Best-focus search consisted on randomized-step interleaved staircase method. Each subject searched best focus for four different images, and four different conditions (with/without aberration correction, with/without astigmatism induction). The presence of aberrations induced a significant shift in subjective best focus (0.4 D; p < 0.01), significantly correlated (p = 0.005) with the best-focus shift predicted from optical simulations. The induction of astigmatism produced a statistically significant shift of the best-focus setting in all groups under natural aberrations (p = 0.001), and in emmetropes and in WTR astigmats under corrected aberrations (p < 0.0001). Best-focus shift upon induced astigmatism was significantly different across groups, both for natural aberrations and AO-correction (p < 0.0001). Best focus shifted in opposite directions in WTR and ATR astigmats upon induction of astigmatism, symmetrically with respect to the best-focus shift in nonastigmatic myopes. The shifts are consistent with a bias towards vertical and horizontal retinal blur in WTR and ATR astigmats, respectively, indicating adaptation to native astigmatism. PMID:26237300

  10. Sexual aberration or instinctual vicissitude? Revisiting freud's "the sexual aberrations".

    PubMed

    Phillips, Sidney H

    2014-04-01

    The author reconsiders Freud's "The Sexual Aberrations," the first of his Three Essays on the Theory of Sexuality (1905), in light of contemporary psychoanalytic theory. Are the concepts of sexual aberration and norm still viable? The author argues that they are necessary but insufficient elements in current theory. He then presents a competing model in which sexuality can be reduced to a more elemental level of disturbance and wish, where it is an expression of a nonsexual wish--for example, to possess or control the object to eliminate separateness. The author presents clinical material to demonstrate this alternative model. PMID:24777366

  11. An integrated electronic colon cleansing for CT colonoscopy via MAP-EM segmentation and scale-based scatter correction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Lihong; Zhu, Hongbin; Lin, Qin; Harrington, Donald; Liang, Zhengrong

    2012-03-01

    Orally administered tagging agents are usually used in CT colonography (CTC) to differentiate residual bowel content from native colonic structure. However, the high-density contrast agents tend to introduce the scatter effect on neighboring soft tissues and elevate their observed CT attenuation values toward that of the tagged materials (TMs), which may result in an excessive electronic colon cleansing (ECC) where pseudo-enhanced soft tissues are incorrectly identified as TMs. To address this issue, we integrated a scale-based scatter correction as a preprocessing procedure into our previous ECC pipeline based on the maximum a posteriori expectation-maximization (MAP-EM) partial volume segmentation. The newly proposed ECC scheme takes into account both scatter effect and partial volume effect that commonly appear in CTC images. We evaluated the new method with 10 patient CTC studies and found improved performance. Our results suggest that the proposed strategy is effective with potentially significant benefits for both clinical CTC examinations and automatic computer-aided detection (CAD) of colon polyps.

  12. A Correction for the IRI Topside Electron Density Model Based on Alouette/ISIS Topside Sounder Data

    NASA Technical Reports Server (NTRS)

    Bilitza, D.

    2004-01-01

    The topside segment of the International Reference Ionosphere (IRI) electron density model (and also of the Bent model) is based on the limited amount of topside data available at the time (40,OOO Alouette 1 profiles). Being established from such a small database it is therefore not surprising that the models have well-known shortcomings, for example, at high solar activities. Meanwhile a large data base of close to 200,000 topside profiles from Alouette 1,2, and ISIS I, 2 has become available online. A program of automated scaling and inversion of a large volume of digitized ionograms adds continuously to this data pool. We have used the currently available ISIs/Alouette topside profiles to evaluate the IRI topside model and to investigate ways of improving the model. The IRI model performs generally well at middle latitudes and shows discrepancies at low and high latitudes and these discrepancies are largest during high solar activity. In the upper topside IRI consistently overestimates the measurements. Based on averages of the data-model ratios we have established correction factors for the IRI model. These factors vary with altitude, modified dip latitude, and local time.

  13. Eye aberration analysis with Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.

    1998-06-01

    New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.

  14. Higher Order Chromaticity Correction for ELIC

    NASA Astrophysics Data System (ADS)

    Sayed, Hisham; Bogacz, Alex

    2010-02-01

    The proposed electron collider lattice design with extremely low betas at the interaction Point IP (β*˜ 0.5cm) and the precedently large longitudinal acceptance of the collider ring (δp/p = 0.005) [1], makes the chromatic corrections of paramount importance. Here the chromatic effects of the final focus quadruples are corrected with two families of sextuples in a dispersive region; one family per plane. Each family consists of two pairs of sextuples located symmetrically around the interaction point IP. A confined dispersion wave around the IP is generated by two bending magnets (one at each side of the IP with mirror reflected Polarities) which also develop the vertical staking design. The resulting spherical aberrations induced by the sextuples are mitigated by design; the matching section optics features an inverse identity transformation between sextuples in each pair. A dedicated optics is placed in the matching region to implement sextuple orthogonality in both planes, which in turns minimizes the required sextuple strength and eventually leads to larger dynamic aperture of the collider. The betatron phase advances from the IP to the sextuples are chosen to eliminate the second order chromatic aberration. )

  15. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  16. Chromosome Aberrations by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  17. Quantification of the Information Limit of Transmission Electron Microscopes

    SciTech Connect

    Barthel, J.; Thust, A.

    2008-11-14

    The resolving power of high-resolution transmission electron microscopes is characterized by the information limit, which reflects the size of the smallest object detail observable with a particular instrument. We introduce a highly accurate measurement method for the information limit, which is suitable for modern aberration-corrected electron microscopes. An experimental comparison with the traditionally applied Young's fringe method yields severe discrepancies and confirms theoretical considerations according to which the Young's fringe method does not reveal the information limit.

  18. The importance of self-interaction and nonlocal exchange corrections to the density functional theory of intracavity electrons in Na-doped sodalites

    NASA Astrophysics Data System (ADS)

    Blake, Nick P.; Metiu, Horia

    1999-04-01

    Electrons that are confined to zeolite cavities are modeled using a simplified pseudopotential scheme to represent the interaction of the electrons with both the sodalite framework and the Na+ ions. By comparing theory with recent experimental studies of G centers in Na-doped NaBr-SOD it is demonstrated that restricted forms of density functional theory, where two electrons are forced to pair in the same Kohn-Sham orbital, fail to correctly predict the true nature of the singlet, (spin unpolarized), G center. Electron confinement leads to generalized gradient corrections to the exchange of 0.74 eV and self-interaction corrections (SIC) of 0.7 eV over calculations performed in the local spin density approximation (LSDA). Only the self-interaction corrected generalized gradient approximation and the unrestricted Hartree-Fock approximation are in accord with experiment for the relative stability of the triplet (spin polarized) state. The unrestricted Hartree-Fock method is used to show that G-center absorptions will be blueshifted with respect to absorptions due to the isolated F centers. Constructing a Hubbard Hamiltonian we show that the exchange coupling ranges in values from 2.3 meV(UHF) to 3.6 meV(SIC-LSDA) corresponding to Neel temperatures that range from 27 to 41 K in agreement with experiment.

  19. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2004-05-13

    The Solid-State, Heat-Capacity Laser (SSHCL), under development at Lawrence Livermore National Laboratory (LLNL) is a large aperture (100 cm{sup 2}), confocal, unstable resonator requiring near-diffraction-limited beam quality. There are two primary sources of the aberrations in the system: residual, static aberrations from the fabrication of the optical components and predictable, time-dependent, thermally-induced index gradients within the gain medium. A deformable mirror placed within the cavity is used to correct the aberrations that are sensed externally with a Shack-Hartmann wavefront sensor. Although the complexity of intracavity adaptive correction is greater than that of external correction, it enables control of the mode growth within the resonator, resulting in the ability to correct a more aberrated system longer. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results from initial correction of the static aberrations and dynamic correction of the time-dependent aberrations are presented.

  20. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  1. Higher order aberration comparison between two aspherical intraocular lenses: MC6125AS and Akreos advanced optics

    PubMed Central

    Rajabi, Mohammad Taher; Korouji, Sara; Farjadnia, Mahgol; Naderan, Mohammad; Rajabi, Mohammad Bagher; Khosravi, Bahram; Tabatabaie, Seyed Mehdi

    2015-01-01

    AIM To compare higher order aberrations in two aspherical intraocular lenses (IOLs): Akreos advanced optics (AO) and Dr. Schmidt Microcrystalline 6125 aspheric anterior surface (MC6125AS) with each other. METHODS Forty eyes of 39 patients underwent phacoemulsification and Akreos AO and MC6125AS were implanted in their eyes in a random manner. Three months post-operatively, higher order aberrations including spherical aberration, coma aberration, and total aberrations were measured and compared. RESULTS The total aberration was 0.24±0.17 in eyes with Dr. Schmidt and 0.20±0.01 in eyes with Akreos AO (P=0.361). The mean of coma aberration was 0.17±0.21 and 0.09±0.86 in Dr. Schmidt and Akreos lenses, respectively (P=0.825). Total spherical aberration was almost the same in both groups (Mean: 0.05, P=0.933). Best corrected visual acuity in Akreos AO (0.10±0.68) and Dr. Schmidt (0.09±0.67) did not differ significantly (P=0.700). CONCLUSION There is no statistically significant difference in the higher order aberrations between these two aspherical lenses. PMID:26086009

  2. Criteria for admissible values of smooth aberrations for nondiffractive laser beams

    SciTech Connect

    Malashko, Ya I; Khabibulin, V M

    2014-04-28

    We have derived analytical expressions, verified by the methods of numerical simulation, to evaluate the angular divergence of nondiffractive laser beams containing smooth aberrations, i.e., spherical defocusing, astigmatism and toroid. Using these expressions we have formulated the criteria for admissible values of smooth aberrations. (laser applications and other topics in quantum electronics)

  3. Color correction strategies in optical design

    NASA Astrophysics Data System (ADS)

    Pfisterer, Richard N.; Vorndran, Shelby D.

    2014-12-01

    An overview of color correction strategies is presented. Starting with basic first-order aberration theory, we identify known color corrected solutions for doublets and triplets. Reviewing the modern approaches of Robb-Mercado, Rayces-Aguilar, and C. de Albuquerque et al, we find that they confirm the existence of glass combinations for doublets and triplets that yield color corrected solutions that we already know exist. Finally we explore the use of the y, ӯ diagram in conjunction with aberration theory to identify the solution space of glasses capable of leading to color corrected solutions in arbitrary optical systems.

  4. Optimal incision sites to reduce corneal aberration variations after small incision phacoemulsification cataract surgery

    PubMed Central

    Chu, Ling; Zhao, Jiang-Yue; Zhang, Jin-Song; Meng, Jie; Wang, Ming-Wu; Yang, Ya-Jing; Yu, Jia-Ming

    2016-01-01

    AIM To analyze the effect of steep meridian small incision phacoemulsification cataract surgery on anterior, posterior and total corneal wavefront aberration. METHODS Steep meridian small incision phacoemulsification cataract surgery was performed in age-related cataract patients which were divided into three groups according to the incision site: 12 o'clock, 9 o'clock and between 9 and 12 o'clock (BENT) incision groups. The preoperative and 3-month postoperative root mean square (RMS) values of anterior, posterior and total corneal wavefront aberration including coma, spherical aberration, and total higher-order aberrations (HOAs), were measured by Pentacam scheimpflug imaging. The mean preoperative and postoperative corneal wavefront aberrations were documented. RESULTS Total corneal aberration and total lower-order aberrations decreased significantly in three groups after operation. RMS value of total HOAs decreased significantly postoperatively in the 12 o'clock incision group (P<0.001). Corneal spherical aberration was statistically significantly lower after steep meridian small incision phacoemulsification cataract surgery in BENT incision group (P<0.05) and Pearson correlation analysis indicated that spherical aberration changes had no significant relationship with total astigmatism changes in all three corneal incision location. CONCLUSION Corneal incision of phacoemulsification cataract surgery can affect corneal wavefront aberration. The 12 o'clock corneal incision eliminated more HOAs and the spherical aberrations decreased in BENT incision group obviously when we selected steep meridian small incision. Cataract lens replacement using wavefront-corrected intraocular lens combined with optimized corneal incision site would improve ocular aberration results. PMID:27162725

  5. Aberration corrected STEM to study an ancient hair dyeing formula

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.

    2014-05-01

    Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.

  6. Tomographic diffractive microscopy and multiview profilometry with flexible aberration correction.

    PubMed

    Liu, H; Bailleul, J; Simon, B; Debailleul, M; Colicchio, B; Haeberlé, O

    2014-02-01

    We have developed a tomographic diffractive microscope in reflection, which permits observation of sample surfaces with an improved lateral resolution, compared to a conventional holographic microscope. From the same set of data, high-precision measurements can be performed on the shape of the reflective surface by reconstructing the phase of the diffracted field. Doing so allows for several advantages compared to classical holographic interferometric measurements: improvement in lateral resolution, easier phase unwrapping, reduction of the coherent noise, combined with the high-longitudinal precision provided by interferometric phase measurements. We demonstrate these capabilities by imaging various test samples. PMID:24514193

  7. Measurement of eye aberrations in a speckle field

    SciTech Connect

    Larichev, A V; Ivanov, P V; Iroshnikov, N G; Shmalgauzen, V I

    2001-12-31

    The influence of speckles on the performance of a Shark-Hartmann wavefront sensor is investigated in the eye aberration studies. The dependence of the phase distortion measurement error on the characteristic speckle size is determined experimentally. Scanning of the reference source was used to suppress the speckle structure of the laser beam scattered by the retina. The technique developed by us made it possible to study the time dependence of the human eye aberrations with a resolution of 30 ms. (laser applications and other topics in quantum electronics)

  8. Stewart platform kinematics and secondary mirror aberration control

    NASA Astrophysics Data System (ADS)

    Schipani, P.; Marty, L.

    2006-06-01

    This work deals with active correction of the aberrations in a telescope by moving the secondary mirror. A special attention is here dedicated to the case of a secondary mirror whose motions are controlled by a 6-6 Stewart Platform (generally called by astronomers simply "hexapod", even if this term is more general). The kinematics of the device is studied; an iterative algorithm to solve the non trivial forward kinematics problem is described.

  9. Analysis of laser beam quality degradation caused by quartic phase aberrations.

    PubMed

    Siegman, A E

    1993-10-20

    Simple formulas are derived for the degradation in the beam-quality factor, M(2), of an arbitrary laser beam caused by quartic phase distortions such as those that might occur in a spherically aberrated optical component, a thermally aberrated laser output window, or a divergent beam emerging from a high-index dielectric medium as in a wide-stripe, unstable-resonator diode laser. A new formula for the defocus correction that is needed to collimate optimally a beam with quartic phase aberration is also derived. Analytical results and numerical examples are given for both radially aberrated and one-dimensionaltransversely aberrated cases, and a simple experimental measurement of the beam-quality degradation produced by a thin plano-convex lens is shown to be in good agreement with the theory. PMID:20856411

  10. Distortion of ultrashort pulses caused by aberrations

    NASA Astrophysics Data System (ADS)

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  11. Using geometric algebra to study optical aberrations

    SciTech Connect

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  12. Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity

    SciTech Connect

    Aydin, C.; Kulkarni, Apoorva; Chi, Miaofang; Browning, Nigel D.; Gates, Bruce C.

    2013-05-10

    Size, shape, nuclearity: Aberration-corrected scanning transmission electron microscopy was used to determine the 3D structures of MgO-supported Os3, Os4, Os5, and Os10 clusters, which have structures nearly matching those of osmium carbonyl compounds with known crystal structures. The samples are among the best-defined supported catalysts.

  13. Site-isolated Iridium Complexes on MgO Powder: Individual Ir Atoms Imaged by Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; D. Browning, N; C. Gates , B

    2009-01-01

    Iridium complexes were synthesized on MgO powder by adsorption of Ir(C{sub 2}H{sub 4}){sub 2}(acac) [acac = acetonylacetonate]; images determined by aberration-corrected scanning transmission electron microscopy show individual Ir atoms, demonstrating that the supported complexes were site-isolated.

  14. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design. PMID:27557003

  15. Parametric synthesis of optical systems composed of thin lenses by using the plane-parallel plate aberration properties

    NASA Astrophysics Data System (ADS)

    Ezhova, Kseniia; Zverev, Victor; Ezhova, Vasilisa

    2015-09-01

    The possibility of constructing the optical system with an aplanatic correction of aberrations representing generally combination of the thin lens with an aplanatic meniscus and plane-parallel plate of small thickness is shown.

  16. A Model of Distributed Phase Aberration for Deblurring Phase Estimated from Scattering

    PubMed Central

    Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.

    2010-01-01

    Correction of aberration in ultrasound imaging uses the response of a point reflector or its equivalent to characterize the aberration. Because a point reflector is usually unavailable, its equivalent is obtained using statistical methods, such as processing reflections from multiple focal regions in a random medium. However, the validity of methods that use reflections from multiple points is limited to isoplanatic patches for which the aberration is essentially the same. In this study, aberration is modeled by an offset phase screen to relax the isoplanatic restriction. Methods are developed to determine the depth and phase of the screen and to use the model for compensation of aberration as the beam is steered. Use of the model to enhance the performance of the noted statistical estimation procedure is also described. Experimental results obtained with tissue-mimicking phantoms that implement different models and produce different amounts of aberration are presented to show the efficacy of these methods. The improvement in b-scan resolution realized with the model is illustrated. The results show that the isoplanatic patch assumption for estimation of aberration can be relaxed and that propagation-path characteristics and aberration estimation are closely related. PMID:20040448

  17. Accurate evaluations of the field shift and lowest-order QED correction for the ground 1{sup 1}S−states of some light two-electron ions

    SciTech Connect

    Frolov, Alexei M.; Wardlaw, David M.

    2014-09-14

    Mass-dependent and field shift components of the isotopic shift are determined to high accuracy for the ground 1{sup 1}S−states of some light two-electron Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} ions. To determine the field components of these isotopic shifts we apply the Racah-Rosental-Breit formula. We also determine the lowest order QED corrections to the isotopic shifts for each of these two-electron ions.

  18. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  19. Data correction pre-processing for electronically stored blood culture results: Implications on microbial spectrum and empiric antibiotic therapy

    PubMed Central

    2009-01-01

    Background The outcome of patients with bacteraemia is influenced by the initial selection of adequate antimicrobial therapy. The objective of our study was to clarify the influence of different crude data correction methods on a) microbial spectrum and ranking of pathogens, and b) cumulative antimicrobial susceptibility pattern of blood culture isolates obtained from patients from intensive care units (ICUs) using a computer based tool, MONI. Methods Analysis of 13 ICUs over a period of 7 years yielded 1427 microorganisms from positive results. Three different data correction methods were applied. Raw data method (RDM): Data without further correction, including all positive blood culture results. Duplicate-free method (DFM): Correction of raw data for consecutive patient's results yielding same microorganism with similar antibiogram within a two-week period. Contaminant-free method (CFM): Bacteraemia caused by possible contaminants was only assumed as true bloodstream infection, if an organism of the same species was isolated from > 2 sets of blood cultures within 5 days. Results Our study demonstrates that different approaches towards raw data correction – none (RDM), duplicate-free (DFM), and a contaminant-free method (CFM) – show different results in analysis of positive blood cultures. Regarding the spectrum of microorganisms, RDM and DFM yielded almost similar results in ranking of microorganisms, whereas using the CFM resulted in a clinically and epidemiologically more plausible spectrum. Conclusion For possible skin contaminants, the proportion of microorganisms in terms of number of episodes is most influenced by the CFM, followed by the DFM. However, with exception of fusidic acid for gram-positive organisms, none of the evaluated correction methods would have changed advice for empiric therapy on the selected ICUs. PMID:19500418

  20. A method to study electronic transport properties of molecular junction: one-dimension transmission combined with three-dimension correction approximation (OTCTCA)

    PubMed Central

    Liu, Ran; Wang, Chuan-Kui; Li, Zong-Liang

    2016-01-01

    Based on the ab initio calculation, a method of one-dimension transmission combined with three-dimension correction approximation (OTCTCA) is developed to investigate electron-transport properties of molecular junctions. The method considers that the functional molecule provides a spatial distribution of effective potential field for the electronic transport. The electrons are injected from one electrode by bias voltage, then transmit through the potential field around the functional molecule, at last are poured into the other electrode with a specific transmission probability which is calculated from one-dimension Schrödinger equation combined with three-dimension correction. The electron-transport properties of alkane diamines and 4, 4′-bipyridine molecular junctions are studied by applying OTCTCA method. The numerical results show that the conductance obviously exponentially decays with the increase of molecular length. When stretching molecular junctions, steps with a certain width are presented in conductance traces. Especially, in stretching process of 4, 4′-bipyridine molecular junction, if the terminal N atom is broken from flat part of electrode tip and exactly there is a surface Au atom on the tip nearby the N atom, the molecule generally turns to absorb on the surface Au atom, which further results in another lower conductance step in the traces as the experimental probing. PMID:26911451

  1. A method to study electronic transport properties of molecular junction: one-dimension transmission combined with three-dimension correction approximation (OTCTCA).

    PubMed

    Liu, Ran; Wang, Chuan-Kui; Li, Zong-Liang

    2016-01-01

    Based on the ab initio calculation, a method of one-dimension transmission combined with three-dimension correction approximation (OTCTCA) is developed to investigate electron-transport properties of molecular junctions. The method considers that the functional molecule provides a spatial distribution of effective potential field for the electronic transport. The electrons are injected from one electrode by bias voltage, then transmit through the potential field around the functional molecule, at last are poured into the other electrode with a specific transmission probability which is calculated from one-dimension Schrödinger equation combined with three-dimension correction. The electron-transport properties of alkane diamines and 4, 4'-bipyridine molecular junctions are studied by applying OTCTCA method. The numerical results show that the conductance obviously exponentially decays with the increase of molecular length. When stretching molecular junctions, steps with a certain width are presented in conductance traces. Especially, in stretching process of 4, 4'-bipyridine molecular junction, if the terminal N atom is broken from flat part of electrode tip and exactly there is a surface Au atom on the tip nearby the N atom, the molecule generally turns to absorb on the surface Au atom, which further results in another lower conductance step in the traces as the experimental probing. PMID:26911451

  2. A method to study electronic transport properties of molecular junction: one-dimension transmission combined with three-dimension correction approximation (OTCTCA)

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wang, Chuan-Kui; Li, Zong-Liang

    2016-02-01

    Based on the ab initio calculation, a method of one-dimension transmission combined with three-dimension correction approximation (OTCTCA) is developed to investigate electron-transport properties of molecular junctions. The method considers that the functional molecule provides a spatial distribution of effective potential field for the electronic transport. The electrons are injected from one electrode by bias voltage, then transmit through the potential field around the functional molecule, at last are poured into the other electrode with a specific transmission probability which is calculated from one-dimension Schrödinger equation combined with three-dimension correction. The electron-transport properties of alkane diamines and 4, 4‧-bipyridine molecular junctions are studied by applying OTCTCA method. The numerical results show that the conductance obviously exponentially decays with the increase of molecular length. When stretching molecular junctions, steps with a certain width are presented in conductance traces. Especially, in stretching process of 4, 4‧-bipyridine molecular junction, if the terminal N atom is broken from flat part of electrode tip and exactly there is a surface Au atom on the tip nearby the N atom, the molecule generally turns to absorb on the surface Au atom, which further results in another lower conductance step in the traces as the experimental probing.

  3. A minimalistic approach to static and dynamic electron correlations: Amending generalized valence bond method with extended random phase approximation correlation correction

    NASA Astrophysics Data System (ADS)

    Chatterjee, Koushik; Pastorczak, Ewa; Jawulski, Konrad; Pernal, Katarzyna

    2016-06-01

    A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples of systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.

  4. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  5. Chromosome aberrations induced by zebularine in triticale.

    PubMed

    Ma, Xuhui; Wang, Qing; Wang, Yanzhi; Ma, Jieyun; Wu, Nan; Ni, Shuang; Luo, Tengxiao; Zhuang, Lifang; Chu, Chenggen; Cho, Seong-Woo; Tsujimoto, Hisashi; Qi, Zengjun

    2016-07-01

    Chromosome engineering is an important approach for generating wheat germplasm. Efficient development of chromosome aberrations will facilitate the introgression and application of alien genes in wheat. In this study, zebularine, a DNA methylation transferase inhibitor, was successfully used to induce chromosome aberrations in the octoploid triticale cultivar Jinghui#1. Dry seeds were soaked in zebularine solutions (250, 500, and 750 μmol/L) for 24 h, and the 500 μmol/L treatment was tested in three additional treatment times, i.e., 12, 36, and 48 h. All treatments induced aberrations involving wheat and rye chromosomes. Of the 920 cells observed in 67 M1 plants, 340 (37.0%) carried 817 aberrations with an average of 0.89 aberrations per cell (range: 0-12). The aberrations included probable deletions, telosomes and acentric fragments (49.0%), large segmental translocations (28.9%), small segmental translocations (17.1%), intercalary translocations (2.6%), long chromosomes that could carry more than one centromere (2.0%), and ring chromosomes (0.5%). Of 510 M2 plants analyzed, 110 (21.6%) were found to carry stable aberrations. Such aberrations included 79 with varied rye chromosome numbers, 7 with wheat and rye chromosome translocations, 15 with possible rye telosomes/deletions, and 9 with complex aberrations involving variation in rye chromosome number and wheat-rye translocations. These indicated that aberrations induced by zebularine can be steadily transmitted, suggesting that zebularine is a new efficient agent for chromosome manipulation. PMID:27334255

  6. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  7. Aberrant methylation during cervical carcinogenesis.

    PubMed

    Virmani, A K; Muller, C; Rathi, A; Zoechbauer-Mueller, S; Mathis, M; Gazdar, A F

    2001-03-01

    We studied the pattern of aberrant methylation during the multistage pathogenesis of cervical cancers. We analyzed a total of 73 patient samples and 10 cervical cancer cell lines. In addition, tissue samples [peripheral blood lymphocytes (n = 10) and buccal epithelial cells (n = 12)] were obtained from 22 healthy volunteers. On the basis of the results of preliminary analysis, the cervical samples were grouped into three categories: (a) nondysplasia/low-grade cervical intraepithelial neoplasia (CIN; n = 37); (b) high-grade CIN (n = 17); and (c) invasive cancer (n = 19). The methylation status of six genes was determined (p16, RARbeta, FHIT, GSTP1, MGMT, and hMLH1). Our main findings are as follows: (a) methylation was completely absent in control tissues; (b) the frequencies of methylation for all of the genes except hMLH1 were >20% in cervical cancers; (c) aberrant methylation commenced early during multistage pathogenesis and methylation of at least one gene was noted in 30% of the nondysplasia/low-grade CIN group; (d) an increasing trend for methylation was seen with increasing pathological change; (e) methylation of RARbeta and GSTP1 were early events, p16 and MGMT methylation were intermediate events, and FHIT methylation was a late, tumor-associated event; and (f) methylation occurred independently of other risk factors including papillomavirus infection, smoking history, or hormone use. Although our findings need to be extended to a larger series, they suggest that the pattern of aberrant methylation in women with or without dysplasia may help identify subgroups at increased risk for histological progression or cancer development. PMID:11297252

  8. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  9. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  10. On the feasibility to investigate point defects by advanced electron microscopy

    SciTech Connect

    Kisielowski, C.; Jinschek, J.R.

    2002-10-02

    Transmission Electron Microscopy evolves rapidly as a primary tool to investigate nano structures on a truly atomic level. Its resolution reaches into the sub Angstrom region by now. Together with a better correction of lens aberrations, sensitivities are drastically enhanced. Utilizing advanced electron microscopes, it is feasible to promote experiments that aim to detect single atoms. This enables local investigations of non-stoichiometry. This paper reviews the current state-of-the-art.

  11. Sources of the monochromatic aberrations induced in human eyes after laser refractive surgery

    NASA Astrophysics Data System (ADS)

    Porter, Jason

    Laser in-situ keratomileusis (LASIK) procedures correct the eye's defocus and astigmatism but also introduce higher order monochromatic aberrations. Little is known about the origins of these induced aberrations. The advent of wavefront sensor technology has made it possible to measure accurately and quickly the aberrations of normal and postoperative LASIK eyes. The goal of this thesis was to exploit this technology to better understand some of the potential mechanisms by which aberrations could be introduced during LASIK. A first step towards investigating these sources was to characterize the aberration changes in post-LASIK eyes. Higher order rms wavefront error increased after conventional and customized LASIK surgery. On average, spherical aberration approximately doubled, and significant changes in vertical and horizontal coma were observed. We examined two sources of postoperative aberrations: the creation of a microkeratome flap and the subsequent laser ablation. Higher order rms increased slightly and there was a wide variation in the response of individual Zernike modes after cutting a flap. The majority of induced spherical aberration was due to the laser ablation and not the flap-cut. Aberrations are also induced by static and dynamic decentrations of the patient's pupil. We found that ablations were typically decentered in the superotemporal direction due to shifts in pupil center location between aberration measurement (dilated) and surgical (undilated) conditions in customized LASIK eyes. There was a weak correlation between the horizontal coma theoretically induced by this offset and that measured postoperatively. Finally, dynamic eye movements during the procedure induce higher order aberrations. We found that the most problematic decentrations during LASIK are relatively slow drifts in eye position. An eye-tracking system with a 2-Hz closed-loop bandwidth could compensate for most eye movements during LASIK. One solution for reducing the

  12. Comparisons of Exact Results for the Virtual Correction to Bremsstrahlung in Electron-Positron Annihilation at High Energies

    NASA Astrophysics Data System (ADS)

    Yost, S. A.; Glosser, C.; Jadach, S.; Ward, B. F. L.

    2004-10-01

    We have compared the virtual corrections to single hard bremsstrahlung as calculated by S. Jadach, M. Melles, B.F.L. Ward and S.A. Yost to several other expressions. The most recent of these comparisons is to the leptonic tensor calculated by J.H. Kuhn and G. Rodrigo for radiative return. Agreement is found to within 10-5 or better as a fraction of the Born cross section for most of the range of photon energies.

  13. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method. PMID:12732918

  14. Calculation of the multifold differential cross section of the electron-impact ionization of molecular hydrogen by prolate spheroidal external complex scaling method with second Born corrections

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2010-08-15

    We introduce the second Born dipole corrections in our recently developed ab initio procedure based on the driven Schroedinger equation formalism and the external scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by electron impact. To test our procedure, we first apply it to the excitation-ionization process of a He atom and compare the results to those of equivalent theoretical results, which are available. We then show that the introduction of the second Born correction including only dipole terms improves the agreement with the experimental results only in the case of the simple ionization. We think that the introduction of nondipole contributions in the second Born term which are not taken into account in the present work is necessary in the case of the double ionization process.

  15. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence. PMID:20134811

  16. Development of a Geomagnetic Storm Correction to the International Reference Ionosphere E-Region Electron Densities Using TIMED/SABER Observations

    NASA Technical Reports Server (NTRS)

    Mertens, C. J.; Xu, X.; Fernandez, J. R.; Bilitza, D.; Russell, J. M., III; Mlynczak, M. G.

    2009-01-01

    Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.

  17. Double-pass measurement of human eye aberrations: limitations and practical realization

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Belyakov, Alexey I.; Cherezova, Tatyana Y.; Kudryashov, Alexis V.

    2004-11-01

    The problem of correct eye aberrations measurement is very important with the rising widespread of a surgical procedure for reducing refractive error in the eye, so called, LASIK (laser-assisted in situ keratomileusis). The double-pass technique commonly used for measuring aberrations of a human eye involves some uncertainties. One of them is loosing the information about odd human eye aberrations. We report about investigations of the applicability limit of the double-pass measurements depending upon the aberrations status introduced by human eye and actual size of the entrance pupil. We evaluate the double-pass effects for various aberrations and different pupil diameters. It is shown that for small pupils the double-pass effects are negligible. The testing and alignment of aberrometer was performed using the schematic eye, developed in our lab. We also introduced a model of human eye based on bimorph flexible mirror. We perform calculations to demonstrate that our schematic eye is capable of reproducing spatial-temporal statistics of aberrations of living eye with normal vision or even myopic or hypermetropic or with high aberrations ones.

  18. Depth aberrations characterization in linear and nonlinear microscopy schemes using a Shack-Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Andilla, Jordi; Porcar-Guezenec, Rafael; Levecq, Xavier; Artigas, David; Loza-Alvarez, Pablo

    2012-03-01

    The performance of imaging devices such as linear and nonlinear microscopes (NLM) can be limited by the optical properties of the imaged sample. Such an important aspect has already been described using theoretical models due to the difficulties of implementing a direct wavefront sensing scheme. However, these only stand for simple interfaces and cannot be generalized to biological samples given its structural complexity. This has leaded to the development of sensor-less adaptive optics (AO) implementations. In this approach, aberrations are iteratively corrected trough an image related parameter (aberrations are not measured), being prone of causing sample damage. In this work, we perform a practical implementation of a Shack-Hartman wavefront sensor to compensate for sample induced aberrations, demonstrating its applicability in linear and NLM. We perform an extensive analysis of wavefront distortion effects through different depths employing phantom samples. Aberration effects originated by the refractive index mismatch and depth are quantified using the linear and nonlinear guide-star concept. More over we analyze offaxis aberrations in NLM, an important aspect that is commonly overlooked. In this case spherical aberration behaves similarly to the wavefront error compared with the on-axis case. Finally we give examples of aberration compensation using epi-fluorescence and nonlinear microscopy.

  19. Influence of aberrations in microholographic recording

    NASA Astrophysics Data System (ADS)

    Katayama, Ryuichi

    2015-11-01

    The influence of various types of aberrations (spherical, coma, and astigmatic) of recording and readout beams on the readout signal in a microholographic recording was investigated through a numerical simulation. The simulation conditions were that the wavelength of the laser was 405 nm and the numerical aperture of the objective lenses was 0.85. The tolerance of the root-mean-square (RMS) wavefront aberrations was defined as the aberration when the normalized signal level decreased to 0.8. Among the three types of aberrations, the influence of the spherical aberration was the most significant. When both the recording and readout beams were aberrated and the signs of the aberrations were in the worst case, the tolerance of the RMS wavefront aberrations was less than half of the Maréchal's criterion. Moreover, when the RMS wavefront aberrations of the recording and readout beams were within the above tolerance, the bit intervals of 0.13 and 0.65 μm in the inplane and vertical directions, respectively, which correspond to the recording density of 91 bit/μm3 (recording capacity of 16 TB for a 120-mm-diameter optical disk having a 300-μm-thick recording layer), were shown to be feasible for confocal detection with an allowable signal-to-noise ratio.

  20. Boundary-corrected four-body continuum-intermediate-state method: Single-electron capture from heliumlike atomic systems by fast nuclei

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2015-06-01

    Single charge exchange in collisions between bare projectiles and heliumlike atomic systems at intermediate and high incident energies is examined by using the four-body formalism of the first- and second-order theories. The main purpose of the present study is to investigate the relative importance of the intermediate ionization continua of the captured electron compared to the usual direct path of the single electron transfer from a target to a projectile. In order to achieve this goal, comprehensive comparisons are made between the four-body boundary-corrected continuum-intermediate-states (BCIS-4B) method and the four-body boundary-corrected first Born (CB1-4B) method. The perturbation potential is the same in the CB1-4B and BCIS-4B methods. Both methods satisfy the correct boundary conditions in the entrance and exit channels. However, unlike the CB1-4B method, the second-order BCIS-4B method takes into account the electronic Coulomb continuum-intermediate states in either the entrance or the exit channel depending on whether the post or the prior version of the transition amplitude is used. Hence, by comparing the results from these two theories, the relative importance of the intermediate ionization electronic continua can be assessed within the four-body formalism of scattering theory. The BCIS-4B method predicts the usual second-order effect through double scattering of the captured electron on two nuclei as a quantum-mechanical counterpart of the Thomas classical two-step, billiard-type collision. The physical mechanism for this effect in the BCIS-4B method is also comprised of two steps such that ionization occurs first. This is followed by capture of the electron by the projectile with both processes taking place on the energy shell. Moreover, the role of the second, noncaptured electron in a heliumlike target is revisited. To this end, the BCIS-4B method describes the effect of capture of one electron by the interaction of the projectile nucleus with

  1. Corrective Optics For Camera On Telescope

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Meinel, Aden B.

    1994-01-01

    Assembly of tilted, aspherical circularly symmetric mirrors used as corrective optical subsystem for camera mounted on telescope exhibiting both large spherical wave-front error and inherent off-axis astigmatism. Subsystem provides unobscured camera aperture and diffraction-limited camera performance, despite large telescope aberrations. Generic configuration applied in other optical systems in which aberations deliberately introduced into telescopes and corrected in associated cameras. Concept of corrective optical subsystem provides designer with additional degrees of freedom used to optimize optical system.

  2. Aberrations of varied line-space grazing incidence gratings in converging light beams

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.

    1984-01-01

    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  3. Binocular adaptive optics visual simulator: understanding the impact of aberrations on actual vision

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Prieto, Pedro M.; Artal, Pablo

    2010-02-01

    A novel adaptive optics system is presented for the study of vision. The apparatus is capable for binocular operation. The binocular adaptive optics visual simulator permits measuring and manipulating ocular aberrations of the two eyes simultaneously. Aberrations can be corrected, or modified, while the subject performs visual testing under binocular vision. One of the most remarkable features of the apparatus consists on the use of a single correcting device, and a single wavefront sensor (Hartmann-Shack). Both the operation and the total cost of the instrument largely benefit from this attribute. The correcting device is a liquid-crystal-on-silicon (LCOS) spatial light modulator. The basic performance of the visual simulator consists in the simultaneous projection of the two eyes' pupils onto both the corrector and sensor. Examples of the potential of the apparatus for the study of the impact of the aberrations under binocular vision are presented. Measurements of contrast sensitivity with modified combinations of spherical aberration through focus are shown. Special attention was paid on the simulation of monovision, where one eye is corrected for far vision while the other is focused at near distance. The results suggest complex binocular interactions. The apparatus can be dedicated to the better understanding of the vision mechanism, which might have an important impact in developing new protocols and treatments for presbyopia. The technique and the instrument might contribute to search optimized ophthalmic corrections.

  4. Electron, hole and exciton self-trapping in germanium doped silica glass from DFT calculations with self-interactions correction

    SciTech Connect

    Du, Jincheng; Corrales, Louis R.; Tsemekhman, Kiril L.; Bylaska, Eric J.

    2007-02-01

    We performed density functional theory (DFT) calculations of electron, hole and exciton self-trapping in germanium doped silica glass to understand the refractive index change in these glasses induced by UV irradiation. The local structure relaxation and excess electron density distribution upon trapping of the above species were calculated. The results show that both trapped exciton and electron are highly localized on germanium ion and, to some extent, on its oxygen neighbors. Exciton self-trapping is found to lead to the formation of Ge E’ center and non-bridging hole center. Electron trapping changes the GeO4 tetrahedron structure into trigonal bi-pyramid with the majority of the excess electron density located along the equatorial line. Self-trapped hole is localized on bridging oxygen ions that are not coordinated to germanium atoms and leads to elongation of the Si-O bonds and change of the Si-O-Si bond angles. We did comparative study of standard DFT vs. DFT with a hybrid PBE0 exchange and correlation functional. The results show that the two methods give qualitatively similar relaxed structure and charge distribution for the electron and exciton trapping in germanium doped silica glass; however, only using the PBE0 functional reproduces the hole self-trapping. This research is supported by the Divisions of Chemical Science, Office of Basic Energy Sciences, US Department of Energy. This research was performed in part using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL). The EMSL is funded by DOE’s Office of Biological and Environmental Research. The pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. On the correct choice of equivalent circuit for fitting bulk impedance data of ionic/electronic conductors

    NASA Astrophysics Data System (ADS)

    Hernández, Miguel A.; Masó, Nahum; West, Anthony R.

    2016-04-01

    Bulk conductivity data of ionically and electronically conducting solid electrolytes and electronic ceramics invariably show a frequency dependence that cannot be modelled by a single-valued resistor. To model this, common practice is to add a constant phase element (CPE) in parallel with the bulk resistance. To fit experimental data on a wide variety of materials, however, it is also essential to include the limiting, high frequency permittivity of the material in the equivalent circuit. Failure to do so can lead to incorrect values for the sample resistance and CPE parameters and to an inappropriate circuit for materials that are electrically heterogeneous.

  6. First-order exchange and self-energy corrections to static density correlation function of a spin-polarized two-dimensional quantum electron fluid

    SciTech Connect

    Arora, Priya; Moudgil, R. K.; Bhukal, Nisha

    2015-05-15

    Static density-density correlation function has been calculated for a spin-polarized two-dimensional quantum electron fluid by including the first-order exchange and self-energy corrections to the random-phase approximation (RPA). This is achieved by determining these corrections to the RPA linear density-density response function, obtained by solving the equation of motion for the single-particle Green’s function. Resulting infinite hierarchy of equations (involving higher-order Green’s functions) is truncated by factorizing the two-particle Green’s function as a product of the single-particle Green’s function and one-particle distribution function. Numerical results of correlation function are compared directly against the quantum Monte Carlo simulation data due to Tanatar and Ceperley for different coupling parameter (r{sub s}) values. We find almost exact agreement for r{sub s}=1, with a noticeable improvement over the RPA. Its quality, however, deteriorates with increasing r{sub s}, but correction to RPA is quite significant.

  7. Some Useful Correspondences In Aberration Theory

    NASA Astrophysics Data System (ADS)

    Shafer, David

    1986-10-01

    There are many correspondences between the behavior of monochromatic aberrations and chromatic aberrations. Usually the behavior of the chromatic aberrations is of a lower order than the corresponding monochromatic behavior. The cause of the 5th-order mono-chromatic astigmatism, for example, is similar in type to the cause of the chromatic variation of 3rd-order astigmatism. The stop-shift behavior of 3rd-order monochromatic coma is similar to that of first-order lateral color, and so on. These correspondences are interesting for two reasons. One is that they have not been commented on much before, despite the value of one's being aware of these relationships. Methods used to control a monochromatic aberration may also apply to the corresponding chromatic aberration, and vice-versa, for example. The other benefit to studying this topic is that the chromatic aberrations, which are of a lower order than their monochro-matic correspondences, are much easier to understand and visualize. A simple diagram can illustrate the stop-shift behavior of lateral color much more easily than trying to do the same thing with 3rd-order coma. Finally, the very important distinction between intrinsic and induced aberrations can be best illustrated with chromatic aberrations, because of their lower order.

  8. Harmonic oscillator states in aberration optics

    NASA Technical Reports Server (NTRS)

    Wolf, Kurt Bernardo

    1993-01-01

    The states of the three-dimensional quantum harmonic oscillator classify optical aberrations of axis-symmetric systems due to the isomorphism between the two mathematical structures. Cartesian quanta and angular momentum classifications have their corresponding aberration classifications. The operation of concatenation of optical elements introduces a new operation between harmonic oscillator states.

  9. To tilt or not to tilt: correction of the distortion caused by inclined sample surfaces in low-energy electron diffraction.

    PubMed

    Sojka, Falko; Meissner, Matthias; Zwick, Christian; Forker, Roman; Vyshnepolsky, Michael; Klein, Claudius; Horn-von Hoegen, Michael; Fritz, Torsten

    2013-10-01

    Low-energy electron diffraction (LEED) is a widely employed technique for the structural characterization of crystalline surfaces and epitaxial adsorbates. For technical reasons the accessible reciprocal space is limited at a given primary electron energy E. This limitation may be overcome by sweeping E to observe higher diffraction orders decisively enhancing the quantitative examination. Yet, in many cases, such as molecular films with rather large unit cells, the adsorbate reflexes become less pronounced at energies high enough to observe substrate reflexes. One possibility to overcome this problem is an intentional inclination of the sample surface during the measurement at the expense of the quantitative interpretability of then severely distorted diffraction patterns. Here, we introduce a correction method for the axially symmetric distortion in LEED images of tilted samples. We provide experimental confirmation for micro-channel plate LEED and spot-profile analysis LEED instruments using the (7×7) reconstructed surface of a Si(111) single crystal as a reference sample. Finally, we demonstrate that the correction of this distortion considerably improves the quantitative analysis of diffraction patterns of adsorbates since substrate and adsorbate reflexes can be evaluated simultaneously. As an illustrative example we have chosen an epitaxial monolayer of 3,4,9,10-perylenetetracarboxylic dianhydride on Ag(111) that is known to form a commensurate superstructure. PMID:23770540

  10. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule

    NASA Astrophysics Data System (ADS)

    Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W.

    1999-03-01

    The occurrence of quantum dipoles at layered materials semiconductor heterointerfaces was investigated by photoemission spectroscopy (PES). Due to the unique properties of layered compounds the prepared interfaces are essentially free of the structural problems known from the usually investigated heterosystems composed of III-V, IV or II-VI materials allowing the detailed investigation of electronic phenomena at the interfaces. We investigated heterostructures composed of epitaxial layers of SnS2 and SnSe2 on different single crystalline layered chalcogenide substrates (WSe2, MoS2, MoTe2, and GaSe). The epilayers were grown by van der Waals epitaxy (vdWe) on the (0001) plane of the substrate crystals. For every system the valence band offset was determined by careful evaluation of the PES data as a function of the film thickness. Using published values for the band gaps and the experimentally determined work functions and surface potentials the band lineup for each system was determined. The band offsets of all systems were found to differ from the prediction of the electron affinity rule (EAR) by a small systematic deviation which was related to the occurrence of localized quantum dipoles at the interface. This deviation can be expressed as a linear charge transfer correction term added to the original EAR. This corrected EAR is still a linear rule allowing the assignment of "characteristic energies" to each material for the calculation of the band offset. We could demonstrate that the error margin of the corrected EAR lies well within the experimental error of PES experiments, thus proving the general applicability of linear laws for the determination of the band offset in absence of structural dipoles.

  11. Crystal and electronic structure of BiTeI, AuTeI, and PdTeI compounds: A dispersion-corrected density-functional study

    NASA Astrophysics Data System (ADS)

    Güler-Kılıç, Sümeyra; Kılıç, ćetin

    2015-06-01

    Semilocal and dispersion-corrected density-functional calculations have been performed to study the crystal structure, equation of state, and electronic structure of metal tellurohalides with chemical formula MeTeI where Me=Bi, Au, or Pd. A comparative investigation of the results of these calculations is conducted which reveals the role of van der Waals attraction. It is shown that the prediction of crystal structure of metal tellurohalides is systematically improved thanks to the inclusion of van der Waals dispersion. It is found for BiTeI and AuTeI that the energy versus volume curve is anomalously flat in the vicinity of equilibrium volume and the calculated equation of state has an excessively steep slope in the low-pressure region; these are also fixed in the dispersion-corrected calculations. Analysis based on the computation of the volume and axial compressibilities shows that predicting the anisotropy of BiTeI via the semilocal calculations yields an unrealistic result, whereas the results of dispersion-corrected calculations agree with the experimental compressibility data. Our calculations render that BiTeI (AuTeI) is a narrow band gap semiconductor with Rashba-type spin splitting at the band edges (with an indirect band gap) while PdTeI is a metal with relatively low density of states at the Fermi level. The band gaps of BiTeI and AuTeI obtained via semilocal (dispersion-corrected) calculations are found to be greater (smaller) than the respective experimental values, which is against (in line with) the expected trend. Similarly, the Rashba parameters of BiTeI are bracketed by the respective values obtained via semilocal and dispersion-corrected calculations, e.g., a larger value for the Rashba parameter αR is obtained in association with the reduction of the band gap caused by modification of the crystal structure owing to van der Waals attraction. Excellent agreement with the experimental Rashba parameters is obtained via interpolation of the

  12. Aberrant Radial Artery Causing Carpal Tunnel Syndrome

    PubMed Central

    Kokkalis, Zinon T.; Tolis, Konstantinos E.; Megaloikonomos, Panayiotis D.; Panagopoulos, Georgios N.; Igoumenou, Vasilios G.; Mavrogenis, Andreas F.

    2016-01-01

    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic. PMID:27517078

  13. Nodal aberration theory applied to freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  14. Aberrant Radial Artery Causing Carpal Tunnel Syndrome.

    PubMed

    Kokkalis, Zinon T; Tolis, Konstantinos E; Megaloikonomos, Panayiotis D; Panagopoulos, Georgios N; Igoumenou, Vasilios G; Mavrogenis, Andreas F

    2016-06-01

    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic. PMID:27517078

  15. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  16. The research of calibration method on lens-tilt displacement transmission-type system based on the aberration bounded model

    NASA Astrophysics Data System (ADS)

    Xu, Chun-mei; Liu, Bing-qi; Li, Li; Huang, Fu-yu; Zhang, Chu

    2015-10-01

    As the developing appliance range of high-resolution optical design, the requirement on the aberration of system design is becoming higher and higher, but the installation and adjustment error of optical components is an important element which influences the aberration. The decentration and tilt of optical components result not only the image lateral displacement but also the aberration enlargement of the optical system, the research on image quality of plane symmetric optical system is becoming more and more popular. The Gaussian correction methods on lens decentration already exist, but it is short of theoretical research to guide the correction on the lens tilt, which leads to the effect of image lateral displacement. This thesis analyzes theoretically a mathematical model between the lens tilt degree and wave aberration, and deduces mathematically the correction equation of zero aberration increment under the aberration constraint condition. Taking an example of some type optical sight, the ZEMAX simulation is carried out to validate this method, and the results show that: This method can effectively guide the correction of lens tilt, and reduce the influence of lens position change on the optical imaging quality. It has important practical significance to guide high-resolution optical design.

  17. Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Francis, E. M.; Harte, A.; Frankel, P.; Haigh, S. J.; Jädernäs, D.; Romero, J.; Hallstadius, L.; Preuss, M.

    2014-11-01

    Zirconium alloys used as cladding materials in nuclear reactors can exhibit accelerated irradiation induced growth, often termed linear growth, after sustained neutron irradiation. This phenomenon has been linked to the formation of -component dislocation loops and to the concentration of interstitial solute atoms. It is well documented for the Zircaloys that Fe dissolves from second phase particles (SPPs) during irradiation thus increasing the interstitial solute concentration in the matrix. However, no progress has yet been made into understanding whether a similar process occurs for the newer ZIRLO™ alloys. We aim to overcome this shortcoming here by studying compositional changes in second phase particles in Low Tin ZIRLO™ after neutron and proton irradiation using energy dispersive X-ray (EDX) spectroscopy. Material irradiated to 18 dpa (displacements per atom) using neutrons and to 2.3 and 7 dpa by protons was investigated. The results show that Fe is lost from Zr-Nb-Fe-SPPs during both neutron and proton irradiation. Prior to irradiation, Fe was detected at the interface of β-Nb-SPPs. This Fe enrichment is also dispersed during irradiation. Qualitatively, excellent agreement was found regarding the elemental redistribution processes observed after proton and neutron irradiation.

  18. Perturbation correction factors for the NACP-02 plane-parallel ionization chamber in water in high-energy electron beams.

    PubMed

    Verhaegen, F; Zakikhani, R; Dusautoy, A; Palmans, H; Bostock, G; Shipley, D; Seuntjens, J

    2006-03-01

    Recent dosimetry protocols for clinical high-energy electron beams recommend measurements of absorbed dose-to-water with a plane-parallel or cylindrical ionization chamber. For well-guarded plane-parallel ionization chambers, the ionization chamber perturbation factor in water, p(Q), has a recommended value of unity in all protocols. This assumption was investigated in detail in this study for one of the recommended ionization chambers in the protocols: the Scanditronix NACP-02 plane-parallel ionization chamber. Monte Carlo (MC) simulations of the NACP-02 ionization chamber with the EGSnrc code were validated against backscatter experiments. MC simulations were then used to calculate p(wall), p(cav) and p(Q) perturbation factors and water-to-air Spencer-Attix stopping powers in 4-19 MeV electron beams of a calibration laboratory (NPL), and in 6-22 MeV clinical electron beams from a Varian CL2300 accelerator. Differences between calculated and the currently recommended (Burns et al 1996 Med. Phys. 23 383-8) stopping powers, water-to-air, were found to be limited to 0.9% at depths between the reference depth z(ref) and the depth where the dose has decreased to 50% of the maximum dose, R50. p(wall) was found to exceed unity by 2.3% in the 4 MeV NPL calibration beam at z(ref). For higher energy electron beams p(wall) decreased to a value of about 1%. Combined with a p(cav) about 1% below unity for all energies at z(ref), this was found to cause p(Q) to exceed unity significantly for all energies. In clinical electron beams all three perturbation factors were found to increase with depth. Our findings indicate that the perturbation factors have to be taken into account in calibration procedures and for clinical depth dose measurements with the NACP-02 ionization chamber. PMID:16481689

  19. Correction of the Chromaticity up to Second Order for MEIC

    SciTech Connect

    H. K. Sayed, S.A. Bogacz, P. Chevtsov

    2010-03-01

    The proposed electron collider lattice exhibits low β- functions at the Interaction Point (IP) (βx*100mm - βy* 20 mm) and rather large equilibrium momentum spread of the collider ring (δp/p = 0.00158). Both features make the chromatic corrections of paramount importance. Here the chromatic effects of the final focus quadruples are cor- rected both locally and globally. Local correction features symmetric sextupole families around the IP, the betatron phase advances from the IP to the sextupoles are chosen to eliminate the second order chromatic aberration. Global interleaved families of sextupoles are placed in the figure-8 arc sections, and non-interleaved families at straight sec- tion making use of the freely propagated dispersion wave from the arcs. This strategy minimizes the required sex- tupole strength and eventually leads to larger dynamic aper- ture of the collider. The resulting spherical aberrations induced by the sextupoles are mitigated by design; the straight and arc sections optics features an inverse identity transformation between sextupoles in each pair.

  20. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations

    NASA Astrophysics Data System (ADS)

    Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre

    2016-04-01

    By recording low-noise energy-dispersive x-ray spectroscopy maps from crystalline specimens using aberration-corrected scanning transmission electron microscopy, it is possible to probe core-level electron orbitals in real space. Both the 1 s and 2 p orbitals of Sr and Ti atoms in SrTi O3 are probed, and their projected excitation potentials are determined. This paper also demonstrates experimental measurement of the electronic excitation impact parameter and the delocalization of an excitation due to Coulombic beam-orbital interaction.

  1. Electron density distribution and solar plasma correction of radio signals using MGS, MEX, and VEX spacecraft navigation data and its application to planetary ephemerides

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Fienga, A.; Laskar, J.; Issautier, K.; Manche, H.; Gastineau, M.

    2013-02-01

    The Mars Global Surveyor (MGS), Mars Express (MEX), and Venus Express (VEX) experienced several superior solar conjunctions. These conjunctions cause severe degradations of radio signals when the line of sight between the Earth and the spacecraft passes near to the solar corona region. The primary objective of this work is to deduce a solar corona model from the spacecraft navigation data acquired at the time of solar conjunctions and to estimate its average electron density. The corrected or improved data are then used to fit the dynamical modeling of the planet motions, called planetary ephemerides. We analyzed the radio science raw data of the MGS spacecraft using the orbit determination software GINS. The range bias, obtained from GINS and provided by ESA for MEX and VEX, are then used to derive the electron density profile. These profiles are obtained for different intervals of solar distances: from 12 R⊙ to 215 R⊙ for MGS, 6 R⊙ to 152 R⊙ for MEX, and from 12 R⊙ to 154 R⊙ for VEX. They are acquired for each spacecraft individually, for ingress and egress phases separately and both phases together, for different types of solar winds (fast, slow), and for solar activity phases (minimum, maximum). We compared our results with the previous estimations that were based on in situ measurements, and on solar type III radio and radio science studies made at different phases of solar activity and at different solar wind states. Our results are consistent with estimations obtained by these different methods. Moreover, fitting the planetary ephemerides including complementary data that were corrected for the solar corona perturbations, noticeably improves the extrapolation capability of the planetary ephemerides and the estimation of the asteroids masses. Tables 5, 6 and Appendix A are available in electronic form at http://www.aanda.org

  2. Two-photon exchange corrections to elastic electron-proton scattering at large momentum transfer within the SCET approach

    NASA Astrophysics Data System (ADS)

    Kivel, N.; Vanderhaeghen, M.

    2013-04-01

    We calculate the two-photon exchange (TPE) corrections in the region where the kinematical variables describing the elastic ep scattering are moderately large momentum scales relative to the soft hadronic scale. For such kinematics we use the QCD factorization approach formulated in the framework of the soft-collinear effective theory (SCET). Such technique allows us to develop a description for the soft-spectator scattering contribution which is found to be important in the region of moderately large scales. Together with the hard-spectator contribution we present the complete factorization formulas for the TPE amplitudes at the leading power and leading logarithmic accuracy. The momentum region where both photons are hard is described by only one new nonperturbative SCET form factor. It turns out that the same form factor also arises for wide-angle Compton scattering which is also described in the framework of the SCET approach. This allows us to estimate the soft-spectator contribution associated with the hard photons in a model independent way. The main unknown in our description of the TPE contribution is related with the configuration where one photon is soft. The nonperturbative dynamics in this case is described by two unknown SCET amplitudes. We use a simple model in order to estimate their contribution. The formalism is then applied to a phenomenological analysis of existing data for the reduced cross section as well as for the transverse and longitudinal polarization observables.

  3. Removal of ghost images by using tilted element optical systems with polynomial surfaces for aberration compensation

    NASA Astrophysics Data System (ADS)

    Rogers, Jeremy D.; Tkaczyk, Tomasz S.; Descour, Michael R.; Kärkkäinen, Ari H.; Richards-Kortum, Rebecca

    2006-02-01

    A novel solution to problematic ghost images is implemented by using tilted lens elements with polynomial surfaces. Tilting the lens surfaces sends reflections out of the imaging path. The nonrotationally symmetric polynomial surfaces correct aberrations caused by tilts. The complex lens surfaces are fabricated by using gray-scale lithographic patterning of hybrid solgel glass.

  4. Removal of ghost images by using tilted element optical systems with polynomial surfaces for aberration compensation.

    PubMed

    Rogers, Jeremy D; Tkaczyk, Tomasz S; Descour, Michael R; Kärkkäinen, Ari H O; Richards-Kortum, Rebecca

    2006-02-15

    A novel solution to problematic ghost images is implemented by using tilted lens elements with polynomial surfaces. Tilting the lens surfaces sends reflections out of the imaging path. The nonrotationally symmetric polynomial surfaces correct aberrations caused by tilts. The complex lens surfaces are fabricated by using gray-scale lithographic patterning of hybrid solgel glass. PMID:16496901

  5. Quantitative analysis of radiation-induced chromosome aberrations.

    PubMed

    Sachs, R K; Levy, D; Hahnfeldt, P; Hlatky, L

    2004-01-01

    We review chromosome aberration modeling and its applications, especially to biodosimetry and to characterizing chromosome geometry. Standard results on aberration formation pathways, randomness, dose-response, proximity effects, transmissibility, kinetics, and relations to other radiobiological endpoints are summarized. We also outline recent work on graph-theoretical descriptions of aberrations, Monte-Carlo computer simulations of aberration spectra, software for quantifying aberration complexity, and systematic links of apparently incomplete with complete or truly incomplete aberrations. PMID:15162028

  6. Orbital Magnetism of Bloch Electrons: II. Application to Single-Band Models and Corrections to Landau-Peierls Susceptibility

    NASA Astrophysics Data System (ADS)

    Ogata, Masao

    2016-06-01

    Orbital susceptibility for Bloch electrons is calculated for the first time up to the first order with respect to overlap integrals between the neighboring atomic orbitals, assuming single-band models. A general and rigorous theory of orbital susceptibility developed in the preceding paper is applied to single-band models in two-dimensional square and triangular lattices. In addition to the Landau-Peierls orbital susceptibility, it is found that there are comparable contributions from the Fermi surface and from the occupied states in the partially filled band called intraband atomic diamagnetism. This result means that the Peierls phase used in tight-binding models is insufficient as the effect of magnetic field.

  7. Forward sum rule for the 2 γ -exchange correction to the charge-radius extraction from elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Gorchtein, Mikhail

    2014-11-01

    Two-photon-exchange (TPE) contributions to elastic electron-proton scattering in the forward regime in leading logarithmic ˜t ln|t | approximation in the momentum transfer t are considered. The imaginary part of the TPE amplitude in the forward kinematics is related to the total photoabsorption cross section. The real part of the TPE amplitude is obtained from an unsubtracted fixed-t dispersion relation. This allows a clean prediction of the real part of the TPE amplitude at forward angles with the leading term ˜t ln|t | . Numerical estimates are comparable with or exceed the experimental precision in extracting the charge radius from the experimental data.

  8. Effectiveness of electrostatic shielding and electronic subtraction to correct for the hole trapping in CdZnTe semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Cui, Y.; James, R. B.

    2007-04-01

    CdZnTe (CZT) is a very promising material for nuclear-radiation detectors. CZT detectors operate at ambient temperatures and offer high detection efficiency and excellent energy resolution, placing them ahead of high-purity Ge for those applications where cryogenic cooling is problematic. The progress achieved in CZT detectors over the past decade is founded on the developments of robust detector designs and readout electronics, both of which helped to overcome the effects of carrier trapping. Because the holes have low mobility, only electrons can be used to generate signals in thick CZT detectors, so one must account for the variation of the output signal versus the locations of the interaction points. To obtain high spectral resolution, the detector's design should provide a means to eliminate this dependence throughout the entire volume of the device. In reality, the sensitive volume of any ionization detector invariably has two regions. In the first, adjacent to the collecting electrode, the amplitude of the output signal rapidly increases almost to its maximum as the interaction point is located farther from the anode; in the rest of the volume, the output signal remains nearly constant. Thus, the quality of CZT detector designs can be characterized based on the magnitude of the signals variations in the drift region and the ratio between the volumes of the drift and induction regions. The former determines the "geometrical" width of the photopeak, i.e., the line width that affects the total energy resolution and is attributed to the device's geometry when all other factors are neglected. The latter determines the photopeak efficiency and the area under the continuum in the pulse-height spectra. In this work, we describe our findings from systematizing different designs of CZT detectors and evaluating their performance based on these two criteria.

  9. EFFECTIVENESS OF ELECTROSTATIC SHIELDING AND ELECTRONIC SUBTRACTION TO CORRECT FOR THE HOLE TRAPPING IN CDZNTE SEMICONDUCTOR DETECTORS.

    SciTech Connect

    BOLOTNIKOV,A.E.; CAMARDA, G.S.; HOSSAIN, A.; CUI, Y.; JAMES, R.B.

    2007-08-26

    CdZnTe (CZT) is a very promising material for nuclear-radiation detectors. CZT detectors operate at ambient temperatures and offer high detection efficiency and excellent energy resolution, placing them ahead of high-purity Ge for those applications where cryogenic cooling is problematic. The progress achieved in CZT detectors over the past decade is founded on the developments of robust detector designs and readout electronics, both of which helped to overcome the effects of carrier trapping. Because the holes have low mobility, only electrons can be used to generate signals in thick CZT detectors, so one must account for the variation of the output signal versus the locations of the interaction points. To obtain high spectral resolution, the detector's design should provide a means to eliminate this dependence throughout the entire volume of the device. In reality, the sensitive volume of any ionization detector invariably has two regions. In the first, adjacent to the collecting electrode, the amplitude of the output signal rapidly increases almost to its maximum as the interaction point is located farther from the anode; in the rest of the volume, the output signal remains nearly constant. Thus, the quality of CZT detector designs can be characterized based on the magnitude of the signals variations in the drift region and the ratio between the volumes of the driR and induction regions. The former determines the ''geometrical'' width of the photopeak i.e., the line width that affects the total energy resolution and is attributed to the device's geometry when all other factors are neglected. The latter determines the photopeak efficiency and the area under the continuum in the pulse-height spectra. In this work, we describe our findings from systematizing different designs of CZT detectors and evaluating their performance based on these two criteria.

  10. Dispersion-Corrected Density Functional Theory Investigations of Structural and Electronic Properties of Bulk MoS2: Effect of Uniaxial Strain

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Hieu, Nguyen N.; Nguyen, Duong T.

    2015-11-01

    Strain-dependent structural and electronic properties of MoS2 materials are investigated using first principles calculations. The structural and electronic band structures of the MoS2 with relaxed unit cells are optimized and calculated by the dispersion-corrected density functional theory (DFT-D2). Calculations within the local density approximation (LDA) and GGA using PAW potentials were also performed for specific cases for the purpose of comparison. The effect of strain on the band gap and the dependence of formation energy on strain of MoS2 are also studied and discussed using the DFT-D2 method. In bulk MoS2, the orbitals shift towards the higher/lower energy area when strain is applied along the z/ x direction, respectively. The energy splitting of Mo4 d states is in the range from 0 to 2 eV, which is due to the reduction of the electronic band gap of MoS2.

  11. Effect of aberrations in vortex spatial filtering

    NASA Astrophysics Data System (ADS)

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, P.

    2012-11-01

    Edge enhancement is a very important operation in image processing and a spiral phase plate can be used as a radial Hilbert mask for isotropic edge enhancement. In this paper we analyze the effect of various Seidel aberrations on the performance of radial Hilbert mask or the vortex phase mask. The aberrated vortex phase mask is implemented optically with the help of a high resolution, spatial light modulator (SLM). It has also been shown that out of various aberrations astigmatism can introduce anisotropy in the Hilbert mask which causes selective edge enhancement.

  12. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J.

    2013-06-01

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  13. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung.

    PubMed

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J

    2013-06-21

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  14. Photoemission electron microscopy of graphene

    NASA Astrophysics Data System (ADS)

    Saliba, Sebastian; Wardini, Jenna; Fitzgerald, J. P. S.; Word, Robert C.; Kevek, Josh; Minot, Ethan; Koenenkamp, Rolf

    2012-10-01

    A study of chemical vapor deposited graphene on copper foil is conducted using an aberration-corrected photoemission electron microscope (PEEM). We demonstrate the efficacy such a PEEM has in identifying multi-layer graphene, defects and cracking. A model is developed to describe the observed reduction in photoemission rate where electrons originate from the copper foil and scatter through the graphene. A survey of several multi-layer feature line profiles demonstrates the reduced photoemission rate as the number of graphene layers increases. A mean-free-path length of l=3.8±0.8 nm is inferred assuming the layer spacing in graphene is δz=0.35 nm. The PEEM's high spatial resolution and surface sensitivity combined with no electron beam damage are promising for characterizing biosensors and other nanoscale graphene devices.

  15. NOTE: Determination of the recombination correction factor kS for some specific plane-parallel and cylindrical ionization chambers in pulsed photon and electron beams

    NASA Astrophysics Data System (ADS)

    Bruggmoser, G.; Saum, R.; Schmachtenberg, A.; Schmid, F.; Schüle, E.

    2007-01-01

    It has been shown from an evaluation of the inverse reading of the dosemeter (1/M) against the inverse of the polarizing voltage (1/V), obtained with a number of commercially available ionization chambers, using dose per pulse values between 0.16 and 5 mGy, that a linear relationship between the recombination correction factor kS and dose per pulse (DPP) can be found. At dose per pulse values above 1 mGy the method of a general equation with coefficients dependent on the chamber type gives more accurate results than the Boag method. This method was already proposed by Burns and McEwen (1998, Phys. Med. Biol. 43 2033) and avoids comprehensive and time-consuming measurements of Jaffé plots which are a prerequisite for the application of the multi-voltage analysis (MVA) or the two-voltage analysis (TVA). We evaluated and verified the response of ionization chambers on the recombination effect in pulsed accelerator beams for both photons and electrons. Our main conclusions are: (1) The correction factor kS depends only on the DPP and the chamber type. There is no influence of radiation type and energy. (2) For all the chambers investigated there is a linear relationship between kS and DPP up to 5 mGy/pulse, and for two chambers we could show linearity up to 40 mGy/pulse. (3) A general formalism, such as that of Boag, characterizes chambers exclusively by the distance of the electrodes and gives a trend for the correction factor, and therefore (4) a general formalism has to reflect the influence of the chamber construction on the recombination by the introduction of chamber-type dependent coefficients.

  16. Direct visualization method of the atomic structure of light and heavy atoms with double-detector C{sub s}-corrected scanning transmission electron microscopy

    SciTech Connect

    Kotaka, Yasutoshi

    2012-09-24

    The advent of C{sub s}-corrected scanning transmission electron microscopy (STEM) has advanced the observation of atomic structures in materials and nanotechnology devices. High-angle annular dark-field (HAADF)-STEM using an annular detector visualizes heavy elements as bright spots at atomic resolution that can be observed with the Z-contrast technique. In this study, the atomic column of light elements is directly observed as bright spots by middle-angle bright-field (MABF)-STEM imaging. Therefore, a double-detector STEM imaging method was developed, exploiting the advantage of both MABF-STEM and HAADF-STEM to maximum, which consists of multiple exposures of simultaneously observed MABF- and HAADF-STEM images in red-green-blue color.

  17. Empirical Storm-Time Correction to the International Reference Ionosphere Model E-Region Electron and Ion Density Parameterizations Using Observations from TIMED/SABER

    NASA Technical Reports Server (NTRS)

    Mertens, Christoper J.; Winick, Jeremy R.; Russell, James M., III; Mlynczak, Martin G.; Evans, David S.; Bilitza, Dieter; Xu, Xiaojing

    2007-01-01

    The response of the ionospheric E-region to solar-geomagnetic storms can be characterized using observations of infrared 4.3 micrometers emission. In particular, we utilize nighttime TIMED/SABER measurements of broadband 4.3 micrometers limb emission and derive a new data product, the NO+(v) volume emission rate, which is our primary observation-based quantity for developing an empirical storm-time correction the IRI E-region electron density. In this paper we describe our E-region proxy and outline our strategy for developing the empirical storm model. In our initial studies, we analyzed a six day storm period during the Halloween 2003 event. The results of this analysis are promising and suggest that the ap-index is a viable candidate to use as a magnetic driver for our model.

  18. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: X-ray beam hardening correction for measuring density in linear accelerator industrial computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Feng; Wang, Jue; Chen, Wei-Min

    2009-07-01

    Due to X-ray attenuation being approximately proportional to material density, it is possible to measure the inner density through Industrial Computed Tomography (ICT) images accurately. In practice, however, a number of factors including the non-linear effects of beam hardening and diffuse scattered radiation complicate the quantitative measurement of density variations in materials. This paper is based on the linearization method of beam hardening correction, and uses polynomial fitting coefficient which is obtained by the curvature of iron polychromatic beam data to fit other materials. Through theoretical deduction, the paper proves that the density measure error is less than 2% if using pre-filters to make the spectrum of linear accelerator range mainly 0.3 MeV to 3 MeV. Experiment had been set up at an ICT system with a 9 MeV electron linear accelerator. The result is satisfactory. This technique makes the beam hardening correction easy and simple, and it is valuable for measuring the ICT density and making use of the CT images to recognize materials.

  19. Self-energy-corrected electronic energy level alignment in molecular junctions and at interfaces with hybrid functionals

    NASA Astrophysics Data System (ADS)

    Kotiuga, Michele; Egger, David; Kronik, Leeor; Neaton, Jeffrey B.

    2015-03-01

    Accurate calculations of energy level alignment at complex interfaces are imperative for understanding a variety of transport and spectroscopy measurements, as well as for elucidating new interfacial electronic structure phenomena. However, standard approaches to such calculations, based on density functional theory (DFT), are well known to be deficient. In prior work on molecular junctions and physisorbed molecules on surfaces, an approximate GW approach, DFT+ Σ, has been successful in describing the conductance and level alignment of amine and pyridine terminated molecules on gold surfaces and in junctions. Here, via the use of hybrid functionals, we preform quantitative studies of the level alignment of thiol- and carbon-terminated phenyls on gold, where the formation of a strong chemical bond and presence of gateway states limit the validity of the DFT+ Σ approximation as currently formulated. We contrast these systems to prior work on weakly-coupled molecules, including bipyridine or phenyl-diamines. Additionally, we compute transmission functions using both DFT-PBE and DFT-HSE starting points and predict conductance and thermopower with these methods, comparing to experiments where possible. We acknowledge DOE, DOD, NERSC, ERC, ISF, and FWF.

  20. Polarization Aberrations in Astronomical Telescopes: The Point Spread Function

    NASA Astrophysics Data System (ADS)

    Breckinridge, James B.; Lam, Wai Sze T.; Chipman, Russell A.

    2015-05-01

    and coronagraph applications. (4) Part of the aberration is a polarization-dependent astigmatism, with a magnitude of 22 milliwaves, which enlarges the PSF image. (5) The orthogonally polarized components of unpolarized sources contain different wavefront aberrations, which differ by approximately 32 milliwaves. This implies that a wavefront correction system cannot optimally correct the aberrations for all polarizations simultaneously. (6) The polarization aberrations couple small parts of each polarization component of the light (~10-4) into the orthogonal polarization where these components cause highly distorted secondary, or "ghost" PSF images. (7) The radius of the spatial extent of the 90% encircled energy of these two ghost PSF image is twice as large as the radius of the Airy diffraction pattern. Coronagraphs for terrestrial exoplanet science are expected to image objects 10-10, or 6 orders of magnitude less than the intensity of the instrument-induced "ghost" PSF image, which will interfere with exoplanet measurements. A polarization aberration expansion which approximates the Jones pupil of the example telescope in six polarization terms is presented in the appendix. Individual terms can be associated with particular polarization defects. The dependence of these terms on angles of incidence, numerical aperture, and the Taylor series representation of the Fresnel equations lead to algebraic relations between these parameters and the scaling of the polarization aberrations. These "design rules" applicable to the example telescope are collected in § 5. Currently, exoplanet coronagraph masks are designed and optimized for scalar diffraction in optical systems. Radiation from the "ghost" PSF image leaks around currently designed image plane masks. Here, we show a vector-wave or polarization optimization is recommended. These effects follow from a natural description of the optical system in terms of the Jones matrices associated with each ray path of interest