Science.gov

Sample records for aberration corrected stem

  1. Effect of chromatic aberration on atomic-resolved spherical aberration corrected STEM images.

    PubMed

    Kuramochi, Koji; Yamazaki, Takashi; Kotaka, Yasutoshi; Ohtsuka, Masahiro; Hashimoto, Iwao; Watanabe, Kazuto

    2009-12-01

    The effect of the chromatic aberration (C(c)) coefficient in a spherical aberration (C(s))- corrected electromagnetic lens on high-resolution high-angle annular dark field (HAADF) scanning transmission electron microscope (STEM) images is explored in detail. A new method for precise determination of the C(c) coefficient is demonstrated, requiring measurement of an atomic-resolution one-frame through-focal HAADF STEM image. This method is robust with respect to instrumental drift, sample thickness, all lens parameters except C(c), and experimental noise. It is also demonstrated that semi-quantitative structural analysis on the nanometer scale can be achieved by comparing experimental C(s)- corrected HAADF STEM images with their corresponding simulated images when the effects of the C(c) coefficient and spatial incoherence are included.

  2. Characterization of misfit dislocations in Si quantum well structures enabled by STEM based aberration correction.

    PubMed

    Batson, Philip E; Lagos, Maureen J

    2017-03-02

    The success of aberration correction techniques at the end of the 20th century came at a time of increasing need for atomic resolution imaging to better understand known structural defects that influence semiconductor device operation, and to advance the search for new structures and behavior that will form the basis for devices in the future. With this in mind, it is a pleasure to recognize the contributions of Ondrej Krivanek to the success of aberration correction techniques, and his extension of aberration techniques to EELS equipment that further promises to unite structural studies with characterization of behavior from meV to keV energies in the STEM.

  3. Aberration-corrected STEM/TEM imaging at 15kV.

    PubMed

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Sato, Yuta; Suenaga, Kazu

    2014-10-01

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192nm, and the power spectrum of the image showed spots corresponding to distances of 0.111nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314nm and 0.192nm, respectively. At an accelerating voltage of 15kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase.

  4. Performance and Image Analysis of the Aberration Corrected Hitachi HD-2700C Stem

    SciTech Connect

    Inada, H.; Zhu, Y.; Wu, L.; Wall, J.; Su, D.

    2009-03-01

    We report the performance of the first aberration-corrected scanning transmission electron microscope (STEM) manufactured by Hitachi. We describe its unique features and versatile capabilities in atomic-scale characterization and its applications in materials research. We also discuss contrast variation of the STEM images obtained from different annular dark-field (ADF) detectors of the instrument, and the increased complexity in contrast interpretation and quantification due to the increased convergent angles of the electron probe associated with the aberration corrector. We demonstrate that the intensity of atomic columns in an ADF image depends strongly on a variety of imaging parameters, sample thickness, as well as the nuclear charge and the deviation from their periodic position of the atoms we are probing. Image simulations are often required to correctly interpret the atomic structure of an ADF-STEM image.

  5. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  6. High Resolution Imaging with an Aberration Corrected JEOL 2200FS-AC STEM/TEM

    SciTech Connect

    Blom, Douglas Allen; Allard Jr, Lawrence Frederick; O'Keefe, Michael A.; Mishina, Satoshi

    2005-01-01

    A new JEOL 2200FS 200kV field emission STEM/TEM with a hexapole Cs-corrector (CEOS GmbH) for the probe-forming lens and an in-column Omega-type energy filter has recently been installed at the Advanced Microscopy Laboratory (AML) at Oak Ridge National Laboratory (ORNL). The microscope is intended primarily for high-resolution imaging of catalyst systems that are of interest to the U.S. Department of Energy for increased energy efficiency and energy security. In this paper we report on the high-resolution imaging characteristics of our microscope for both conventional high-resolution TEM and STEM imaging. The TEM Scherzer point resolution for our objective lens polepiece (C{sub s} = 0.5 mm) is 0.19 nm, but more significantly the information limit has been demonstrated to be better than 0.09 nm, as shown in Fig. 1. This figure shows a Young's fringe experiment carried out on an amorphous Ge specimen which was estimated to be 10 nm thick. The thickness of the sample damps out the Thon rings to some extent, but the information transfer to sub 0.1 nm resolution is clearly evident. The electron wave at the specimen exit surface with resolution out to the information limit of a microscope may be reconstructed via computational processing of a focal or tilt series of images. The extension of the TEM information limit to the sub-0.1 nm range in our microscope can be attributed primarily to the improved objective lens and high tension power supply stabilities provided by JEOL Co. to satisfy our instrument specifications. A contrast transfer function (CTF) calculated using the parameters for our microscope is shown in Fig. 2, computed at the alpha-null defocus condition used for FSR processing. The CTF closely matches the demonstrated Young's fringe pattern, indicating the ability of the microscope to achieve ultimate performance in TEM mode. Characterization of catalyst systems will be a primary focus of the aberration-corrected JEOL 2200FS and therefore high-resolution STEM

  7. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  8. Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory.

    PubMed

    Blom, Douglas A; Allard, Lawrence E; Mishina, Satoshi; O'Keefe, Michael A

    2006-12-01

    The resolution-limiting aberrations of round electromagnetic lenses can now be successfully overcome via the use of multipole element "aberration correctors." The installation and performance of a hexapole-based corrector (CEOS GmbH) integrated on the probe-forming side of a JEOL 2200FS FEG STEM/TEM is described. For the resolution of the microscope not to be severely compromised by its environment, a new, specially designed building at Oak Ridge National Laboratory has been built. The Advanced Microscopy Laboratory was designed with the goal of providing a suitable location for aberration-corrected electron microscopes. Construction methods and performance of the building are discussed in the context of the performance of the microscope. Initial performance of the microscope on relevant specimens and modifications made to eliminate resolution-limiting conditions are also discussed.

  9. Active site of bimetallic heterogeneous catalyst by atomic resolution aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Hsiao, Chien-Nan; Lin, Chun-Ting

    2015-11-01

    The localized defect of Au-Pd bimetallic heterogeneous nanoparticles catalyst was investigated using HRTEM and aberration-corrected HRSTEM. The phase plates were calculated from the aberration coefficients of the measured probe tableau for various outer tilt angle of the optical axis and the accuracy required for the compensation of the various residual aberration coefficients in order to achieve sub-angstrom resolution with the electron optics system was evaluated up to the fifth order aberrations. It is found that the interplanar spacing of the Au-Pd nanoparticle (1 1 1) planes observed along the [1 1 0] zone axis was approximately 0.24 nm measured by HRTEM. In addition, the HRSTEM HAADF image demonstrated that the twin boundaries on the surfaces of heterogeneous nanoparticles catalysts at atomic scale. These defects might be introduced during the growth to alleviate the internal stress caused by the 4.6% lattice mismatch of Au-Pd bimetallic system. Current research could be applied to the study of active sites in nanocatalysts.

  10. Chicago aberration correction work.

    PubMed

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  11. New Insights into the structure of Pd-Au nanoparticles as revealed by aberration-corrected STEM

    PubMed Central

    Deepak, Francis Leonard; Casillas-Garcia, Gilberto; Esparza, Rodrigo; Barron, H.; Jose-Yacaman, Miguel

    2011-01-01

    Bimetallic nanoparticles of Au-Pd find important applications in catalysis. Their catalytic performance is directly related to the structure, alloy formation and variation of composition in the structure. A standard idea is that bimetallic nanoparticles can be either an alloy or a core shell structure. Our group has investigated the structure and composition of Pd-Au nanoparticles by using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). We reported previously that the nanoparticles are composed of an evenly alloyed inner core, an Au-rich intermediate layer, and a Pd-rich outer shell. The structure is more complicated than what simple models can predict. In this paper we report additional studies of this system wherein by carrying out spectral and chemical analysis (STEM*-EDAX, STEM-EELS) the interface structure can now be better identified and understood. Apart from the three-layered core-shell structures we have also been able to observe in some cases a four-layered core-shell structure as well. The entire core-shell structure is not rigid and there is indeed intercalation of Au-Pd into the other layers as well. In addition we have been able to locate stacking faults present in the nanoparticles. We also address the problem of the interface structure between the layers. By using nanodiffraction we have found that the whole structure of the nanoparticles becomes hcp in contrast to the bulk structure of Au or Pd. PMID:21804646

  12. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  13. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  14. Double-aberration corrected TEM/STEM of solid acid nanocatalysts in the development of pharmaceutical NSAIDS

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N.; Brown, R.; Wright, I.; Boyes, E. D.; Gai, P. L.

    2012-07-01

    We report nanostructural and physico-chemical studies in the development of an efficient low temperature heterogeneous catalytic process for nonsteroidal anti-inflammatory drugs (NSAIDS) such as N-acetyl-p-aminophenol (paracetamol or acetaminophen) on tungstated zirconia nanocatalysts. Using a double-aberration corrected TEM/STEM, modified in-house for in-situ studies at the sub-Angstrom level, we directly observed in real-time, the dynamic precursor transformation to the active catalyst. We quantified the observations with catalytic activity studies for the NSAIDS. The studies have provided the direct evidence for single tungsten promoter atoms and surface WOx species of <= 0.35 nm, with nanoclusters of WOx (0.6 to 1nm), located at grain boundaries on the surface of the zirconia nanoparticles. The correlation between the nanostructure and catalytic activity indicates that the species create Brønsted acid sites highly active for the low temperature process. The results open up opportunities for developing green heterogeneous methods for pharmaceuticals.

  15. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2016-11-22

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au144(SCH2CH2Ph)60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au144(SR)60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters.

  16. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  17. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  18. Design and Performance Characteristics of the ORNL Advanced Microscopy Laboratory and JEOL 2200FS-AC Aberration-Corrected STEM/TEM

    SciTech Connect

    Allard Jr, Lawrence Frederick; Blom, Douglas Allen; O'Keefe, Michael A.; Mishina, Satoshi

    2005-01-01

    To achieve the highest performance with today's generation of aberration-corrected electron microscopes, it is increasingly evident that the environment of the facility in which the microscope is installed must be considered an integral component of the microscopy program. Such instruments are the world's best detectors of the influence of parameters such as alternating magnetic fields, floor vibrations, acoustic vibrations, airflow, and temperature and pressure fluctuations. At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. Design criteria for the facility include the following: magnetic fields below 0.1mG rms in all directions, floor vibrations below 1{mu}m/sec, air flow less than 5cm/sec horizontally, temperature stability {+-}0.2 C/hr, and provision for instrument operation from an adjacent control room to minimize the influence of the operator on instrument performance. The JEOL 2200FS-AC, being installed as of this writing, has demonstrated a TEM information limit of 0.9 {angstrom}. This is the limit expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. However, in STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in <1 1 0> zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect.

  19. Pulse compressor with aberration correction

    SciTech Connect

    Mankos, Marian

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  20. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  1. Design and Performance Characteristics of the ORNL AdvancedMicroscopy Laboratory and JEOL 2200FS-AC Aberration-CorrectedSTEM/TEM

    SciTech Connect

    Allard, Lawrence F.; Blom, Douglas A.; O'Keefe, Michael A.; Mishina, S.

    2005-02-15

    At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. The installed JEOL 2200FS-AC has demonstrated aTEM information limit of 0.9A. This limit is expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. In STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in<110>zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect. The microscope is fitted with three magnetically levitated turbo pumps (one on the column at about the specimen position,and two near floor level) that pump the Omega energy filter and detector chamber. These pumps run at 48,000 rpm, precisely equivalent to 800Hz. It was determined that the upper turbo pump was contributing essentially all of the 800Hz signal to the image, and in fact that the pump was defective. After replacing the pump with one significantly quieter than the original, the Si atomic column image and associated diffractogram(Fig. 4b) show a much-reduced effect of the 800Hz signal, but still some residual effect from the turbo pump. The upper pump will be removed from the main column to an adjacent frame on the floor, and will have a large-diameter, well-damped, pump line to the original connection to the column to effectively isolate the pump from the column. If the 800Hz signal results from mechanical vibrations, they will be damped, and if the signal results from acoustic coupling to the column, it can be damped by appropriate acoustic materials.

  2. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    SciTech Connect

    Han, Chang W.; Iddir, Hakim; Uzun, Alper; Curtiss, Larry A.; Browning, Nigel D.; Gates, Bruce C.; Ortalan, Volkan

    2015-11-06

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  3. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  4. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  5. On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns.

    PubMed

    Tang, Y L; Zhu, Y L; Ma, X L

    2016-01-01

    Revealing strains on the unit-cell level is essential for understanding the particular performance of materials. Large-scale strain variations with a unit-cell resolution are important for studying ferroelectric materials since the spontaneous polarizations of such materials are strongly coupled with strains. Aberration-corrected high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) is not so sensitive to the sample thickness and therefore thickness gradients. Consequently it is extremely useful for large-scale strain determination, which can be readily extracted by geometrical phase analysis (GPA). Such a combination has various advantages: it is straightforward, accurate on the unit-cell scale, relatively insensitive to crystal orientation and therefore helpful for large-scale. We take a tetragonal ferroelectric PbTiO3 film as an example in which large-scale strains are determined. Furthermore, based on the specific relationship between lattice rotation and spontaneous polarization (Ps) at 180° domain-walls, the Ps directions are identified, which makes the investigation of ferroelectric domain structures accurate and straightforward. This method is proposed to be suitable for investigating strain-related phenomena in other ferroelectric materials.

  6. Aberration corrected Lorentz scanning transmission electron microscopy.

    PubMed

    McVitie, S; McGrouther, D; McFadzean, S; MacLaren, D A; O'Shea, K J; Benitez, M J

    2015-05-01

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale.

  7. Thickness variations and absence of lateral compositional fluctuations in aberration-corrected STEM images of InGaN LED active regions at low dose.

    PubMed

    Yankovich, Andrew B; Kvit, Alexander V; Li, Xing; Zhang, Fan; Avrutin, Vitaliy; Liu, Huiyong; Izyumskaya, Natalia; Özgür, Ümit; Van Leer, Brandon; Morkoç, Hadis; Voyles, Paul M

    2014-06-01

    Aberration-corrected scanning transmission electron microscopy images of the In(0.15)Ga(0.85)N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer's upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.

  8. Measurement of chromatic aberration in STEM and SCEM by coherent convergent beam electron diffraction.

    PubMed

    Zheng, C L; Etheridge, J

    2013-02-01

    A simple method is described for the accurate and precise measurement of chromatic aberration under electron-optical conditions pertinent to scanning transmission electron microscopy (STEM) and scanning confocal electron microscopy (SCEM). The method requires only the measurement of distances in a coherent CBED pattern and knowledge of the electron wavelength and the lattice spacing of a calibration specimen. The chromatic aberration of a spherical-aberration corrected 300 kV thermal field emission TEM is measured in STEM and SCEM operating modes and under different condenser lens settings. The effect of the measured chromatic aberrations on the 3 dimensional intensity distribution of the electron probe is also considered.

  9. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  10. Adaptive phase aberration correction based on imperialist competitive algorithm.

    PubMed

    Yazdani, R; Hajimahmoodzadeh, M; Fallah, H R

    2014-01-01

    We investigate numerically the feasibility of phase aberration correction in a wavefront sensorless adaptive optical system, based on the imperialist competitive algorithm (ICA). Considering a 61-element deformable mirror (DM) and the Strehl ratio as the cost function of ICA, this algorithm is employed to search the optimum surface profile of DM for correcting the phase aberrations in a solid-state laser system. The correction results show that ICA is a powerful correction algorithm for static or slowly changing phase aberrations in optical systems, such as solid-state lasers. The correction capability and the convergence speed of this algorithm are compared with those of the genetic algorithm (GA) and stochastic parallel gradient descent (SPGD) algorithm. The results indicate that these algorithms have almost the same correction capability. Also, ICA and GA are almost the same in convergence speed and SPGD is the fastest of these algorithms.

  11. Adaptive aberration correction using a triode hyperbolic electron mirror.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties.

  12. Lesion generation through ribs using histotripsy therapy without aberration correction.

    PubMed

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A

    2011-11-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.

  13. Generalized Alvarez lens for correction of laser aberrations

    SciTech Connect

    LaFortune, K N

    2004-12-02

    The Alvarez lens (US Patent No. 3,305,294 [1]) is a compact aberration corrector. The original design emphasized in the patent consists of a pair of adjacent optical elements that provide a variable focus. A lens system with a variable effective focal length is nothing new. Such systems are widely used in cameras, for example. It is the compactness and simplicity of operation that is the key advantage of the Alvarez lens. All of the complexity is folded into the design and fabrication of the optical elements. As mentioned in the Alvarez patent [1] and elaborated upon in Palusinski et al. [2], if one is willing to fold even more complexity into the optical elements, it is possible to correct higher-order aberrations as well. There is no theoretical limit to the number or degree of wavefront distortions that can be corrected. The only limitation is that there must be a fixed relative magnitude of the aberrations. Independent correction of each component of the higher-order aberrations can not be performed without additional elements and degrees of freedom [3]. Under some circumstances, coupling may be observed between different aberrations. This can be mitigated with the appropriate choice of design parameters. New methods are available today that increase the practicality of making higher-order aberration correctors [4,5,6].

  14. Lesion Generation Through Ribs Using Histotripsy Therapy Without Aberration Correction

    PubMed Central

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A.

    2012-01-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction. PMID:22083767

  15. Aberration correction of zoom lenses using evolutionary programming.

    PubMed

    Pal, Sourav

    2013-08-10

    A systematic approach for the aberration correction of zoom systems is presented. It is assumed that the powers and movements of the components of the zoom systems are known. Each component is considered as a system of thin lenses in contact. An evolutionary algorithm is developed to explore the multivariate hyperspace of design variables formed by spherical aberration, central coma, and longitudinal chromatic aberration of each component for infinite conjugate. The primary aberrations for each component at any zoom position are deduced from three central aberration coefficients of the component for infinite conjugate using conjugate shift formulas. Overall system aberrations of the zoom systems are determined by using stop shift formulas. In most of the zoom lens systems it is important to achieve stability in the primary aberrations of the system over the zoom range. This is facilitated by proper formulation of the merit function for the optimization process. Investigations have been carried out on four-component zoom lenses, and an ab initio structure of a four-component zoom lens is presented.

  16. The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy.

    PubMed

    Lupini, Andrew R; de Jonge, Niels

    2011-10-01

    Aberration correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional (3D) imaging by depth sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three dimensions in an attempt to better understand the depth resolution in this mode. Examples are presented of how aberrations change the probe shape in three dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full-width at half-maximum approaches that of the aberration-corrected STEM with a standard aperture.

  17. Intrinsic instability of aberration-corrected electron microscopes.

    PubMed

    Schramm, S M; van der Molen, S J; Tromp, R M

    2012-10-19

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an "instability budget" which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  18. Intrinsic Instability of Aberration-Corrected Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Schramm, S. M.; van der Molen, S. J.; Tromp, R. M.

    2012-10-01

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an “instability budget” which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  19. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    SciTech Connect

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; Stach, Eric A.; Ross, Frances M.

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  20. Sub-ångstrom resolution using aberration corrected electron optics

    NASA Astrophysics Data System (ADS)

    Batson, P. E.; Dellby, N.; Krivanek, O. L.

    2002-08-01

    Following the invention of electron optics during the 1930s, lens aberrations have limited the achievable spatial resolution to about 50 times the wavelength of the imaging electrons. This situation is similar to that faced by Leeuwenhoek in the seventeenth century, whose work to improve the quality of glass lenses led directly to his discovery of the ubiquitous ``animalcules'' in canal water, the first hints of the cellular basis of life. The electron optical aberration problem was well understood from the start, but more than 60 years elapsed before a practical correction scheme for electron microscopy was demonstrated, and even then the remaining chromatic aberrations still limited the resolution. We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron probe smaller than 1Å. This performance, about 20 times the electron wavelength at 120keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer `rafts' of atoms coexisting with Au islands on a carbon substrate. This technique should also allow atomic column imaging of semiconductors, for detection of single dopant atoms, using an electron beam with energy below the damage threshold for silicon.

  1. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  2. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  3. Differential aberration correction (DAC) microscopy: a new molecular ruler.

    PubMed

    Vallotton, P

    2008-11-01

    Considerable efforts have been deployed towards measuring molecular range distances in fluorescence microscopy. In the 1-10 nm range, Förster energy transfer microscopy is difficult to beat. Above 300 nm, conventional diffraction limited microscopy is suitable. We introduce a simple experimental technique that allows bridging the gap between those two resolution scales in both 2D and 3D with a resolution of about 20 nm. The method relies on a computational approach to accurately correct optical aberrations over the whole field of view. The method is differential because the probes of interest are affected in exactly the same manner by aberrations as are the reference probes used to construct the aberration deformation field. We expect that this technique will have significant implications for investigating structural and functional questions in bio-molecular sciences.

  4. Conformal dome aberration correction by designing the inner surface

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Chen, Shouqian; Fan, Zhigang

    2016-12-01

    The ray transmission models of optical domes were established, and the characteristics of the rays while passing through a hemispherical dome and a conformal dome were comparatively analysed. Acquiring the minimum deviated angles from the inner surface of the conformal dome was then determined to be the designing goal for reducing the dynamic aberrations. Based on this, the inner surface of the conformal dome was optimized and thus, the dynamic aberrations were reduced. Finally, a completely cooled conformal optical system was designed. The results show that the optical system have produced good imaging quality within all the fields of regard, which further illustrates that designing the inner surface of a conformal dome is an effective method for aberration correction.

  5. Aberration correction for time-domain ultrasound diffraction tomography.

    PubMed

    Mast, T Douglas

    2002-07-01

    Extensions of a time-domain diffraction tomography method, which reconstructs spatially dependent sound speed variations from far-field time-domain acoustic scattering measurements, are presented and analyzed. The resulting reconstructions are quantitative images with applications including ultrasonic mammography, and can also be considered candidate solutions to the time-domain inverse scattering problem. Here, the linearized time-domain inverse scattering problem is shown to have no general solution for finite signal bandwidth. However, an approximate solution to the linearized problem is constructed using a simple delay-and-sum method analogous to "gold standard" ultrasonic beamforming. The form of this solution suggests that the full nonlinear inverse scattering problem can be approximated by applying appropriate angle- and space-dependent time shifts to the time-domain scattering data; this analogy leads to a general approach to aberration correction. Two related methods for aberration correction are presented: one in which delays are computed from estimates of the medium using an efficient straight-ray approximation, and one in which delays are applied directly to a time-dependent linearized reconstruction. Numerical results indicate that these correction methods achieve substantial quality improvements for imaging of large scatterers. The parametric range of applicability for the time-domain diffraction tomography method is increased by about a factor of 2 by aberration correction.

  6. New views of materials through aberration-corrected scanning transmission electron microscopy.

    PubMed

    Pennycook, S J; Varela, M

    2011-01-01

    The successful correction of third-order and, more recently, fifth-order aberrations has enormously enhanced the capabilities of the scanning transmission electron microscope (STEM), by not only achieving record resolution, but also allowing near 100% efficiency for electron energy loss spectroscopy, and higher currents for two-dimensional spectrum imaging. These advances have meant that the intrinsic advantages of the STEM, incoherent imaging and simultaneous collection of multiple complementary images can now give new insights into many areas of materials physics. Here, we review a number of examples, mostly from the field of complex oxides, and look towards new directions for the future.

  7. Correcting for Beam Aberrations in a Beam-Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Franco, Manuel; Slobin, Stephen; Veruttipong, Watt

    2003-01-01

    A method for correcting the aim of a beam-waveguide microwave antenna compensates for the beam aberration that occurs during radio tracking of a target that has a component of velocity transverse to the line of sight from the tracking station. The method was devised primarily for use in tracking of distant target spacecraft by large terrestrial beam-waveguide antennas of NASA's Deep Space Network (DSN). The method should also be adaptable to tracking, by other beam-waveguide antennas, of targets that move with large transverse velocities at large distances from the antennas.

  8. Adaptive dispersion formula for index interpolation and chromatic aberration correction.

    PubMed

    Li, Chia-Ling; Sasián, José

    2014-01-13

    This paper defines and discusses a glass dispersion formula that is adaptive. The formula exhibits superior convergence with a minimum number of coefficients. Using this formula we rationalize the correction of chromatic aberration per spectrum order. We compare the formula with the Sellmeier and Buchdahl formulas for glasses in the Schott catalogue. The six coefficient adaptive formula is found to be the most accurate with an average maximum index of refraction error of 2.91 × 10(-6) within the visible band.

  9. Transcranial phase aberration correction using beam simulations and MR-ARFI

    SciTech Connect

    Vyas, Urvi Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.

  10. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  11. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy

    NASA Astrophysics Data System (ADS)

    Tiruvalam, R.; He, Q.; Herzing, A. A.; Pritchard, J.; Dimitratos, N.; Lopez-Sanchez, J. A.; Edwards, J. K.; Carley, A. F.; Hutchings, G. J.; Kiely, C. J.

    2012-07-01

    The recent availability of aberration corrected analytical electron microscopes (ACAEM) is revolutionizing our ability to characterize nanostructured catalyst materials. Some recent case studies are presented whereby the application of the high angle annular dark field (HAADF) imaging technique, coupled with STEM-XEDS analysis, has given us a more detailed and realistic view of the catalyst morphology. The examples chosen include supported Au catalysts for low temperature CO oxidation and supported AuPd bimetallic alloy catalysts for the direct production of H2O2.

  12. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens

    PubMed Central

    Kretz, Florian T A; Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd U

    2015-01-01

    AIM To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting, monofocal intraocular lens (IOL). METHODS Twenty-one patients (34 eyes) aged 50 to 83y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL (Tecnis ZCB00, Abbott Medical Optics). Three months after surgery they were examined for uncorrected (UDVA) and corrected distance visual acuity (CDVA), contrast sensitivity (CS) under photopic and mesopic conditions with and without glare source, ocular high order aberrations (HOA, Zywave II) and retinal straylight (C-Quant). RESULTS Postoperatively, patients achieved a postoperative CDVA of 0.0 logMAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27 (primary coma components) and -0.04±0.16 (spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed (P≥0.28). CONCLUSION The implantation of an aspherical aberration correcting monofocal IOL after cataract surgery resulted in very low residual higher order aberration (HOA) and normal straylight. PMID:26309872

  13. Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy.

    PubMed

    Krumeich, F; Müller, E; Wepf, R A

    2013-06-01

    Although the presence of phase-contrast information in bright field images recorded with a scanning transmission electron microscope (STEM) has been known for a long time, its systematic exploitation for the structural characterization of materials began only with the availability of aberration-corrected microscopes that allow sufficiently large illumination angles. Today, phase-contrast STEM (PC-STEM) imaging represents an increasingly important alternative to the well-established HRTEM method. In both methods, the image contrast is coherently generated and thus depends not only on illumination and collection angles but on defocus and specimen thickness as well. By PC-STEM, a projection of the crystal potential is obtained in thin areas, with the scattering sites being represented either with dark or bright contrast at two different defocus values which are both close to Gaussian defocus. This imaging behavior can be further investigated by image simulations performed with standard HRTEM simulation software based on the principle of reciprocity. As examples for the application of this method, PC-STEM results obtained on metal nanoparticles and dodecagonal quasicrystals dd-(Ta,V)₁.₆Te are discussed.

  14. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    PubMed

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope.

  15. A method of dynamic chromatic aberration correction in low-voltage scanning electron microscopes.

    PubMed

    Khursheed, Anjam

    2005-07-01

    A time-of-flight concept that dynamically corrects for chromatic aberration effects in scanning electron microscopes (SEMs) is presented. The method is predicted to reduce the microscope's chromatic aberration by an order of magnitude. The scheme should significantly improve the spatial resolution of low-voltage scanning electron microscopes (LVSEMs). The dynamic means of correcting for chromatic aberration also allows for the possibility of obtaining high image resolution from electron guns that have relatively large energy spreads.

  16. Sextupole system for the correction of spherical aberration

    DOEpatents

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  17. Aspherical surfaces design for extreme ultraviolet lithographic objective with correction of thermal aberration

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yanqiu

    2016-09-01

    At present, few projection objectives for extreme ultraviolet (EUV) lithography pay attention to correct thermal aberration in optical design phase, which would lead to poor image quality in a practical working environment. We present an aspherical modification method for helping the EUV lithographic objective additionally correct the thermal aberration. Based on the thermal aberration and deformation predicted by integrated optomechanical analysis, the aspherical surfaces in an objective are modified by an iterative algorithm. The modified aspherical surfaces could correct the thermal aberration and maintain the initial high image quality in a practical working environment. A six-mirror EUV lithographic objective with 0.33-numerical aperture is taken as an example to illustrate the presented method. The results show that the thermal aberration can be corrected effectively, and the image quality of the thermally deformed system is improved to the initial design level, which proves the availability of the method.

  18. Information transfer in a TEM corrected for spherical and chromatic aberration.

    PubMed

    Haider, M; Hartel, P; Müller, H; Uhlemann, S; Zach, J

    2010-08-01

    For the transmission electron aberration-corrected microscope (TEAM) initiative of five U.S. Department of Energy laboratories in the United States, a correction system for the simultaneous compensation of the primary axial aberrations, the spherical aberration Cs, and the chromatic aberration Cc has been developed and successfully installed. The performance of the resulting Cc /Cs-corrected TEAM instrument has been investigated thoroughly. A significant improvement of the linear contrast transfer can be demonstrated. The information about the instrument one obtains using Young's fringe method is compared for uncorrected, Cs-corrected, and Cc /Cs-corrected instruments. The experimental results agree well with simulations. The conclusions might be useful to others in understanding the process of image formation in a Cc /Cs-corrected transmission electron microscope.

  19. Nanostructural and Chemical Characterization of Supported Metal Oxide Catalysts by Aberration Corrected Analytical Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wu

    In this thesis, aberration corrected STEM imaging and chemical analysis techniques have been extensively applied in the structural and chemical characterization of supported tungsten oxide catalysts in an attempt to reveal the structure-activity relationships at play in these catalyst systems. The supported WO3/ZrO2 solid acid catalyst system is a major focal point of this thesis, and detailed aberration-corrected STEM-HAADF imaging studies were performed on a systematic set of catalysts showing different level of catalytic performance. The nature of the catalytically most active WOx species was identified by correlating structural information, obtained from STEM-HAADF and in-situ optical spectroscopy studies, with catalytic testing results. Specifically, ˜1nm distorted Zr-WOx mixed oxide clusters were identified to be the most active species for both the methanol dehydration and n-pentane isomerization reactions in the WO3/ZrO2 catalyst system. The use of amorphous zirconia as a precursor support material makes it much easier to extract and incorporate Zr cations into the surface WOx clusters during calcination. The calcination temperature was also identified to also play an important role in the formation of these most active Zr-WOx clusters. When the calcination temperature is comparable to or higher than the 896K Huttig temperature of ZrO2 (at which surface ZrO x species have sufficient mobility to agglomerate and sinter), the chance for successful surface WOx and ZrOx intermixing is significantly increased. Based on this perceived structure-activity relationship, several new catalyst synthesis strategies were developed in an attempt to optimize the catalytic performance of WOx-based catalysts. We have demonstrated in Chapter 3 that co-impregnation of WOx and ZrOx precursors onto an inactive model WO3/ZrO2 catalyst, followed by a calcination treatment above the 896K Huttig temperature of ZrO 2, promotes the surface diffusion of ZrO2 and intermixing of Zr

  20. Study on the modification of measured wavefront aberration data for customized visual correction

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zhang, Yong; Zhang, Zhidong; Quan, Wei; An, Li

    2008-12-01

    Wavefront aberration of human eye is an important foundation for customized vision correction. In most current aberrometers, near infrared light is used to measure ocular wavefront aberration, whereas for customized visual correction, wavefront aberration data in visible range are required. With the measured wavefront aberration, corneal topography and eye's axial lengths data, individual eye models for twenty normal human eyes are constructed with the optical design software ZEMAX. Changing the incidence light wavelength and the refractive indexes of eye models, the values of defocus, astigmatism, higher-order aberrations in the measuring wavelength (833nm) and at the most sensitive wavelength of human eye (555nm) are obtained. Average focus shift between 833nm and 555nm is found to be about 0.94D, and different slightly for different individuals; the differences of astigmatism and higher-order aberrations between 833nm and 555nm are quite slight. For customized visual correction, the measured defocus value should be modified, whereas the measured astigmatism and higher-order aberrations could be used directly for the current correction precision. Individual eye model is a useful tool for accurate transformation of the measured wavefront aberration data into the data for visible spectrum.

  1. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  2. Correction of chromatic aberrations at television registration of image through protective viewing systems

    NASA Astrophysics Data System (ADS)

    Kulyas, Oleg L.; Nikitin, Konstantin A.

    2016-03-01

    Ways of chromatic aberration in images are examined and analyzed which are generated at television supervision through protective glasses of a considerable thickness. The results of experimental check up of the given method of correction is introduced and described.

  3. Accommodation with higher-order monochromatic aberrations corrected with adaptive optics

    NASA Astrophysics Data System (ADS)

    Chen, Li; Kruger, Philip B.; Hofer, Heidi; Singer, Ben; Williams, David R.

    2006-01-01

    Higher-order monochromatic aberrations in the human eye cause a difference in the appearance of stimuli at distances nearer and farther from best focus that could serve as a signed error signal for accommodation. We explored whether higher-order monochromatic aberrations affect the accommodative response to 0.5 D step changes in vergence in experiments in which these aberrations were either present as they normally are or removed with adaptive optics. Of six subjects, one could not accommodate at all for steps in either condition. One subject clearly required higher-order aberrations to accommodate at all. The remaining four subjects could accommodate in the correct direction even when higher-order aberrations were removed. No subjects improved their accommodation when higher-order aberrations were corrected, indicating that the corresponding decrease in the depth of field of the eye did not improve the accommodative response. These results are consistent with previous findings of large individual differences in the ability to accommodate in impoverished conditions. These results suggest that at least some subjects can use monochromatic higher-order aberrations to guide accommodation. They also show that some subjects can accommodate correctly when higher-order monochromatic aberrations as well as established cues to accommodation are greatly reduced.

  4. Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations.

    PubMed

    De Nicola, S; Finizio, A; Pierattini, G; Alfieri, D; Grilli, S; Sansone, L; Ferraro, P

    2005-10-15

    We demonstrate experimentally that correct phase imaging without 2pi ambiguity is obtainable in digital holography by using a multiwavelength approach in the microscope configuration. We describe a general approach for removing chromatic aberrations and for controlling the pixel size of the reconstructed phase image in multiwavelength digital holography when the Fourier transform method is adopted for the numerical reconstruction of digital holograms. The retrieved phase is affected by the unavoidable, unwanted chromatic aberration. The correct phase can be obtained by evaluating the phase from the reference holograms reconstructed at different wavelengths to compensate for the chromatic aberration.

  5. Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.

    PubMed

    Prasad, Dilip K; Brown, Michael S

    2014-01-01

    A macro-filter-lens design that can correct for chromatic and geometric aberrations simultaneously while providing for a long focal length is presented. The filter is easy to fabricate since it involves two spherical surfaces and a planar surface. Chromatic aberration correction is achieved by making all the rays travel the same optical distance inside the filter element (negative meniscus). Geometric aberration is corrected for by the lens element (plano-convex), which makes the output rays parallel to the optic axis. This macro-filter-lens design does not need additional macro lenses and it provides an inexpensive and optically good (aberration compensated) solution for macro imaging of objects not placed close to the camera.

  6. Aberrant genomic imprinting in rhesus monkey embryonic stem cells.

    PubMed

    Fujimoto, Akihisa; Mitalipov, Shoukhrat M; Kuo, Hung-Chih; Wolf, Don P

    2006-03-01

    Genomic imprinting involves modification of a gene or a chromosomal region that results in the differential expression of parental alleles. Disruption or inappropriate expression of imprinted genes is associated with several clinically significant syndromes and tumorigenesis in humans. Additionally, abnormal imprinting occurs in mouse embryonic stem cells (ESCs) and in clonally derived animals. Imprinted gene expression patterns in primate ESCs are largely unknown, despite the clinical potential of the latter in the cell-based treatment of human disease. Because of the possible implications of abnormal gene expression to cell or tissue replacement therapies involving ESCs, we examined allele specific expression of four imprinted genes in the rhesus macaque. Genomic and complementary DNA from embryos and ESC lines containing useful single nucleotide polymorphisms were subjected to polymerase chain reaction-based amplification and sequence analysis. In blastocysts, NDN expression was variable indicating abnormal or incomplete imprinting whereas IGF2 and SNRPN were expressed exclusively from the paternal allele and H19 from the maternal allele as expected. In ESCs, both NDN and SNRPN were expressed from the paternal allele while IGF2 and H19 showed loss of imprinting and biallelic expression. In differentiated ESC progeny, these expression patterns were maintained. The implications of aberrant imprinted gene expression to ESC differentiation in vitro and on ESC-derived cell function in vivo after transplantation are unknown.

  7. Surgical correction of an aberrant right subclavian artery in a dog

    PubMed Central

    Yoon, Hun-Young; Jeong, Soon-wuk

    2011-01-01

    A diagnosis of an aberrant right subclavian artery was made in a 3-month-old Boston terrier. Surgical correction was performed after confirming adequate collateral circulation. Reports of surgical correction and evaluation of the perioperative thoracic limb blood pressure are rare in dogs. PMID:22467968

  8. Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice.

    PubMed

    Oana, Kosuke; Oma, Yoko; Suo, Satoshi; Takahashi, Masanori P; Nishino, Ichizo; Takeda, Shin'ichi; Ishiura, Shoichi

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults and as yet no cure for DM1. Here, we report the potential of manumycin A for a novel DM1 therapeutic reagent. DM1 is caused by expansion of CTG repeat. Mutant transcripts containing expanded CUG repeats lead to aberrant regulation of alternative splicing. Myotonia (delayed muscle relaxation) is the most commonly observed symptom in DM1 patients and is caused by aberrant splicing of the skeletal muscle chloride channel (CLCN1) gene. Identification of small-molecule compounds that correct aberrant splicing in DM1 is attracting much attention as a way of improving understanding of the mechanism of DM1 pathology and improving treatment of DM1 patients. In this study, we generated a reporter screening system and searched for small-molecule compounds. We found that manumycin A corrects aberrant splicing of Clcn1 in cell and mouse models of DM1.

  9. Effect of correction of aberration dynamics on chaos in human ocular accommodation.

    PubMed

    Hampson, Karen M; Cufflin, Matthew P; Mallen, Edward A H

    2013-11-15

    We used adaptive optics to determine the effect of monochromatic aberration dynamics on the level of chaos in the accommodation control system. Four participants viewed a stationary target while the dynamics of their aberrations were either left uncorrected, defocus was corrected, or all aberrations except defocus were corrected. Chaos theory analysis was used to discern changes in the accommodative microfluctuations. We found a statistically significant reduction in the chaotic nature of the accommodation microfluctuations during correction of defocus, but not when all aberrations except defocus were corrected. The Lyapunov exponent decreased from 0.71 ± 0.07 D/s (baseline) to 0.55 ± 0.03 D/s (correction of defocus fluctuations). As the reduction of chaos in physiological signals is indicative of stress to the system, the results indicate that for the participants included in this study, fluctuations in defocus have a more profound effect than those of the other aberrations. There were no changes in the power spectrum between experimental conditions. Hence chaos theory analysis is a more subtle marker of changes in the accommodation control system and will be of value in the study of myopia onset and progression.

  10. Improving the quality perception of digital images using modified method of the eye aberration correction

    NASA Astrophysics Data System (ADS)

    Kvyetnyy, Roman; Sofina, Olga; Orlyk, Pavel; Utreras, Andres J.; Smolarz, Andrzej; Wójcik, Waldemar; Orazalieva, Sandugash

    2016-09-01

    A new approach to solve the problem of image correction to improve the quality perception of graphic information by people with aberrations of the eye optical system is considered in given article. The model of higher order aberrations which may appear in the human eye optical system is described. The developed approach is based on the pre-processing of digital images and applying of the filtration methods to the adjusted images.

  11. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  12. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  13. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca , Sr)Fe2O5 Brownmillerite superlattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debangshu; Stone, Greg; Moon, Eun Ju; Young, Joshua; Gopalan, Venkatraman; Rondinelli, James; May, Steven; Alem, Nasim

    The brownmillerite phase A2B2O5 consists of ordered oxygen vacancies in alternate perovskite layers forming chiral tetrahedral chains. The handedness of these tetrahedral chains control the polarization of the structure. The current study focuses on 1-1 brownmillerite superlattices grown on a SrTiO3 substrates using molecular beam epitaxy. The B-site in this structure is iron throughout the superlattice film, while the A-site alternates between calcium and strontium in the superlattice layers. In this study, we use atomic resolution aberration corrected scanning transmission electron microscopy (STEM) to investigate the structure and chemistry of the film-substrate interface as well as the chemical structure of the superlattice. Atom positions are determined to measure displacement vectors of A-site cations in the superlattice structure. D.M., G.A.S., V.G. and N.A. were supported by the National Science Foundation under Grant No. DMR-1420620. E.J.M. and S.J.M. were supported by the National Science Foundation under Grant No. DMR-1151649.

  14. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  15. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  16. Compositional analysis with atomic column spatial resolution by 5th-order aberration-corrected scanning transmission electron microscopy.

    PubMed

    Hernández-Maldonado, David; Herrera, Miriam; Alonso-González, Pablo; González, Yolanda; González, Luisa; Gazquez, Jaume; Varela, María; Pennycook, Stephen J; Guerrero-Lebrero, María de la Paz; Pizarro, Joaquín; Galindo, Pedro L; Molina, Sergio I

    2011-08-01

    We show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an InxGa1-xAs multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S., Shiraki, Y. & Ito, R. (1992). Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantums wells. Appl Phys Lett 61, 557-559].

  17. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles.

  18. Digital aberration correction of fluorescent images with coherent holographic image reconstruction by phase transfer (CHIRPT)

    NASA Astrophysics Data System (ADS)

    Field, Jeffrey J.; Bartels, Randy A.

    2016-03-01

    Coherent holographic image reconstruction by phase transfer (CHIRPT) is an imaging method that permits digital holographic propagation of fluorescent light. The image formation process in CHIRPT is based on illuminating the specimen with a precisely controlled spatio-temporally varying intensity pattern. This pattern is formed by focusing a spatially coherent illumination beam to a line focus on a spinning modulation mask, and image relaying the mask plane to the focal plane of an objective lens. Deviations from the designed spatio-temporal illumination pattern due to imperfect mounting of the circular modulation mask onto the rotation motor induce aberrations in the recovered image. Here we show that these aberrations can be measured and removed non-iteratively by measuring the disk aberration phase externally. We also demonstrate measurement and correction of systematic optical aberrations in the CHIRPT microscope.

  19. CLASSICAL AREAS OF PHENOMENOLOGY: Conformal optical design with combination of static and dynamic aberration corrections

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Lin; Huang, Yi-Fan; Liu, Jia-Guo

    2009-02-01

    Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aberrations are induced which vary with the field-of-regard (FOR) angle. A system for correcting optical aberrations created by a conformal dome has an outer surface and an inner surface. Optimizing the inner surface is regard as static aberration correction. A deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. An ellipsoidal MgF2 conformal dome with a fineness ratio of 1.0 is designed as an example. The FOR angle is 0°- 30°, and the design wavelength is 4 μm. After the optimization at 7 zoom positions by using the design tools Code V, the root-mean-square (RMS) spot size is reduced to approximately 0.99 to 1.48 times the diffraction limit. The design results show that the performances of the conformal optical systems can be greatly improved by the combination of the static correction and the dynamic correction.

  20. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields.

    PubMed

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael

    2009-11-01

    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized noninvasively through direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows determination of the precise estimation of the phase and amplitude aberrations, and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2pi). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from sigma = 1.89 radian before correction to sigma = 0.53 radian following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be -7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of -0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus

  1. Chromatic aberration correction of the human eye for retinal imaging in the near infrared

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Unterhuber, Angelika; Považay, Boris; Hermann, Boris; Artal, Pablo; Drexler, Woflgang

    2006-06-01

    An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

  2. Chromatic aberration correction of the human eye for retinal imaging in the near infrared.

    PubMed

    Fernández, Enrique J; Unterhuber, Angelika; Povazay, Boris; Hermann, Boris; Artal, Pablo; Drexler, Woflgang

    2006-06-26

    An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

  3. Dynamic aberration correction for conformal optics using model-based wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Han, Xinli; Dong, Bing; Li, Yan; Wang, Rui; Hu, Bin

    2016-10-01

    For missiles and airplanes with high Mach number, traditional spherical or flat window can cause a lot of air drag. Conformal window that follow the general contour of surrounding surface can substantially decrease air drag and extend operational range. However, the local shape of conformal window changes across the Field Of Regard (FOR), leading to time-varying FOR-dependent wavefront aberration and degraded image. So the correction of dynamic aberration is necessary. In this paper, model-based Wavefront Sensorless Adaptive Optics (WSAO) algorithm is investigated both by simulation and experiment for central-obscured pupil. The algorithm is proved to be effective and the correction accuracy of using DM modes is higher than Lukosz modes. For dynamic aberration in our system, the SR can be better than 0.8 when the change of looking angle is less than 2° after t seconds which is the time delay of the control system.

  4. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses

    NASA Astrophysics Data System (ADS)

    Zhong, Xing; Zhang, Yuan; Jin, Guang

    2015-03-01

    The design of the high performance imaging spectrometer using low-cost plane grating is researched in this paper. In order to correct the aberrations well, under the guidance of the vector aberration theory, the modification of Czerny-Turner system with inserted tilt lenses is proposed. The novel design of a short-wave infrared imaging spectrometer working at between wavelengths of 1-2.5 μm is shown as an example, whose numerical aperture achieves 0.15 in image space. The aberrations are corrected well and the Modulation Transfer Function (MTF) performance is the same as the convex gratings systems. The smiles and keystones of the spectral image are acceptable. Advantages of the proposed design with a plane grating are obviously that the diffraction efficiency is high while the cost is very low.

  5. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.

    PubMed

    Shaw, Michael; Hall, Simon; Knox, Steven; Stevens, Richard; Paterson, Carl

    2010-03-29

    In this paper we describe the wavefront aberrations that arise when imaging biological specimens using an optical sectioning microscope and generate simulated wavefronts for a planar refractive index mismatch. We then investigate the capability of two deformable mirrors for correcting spherical aberration at different focusing depths for three different microscope objective lenses. Along with measurement and analysis of the mirror influence functions we determine the optimum mirror pupil size and number of spatial modes included in the wavefront expansion and we present measurements of actuator linearity and hysteresis. We find that both mirrors are capable of correcting the wavefront aberration to improve imaging and greatly extend the depth at which diffraction limited imaging is possible.

  6. The correction of aberrations computed in the aperture plane of multifrequency microwave radiometer antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1984-01-01

    An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.

  7. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  8. Device and method for creating Gaussian aberration-corrected electron beams

    SciTech Connect

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  9. Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Munger, Rejean; Priest, David

    2005-08-01

    Wavefront-guided laser eye surgery has been recently introduced and holds the promise of correcting not only defocus and astigmatism in patients but also higher-order aberrations. Research is just beginning on the implementation of wavefront-guided methods in optical solutions, such as phase-plate-based spectacles, as alternatives to surgery. We investigate the theoretical differences between the implementation of wavefront-guided surgical and phase plate corrections. The residual aberrations of 43 model eyes are calculated after simulated refractive surgery and also after a phase plate is placed in front of the untreated eye. In each case, the current wavefront-guided paradigm that applies a direct map of the ocular aberrations to the correction zone is used. The simulation results demonstrate that an ablation map that is a Zernike fit of a direct transform of the ocular wavefront phase error is not as efficient in correcting refractive errors of sphere, cylinder, spherical aberration, and coma as when the same Zernike coefficients are applied to a phase plate, with statistically significant improvements from 2% to 6%.

  10. Gold clusters showing pentagonal atomic arrays revealed by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Mayoral, Alvaro; Blom, Douglas A; Mariscal, Marcelo M; Guiterrez-Wing, Claudia; Aspiazu, Juan; Jose-Yacaman, Miguel

    2010-12-14

    In this work we present the analysis by aberration corrected electron microscopy of the formation of gold clusters based on the proton irradiation of larger nanoparticles (NP). Pentagonal arrays have been observed and energetic calculations have been performed in order to prove the stability of these materials.

  11. Eigenfunction analysis of stochastic backscatter for aberration correction in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Mo, Eirik; Krogstad, Harald; Angelsen, Bjørn

    2004-05-01

    A filter for aberration correction in medical ultrasound imaging is presented. The filter is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wave length of the transmit pulse. The scatterer distribution is therefore assumed to be δ-correlated. Theoretical considerations imply that maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction have been studied for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtained using a diffraction limited time-reversal filter based on simulated point source data.

  12. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

    NASA Astrophysics Data System (ADS)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-01

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  13. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    PubMed

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  14. Characterization and correction of spherical aberration due to glass substrate in the design and fabrication of Fresnel zone lenses.

    PubMed

    Vijayakumar, A; Bhattacharya, S

    2013-08-20

    As with a conventional lens, a Fresnel zone lens (FZL) can be used to image objects at infinity or nearby. In the latter case, the FZL converts a diverging spherical wavefront into a converging spherical wavefront. The glass substrate on which the FZL is fabricated introduces spherical aberration resulting in a shift of the image plane and blurring of the image. Two novel schemes for correction of this spherical aberration are proposed and studied in this paper. To demonstrate them, FZLs are designed with and without aberration correction. They are fabricated using electron beam direct writing. The devices are evaluated and the accuracy of the proposed aberration correction schemes is validated.

  15. Training to improve contrast sensitivity in amblyopia: correction of high-order aberrations

    PubMed Central

    Liao, Meng; Zhao, Haoxing; Liu, Longqian; Li, Qian; Dai, Yun; Zhang, Yudong; Zhou, Yifeng

    2016-01-01

    Perceptual learning is considered a potential treatment for amblyopia even in adult patients who have progressed beyond the critical period of visual development because adult amblyopes retain sufficient visual plasticity. When perceptual learning is performed with the correction of high-order aberrations (HOAs), a greater degree of neural plasticity is present in normal adults and those with highly aberrated keratoconic eyes. Because amblyopic eyes show more severe HOAs than normal eyes, it is interesting to study the effects of HOA-corrected visual perceptual learning in amblyopia. In the present study, we trained twenty-six older child and adult anisometropic amblyopes while their HOAs were corrected using a real-time closed-loop adaptive optics perceptual learning system (AOPL). We found that adaptive optics (AO) correction improved the modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of older children and adults with anisometropic amblyopia. When perceptual learning was performed with AO correction of the ocular HOAs, the improvements in visual function were not only demonstrated in the condition with AO correction but were also maintained in the condition without AO correction. Additionally, the learning effect with AO correction was transferred to the untrained visual acuity and fellow eyes in the condition without AO correction. PMID:27752122

  16. Automatic low-order aberration correction based on geometry optics: simulations

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Dong, Lizhi; Liu, Yong; Yang, Ping; Tang, Guomao; Xu, Bing

    2016-10-01

    The slab laser is a promising architecture to achieve high beam quality and high power. By propagating the laser beams in zigzag geometries, the temperature gradient in the gain medium can be well averaged, and the beam quality in this direction can be excellent. However, the temperature gradient in the non-zigzag direction is not compensated, resulting in aberrations in this direction which lead to poorer beam quality. Among the overall aberrations, the main contributors are two low-order aberrations: astigmatism and defocus. These aberrations will magnify beam divergence angle and degrade beam quality. If the beam divergence angles in both directions are almost zero, the astigmatism and defocus are well corrected. Besides, the output beams of slab lasers are generally in a rectangular aperture with high aspect ratio (normally 1:10), which need to be reshaped into square in many applications. In this paper, a new method is proposed to correct low-order aberrations and reshape the beams of slab lasers. Three lenses are adapted, one is a spherical lens and the others are cylindrical lenses. These lenses work as a beam shaping system, which converts the beam from rectangular into square and the low-order aberrations are compensated simultaneously. Two wavefront sensors are used to detect input and output beam parameters. The initial size of the beam is 4mm×20mm, and peak to valley (PV) value of the wavefront is several tens of microns. Simulation results show that after correction, the dimension becomes 40mm×40mm, and peak to valley (PV) value of the wavefront is less than 1microns.

  17. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy.

    PubMed

    Allard, Lawrence F; Borisevich, Albina; Deng, Weiling; Si, Rui; Flytzani-Stephanopoulos, Maria; Overbury, Steven H

    2009-06-01

    High-resolution aberration-corrected electron microscopy was performed on a series of catalysts derived from a parent material, 2 at.% Au/Fe(2)O(3) (WGC ref. no. 60C), prepared by co-precipitation and calcined in air at 400 degrees C, and a catalyst prepared by leaching surface gold from the parent catalyst and exposed to various treatments, including use in the water-gas shift reaction at 250 degrees C. Aberration-corrected JEOL 2200FS (JEOL USA, Peabody, MA) and Vacuum Generators HB-603U STEM instruments were used to image fresh, reduced, leached, used and re-oxidized catalyst samples. A new in situ heating technology (Protochips Inc., Raleigh, NC, USA), which permits full sub-Angström imaging resolution in the JEOL 2200FS was used to study the effects of temperature on the behavior of gold species. A remarkable stability of gold to redox treatments up to 400 degrees C, with atomic gold decorating step surfaces of iron oxide was identified. On heating the samples in vacuum to 700 degrees C, it was found that monodispersed gold began to sinter to form nanoparticles above 500 degrees C. Gold species internal to the iron oxide support material was shown to diffuse to the surface at elevated temperature, coalescing into discrete nanocrystals. The results demonstrate the value of in situ heating for understanding morphological changes in the catalyst with elevated temperature treatments.

  18. An aberration corrected photoemission electron microscope at the advanced light source

    SciTech Connect

    Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2003-11-01

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.

  19. Aberration corrected STEM to study an ancient hair dyeing formula

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.

    2014-05-01

    Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.

  20. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound.

    PubMed

    Ziksari, Mahsa Sotoodeh; Asl, Babak Mohammadzadeh

    2017-03-01

    In recent years, applying adaptive beamforming to ultrasound imaging improves image quality in terms of resolution and contrast. One of the best adaptive beamformers in this field is the minimum variance (MV) beamformer which presents better resolution and edge definition compared to the traditional delay-and-sum (DAS) beamformer. However, in real situations, sound-velocity inhomogeneities cause phase aberration which leads to ambiguity in targets' location and degradation in resolution. This effect is a fundamental obstacle to utilize advantages of MV beamformer, although, in aberrating medium MV beamformer results in better performance compared to DAS. In this paper, two different levels of phase screens have been applied to simulate aberrator layers located close to the transducer. Also, prior to beamforming process, a conventional correction technique based on phase screen model is used. Simulations are performed in majority resolution of MV which has the lowest robustness. The results demonstrate that applying this correction method can retrieve the efficiency of the MV beamformer. Moreover, the method improves the performance of the MV in both terms of resolution and contrast. As corrected MV achieved at least 22% improvement in sidelobe reduction and 24% increase in contrast to noise ratio (CNR) with respect to the DAS corrected data. Also, according to experimental dataset 17% enhancement in CNR is yielded by MV.

  1. Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-04-01

    We present a theoretical analysis of an electrostatic triode mirror combined with an einzel lens for the correction of spherical and chromatic aberration. We show that this device adaptively corrects spherical and chromatic aberration simultaneously and independently. Chromatic aberration can be compensated over a relative range of -38% to +100%, and spherical aberration over ±100% range. We compare the analytic calculation with a numerical simulation and show that the two descriptions agree to within 5% in the relevant operating regime of the device.

  2. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, Richard H.

    1996-01-01

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface.

  3. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, R.H.

    1996-09-17

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface. 8 figs.

  4. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    SciTech Connect

    Borisevich, Albina Y; Lupini, Andrew R; Pennycook, Stephen J

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed.

  5. In situ correction of the spherical aberration in a double-toroidal electron analyzer

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Nicolas, Christophe; Miron, Catalin

    2017-02-01

    In an energy-dispersive electron spectrometer, the electrons with the same kinetic energy but different polar angles fly along different paths and impinge upon the detector at different locations. This behavior materializes the spherical aberration of the electron optics, which deteriorates the focussing quality on the detector, and thus the energy resolution of the instrument. Here, we demonstrate that, in general, the electron time of flight changes monotonically as a function of the polar angle. Combining the impact position on the detector and the time of flight of electrons, the spherical aberration can be corrected and the energy resolution can be significantly improved, 1.5× in the case of our double toroidal analyser. This correction method has a general applicability and can be of interest to experimentalists willing to push further the performances of their electron spectrometers when the time of flight is available.

  6. Aberration and boresight error correction for conformal windows using tilted and decentered fixed correctors

    NASA Astrophysics Data System (ADS)

    Zhao, Chunzhu; Mao, Shan

    2016-10-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported, which is the use of tilted and decentered fixed correctors. The principle of the static solution is discussed, and three tilted and decentered fixed correctors are designed to correct the aberrations and boresight error for a conformal window. The correctors are fixed in position between the conformal window and the gimbaled imaging system, thus requiring no moving parts. The design result shows that the predominant astigmatism introduced by the conformal window is corrected by the tilted and decentered fixed correctors at different look angles. Moreover, the boresight error for the conformal window, as a function of look angle, is also corrected by the correctors. The root mean square wavefront aberration for the final conformal window imaging system is less than 0.2 wave across the full field of regard on the visible spectrum, and the boresight error is less than 0.5' across the full field of regard.

  7. Correction of NIRI/ Altair non-common path aberrations using focal plane sharpening

    NASA Astrophysics Data System (ADS)

    Ball, Jesse G.; Lai, Olivier; Trujillo, Chadwick; White, John

    2016-07-01

    Non-common path aberrations (NCPA), in an adaptive optics system, are static aberrations induced by the science and wavefront sensor's (WFS) separate light paths, for which the latter is corrected (although not present in the former), and the former is not. It was suspected1 that this type of aberration may significantly affect the image quality performance of Altair + NIRI, the Gemini North Observatory's adaptive optics facility instrument and the near-infrared imaging camera. A simple and effective focal plane sharpening technique was developed to optimize these static aberrations for Altair & NIRI at f/32, and 2.12μm. By varying the shape of the deformable mirror (DM) to introduce Zernike aberration coefficients through a reasonable range of values, the images produced were read out on the NIRI detector and analyzed for Strehl ratio. Fitting a second-order polynomial to this data set gave an optimized value for each coefficient out to Z49. The Strehl ratio was improved by 6% +/- 2% and the Z5 (45° astigmatism) term showed the only appreciable error contribution to the current NCPA offset of 0.15μm in k-prime (2.12μm). Aside from resulting in a slight improvement in image quality, the technique developed is non-invasive and will be implemented in other instruments and cameras that typically couple with Altair and have outdated or erroneous NCPA files currently. Furthermore, some high spatial-frequency structure in the PSF was found that limited the effect of these corrections, and may be a key component in further investigations towards image quality degradation in Altair + NIRI.

  8. A correction method for the axial maladjustment of transmission-type optical system based on aberration theory

    NASA Astrophysics Data System (ADS)

    Xu, Chunmei; Huang, Fu-yu; Yin, Jian-ling; Chen, Yu-dan; Mao, Shao-juan

    2016-10-01

    The influence of aberration on misalignment of optical system is considered fully, the deficiencies of Gauss optical correction method is pointed, and a correction method for transmission-type misalignment optical system is proposed based on aberration theory. The variation regularity of single lens aberration caused by axial displacement is analyzed, and the aberration effect is defined. On this basis, through calculating the size of lens adjustment induced by the image position error and the magnifying rate error, the misalignment correction formula based on the constraints of the aberration is deduced mathematically. Taking the three lens collimation system for an example, the test is carried out to validate this method, and its superiority is proved.

  9. Design and progress toward a multi-conjugate adaptive optics system for distributed aberration correction

    SciTech Connect

    Baker, K; Olivier, S; Tucker, J; Silva, D; Gavel, D; Lim, R; Gratrix, E

    2004-08-17

    This article investigates the use of a multi-conjugate adaptive optics system to improve the field-of-view for the system. The emphasis of this research is to develop techniques to improve the performance of optical systems with applications to horizontal imaging. The design and wave optics simulations of the proposed system are given. Preliminary results from the multi-conjugate adaptive optics system are also presented. The experimental system utilizes a liquid-crystal spatial light modulator and an interferometric wave-front sensor for correction and sensing of the phase aberrations, respectively.

  10. Derivative Form of Off-axis Aberration Correction Surface and Its Application in Solar Energy Concentration

    NASA Astrophysics Data System (ADS)

    Li, Li; Chen, Ying-Tian; Hu, Sen

    2009-02-01

    By using the derivative method, we obtained the same result with that of the previous work of Chen et al. in 2006. Different from the integral form, the derivative form of the surface expression published in this paper is derived from differential equation and based on the theory of non-imaging focusing heliostat proposed by Chen et al. in 2001. The comparison of the derivative form of fixed aberration correction surface has been made with that of integral form surface as well as that of spherical surface in concentrating the solar ray.

  11. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  12. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  13. Performance analysis of adaptive fiber laser array propagating in atmosphere with correction of high order aberrations in sub-aperture

    NASA Astrophysics Data System (ADS)

    Li, Feng; Geng, Chao; Li, Xinyang; Qiu, Qi

    2016-10-01

    Recently developed adaptive fiber laser array technique provides a promising way incorporating aberrations correction with laser beams transmission. Existing researches are focused on sub-aperture low order aberrations (pistons and tips/tilts) compensation and got excellent correction results for weak and moderate turbulence in short range. While such results are not adequate for future laser applications which face longer range and stronger turbulence. So sub-aperture high aberrations compensation is necessary. Relationship between corrigible orders of sub-aperture aberrations and far-field metrics as power-in-the-bucket (PIB) and Strehl ratio is investigated with numeric simulation in this paper. Numerical investigation results shows that increment in array number won't result in effective improvement of the far-field metric if sub-aperture size is fixed. Low order aberrations compensation in sub-apertures gets its best performances only when turbulence strength is weak. Pistons compensation becomes invalid and higher order aberrations compensation is necessary when turbulence gets strong enough. Cost functions of the adaptive fiber laser array with high order aberrations correction in sub-apertures are defined and the optimum corrigible orders are discussed. Results shows that high order (less than first ten Zernike orders) compensation is acceptable where balance between increment of the far-field metric and the cost and complexity of the system could be reached.

  14. SMART:. An Aberration-Corrected XPEEM/LEEM with Energy Filter

    NASA Astrophysics Data System (ADS)

    Wichtendahl, R.; Fink, R.; Kuhlenbeck, H.; Preikszas, D.; Rose, H.; Spehr, R.; Hartel, P.; Engel, W.; Schlögl, R.; Freund, H.-J.; Bradshaw, A. M.; Lilienkamp, G.; Schmidt, Th.; Bauer, E.; Benner, G.; Umbach, E.

    A new UHV spectroscopic X-ray photoelectron emission and low energy electron microscope is presently under construction for the installation at the PM-6 soft X-ray undulator beamline at BESSY II. Using a combination of a sophisticated magnetic beam splitter and an electrostatic tetrode mirror, the spherical and chromatic aberrations of the objective lens are corrected and thus the lateral resolution and sensitivity of the instrument improved. In addition a corrected imaging energy filter (a so-called omega filter) allows high spectral resolution (ΔE=0.1 eV) in the photoemission modes and back-ground suppression in LEEM and small-spot LEED modes. The theoretical prediction for the lateral resolution is 5 Å a realistic goal is about 2 nm. Thus, a variety of electron spectroscopies (XAS, XPS, UPS, XAES) and electron diffraction (LEED, LEEM) or reflection techniques (MEM) will be available with spatial resolution unreached so far.

  15. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-11-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

  16. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    PubMed Central

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454

  17. Aberration correction in an adaptive free-space optical interconnect with an error diffusion algorithm

    NASA Astrophysics Data System (ADS)

    Gil-Leyva, Diego; Robertson, Brian; Wilkinson, Timothy D.; Henderson, Charley J.

    2006-06-01

    Aberration correction within a free-space optical interconnect based on a spatial light modulator for beam steering and holographic wavefront correction is presented. The wavefront sensing technique is based on an extension of a modal wavefront sensor described by Neil et al. [J. Opt. Soc. Am. A 17, 1098 (2000)], which uses a diffractive element. In this analysis such a wavefront sensor is adapted with an error diffusion algorithm that yields a low reconstruction error and fast reconfigurability. Improvement of the beam propagation quality (Strehl ratio) for different channels across the input plane is achieved. However, due to the space invariancy of the system, a trade-off among the beam propagation quality for channels is obtained. Experimental results are presented and discussed.

  18. Sensor-less aberration correction in optical imaging systems using blind optimization

    NASA Astrophysics Data System (ADS)

    Avanaki, Mohammad R. N.; Mazraeh Khoshki, R.; Hojjatoleslami, S. A.; Podoleanu, A. Gh.

    2012-02-01

    The imperfection of optical devices in an optical imaging system deteriorates wavefront which results in aberration. This reduces the optical signal to noise ratio of the imaging system and the quality of the produced images. Adaptive optics composed of wavefront sensor (WFS) and deformable mirror (DM) is a straightforward solution for this problem. The need for a WFS in an AO system, raises the cost of the overall system, and there are also instances when they cannot be used, such as in microscopy. Moreover stray reflections from lens surfaces affect the performance of the WFS. In this paper, we describe a blind optimization technique with an in-expensive electronics without using the WFS to correct the aberration in order to achieve better quality images. The correction system includes an electromagnetic DM from Imagine, Mirao52d, with 52 actuators which are controlled by particle swarm optimization (PSO) algorithm. The results of the application of simulated annealing (SA), and genetic algorithm (GA) techniques that we have implemented in the sensor-less AO are used for comparison.

  19. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  20. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Smith, Stephen W

    2013-03-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° x 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke.

  1. Phase aberration correction by multi-stencils fast marching method using sound speed image in ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Imoto, Haruka; Tamano, Satoshi; Takagi, Shu; Umemura, Shin-Ichiro; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-04-01

    Reflection image from ultrasound computed tomography (USCT) system can be obtained by synthetic aperture technique, however its quality is decreased by phase aberration caused by inhomogeneous media. Therefore, phase aberration correction is important to improve image quality. In this study, multi-stencils fast marching method (MSFMM) is employed for phase correction. The MSFMM is an accurate and fast solution of Eikonal equation which considers the refraction. The proposed method includes two steps. First, the MSFMM is used to compute sound propagation time from each element to each image gird point using sound speed image of USCT. Second, synthetic aperture technique is employed to obtain reflection image using the computed propagation time. To evaluate the proposed method, both numerical simulation and phantom experiment were conducted. With regard to numerical simulation, both quantitative and qualitative comparisons between reflection images with and without phase aberration correction were given. In the quantitative comparison, the diameters of point spread function (PSF) in reflection images of a two layer structure were presented. In the qualitative comparison, reflection images of simple circle and complex breast modes with phase aberration correction show higher quality than that without the correction. In respect to phantom experiment, a piece of breast phantom with artificial glandular structure inside was scanned by a USCT prototype, and the artificial glandular structure is able to be visible more clearly in the reflection image with phase aberration correction than in that without the correction. In this study, a phase aberration correction method by the MSFMM are proposed for reflection image of the USCT.

  2. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  3. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets.

    PubMed

    Wüstner, Daniel; Faergeman, Nils J

    2008-08-01

    Intrinsically fluorescent sterols, like dehydroergosterol (DHE), mimic cholesterol closely and are therefore suitable to determine cholesterol transport by fluorescence microscopy. Disadvantages of DHE are its low quantum yield, rapid bleaching, and the fact that its excitation and emission is in the UV region of the spectrum. Thus, one has to deal with chromatic aberration and low signal-to-noise ratio. We developed a method to correct for chromatic aberration between the UV channel and the red/green channel in multicolor imaging of DHE compared with the lipid droplet marker Nile Red in living macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize and quantify sterol content of lipid droplets in living cells with potential for automated high content screening of cellular sterol transport.

  4. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction.

    PubMed

    Zawadzki, Robert J; Cense, Barry; Zhang, Yan; Choi, Stacey S; Miller, Donald T; Werner, John S

    2008-05-26

    We have developed an improved adaptive optics - optical coherence tomography (AO-OCT) system and evaluated its performance for in vivo imaging of normal and pathologic retina. The instrument provides unprecedented image quality at the retina with isotropic 3D resolution of 3.5 x 3.5 x 3.5 microm(3). Critical to the instrument's resolution is a customized achromatizing lens that corrects for the eye's longitudinal chromatic aberration and an ultra broadband light source (Delta lambda=112 nm lambda(0)= approximately 836 nm). The eye's transverse chromatic aberrations is modeled and predicted to be sufficiently small for the imaging conditions considered. The achromatizing lens was strategically placed at the light input of the AO-OCT sample arm. This location simplifies use of the achromatizing lens and allows straightforward implementation into existing OCT systems. Lateral resolution was achieved with an AO system that cascades two wavefront correctors, a large stroke bimorph deformable mirror (DM) and a micro-electromechanical system (MEMS) DM with a high number of actuators. This combination yielded diffraction-limited imaging in the eyes examined. An added benefit of the broadband light source is the reduction of speckle size in the axial dimension. Additionally, speckle contrast was reduced by averaging multiple B-scans of the same proximal patch of retina. The combination of improved micron-scale 3D resolution, and reduced speckle size and contrast were found to significantly improve visibility of microscopic structures in the retina.

  5. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope.

    PubMed

    Nickel, F; Gottlob, D M; Krug, I P; Doganay, H; Cramm, S; Kaiser, A M; Lin, G; Makarov, D; Schmidt, O G; Schneider, C M

    2013-07-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern.

  6. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  7. Element discrimination in a hexagonal boron nitride nanosheet by aberration corrected transmission electron microscopy.

    PubMed

    Mitome, Masanori; Sawada, Hidetaka; Kondo, Yukihito; Tanishiro, Yasumasa; Takayanagi, Kunio

    2012-11-01

    Boron nitride nanosheets prepared by an exfoliation technique were observed by aberration corrected transmission electron microscopy at 300 kV acceleration voltage. Single boron and nitrogen atoms in a monolayer region were imaged with different image contrast; a boron atom gave 16% less intensity reduction than a nitrogen atom. The number of atoms at each hexagonal ring site was determined by the image intensity that changed discretely with a 0.25-0.30 intensity difference. A double BN sheet was found to have a boron vacancy layer, and a triple BN layer has also a boron deficient layer on the incident surface resulting from the electron beam thinning process. The high sensitivity for atomic species was achieved by the high resolution and a small information limit due to the use of a cold field emission electron source.

  8. Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-03-26

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and, on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for a greater scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate the nanotubes' structure or prevent their oxidation.

  9. Observations of Carbon Nanotube Oxidation in an Aberration-Corrected, Environmental Transmission Electron Microscope

    PubMed Central

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-01-01

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in-situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for much scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate their structure or prevent their oxidation. PMID:23360330

  10. Optical aberration correction by real-time holography in liquid crystals.

    PubMed

    Karaguleff, C; Clark, G L

    1990-07-15

    We present results of experiments that use nematic-phase liquid crystal as a real-time holographic recording medium. Plane-wave gratings were written with as little as 10 mJ/cm(2) of incident write-beam energy from a pulsed Nd:YAG laser, and diffraction efficiencies greater than 25% were measured at 633 nm. Grating decay times were observed to fall within two distinct time regimes: a rapid-decay time of 60 to 100 microsec and a slower-decay time of 6 to 30 msec. The rapid-decay regime was used to demonstrate real-time correction of severely aberrated images by degenerate four-wave mixing.

  11. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    PubMed

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored.

  12. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    NASA Astrophysics Data System (ADS)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  13. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    PubMed Central

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-01-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers. PMID:28248317

  14. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy.

  15. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy.

    PubMed

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D; Tselepis, Chris; Palmer, Richard E

    2016-11-18

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  16. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.

    2016-11-01

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  17. Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities.

    PubMed

    Marcos, Susana; Sawides, Lucie; Gambra, Enrique; Dorronsoro, Carlos

    2008-10-06

    We evaluated the visual benefit of correcting astigmatism and high-order aberrations with adaptive optics (AO) on visual acuity (VA) measured at 7 different luminances (ranging from 0.8 to 50 cd/m(2)) and two contrast polarities (black letters on white background, BoW, and white letters on black background, WoB) on 7 subjects. For the BoW condition, VA increased with background luminance in both natural and AO-corrected conditions, and there was a benefit of AO correction at all luminances (by a factor of 1.29 on average across luminances). For WoB VA increased with foreground luminance but decreased for the highest luminances. In this reversed polarity condition AO correction increased VA by a factor of 1.13 on average and did not produce a visual benefit at high luminances. The improvement of VA (averaged across conditions) was significantly correlated (p = 0.04) with the amount of corrected aberrations (in terms of Strehl ratio). The improved performance with WoB targets with respect to BoW targets is decreased when correcting aberrations, suggesting a role of ocular aberrations in the differences in visual performance between contrast polarities.

  18. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ramachandra, Ranjan; de Jonge, Niels

    2012-02-01

    Three-dimensional (3D) datasets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). Deconvolution of the 3D datasets was applied to obtain the highest possible axial resolution. The deconvolution involved two different point spread functions, each calculated iteratively via blind deconvolution. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but also led to a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for the highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only.

  19. Surgical Correction of Aberrant Right Coronary Anomalies Stranding an Aortic Commissure with and Without Unroofing.

    PubMed

    Abdelhady, Khaled; Durgam, Samarth; Elzein, Chawki; Ilbawi, Michel N; Rhoiney, David; Massad, Malek G

    2017-02-18

    The technique for successful surgical correction of an anomalous origin of the right coronary artery from the opposite aortic cusp with an aberrant course between the aorta and pulmonary artery is illustrated in a symptomatic 62-year-old woman. The intramural course of the right coronary artery traversed the tip of the commissure between the anterior and posterior leaflets, and its repair entailed unroofing of the intramural segment from inside the aortic intima. This technique required resuspension of the overlying commissure to maintain optimal aortic valve leaflet coaptation and prevent aortic insufficiency. Modifications of this technique have been utilized by us whenever the intramural segment traversed behind the commissure. In these cases, partial or subtotal unroofing of the intramural segment was performed to preserve the integrity of the intima behind the overlying commissure. More recently, we have performed the surgical correction by probing the intramural segment within the aortic wall to its most anterior location and then performing a wide anterior unroofing in the aortic intima, and marsupializing the aortic and coronary intima to avoid dissection or intimal flap development. We favor utilizing these techniques of anatomic correction of the anomalous coronary to other techniques involving coronary artery bypass grafting of the anomalous coronary, especially in adult patients, as unroofing provides more lasting results.

  20. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy.

    PubMed

    Dukes, Madeline J; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Gray Jerome, W; de Jonge, Niels

    2011-06-01

    Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.

  1. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony

    2014-03-01

    Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.

  2. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT

    SciTech Connect

    Miller, Michael K; Parish, Chad M

    2014-01-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  3. Correction of axial and lateral chromatic aberration with false color filtering.

    PubMed

    Chang, Joonyoung; Kang, Hee; Kang, Moon Gi

    2013-03-01

    In this paper, we propose a chromatic aberration (CA) correction algorithm based on a false color filtering technique. In general, CA produces color distortions called color fringes near the contrasting edges of captured images, and these distortions cause false color artifacts. In the proposed method, a false color filtering technique is used to filter out the false color components from the chroma-signals of the input image. The filtering process is performed with the adaptive weights obtained from both the gradient and color differences, and the weights are designed to reduce the various types of color fringes regardless of the colors of the artifacts. Moreover, as preprocessors of the filtering process, a transient improvement (TI) technique is applied to enhance the slow transitions of the red and blue channels that are blurred by the CA. The TI process improves the filtering performance by narrowing the false color regions before the filtering process when severe color fringes (typically purple fringes) occur widely. Last, the CA-corrected chroma-signal is combined with the TI chroma-signal to avoid incorrect color adjustment. The experimental results show that the proposed method substantially reduces the CA artifacts and provides natural-looking replacement colors, while it avoids incorrect color adjustment.

  4. Application of polymer graded-index materials for aberration correction of progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Shitanoki, Yuki; Tagaya, Akihiro; Koike, Yasuhiro

    2009-02-01

    Graded-index (GRIN) progressive addition lens (PAL) was successfully fabricated, and GRIN's potential for aberration correction of PAL was confirmed. GRIN material was prepared by partial diffusion of methyl methacrylate (MMA (nd at polymer = 1.492)) monomer into cross-linked benzyl methacrylate (BzMA (nd at polymer=1.568)) flat gel, and GRINPAL was prepared by polymerization of the GRIN material attached to a mold of commercially available PAL. GRIN polymer materials have been used for various applications such as rod lenses and optical fibers. GRIN represents gradual change of refractive index in a material, which adds or reduces light focusing power of the material. PAL is a multifocal spectacle lens for presbyopia. However, some localized aberrations (especially astigmatism) in PAL have not yet been reduced satisfactorily for decades by optimizing surface geometry of a lens. In this research, we propose to employ GRIN materials for astigmatism reduction of PALs. BzMA flat gel was prepared by UV polymerization of BzMA, crosslinking agent ethylene glycol dimethacrylate (EDMA) and photopolymerization initiator DAROCURE 1173. MMA monomer was diffused into BzMA flat gel from a portion of periphery for several hours. The obtained GRIN material was attached to a mold of commercially available PAL and polymerized by UV. As a result, reduction of astigmatism was confirmed locally in the fabricated PAL and GRIN-PAL using lens meter. In conclusion, GRIN-PAL was successfully fabricated. The validity of GRIN employment for the astigmatism reduction in PAL was demonstrated experimentally.

  5. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  6. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L.; Chase, George G.; Reneker, Darrell H.

    2015-12-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of

  7. Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography.

    PubMed

    Ferraro, P; Miccio, L; Grilli, S; Paturzo, M; De Nicola, S; Finizio, A; Osellame, R; Laporta, P

    2007-10-29

    Quantitative Phase Microscopy (QPM) by interferometric techniques can require a multiwavelength configuration to remove 2pi ambiguity and improve accuracy. However, severe chromatic aberration can affect the resulting phase-contrast map. By means of classical interference microscope configuration it is quite unpractical to correct such aberration. We propose and demonstrate that by Digital Holography (DH) in a microscope configuration it is possible to clear out the QPM map from the chromatic aberration in a simpler and more effective way with respect to other approaches. The proposed method takes benefit of the unique feature of DH to record in a plane out-of-focus and subsequently reconstruct numerically at the right focal image plane. In fact, the main effect of the chromatic aberration is to shift differently the correct focal image plane at each wavelength and this can be readily compensated by adjusting the corresponding reconstruction distance for each wavelength. A procedure is described in order to determine easily the relative focal shift among different imaging wavelengths by performing a scanning of the numerical reconstruction along the optical axis, to find out the focus and to remove at the same time the chromatic aberration.

  8. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy.

    PubMed

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L; Chase, George G; Reneker, Darrell H

    2016-01-07

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.

  9. Recursive wavefront aberration correction method for LCoS spatial light modulators

    NASA Astrophysics Data System (ADS)

    García-Márquez, J.; Landgrave, J. E. A.; Alcalá-Ochoa, N.; Pérez-Santos, C.

    2011-06-01

    We present two accurate and relatively simple interferometric methods for the correction of wavefront aberrations of about 3 wavelengths (3 λ) in spatial light modulators (SLMs) of the liquid crystal on silicon (LCoS) type. The first is based on a recursive use of a wavefront fitting algorithm in a Wyko™ interferometer, in which Zernike polynomials are employed as the basis functions. We show here that the successive use of only three measurements is required to obtain a peak-to-valley (PV) error as low as λ/10, with an uncertainty of λ/30, in the compensated wavefront. The second method makes use of the actual optical path difference (OPD) computed by the interferometer at each pixel of the image of the interferogram of the LCoS modulator (LCoS-M). From numerical interpolation of these OPD values we were able to assign the required OPD compensation at each pixel of the LCoS-M. With this method, PV errors of the compensated wavefront as low as λ/16, with an uncertainty of λ/30, were obtained for the entire LCoS-M, or of λ/33 for the disk that we used as the domain of the Zernike polynomials in the first method.

  10. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    PubMed Central

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-01-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D. PMID:26868264

  11. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    DOE PAGES

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less

  12. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    SciTech Connect

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  13. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; Trautmann, Christina; Chisholm, Matthew F.; Weber, William J.

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.

  14. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    DOE PAGES

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally,more » a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less

  15. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  16. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.

    PubMed

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  17. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-01

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.

  18. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing

    PubMed Central

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-01

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing. PMID:28112246

  19. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing.

    PubMed

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-23

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.

  20. Aberration correction of double-sided telecentric zoom lenses using lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-09-20

    A systematic approach for the aberration design of a four-component double-sided telecentric zoom lens system is presented. The Gaussian structure of the zoom system is specified previously which means the powers and movements of components are known. Each component is treated as a lens module during the design stage with specified first-order properties and third-order aberration targets. The third-order aberration targets of the first component are determined by minimizing the whole aberrations of the zoom lens system using a genetic algorithm (GA). And the aberration targets of components behind are determined by reoptimization with already fixed structures of previous components. Mean pupil spherical aberration of every component in every zoom position is adopted in the objective function to control high-order aberrations. The thin lens structure of each component can be determined from their first-order properties and aberration targets. After lens thickening and reoptimization, the zoom lens system can finally be determined.

  1. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept

  2. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    PubMed Central

    Huang, Chao; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-01-01

    Abstract. A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT. PMID:22734772

  3. Parallel direct laser writing in three dimensions with spatially dependent aberration correction.

    PubMed

    Jesacher, Alexander; Booth, Martin J

    2010-09-27

    We propose a hologram design process which aims at reducing aberrations in parallel three-dimensional direct laser writing applications. One principle of the approach is to minimise the diffractive power of holograms while retaining the degree of parallelisation. This reduces focal distortion caused by chromatic aberration. We address associated problems such as the zero diffraction order and aberrations induced by a potential refractive index mismatch between the immersion medium of the microscope objective and the fabrication substrate. Results from fabrication in diamond, fused silica and lithium niobate are presented.

  4. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Nie, Liming; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-06-01

    A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT.

  5. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2016-12-27

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm.

  6. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    SciTech Connect

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki; Müller, Heiko; Haider, Maximilian; Tonomura, Akira

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  7. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    SciTech Connect

    MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E.; Kelez, N.; Marcus, M.A.; Miller, T.; Padmore, H.A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  8. Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration.

    PubMed

    Schwiegerling, J; Snyder, R W

    1998-09-01

    Photorefractive keratectomy is an evolving refractive procedure for correcting myopia, hyperopia, and astigmatism. Earlier descriptions of the patterns required for this surgery are based on paraxial optics. In this investigation the required pattern is generalized to account for spherical refractive error (defocus), axial astigmatism of arbitrary orientation, and fourth-order aberrations of the eye. The patterns described in this study can be used to customize photorefractive keratectomy and to provide corrections that account for aberration content as well as paraxial values. Furthermore, a description of the pattern along the boundary of the optical zone is given, which may prove useful in designing blending zones. An example of the use of these techniques is given for a schematic eye model.

  9. Aberrant Transforming Growth Factor-β Activation Recruits Mesenchymal Stem Cells During Prostatic Hyperplasia.

    PubMed

    Wang, Long; Xie, Liang; Tintani, Francis; Xie, Hui; Li, Changjun; Cui, Zhuang; Wan, Mei; Zu, Xiongbing; Qi, Lin; Cao, Xu

    2017-02-01

    Benign prostatic hyperplasia (BPH) is the overgrowth of prostate tissues with high prevalence in older men. BPH pathogenesis is not completely understood, but it is believed to be a result of de novo overgrowth of prostatic stroma. In this study, we show that aberrant activation of transforming growth factor-β (TGF-β) mobilizes mesenchymal/stromal stem cells (MSCs) in circulating blood, which are recruited for the prostatic stromal hyperplasia. Elevated levels of active TGF-β were observed in both a phenylephrine-induced prostatic hyperplasia mouse model and human BPH tissues. Nestin lineage tracing revealed that 39.6% ± 6.3% of fibroblasts and 73.3% ± 4.2% smooth muscle cells were derived from nestin(+) cells in Nestin-Cre, Rosa26-YFP(flox/+) mice. Nestin(+) MSCs were increased in the prostatic hyperplasia mice. Our parabiosis experiment demonstrate that nestin(+) MSCs were mobilized and recruited to the prostatic stroma of wild-type mice and gave rise to the fibroblasts. Moreover, injection of a TGF-β neutralizing antibody (1D11) inhibits mobilization of MSCs, their recruitment to the prostatic stroma and hyperplasia. Importantly, knockout of TβRII in nestin(+) cell lineage ameliorated stromal hyperplasia. Thus, elevated levels of TGF-β-induced mobilization and recruitment of MSCs to the reactive stroma resulting in overgrowth of prostate tissues in BPH and, thus, inhibition of TGF-β activity could be a potential therapy for BPH. Stem Cells Translational Medicine 2017;6:394-404.

  10. Estimating the number of hematopoietic or lymphoid stem cells giving rise to clonal chromosome aberrations in blood T lymphocytes.

    PubMed

    Nakano, M; Kodama, Y; Ohtaki, K; Itoh, M; Awa, A A; Cologne, J; Kusunoki, Y; Nakamura, N

    2004-03-01

    Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening.

  11. Multiple sextupole system for the correction of third and higher order aberration

    DOEpatents

    Crewe, Albert V.

    1983-01-01

    A means is provided for compensating for third and higher order aberration in charged particle beam devices. The means includes two sextupoles with an intermediate focusing lens, all positioned between two focusing lenses.

  12. High resolution structural and compositional mapping of the SrTiO3/LaFeO3 interface using chromatic aberration corrected energy filtered imaging

    NASA Astrophysics Data System (ADS)

    Kabius, Bernd; Houben, Lothar; Dwyer, Christian; Colby, Robert; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2014-03-01

    Interfaces between insulating polar perovskites have demonstrated a wealth of electronic and magnetic properties. Understanding and predicting the properties of a specific interface requires atomic level knowledge of interface structure and chemistry. Electron microscopy is capable of this task, and has been frequently applied to oxide interfaces using a combination of high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and electron energy-loss spectroscopy (EELS). Energy-filtered TEM (EFTEM) captures a full image for a given energy losses, allowing a larger field of view than typical for STEM-EELS in far less time. However, EFTEM has not, to date, demonstrated the spatial resolution of STEM-EELS due to the limits set by chromatic aberration Cc. This study of LaFeO3/SrTiO3 demonstrates that Cc correction enhances the resolution of EFTEM for elemental mapping, allowing a unit cell-by-unit cell analysis of the concentration gradients across the SrTiO3/LaFeO3 interface. The charge distribution at the interface will be discussed. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory

  13. Higher-order aberrations and best-corrected visual acuity in Native American children with a high prevalence of astigmatism

    PubMed Central

    Miller, Joseph M.; Harvey, Erin M.; Schwiegerling, Jim

    2016-01-01

    Purpose To determine whether higher-order aberrations (HOAs) in children from a highly astigmatic population differ from population norms and whether HOAs are associated with astigmatism and reduced best-corrected visual acuity. Methods Subjects were 218 Tohono O’odham Native American children 5–9 years of age. Noncycloplegic HOA measurements were obtained with a handheld Shack-Hartmann sensor (SHS). Signed (z06s to z14s) and unsigned (z06u to z14u) wavefront aberration Zernike coefficients Z(3,−3) to Z(4,4) were rescaled for a 4 mm diameter pupil and compared to adult population norms. Cycloplegic refraction and best-corrected logMAR letter visual acuity (BCVA) were also measured. Regression analyses assessed the contribution of astigmatism (J0) and HOAs to BCVA. Results The mean root-mean-square (RMS) HOA of 0.191 ± 0.072 μm was significantly greater than population norms (0.100 ± 0.044 μm. All unsigned HOA coefficients (z06u to z14u) and all signed coefficients except z09s, z10s, and z11s were significantly larger than population norms. Decreased BCVA was associated with astigmatism (J0) and spherical aberration (z12u) but not RMS coma, with the effect of J0 about 4 times as great as z12u. Conclusions Tohono O’odham children show elevated HOAs compared to population norms. Astigmatism and unsigned spherical aberration are associated with decreased acuity, but the effects of spherical aberration are minimal and not clinically significant. PMID:26239206

  14. Implementation of the near-field signal redundancy phase-aberration correction algorithm on two-dimensional arrays.

    PubMed

    Li, Yue; Robinson, Brent

    2007-01-01

    Near-field signal-redundancy (NFSR) algorithms for phase-aberration correction have been proposed and experimentally tested for linear and phased one-dimensional arrays. In this paper the performance of an all-row-plus-two-column, two-dimensional algorithm has been analyzed and tested with simulated data sets. This algorithm applies the NFSR algorithm for one-dimensional arrays to all the rows as well as the first and last columns of the array. The results from the two column measurements are used to derive a linear term for each row measurement result. These linear terms then are incorporated into the row results to obtain a two-dimensional phase aberration profile. The ambiguity phase aberration profile, which is the difference between the true and the derived phase aberration profiles, of this algorithm is not linear. Two methods, a trial-and-error method and a diagonal-measurement method, are proposed to linearize the ambiguity profile. The performance of these algorithms is analyzed and tested with simulated data sets.

  15. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  16. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  17. Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites

    SciTech Connect

    Fontanarosa, Davide; Meer, Skadi van der; Bloemen-van Gurp, Esther; Stroian, Gabriela; Verhaegen, Frank

    2012-08-15

    Purpose: The purpose of this work is to assess the magnitude of speed of sound (SOS) aberrations in three-dimensional ultrasound (US) imaging systems in image guided radiotherapy. The discrepancy between the fixed SOS value of 1540 m/s assumed by US systems in human soft tissues and its actual nonhomogeneous distribution in patients produces small but systematic errors of up to a few millimeters in the positions of scanned structures. Methods: A correction, provided by a previously published density-based algorithm, was applied to a set of five prostate, five liver, and five breast cancer patients. The shifts of the centroids of target structures and the change in shape were evaluated. Results: After the correction the prostate cases showed shifts up to 3.6 mm toward the US probe, which may explain largely the reported positioning discrepancies in the literature on US systems versus other imaging modalities. Liver cases showed the largest changes in volume of the organ, up to almost 9%, and shifts of the centroids up to more than 6 mm either away or toward the US probe. Breast images showed systematic small shifts of the centroids toward the US probe with a maximum magnitude of 1.3 mm. Conclusions: The applied correction in prostate and liver cancer patients shows positioning errors of several mm due to SOS aberration; the errors are smaller in breast cancer cases, but possibly becoming more important when breast tissue thickness increases.

  18. First experimental proof for aberration correction in XPEEM: resolution, transmission enhancement, and limitation by space charge effects.

    PubMed

    Schmidt, Th; Sala, A; Marchetto, H; Umbach, E; Freund, H-J

    2013-03-01

    The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed.

  19. Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy.

    PubMed

    Kim, Yoon-Jun; Tao, Runzhe; Klie, Robert F; Seidman, David N

    2013-01-22

    Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.

  20. Characterization of durable nanostructured thin film catalysts tested under transient conditions using analytical aberration-corrected electron microscopy

    SciTech Connect

    Cullen, David A; More, Karren Leslie; Reeves, Kimberly Shawn; Vernstrom, George; Atanasoska, Liliana; Haugen, Gregory; Atanasoski, Radoslav

    2011-01-01

    The stability of Ru0.1Ir0.9 oxidation evolution reaction (OER) catalysts deposited on Pt-coated nanostructured thin films (NSTFs) has been investigated by aberration-corrected electron microscopy. Accelerated stress tests showed that the OER catalysts significantly improved the durability of the Pt under cell reversal conditions. High-resolution images of the end-of-life NSTFs showed significant Ir loss from the whisker surfaces, while no Pt loss was observed, indicating that the OER catalysts had protected the catalyst coated whisker surfaces from degradation.

  1. Multiphoton Fluorescence Microscopy with GRIN Objective Aberration Correction by Low Order Adaptive Optics

    PubMed Central

    Bortoletto, Favio; Bonoli, Carlotta; Panizzolo, Paolo; Ciubotaru, Catalin D.; Mammano, Fabio

    2011-01-01

    Graded Index (GRIN) rod microlenses are increasingly employed in the assembly of optical probes for microendoscopy applications. Confocal, two–photon and optical coherence tomography (OCT) based on GRIN optical probes permit in–vivo imaging with penetration depths into tissue up to the centimeter range. However, insertion of the probe can be complicated by the need of several alignment and focusing mechanisms along the optical path. Furthermore, resolution values are generally not limited by diffraction, but rather by optical aberrations within the endoscope probe and feeding optics. Here we describe a multiphoton confocal fluorescence imaging system equipped with a compact objective that incorporates a GRIN probe and requires no adjustment mechanisms. We minimized the effects of aberrations with optical compensation provided by a low–order electrostatic membrane mirror (EMM) inserted in the optical path of the confocal architecture, resulting in greatly enhanced image quality. PMID:21814575

  2. Resolution Improvement in Aberration-Corrected Low- Voltage TEM with Monochromator at 60 kV

    NASA Astrophysics Data System (ADS)

    Morishita, S.; Mukai, M.; Sasaki, T.; Suenaga, K.; Sawada, H.

    2015-10-01

    We have developed a low-voltage electron microscope equipped with a monochromator and Delta-type Cs correctors, which shows atomic resolution at accelerating voltages of 60, 30 and 15 kV. In theory, resolution of TEM images at 60 kV is severely affected by chromatic aberration, which is proven by our calculations of contrast transfer functions and multi-slice image simulation taking chromatic aberration into account with experimental conditions. Experimentally, TEM images of gold nano-particles were observed with non-monochromated and monochromated electron sources at 60 kV. Detectable spatial frequency in the image with the monochromated source was higher than that with non- monochromated source. We have demonstrated that the TEM image resolution at the low- voltage is improved by using a monochromated electron source, which reduce the energy spread of the electron source.

  3. Self-correction of chromosomal abnormalities in human preimplantation embryos and embryonic stem cells.

    PubMed

    Bazrgar, Masood; Gourabi, Hamid; Valojerdi, Mojtaba Rezazadeh; Yazdi, Poopak Eftekhari; Baharvand, Hossein

    2013-09-01

    Aneuploidy is commonly seen in human preimplantation embryos, most particularly at the cleavage stage because of genome activation by third cell division. Aneuploid embryos have been used for the derivation of normal embryonic stem cell (ESC) lines and developmental modeling. This review addresses aneuploidies in human preimplantation embryos and human ESCs and the potential of self-correction of these aberrations. Diploid-aneuploid mosaicism is the most frequent abnormality observed; hence, embryos selected by preimplantation genetic diagnosis at the cleavage or blastocyst stage could be partly abnormal. Differentiation is known as the barrier for eliminating mosaic embryos by death and/or decreased division of abnormal cells. However, some mosaicisms, such as copy number variations could be compatible with live birth. Several reasons have been proposed for self-correction of aneuploidies during later stages of development, including primary misdiagnosis, allocation of the aneuploidy in the trophectoderm, cell growth advantage of diploid cells in mosaic embryos, lagging of aneuploid cell division, extrusion or duplication of an aneuploid chromosome, and the abundance of DNA repair gene products. Although more studies are needed to understand the mechanisms of self-correction as a rare phenomenon, most likely, it is related to overcoming mosaicism.

  4. Evaluating optical aberrations using fluorescent microspheres: methods, analysis, and corrective actions.

    PubMed

    Goodwin, Paul C

    2013-01-01

    Obtaining optimal performance from a microscopy system requires careful evaluation of the entire optics train of the imaging system. This evaluation starts with a fundamental evaluation of the optical components in the microscope. Concise and visual methods are provided for understanding the optical performance of the microscope as a system using subdiffraction fluorescent microspheres to evaluate both monochromatic and polychromatic aberrations. Further practical guides are given to troubleshooting optical problems and final comments are made on optimizing sample preparation.

  5. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  6. Pupil-phase optimization for extended-focus, aberration-corrected imaging systems

    NASA Astrophysics Data System (ADS)

    Prasad, Sudhakar; Pauca, V. Paul; Plemmons, Robert J.; Torgersen, Todd C.; van der Gracht, Joseph

    2004-10-01

    The insertion of a suitably designed phase plate in the pupil of an imaging system makes it possible to encode the depth dimension of an extended three-dimensional scene by means of an approximately shift-invariant PSF. The so-encoded image can then be deblurred digitally by standard image recovery algorithms to recoup the depth dependent detail of the original scene. A similar strategy can be adopted to compensate for certain monochromatic aberrations of the system. Here we consider two approaches to optimizing the design of the phase plate that are somewhat complementary - one based on Fisher information that attempts to reduce the sensitivity of the phase encoded image to misfocus and the other based on a minimax formulation of the sum of singular values of the system blurring matrix that attempts to maximize the resolution in the final image. Comparisons of these two optimization approaches are discussed. Our preliminary demonstration of the use of such pupil-phase engineering to successfully control system aberrations, particularly spherical aberration, is also presented.

  7. Correction of thermal gradient errors in stem thermocouple hygrometers.

    PubMed

    Michel, B E

    1979-01-01

    Stem thermocouple hygrometers were subjected to transient and stable thermal gradients while in contact with reference solutions of NaCl. Both dew point and psychrometric voltages were directly related to zero offset voltages, the latter reflecting the size of the thermal gradient. Although slopes were affected by absolute temperature, they were not affected by water potential. One hygrometer required a correction of 1.75 bars water potential per microvolt of zero offset, a value that was constant from 20 to 30 C.

  8. Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Robinson, Elise; Günhan Akarçay, H.; Frenz, Martin

    2015-06-01

    Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.

  9. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  10. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2013-07-21

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source's emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system's resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  11. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  12. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-07-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  13. Correcting lateral chromatic aberrations in non-monochromatic X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Falch, Ken Vidar; Detlefs, Carsten; Di Michiel, Marco; Snigireva, Irina; Snigirev, Anatoly; Mathiesen, Ragnvald H.

    2016-08-01

    Lateral chromatic aberration in microscopy based on refractive optics may be reduced significantly by adjustments to the illumination scheme. By taking advantage of a broadened bandwidth illumination, the proposed scheme could open for x-ray microscopy with spatial resolution in the range 150-200 nm at millisecond frame rates. The scheme is readily implemented and is achievable using only standard refractive x-ray lenses, which has the advantage of high efficiency. It also maximizes the transmission and removes the spatial filtering effects associated with absorption in x-ray lenses.

  14. A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; Browning, N; Gates , B

    2010-01-01

    Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C{sub 2}H{sub 4}){sub 2}(acac) (acac is CH{sub 3}COCHCOCH{sub 3}) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C{sub 2}H{sub 4}){sub 2}, formed by the dissociation of the acac ligand from Ir(C{sub 2}H{sub 4}){sub 2}(acac) and bonding of the Ir(C{sub 2}H{sub 4}){sub 2} species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO){sub 2} complexes on the MgO surface. The breadth of the {nu}{sub CO} bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

  15. Practical correction of a phase-aberrated laser beam using a triphenyldiamine-based photorefractive composite

    NASA Astrophysics Data System (ADS)

    Liang, Yichen; Winiarz, Jeffrey G.

    2017-03-01

    A photorefractive composite based on a triphenyldiamine (TPD) derivative was used to restore a severely phase-aberrated laser beam to a nearly aberration-free state. Here, a forward degenerate four-wave mixing geometry was employed for the elimination of phase distortions and its practical applicability in the transmission of optically encoded data is demonstrated. In addition, it is demonstrated that the experimental geometry is able to effectively restore dynamically updating images. Conventional two-beam coupling and degenerate four-wave mixing experiments were used to characterize the composite subject to the current experimental setup. The two-beam coupling net gain coefficient was 100 cm-1 with an applied external electric field of 70 V/µm. Internal and external diffraction efficiencies of 10 and 6%, respectively, were observed with a similar external electric field. Due to its superior charge-carrier mobility, the TPD-based composite exhibited a response time of 0.28 s, approximately five times faster than traditional PVK-based composites.

  16. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2015-10-01

    Two-photon excitation laser scanning microscopy has enabled the visualization of deep regions in a biospecimen. However, refractive-index mismatches in the optical path cause spherical aberrations that degrade spatial resolution and the fluorescence signal, especially during observation at deeper regions. Recently, we developed transmissive liquid-crystal devices for correcting spherical aberration without changing the basic design of the optical path in a conventional laser scanning microscope. In this study, the device was inserted in front of the objective lens and supplied with the appropriate voltage according to the observation depth. First, we evaluated the device by observing fluorescent beads in single- and two-photon excitation laser scanning microscopes. Using a 25× water-immersion objective lens with a numerical aperture of 1.1 and a sample with a refractive index of 1.38, the device recovered the spatial resolution and the fluorescence signal degraded within a depth of ±0.6 mm. Finally, we implemented the device for observation of a mouse brain slice in a two-photon excitation laser scanning microscope. An optical clearing reagent with a refractive index of 1.42 rendered the fixed mouse brain transparent. The device improved the spatial resolution and the yellow fluorescent protein signal within a depth of 0-0.54 mm.

  17. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell.

    PubMed

    Baudoin, Jean-Pierre; Jinschek, Joerg R; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; de Jonge, Niels

    2013-08-01

    Transmission electron microscopy (TEM) in combination with electron tomography is widely used to obtain nanometer scale three-dimensional (3D) structural information about biological samples. However, studies of whole eukaryotic cells are limited in resolution and/or contrast on account of the effect of chromatic aberration of the TEM objective lens on electrons that have been scattered inelastically in the specimen. As a result, 3D information is usually obtained from sections and not from whole cells. Here, we use chromatic aberration-corrected TEM to record bright-field TEM images of nanoparticles in a whole mount macrophage cell. Tilt series of images are used to generate electron tomograms, which are analyzed to assess the spatial resolution that can be achieved for different vertical positions in the specimen. The uptake of gold nanoparticles coated with low-density lipoprotein (LDL) is studied. The LDL is found to assemble in clusters. The clusters contain nanoparticles taken up on different days, which are joined without mixing their nanoparticle cargo.

  18. The Stanford Nanocharacterization Laboratory (SNL) and Recent Applications of an Aberration-Corrected Environmental Transmission Electron Microscope.

    PubMed

    Sinclair, Robert; Kempen, Paul Joseph; Chin, Richard; Koh, Ai Leen

    2014-05-01

    This article describes the establishment, over a period of ten years or so, of a multi-user, institution-wide facility for the characterization of materials and devices at the nano-scale. Emphasis is placed on the type of equipment that we have found to be most useful for our users, and the business strategy that maintains its operations. A central component of our facility is an aberration-corrected environmental transmission electron microscope and its application is summarized in the studies of plasmon energies of silver nanoparticles, the band gap of PbS quantum dots, atomic site occupancy near grain boundaries in yttria stabilized zirconia, the lithiation of silicon nanoparticles, in situ observations on carbon nanotube oxidation and the electron tomography of varicella zoster virus nucleocapsids.

  19. The Stanford Nanocharacterization Laboratory (SNL) and Recent Applications of an Aberration-Corrected Environmental Transmission Electron Microscope**

    PubMed Central

    Sinclair, Robert; Kempen, Paul Joseph; Chin, Richard; Koh, Ai Leen

    2014-01-01

    This article describes the establishment, over a period of ten years or so, of a multi-user, institution-wide facility for the characterization of materials and devices at the nano-scale. Emphasis is placed on the type of equipment that we have found to be most useful for our users, and the business strategy that maintains its operations. A central component of our facility is an aberration-corrected environmental transmission electron microscope and its application is summarized in the studies of plasmon energies of silver nanoparticles, the band gap of PbS quantum dots, atomic site occupancy near grain boundaries in yttria stabilized zirconia, the lithiation of silicon nanoparticles, in situ observations on carbon nanotube oxidation and the electron tomography of varicella zoster virus nucleocapsids. PMID:25364299

  20. Direct measurement of precipitate induced strain in an Al-Zn-Mg-Cu alloy with aberration corrected transmission electron microscopy.

    PubMed

    Ying, X R; Du, Y X; Song, M; Lu, N; Ye, H Q

    2016-11-01

    Precipitates and their associated strain fields significantly influence mechanical properties and, consequently, the industrial performance of aluminum alloys. In this work, we present a direct measurement of strains induced by η' and η precipitates in an Al-Zn-Mg-Cu alloy using aberration-corrected high-resolution transmission electron microscopy and quantitative strain analysis. The results demonstrate that the strain induced by precipitates in the Al-Zn-Mg-Cu alloy shows significant tensile strains perpendicular to the longitudinal direction of the precipitate discs on the side of the discs and along the longitudinal direction at both ends of the η' and η precipitates. This strain field can be described by an equivalent dislocation model, in which the lattice mismatch between the precipitate and the matrix is equivalent to a series of dislocation pairs along the precipitate/matrix interfaces.

  1. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-28

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  2. The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ramachandra, Ranjan; Demers, Hendrix; de Jonge, Niels

    2013-02-01

    The lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.

  3. Atomic resolution imaging of YAlO3: Ce in the chromatic and spherical aberration corrected PICO electron microscope.

    PubMed

    Jin, Lei; Barthel, Juri; Jia, Chun-Lin; Urban, Knut W

    2017-01-31

    The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.

  4. Letter: A method for the chromatic aberration correction of a laser time of-flight mass analyzer.

    PubMed

    Sysoeva, Elizaveta A; Sysoev, Alexander A

    2016-01-01

    The new ion-optical system of the laser time-of-flight (TOF) mass spectrometer on the basis of two tandem wedge-shape reflectors has been offered and implemented. A new method of correcting chromatic aberration by the ion energy was proposed that used a wire electrode unit with adjustable potentials. This unit allows one to adjust the local TOF of the ions in a narrow energy range ± (1-2)% within the total ion packet with an energy spread of ± 20%. The method reduces the duration of the ion packets by up to 1.5ns, which enables us to obtain the restriction of resolution at a level not worse than R ~ 10500 for a TOF ~35 µs. The aim of the project is to increase the separation of isobaric ions to improve the limit of detection of the laser TOF-MS for the analysis of high-purity samples.

  5. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    PubMed

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  6. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy

    PubMed Central

    von Diezmann, Alex; Lee, Maurice Y.; Lew, Matthew D.; Moerner, W. E.

    2016-01-01

    The localization of single fluorescent molecules enables the imaging of molecular structure and dynamics with subdiffraction precision and can be extended to three dimensions using point spread function (PSF) engineering. However, the nanoscale accuracy of localization throughout a 3D single-molecule microscope’s field of view has not yet been rigorously examined. By using regularly spaced subdiffraction apertures filled with fluorescent dyes, we reveal field-dependent aberrations as large as 50–100 nm and show that they can be corrected to less than 25 nm over an extended 3D focal volume. We demonstrate the applicability of this technique for two engineered PSFs, the double-helix PSF and the astigmatic PSF. We expect these results to be broadly applicable to 3D single-molecule tracking and superresolution methods demanding high accuracy. PMID:26973863

  7. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT.

    PubMed

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A

    2015-04-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 [Formula: see text]for a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 [Formula: see text]at a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue.

  8. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT

    PubMed Central

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-01-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 μmfor a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 μmat a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue. PMID:25908999

  9. Three-dimensional transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: A pilot human study with microbubble contrast enhancement

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on healthcare outcomes and costs. While clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well-suited to the task of examining blood flow dynamics in real-time and may allow for localization of a clot. A prototype bilateral 3D ultrasound imaging system utilizing two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in 5 healthy volunteers with Definity® microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3D color flow mode. The number of color flow voxels above a common threshold increased due to aberration correction in 5/5 subjects, with a mean increase of 33.9%. The percentage of large arteries visualized in 3D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. PMID:24239360

  10. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2014-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction.

  11. A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy.

    PubMed

    Fontanarosa, Davide; Pesente, Silvia; Pascoli, Francesco; Ermacora, Denis; Rumeileh, Imad Abu; Verhaegen, Frank

    2013-03-07

    Conventional ultrasound (US) devices use the time of flight (TOF) of reflected US pulses to calculate distances inside the scanned tissues and thus create images. The speed of sound (SOS) is assumed to be constant in all human soft tissues at a generally accepted average value of 1540 m s(-1). This assumption is a source of systematic errors up to several millimeters and of image distortion in quantitative US imaging. In this work, an extension of a method recently published by Fontanarosa et al (2011 Med. Phys. 38 2665-73) is presented: the aim is to correct SOS aberrations in three-dimensional (3D) US images in those cases where a spatially co-registered computerized tomography (CT) scan is also available; the algorithm is then applicable to a more general case where the lines of view (LOV) of the US device are not necessarily parallel and coplanar, thus allowing correction also for US transducers other than linear. The algorithm was applied on a multi-modality pelvic US phantom, scanned through three different liquid layers on top of the phantom with different SOS values; the results show that the correction restores a better match between the CT and the US images, reducing the differences to sub-millimeter agreement. Fifteen clinical cases of prostate cancer patients were also investigated: the SOS corrections of prostate centroids were on average +3.1 mm (max + 4.9 mm-min + 1.3 mm). This is in excellent agreement with reports in the literature on differences between measured prostate positions by US and other techniques, where often the discrepancy was attributed to other causes.

  12. A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Fontanarosa, Davide; Pesente, Silvia; Pascoli, Francesco; Ermacora, Denis; Abu Rumeileh, Imad; Verhaegen, Frank

    2013-03-01

    Conventional ultrasound (US) devices use the time of flight (TOF) of reflected US pulses to calculate distances inside the scanned tissues and thus create images. The speed of sound (SOS) is assumed to be constant in all human soft tissues at a generally accepted average value of 1540 m s-1. This assumption is a source of systematic errors up to several millimeters and of image distortion in quantitative US imaging. In this work, an extension of a method recently published by Fontanarosa et al (2011 Med. Phys. 38 2665-73) is presented: the aim is to correct SOS aberrations in three-dimensional (3D) US images in those cases where a spatially co-registered computerized tomography (CT) scan is also available; the algorithm is then applicable to a more general case where the lines of view (LOV) of the US device are not necessarily parallel and coplanar, thus allowing correction also for US transducers other than linear. The algorithm was applied on a multi-modality pelvic US phantom, scanned through three different liquid layers on top of the phantom with different SOS values; the results show that the correction restores a better match between the CT and the US images, reducing the differences to sub-millimeter agreement. Fifteen clinical cases of prostate cancer patients were also investigated: the SOS corrections of prostate centroids were on average +3.1 mm (max + 4.9 mm-min + 1.3 mm). This is in excellent agreement with reports in the literature on differences between measured prostate positions by US and other techniques, where often the discrepancy was attributed to other causes.

  13. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-12-01

    All aberrations produced inside a biospecimen can degrade the quality of a three-dimensional image in two-photon excitation laser scanning microscopy. Previously, we developed a transmissive liquid-crystal device to correct spherical aberrations that improved the image quality of a fixed-mouse-brain slice treated with an optical clearing reagent. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism. The motivation for this study is that asymmetric aberration can be induced by the shape of a biospecimen and/or by a complicated refractive-index distribution in a sample; this can considerably degrade optical performance even near the sample surface. The device's performance was evaluated by observing fluorescence beads. The device was inserted between the objective lens and microscope revolver and succeeded in improving the spatial resolution and fluorescence signal of a bead image that was originally degraded by asymmetric aberration. Finally, we implemented the device for observing a fixed whole mouse brain with a sloping surface shape and complicated internal refractive-index distribution. The correction with the device improved the spatial resolution and increased the fluorescence signal by ˜2.4×. The device can provide a simple approach to acquiring higher-quality images of biospecimens.

  14. Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-corrected Electron Microscope with 0.5 ? Information Limit

    SciTech Connect

    Kisielowski, Christian; Bischoff, Maarten; van Lin, Hans; Lazar, Sorin; Freitag, Bernhard; Knippels, Georg; Tiemeijer, Peter; van der Stam, Maarten; von Harrach, Sebastian; Stekelenburg, Michael; Haider, Maximilian; M�ller, Hans; Hartel, Peter; Kabius, Bernd; Miller, Dean; Petrov, Ivan; Olson, Eric; Donchev, Tomas; Kenik, Edward A; Lupini, Andrew R; Bentley, James; Pennycook, Stephen J; Minor, Andrew; Schmid, Andreas; Duden, Thomas; Radmilovic, Velimir; Ramasse, Quentin; Watanabe, Masashi; Stach, Eric; Denes, Peter; Dahmen, Ulrich

    2008-01-01

    The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Σ3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub- ngstrom resolution. These results mark an important step toward meeting the challenge of determining the 3D atomic-scale structure of nanomaterials.

  15. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    SciTech Connect

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-07-15

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  16. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  17. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  18. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  19. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    SciTech Connect

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new, higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.

  20. In vitro migratory aberrancies of mesenchymal stem cells derived from multiple myeloma patients only partially modulated by bortezomib

    PubMed Central

    Xu, Xinxin; Yang, Jiao; Tang, Yu; Li, Junxia; Zhu, Yan; Lu, Hua; Fei, Xiaoming

    2014-01-01

    Recent studies indicated that bone marrow mesenchymal stem cells (BM-MSCs) derived from multiple myeloma (MM) patients were different from those of normal subjects in a variety of aspects. However, it is largely unknown whether BM-MSCs derived from MM patients display any aberrant chemotactic migration. To this aim, we compared the chemotactic migration of BM-MSCs derived from MM patients with those from normal subjects. Our results showed that BM-MSCs derived from MM patients migrated more vigorously to myeloma cell line. Furthermore, proteasome inhibitor bortezomib was showed to suppress chemotactic migration of BM-MSCs whatever their origins. However, although the chemotactic migration of BM-MSCs derived from MM patients to myeloma cell line was more significantly suppressed by bortezomib treatment, migration to SDF-1 or FBS of BM-MSCs was less compromised. Both SDF-1 and TNF-α enhanced phosphorylation of iκ-Bα in BM-MSCs. Although bortezomib significantly inhibited the iκ-Bα phosphorylation by SDF-1, it had little effect on iκ-Bα phosphorylation by TNF-α. Collectively, our results suggested that aberrant chemotactic migration of BM-MSCs derived from MM patients and the possible migration-regulatory role of bortezomib treatment. PMID:25400750

  1. Deconvolution and chromatic aberration corrections in quantifying colocalization of a transcription factor in three-dimensional cellular space.

    PubMed

    Abraham, Thomas; Allan, Sarah E; Levings, Megan K

    2010-08-01

    with DNA molecules. In conclusion, our studies clearly demonstrate the importance of PSF measurements, chromatic aberration corrections followed by deconvolution in the accurate determination of transcription factors in the 3D cellular space. The reported imaging and processing methods can be a practical guide for quantitative fluorescence imaging of similar cellular systems and can provide a basis for further development.

  2. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  3. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.

    PubMed

    Nelayah, Jaysen; Nguyen, Nhat Tai; Alloyeau, Damien; Wang, Guillaume Yangshu; Ricolleau, Christian

    2014-09-07

    Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures.

  4. The cancer stem cell theory: is it correct?

    PubMed

    Yoo, Min-Hyuk; Hatfield, Dolph L

    2008-11-30

    The cancer stem cell hypothesis posits that tumor growth is driven by a rare subpopulation of cells, designated cancer stem cells (CSC). Studies supporting this theory are based in large part on xenotransplantation experiments wherein human cancer cells are grown in immunocompromised mice and only CSC, often constituting less than 1% of the malignancy, generate tumors. Herein, we show that all colonies derived from randomly chosen single cells in mouse lung and breast cancer cell lines form tumors following allografting histocompatible mice. Our study suggests that the majority of malignant cells rather than CSC can sustain tumors and that the cancer stem cell theory must be reevaluated.

  5. Stem cells and aberrant signaling of molecular systems in skin aging.

    PubMed

    Peng, Yan; Xuan, Min; Leung, Victor Y L; Cheng, Biao

    2015-01-01

    The skin is the body's largest organ and it is able to self-repair throughout an individual's life. With advanced age, skin is prone to degenerate in response to damage. Although cosmetic surgery has been widely adopted to rejuvinate skin, we are far from a clear understanding of the mechanisms responsible for skin aging. Recently, adult skin-resident stem/progenitor cells, growth arrest, senescence or apoptotic death and dysfunction caused by alterations in key signaling genes, such as Ras/Raf/MEK/ERK, PI3K/Akt-kinases, Wnt, p21 and p53, have been shown to play a vital role in skin regeneration. Simultaneously, enhanced telomere attrition, hormone exhaustion, oxidative stress, genetic events and ultraviolet radiation exposure that result in severe DNA damage, genomic instability and epigenetic mutations also contribute to skin aging. Therefore, cell replacement and targeting of the molecular systems found in skin hold great promise for controlling or even curing skin aging.

  6. Targeting aberrant expression of Notch-1 in ALDH(+) cancer stem cells in breast cancer.

    PubMed

    Pal, Deeksha; Kolluru, Venkatesh; Chandrasekaran, Balaji; Baby, Becca V; Aman, Masarath; Suman, Suman; Sirimulla, Suman; Sanders, Mary Ann; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2017-03-01

    We have previously reported that high aldehyde dehydrogenase (ALDH) enzyme activity in breast cancer cells results in breast cancer stem cell (BCSC) properties by upregualting Notch-1 and epithelial mesenchymal markers. This results in chemoresistance in breast cancer. Here, we examined the functional and clinical significance of ALDH expression by measuring the ALDH levels in breast cancer tissues by immunohistochemistry. There was a significantly higher ALDH expression in higher grade breast cancer tumor tissues (Grade- II and III) versus normal breast tissues. Injection of BCSC (ALDH(+) and CD44(+) /CD22(-) ) cells resulted in aggressive tumor growth in athymic mice versus ALDH(-) cells. The ALDH(+) and CD44(+) /CD22(-) tumors grow rapidly and are larger than ALDH(-) tumors which were slow growing and smaller. Molecularly, ALDH(+) tumors expressed higher expression of Notch-1 and EMT markers than ALDH(-) tumors. Oral administration of the naturally occurring Psoralidin (Pso, 25 mg/kg of body weight) significantly inhibited the growth in ALDH(+) and ALDH(-) tumors as well. Psoralidin inhibited Notch-1 mediated EMT activation in ALDH(+) and ALDH(-) tumors-this confirms our in vitro findings. Our results suggest that Notch-1 could be an attractive target and inhibition of Notch-1 by Psoralidin may prevent pathogenesis of breast cancer as well as metastasis. © 2016 Wiley Periodicals, Inc.

  7. Correction of Depth-Dependent Aberrations in 3D Single Molecule Localization and Super-resolution Microscopy

    PubMed Central

    McGorty, Ryan; Schnitzbauer, Joerg; Zhang, Wei; Huang, Bo

    2014-01-01

    Single molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive-index-mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here, we show a method to obtain accurate, depth dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 μm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane. PMID:24562125

  8. Genetic correction of stem cells in the treatment of inherited diseases and focus on xeroderma pigmentosum.

    PubMed

    Rouanet, Sophie; Warrick, Emilie; Gache, Yannick; Scarzello, Sabine; Avril, Marie-Françoise; Bernerd, Françoise; Magnaldo, Thierry

    2013-10-09

    Somatic stem cells ensure tissue renewal along life and healing of injuries. Their safe isolation, genetic manipulation ex vivo and reinfusion in patients suffering from life threatening immune deficiencies (for example, severe combined immunodeficiency (SCID)) have demonstrated the efficacy of ex vivo gene therapy. Similarly, adult epidermal stem cells have the capacity to renew epidermis, the fully differentiated, protective envelope of our body. Stable skin replacement of severely burned patients have proven life saving. Xeroderma pigmentosum (XP) is a devastating disease due to severe defects in the repair of mutagenic DNA lesions introduced upon exposure to solar radiations. Most patients die from the consequences of budding hundreds of skin cancers in the absence of photoprotection. We have developed a safe procedure of genetic correction of epidermal stem cells isolated from XP patients. Preclinical and safety assessments indicate successful correction of XP epidermal stem cells in the long term and their capacity to regenerate a normal skin with full capacities of DNA repair.

  9. Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides.

    PubMed

    Vetrini, Francesco; Tammaro, Roberta; Bondanza, Sergio; Surace, Enrico M; Auricchio, Alberto; De Luca, Michele; Ballabio, Andrea; Marigo, Valeria

    2006-05-01

    An intronic point mutation was identified in the ocular albinism type 1 (OA1) gene (HUGO symbol, GPR143) in a family with the X-linked form of ocular albinism. Interestingly, the mutation creates a new acceptor splice site in intron 7 of the OA1 gene. In addition to low levels of normally spliced mRNA product of the OA1 gene, the patient samples contained also an aberrantly spliced mRNA with a 165 bp fragment of intron 7 (from position +750 to +914) inserted between exons 7 and 8. The abnormal transcript contained a premature stop codon and was unstable, as revealed by Northern blot analysis. We defined that mutation NC_000023.8:g.25288G>A generated a consensus binding motif for the splicing factor enhancer ASF/SF2, which most likely favored transcription of the aberrant mRNA. Furthermore, it activated a cryptic donor-splice site causing the inclusion between exons 7 and 8 of the 165 bp intronic fragment. Thus, the aberrant splicing is most likely explained by the generation of a de novo splicing enhancer motif. Finally, to rescue OA1 expression in the patient's melanocytes, we designed an antisense morpholino modified oligonucleotide complementary to the mutant sequence. The morpholino oligonucleotide (MO) was able to rescue OA1 expression and restore the OA1 protein level in the patient's melanocytes through skipping of the aberrant inclusion. The use of MO demonstrated that the lack of OA1 was caused by the generation of a new splice site. Furthermore, this technique will lead to new approaches to correct splice site mutations that cause human diseases.

  10. Correction of the sickle cell mutation in embryonic stem cells.

    PubMed

    Chang, Judy C; Ye, Lin; Kan, Yuet Wai

    2006-01-24

    Sickle cell anemia is one of the most common genetic diseases worldwide. Patients often suffer from anemia, painful crises, infections, strokes, and cardiopulmonary complications. Although current management has improved the quality of life and survival of patients, cure can be achieved only with bone marrow transplantation when histocompatible donors are available. The ES cell technology suggests that a therapeutic cloning approach may be feasible for treatment of this disease. Using a transgenic/knockout sickle cell anemia mouse model, which harbors 240 kb of human DNA sequences containing the beta(S)-globin gene, we prepared ES cells from blastocysts that had the sickle cells anemia genotype and carried out homologous recombination with DNA constructs that contained the beta(A)-globin gene. We obtained ES cells in which the beta(S) was corrected to the beta(A) sequence. Hematopoietic cells differentiated from these ES cells produced both hemoglobin A and hemoglobin S. This approach can be applied to human ES cells to correct the sickle mutation as well as beta-thalassemia mutations.

  11. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    PubMed Central

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  12. Preclinical corrective gene transfer in xeroderma pigmentosum human skin stem cells.

    PubMed

    Warrick, Emilie; Garcia, Marta; Chagnoleau, Corinne; Chevallier, Odile; Bergoglio, Valérie; Sartori, Daniela; Mavilio, Fulvio; Angulo, Jaime F; Avril, Marie-Françoise; Sarasin, Alain; Larcher, Fernando; Del Rio, Marcela; Bernerd, Françoise; Magnaldo, Thierry

    2012-04-01

    Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (>10(40) cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients.

  13. Preclinical Corrective Gene Transfer in Xeroderma Pigmentosum Human Skin Stem Cells

    PubMed Central

    Warrick, Emilie; Garcia, Marta; Chagnoleau, Corinne; Chevallier, Odile; Bergoglio, Valérie; Sartori, Daniela; Mavilio, Fulvio; Angulo, Jaime F; Avril, Marie-Françoise; Sarasin, Alain; Larcher, Fernando; Del Rio, Marcela; Bernerd, Françoise; Magnaldo, Thierry

    2012-01-01

    Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (>1040 cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients. PMID:22068429

  14. Stem cell therapy and tissue engineering for correction of congenital heart disease

    PubMed Central

    Avolio, Elisa; Caputo, Massimo; Madeddu, Paolo

    2015-01-01

    This review article reports on the new field of stem cell therapy and tissue engineering and its potential on the management of congenital heart disease. To date, stem cell therapy has mainly focused on treatment of ischemic heart disease and heart failure, with initial indication of safety and mild-to-moderate efficacy. Preclinical studies and initial clinical trials suggest that the approach could be uniquely suited for the correction of congenital defects of the heart. The basic concept is to create living material made by cellularized grafts that, once implanted into the heart, grows and remodels in parallel with the recipient organ. This would make a substantial improvement in current clinical management, which often requires repeated surgical corrections for failure of implanted grafts. Different types of stem cells have been considered and the identification of specific cardiac stem cells within the heterogeneous population of mesenchymal and stromal cells offers opportunities for de novo cardiomyogenesis. In addition, endothelial cells and vascular progenitors, including cells with pericyte characteristics, may be necessary to generate efficiently perfused grafts. The implementation of current surgical grafts by stem cell engineering could address the unmet clinical needs of patients with congenital heart defects. PMID:26176009

  15. Structural Channels and Atomic-Cluster Insertion in CsxBi4Te6 (1 ≤ x ≤ 1.25) As Observed by Aberration-Corrected Scanning Transmission Electron Microscopy.

    PubMed

    Zhang, Ruixin; Yang, Huaixin; Guo, Cong; Tian, Huanfang; Shi, Honglong; Chen, Genfu; Li, Jianqi

    2016-12-19

    Microstructural analyses based on aberration-corrected scanning transmission electron microscopy (STEM) observations demonstrate that low-dimensional CsxBi4Te6 materials, known to be a novel thermoelectric and superconducting system, contain notable structural channels that go directly along the b axis, which can be partially filled by atom clusters depending on the thermal treatment process. We successfully prepared two series of CsxBi4Te6 single-crystalline samples using two different sintering processes. The CsxBi4Te6 samples prepared using an air-quenching method show superconductivity at approximately 4 K, while the CsxBi4Te6 with the same nominal compositions prepared by slowly cooling are nonsuperconductors. Moreover, atomic structural investigations of typical samples reveal that the structural channels are often empty in superconducting materials; thus, we can represent the superconducting phase as Cs1-yBi4Te6 with considering the point defects in the Cs layers. In addition, the channels in the nonsuperconducting crystals are commonly partially occupied by triplet Bi clusters. Moreover, the average structures for these two phases are also different in their monoclinic angles (β), which are estimated to be 102.3° for superconductors and 100.5° for nonsuperconductors.

  16. Correction of sickle cell disease by homologous recombination in embryonic stem cells.

    PubMed

    Wu, Li-Chen; Sun, Chiao-Wang; Ryan, Thomas M; Pawlik, Kevin M; Ren, Jinxiang; Townes, Tim M

    2006-08-15

    Previous studies have demonstrated that sickle cell disease (SCD) can be corrected in mouse models by transduction of hematopoietic stem cells with lentiviral vectors containing antisickling globin genes followed by transplantation of these cells into syngeneic recipients. Although self-inactivating (SIN) lentiviral vectors with or without insulator elements should provide a safe and effective treatment in humans, some concerns about insertional mutagenesis persist. An ideal correction would involve replacement of the sickle globin gene (beta(S)) with a normal copy of the gene (beta(A)). We recently derived embryonic stem (ES) cells from a novel knock-in mouse model of SCD and tested a protocol for correcting the sickle mutation by homologous recombination. In this paper, we demonstrate the replacement of the human beta(S)-globin gene with a human beta(A)-globin gene and the derivation of mice from these cells. The animals produce high levels of normal human hemoglobin (HbA) and the pathology associated with SCD is corrected. Hematologic values are restored to normal levels and organ pathology is ameliorated. These experiments provide a foundation for similar studies in human ES cells derived from sickle cell patients. Although efficient methods for production of human ES cells by somatic nuclear transfer must be developed, the data in this paper demonstrate that sickle cell disease can be corrected without the risk of insertional mutagenesis.

  17. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.

    PubMed

    Corti, Stefania; Nizzardo, Monica; Simone, Chiara; Falcone, Marianna; Nardini, Martina; Ronchi, Dario; Donadoni, Chiara; Salani, Sabrina; Riboldi, Giulietta; Magri, Francesca; Menozzi, Giorgia; Bonaglia, Clara; Rizzo, Federica; Bresolin, Nereo; Comi, Giacomo P

    2012-12-19

    Spinal muscular atrophy (SMA) is among the most common genetic neurological diseases that cause infant mortality. Induced pluripotent stem cells (iPSCs) generated from skin fibroblasts from SMA patients and genetically corrected have been proposed to be useful for autologous cell therapy. We generated iPSCs from SMA patients (SMA-iPSCs) using nonviral, nonintegrating episomal vectors and used a targeted gene correction approach based on single-stranded oligonucleotides to convert the survival motor neuron 2 (SMN2) gene into an SMN1-like gene. Corrected iPSC lines contained no exogenous sequences. Motor neurons formed by differentiation of uncorrected SMA-iPSCs reproduced disease-specific features. These features were ameliorated in motor neurons derived from genetically corrected SMA-iPSCs. The different gene splicing profile in SMA-iPSC motor neurons was rescued after genetic correction. The transplantation of corrected motor neurons derived from SMA-iPSCs into an SMA mouse model extended the life span of the animals and improved the disease phenotype. These results suggest that generating genetically corrected SMA-iPSCs and differentiating them into motor neurons may provide a source of motor neurons for therapeutic transplantation for SMA.

  18. Algorithms and applications of aberration correction and American standard-based digital evaluation in surface defects evaluating system

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.

  19. Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies

    PubMed Central

    Saric, Ana; Andreau, Karine; Armand, Anne-Sophie; Møller, Ian M.; Petit, Patrice X.

    2016-01-01

    Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic

  20. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling

    PubMed Central

    Tang, Yi; Kitisin, Krit; Jogunoori, Wilma; Li, Cuiling; Deng, Chu-Xia; Mueller, Susette C.; Ressom, Habtom W.; Rashid, Asif; He, Aiwu Ruth; Mendelson, Jonathan S.; Jessup, John M.; Shetty, Kirti; Zasloff, Michael; Mishra, Bibhuti; Reddy, E. P.; Johnson, Lynt; Mishra, Lopa

    2008-01-01

    Cancer stem cells (CSCs) are critical for the initiation, propagation, and treatment resistance of multiple cancers. Yet functional interactions between specific signaling pathways in solid organ “cancer stem cells,” such as those of the liver, remain elusive. We report that in regenerating human liver, two to four cells per 30,000–50,000 cells express stem cell proteins Stat3, Oct4, and Nanog, along with the prodifferentiation proteins TGF-β-receptor type II (TBRII) and embryonic liver fodrin (ELF). Examination of human hepatocellular cancer (HCC) reveals cells that label with stem cell markers that have unexpectedly lost TBRII and ELF. elf+/− mice spontaneously develop HCC; expression analysis of these tumors highlighted the marked activation of the genes involved in the IL-6 signaling pathway, including IL-6 and Stat3, suggesting that HCC could arise from an IL-6-driven transformed stem cell with inactivated TGF-β signaling. Similarly, suppression of IL-6 signaling, through the generation of mouse knockouts involving a positive regulator of IL-6, Inter-alpha-trypsin inhibitor-heavy chain-4 (ITIH4), resulted in reduction in HCC in elf+/− mice. This study reveals an unexpected functional link between IL-6, a major stem cell signaling pathway, and the TGF-β signaling pathway in the modulation of mammalian HCC, a lethal cancer of the foregut. These experiments suggest an important therapeutic role for targeting IL-6 in HCCs lacking a functional TGF-β pathway. PMID:18263735

  1. Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes

    PubMed Central

    Naphade, Swati; Sharma, Jay; Chevronnay, Héloïse P. Gaide; Shook, Michael A.; Yeagy, Brian A.; Rocca, Celine J.; Ur, Sarah N.; Lau, Athena J.; Courtoy, Pierre J.; Cherqui, Stephanie

    2014-01-01

    Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multi-systemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon co-culture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins. PMID:25186209

  2. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes.

    PubMed

    Naphade, Swati; Sharma, Jay; Gaide Chevronnay, Héloïse P; Shook, Michael A; Yeagy, Brian A; Rocca, Celine J; Ur, Sarah N; Lau, Athena J; Courtoy, Pierre J; Cherqui, Stephanie

    2015-01-01

    Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.

  3. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  4. Corrective transduction of human epidermal stem cells in laminin-5-dependent junctional epidermolysis bullosa.

    PubMed

    Dellambra, E; Vailly, J; Pellegrini, G; Bondanza, S; Golisano, O; Macchia, C; Zambruno, G; Meneguzzi, G; De Luca, M

    1998-06-10

    Laminin-5 is composed of three distinct polypeptides, alpha3, beta3, and gamma2, which are encoded by three different genes, LAMA3, LAMB3, and LAMC2, respectively. We have isolated epidermal keratinocytes from a patient presenting with a lethal form of junctional epidermolysis bullosa characterized by a homozygous mutation of the LAMB3 gene, which led to complete absence of the beta3 polypeptide. In vitro, beta3-null keratinocytes were unable to synthesize laminin-5 and to assemble hemidesmosomes, maintained the impairment of their adhesive properties, and displayed a decrease of their colony-forming ability. A retroviral construct expressing a human beta3 cDNA was used to transduce primary beta3-null keratinocytes. Clonogenic beta3-null keratinocytes were transduced with an efficiency of 100%. Beta3-transduced keratinocytes were able to synthesize and secrete mature heterotrimeric laminin-5. Gene correction fully restored the keratinocyte adhesion machinery, including the capacity of proper hemidesmosomal assembly, and prevented the loss of the colony-forming ability, suggesting a direct link between adhesion to laminin-5 and keratinocyte proliferative capacity. Clonal analysis demonstrated that holoclones expressed the transgene permanently, suggesting stable correction of epidermal stem cells. Because cultured keratinocytes are used routinely to make autologous grafts for patients suffering from large skin or mucosal defects, the full phenotypic reversion of primary human epidermal stem cells defective for a structural protein opens new perspectives in the long-term treatment of genodermatoses.

  5. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

    PubMed

    Hoban, Megan D; Cost, Gregory J; Mendel, Matthew C; Romero, Zulema; Kaufman, Michael L; Joglekar, Alok V; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R; Cooper, Aaron R; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E; Zhang, Lei; Rebar, Edward J; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D; Holmes, Michael C; Reik, Andreas; Hollis, Roger P; Kohn, Donald B

    2015-04-23

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.

  6. Quantitative ADF STEM: acquisition, analysis and interpretation

    NASA Astrophysics Data System (ADS)

    Jones, L.

    2016-01-01

    Quantitative annular dark-field in the scanning transmission electron microscope (ADF STEM), where image intensities are used to provide composition and thickness measurements, has enjoyed a renaissance during the last decade. Now in a post aberration-correction era many aspects of the technique are being revisited. Here the recent progress and emerging best-practice for such aberration corrected quantitative ADF STEM is discussed including issues relating to proper acquisition of experimental data and its calibration, approaches for data analysis, the utility of such data, its interpretation and limitations.

  7. Elevated TIM3+ hematopoietic stem cells in untreated myelodysplastic syndrome displayed aberrant differentiation, overproliferation and decreased apoptosis.

    PubMed

    Tao, Jing-lian; Li, Li-juan; Fu, Rong; Wang, Hua-quan; Jiang, Hui-juan; Yue, Lan-zhu; Zhang, Wei; Liu, Hui; Ruan, Er-bao; Qu, Wen; Wang, Guo-jin; Wang, Xiao-ming; Wu, Yu-hong; Liu, Hong; Song, Jia; Guan, Jing; Xing, Li-min; Shao, Zong-hong

    2014-06-01

    TIM3, as a negative regulator of anti-tumor immunity, is highly expressed on LSCs, but not on normal HSCs. TIM3 on HSCs in MDS patients has not been clarified. Here, both the percentage of TIM3 on HSCs and the MFI of TIM3+ HSCs were higher in untreated MDS than control and were closed to AML, and excessive TIM3+ HSCs was closely related to clinical parameters: WPSS score, karyotype analysis, morphologic blasts, the number of cytopenia involving hematopoietic lineages, anemia and granulocytopenia. TIM3+ HSCs expressed lower CD11b, TpoR, EpoR, G-CSFR and Annexin V, and higher CD71 and GATA2. TIM3+ HSCs displayed aberrant differentiation, overproliferation and decreased apoptosis. TIM3 might be a promising marker for identifying malignant clone cells in MDS and a candidate for targeted therapy.

  8. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  9. Holographically Correcting Synthetic Aperture Aberrations.

    DTIC Science & Technology

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  10. Cosmic Aberration, and Its Correction

    ERIC Educational Resources Information Center

    Dixon, Robert

    2011-01-01

    Because the speed of light is finite, the further we look into space, the earlier we see. A galaxy seen 50 million light years away is 50 million years ago. How far out in space and how far back in time can we expect to see, and what should it look like? To a first approximation and ignoring local galactic interactions, the Hubble model of the…

  11. A novel 3D absorption correction method for quantitative EDX-STEM tomography.

    PubMed

    Burdet, Pierre; Saghi, Z; Filippin, A N; Borrás, A; Midgley, P A

    2016-01-01

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption.

  12. Pitfalls and fallacies interfering with correct identification of embryonic stem cells implanted into the brain after experimental traumatic injury.

    PubMed

    Molcanyi, Marek; Bosche, Bert; Kraitsy, Klaus; Patz, Silke; Zivcak, Jozef; Riess, Peter; El Majdoub, Faycal; Hescheler, Jürgen; Goldbrunner, Roland; Schäfer, Ute

    2013-04-30

    Cell-therapy was proposed to be a promising tool in case of death or impairment of specific cell types. Correct identification of implanted cells became crucial when evaluating the success of transplantation therapy. Various methods of cell labeling have been employed in previously published studies. The use of intrinsic signaling of green fluorescent protein (GFP) has led to a well known controversy in the field of cardiovascular research. We encountered similar methodological pitfalls after transplantation of GFP-transfected embryonic stem cells into rat brains following traumatic brain injury (TBI). As the identification of implanted graft by intrinsic autofluorescence failed, anti-GFP labeling coupled to fluorescent and conventional antibodies was needed to visualize the implanted cells. Furthermore, different cell types with strong intrinsic autofluorescence were found at the sites of injury and transplantation, thus mimicking the implanted stem cells. GFP-positive stem cells were correctly localized, using advanced histological techniques. The activation of microglia/macrophages, accompanying the transplantation post TBI, was shown to be a significant source of artefacts, interfering with correct identification of implanted stem cells. Dependent on the strategy of stem cell tracking, the phagocytosis of implanted cells as observed in this study, might also impede the interpretation of results. Critical appraisal of previously published data as well as a review of different histological techniques provide tools for a more accurate identification of transplanted stem cells.

  13. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells

    PubMed Central

    Yusa, Kosuke; Rashid, S. Tamir; Strick-Marchand, Helene; Varela, Ignacio; Liu, Pei-Qi; Paschon, David E.; Miranda, Elena; Ordóñez, Adriana; Hannan, Nick; Rouhani, Foad Jafari; Darche, Sylvie; Alexander, Graeme; Marciniak, Stefan J.; Fusaki, Noemi; Hasegawa, Mamoru; Holmes, Michael C.; Di Santo, James P.; Lomas, David A.; Bradley, Allan; Vallier, Ludovic

    2011-01-01

    Human induced pluripotent stem cells (hIPSCs) represent a unique opportunity for regenerative medicine since they offer the prospect of generating unlimited quantities of cells for autologous transplantation as a novel treatment for a broad range of disorders1,2,3,4. However, the use of hIPSCs in the context of genetically inherited human disease will require correction of disease-causing mutations in a manner that is fully compatible with clinical applications3,5. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome6. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of hIPSCs. Here, we show that a combination of zinc finger nucleases (ZFNs)7 and piggyBac8,9 technology in hIPSCs can achieve bi-allelic correction of a point mutation (Glu342Lys) in the α1-antitrypsin (A1AT, also called SERPINA1) gene that is responsible for α1-antitrypsin deficiency (A1ATD). Genetic correction of hIPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle for the potential of combining hIPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies. PMID:21993621

  14. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.

    PubMed

    Aiuti, Alessandro; Slavin, Shimon; Aker, Memet; Ficara, Francesca; Deola, Sara; Mortellaro, Alessandra; Morecki, Shoshana; Andolfi, Grazia; Tabucchi, Antonella; Carlucci, Filippo; Marinello, Enrico; Cattaneo, Federica; Vai, Sergio; Servida, Paolo; Miniero, Roberto; Roncarolo, Maria Grazia; Bordignon, Claudio

    2002-06-28

    Hematopoietic stem cell (HSC) gene therapy for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) has shown limited clinical efficacy because of the small proportion of engrafted genetically corrected HSCs. We describe an improved protocol for gene transfer into HSCs associated with nonmyeloablative conditioning. This protocol was used in two patients for whom enzyme replacement therapy was not available, which allowed the effect of gene therapy alone to be evaluated. Sustained engraftment of engineered HSCs with differentiation into multiple lineages resulted in increased lymphocyte counts, improved immune functions (including antigen-specific responses), and lower toxic metabolites. Both patients are currently at home and clinically well, with normal growth and development. These results indicate the safety and efficacy of HSC gene therapy combined with nonmyeloablative conditioning for the treatment of SCID.

  15. Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction

    NASA Astrophysics Data System (ADS)

    Sharp, J. H.; Barnard, J. S.; Kaneko, K.; Higashida, K.; Midgley, P. A.

    2008-08-01

    After previous work producing a successful 3D tomographic reconstruction of dislocations in GaN from conventional weak-beam dark-field (WBDF) images, we have reconstructed a cascade of dislocations in deformed and annealed silicon to a comparable standard using the more experimentally straightforward technique of STEM annular dark-field imaging (STEM ADF). In this mode, image contrast was much more consistent over the specimen tilt range than in conventional weak-beam dark-field imaging. Automatic acquisition software could thus restore the correct dislocation array to the field of view at each tilt angle, though manual focusing was still required. Reconstruction was carried out by sequential iterative reconstruction technique using FEI's Inspect3D software. Dislocations were distributed non-uniformly along cascades, with sparse areas between denser clumps in which individual dislocations of in-plane image width 24 nm could be distinguished in images and reconstruction. Denser areas showed more complicated stacking-fault contrast, hampering tomographic reconstruction. The general three-dimensional form of the denser areas was reproduced well, showing the dislocation array to be planar and not parallel to the foil surfaces.

  16. Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells.

    PubMed

    Fong, Helen; Wang, Chengzhong; Knoferle, Johanna; Walker, David; Balestra, Maureen E; Tong, Leslie M; Leung, Laura; Ring, Karen L; Seeley, William W; Karydas, Anna; Kshirsagar, Mihir A; Boxer, Adam L; Kosik, Kenneth S; Miller, Bruce L; Huang, Yadong

    2013-01-01

    Tauopathies represent a group of neurodegenerative disorders characterized by the accumulation of pathological TAU protein in brains. We report a human neuronal model of tauopathy derived from induced pluripotent stem cells (iPSCs) carrying a TAU-A152T mutation. Using zinc-finger nuclease-mediated gene editing, we generated two isogenic iPSC lines: one with the mutation corrected, and another with the homozygous mutation engineered. The A152T mutation increased TAU fragmentation and phosphorylation, leading to neurodegeneration and especially axonal degeneration. These cellular phenotypes were consistent with those observed in a patient with TAU-A152T. Upon mutation correction, normal neuronal and axonal morphologies were restored, accompanied by decreases in TAU fragmentation and phosphorylation, whereas the severity of tauopathy was intensified in neurons with the homozygous mutation. These isogenic TAU-iPSC lines represent a critical advancement toward the accurate modeling and mechanistic study of tauopathies with human neurons and will be invaluable for drug-screening efforts and future cell-based therapies.

  17. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype

    PubMed Central

    Su, Y-J; Chang, Y-W; Lin, W-H; Liang, C-L; Lee, J-L

    2015-01-01

    Several studies suggest that Wnt signaling contributes to reprogramming and maintenance of cancer stem cell (CSC) states activated by loss of membranous E-cadherin expression. However, E-cadherin's exact role in Wnt/β-catenin-mediated promotion of the CSC phenotype remains unclear. Recently, a significant positive correlation has been observed between the expression of nuclear (an aberrant nuclear localization) E-cadherin and β-catenin in gastric and colorectal carcinomas. Here we conducted a series of in-vitro and in-vivo studies to show that the β-catenin/TCF4 interaction was abolished by E-cadherin and was correlated with its nuclear localization, and consequently decreased β-catenin/TCF4 transcriptional activity. Nuclear E-cadherin was a negative regulator of Wnt/β-Catenin-elicited promotion of the CSC phenotype. Using immunohistochemistry on lung cancer tissue microarrays, we found that changes in subcellular location of E-cadherin may be described by tumor grade and stage, suggesting cellular redistribution during lung tumorigenesis. Furthermore, nuclear E-cadherin expression was more significantly inversely correlated with CD133 (a lung CSC marker) expression (P<0.005) than total E-cadherin expression (P<0.05), suggesting that lung cancer as defined by nuclear E-cadherinLow/nuclear β-cateninHigh/CD133High biomarkers has superior prognostic value over total E-cadherinLow/nuclear β-cateninHigh/CD133High. PMID:26075748

  18. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  19. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.

    PubMed

    Wu, Guangming; Liu, Na; Rittelmeyer, Ina; Sharma, Amar Deep; Sgodda, Malte; Zaehres, Holm; Bleidissel, Martina; Greber, Boris; Gentile, Luca; Han, Dong Wook; Rudolph, Cornelia; Steinemann, Doris; Schambach, Axel; Ott, Michael; Schöler, Hans R; Cantz, Tobias

    2011-07-01

    Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.

  20. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning.

  1. EFFICIENT DRUG SCREENING AND GENE CORRECTION FOR TREATING LIVER DISEASE USING PATIENT-SPECIFIC STEM CELLS

    PubMed Central

    Choi, Su Mi; Kim, Yonghak; Shim, Joong Sup; Park, Joon Tae; Wang, Rui-Hong; Leach, Steven D; Liu, Jun O.; Deng, Chu-Xia; Ye, Zhaohui; Jang, Yoon-Young

    2013-01-01

    Patient-specific induced pluripotent stem cells (iPSCs) represent a potential source for developing novel drugand cell- therapies. Although increasing numbers of disease-specific iPSCs have been generated, there has been limited progress in iPSC-based drug screening/discovery for liver diseases, and the low gene targeting efficiency in human iPSCs warrants further improvement. Using iPSC lines from patients with alpha-1 antitrypsin (AAT) deficiency, for which there is currently no drug- or gene- therapy available, we established a platform to discover new drug candidates and to correct disease-causing mutation with a high efficiency. A high-throughput format screening assay based on our hepatic differentiation protocol was implemented to facilitate automated quantification of cellular AAT accumulation using a 96-well immunofluorescence reader. To expedite the eventual application of lead compounds to patients, we conducted drug screening utilizing our established library of clinical compounds, the Johns Hopkins Drug Library, with extensive safety profiles. Through a blind large-scale drug screening, five clinical drugs were identified to reduce AAT accumulation in diverse patient iPSC-derived hepatocyte-like cells. In addition, using the recently developed transcription activator-like effector nuclease (TALEN) technology, we achieved high gene targeting efficiency in AAT-deficiency patient iPSCs with 25–33% of the clones demonstrating simultaneous targeting at both diseased alleles. The hepatocyte-like cells derived from the gene-corrected iPSCs were functional without the mutant AAT accumulation. This highly efficient and cost-effective targeting technology will broadly benefit both basic and translational applications. Conclusions: Our results demonstrated the feasibility of effective large-scale drug screening using an iPSC-based disease model and highly robust gene targeting in human iPSCs; both of which are critical for translating the iPSC technology into

  2. Successful correction of murine sickle cell disease with reduced stem cell requirements reinforced by fractionated marrow infusions.

    PubMed

    Felfly, Hady; Trudel, Marie

    2010-02-01

    Minimal criteria requirements of stem cell replacement, conditioning regimen and modalities of infusion essential for cure of sickle cell disease (SCD) by bone marrow(BM)/stem cell transplantation or gene therapy must be established prior to clinical trials. The threshold of normal BM/stem cells for therapeutic correction of this red blood cell disorder was evaluated in the SAD murine SCD model from peripheral donor white blood cells. From 11 groups of stable chimeric SAD mice (5-92%) analyzed over approximately 2 years, mice with approximately 16% normal donor stem cells showed improvement of haematological and erythroid responses. Mice in the 26% chimeric group and above demonstrated substantial amelioration of organ pathologies with generalized decreased iron deposits, fibrosis and reached normal lifespan. Subsequently, the minimal myelosuppression concurrently with number and timing of infusions and number of BM cells was determined to reach therapeutic threshold in SAD mice. Higher myelosuppression (2 Gy vs. 1 Gy) and cell number in single infusion led to increased chimerism. Importantly, administration of three-equivalent cell subdoses within 28 h of mild myelosuppression resulted in 100% recipient engraftment at therapeutic levels. These studies established the long-term therapeutic chimeric threshold of normal white blood cells at approximately 26% and determined the minimal fractionated BM/stem cell doses concomitant with mild myelosuppression for significant correction of SCD in SAD mice.

  3. Bilateral Symmetry before and Six Months after Aberration-Free™ Correction with the SCHWIND AMARIS TotalTech Laser: Clinical Outcomes

    PubMed Central

    Arbelaez, Maria Clara; Vidal, Camila; Arba-Mosquera, Samuel

    2010-01-01

    Purpose To compare the preoperative and postoperative bilateral symmetry between OD and OS eyes that have undergone femto-LASIK using the Ziemer LDV femtosecond laser system, the SCHWIND AMARIS Excimer Laser and the Aberrationfree™ profiles implemented in the SCHWIND Custom Ablation Manager software. Methods A total of 25 LASIK patients were bilaterally evaluated at the six-month follow-up visit. In all cases standard examinations, pre- and postoperative analysis with corneal wavefront topography (OPTIKON Scout) were performed. Aberration-free™ aspheric treatments were devised using the Custom Ablation Manager software and ablations were performed by means of the SCHWIND AMARIS flying-spot excimer laser system (both SCHWIND eyetech- solutions). In all cases LASIK flaps were created using an LDV femtosecond laser (Ziemer Group). The OD/OS bilateral symmetry was evaluated in terms of corneal wavefront aberration. Results Preoperatively, 11 Zernike terms showed significant bilateral (OS-vs.-OD) symmetry, and only 6 Zernike terms were significantly different. Overall, 23 out of the 25 patients showed significant bilateral symmetry, and only 2 out of 25 patients showed significant differences. None of the aberration metrics changed from pre- to postoperative values by a clinically relevant amount. At the 6-month postoperative visit, 12 Zernike terms showed significant symmetry, and 8 terms were significantly different. Overall, 22 out of 25 patients showed significant bilateral symmetry (OS vs. OD), and only 3 out of 25 patients showed significant differences. Also, this postoperative examination revealed that 6 Zernike terms lost significant OS-vs.-OD symmetry, but 4 Zernike terms gained significant symmetry. Finally, 4 patients lost significant bilaterality, and 2 patients gained significant bilaterality: bilateral symmetry between eyes was better maintained in those patients with a clear preoperative bilateral symmetry. Conclusions Aberration-Free Treatments with

  4. Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images

    PubMed Central

    Haponen, Markus; Rasku, Jyrki

    2016-01-01

    The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC) colony images can be classified using error-correcting output codes (ECOC). Our image dataset includes hiPSC colony images from three classes (bad, semigood, and good) which makes our classification task a multiclass problem. ECOC is a general framework to model multiclass classification problems. We focus on four different coding designs of ECOC and apply to each one of them k-Nearest Neighbor (k-NN) searching, naïve Bayes, classification tree, and discriminant analysis variants classifiers. We use Scaled Invariant Feature Transformation (SIFT) based features in classification. The best accuracy (62.4%) is obtained with ternary complete ECOC coding design and k-NN classifier (standardized Euclidean distance measure and inverse weighting). The best result is comparable with our earlier research. The quality identification of hiPSC colony images is an essential problem to be solved before hiPSCs can be used in practice in large-scale. ECOC methods examined are promising techniques for solving this challenging problem. PMID:27847810

  5. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells

    PubMed Central

    Biffi, Alessandra; De Palma, Michele; Quattrini, Angelo; Del Carro, Ubaldo; Amadio, Stefano; Visigalli, Ilaria; Sessa, Maria; Fasano, Stefania; Brambilla, Riccardo; Marchesini, Sergio; Bordignon, Claudio; Naldini, Luigi

    2004-01-01

    Gene-based delivery can establish a sustained supply of therapeutic proteins within the nervous system. For diseases characterized by extensive CNS and peripheral nervous system (PNS) involvement, widespread distribution of the exogenous gene may be required, a challenge to in vivo gene transfer strategies. Here, using lentiviral vectors (LVs), we efficiently transduced hematopoietic stem cells (HSCs) ex vivo and evaluated the potential of their progeny to target therapeutic genes to the CNS and PNS of transplanted mice and correct a neurodegenerative disorder, metachromatic leukodystrophy (MLD). We proved extensive repopulation of CNS microglia and PNS endoneurial macrophages by transgene-expressing cells. Intriguingly, recruitment of these HSC-derived cells was faster and more robust in MLD mice. By transplanting HSCs transduced with the arylsulfatase A gene, we fully reconstituted enzyme activity in the hematopoietic system of MLD mice and prevented the development of motor conduction impairment, learning and coordination deficits, and neuropathological abnormalities typical of the disease. Remarkably, ex vivo gene therapy had a significantly higher therapeutic impact than WT HSC transplantation, indicating a critical role for enzyme overexpression in the HSC progeny. These results indicate that transplantation of LV-transduced autologous HSCs represents a potentially efficacious therapeutic strategy for MLD and possibly other neurodegenerative disorders. PMID:15085191

  6. Aberrant microRNA Expression Likely Controls RAS Oncogene Activation During Malignant Transformation of Human Prostate Epithelial and Stem Cells by Arsenic

    PubMed Central

    Ngalame, Ntube N. O.; Tokar, Erik J.; Person, Rachel J.; Xu, Yuanyuan; Waalkes, Michael P.

    2014-01-01

    Inorganic arsenic (iAs), a human carcinogen, potentially targets the prostate. iAs malignantly transforms the RWPE-1 human prostate epithelial line to CAsE-PE cells, and a derivative normal stem cell (SC) line, WPE-stem, to As-Cancer SC (As-CSC) line. MicroRNAs (miRNA) are noncoding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is important in carcinogenesis. A miRNA array of CAsE-PE and As-CSC revealed common altered expression in both for pathways concerning oncogenesis, miRNA biogenesis, cell signaling, proliferation, and tumor metastasis and invasion. The KRAS oncogene is overexpressed in CAsE-PE cells but not by mutation or promoter hypomethylation, and is intensely overexpressed in As-CSC cells. In both transformants, decreased miRNAs targeting KRAS and RAS superfamily members occurred. Reduced miR-134, miR-373, miR-155, miR-138, miR-205, miR-181d, miR-181c, and let-7 in CAsE-PE cells correlated with increased target RAS oncogenes, RAN, RAB27A, RAB22A mRNAs, and KRAS protein. Reduced miR-143, miR-34c-5p, and miR-205 in As-CSC correlated with increased target RAN mRNA, and KRAS, NRAS, and RRAS proteins. The RAS/ERK and PI3K/PTEN/AKT pathways control cell survival, differentiation, and proliferation, and when dysregulated promote a cancer phenotype. iAs transformation increased expression of activated ERK kinase in both transformants and altered components of the PI3K/PTEN/AKT pathway including decreased PTEN and increases in BCL2, BCL-XL, and VEGF in the absence of AKT activation. Thus, dysregulated miRNA expression may be linked to RAS activation in both transformants. PMID:24431212

  7. Neural compensation for the eye's optical aberrations.

    PubMed

    Artal, Pablo; Chen, Li; Fernández, Enrique J; Singer, Ben; Manzanera, Silvestre; Williams, David R

    2004-04-16

    A fundamental problem facing sensory systems is to recover useful information about the external world from signals that are corrupted by the sensory process itself. Retinal images in the human eye are affected by optical aberrations that cannot be corrected with ordinary spectacles or contact lenses, and the specific pattern of these aberrations is different in every eye. Though these aberrations always blur the retinal image, our subjective impression is that the visual world is sharp and clear, suggesting that the brain might compensate for their subjective influence. The recent introduction of adaptive optics to control the eye's aberrations now makes it possible to directly test this idea. If the brain compensates for the eye's aberrations, vision should be clearest with the eye's own aberrations rather than with unfamiliar ones. We asked subjects to view a stimulus through an adaptive optics system that either recreated their own aberrations or a rotated version of them. For all five subjects tested, the stimulus seen with the subject's own aberrations was always sharper than when seen through the rotated version. This supports the hypothesis that the neural visual system is adapted to the eye's aberrations, thereby removing somehow the effects of blur generated by the sensory apparatus from visual experience. This result could have important implications for methods to correct higher order aberrations with customized refractive surgery because some benefits of optimizing the correction optically might be undone by the nervous system's compensation for the old aberrations.

  8. Corrections.

    PubMed

    2015-07-01

    Lai Y-S, Biedermann P, Ekpo UF, et al. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect Dis 2015; published online May 22. http://dx.doi.org/10.1016/S1473-3099(15)00066-3—Figure 1 of this Article should have contained a box stating ‘100 references added’ with an arrow pointing inwards, rather than a box stating ‘199 records excluded’, and an asterisk should have been added after ‘1473 records extracted into GNTD’. Additionally, the positioning of the ‘§ and ‘†’ footnotes has been corrected in table 1. These corrections have been made to the online version as of June 4, 2015.

  9. Correction.

    PubMed

    2016-02-01

    In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error.

  10. Correction

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars Geology, v. 26, p. 947 950 (October 1998) This article had the following printing errors: p. 947, Abstract, line 11, “sepia” should be “septa” p. 947, 1st paragraph under Introduction, line 2, “creep” should be “deep” p. 948, column 1, 2nd paragraph, line 7, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 1, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 5, “19774” should be “1977)” p. 949, column 1, 4th paragraph, line 7, “in particular” should be “In particular” CORRECTION Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming Geology, v. 26, p. 1011 1014 (November 1998) An error appeared in the References Cited. The correct reference appears below: Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D., 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, p. 193 208.

  11. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ((28)Si) ions.

    PubMed

    Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpathanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Whorton, Elbert B

    2015-11-01

    Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to (28)Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n (28)Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p<0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n (28)Si ions. Slight increases in the levels of 5 mC were observed in all treatment groups, as compared to the sham-control level. In contrast, there was a significant reduction in levels of 5 hmC (ANOVA, p<0.01). Since these endpoints were evaluated in the same mouse, our data suggested for the first time a link between a reduction in 5 hmC and genomic instability in HSPC-derived myeloid colonies of CBA/CaJ mice exposed to 300 Me

  12. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients

    PubMed Central

    Poulsen, Ebbe T.; Iannuzzi, Filomena; Rasmussen, Helle F.; Maier, Thorsten J.; Enghild, Jan J.; Jørgensen, Arne L.; Matrone, Carmela

    2017-01-01

    Alzheimer's disease (AD) is the most common cause of dementia and is likely caused by defective amyloid precursor protein (APP) trafficking and processing in neurons leading to amyloid plaques containing the amyloid-β (Aβ) APP peptide byproducts. Understanding how APP is targeted to selected destinations inside neurons and identifying the mechanisms responsible for the generation of Aβ are thus the keys for the advancement of new therapies. We previously developed a mouse model with a mutation at tyrosine (Tyr) 682 in the C-terminus of APP. This residue is needed for APP to bind to the coating protein Clathrin and to the Clathrin adaptor protein AP2 as well as for the correct APP trafficking and sorting in neurons. By extending these findings to humans, we found that APP binding to Clathrin is decreased in neural stem cells from AD sufferers. Increased APP Tyr phosphorylation alters APP trafficking in AD neurons and it is associated to Fyn Tyr kinase activation. We show that compounds affecting Tyr kinase activity and counteracting defects in AD neurons can control APP location and compartmentalization. APP Tyr phosphorylation is thus a potential therapeutic target for AD. PMID:28360834

  13. A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected].

    PubMed

    Miyazaki, Yusei; Li, Rui; Rezk, Ayman; Misirliyan, Hétoum; Moore, Craig; Farooqi, Nasr; Solis, Mayra; Goiry, Lorna Galleguillos; de Faria Junior, Omar; Dang, Van Duc; Colman, David; Dhaunchak, Ajit Singh; Antel, Jack; Gommerman, Jennifer; Prat, Alexandre; Fillatreau, Simon; Bar-Or, Amit

    2014-01-01

    Clinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines. However, the mechanisms underlying the observed B cell cytokine dysregulation in MS remain unknown. We hypothesized that aberrant expression of particular microRNAs might be involved in the dysregulated pro-inflammatory cytokine responses of B cells of patients with MS. Through screening candidate microRNAs in activated B cells of MS patients and matched healthy subjects, we discovered that abnormally increased secretion of lymphotoxin and tumor necrosis factor α by MS B cells is associated with abnormally increased expression of miR-132. Over-expression of miR-132 in normal B cells significantly enhanced their production of lymphotoxin and tumor necrosis factor α. The over-expression of miR-132 also suppressed the miR-132 target, sirtuin-1. We confirmed that pharmacological inhibition of sirtuin-1 in normal B cells induces exaggerated lymphotoxin and tumor necrosis factor α production, while the abnormal production of these cytokines by MS B cells can be normalized by resveratrol, a sirtuin-1 activator. These results define a novel miR-132-sirtuin-1 axis that controls pro-inflammatory cytokine secretion by human B cells, and demonstrate that a dysregulation of this axis underlies abnormal pro-inflammatory B cell cytokine responses in patients with MS.

  14. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa.

    PubMed

    Sebastiano, Vittorio; Zhen, Hanson Hui; Haddad, Bahareh; Derafshi, Bahareh Haddad; Bashkirova, Elizaveta; Melo, Sandra P; Wang, Pei; Leung, Thomas L; Siprashvili, Zurab; Tichy, Andrea; Li, Jiang; Ameen, Mohammed; Hawkins, John; Lee, Susie; Li, Lingjie; Schwertschkow, Aaron; Bauer, Gerhard; Lisowski, Leszek; Kay, Mark A; Kim, Seung K; Lane, Alfred T; Wernig, Marius; Oro, Anthony E

    2014-11-26

    Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the gene COL7A1 and suffer severe blistering and chronic wounds that ultimately lead to infection and development of lethal squamous cell carcinoma. The discovery of induced pluripotent stem cells (iPSCs) and the ability to edit the genome bring the possibility to provide definitive genetic therapy through corrected autologous tissues. We generated patient-derived COL7A1-corrected epithelial keratinocyte sheets for autologous grafting. We demonstrate the utility of sequential reprogramming and adenovirus-associated viral genome editing to generate corrected iPSC banks. iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, resulting in stratified epidermis in vitro in organotypic cultures and in vivo in mice. Sequencing of corrected cell lines before tissue formation revealed heterogeneity of cancer-predisposing mutations, allowing us to select COL7A1-corrected banks with minimal mutational burden for downstream epidermis production. Our results provide a clinical platform to use iPSCs in the treatment of debilitating genodermatoses, such as RDEB.

  15. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy.

    PubMed

    Turan, Soeren; Farruggio, Alfonso P; Srifa, Waracharee; Day, John W; Calos, Michele P

    2016-04-01

    Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.

  16. Skew aberration: a form of polarization aberration.

    PubMed

    Yun, Garam; Crabtree, Karlton; Chipman, Russell A

    2011-10-15

    We define a new class of aberration, skew aberration, which is a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates, independent of coatings and interface polarization. Skew aberration in a radially symmetric system has the form of a circular retardance tilt plus coma aberration. Skew aberration causes undesired polarization distribution in the exit pupil. We demonstrate statistics on skew aberration of 2383 optical systems described in Code V's U.S. patent library [Code V Version 10.3 (Synopsys, 2011), pp. 22-24]; the mean skew aberration is 0.89° and the standard deviation is 1.37°. The maximum skew aberration found is 17.45° and the minimum is -11.33°. U.S. patent 2,896,506, which has ±7.01° of skew aberration, is analyzed in detail. Skew aberration should be of concern in microlithography optics and other high NA and large field of view optical systems.

  17. Accommodative lag and fluctuations when optical aberrations are manipulated.

    PubMed

    Gambra, Enrique; Sawides, Lucie; Dorronsoro, Carlos; Marcos, Susana

    2009-06-09

    We evaluated the accommodative response to a stimulus moving from 0 to 6 D following a staircase function under natural, corrected, and induced optical aberrations, using an adaptive-optics (AO) electromagnetic deformable mirror. The accommodative response of the eye (through the mirror) and the change of aberrations were measured on 5 subjects using a Hartmann-Shack wavefront sensor operating at 12.8 Hz. Five conditions were tested: (1) natural aberrations, (2) AO correction of the unaccommodated state and induction (over 6-mm pupils) of (3) +1 microm and (4) -1 microm of spherical aberration and (5) -2 microm of vertical coma. Four subjects showed a better accommodative response with AO correction than with their natural aberrations. The induction of negative spherical aberration also produced a better accommodative response in the same subjects. Accommodative lag increased in all subjects when positive spherical aberration and coma were induced. Fluctuations of the accommodative response (computed during each 1-D period of steady accommodation) increased with accommodative response when high-order aberrations were induced. The largest fluctuations occurred for induced negative spherical aberration and the smallest for natural and corrected aberrations. The study demonstrates that aberrations influence accommodative lag and fluctuations of accommodation and that correcting aberrations improves rather than compromises the accommodative response.

  18. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-05-01

    Sickle cell disease (SCD) is the most common human genetic disease which is caused by a single mutation of human β-globin (HBB) gene. The lack of long-term treatment makes the development of reliable cell and gene therapies highly desirable. Disease-specific patient-derived human induced pluripotent stem cells (hiPSCs) have great potential for developing novel cell and gene therapies. With the disease-causing mutations corrected in situ, patient-derived hiPSCs can restore normal cell functions and serve as a renewable autologous cell source for the treatment of genetic disorders. Here we successfully utilized transcription activator-like effector nucleases (TALENs), a recently emerged novel genome editing tool, to correct the SCD mutation in patient-derived hiPSCs. The TALENs we have engineered are highly specific and generate minimal off-target effects. In combination with piggyBac transposon, TALEN-mediated gene targeting leaves no residual ectopic sequences at the site of correction and the corrected hiPSCs retain full pluripotency and a normal karyotype. Our study demonstrates an important first step of using TALENs for the treatment of genetic diseases such as SCD, which represents a significant advance toward hiPSC-based cell and gene therapies.

  19. Phenotypic correction and stable expression of factor VIII in hemophilia A mice by embryonic stem cell therapy.

    PubMed

    Wang, J J; Kuang, Y; Zhang, L L; Shen, C L; Wang, L; Lu, S Y; Lu, X B; Fei, J; Gu, M M; Wang, Z G

    2013-05-13

    Hereditary deficiency of factor VIII (FVIII) leads to hemophilia A, a severe X-linked bleeding disorder. Current therapies include fixed-dose FVIII prophylaxis, factor replacement therapy, and most recently, gene therapy. Prophylaxis and FVIII replacement therapies are limited by incomplete efficacy, high cost, restricted availability, and development of neutralizing antibodies in chronically treated individuals. Limited success has been obtained in preclinical trials using gene therapy for the treatment of hemophilia. Therefore, new options for therapy for hemophilia A are needed. We evaluated the potential of embryonic stem cells for correcting hemophilia A in mice. FVIII-deficient mouse blastocysts were collected and injected with mouse embryonic stem cells stably expressing green-fluorescent protein (GFP) and transferred to pseudopregnant recipient mice. Expression of FVIII was measured in the liver and plasma of the 5 chimeric mice that were produced. Three of these mice were GFP-positive at the age of 6 months. The plasma FVIII activity levels were equal to those of wild-type mice. These data demonstrate that embryonic stem cell transplantation at an early embryonic stage has potential as therapy for this progressively debilitating, life-threatening bleeding disorder.

  20. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 1ST QUARTER 2010 MILESTONE REPORT: Simulations of fast correction of chromatic aberrations to establish physics specifications for implementation on NDCX-1 and NDCX-2

    SciTech Connect

    LIDIA, S.M.; LUND, S.M.; SEIDL, P.A.

    2010-01-04

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. Focal spot differences at the target plane between the compressed and uncompressed regions of the beam pulse have been modeled and measured on NDCX-1. Time-dependent focusing and energy sweep from the induction bunching module are seen to increase the compressed pulse spot size at the target plane by factors of two or more, with corresponding scaled reduction in the peak intensity and fluence on target. A time-varying beam envelope correction lens has been suggested to remove the time-varying aberration. An Einzel (axisymmetric electric) lens system has been analyzed and optimized for general transport lines, and as a candidate correction element for NDCX-1. Attainable high-voltage holdoff and temporal variations of the lens driving waveform are seen to effect significant changes on the beam envelope angle over the duration of interest, thus confirming the utility of such an element on NDCX-1. Modeling of the beam dynamics in NDCX-1 was performed using a time-dependent (slice) envelope code and with the 3-D, self-consistent, particle-in-cell code WARP. Proof of concept was established with the slice envelope model such that the spread in beam waist positions relative to the target plane can be minimized with a carefully designed

  1. Targeted gene correction minimally impacts whole-genome mutational load in human-disease-specific induced pluripotent stem cell clones.

    PubMed

    Suzuki, Keiichiro; Yu, Chang; Qu, Jing; Li, Mo; Yao, Xiaotian; Yuan, Tingting; Goebl, April; Tang, Senwei; Ren, Ruotong; Aizawa, Emi; Zhang, Fan; Xu, Xiuling; Soligalla, Rupa Devi; Chen, Feng; Kim, Jessica; Kim, Na Young; Liao, Hsin-Kai; Benner, Chris; Esteban, Concepcion Rodriguez; Jin, Yabin; Liu, Guang-Hui; Li, Yingrui; Izpisua Belmonte, Juan Carlos

    2014-07-03

    The utility of genome editing technologies for disease modeling and developing cellular therapies has been extensively documented, but the impact of these technologies on mutational load at the whole-genome level remains unclear. We performed whole-genome sequencing to evaluate the mutational load at single-base resolution in individual gene-corrected human induced pluripotent stem cell (hiPSC) clones in three different disease models. In single-cell clones, gene correction by helper-dependent adenoviral vector (HDAdV) or Transcription Activator-Like Effector Nuclease (TALEN) exhibited few off-target effects and a low level of sequence variation, comparable to that accumulated in routine hiPSC culture. The sequence variants were randomly distributed and unique to individual clones. We also combined both technologies and developed a TALEN-HDAdV hybrid vector, which significantly increased gene-correction efficiency in hiPSCs. Therefore, with careful monitoring via whole-genome sequencing it is possible to apply genome editing to human pluripotent cells with minimal impact on genomic mutational load.

  2. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells.

    PubMed

    Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong

    2015-01-01

    Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.

  3. Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM

    NASA Astrophysics Data System (ADS)

    Bhattarai, Nabraj; Casillas, Gilberto; Ponce, Arturo; Jose-Yacaman, Miguel

    2013-03-01

    Lattice mismatch in a bimetallic core-shell nanoparticle will cause strain in the epitaxial shell layer, and if it reaches the critical layer thickness misfit dislocations will appear in order to release the increasing strain. These defects are relevant since they will directly impact the atomic and electronic structures thereby changing the physical and chemical properties of the nanoparticles. Here we report the direct observation and evolution through aberration-corrected scanning transmission electron microscopy of dislocations in AuPd core-shell nanoparticles. Our results show that first Shockley partial dislocations (SPD) combined with stacking faults (SF) appear at the last Pd layer; then, as the shell grows the SPDs and SFs appear at the interface and combine with misfit dislocations, which finally diffuse to the free surfaces due to the alloying of Au into the Pd shell. The critical layer thickness was found to be at least 50% greater than in thin films, confirming that shell growth on nanoparticles can sustain more strain due to the tridimensional nature of the nanoparticles.

  4. Strain-release mechanisms in bimetallic core-shell nanoparticles as revealed by Cs-corrected STEM

    PubMed Central

    Bhattarai, Nabraj; Casillas, Gilberto; Ponce, Arturo; Jose-Yacaman, Miguel

    2012-01-01

    Lattice mismatch in a bimetallic core-shell nanoparticle will cause strain in the epitaxial shell layer, and if it reaches the critical layer thickness misfit dislocations will appear in order to release the increasing strain. These defects are relevant since they will directly impact the atomic and electronic structures thereby changing the physical and chemical properties of the nanoparticles. Here we report the direct observation and evolution through aberration-corrected scanning transmission electron microscopy of dislocations in AuPd core-shell nanoparticles. Our results show that first Shockley partial dislocations (SPD) combined with stacking faults (SF) appear at the last Pd layer; then, as the shell grows the SPDs and SFs appear at the interface and combine with misfit dislocations, which finally diffuse to the free surfaces due to the alloying of Au into the Pd shell. The critical layer thickness was found to be at least 50% greater than in thin films, confirming that shells growth on nanoparticles can sustain more strain due to the tridimensional nature of the nanoparticles. PMID:23457419

  5. TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells.

    PubMed

    Ramalingam, Sivaprakash; Annaluru, Narayana; Kandavelou, Karthikeyan; Chandrasegaran, Srinivasan

    2014-01-01

    Generation and precise genetic correction of patient-derived hiPSCs have great potential in regenerative medicine. Such targeted genetic manipulations can now be achieved using gene-editing nucleases. Here, we report generation of cystic fibrosis (CF) and Gaucher's disease (GD) hiPSCs respectively from CF (homozygous for CFTRΔF508 mutation) and Type II GD [homozygous for β-glucocerebrosidase (GBA) 1448T>C mutation] patient fibroblasts, using CCR5- specific TALENs. Site-specific addition of loxP-flanked Oct4/Sox2/Klf4/Lin28/Nanog/eGFP gene cassette at the endogenous CCR5 site of patient-derived disease-specific primary fibroblasts induced reprogramming, giving rise to both monoallele (heterozygous) and biallele CCR5-modified hiPSCs. Subsequent excision of the donor cassette was done by treating CCR5-modified CF and GD hiPSCs with Cre. We also demonstrate site-specific correction of sickle cell disease (SCD) mutations at the endogenous HBB locus of patient-specific hiPSCs [TNC1 line that is homozygous for mutated β- globin alleles (βS/βS)], using HBB-specific TALENs. SCD-corrected hiPSC lines showed gene conversion of the mutated βS to the wild-type βA in one of the HBB alleles, while the other allele remained a mutant phenotype. After excision of the loxP-flanked DNA cassette from the SCD-corrected hiPSC lines using Cre, we obtained secondary heterozygous βS/βA hiPSCs, which express the wild-type (βA) transcript to 30-40% level as compared to uncorrected (βS/βS) SCD hiPSCs when differentiated into erythroid cells. Furthermore, we also show that TALEN-mediated generation and genetic correction of disease-specific hiPSCs did not induce any off-target mutations at closely related sites.

  6. Correction of Aberrant NADPH Oxidase Activity in Blood-Derived Mononuclear Cells from Type II Diabetes Mellitus Patients by a Naturally Fermented Papaya Preparation

    PubMed Central

    Dickerson, Ryan; Deshpande, Bhakthi; Gnyawali, Urmila; Lynch, Debbie; Gordillo, Gayle M.; Schuster, Dara; Osei, Kwame

    2012-01-01

    Abstract Supplementation of standardized fermented papaya preparation (FPP) to adult diabetic mice improves dermal wound healing outcomes. Peripheral blood mononuclear cells (PBMC) from type II diabetes mellitus (T2DM) patients elicit a compromised respiratory burst activity resulting in increased risk of infections for the diabetic patients. Aims: The objectives of the current study were to determine the effect of FPP supplementation on human diabetic PBMC respiratory burst activity and to understand underlying mechanisms of such action of FPP. Results: When stimulated with phorbol 12-myristate 13-acetate, the production of reactive oxygen species by T2DM PBMC was markedly compromised compared to that of the PBMC from non-DM donors. FPP treated ex vivo improved respiratory burst outcomes in T2DM PBMC. FPP treatment significantly increased phosphorylation of the p47phox subunit of NADPH oxidase. In addition, the protein and mRNA expression of Rac2 was potently upregulated after FPP supplemention. The proximal human Rac2 gene promoter is G–C rich and contains consensus binding sites for Sp1 and AP-1. While FPP had no significant effect on the AP-1 DNA binding activity, the Sp1 DNA binding activity was significantly upregulated in PBMC after treatment of the cells with FPP. Innovation: This work provided first evidence that compromised respiratory burst performance of T2DM PBMC may be corrected by a nutritional supplement. Conclusion: FPP can correct respiratory burst performance of T2DM PBMC via an Sp-1-dependant pathway. Studies testing the outcome of FPP supplementation in diabetic patients are warranted. Antioxid. Redox Signal. 17, 485–491. PMID:22369197

  7. The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice.

    PubMed

    Wang, Qing; Gong, Xiuli; Gong, Zhijuan; Ren, Xiaoyie; Ren, Zhaorui; Huang, Shuzhen; Zeng, Yitao

    2013-12-20

    Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.

  8. Pathophysiology of MDS: genomic aberrations.

    PubMed

    Ichikawa, Motoshi

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  9. Gene Editing in Human Pluripotent Stem Cells: Choosing the Correct Path.

    PubMed

    Singh, Amar M; Adjan Steffey, Valeriya V; Yeshi, Tseten; Allison, Daniel W

    The recent emergence of targeted nucleases has opened up new opportunities for performing genetic modifications with human pluripotent stem cells (hPSCs). These modifications can range from the creation of a routine knock-out to the more challenging single point-mutation. For both the new and established user, deciding on the best approach for the specific modification of interest can be an arduous task, as new and improved technologies are rapidly and continuously being developed. The choices between the reagents and methodologies depends entirely on the end-goal of the experiments and the locus to be modified. Investigators need to decide on the best nuclease to use for each experiment from among Zinc-Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 that would result in the highest likelihood of success with the fewest pitfalls. Furthermore, there have been significant improvements over the first-generation nucleases, such as the development of the dimeric CRISPR RNA-guided Fok1 nucleases (RFNs, marketed as NextGEN™ CRISPR) that reduces the "off-target" mutation rate, providing further options for investigators. Should researchers need to perform a point mutation, then considerations must be made between using single-stranded oligo-deoxynucleotides (ssODN) as the donor for homology-directed repair or utilizing a selection cassette within a donor vector in combination with an excision-only piggyBac™ transposase to leave a seamless edit. In this review, we will provide a general overview of the current technologies, along with methodologies for generating point mutations, while considering both their pros and cons.

  10. Aberrantly regulated dysadherin and B-cell lymphoma 2/B-cell lymphoma 2-associated X enhances tumorigenesis and DNA targeting drug resistance of liver cancer stem cells

    PubMed Central

    JIANG, NAN; CHEN, WEI; ZHANG, JIAN-WEN; LI, YANG; ZENG, XIAN-CHENG; ZHANG, TONG; FU, BIN-SHENG; YI, HUI-MIN; ZHANG, QI

    2015-01-01

    Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) are frequently resistant to current therapeutic regimens and therefore responsible for tumor recurrence. Previous studies have reported that expression levels of dysadherin in CSCs may be used as a prognostic indicator, which is also responsible for treatment failure and poor survival rates. The present study analyzed the association of enhanced dysadherin levels with drug resistance and evasion of apoptosis in human HCC SP cells. An SP of 3.7% was isolated from human HCC cells using fluorescence-activated cell sorting. These SP cells displayed elevated levels of dysadherin and stemness proteins as well as high resistance to chemotherapeutic drugs and apoptosis. In order to reveal the possible link between dysadherin levels and tumorigenesis of SP cells, small interfering RNA technology was used to knockdown the expression of dysadherin in SP cells. Of note, the siRNA-transfected SP cells showed significantly reduced levels of stemness proteins, and were more sensitive to DNA-targeting drugs and apoptotic cell death as compared to non-transfected cells. Furthermore, in vivo experiments in NON/SCID mice indicated that dysadherin-expressing SP cells were highly tumorigenic, as they were able to induce tumor growth. The SP cell-derived tumor tissues in turn showed elevated dysadherin levels. The results of the present study therefore suggested that knockdown of dysadherin suppressed the tumorigenic properties of cancer stem-like SP cells. Hence, dysadherin is a valuable potential target for the development of novel anti-cancer drugs. PMID:26458963

  11. Correction of chromosomal mutation and random integration in embryonic stem cells with helper-dependent adenoviral vectors.

    PubMed

    Ohbayashi, Fumi; Balamotis, Michael A; Kishimoto, Atsuhiro; Aizawa, Emi; Diaz, Arturo; Hasty, Paul; Graham, Frank L; Caskey, C Thomas; Mitani, Kohnosuke

    2005-09-20

    For gene therapy of inherited diseases, targeted integration/gene repair through homologous recombination (HR) between exogenous and chromosomal DNA would be an ideal strategy to avoid potentially serious problems of random integration such as cellular transformation and gene silencing. Efficient sequence-specific modification of chromosomes by HR would also advance both biological studies and therapeutic applications of a variety of stem cells. Toward these goals, we developed an improved strategy of adenoviral vector (AdV)-mediated HR and examined its ability to correct an insertional mutation in the hypoxanthine phosphoribosyl transferase (Hprt) locus in male mouse ES cells. The efficiency of HR was compared between four types of AdVs that contained various lengths of homologies at the Hprt locus and with various multiplicities of infections. The frequency of HR with helper-dependent AdVs (HD AdVs) with an 18.6-kb homology reached 0.2% per transduced cell at a multiplicity of infection of 10 genomes per cell. Detection of random integration at DNA levels by PCR revealed extremely high efficiency of 5% per cell. We also isolated and characterized chromosomal sites where HD AdVs integrated in a random manner. In contrast to retroviral, lentiviral, and adeno-associated viral vectors, which tend to integrate into genes, the integration sites of AdV was distributed randomly inside and outside genes. These findings suggest that HR mediated by HD AdVs is efficient and relatively safe and might be a new viable option for ex vivo gene therapy as well as a tool for chromosomal manipulation of a variety of stem cells.

  12. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

    PubMed

    Song, Bing; Fan, Yong; He, Wenyin; Zhu, Detu; Niu, Xiaohua; Wang, Ding; Ou, Zhanhui; Luo, Min; Sun, Xiaofang

    2015-05-01

    The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.

  13. Aberration-corrected STEM-EELS studies of epitaxial La0.5Sr0.5CoO3 thin films

    NASA Astrophysics Data System (ADS)

    Varela, Maria; Gazquez, Jaume; Biskup, Neven; Pennycook, Stephen; Torija, Maria; Sharma, Manish; Bose, Shameek; Leighton, Chris

    2012-02-01

    Cobaltite thin films provide a unique opportunity to study magneto-electronic phase separation, which can be strong in this reduced dimensionality environment. Here we present an investigation of epitaxial La0.5Sr0.5CoO3 thin films on SrTiO3 and LaAlO3 substrates by scanning transmission electron microscopy and electron energy loss spectroscopy. The different degrees of strain and also different orientations of the substrates (such as (001) vs. (110)) induce major changes of the crystal structure and the depth profile of the chemical composition, observed both in the La/Sr and O sub-lattices. These effects can lead to lower effective doping level at the interface, favoring interfacial magneto-electronic phase separation. Research Council Starting Investigator Award (JS, NB) and the U.S. Dept. of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Div. (MV, SJP). Work at UMN supported by NSF and DOE (scattering).

  14. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction

    PubMed Central

    Jiang, Da-Yong; Motani, Ryosuke; Huang, Jian-Dong; Tintori, Andrea; Hu, Yuan-Chao; Rieppel, Olivier; Fraser, Nicholas C.; Ji, Cheng; Kelley, Neil P.; Fu, Wan-Lu; Zhang, Rong

    2016-01-01

    Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation. PMID:27211319

  15. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction.

    PubMed

    Jiang, Da-Yong; Motani, Ryosuke; Huang, Jian-Dong; Tintori, Andrea; Hu, Yuan-Chao; Rieppel, Olivier; Fraser, Nicholas C; Ji, Cheng; Kelley, Neil P; Fu, Wan-Lu; Zhang, Rong

    2016-05-23

    Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation.

  16. Correcting Aberrated Wavefronts from Synthetic Apertures Holographically.

    DTIC Science & Technology

    1986-12-01

    subject and reference legs was proven to be planar through both shear-plate interferometric analysis ( Malacara , pp 105-48) and by observing the...London: Cam- bridge University Press, 1969 Malacara . Daniel, ed. Optical Shop Testing. New York: John Wiley and Sons, 1978. Marathay, Arvind S

  17. Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development.

    PubMed

    Lu, Rui; Wang, Ping; Parton, Trevor; Zhou, Yang; Chrysovergis, Kaliopi; Rockowitz, Shira; Chen, Wei-Yi; Abdel-Wahab, Omar; Wade, Paul A; Zheng, Deyou; Wang, Gang Greg

    2016-07-11

    DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that the DNMT3A mutational hotspot at Arg882 (DNMT3A(R882H)) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A(R882H) directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1, and Hoxa gene cluster. DNMT3A(R882H) induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A(R882H)-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A(R882H)-induced gene-expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias.

  18. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  19. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  20. Sensing Phase Aberrations behind Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  1. An auto-tuning method for focusing and astigmatism correction in HAADF-STEM, based on the image contrast transfer function.

    PubMed

    Baba, N; Terayama, K; Yoshimizu, T; Ichise, N; Tanaka, N

    2001-01-01

    An auto-tuning method for high-angle annular detector dark field scanning transmission electron microscopy (HAADF-STEM) is proposed which corrects the defocus to the optimum Scherzer focus and compensates the astigmatism. Because the method is based on the image contrast transfer function formulated for the HAADF-STEM, the defocus and the astigmatism are accurately measured from input of two different defocus images. The method is designed to work independent of object function in the linear imaging model by analysing the spectral ratio between two Fourier spectra of their images, which is useful for cases where the spectrum of object function is not uniformly spread out over the reciprocal space. The method was preliminarily tested in a Hitachi HD-2000 STEM, and successful results of the auto-tunings from the viewpoint of verification of the algorithm were obtained using general specimens of Au fine particles and a thin section of a semiconductor device.

  2. Tuning fifth-order aberrations in a Quadrupole-Octupole Corrector

    SciTech Connect

    Lupini, Andrew R; Pennycook, Stephen J

    2012-01-01

    The resolution of conventional electron microscopes is usually limited by spherical aberration. Microscopes equipped with aberration-correctors are then primarily limited by higher-order, chromatic, and misalignment aberrations. In particular the Nion third-order aberration correctors installed on machines with a low energy spread and possessing sophisticated alignment software were limited by the uncorrected fifth-order aberrations. Here we show how the Nion fifth-order aberration corrector can be used to adjust and reduce some of the fourth and fifth-order aberrations in a probe-corrected scanning transmission electron microscope.

  3. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling

    PubMed Central

    Fang, Lishan; Cai, Junchao; Chen, Baixue; Wu, Shanshan; Li, Rong; Xu, Xiaonan; Yang, Yi; Guan, Hongyu; Zhu, Xun; Zhang, Le; Yuan, Jie; Wu, Jueheng; Li, Mengfeng

    2015-01-01

    Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling. miR-582-3p overexpression simultaneously targets multiple negative regulators of the Wnt/β-catenin pathway, namely, AXIN2, DKK3 and SFRP1. Consequently, miR-582-3p promotes CSC traits of NSCLC cells in vitro and tumorigenesis and tumour recurrence in vivo. Antagonizing miR-582-3p potently inhibits tumour initiation and progression in xenografted animal models. These findings suggest that miR-582-3p mediates the constitutive activation of Wnt/β-catenin signalling, likely serving as a potential therapeutic target for NSCLC. PMID:26468775

  4. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson-Gilford progeria syndrome.

    PubMed

    Finley, Jahahreeh

    2015-09-01

    AMPK, a master regulator of cellular metabolism which has been shown to activate PKC-theta (θ) and is essential for T cell activation, may modulate the splicing activities of SRp55 as well as enhance a p32-mediated inhibition of ASF/SF2-induced alternative splicing, potentially correcting aberrant alternative splicing in the LMNA gene and reactivating latent viral HIV-1 reservoirs. Moreover, similar epigenetic modifications and cell cycle regulators also characterize the analogous stages of premature senescence in progeroid cells and latency in HIV-1 infected T cells. AMPK-activating compounds including metformin and resveratrol may thus embody a novel treatment paradigm linking the pathophysiology of HGPS with that of HIV-1 latency.

  5. STEM?!?!

    ERIC Educational Resources Information Center

    Merrill, Jen

    2012-01-01

    The author's son has been an engineer since birth. He never asked "why" as a toddler, it was always "how's it work?" So that he wanted a STEM-based home education was no big surprise. In this article, the author considers what kind of curricula would work best for her complex kid.

  6. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water.

    PubMed

    Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M

    2011-11-15

    Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves.

  7. Wide-angle chromatic aberration corrector for the human eye.

    PubMed

    Benny, Yael; Manzanera, Silvestre; Prieto, Pedro M; Ribak, Erez N; Artal, Pablo

    2007-06-01

    The human eye is affected by large chromatic aberration. This may limit vision and makes it difficult to see fine retinal details in ophthalmoscopy. We designed and built a two-triplet system for correcting the average longitudinal chromatic aberration of the eye while keeping a reasonably wide field of view. Measurements in real eyes were conducted to examine the level and optical quality of the correction. We also performed some tests to evaluate the effect of the corrector on visual performance.

  8. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    PubMed

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  9. Quantitative STEM Imaging of Order-Disorder Phenomena in Double Perovskite Thin Films

    NASA Astrophysics Data System (ADS)

    Esser, B. D.; Hauser, A. J.; Williams, R. E. A.; Allen, L. J.; Woodward, P. M.; Yang, F. Y.; McComb, D. W.

    2016-10-01

    Using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we investigate ordering phenomena in epitaxial thin films of the double perovskite Sr2 CrReO6 . Experimental and simulated imaging and diffraction are used to identify antiphase domains in the films. Image simulation provides insight into the effects of atomic-scale ordering along the beam direction on HAADF-STEM intensity. We show that probe channeling results in ±20 % variation in intensity for a given composition, allowing 3D ordering information to be probed using quantitative STEM.

  10. Quantitative STEM Imaging of Order-Disorder Phenomena in Double Perovskite Thin Films.

    PubMed

    Esser, B D; Hauser, A J; Williams, R E A; Allen, L J; Woodward, P M; Yang, F Y; McComb, D W

    2016-10-21

    Using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we investigate ordering phenomena in epitaxial thin films of the double perovskite Sr_{2}CrReO_{6}. Experimental and simulated imaging and diffraction are used to identify antiphase domains in the films. Image simulation provides insight into the effects of atomic-scale ordering along the beam direction on HAADF-STEM intensity. We show that probe channeling results in ±20% variation in intensity for a given composition, allowing 3D ordering information to be probed using quantitative STEM.

  11. Laser correcting mirror

    DOEpatents

    Sawicki, Richard H.

    1994-01-01

    An improved laser correction mirror (10) for correcting aberrations in a laser beam wavefront having a rectangular mirror body (12) with a plurality of legs (14, 16, 18, 20, 22, 24, 26, 28) arranged into opposing pairs (34, 36, 38, 40) along the long sides (30, 32) of the mirror body (12). Vector force pairs (49, 50, 52, 54) are applied by adjustment mechanisms (42, 44, 46, 48) between members of the opposing pairs (34, 36, 38, 40) for bending a reflective surface 13 of the mirror body 12 into a shape defining a function which can be used to correct for comatic aberrations.

  12. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.

    PubMed

    Sebastiano, Vittorio; Maeder, Morgan L; Angstman, James F; Haddad, Bahareh; Khayter, Cyd; Yeo, Dana T; Goodwin, Mathew J; Hawkins, John S; Ramirez, Cherie L; Batista, Luis F Z; Artandi, Steven E; Wernig, Marius; Joung, J Keith

    2011-11-01

    The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient. Recently, engineered zinc finger nucleases (ZFNs) have been shown to substantially increase HR frequencies in human iPSCs, raising the prospect of using this technology to correct disease causing mutations. Here, we describe the generation of iPSC lines from sickle cell anemia patients and in situ correction of the disease causing mutation using three ZFN pairs made by the publicly available oligomerized pool engineering method (OPEN). Gene-corrected cells retained full pluripotency and a normal karyotype following removal of reprogramming factor and drug-resistance genes. By testing various conditions, we also demonstrated that HR events in human iPSCs can occur as far as 82 bps from a ZFN-induced break. Our approach delineates a roadmap for using ZFNs made by an open-source method to achieve efficient, transgene-free correction of monogenic disease mutations in patient-derived iPSCs. Our results provide an important proof of principle that ZFNs can be used to produce gene-corrected human iPSCs that could be used for therapeutic applications.

  13. Measurement of large low-order aberrations by using a series of through-focus Ronchigrams.

    PubMed

    Akima, Hisanao; Yoshida, Takaho

    2014-08-01

    A method for measuring large aberrations up to second order (defocus, 2-fold astigmatism and axial coma), which uses a through-focus series of Ronchigrams, is proposed. The method is based on the principle that line-focus conditions in Ronchigrams can be locally detected and low-order aberrations can thereby be measured. The proposed method provides auto-tuning of large low-order aberration; in particular, iterative aberration measurement and correction reduce low-order aberrations from several thousand nanometers to less than a few hundred nanometers, which can be handled by conventional fine-aberration tuning methods.

  14. The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    DOE PAGES

    Zaluzec, Nestor J.

    2014-11-11

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (Cs) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (Cc) which augments those accomplishments. In this study we will review and summarize how the combination of Cs/Cc technology enhances our ability to conduct hyperspectral imaging and spectroscopy in today's and future computationallymore » mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.« less

  15. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A

    2017-02-21

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs.

  16. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells.

    PubMed

    Levasseur, Dana N; Ryan, Thomas M; Pawlik, Kevin M; Townes, Tim M

    2003-12-15

    Although sickle cell anemia was the first hereditary disease to be understood at the molecular level, there is still no adequate long-term treatment. Allogeneic bone marrow transplantation is the only available cure, but this procedure is limited to a minority of patients with an available, histocompatible donor. Autologous transplantation of bone marrow stem cells that are transduced with a stably expressed, antisickling globin gene would benefit a majority of patients with sickle cell disease. Therefore, the development of a gene therapy protocol that corrects the disease in an animal model and is directly translatable to human patients is critical. A method is described in which unmobilized, highly purified bone marrow stem cells are transduced with a minimum amount of self-inactivating (SIN) lentiviral vector containing a potent antisickling beta-globin gene. These cells, which were transduced in the absence of cytokine stimulation, fully reconstitute irradiated recipients and correct the hemolytic anemia and organ pathology that characterize the disease in humans. The mean increase of hemoglobin concentration was 46 g/L (4.6 g/dL) and the average lentiviral copy number was 2.2; therefore, a 21-g/L /vector copy increase (2.1-g/dL) was achieved. This transduction protocol may be directly translatable to patients with sickle cell disease who cannot tolerate current bone marrow mobilization procedures and may not safely be exposed to large viral loads.

  17. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    DOE PAGES

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; ...

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phasemore » contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.« less

  18. Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution

    SciTech Connect

    Pennycook, Timothy J.; Lupini, Andrew R.; Yang, Hao; Murfitt, Matthew F.; Jones, Lewys; Nellist, Peter D.

    2014-10-15

    In this paper, we demonstrate a method to achieve high efficiency phase contrast imaging in aberration corrected scanning transmission electron microscopy (STEM) with a pixelated detector. The pixelated detector is used to record the Ronchigram as a function of probe position which is then analyzed with ptychography. Ptychography has previously been used to provide super-resolution beyond the diffraction limit of the optics, alongside numerically correcting for spherical aberration. Here we rely on a hardware aberration corrector to eliminate aberrations, but use the pixelated detector data set to utilize the largest possible volume of Fourier space to create high efficiency phase contrast images. The use of ptychography to diagnose the effects of chromatic aberration is also demonstrated. In conclusion, the four dimensional dataset is used to compare different bright field detector configurations from the same scan for a sample of bilayer graphene. Our method of high efficiency ptychography produces the clearest images, while annular bright field produces almost no contrast for an in-focus aberration-corrected probe.

  19. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2014-04-01

    Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.

  20. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.

    PubMed

    Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu

    2015-01-13

    Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases.

  1. Mechanisms of mesenchymal stem cell correction of the impaired biomechanical properties of diabetic skin: The role of miR-29a.

    PubMed

    Zgheib, Carlos; Hodges, Maggie; Hu, Junyi; Beason, David P; Soslowsky, Louis J; Liechty, Kenneth W; Xu, Junwang

    2016-03-01

    Diabetic skin has impaired wound healing properties following injury. We have further shown that diabetic skin has weakened biomechanical properties at baseline. We hypothesize that the biomechanical properties of diabetic skin decline during the progression of the diabetic phenotype, and that this decline is due to the dysregulation of miR-29a, resulting in decreased collagen content. We further hypothesize that treatment with mesenchymal stem cells (MSCs) may improve diabetic wound healing by correction of the dysregulated miR-29a expression. We analyzed the biomechanical properties, collagen gene expression, collagen protein production, and miR-29a levels in skin harvested from 6 to 18 week old mice during the development of the diabetic phenotype. We also examined the correction of these impairments by both MSC treatment and the inhibition of miR-29a. Diabetic skin demonstrated a progressive impairment of biomechanical properties, decreased collagen content, and increased miR-29a levels during the development of the diabetic phenotype. MSC treatment decreased miR-29a levels, increased collagen content, and corrected the impaired biomechanical properties of diabetic skin. Additionally, direct inhibition of miR-29a also increased collagen content in diabetic skin. This decline in the biomechanical properties of diabetic skin during the progression of diabetes may increase the susceptibility of diabetic skin to injury and miR-29a appears to play a key role in this process.

  2. Chromosome transplantation as a novel approach for correcting complex genomic disorders

    PubMed Central

    Paulis, Marianna; Castelli, Alessandra; Susani, Lucia; Lizier, Michela; Lagutina, Irina; Focarelli, Maria Luisa; Recordati, Camilla; Uva, Paolo; Faggioli, Francesca; Neri, Tui; Scanziani, Eugenio; Galli, Cesare; Lucchini, Franco; Villa, Anna; Vezzoni, Paolo

    2015-01-01

    Genomic disorders resulting from large rearrangements of the genome remain an important unsolved issue in gene therapy. Chromosome transplantation, defined as the perfect replacement of an endogenous chromosome with a homologous one, has the potential of curing this kind of disorders. Here we report the first successful case of chromosome transplantation by replacement of an endogenous X chromosome carrying a mutation in the Hprt gene with a normal one in mouse embryonic stem cells (ESCs), correcting the genetic defect. The defect was also corrected by replacing the Y chromosome with an X chromosome. Chromosome transplanted clones maintained in vitro and in vivo features of stemness and contributed to chimera formation. Genome integrity was confirmed by cytogenetic and molecular genome analysis. The approach here proposed, with some modifications, might be used to cure various disorders due to other X chromosome aberrations in induced pluripotent stem (iPS) cells derived from affected patients. PMID:26485770

  3. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  4. Optical aberration compensation in a multiplexed optical trapping system

    NASA Astrophysics Data System (ADS)

    Čižmár, T.; Dalgarno, H. I. C.; Ashok, P. C.; Gunn-Moore, F. J.; Dholakia, K.

    2011-04-01

    In this paper we discuss optical aberrations within a multiplexed optical trapping system. We analyze two of the most powerful methods for optical trap multiplexing: time-shared beam steering and holographic beam shaping in a tandem system with an acousto-optic deflector and spatial light modulator. We show how to isolate and correct for the aberrations introduced by these individual optical components using the spatial light modulator and demonstrate the enhancement this provides to optical trapping.

  5. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Fu, Yuegang; Liu, Zhiying; Zhang, Lei; Wang, Jiake; Zheng, Yang; Li, Yahong

    2017-03-01

    The polarization aberrations of a complex optical system with multi-element lens have been investigated using a 3D polarization aberration function. The 3D polarization ray-tracing matrix has been combined with the optical path difference to obtain a 3D polarization aberration function, which avoids the need for a complicated phase unwrapping process. The polarization aberrations of a microscope objective have been analyzed to include, the distributions of 3D polarization aberration functions, diattenuation aberration, retardance aberration, and polarization-dependent intensity on the exit pupil. Further, the aberrations created by the field of view and the coating on the distribution rules of 3D polarization aberration functions are discussed in detail. Finally a novel appropriate field of view and wavelength correction is proposed for a polarization aberration function which optimizes the image quality of a multi-element optical system.

  6. Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9

    PubMed Central

    Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong

    2016-01-01

    Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. Significance In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. PMID:26676643

  7. Cosmological parameter estimation: impact of CMB aberration

    SciTech Connect

    Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  8. The influence of Cs/Cc correction in analytical imaging and spectroscopy in scanning and transmission electron microscopy

    SciTech Connect

    Zaluzec, Nestor J.

    2014-11-11

    Aberration correction in scanning/transmission electron microscopy (S/TEM) owes much to the efforts of a small dedicated group of innovators. Leading that frontier has been Prof. Harald Rose. To date his leadership and dynamic personality has spearheaded our ability to leave behind many of the limitations imposed by spherical aberration (Cs) in high resolution phase contrast imaging. Following shortly behind, has been the development of chromatic aberration correction (Cc) which augments those accomplishments. In this study we will review and summarize how the combination of Cs/Cc technology enhances our ability to conduct hyperspectral imaging and spectroscopy in today's and future computationally mediated experiments in both thin as well as realistic specimens in vacuo and during in-situ/environmental experiments.

  9. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations.

    PubMed

    Lee, Seo-Young; Chung, Sun-Ku

    2016-01-01

    The recent advent of induced pluripotent stem cells (iPSCs) and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson's disease, it has been well known that induced neural stem cells (iNSCs) were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S). Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S), it would be ideal to simultaneously treat the LRRK2 (G2019S) fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD) and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required.

  10. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations

    PubMed Central

    Lee, Seo-Young

    2016-01-01

    The recent advent of induced pluripotent stem cells (iPSCs) and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson's disease, it has been well known that induced neural stem cells (iNSCs) were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S). Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S), it would be ideal to simultaneously treat the LRRK2 (G2019S) fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD) and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required. PMID:28074097

  11. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE PAGES

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; ...

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  12. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    SciTech Connect

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.; Wharry, Janelle P.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void, cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.

  13. Targeted gene correction of RUNX1 in induced pluripotent stem cells derived from familial platelet disorder with propensity to myeloid malignancy restores normal megakaryopoiesis.

    PubMed

    Iizuka, Hiromitsu; Kagoya, Yuki; Kataoka, Keisuke; Yoshimi, Akihide; Miyauchi, Masashi; Taoka, Kazuki; Kumano, Keiki; Yamamoto, Takashi; Hotta, Akitsu; Arai, Shunya; Kurokawa, Mineo

    2015-10-01

    Familial platelet disorder with propensity to acute myeloid leukemia (FPD/AML) is an autosomal dominant disease associated with a germline mutation in the RUNX1 gene and is characterized by thrombocytopenia and an increased risk of developing myeloid malignancies. We generated induced pluripotent stem cells (iPSCs) from dermal fibroblasts of a patient with FPD/AML possessing a nonsense mutation R174X in the RUNX1 gene. Consistent with the clinical characteristics of the disease, FPD iPSC-derived hematopoietic progenitor cells were significantly impaired in undergoing megakaryocytic differentiation and subsequent maturation, as determined by colony-forming cell assay and surface marker analysis. Notably, when we corrected the RUNX1 mutation using transcription activator-like effector nucleases in conjunction with a donor plasmid containing normal RUNX1 cDNA sequences, megakaryopoiesis and subsequent maturation were restored in FPD iPSC-derived hematopoietic cells. These findings clearly indicate that the RUNX1 mutation is robustly associated with thrombocytopenia in patients with FPD/AML, and transcription activator-like effector nuclease-mediated gene correction in iPSCs generated from patient-derived cells could provide a promising clinical application for treatment of the disease.

  14. Targeted Gene Addition to a Safe Harbor locus in human CD34+ Hematopoietic Stem Cells for Correction of X-linked Chronic Granulomatous Disease

    PubMed Central

    De Ravin, Suk See; Reik, Andreas; Liu, Pei-Qi; Li, Linhong; Wu, Xiaolin; Su, Ling; Raley, Castle; Theobald, Narda; Choi, Uimook; Song, Alexander H.; Chan, Andy; Pearl, Jocelynn R.; Paschon, David E.; Lee, Janet; Newcombe, Hannah; Koontz, Sherry; Sweeney, Colin; Shivak, David A.; Zarember, Kol A.; Peshwa, Madhusudan V.; Gregory, Philip D.; Urnov, Fyodor D.; Malech, Harry L.

    2016-01-01

    Gene therapy with genetically modified human CD34+ hematopoietic stem cells (HSCs) may be safer using targeted integration (TI) of transgenes into a genomic ‘safe harbor’ site than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno associated virus (AAV) 6 delivery of donor constructs in human HSCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus-positive HSCs with 6–16% human cell marking were observed following engraftment into mice. In HSCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in the gp91phox subunit of the NADPH oxidase, TI of a gp91phox transgene into AAVS1 in resulted in ~15% gp91phox expression and increased NADPH oxidase activity in ex vivo–derived neutrophils. In mice transplanted with corrected HSCs, 4–11% of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases. PMID:26950749

  15. 77 FR 61229 - Availability of Records; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Part 1631 Availability of Records; Correction AGENCY: Federal Retirement Thrift Investment Board... INFORMATION: This document contains corrections to FRTIB regulations stemming from the direct final...

  16. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse.

    PubMed

    Meng, Xing-Li; Shen, Jin-Song; Ohashi, Toya; Maeda, Hiroshi; Kim, Seung Up; Eto, Yoshikatsu

    2003-10-15

    In the present study, we investigated the feasibility of using human neural stem cells (NSCs) in the treatment of diffuse central nervous system (CNS) alterations in a murine model of mucopolysaccharidosis VII (MPS VII), a lysosomal storage disease caused by a genetic defect in the beta-glucuronidase gene. An immortalized NSC line derived from human fetal telencephalon was genetically engineered to overexpress beta-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mouse. Transplanted human NSCs were found to integrate and migrate in the host brain and to produce large amount of beta-glucuronidase. Brain contents of the substrates of beta-glucuronidase were reduced to nearly normal levels, and widespread clearing of lysosomal storage was observed in the MPS VII mouse brain at 25 days posttransplantation. The number of engrafted cells decreased markedly after the transplantation, and it appears that the major cause of the cell death was not the immune response of the host but apoptotic cell death of grafted human NSCs. Results showed that human NSCs would serve as a useful gene transfer vehicle for the treatment of diffuse CNS lesions in human lysosomal storage diseases and are potentially applicable in the treatment of patients suffering from neurological disorders.

  17. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy

    PubMed Central

    Bauer, Thomas R.; Hai, Mehreen; Tuschong, Laura M.; Burkholder, Tanya H.; Gu, Yu-chen; Sokolic, Robert A.; Ferguson, Cole; Dunbar, Cynthia E.; Hickstein, Dennis D.

    2006-01-01

    Canine leukocyte adhesion deficiency (CLAD) represents the canine counter-part of the human disease leukocyte adhesion deficiency (LAD). Defects in the leukocyte integrin CD18 adhesion molecule in both CLAD and LAD lead to recurrent, life-threatening bacterial infections. We evaluated ex vivo retroviral-mediated gene therapy in CLAD using 2 nonmyeloablative conditioning regimens—200 cGy total body irradiation (TBI) or 10 mg/kg busulfan—with or without posttransplantation immunosuppression. In 6 of 11 treated CLAD dogs, therapeutic levels of CD18+ leukocytes were achieved. Conditioning with either TBI or busulfan allowed long-term engraftment, and immunosuppression was not required for efficacy. The percentage of CD18+ leukocytes in the peripheral blood progressively increased over 6 to 8 months after infusion to levels ranging from 1.26% to 8.37% at 1-year follow-up in the 6 dogs. These levels resulted in reversal or moderation of the severe CLAD phenotype. Linear amplification–mediated polymerase chain reaction assays indicated polyclonality of insertion sites. These results describe ex vivo hematopoietic stem cell gene transfer in a disease-specific, large animal model using 2 clinically applicable conditioning regimens, and they provide support for the use of nonmyeloablative conditioning regimens in preclinical protocols of retroviral-mediated gene transfer for nonmalignant hematopoietic diseases such as LAD. PMID:16868255

  18. Site-specific genome editing for correction of induced pluripotent stem cells derived from dominant dystrophic epidermolysis bullosa.

    PubMed

    Shinkuma, Satoru; Guo, Zongyou; Christiano, Angela M

    2016-05-17

    Genome editing with engineered site-specific endonucleases involves nonhomologous end-joining, leading to reading frame disruption. The approach is applicable to dominant negative disorders, which can be treated simply by knocking out the mutant allele, while leaving the normal allele intact. We applied this strategy to dominant dystrophic epidermolysis bullosa (DDEB), which is caused by a dominant negative mutation in the COL7A1 gene encoding type VII collagen (COL7). We performed genome editing with TALENs and CRISPR/Cas9 targeting the mutation, c.8068_8084delinsGA. We then cotransfected Cas9 and guide RNA expression vectors expressed with GFP and DsRed, respectively, into induced pluripotent stem cells (iPSCs) generated from DDEB fibroblasts. After sorting, 90% of the iPSCs were edited, and we selected four gene-edited iPSC lines for further study. These iPSCs were differentiated into keratinocytes and fibroblasts secreting COL7. RT-PCR and Western blot analyses revealed gene-edited COL7 with frameshift mutations degraded at the protein level. In addition, we confirmed that the gene-edited truncated COL7 could neither associate with normal COL7 nor undergo triple helix formation. Our data establish the feasibility of mutation site-specific genome editing in dominant negative disorders.

  19. [Efficacy of mesenchymal stem cells intracerebral transplantation for the correction of age-related cerebral microcirculation alterations in rats].

    PubMed

    Sokolova, I B; Fedotova, O R; Gilerovich, E G; Sergeev, I V; Anisimov, S V; Puzanov, M V; Dvoretskiĭ, D P

    2014-01-01

    Using a television-based vital microscopy method and immunohystochemical analysis, we have assessed the effect of intracerebral transplantation of syngeneic mesenchymal stem cells (MSC) on the brain cortex structure and the microcirculation in the pia mater of old rats. Using "open field" system, we have studied the effect of MSC transplantation on position-finding and discovery behavior of older animals. We have found that density of microvascular network of the pia mater increased ca. 1.9-fold in MSC recipients, compared to age-matched intact animals. Density of the arteriolar area of microvascular network of the pia mater increased ca. 2-fold. Reactivity of the newly formed arterioles was nearly equal to that of native microvessels. Intracerebral transplantation procedure itself was traumatic for brain cortex of rats, but it had no effect on the microcirculation in the contralateral hemisphere. Intracerebral transplantation of MSC did not improve locomotor behavi- or and emotional stage of old rats, did not increase their position-finding and discovery activity.

  20. Clinical and immunological correction of DOCK8 deficiency by allogeneic hematopoietic stem cell transplantation following a reduced toxicity conditioning regimen.

    PubMed

    Boztug, Heidrun; Karitnig-Weiß, Cäcilia; Ausserer, Bernd; Renner, Ellen D; Albert, Michael H; Sawalle-Belohradsky, Julie; Belohradsky, Bernd H; Mann, Georg; Horcher, Ernst; Rümmele-Waibel, Alexandra; Geyeregger, Rene; Lakatos, Karoly; Peters, Christina; Lawitschka, Anita; Matthes-Martin, Susanne

    2012-10-01

    Dedicator of cytokinesis 8 protein (DOCK8) deficiency is a combined immunodeficiency disorder characterized by an expanding clinical picture with typical features of recurrent respiratory or gastrointestinal tract infections, atopic eczema, food allergies, chronic viral infections of the skin, and blood eosinophilia often accompanied by elevated serum IgE levels. The only definitive treatment option is allogeneic hematopoietic stem cell transplantation (HSCT). We report a patient with early severe manifestation of DOCK8 deficiency, who underwent unrelated allogeneic HSCT at the age of 3 years following a reduced toxicity conditioning regimen. The transplant course was complicated by pulmonary aspergilloma pretransplantation, adenovirus (ADV) reactivation, and cytomegalovirus (CMV) pneumonitis 4 weeks after transplantation. With antifungal and antiviral treatment the patient recovered. Seven months after transplantation the patient is in excellent clinical condition. Eczematous rash, chronic viral skin infections, and food allergies have subsided, associated with normalization of IgE levels and absolute numbers of eosinophils. Chimerism analysis shows stable full donor chimerism. DOCK8 deficiency can be successfully cured by allogeneic HSCT. This treatment option should be considered early after diagnosis, as opportunistic infections and malignancies that occur more frequently during the natural course of the disease are associated with higher morbidity and mortality.

  1. Photolithography for the static compensation of human eye aberrations

    NASA Astrophysics Data System (ADS)

    Bara, Salvador; Jaroszewicz, Zbigniew

    2004-08-01

    Recent developments in human eye aberration measurements allow to design and fabricate compensating elements aiming to achieve aberration-limited imaging. This is important not merely from a subject's viewpoint (improving the sharpness of the outer world images formed at the retina) but mainly for clinical instrumentation purposes, especially those dealing with high-resolution retinal imaging (eye fundus cameras, scanning laser ophtlalmosopes, etc.). Here we report recent developments in the correction of the static component of the eye aberrations. Aberration data of several subjects were used for manufacturing personally customized phase plates designed to compensate for the wave aberration in the human eye. These plates were made by gray-level single-mask photosculpture in photoresist and then placed in front of the eye. The effects of misalignments as well as the strategy to design wide-field correcting elements are briefly revised. Applications include improving images in scanning laser ophtalmoscopes. The future plans of research including application of axicons for compensation of the lack of accommodation and kinoforms cancelling high amounts of eye's aberrations in monochromatic illumination are also sketched.

  2. Implementing an Accurate and Rapid Sparse Sampling Approach for Low-Dose Atomic Resolution STEM Imaging

    SciTech Connect

    Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; Browning, Nigel D.

    2016-10-17

    Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce the electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.

  3. Measuring chromatic aberrations in imaging systems using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gennaro, Sylvain D.; Roschuk, Tyler R.; Maier, Stefan A.; Oulton, Rupert F.

    2016-04-01

    Chromatic aberration in optical systems arises from the wavelength dependence of a glass's refractive index. Polychromatic rays incident upon an optical surface are refracted at slightly different angles and in traversing an optical system follow distinct paths creating images displaced according to color. Although arising from dispersion, it manifests as a spatial distortion correctable only with compound lenses with multiple glasses and accumulates in complicated imaging systems. While chromatic aberration is measured with interferometry, simple methods are attractive for their ease of use and low cost. In this letter we retrieve the longitudinal chromatic focal shift of high numerical aperture (NA) microscope objectives from the extinction spectra of metallic nanoparticles within the focal plane. The method is accurate for high NA objectives with apochromatic correction, and enables rapid assessment of the chromatic aberration of any complete microscopy systems, since it is straightforward to implement

  4. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms.

  5. Using Aberrant Behaviors as Reinforcers for Autistic Children.

    ERIC Educational Resources Information Center

    Charlop, Marjorie H.; And Others

    1990-01-01

    Three experiments assessed the efficacy of various reinforcers to increase correct task responding in a total of 10 autistic children, aged 6-9. Of the reinforcers used (stereotypy, delayed echolalia, perseverative behavior, and food), task performance was highest with opportunities to engage in aberrant behaviors, and lowest with edible…

  6. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  7. Image Ellipticity from Atmospheric Aberrations

    SciTech Connect

    de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-03-06

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.

  8. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2016-01-01

    We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured.

  9. 77 FR 60039 - Availability of Records; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Part 1631 Availability of Records; Correction AGENCY: Federal Retirement Thrift Investment Board. ACTION: Direct final rule; correction. SUMMARY: The Federal Retirement Thrift Investment Board (Agency... corrections to FRTIB regulations stemming from the direct final rule published in the February 27,...

  10. Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells.

    PubMed

    Carbone, Annalucia; Castellani, Stefano; Favia, Maria; Diana, Anna; Paracchini, Valentina; Di Gioia, Sante; Seia, Manuela; Casavola, Valeria; Colombo, Carla; Conese, Massimo

    2014-08-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype.

  11. Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells

    PubMed Central

    Carbone, Annalucia; Castellani, Stefano; Favia, Maria; Diana, Anna; Paracchini, Valentina; Di Gioia, Sante; Seia, Manuela; Casavola, Valeria; Colombo, Carla; Conese, Massimo

    2014-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype. PMID:24894806

  12. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  13. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser.

    SciTech Connect

    LaFortune, K N; Hurd, R L; Johansson, E M; Dane, C B; Fochs, S N; Brase, J M

    2004-01-12

    The Solid-State, Heat-Capacity Laser (SSHCL), under development at Lawrence Livermore National Laboratory is a large aperture (100 cm{sup 2}), confocal, unstable resonator requiring near-diffraction-limited beam quality. There are two primary sources of the aberrations in the system: residual, static aberrations from the fabrication of the optical components and predictable, time-dependent, thermally-induced index gradients within the gain medium. A deformable mirror placed within the cavity is used to correct the aberrations that are sensed externally with a Shack-Hartmann wavefront sensor. Although it is more challenging than external correction, intracavity correction enables control of the mode growth within the resonator, resulting in the ability to correct a more aberrated system longer. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results from initial correction of the static aberrations and dynamic correction of the time-dependent aberrations are presented.

  14. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2004-05-13

    The Solid-State, Heat-Capacity Laser (SSHCL), under development at Lawrence Livermore National Laboratory (LLNL) is a large aperture (100 cm{sup 2}), confocal, unstable resonator requiring near-diffraction-limited beam quality. There are two primary sources of the aberrations in the system: residual, static aberrations from the fabrication of the optical components and predictable, time-dependent, thermally-induced index gradients within the gain medium. A deformable mirror placed within the cavity is used to correct the aberrations that are sensed externally with a Shack-Hartmann wavefront sensor. Although the complexity of intracavity adaptive correction is greater than that of external correction, it enables control of the mode growth within the resonator, resulting in the ability to correct a more aberrated system longer. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results from initial correction of the static aberrations and dynamic correction of the time-dependent aberrations are presented.

  15. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  16. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  17. Non-iterative Aberration Correction of a Multiple Transmitter System

    DTIC Science & Technology

    2011-09-01

    pupil. The shift due to transmitter locations is given by xT and yT. Note that for a given aperture the phase error value is static and doesn’t shift ...wpafb.af.mil Abstract: Multi-transmitter aperture synthesis provides aperture gain and improves effective aperture fill factor by shifting the received...techniques; (090.1995) Digital holography . References and links 1. J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE

  18. Phase aberration simulation study of MRgFUS breast treatments

    PubMed Central

    Farrer, Alexis I.; Almquist, Scott; Dillon, Christopher R.; Neumayer, Leigh A.; Parker, Dennis L.; Christensen, Douglas A.; Payne, Allison

    2016-01-01

    Purpose: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models. Methods: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element’s transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of

  19. Wave aberration function and its definition

    NASA Astrophysics Data System (ADS)

    Zverev, V. A.; Rytova, E. S.; Timoshchuk, I. N.

    2011-06-01

    A definition of a wave aberration as a phase shift upon composition of light waves in the image of a point is given using the concept of point eikonal. An expression that determines the total differential of a wave aberration function is obtained and the condition of its integrability is determined. The sequence of the wave aberration function definition at the known functions of the meridional and sagittal components of lateral aberration is presented.

  20. Using geometric algebra to study optical aberrations

    SciTech Connect

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  1. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  2. CLASSICAL AREAS OF PHENOMENOLOGY: Study on the design and Zernike aberrations of a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Yu; Li, Lin; Huang, Yi-Fan

    2009-07-01

    The segmented mirror telescope is widely used. The aberrations of segmented mirror systems are different from single mirror systems. This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems. It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem. The design of a segmented space telescope and segmented schemes are discussed, and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.

  3. Phase Aberrations in Diffraction Microscopy

    SciTech Connect

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  4. Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm.

    PubMed

    Fang, Yi-Chin; Tsai, Chen-Mu; Macdonald, John; Pai, Yang-Chieh

    2007-05-01

    Two different types of Gauss lens design, which effectively eliminate primary chromatic aberration, are presented using an efficient genetic algorithm (GA). The current GA has to deal with too many targets in optical global optimization so that the performance is not much improved. Generally speaking, achromatic aberrations have a great relationship with variable glass sets for all elements. For optics whose design is roughly convergent, glass sets for optics will play a significant role in axial and lateral color aberration. Therefore better results might be derived from the optimal process of eliminating achromatic aberration, which could be carried out by finding feasible glass sets in advance. As an alternative, we propose a new optimization process by using a GA and involving theories of geometrical optics in order to select the best optical glass combination. Two Gauss-type lens designs are employed in this research. First, a telephoto lens design is sensitive to axial aberration because of its long focal length, and second, a wide-angle Gauss design is complicated by lateral color aberration at the extreme corners because Gauss design is well known not to deal well with wide-angle problems. Without numbers of higher chief rays passing the element, it is difficult to correct lateral color aberration altogether for the Gauss design. The results and conclusions show that the attempts to eliminate primary chromatic aberrations were successful.

  5. Wide-field aberration corrector for spherical gossamer primary mirrors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2000-10-01

    If gossamer primary mirrors were to be constructed in a spherical form, it would be possible to arrange a simple null- test in situ. However, spherical mirrors would require correction of the large amount of spherical aberration created in pupils that generally will be greater than 2 m diameter. The design requirement is for diffraction-limited performance over a useful angular field. The otherwise excellent wide- field design solutions of the classical Schmidt and Maksutov are inapplicable in gossamer structures because of the mass and size penalty of large refractive components. However, it is possible for this mode of correction to be achieved near the prime focus by means of pupil transfer optics that minify the large entrance pupil down to more acceptable dimensions. A problem with these solutions is constraint of field coverage due to pupil aberrations created by the large spherical aberration of the primary mirror. This leads the designer towards slower primaries and the penalty of larger, heavier structures. A solution is presented here for spherical primaries with speeds up to f/4. This is based on the 'KiwiStar' principle presented here in 1997, in which a large spherical catoptric is combined by pupil-transfer with a smaller spherical catadioptric to give well corrected wide field images of high speed. This system is well suited to correction at the prime focus of large spherical mirrors, and has only one relatively small weak aspheric surface to provide zonal correction, all other surfaces being spherical. An example is presented of a 4 m diameter, f/2.5 system that is diffraction-limited over the whole of a 0.25 degree field (43 mm diameter), for a bandpass of 486 - 850 nm.

  6. Seidel aberrations of the Gabor superlens.

    PubMed

    Hamilton Shepard, R

    2014-02-10

    Equations are presented for the third-order Seidel aberrations of the Gabor superlens (GSL) as a function of microtelescope channel position within the aperture array. To reveal the origin and form of increasing aberration with channel height, Seidel coefficients are derived as a function of the accumulating pitch difference between the lens arrays and the aberrations present in the centered channel. Two- and three-element Gabor lenses are investigated and their aberrations are expressed as a function of first-order design parameters. The derived theory is then compared to a real ray trace simulation to demonstrate the accuracy of third-order aberration theory to predict GSL image quality.

  7. Relations between Neurological Aberrations and Psychological Dysfunctions in Children with Serious Language Problems.

    ERIC Educational Resources Information Center

    Bo, Ola O.; And Others

    1992-01-01

    Relationships between neuropsychological aberrations and psychological dysfunction were studied for 20 Swedish children (average age around 10 years at first testing) with serious language problems through (1) electroencephalography; (2) brain stem response audiometry; (3) magnetic resonance imaging; and (4) brain electric activity mapping by…

  8. Aberration

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (1) The apparent displacement of a star from its mean position on the celestial sphere due to the velocity of the Earth in its orbit around the Sun. The phenomenon was discovered in 1729 by James Bradley (1693-1762) who was, in fact, trying to measure stellar parallax. The displacement is caused by the combination of the velocity of the Earth and the velocity of light approaching from the source. ...

  9. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  10. Aberration estimation from single point image in a simulated adaptive optics system.

    PubMed

    Grisan, Enrico; Frassetto, Fabio; Da Deppo, Vania; Naletto, Giampiero; Ruggeri, Alfredo

    2005-01-01

    Adaptive optics has been recently applied for the development of ophthalmic devices, with the main objective of obtaining higher resolution images for diagnostic purposes or ideally correcting high-order eye aberrations. The core of every adaptive optics systems is an optical device that is able to modify the wavefront shape of the light entering a system: once the shape of the incoming wavefront has been estimated, by means of this device it is possible to correct the aberrations introduced along the optical path. The aim of this paper is to demonstrate the feasibility, although in a simulated system, of estimating and correcting the wavefront shape simply by means of an iterative software analysis of a single point source image, thus avoiding expensive wavefront sensors or the burdensome computation of the PSF of the optical system. To test the proposed algorithm, a simple optical system has been simulated with a ray-tracing software and a program to estimate the Zernike coefficients of the simulated aberration from the analysis of the source image has been developed. Numerical indexes were used to evaluate the capability of the software of correctly estimating the Zernike coefficients. Even if only defocus, astigmatism and coma were considered, the very satisfactory results obtained confirm the soundness of this new approach and encourage further work in this direction, in order to develop a system able to estimate also spherical aberration, tilt and field curvature. An implementation of this aberration estimation in a real AO system is also currently in progress.

  11. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  12. The Sensitivity of Shaped Pupil Coronagraphs to Optical Aberrations

    NASA Technical Reports Server (NTRS)

    Green, Joseph J.; Shaklan, Stuart B.; Vanderbei, Robert J.; Kasdin, N. Jeremy

    2004-01-01

    Unlike focal-plane coronagraphs that use occulting spots and Lyot stops to eliminate diffraction, pupil-plane coronagraphs operate by shaping the pupil to redirect the diffracted stellar light into a tight core. As in focal-plane coronagraphs, the optical aberrations in the telescope must be sufficiently corrected to enable high contrast imaging. However, in shaped-pupil coronagraphs, the low-order aberrations resulting from misalignment and optical figure drift have a much smaller influence upon the contrast at at the inner working angle. These weaker sensitivities greatly relax the strict low-order wavefront stability required for high-contrast imaging the cost of some throughput. In this paper, we present the simulated performance of the concentric ring shaped pupil concepts comparing them to focal-plane coronagraphs that are optimized for the same inner working angles.

  13. Filtering chromatic aberration for wide acceptance angle electrostatic lenses.

    PubMed

    Fazekas, Ádám; Tóth, László

    2014-07-01

    Chromatic aberration is a major issue for imaging mainly with large acceptance angle electrostatic lenses. Its correction is necessary to take advantage of the outstanding spatial and angular resolution that these lenses provide. We propose a method to eliminate the effect of chromatic aberration on the measured images by determining the impact resulting from higher and lower kinetic energies. Based on a spectral image sequence and a matrix, which describes the transmission function of the lens, a system of linear equations is solved to approximate the 2D spectral intensity distribution of the sample surface. We present the description of our method and preliminary test results, which show significant contrast and image quality improvement. The presented algorithm can also be applied as a software-based energy analyzer.

  14. STEM, STEM Education, STEMmania

    ERIC Educational Resources Information Center

    Sanders, Mark

    2009-01-01

    In this article, the author introduces integrative STEM (science, technology, engineering, and/or mathematics) education and discusses the importance of the program. The notion of integrative STEM education includes approaches that explore teaching and learning between/among any two or more of the STEM subject areas, and/or between a STEM subject…

  15. Image aberrations in optical three-dimensional measurement systems with fringe projection.

    PubMed

    Brakhage, Peter; Notni, Gunther; Kowarschik, Richard

    2004-06-01

    In optical shape measurement systems, systematic errors appear as a result of imaging aberrations of the lens assemblies in the cameras and projectors. A mathematical description of this effect is intended to correct the whole measurement area with a few independent coefficients. We apply the ideas of photogrammetry to one- and two-dimensional fringe projection techniques. We also introduce some new terms for close-range applications and telecentric objectives. Further, an algorithm for distance-dependent corrections is introduced. Also, we describe a new method with which to determine coefficients of aberration with an optimization-based method.

  16. The misalignment induced aberrations of TMA telescopes.

    PubMed

    Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P

    2008-12-08

    The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

  17. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence.

  18. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy.

    PubMed

    Freitag, B; Kujawa, S; Mul, P M; Ringnalda, J; Tiemeijer, P C

    2005-02-01

    Since the invention of transmission electron microscopy (TEM) in 1932 (Z. Physik 78 (1932) 318) engineering improvements have advanced system resolutions to levels that are now limited only by the two fundamental aberrations of electron lenses; spherical and chromatic aberration (Z. Phys. 101 (1936) 593). Since both aberrations scale with the dimensions of the lens, research resolution requirements are pushing the designs to lenses with only a few mm space in the pole-piece gap for the specimen. This is in conflict with the demand for more and more space at the specimen, necessary in order to enable novel techniques in TEM, such as He-cooled cryo electron microscopy, 3D-reconstruction through tomography (Science 302 (2003) 1396) TEM in gaseous environments, or in situ experiments (Nature 427 (2004) 426). All these techniques will only be able to achieve Angstrom resolution when the aberration barriers have been overcome. The spherical aberration barrier has recently been broken by introducing spherical aberration correctors (Nature 392 (1998) 392, 418 (2002) 617), but the correction of the remaining chromatic aberrations have proved to be too difficult for the present state of technology (Optik 57 (1980) 73). Here we present an alternative and successful method to eliminate the chromatic blur, which consists of monochromating the TEM beam (Inst. Phys. Conf. Ser. 161 (1999) 191). We show directly interpretable resolutions well below 1A for the first time, which is significantly better than any TEM operating at 200 KV has reached before.

  19. Chromatic aberration measurement for transmission interferometric testing.

    PubMed

    Seong, Kibyung; Greivenkamp, John E

    2008-12-10

    A method of chromatic aberration measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. The chromatic aberration is derived from transmitted wavefronts measured at five different wavelengths. Reverse ray tracing is used to remove induced aberrations associated with the interferometer from the measurement. In the interferometer, the wavefront transmitted through the sample is tested against a plano reference, allowing for the absolute determination of the wavefront radius of curvature. The chromatic aberrations of a singlet and a doublet have been measured.

  20. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  1. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections.

    PubMed

    Junk, J; Ulber, B; Vidal, S; Eickermann, M

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  2. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections

    NASA Astrophysics Data System (ADS)

    Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  3. Aberrations of varied line-space grazing incidence gratings in converging light beams

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.

    1984-01-01

    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  4. Binocular adaptive optics visual simulator: understanding the impact of aberrations on actual vision

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Prieto, Pedro M.; Artal, Pablo

    2010-02-01

    A novel adaptive optics system is presented for the study of vision. The apparatus is capable for binocular operation. The binocular adaptive optics visual simulator permits measuring and manipulating ocular aberrations of the two eyes simultaneously. Aberrations can be corrected, or modified, while the subject performs visual testing under binocular vision. One of the most remarkable features of the apparatus consists on the use of a single correcting device, and a single wavefront sensor (Hartmann-Shack). Both the operation and the total cost of the instrument largely benefit from this attribute. The correcting device is a liquid-crystal-on-silicon (LCOS) spatial light modulator. The basic performance of the visual simulator consists in the simultaneous projection of the two eyes' pupils onto both the corrector and sensor. Examples of the potential of the apparatus for the study of the impact of the aberrations under binocular vision are presented. Measurements of contrast sensitivity with modified combinations of spherical aberration through focus are shown. Special attention was paid on the simulation of monovision, where one eye is corrected for far vision while the other is focused at near distance. The results suggest complex binocular interactions. The apparatus can be dedicated to the better understanding of the vision mechanism, which might have an important impact in developing new protocols and treatments for presbyopia. The technique and the instrument might contribute to search optimized ophthalmic corrections.

  5. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  6. New insides in the characterization of HDS industrial catalysts by HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Del Angel, Paz; Ponce, Arturo; Arellano, Josefina; Yacaman, Miguel J.; Hernandez-Pichardo, Martha; Montoya, J. Ascencion; Escobar, Jose

    2015-03-01

    Hydrodesulfurization (HDS) catalysts are of great importance in the petroleum industry. Transition metal sulphides catalysts of Ni(Co)Mo(W)/Al2O3 are widely used for hydrotreating reactions, like hydrodenitrogenation and HDS. One of the main issue in these catalysts is to understand the mechanism of the reaction, where MoS2 plays the most important role in the catalytic activity. We studied an industrial NiMo/Alumina sulfide catalyst highly active by using aberration-corrected HAADF-STEM techniques. The used catalysts was a state-of- the art commercial nickel-molybdenum alumina-supported formulation, including organic agent modifier. This type of material belongs to a novel family of catalysts specially designed for ultra-low sulfur production from straight-run gas oil (SRGO), cycle oil, coker gas oil, or their combinations at operating conditions of commercial interest in hydrotreating units at industrial scale. Aberration corrected HAADF-STEM allowed to observe the nanostructure and location of MoS2 and his interaction with the alumina. The results indicate that the MoS2 is highly dispersed on the alumina, however the location of Ni is one of the task of this kind of catalyst.

  7. Meningoencephalitis in two stranded California sea lions (Zalophus californianus) caused by aberrant trematode migration.

    PubMed

    Fauquier, Deborah; Gulland, Frances; Haulena, Martin; Dailey, Murray; Rietcheck, Randall L; Lipscomb, Thomas P

    2004-10-01

    Meningoencephalitis caused by aberrant trematode migration is described in two California sea lions (Zalophus californianus) admitted to a rehabilitation hospital between May and August 2001. Both animals displayed seizure activity and were euthanized due to poor response to therapy. Gross abnormal findings included liver flukes (Zalophotrema hepaticum) in the bile ducts and areas of swelling and necrosis in the cerebrum, cerebellum, and brain stem. Histopathology revealed meningoencephalitis with necrosis, hemorrhage, and many trematode eggs within the brain. In one sea lion, an adult trematode was found on the surface of the cerebrum. These are believed to be the first reported cases of meningoencephalitis caused by aberrant trematode migration in pinnipeds.

  8. On the visibility of "heavy" atoms in dark-field STEM

    NASA Astrophysics Data System (ADS)

    Shannon, M. D.; Nellist, P. D.; Nicolosi, V.; Shannon, G. B.; Shmeliov, A.

    2012-07-01

    One of the most useful and apparently straightforward attributes of annular dark-field (ADF) STEM imaging is the ability to image heavy atoms on relatively light substrates using Z-contrast (High-Angle ADF) imaging. From multislice calculations, however, some isolated heavy atoms, e.g. Re, can go undetected in a thin Co matrix in standard aberration-corrected HAADF-STEM imaging of catalyst nanoparticles oriented accurately on a zone-axis [2]. More recently simultaneous Medium-Angle and High-Angle ADF imaging of a few layers of BN has shown experimentally that some adatoms are invisible in MAADF whilst exhibiting very strong contrast in HAADF. Simulations confirm that this can occur for atoms such as sodium. In both situations HOLZ ring imaging can be used to extract additional information.

  9. Extremely high-power CO2 laser beam correction.

    PubMed

    Kudryashov, Alexis; Alexandrov, Alexander; Rukosuev, Alexey; Samarkin, Vadim; Galarneau, Pierre; Turbide, Simon; Châteauneuf, François

    2015-05-10

    This paper presents the results of high-power CO2 laser-aberration correction and jitter stabilization. A bimorph deformable mirror and two tip-tilt piezo correctors were used as executive elements. Two types of wavefront sensors, one Hartmann to measure higher-order aberrations (defocus, astigmatism etc.) based on an uncooled microbolometer long-wave infrared camera and the other a tip-tilt one based on the technology of obliquely sputtered, thin chromium films on Si substrates, were applied to measure wavefront aberrations. We discuss both positive and negative attributes of suggested wavefront sensors. The adaptive system is allowed to reduce aberrations of incoming laser radiation by seven times peak-to-valley and to stabilize the jitter of incoming beams up to 25 μrad at a speed of 100 Hz. The adaptive system frequency range for high-order aberration correction was 50 Hz.

  10. Removing lateral chromatic aberration in bright field optical microscopy.

    PubMed

    Guzmán-Altamirano, Miguel; Gutiérrez-Medina, Braulio

    2015-06-01

    We present an efficient alternative to remove lateral chromatic aberration (LCA) in bright field light microscopy images. Our procedure is based on error calibration using time-sequential acquisition at different wavelengths, and error correction through digital image warping. Measurement of the displacements of fiducial marks in the red and green images relative to blue provide calibration factors that are subsequently used in test images to realign color channels digitally. We demonstrate quantitative improvement in the position and boundaries of objects in target slides and in the color content and morphology of specimens in stained biological samples. Our results show a reduction of LCA content below the 0.1% level.

  11. Learning Disorders and Sex Chromosome Aberrations.

    ERIC Educational Resources Information Center

    Hier, D. B.; And Others

    1980-01-01

    In a prospective study of 20 adult dyslexic men, no sex chromosome aberrations were detected. A retrospective study of 89 Ss with known sex chromosome aberrations revealed 20 of them to be mentally retarded. Among the 69 Ss of normal intelligence, learning, speech, and attention disorders were frequent. (Author/DLS)

  12. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.

    PubMed

    Biffi, Alessandra; Montini, Eugenio; Lorioli, Laura; Cesani, Martina; Fumagalli, Francesca; Plati, Tiziana; Baldoli, Cristina; Martino, Sabata; Calabria, Andrea; Canale, Sabrina; Benedicenti, Fabrizio; Vallanti, Giuliana; Biasco, Luca; Leo, Simone; Kabbara, Nabil; Zanetti, Gianluigi; Rizzo, William B; Mehta, Nalini A L; Cicalese, Maria Pia; Casiraghi, Miriam; Boelens, Jaap J; Del Carro, Ubaldo; Dow, David J; Schmidt, Manfred; Assanelli, Andrea; Neduva, Victor; Di Serio, Clelia; Stupka, Elia; Gardner, Jason; von Kalle, Christof; Bordignon, Claudio; Ciceri, Fabio; Rovelli, Attilio; Roncarolo, Maria Grazia; Aiuti, Alessandro; Sessa, Maria; Naldini, Luigi

    2013-08-23

    Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disease caused by arylsulfatase A (ARSA) deficiency. Patients with MLD exhibit progressive motor and cognitive impairment and die within a few years of symptom onset. We used a lentiviral vector to transfer a functional ARSA gene into hematopoietic stem cells (HSCs) from three presymptomatic patients who showed genetic, biochemical, and neurophysiological evidence of late infantile MLD. After reinfusion of the gene-corrected HSCs, the patients showed extensive and stable ARSA gene replacement, which led to high enzyme expression throughout hematopoietic lineages and in cerebrospinal fluid. Analyses of vector integrations revealed no evidence of aberrant clonal behavior. The disease did not manifest or progress in the three patients 7 to 21 months beyond the predicted age of symptom onset. These findings indicate that extensive genetic engineering of human hematopoiesis can be achieved with lentiviral vectors and that this approach may offer therapeutic benefit for MLD patients.

  13. The research of calibration method on lens-tilt displacement transmission-type system based on the aberration bounded model

    NASA Astrophysics Data System (ADS)

    Xu, Chun-mei; Liu, Bing-qi; Li, Li; Huang, Fu-yu; Zhang, Chu

    2015-10-01

    As the developing appliance range of high-resolution optical design, the requirement on the aberration of system design is becoming higher and higher, but the installation and adjustment error of optical components is an important element which influences the aberration. The decentration and tilt of optical components result not only the image lateral displacement but also the aberration enlargement of the optical system, the research on image quality of plane symmetric optical system is becoming more and more popular. The Gaussian correction methods on lens decentration already exist, but it is short of theoretical research to guide the correction on the lens tilt, which leads to the effect of image lateral displacement. This thesis analyzes theoretically a mathematical model between the lens tilt degree and wave aberration, and deduces mathematically the correction equation of zero aberration increment under the aberration constraint condition. Taking an example of some type optical sight, the ZEMAX simulation is carried out to validate this method, and the results show that: This method can effectively guide the correction of lens tilt, and reduce the influence of lens position change on the optical imaging quality. It has important practical significance to guide high-resolution optical design.

  14. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  15. High-resolution STEM imaging with a quadrant detector--conditions for differential phase contrast microscopy in the weak phase object approximation.

    PubMed

    Majert, S; Kohl, H

    2015-01-01

    Differential phase contrast is a contrast mechanism that can be utilized in the scanning transmission electron microscope (STEM) to determine the distribution of magnetic or electric fields. In practice, several different detector geometries can be used to obtain differential phase contrast. As recent high resolution differential phase contrast experiments with the STEM are focused on ring quadrant detectors, we evaluate the contrast transfer characteristics of different quadrant detector geometries, namely two ring quadrant detectors with different inner detector angles and a conventional quadrant detector, by calculating the corresponding phase gradient transfer functions. For an ideal microscope and a weak phase object, this can be done analytically. The calculated phase gradient transfer functions indicate that the barely illuminated ring quadrant detector setup used for imaging magnetic fields in the specimen reduces the resolution limit to about 2.5Å for an aberration corrected STEM. Our results show that the resolution can be drastically improved by using a conventional quadrant detector instead.

  16. Statistical distribution of single atoms and clusters of supported Au catalyst analyzed by global high-resolution HAADF-STEM observation with morphological image-processing operation.

    PubMed

    Yamamoto, Yuta; Arai, Shigeo; Esaki, Akihiko; Ohyama, Junya; Satsuma, Atsushi; Tanaka, Nobuo

    2014-06-01

    We have developed a quantitative particle size analytical method at the single atomic level employing electron microscopy and image processing for the investigation of supported metal catalysts. In the present study, a supported gold (Au) catalyst containing sub-nano clusters and individual atoms was globally observed by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) using spherical aberration (Cs)-corrected TEM. To fully extract structural information of the Au clusters and individual atoms from the HAADF-STEM images, a morphological image-processing operation was applied. The resulting mean particle size was in good agreement with particle sizes estimated from average information provided by X-ray absorption fine structure analysis. It is demonstrated that the present HAADF-STEM image analysis gives a quantitative particle size distribution measurement of supported Au clusters and individual atoms.

  17. Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells.

    PubMed

    Shi, Qizhen; Kuether, Erin L; Chen, Yingyu; Schroeder, Jocelyn A; Fahs, Scot A; Montgomery, Robert R

    2014-01-16

    Our previous studies have demonstrated that platelet FVIII (2bF8) gene therapy can improve hemostasis in hemophilia A mice, even in the presence of inhibitory antibodies, but none of our studies has targeted human cells. Here, we evaluated the feasibility for lentivirus (LV)-mediated human platelet gene therapy of hemophilia A. Human platelet FVIII expression was introduced by 2bF8LV-mediated transduction of human cord blood (hCB) CD34(+) cells followed by xenotransplantation into immunocompromised NSG mice or NSG mice in an FVIII(null) background (NSGF8KO). Platelet FVIII was detected in all recipients that received 2bF8LV-transduced hCB cells as long as human platelet chimerism persisted. All NSGF8KO recipients (n = 7) that received 2bF8LV-transduced hCB cells survived tail clipping if animals had greater than 2% of platelets derived from 2bF8LV-transduced hCB cells, whereas 5 of 7 survived when human platelets were 0.3% to 2%. Whole blood clotting time analysis confirmed that hemostasis was improved in NSGF8KO mice that received 2bF8LV-transduced hCB cells. We demonstrate, for the first time, the feasibility of 2bF8LV gene delivery to human hematopoietic stem cells to introduce FVIII expression in human platelets and that human platelet-derived FVIII can improve hemostasis in hemophilia A.

  18. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron

  19. CuS2-Passivated Au-Core, Au3Cu-Shell Nanoparticles Analyzed by Atomistic-Resolution Cs-Corrected STEM

    PubMed Central

    Khanal, Subarna; Casillas, Gilberto; Bhattarai, Nabraj; Velázquez-Salazar, J. Jesús; Santiago, Ulises; Ponce, Arturo; Mejía-Rosales, Sergio

    2013-01-01

    Au-core, Au3Cu-alloyed shell nanoparticles passivated with CuS2 were fabricated by the polyol method, and characterized by Cs-corrected scanning transmission electron microscopy. The analysis of the high-resolution micrographs reveals that these nanoparticles have decahedral structure with shell periodicity, and that each of the particles is composed by Au core and Au3Cu alloyed shell surrounded by CuS2 surface layer. X-ray diffraction measurements and results from numerical simulations confirm these findings. From the atomic resolution micrographs we identified edge dislocations at the twin boundaries of the particles, as well as evidence of the diffusion of Cu atoms into the Au region, and the reordering of the lattice on the surface, close to the vertices of the particle. These defects will impact the atomic and electronic structures thereby changing the physical and chemical properties of the nanoparticles. On the other hand we show for the first time the formation of an ordered superlattice of Au3Cu and a self-capping layer made using one of the alloy metals. This has significant consequences on the physical mechanism that form multi component nanoparticles. PMID:23802756

  20. Active optics concept for hypertelescope aberration control and pupil densification

    NASA Astrophysics Data System (ADS)

    Dohlen, Kjetil; Dargent, Pascal; Ferrari, Marc; Lemaitre, Gerard R.

    2003-02-01

    One of the instrumental concepts under study for large baseline interferometers for high resolution astronomical imaging, in particular applied to exoplanet search and characterisation, is the hypertelescope (HT). Mainly considered for space deployment, this sparse array of mirror segments supported either by a struss structure or by free-flying micro satellites form a giant, diluted primary mirror. The focal plane instrumentation, including pupil densification optics, is located in the primary focus instrument space craft (ISC). Baselines considered for first-generation HTs are of the order of 100 m, but one can envisage kilometric arrays capable of unprecedented angular resolution. Pointing with such a telescope poses orbital navigation problems. Letting the entire array perform a slow sky-scanning motion and navigating the ISC within the primary focal plane in order to follow the image of the object may solve these problems. The ISC must therefore be equipped with aberration correction optics capable of covering a sufficiently large primary field of view, of the order of a few degrees. In this paper we present optical and mechanical concepts for combined aberration correction and pupil densification using multimode deformable mirror (MDM) and mechanically amplified piezo actuator technologies. Among the advantages of such a system over large monolithic corrector optics is the relaxation of piston alignment requirements for primary segments.

  1. Polarization aberrations of crossed folding mirrors

    NASA Astrophysics Data System (ADS)

    Crandall, David G.; Chipman, Russell A.

    1995-08-01

    Polarization aberrations due to varying polarization state across the field of view (FOV) are investigated for crossed folding mirrors. We define crossed mirrors as oriented in space such that s-polarized light incident on the first mirror is p-polarized at the second mirror. This completely compensates for polarization state changes at one point in the field of view. The resulting polarization aberrations are explored across the FOV using the example of aluminum mirrors overcoated with a 12 layer, highly reflective, dielectric stack. The polarization aberration is very low along a band across the field of view. For arbitrary points in the FOV, the retardance and diattenuation are slightly elliptical.

  2. Pharmacological correction of misfolding of ABC proteins☆

    PubMed Central

    Rudashevskaya, Elena L.; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-01-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  3. Stomach development, stem cells and disease.

    PubMed

    Kim, Tae-Hee; Shivdasani, Ramesh A

    2016-02-15

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.

  4. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  5. Visual and optical performance of eyes with different corneal spherical aberration implanted with aspheric intraocular lens

    PubMed Central

    Gong, Xian-Hui; Zheng, Qin-Xiang; Wang, Na; Chen, Ding; Zhao, Juan; Li, Jin; Zhao, Yun-E

    2012-01-01

    AIM To compare the visual and optical performance of eyes with different corneal spherical aberration (SA) implanted with spherical aberration-free intraocular lens (IOLs). METHODS Thirty-six patients with different corneal SA had phacoemulsification with implantation of spherical aberration-free IOLs. Patients were divided into 3 groups according to the value of preoperative corneal SA. Eyes with corneal SA <0.10µm were assigned to group A, those with 0.10 ≤corneal SA <0.20µm to Group B, and those with 0.20≤ corneal SA <0.35µm to Group C. Best-corrected visual acuity (BCVA), contrast sensitivity, corneal SA, total ocular aberrations, and depth of focus were recorded 3 months postoperatively. Distance-corrected near and intermediate visual acuity was studied to measure depth of focus. RESULTS BCVA and contrast sensitivity were similar between groups. There were no significant differences in distance-corrected near or intermediate visual acuity. Corneal SA was similar before and 3 months after surgery in the 3 groups. With a 5.0mm pupil diameter, root mean square values for total ocular higher-order aberrations (HOAs) were lower in groups A and B than in group C. Total ocular SA was lower in group A than in groups B and C. SA was also lower in group B than in group C. Coma and trefoil were similar between the groups. CONCLUSION Implantation of spherical aberration-free IOLs in eyes with different corneal SA results in similar visual performance at BCVA, contrast sensitivity and depth of focus. PMID:22773981

  6. Corrections stemming from the non-osculating character of the Andoyer variables used in the description of rotation of the elastic Earth

    NASA Astrophysics Data System (ADS)

    Escapa, Alberto

    2011-06-01

    compute the variations of the angular velocity through the approach developed in Getino and Ferrándiz (Celest. Mech. Dyn. Astron. 61:117-180, 1995), but considering the contribution of the convective terms. Specifically, we derive analytical formulas that determine the elastic perturbations of the directional angles of the angular velocity with respect to a non-rotating reference system, and also of its Cartesian components relative to the Tisserand reference system of the Earth. The perturbation of the directional angles of the angular velocity turns out to be different from the evolution law found in Kubo (Celest. Mech. Dyn. Astron. 105:261-274, 2009), where it was stated that the evolution of the angular velocity vector mimics that of the figure axis. We investigate comprehensively the source of this discrepancy, concluding that the difference between our results and those obtained in Ibid. stems from an oversimplification made by Kubo when computing the direct terms. Namely, in his computations Kubo disregarded the motion of the tide raising bodies with respect to a non-rotating reference system when compared with the Earth rotational motion. We demonstrate that, from a numerical perspective, the convective part provides the principal contribution to the variation of the directional angles and of length of day. In the case of the x and y components in the Tisserand system, the convective contribution is of the same order of magnitude as the direct one. Finally, we show that the approximation employed in Kubo ( Ibid.) leads to significant numerical differences at the level of a hundred micro-arcsecond.

  7. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  8. Prediction of Visual Acuity from Wavefront Aberrations

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2013-01-01

    A method for generating a visual acuity metric, based on wavefront aberrations (WFAs), associated with a test subject and representing classes of imperfections, such as defocus, astigmatism, coma and spherical aberrations, of the subject's visual system. The metric allows choices of different image template, can predict acuity for different target probabilities, can incorporate different and possibly subject-specific neural transfer functions, can predict acuity for different subject templates, and incorporates a model of the optotype identification task.

  9. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  10. Individual eye model based on wavefront aberration

    NASA Astrophysics Data System (ADS)

    Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan

    2005-03-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  11. Analysis of electron beam damage of exfoliated MoS₂ sheets and quantitative HAADF-STEM imaging.

    PubMed

    Garcia, Alejandra; Raya, Andres M; Mariscal, Marcelo M; Esparza, Rodrigo; Herrera, Miriam; Molina, Sergio I; Scavello, Giovanni; Galindo, Pedro L; Jose-Yacaman, Miguel; Ponce, Arturo

    2014-11-01

    In this work we examined MoS₂ sheets by aberration-corrected scanning transmission electron microscopy (STEM) at three different energies: 80, 120 and 200 kV. Structural damage of the MoS₂ sheets has been controlled at 80 kV according a theoretical calculation based on the inelastic scattering of the electrons involved in the interaction electron-matter. The threshold energy for the MoS₂ material has been found and experimentally verified in the microscope. At energies higher than the energy threshold we show surface and edge defects produced by the electron beam irradiation. Quantitative analysis at atomic level in the images obtained at 80 kV has been performed using the experimental images and via STEM simulations using SICSTEM software to determine the exact number of MoS2₂ layers.

  12. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging

    PubMed Central

    Garcia, A.; Raya, A.M.; Mariscal, M.M.; Esparza, R.; Herrera, M.; Molina, S.I.; Scavello, G.; Galindo, P.L.; Jose-Yacaman, M.; Ponce, A.

    2014-01-01

    In this work we examined MoS2 sheets by aberration-corrected scanning transmission electron microscopy (STEM) at three different energies: 80, 120 and 200 kV. Structural damage of the MoS2 sheets has been controlled at 80 kV according a theoretical calculation based on the inelastic scattering of the electrons involved in the interaction electron-matter. The threshold energy for the MoS2 material has been found and experimentally verified in the microscope. At energies higher than the energy threshold we show surface and edge defects produced by the electron beam irradiation. Quantitative analysis at atomic level in the images obtained at 80 kV has been performed using the experimental images and via STEM simulations using SICSTEM software to determine the exact number of MoS2 layers. PMID:24929924

  13. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  14. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  15. Redox regulation in cancer stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  16. Striatal Activity is Associated with Deficits of Cognitive Control and Aberrant Salience for Patients with Schizophrenia

    PubMed Central

    Ceaser, Alan E.; Barch, Deanna M.

    2016-01-01

    A recent meta-analysis has shown that a large dopamine abnormality exists in the striatum when comparing patients with schizophrenia and controls, and this abnormality is thought to contribute to aberrant salience assignment (or a misattribution of relevance to irrelevant stimuli). This abnormality may also disrupt striatal contributions to cognitive control processing. We examined the relationship between striatal involvement in cognition and aberrant salience symptoms using a task of cognitive control that involves updating, interference control, and simple maintenance. The current study included a sample of 22 patients with schizophrenia and 20 healthy controls and used a slow event-related fMRI design. We predicted that (1) aberrant salience symptoms would be greater for patient's, (2) patients would demonstrate increased errors during interference control trials, given that patients may be inappropriately assigning salience to distracters, and (3) striatal activity during those errors would be correlated with aberrant salience symptoms. We found a trend toward a significant difference between patients and controls on aberrant salience symptoms, and a significant difference between groups on select task conditions. During interference control trials, patients were more likely to inappropriately encode distracters. For patients, both prefrontal and striatal activity was significantly greater when patients inappropriately identified the distracter as correct compared to activity during distracter rejection. During updating, patient prefrontal and striatal activity was significantly lower for incorrect than correct updating trials. Finally, as predicted, for patients the increase of activity during incorrect distracter trials was positively correlated with aberrant salience symptoms, but only for the striatal region. These relationships may have implications for treatments that improve cognitive function and reduce symptom expression. PMID:26869912

  17. Impact of Treatment Decentration on Higher-Order Aberrations after SMILE

    PubMed Central

    Zhang, Wenwen; Cheng, Xinliang; Cai, Jianru

    2017-01-01

    Purpose. To evaluate decentration following femtosecond laser small incision lenticule extraction (SMILE) and sub-Bowman keratomileusis (SBK) and its impact on higher-order aberrations (HOAs). Methods. Prospective, nonrandom, and comparison study. There were 96 eyes of 52 patients who received SMILE and 96 eyes of 49 patients who received SBK in this study. Decentration was calculated 6 months after surgery with Pentacam. HOAs and visual acuity after the surgery were examined for patients in both groups before and 6 months after surgery. Results. The mean decentration displacement in SMILE group was significantly less than SBK group (P = 0.020). 89 eyes were decentered within 0.50 mm after SMILE and SBK. The association between vertical decentration and the induced spherical aberration was insignificant in SMILE group (P = 0.035). There was an association between decentration and safety index, efficacy index, vertical coma, spherical aberration, and HOAs in root mean square (RMS, μm) after SBK (all P < 0.05). No difference was found in uncorrected and corrected distance visual acuity, safety index, efficacy index, and wavefront aberrations between the two subgroups at any delimited value after SMILE (all P > 0.05). Decentration exceeding 0.37 mm affected vertical coma and RMSh of SBK eyes (P = 0.002, 0.005). Conclusion. SMILE surgery achieved more accurate centration than SBK surgery. Vertical decentration is associated with the induced spherical aberration in SMILE.

  18. Exaggerated translation causes synaptic and behavioural aberrations associated with autism.

    PubMed

    Santini, Emanuela; Huynh, Thu N; MacAskill, Andrew F; Carter, Adam G; Pierre, Philippe; Ruggero, Davide; Kaphzan, Hanoch; Klann, Eric

    2013-01-17

    Autism spectrum disorders (ASDs) are an early onset, heterogeneous group of heritable neuropsychiatric disorders with symptoms that include deficits in social interaction skills, impaired communication abilities, and ritualistic-like repetitive behaviours. One of the hypotheses for a common molecular mechanism underlying ASDs is altered translational control resulting in exaggerated protein synthesis. Genetic variants in chromosome 4q, which contains the EIF4E locus, have been described in patients with autism. Importantly, a rare single nucleotide polymorphism has been identified in autism that is associated with increased promoter activity in the EIF4E gene. Here we show that genetically increasing the levels of eukaryotic translation initiation factor 4E (eIF4E) in mice results in exaggerated cap-dependent translation and aberrant behaviours reminiscent of autism, including repetitive and perseverative behaviours and social interaction deficits. Moreover, these autistic-like behaviours are accompanied by synaptic pathophysiology in the medial prefrontal cortex, striatum and hippocampus. The autistic-like behaviours displayed by the eIF4E-transgenic mice are corrected by intracerebroventricular infusions of the cap-dependent translation inhibitor 4EGI-1. Our findings demonstrate a causal relationship between exaggerated cap-dependent translation, synaptic dysfunction and aberrant behaviours associated with autism.

  19. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory.

    PubMed

    Ju, Guohao; Yan, Changxiang; Gu, Zhiyuan; Ma, Hongcai

    2016-05-01

    In active optics systems, one concern is how to quantitatively separate the effects of astigmatic and trefoil figure errors and misalignments that couple together in determining the total aberration fields when wavefront measurements are available at only a few field points. In this paper, we first quantitatively describe the impact of mount-induced trefoil deformation on the net aberration fields by proposing a modified theoretical formulation for the field-dependent aberration behavior of freeform surfaces based on the framework of nodal aberration theory. This formulation explicitly expresses the quantitative relationships between the magnitude of freeform surfaces and the induced aberration components where the freeform surfaces can be located away from the aperture stop and decentered from the optical axis. On this basis, and in combination with the mathematical presentation of nodal aberration theory for the effects of misalignments, we present the analytic expressions for the aberration fields of two-mirror telescopes in the presence of astigmatic primary mirror figure errors, mount-induced trefoil deformations on both mirrors, and misalignments. We quantitatively separate these effects using the analytical expressions with wavefront measurements at a few field points and pointing errors. Valuable insights are provided on how to separate these coupled effects in the computation process. Monte Carlo simulations are conducted to demonstrate the correctness and accuracy of the analytic method presented in this paper.

  20. Corrective work.

    ERIC Educational Resources Information Center

    Hill, Leslie A.

    1978-01-01

    Discusses some general principles for planning corrective instruction and exercises in English as a second language, and follows with examples from the areas of phonemics, phonology, lexicon, idioms, morphology, and syntax. (IFS/WGA)

  1. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells.

    PubMed

    Xia, Guangbin; Gao, Yuanzheng; Jin, Shouguang; Subramony, S H; Terada, Naohiro; Ranum, Laura P W; Swanson, Maurice S; Ashizawa, Tetsuo

    2015-06-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3' UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step toward autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 induced pluripotent stem (iPS) cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization. Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs were reversed to normal pattern in genome-modified NSCs. Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1.

  2. Aberration Compensation Using Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Somalingam, S.; Hain, M.; Tschudi, T.; Knittel, J.; Richter, H.

    We have developed a novel transmissive nematic liquid crystal device which is capable of compensating spherical wavefront aberration that occurs during the operation of optical pickup systems. In order to increase the storage capacity, next generation optical data storage systems beyond CD and DVD will use according to the Blu-Ray specification (BD) blue laser light and an objective lens with high numerical aperture (N.A.) of 0.85. However, such high N.A. systems have an inherent higher sensitivity on aberrations. For example spherical aberration is inversely proportional to the wavelength and grows with the fourth power of N.A. of the objective lens. In an optical pickup system there are two sources for spherical aberration: The first one is the variation of the substrate thickness due to manufacturing tolerances under mass production conditions. The second one concerns disks with multiple data-layers, which cause spherical aberration when layers are switched, as the objective lens can only be optimized for a single layer thickness. We report a method for effective compensation of spherical aberration by utilizing a novel liquid crystal device, which generates a parabolic wavefront profile. This particular shape makes the device highly tolerant against lateral movement. A sophisticated electrode design allows us to reduce the number of driving electrodes down to two by using the method of conductive ladder mashing. Further evaluation in a blue-DVD test drive has been carried out with good results. By placing the device into an optical pick-up we were able to readout a dual-layer ROM disk with a total capacity of 50 gigabytes (GB). A data-to-clock jitter of 6.9% for the 80 μm and of 8.0% for the 100 μm cover layer could be realized.

  3. Effect of incision types for Artisan phakic intraocular lens implantation on ocular higher order aberrations

    PubMed Central

    Park, Young Min; Choi, Bong Joon; Lee, Jong Soo

    2016-01-01

    AIM To evaluate the effect of incision types for Artisan phakic intraocular lens (PIOL) implantation on ocular higher-order aberrations (HOAs). METHODS A retrospective review was conducted of the patients who had undergone Artisan PIOL implantation for the correction of myopia and followed up for at least 6mo. Patients are classified into 2 groups considering the incision type: cornea group with patients undergone clear corneal incision; sclera group with patients undergone sclera tunnel incision. All patients with postoperative astigmatism of under 1 diopter (D) were included to minimize the effect of residual astigmatism on postoperative HOAs. Visual acuity, special equivalents, astigmatism, predictability (±1 D from target refraction), HOAs (coma, trefoil, spherical aberration), and corneal endothelial counts were analyzed preoperatively and 6mo postoperatively. RESULTS At the postoperative 6mo, all patients of both groups achieved uncorrected visual acuity of 16/20 or better, and significantly decreased the spherical equivalents compared with preoperative values. The predictability of refractive correction was 96% in the former, and 94% in the latter. Unlike the sclera group, preoperative astigmatism decreased significantly in cornea group at postoperative 6mo. The HOAs increased significantly at postoperative 6mo compared to the preoperative values in both groups, and the root mean square (RMS) total and trefoil wavefront aberration of cornea group were significantly higher than those of sclera group. CONCLUSION Although corneal incision significantly reduces preexisting astigmatism, the postoperative 6mo of total RMS and trefoil aberration change may deteriorate the visual quality after Artisan PIOL implantation. PMID:28003980

  4. Chromosome aberration test for hydroxyapatite in sheep.

    PubMed

    Kannan, T P; Nik Ahmad Shah, N L; Azlina, A; Samsudin, A R; Narazah, M Y; Salleh, Ma'arof

    2004-05-01

    The present study is aimed at finding the mutagenicity and cytotoxicity of dense form of synthetic hydroxyapatite (Source: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) in the blood of sheep. The biomaterial was implanted in the tibia of Malin, an indigenous sheep breed of Malaysia. Blood was collected from the sheep before implantation of the biomaterial, cultured and a karyological study was made. Six weeks after implantation, blood was collected from the same animal, cultured and screened for chromosome aberrations. The mitotic indices and karyological analysis indicated that the implantation of synthetic hydroxyapatite (dense form) did not produce any cytotoxicity or chromosome aberrations in the blood of sheep.

  5. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    NASA Astrophysics Data System (ADS)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2017-03-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  6. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    NASA Astrophysics Data System (ADS)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2016-11-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  7. Misalignment induced aberration off-axis optical system

    NASA Astrophysics Data System (ADS)

    Pang, Zhihai; Fan, Xuewu; Ma, Zhen; Zou, Gangyi

    2016-10-01

    Through introducing transformed pupil vector and shifted center of aberration fields vector into the nodal aberration expansions of an axially symmetric optical system, the aberration expression in third order of an off-axis optical system and misaligned off-axis optical system are detailed. Nodal aberration characteristics of misaligned off-axis optical system are revealed only by analyzing the pupil decentration vector, aberration fields shifted vector and the aberration coefficients of the axially symmetric optical system. Actually, it is well demonstrated that the 3rd spherical aberration, 3rd coma, 3rd astigmatism in a misalignment off-axis system are comparable to the aberrations in a misalignment axially symmetric system. Otherwise it will not only induced constant 3rd spherical aberration but also constant 3rd coma and 3rd astigmatism over the field of view, when aligned an off-axis optical system elements with error axial spacing.

  8. Aberrant Lymphatic Endothelial Progenitors in Lymphatic Malformation Development

    PubMed Central

    Wu, June K.; Kitajewski, Christopher; Reiley, Maia; Keung, Connie H.; Monteagudo, Julie; Andrews, John P.; Liou, Peter; Thirumoorthi, Arul; Wong, Alvin

    2015-01-01

    Lymphatic malformations (LMs) are vascular anomalies thought to arise from dysregulated lymphangiogenesis. These lesions impose a significant burden of disease on affected individuals. LM pathobiology is poorly understood, hindering the development of effective treatments. In the present studies, immunostaining of LM tissues revealed that endothelial cells lining aberrant lymphatic vessels and cells in the surrounding stroma expressed the stem cell marker, CD133, and the lymphatic endothelial protein, podoplanin. Isolated patient-derived CD133+ LM cells expressed stem cell genes (NANOG, Oct4), circulating endothelial cell precursor proteins (CD90, CD146, c-Kit, VEGFR-2), and lymphatic endothelial proteins (podoplanin, VEGFR-3). Consistent with a progenitor cell identity, CD133+ LM cells were multipotent and could be differentiated into fat, bone, smooth muscle, and lymphatic endothelial cells in vitro. CD133+ cells were compared to CD133− cells isolated from LM fluids. CD133− LM cells had lower expression of stem cell genes, but expressed circulating endothelial precursor proteins and high levels of lymphatic endothelial proteins, VE-cadherin, CD31, podoplanin, VEGFR-3 and Prox1. CD133− LM cells were not multipotent, consistent with a differentiated lymphatic endothelial cell phenotype. In a mouse xenograft model, CD133+ LM cells differentiated into lymphatic endothelial cells that formed irregularly dilated lymphatic channels, phenocopying human LMs. In vivo, CD133+ LM cells acquired expression of differentiated lymphatic endothelial cell proteins, podoplanin, LYVE1, Prox1, and VEGFR-3, comparable to expression found in LM patient tissues. Taken together, these data identify a novel LM progenitor cell population that differentiates to form the abnormal lymphatic structures characteristic of these lesions, recapitulating the human LM phenotype. This LM progenitor cell population may contribute to the clinically refractory behavior of LMs. PMID:25719418

  9. Atomic-level imaging of Mo-V-O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM

    PubMed Central

    Pyrz, William D.; Blom, Douglas A.; Sadakane, Masahiro; Kodato, Katsunori; Ueda, Wataru; Vogt, Thomas; Buttrey, Douglas J.

    2010-01-01

    In this work, we structurally characterize defects, grain boundaries, and intergrowth phases observed in various Mo-V-O materials using aberration-corrected high-angle annular dark-field (HAADF) imaging within a scanning transmission electron microscope (STEM). Atomic-level imaging of these preparations clearly shows domains of the orthorhombic M1-type phase intergrown with the trigonal phase. Idealized models based on HAADF imaging indicate that atomic-scale registry at the domain boundaries can be seamless with several possible trigonal and M1-type unit cell orientation relationships. The alignment of two trigonal domains separated by an M1-type domain or vice versa can be predicted by identifying the number of rows/columns of parallel symmetry operators. Intergrowths of the M1 catalyst with the M2 phase or with the Mo5O14-type phase have not been observed. The resolution enhancements provided by aberration-correction have provided new insights to the understanding of phase equilibria of complex Mo-V-O materials. This study exemplifies the utility of STEM for the characterization of local structure at crystalline phase boundaries. PMID:20308579

  10. Aberrations of diffracted wave fields. II. Diffraction gratings.

    PubMed

    Mahajan, V N

    2000-12-01

    The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order.

  11. Anti-forensics of chromatic aberration

    NASA Astrophysics Data System (ADS)

    Mayer, Owen; Stamm, Matthew C.

    2015-03-01

    Over the past decade, a number of information forensic techniques have been developed to identify digital image manipulation and falsification. Recent research has shown, however, that an intelligent forger can use anti-forensic countermeasures to disguise their forgeries. In this paper, an anti-forensic technique is proposed to falsify the lateral chromatic aberration present in a digital image. Lateral chromatic aberration corresponds to the relative contraction or expansion between an image's color channels that occurs due to a lens's inability to focus all wavelengths of light on the same point. Previous work has used localized inconsistencies in an image's chromatic aberration to expose cut-and-paste image forgeries. The anti-forensic technique presented in this paper operates by estimating the expected lateral chromatic aberration at an image location, then removing deviations from this estimate caused by tampering or falsification. Experimental results are presented that demonstrate that our anti-forensic technique can be used to effectively disguise evidence of an image forgery.

  12. Aberration features in directional dark matter detection

    SciTech Connect

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo E-mail: gelmini@physics.ucla.edu

    2012-08-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over Galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, resulting in Galactic Hemisphere Annual Modulations (GHAM) with amplitudes larger than the usual non-directional annual modulation.

  13. Functional Analysis and Treatment of Aberrant Behavior.

    ERIC Educational Resources Information Center

    Mace, F. Charles; And Others

    1991-01-01

    This article reviews general classes of variables which help to maintain aberrant behavior including attention seeking, sensory and perceptual consequences, and access to materials or activities. Suggestions for a methodology providing a comprehensive functional analysis are offered which include descriptive analysis, hypothesis forming,…

  14. The Extent of Mismeasurement for Aberrant Examinees

    ERIC Educational Resources Information Center

    Petridou, Alexandra; Williams, Julian

    2010-01-01

    The person-fit literature assumes that aberrant response patterns could be a sign of person mismeasurement, but this assumption has rarely, if ever, been empirically investigated before. We explore the validity of test responses and measures of 10-year-old examinees whose response patterns on a commercial standardized paper-and-pencil mathematics…

  15. Assessing the construct validity of aberrant salience.

    PubMed

    Schmidt, Kristin; Roiser, Jonathan P

    2009-01-01

    We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT). The "aberrant salience" measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance (LIrr), attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a LIrr task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for approximately 75% of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated "Introvertive Anhedonia" schizotypy, replicating our previous finding. LIrr loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of LIrr and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.

  16. High-resolution chemical analysis by STEM-EELS of nanosized oxide particles in a mechanically-alloyed FeCrAl intermetallic

    SciTech Connect

    Morris, D.G. Muñoz-Morris, M.A.

    2015-05-15

    The chemical composition of nanosized oxides has been analysed in a mechanically-alloyed (MA) iron–chromium–aluminium intermetallic containing yttria additions using an aberration-corrected, high-resolution scanning transmission electron microscope (STEM). The oxide particles are seen to contain yttrium and oxygen only, but very little of the matrix metallic elements, while the matrix in the immediate vicinity shows a very low iron content. Possible reasons for the change of matrix composition outside the particle-matrix interface are discussed. - Highlights: • High-resolution chemical analysis of oxide particles was performed using STEM-EELS. • Oxide particles contain Y and O but essentially no elements from the Fe–Cr–Al matrix. • The matrix immediately outside the particles appears to be depleted in Fe. • Diffusion of Y during particle growth possibly transports vacancies to the interface.

  17. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  18. Differentiated Effects of Sensory Activities as Abolishing Operations via Non-Contingent Reinforcement on Academic and Aberrant Behavior

    ERIC Educational Resources Information Center

    Mancil, G. Richmond; Haydon, Todd; Boman, Marty

    2016-01-01

    The purpose of the study was to evaluate the effectiveness of sensory activities used as antecedent interventions on the percentage correct on academic tasks and rate of aberrant behavior in three elementary aged children with Autism Spectrum Disorders (ASD). Study activities were conducted in an after school program for children with ASD where…

  19. Replication stress caused by low MCM expression limits fetal erythropoiesis and hematopoietic stem cell functionality

    PubMed Central

    Alvarez, Silvia; Díaz, Marcos; Flach, Johanna; Rodriguez-Acebes, Sara; López-Contreras, Andrés J.; Martínez, Dolores; Cañamero, Marta; Fernández-Capetillo, Oscar; Isern, Joan; Passegué, Emmanuelle; Méndez, Juan

    2015-01-01

    Replicative stress during embryonic development influences ageing and predisposition to disease in adults. A protective mechanism against replicative stress is provided by the licensing of thousands of origins in G1 that are not necessarily activated in the subsequent S-phase. These ‘dormant' origins provide a backup in the presence of stalled forks and may confer flexibility to the replication program in specific cell types during differentiation, a role that has remained unexplored. Here we show, using a mouse strain with hypomorphic expression of the origin licensing factor mini-chromosome maintenance (MCM)3 that limiting origin licensing in vivo affects the functionality of hematopoietic stem cells and the differentiation of rapidly-dividing erythrocyte precursors. Mcm3-deficient erythroblasts display aberrant DNA replication patterns and fail to complete maturation, causing lethal anemia. Our results indicate that hematopoietic progenitors are particularly sensitive to replication stress, and full origin licensing ensures their correct differentiation and functionality. PMID:26456157

  20. Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide.

    PubMed

    Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali

    2014-09-10

    The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.

  1. Effects of interactions among wave aberrations on optical image quality.

    PubMed

    McLellan, J S; Prieto, P M; Marcos, S; Burns, S A

    2006-09-01

    Wave aberrations degrade the optical quality of the eye relative to the diffraction limit, but there are situations in which having slightly aberrated optics can provide some relative visual benefits. This fact led us to consider whether interactions among aberrations in the eye's wavefront produce an advantage for image quality relative to wavefronts with randomized combinations of aberrations with the same total RMS error. Total ocular wave aberrations from two experimental groups and corneal wave aberrations from one group were measured and expressed as Zernike polynomial expansions through the seventh-order. In a series of Monte Carlo simulations, modulation transfer functions (MTFs) for the measured wave aberrations were compared to distributions of artificial MTFs for wavefronts created by randomizing the sign or orientation of the aberrations, while maintaining the RMS error within each Zernike order. In a control condition, "synthetic" model eyes were produced by choosing each individual aberration term at random from individuals in the experimental group, and again MTFs were compared for original and randomized signs. Results were summarized by the MTF ratio: real MTF/mean simulated MTF, as a function of spatial frequency. For a 6mm pupil, the mean MTF ratio for total ocular aberrations was greater than 1.0 up to 60 cycles per degree, suggesting that the eye's aberrations are not independent and that there may be a positive functional consequences to their interrelations. This positive relation did not hold for corneal aberrations alone, or for the synthetic eyes.

  2. Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics.

    PubMed

    Panopoulos, Athanasia D; Smith, Erin N; Arias, Angelo D; Shepard, Peter J; Hishida, Yuriko; Modesto, Veronica; Diffenderfer, Kenneth E; Conner, Clay; Biggs, William; Sandoval, Efren; D'Antonio-Chronowska, Agnieszka; Berggren, W Travis; Izpisua Belmonte, Juan Carlos; Frazer, Kelly A

    2017-04-06

    Induced pluripotent stem cells (iPSCs) show variable methylation patterns between lines, some of which reflect aberrant differences relative to embryonic stem cells (ESCs). To examine whether this aberrant methylation results from genetic variation or non-genetic mechanisms, we generated human iPSCs from monozygotic twins to investigate how genetic background, clone, and passage number contribute. We found that aberrantly methylated CpGs are enriched in regulatory regions associated with MYC protein motifs and affect gene expression. We classified differentially methylated CpGs as being associated with genetic and/or non-genetic factors (clone and passage), and we found that aberrant methylation preferentially occurs at CpGs associated with clone-specific effects. We further found that clone-specific effects play a strong role in recurrent aberrant methylation at specific CpG sites across different studies. Our results argue that a non-genetic biological mechanism underlies aberrant methylation in iPSCs and that it is likely based on a probabilistic process involving MYC that takes place during or shortly after reprogramming.

  3. Types of Stem Cells

    MedlinePlus

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  4. Aberrations of diffracted wave fields: distortion.

    PubMed

    Harvey, James E; Bogunovic, Dijana; Krywonos, Andrey

    2003-03-01

    Near-field diffraction patterns are merely aberrated Fraunhofer diffraction patterns. These aberrations, inherent to the diffraction process, provide insight and understanding into wide-angle diffraction phenomena. Nonparaxial patterns of diffracted orders produced by a laser beam passing through a grating and projected upon a plane screen exhibit severe distortion (W311). This distortion is an artifact of the configuration chosen to observe diffraction patterns. Grating behavior expressed in terms of the direction cosines of the propagation vectors of the incident and diffracted orders exhibits no distortion. Use of a simple direction cosine diagram provides an elegant way to deal with nonparaxial diffraction patterns, particularly when large obliquely incident beams produce conical diffraction.

  5. [A rare observation of intralaryngeal aberrant goiter].

    PubMed

    Gadzhimirzaev, G A; Shakhnazarov, A M; Gadzhimirzaeva, R G

    This paper was designed to report a rare observation of intralaryngeal aberrant goiter associated with goiter of the main thyroid tissue and chronic suppurative otitis media complicated by the polyp that causes occlusion of the auditory passage. The histomorphological investigation of the material harvested intraoperatively following rehabilitation of the purulent focus in the middle ear and the removal of the tumour from the inside of the right vestibular fold confirmed the diagnosis of colloid goiter.

  6. The aberrant retroesophageal right subclavian artery.

    PubMed

    Seres-Sturm, M; Maros, T N; Seres-Sturm, L

    1985-01-01

    Two cases with arteria lusoria were found at 278 routine dissections. These arteria arise as the last branches of the aortic arch and have a retroesophageal position. At the crossing point, the esophagus narrows due to the groove caused by the artery. The appearance of this malposition is the consequence of the perturbation in the organo-genesis of the right dorsal aorta and fourth branchial artery. The aberration can lead to disphagia lusoria.

  7. Uniparental disomy of the entire X chromosome in Turner syndrome patient-specific induced pluripotent stem cells

    PubMed Central

    Luo, Yumei; Zhu, Detu; Du, Rong; Gong, Yu; Xie, Chun; Xu, Xiangye; Fan, Yong; Yu, Bolan; Sun, Xiaofang; Chen, Yaoyong

    2015-01-01

    The human induced pluripotent stem cell (iPSC) technique promises to provide an unlimited, reliable source of genetically matched pluripotent cells for personalized therapy and disease modeling. Recently, it is observed that cells with ring chromosomes 13 or 17 autonomously correct the defects via compensatory uniparental disomy during cellular reprogramming to iPSCs. This breakthrough finding suggests a potential therapeutic approach to repair large-scale chromosomal aberrations. However, due to the scarceness of ring chromosome samples, the reproducibility of this approach in different individuals is not carefully evaluated yet. Moreover, the underlying mechanism and the applicability to other types of chromosomal aberrations remain unknown. Here we generated iPSCs from four 45,X chorionic villous fibroblast lines and found that only one reprogrammed line acquired 46,XX karyotype via uniparental disomy of the entire X chromosome. The karyotype correction was reproducible in the same cell line by either retroviral or episomal reprogramming. The karyotype-corrected iPSCs were subject to X chromosome inactivation and obtained better colony morphology and higher proliferation rate than other uncorrected ones. Further transcriptomic comparison among the fibroblast lines identified a distinct expression pattern of cell cycle regulators in the uncorrectable ones. These findings demonstrate that the iPSC technique holds the potential to correct X monosomy, but the correction rate is very low, probably due to differential regulation of cell cycle genes between individuals. Our data strongly suggest that more systematic investigations are needed before defining the iPSC technique as a novel means of chromosome therapy. PMID:27462421

  8. Misalignment-induced nodal aberration fields in two-mirror astronomical telescopes.

    PubMed

    Schmid, Tobias; Thompson, Kevin P; Rolland, Jannick P

    2010-06-01

    We present the effects of misalignments on the field dependence of the third-order aberration fields of traditional, two-mirror astronomical telescopes in the context of nodal aberration theory, which we believe is the most general and extensible framework for describing and improving on-station performance. While many of the advantages of nodal aberration theory, compared to other, often power series expansion-based descriptions of misalignment effects on aberrations, become particularly important when analyzing telescopes with more than two mirrors, or in the presence of figure errors; this paper aims to provide and demonstrate the fundamental concepts needed to fully describe the state of correction of misaligned two-mirror telescopes. Importantly, it is shown that the assumption that perfect performance on axis ensures a fully aligned telescope is false, and we demonstrate that if Ritchey-Chrétien telescopes are aligned for zero coma on axis as the sole criterion, formidable misalignments will likely remain, leading to image quality degradation, particularly beyond midfield caused by astigmatism with binodal field dependence (i.e., astigmatism goes to zero at two points in the field).

  9. Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Unterhuber, Angelika; Prieto, Pedro M.; Hermann, Boris; Drexler, Wolfgang; Artal, Pablo

    2005-01-01

    A compact mode-locked Ti:sapphire laser, emitting a broad spectrum of 277 nm bandwidth, centered at 790 nm, was used to measure the dependence of the aberrations of the human eye with wavelength in the near infrared region. The aberrations were systematically measured with a Hartmann-Shack wave-front sensor at the following wavelengths: 700, 730, 750, 780, 800, 850, 870 and 900 nm, in four normal subjects. During the measurements, the wavelengths were selected by using 10 nm band-pass filters. We found that monochromatic high order aberrations, beyond defocus, were nearly constant across 700 to 900 nm wavelength in the four subjects. The average chromatic difference in defocus was 0.4 diopters in the considered wavelength band. The predictions of a simple water-eye model were compared with the experimental results in the near infrared. These results have potential applications in those situations where defocus or higher order aberration correction in the near infrared is required. This is the case of many imaging techniques: scanning laser ophthalmoscope, flood illumination fundus camera, or optical coherence tomography.

  10. Variable aberration generator using a high-order even aspheric singlet for testing optical surfaces

    NASA Astrophysics Data System (ADS)

    Lu, Jinfeng; Chen, Shanyong; Xue, Shuai

    2016-10-01

    Traditional null optics is generally designed for a particular optical surface. It must be redesigned when the test surface is changed no matter the null optic is reflective, transmitted or a CGH. Development of advanced optical machining and testing based on deterministic figuring and null test makes it possible to apply high-order aspheres. This paper presents a plano-concave singlet to realize variable aberration correction for testing different surfaces. The concave surface is an even asphere with high-order terms. By changing the axial distances among the transmission sphere, the null singlet and the test surface, variable aberrations are generated to meet the aberration balance requirement for various surfaces. The residual aberrations are confirmed within the vertical dynamic range of measurement of the interferometer. It enables flexible testing of optical surfaces without dedicated null optics. The optical design verifies that the aspheric singlet can be used to test conic surfaces with different conic constant and radius of curvature ranging from ellipsoid, paraboloid to hyperboloid and an even asphere.

  11. [Familial, structural aberration of the Y chromosome with fertility disorders].

    PubMed

    Gall, H; Schmid, M; Schmidtke, J; Schempp, W; Weber, L

    1985-11-01

    Cytogenetic studies on a patient with Klinefelter's syndrome revealed an inherited, structural aberration of the Y-chromosome which has not been described before. The aberrant Y-chromosome was characterized by eight different banding methods. The value of individual staining techniques in studies on Y-heterochromatin aberrations is emphasized. Analysis of the cytogenetic studies (banding methods, restriction endonuclease of DNA, and measurement of the length of the Y-chromosome) permits an interpretation to be made on how the aberrant Y-chromosome originated. The functions of the Y-chromosome are discussed. The decrease in fertility (cryptozoospermia) in the two brothers with the same aberrant Y-chromosome was striking.

  12. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography.

    PubMed

    Fernández, Enrique; Drexler, Wolfgang

    2005-10-03

    Optical coherence tomography (OCT) enables visualization of the living human retina with unprecedented high axial resolution. The transverse resolution of existing OCT approaches is relatively modest as compared to other retinal imaging techniques. In this context, the use of adaptive optics (AO) to correct for ocular aberrations in combination with OCT has recently been demonstrated to notably increase the transverse resolution of the retinal OCT tomograms. AO is required when imaging is performed through moderate and large pupil sizes. A fundamental difference of OCT as compared to other imaging techniques is the demand of polychromatic light to accomplish high axial resolution. In ophthalmic OCT applications, the performance is therefore also limited by ocular chromatic aberrations. In the current work, the effects of chromatic and monochromatic ocular aberrations on the quality of retinal OCT tomograms, especially concerning transverse resolution, sensitivity and contrast, are theoretically studied and characterized. The repercussion of the chosen spectral bandwidth and pupil size on the final transverse resolution of OCT tomograms is quantitatively examined. It is found that losses in the intensity of OCT images obtained with monochromatic aberration correction can be up to 80 %, using a pupil size of 8 mm diameter in combination with a spectral bandwidth of 120 nm full width at half maximum for AO ultrahigh resolution OCT. The limits to the performance of AO for correction of monochromatic aberrations in OCT are established. The reduction of the detected signal and the resulting transverse resolution caused by chromatic aberration of the human eye is found to be strongly dependent on the employed bandwidth and pupil size. Comparison of theoretical results with experimental findings obtained in living human eyes is also provided.

  13. Chromatic variation of aberration: the role of induced aberrations and raytrace direction

    NASA Astrophysics Data System (ADS)

    Berner, A.; Nobis, T.; Shafer, D.; Gross, H.

    2015-09-01

    The design and optimization process of an optical system contains several first order steps. The definition of the appropriate lens type and the fixation of the raytrace direction are some of them. The latter can be understood as a hidden assumption rather than an aware design step. This is usually followed by the determination of the paraxial lens layout calculated for the primary wavelength. It is obvious, that for this primary wavelength the paraxial calculations are independent of raytrace direction. Today, most of the lens designs are specified not to work only for one wavelength, but in a certain wavelength range. Considering such rays of other wavelengths, one can observe that depending on the direction there will already occur differences in the first order chromatic aberrations and additionally in the chromatic variation of the third-order aberrations. The reason for this effect are induced aberrations emerging from one surface to the following surfaces by perturbed ray heights and ray angles. It can be shown, that the total amount of surface-resolved first order chromatic aberrations and the chromatic variation of the five primary aberrations can be split into an intrinsic part and an induced part. The intrinsic part is independent of the raytrace direction whereas the induced part is not.

  14. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  15. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    SciTech Connect

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  16. Closed-loop adaptive optics using a spatial light modulator for sensing and compensating of optical aberrations in ophthalmic applications

    NASA Astrophysics Data System (ADS)

    Akondi, Vyas; Jewel, Md. Atikur Rahman; Vohnsen, Brian

    2014-09-01

    Sensing and compensating of optical aberrations in closed-loop mode using a single spatial light modulator (SLM) for ophthalmic applications is demonstrated. Notwithstanding the disadvantages of the SLM, in certain cases, this multitasking capability of the device makes it advantageous over existing deformable mirrors (DMs), which are expensive and in general used for aberration compensation alone. A closed-loop adaptive optics (AO) system based on a single SLM was built. Beam resizing optics were used to utilize the large active area of the device and hence make it feasible to generate 137 active subapertures for wavefront sensing. While correcting Zernike aberrations up to fourth order introduced with the help of a DM (for testing purposes), diffraction-limited resolution was achieved. It is shown that matched filter and intensity-weighted centroiding techniques stand out among others. Closed-loop wavefront correction of aberrations in backscattered light from the eyes of three healthy human subjects was demonstrated after satisfactory results were obtained using an artificial eye, which was simulated with a short focal length lens and a sheet of white paper as diffuser. It is shown that the closed-loop AO system based on a single SLM is capable of diffraction-limited correction for ophthalmic applications.

  17. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  18. STEM Sell

    ERIC Educational Resources Information Center

    Pantic, Zorica

    2007-01-01

    Between 1994 and 2003, employment in science, technology, engineering and math (STEM) fields grew by a remarkable 23 percent, compared with 17 percent in non-STEM fields, according to federal data. The Bureau of Labor Statistics predicts continued strong growth in STEM job openings through 2014, with emphasis on life sciences, environmental…

  19. A CORRECTION.

    PubMed

    Johnson, D

    1940-03-22

    IN a recently published volume on "The Origin of Submarine Canyons" the writer inadvertently credited to A. C. Veatch an excerpt from a submarine chart actually contoured by P. A. Smith, of the U. S. Coast and Geodetic Survey. The chart in question is Chart IVB of Special Paper No. 7 of the Geological Society of America entitled "Atlantic Submarine Valleys of the United States and the Congo Submarine Valley, by A. C. Veatch and P. A. Smith," and the excerpt appears as Plate III of the volume fist cited above. In view of the heavy labor involved in contouring the charts accompanying the paper by Veatch and Smith and the beauty of the finished product, it would be unfair to Mr. Smith to permit the error to go uncorrected. Excerpts from two other charts are correctly ascribed to Dr. Veatch.

  20. Color-corrected Fresnel lens for solar concentration

    SciTech Connect

    Kritchman, E.M.

    1980-01-01

    A new linear convex Fresnel lens with its groove side down is described. The design philosophy is similar to that of the highly concentrating two-focal Fresnel lens but includes a correction for chromatic aberration. A solar-concentration ratio as high as 80 is achieved. For wide-acceptance angles, the concentration nears the theoretical maximum.

  1. 77 FR 72199 - Technical Corrections; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... COMMISSION 10 CFR Part 171 RIN 3150-AJ16 Technical Corrections; Correction AGENCY: Nuclear Regulatory... corrections, including updating the street address for the Region I office, correcting authority citations and... rule. DATES: The correction is effective on December 5, 2012. FOR FURTHER INFORMATION CONTACT:...

  2. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  3. Chromosomal aberrations in ISS crew members

    NASA Astrophysics Data System (ADS)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra

    2012-07-01

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). Nonetheless, the effect of increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required in order to better estimate the radiation risk for longer duration missions. The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (around 6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second one within 3 days after return from flight. From lymphocyte cultures metaphase plates were prepared on glass slides. Giemsa stained and in situ hybridised metaphases were scored for chromosome changes in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to elevated radiation levels. Overall slight but significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed. Our data indicate no elevation of mutation rates due to short term stays on-board the ISS.

  4. Aberration-free volumetric high-speed imaging of in vivo retina

    PubMed Central

    Hillmann, Dierck; Spahr, Hendrik; Hain, Carola; Sudkamp, Helge; Franke, Gesa; Pfäffle, Clara; Winter, Christian; Hüttmann, Gereon

    2016-01-01

    Certain topics in research and advancements in medical diagnostics may benefit from improved temporal and spatial resolution during non-invasive optical imaging of living tissue. However, so far no imaging technique can generate entirely diffraction-limited tomographic volumes with a single data acquisition, if the target moves or changes rapidly, such as the human retina. Additionally, the presence of aberrations may represent further difficulties. We show that a simple interferometric setup–based on parallelized optical coherence tomography–acquires volumetric data with 10 billion voxels per second, exceeding previous imaging speeds by an order of magnitude. This allows us to computationally obtain and correct defocus and aberrations resulting in entirely diffraction-limited volumes. As demonstration, we imaged living human retina with clearly visible nerve fiber layer, small capillary networks, and photoreceptor cells. Furthermore, the technique can also obtain phase-sensitive volumes of other scattering structures at unprecedented acquisition speeds. PMID:27762314

  5. Aberration-free volumetric high-speed imaging of in vivo retina

    NASA Astrophysics Data System (ADS)

    Hillmann, Dierck; Spahr, Hendrik; Hain, Carola; Sudkamp, Helge; Franke, Gesa; Pfäffle, Clara; Winter, Christian; Hüttmann, Gereon

    2016-10-01

    Certain topics in research and advancements in medical diagnostics may benefit from improved temporal and spatial resolution during non-invasive optical imaging of living tissue. However, so far no imaging technique can generate entirely diffraction-limited tomographic volumes with a single data acquisition, if the target moves or changes rapidly, such as the human retina. Additionally, the presence of aberrations may represent further difficulties. We show that a simple interferometric setup–based on parallelized optical coherence tomography–acquires volumetric data with 10 billion voxels per second, exceeding previous imaging speeds by an order of magnitude. This allows us to computationally obtain and correct defocus and aberrations resulting in entirely diffraction-limited volumes. As demonstration, we imaged living human retina with clearly visible nerve fiber layer, small capillary networks, and photoreceptor cells. Furthermore, the technique can also obtain phase-sensitive volumes of other scattering structures at unprecedented acquisition speeds.

  6. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation.

    PubMed

    Yeom, Han-Ju; Kim, Hee-Jae; Kim, Seong-Bok; Zhang, HuiJun; Li, BoNi; Ji, Yeong-Min; Kim, Sang-Hoo; Park, Jae-Hyeung

    2015-12-14

    We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues.

  7. Aberrations in Fresnel Lenses and Mirrors

    NASA Technical Reports Server (NTRS)

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  8. Microcollimated laser diode with low wavefront aberration

    SciTech Connect

    Ogata, S.; Sekii, H.; Maeda, T.; Goto, H.; Yamashita, T.; Imanaka, K. )

    1989-11-01

    The authors developed microcollimated laser diode( MCLD) utilizing a 1 mm short focal length, phi, lc 0.5 mm small diameter micro Fresnel lens (MFL) for the first time as the collimating lens. The MCLD is assembled with a 780 nm quantum-well laser diode dice and an MFL in the smallest commercial available laser package. The radiated laser beam form the MCLD has higher than 2mW power at 50 mA driving current, narrow enough as a phi 2 mm beam diameter with nearly Gaussian intensity profile, and low wavefront aberration less than {lambda}14 (rms value) measured at 1 m distance.

  9. Automatic low-order aberration compensator for solid-state slab lasers

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Dong, Lizhi; Lai, Boheng; Yang, Ping; Kong, Qingfeng; Yang, Kangjian; Liu, Yong; Tang, Guomao; Xu, Bing

    2016-09-01

    Slab geometry is a promising architecture for power scaling of solid-state lasers. By propagating the laser beams along zigzag path in the gain medium, the thermal effects can be well compensated. However, in the non-zigzag direction, the thermal effects are not compensated. Among the overall aberrations in the slab lasers, the major contributors are two low-order aberrations: astigmatism and defocus, which can range up to over 100 microns (peak to valley), leading to detracted beam quality. Another problem with slab lasers is that the output beams are generally in a rectangular aperture with high aspect ratio (normally 1:10), where square beams are favorable for many applications. In order to solve these problems, we propose an automatic low-order aberration compensation system. This system is composed of three lenses fixed on a motorized rail, one is a spherical lens and the others are cylindrical lenses. Astigmatism and defocus can be compensated by merely adjusting the distances between the lenses. Two wave-front sensors are employed in this compensation system, one is used for detecting the initial parameters of the beams, and the other one is used for detecting the remaining aberrations after correction. The adjustments of the three lenses are directly calculated based on beam parameters using ray tracing method. The initial size of the beam is 3.2mm by 26mm, and peak to valley(PV) value of the wave-front is 33.07λ(λ=1064nm). After correction, the dimension becomes 40mm by 40mm, and peak to valley (PV) value of the wave-front is less than 2 microns.

  10. A Monte-Carlo Model for the Formation of Radiation-induced Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Cornforth, Michael N.; Loucas, Brad D.; Cucinotta, Francis A.

    2009-01-01

    multi-centrics were also recorded. Conclusion: High-LET DNA damage affects the frequencies of chromosomal aberrations. The ratio of rings to dicentrics is correct for the genomic size cut-offs corresponding to available experimental data. The present work predicts a relative abundance of small rings following irradiation by heavy ions.

  11. Relationships between chromosome structure and chromosomal aberrations

    NASA Astrophysics Data System (ADS)

    Eidelman, Yuri; Andreev, Sergey

    An interphase nucleus of human lymphocyte was simulated by the novel Monte Carlo tech-nique. The main features of interphase chromosome structure and packaging were taken into account: different levels of chromatin organisation; nonrandom localisation of chromosomes within a nucleus; chromosome loci dynamics. All chromosomes in a nucleus were modelled as polymer globules. A dynamic pattern of intra/interchromosomal contacts was simulated. The detailed information about chromosomal contacts, such as distribution of intrachromoso-mal contacts over the length of each chromosome and dependence of contact probability on genomic separation between chromosome loci, were calculated and compared to the new exper-imental data obtained by the Hi-C technique. Types and frequencies of simple and complex radiation-induced chromosomal exchange aberrations (CA) induced by X-rays were predicted with taking formation and decay of chromosomal contacts into account. Distance dependence of exchange formation probability was calculated directly. mFISH data for human lymphocytes were analysed. The calculated frequencies of simple CA agreed with the experimental data. Complex CA were underestimated despite the dense packaging of chromosome territories within a nucleus. Possible influence of chromosome-nucleus structural organisation on the frequency and spectrum of radiation-induced chromosome aberrations is discussed.

  12. Aberrant DNA Methylation and Prostate Cancer

    PubMed Central

    Majumdar, Sunipa; Buckles, Eric; Estrada, John; Koochekpour, Shahriar

    2011-01-01

    Prostate cancer (PCa) is the most prevalent cancer, a significant contributor to morbidity and a leading cause of cancer-related death in men in Western industrialized countries. In contrast to genetic changes that vary among individual cases, somatic epigenetic alterations are early and highly consistent events. Epigenetics encompasses several different phenomena, such as DNA methylation, histone modifications, RNA interference, and genomic imprinting. Epigenetic processes regulate gene expression and can change malignancy-associated phenotypes such as growth, migration, invasion, or angiogenesis. Methylations of certain genes are associated with PCa progression. Compared to normal prostate tissues, several hypermethylated genes have also been identified in benign prostate hyperplasia, which suggests a role for aberrant methylation in this growth dysfunction. Global and gene-specific DNA methylation could be affected by environmental and dietary factors. Among other epigenetic changes, aberrant DNA methylation might have a great potential as diagnostic or prognostic marker for PCa and could be tested in tumor tissues and various body fluids (e.g., serum, urine). The DNA methylation markers are simple in nature, have high sensitivity, and could be detected either quantitatively or qualitatively. Availability of genome-wide screening methodologies also allows the identification of epigenetic signatures in high throughput population studies. Unlike irreversible genetic changes, epigenetic alterations are reversible and could be used for PCa targeted therapies. PMID:22547956

  13. Lymphocyte chromosomal aberration assay in radiation biodosimetry

    PubMed Central

    Agrawala, Paban K.; Adhikari, J. S.; Chaudhury, N. K.

    2010-01-01

    Exposure to ionizing radiations, whether medical, occupational or accidental, leads to deleterious biological consequences like mortality or carcinogenesis. It is considered that no dose of ionizing radiation exposure is safe. However, once the accurate absorbed dose is estimated, one can be given appropriate medical care and the severe consequences can be minimized. Though several accurate physical dose estimation modalities exist, it is essential to estimate the absorbed dose in biological system taking into account the individual variation in radiation response, so as to plan suitable medical care. Over the last several decades, lots of efforts have been taken to design a rapid and easy biological dosimeter requiring minimum invasive procedures. The metaphase chromosomal aberration assay in human lymphocytes, though is labor intensive and requires skilled individuals, still remains the gold standard for radiation biodosimetry. The current review aims at discussing the human lymphocyte metaphase chromosomal aberration assay and recent developments involving the application of molecular cytogenetic approaches and other technological advancements to make the assay more authentic and simple to use even in the events of mass radiation casualties. PMID:21829315

  14. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised.

  15. Impact of Primary Spherical Aberration, Spatial Frequency and Stiles Crawford Apodization on Wavefront determined Refractive Error: A Computational Study

    PubMed Central

    Xu, Renfeng; Bradley, Arthur; Thibos, Larry N.

    2013-01-01

    Purpose We tested the hypothesis that pupil apodization is the basis for central pupil bias of spherical refractions in eyes with spherical aberration. Methods We employed Fourier computational optics in which we vary spherical aberration levels, pupil size, and pupil apodization (Stiles Crawford Effect) within the pupil function, from which point spread functions and optical transfer functions were computed. Through-focus analysis determined the refractive correction that optimized retinal image quality. Results For a large pupil (7 mm), as spherical aberration levels increase, refractions that optimize the visual Strehl ratio mirror refractions that maximize high spatial frequency modulation in the image and both focus a near paraxial region of the pupil. These refractions are not affected by Stiles Crawford Effect apodization. Refractions that optimize low spatial frequency modulation come close to minimizing wavefront RMS, and vary with level of spherical aberration and Stiles Crawford Effect. In the presence of significant levels of spherical aberration (e.g. C40 = 0.4 µm, 7mm pupil), low spatial frequency refractions can induce −0.7D myopic shift compared to high SF refraction, and refractions that maximize image contrast of a 3 cycle per degree square-wave grating can cause −0.75D myopic drift relative to refractions that maximize image sharpness. Discussion Because of small depth of focus associated with high spatial frequency stimuli, the large change in dioptric power across the pupil caused by spherical aberration limits the effective aperture contributing to the image of high spatial frequencies. Thus, when imaging high spatial frequencies, spherical aberration effectively induces an annular aperture defining that portion of the pupil contributing to a well-focused image. As spherical focus is manipulated during the refraction procedure, the dimensions of the annular aperture change. Image quality is maximized when the inner radius of the induced

  16. Imaging System Using Shared Optics and Aberration Exploitation

    DTIC Science & Technology

    2014-02-11

    the past it has generally been accepted that the resolution of lenses with geometric aberrations cannot be increased beyond a certain threshold. In...this work we aim to overcome this limitation and demonstrate very high resolution imagery for aberrated lenses through the use of hybrid optical and...of any camera is fundamentally limited by geometric aberrations. In the past it has generally been accepted that the resolution of lenses with

  17. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal

    PubMed Central

    Zhao, Zhen; Zuber, Johannes; Diaz-Flores, Ernesto; Lintault, Laura; Kogan, Scott C.; Shannon, Kevin; Lowe, Scott W.

    2010-01-01

    The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous KrasG12D—a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic KrasG12D to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity. PMID:20595231

  18. Single atom visibility in STEM optical depth sectioning

    DOE PAGES

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; ...

    2016-10-19

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. In this paper, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided amore » cold field emission source is used. Finally, these results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.« less

  19. Single atom visibility in STEM optical depth sectioning

    SciTech Connect

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; Findlay, Scott D.; Shibata, Naoya; Ikuhara, Yuichi

    2016-10-19

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. In this paper, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided a cold field emission source is used. Finally, these results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.

  20. Single atom visibility in STEM optical depth sectioning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryo; Pennycook, Stephen J.; Lupini, Andrew R.; Findlay, Scott D.; Shibata, Naoya; Ikuhara, Yuichi

    2016-10-01

    The continuing development of aberration correctors for the scanning transmission electron microscope (STEM) offers the possibility of locating single atoms in crystals in 3D via optical depth sectioning. The main factors that determine the feasibility of such an approach are visibility and dose requirements. Here, we show how Poisson's statistics can be quantitatively incorporated into STEM image simulations and demonstrate that the 3D location of single cerium atoms in wurtzite-type aluminum nitride is indeed feasible under large-angle illumination conditions with a relatively low dose. We also show that chromatic aberration does not presently represent a limitation provided a cold field emission source is used. These results suggest efforts into improved aberration corrector designs for larger illumination angles that offer significant potential for 3D structure determination of materials.

  1. Unbiased Estimation of Refractive State of Aberrated Eyes

    PubMed Central

    Martin, Jesson; Vasudevan, Balamurali; Himebaugh, Nikole; Bradley, Arthur; Thibos, Larry

    2011-01-01

    To identify unbiased methods for estimating the target vergence required to maximize visual acuity based on wavefront aberration measurements. Experiments were designed to minimize the impact of confounding factors that have hampered previous research. Objective wavefront refractions and subjective acuity refractions were obtained for the same monochromatic wavelength. Accommodation and pupil fluctuations were eliminated by cycloplegia. Unbiased subjective refractions that maximize visual acuity for high contrast letters were performed with a computer controlled forced choice staircase procedure, using 0.125 diopter steps of defocus. All experiments were performed for two pupil diameters (3mm and 6mm). As reported in the literature, subjective refractive error does not change appreciably when the pupil dilates. For 3 mm pupils most metrics yielded objective refractions that were about 0.1D more hyperopic than subjective acuity refractions. When pupil diameter increased to 6 mm, this bias changed in the myopic direction and the variability between metrics also increased. These inaccuracies were small compared to the precision of the measurements, which implies that most metrics provided unbiased estimates of refractive state for medium and large pupils. A variety of image quality metrics may be used to determine ocular refractive state for monochromatic (635nm) light, thereby achieving accurate results without the need for empirical correction factors. PMID:21777601

  2. Line of Sight of an Aberrated Optical System

    DTIC Science & Technology

    2008-10-24

    8217 4. TITLE (and &"do) TYEO’lEOTAeEID)OEE LIME OF SIGHT OF AN ABERRATED _____________ OPTICAL SYTE S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(&) I...aberration across its interior regardless of Q shape. Next, an optical system with aberrated but uniformly illuminated annular pupil is considered. The...and R a 21! [sn Mwh, Q ; C) +cosO _9W(h,6; C) 1 id ~ 2b111J J (h) sin h h d8, (2b where E -R2W! I(h) hdh de (30) Ca -15- We now expand the aberration

  3. Spherical aberration and diffraction derived via Fourier optics

    NASA Astrophysics Data System (ADS)

    Geary, J.; Peterson, P.

    1984-02-01

    Noting that third-order spherical aberration is usually derived by way of classical geometric wavefront aberration theory, an alternative derivation is demonstrated with Fourier optics. The quadratic phase factor introduced by a lens (Goodman, 1968) is taken as the point of departure. It is shown that by extending this technique, it is possible to pick up the effect of spherical aberration, as manifested in a Fourier-optics-defined structural aberration coefficient. This coefficient is compared with the classical structural coefficient for a planoconvex lens. This difference is also demonstrated through Fresnel propagation. The effects of these differences on diffraction are investigated in the maximum Strehl planes.

  4. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  5. Epigenetic targeting of ovarian cancer stem cells.

    PubMed

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P; Matei, Daniela

    2014-09-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.

  6. Epigenetic Targeting of Ovarian Cancer Stem Cells

    PubMed Central

    Wang, Yinu; Cardenas, Horacio; Fang, Fang; Condello, Salvatore; Taverna, Pietro; Segar, Matthew; Liu, Yunlong; Nephew, Kenneth P.; Matei, Daniela

    2014-01-01

    Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer (OC). As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cell (OCSC). In this study, we tested the hypothesis that DNA hypomethylating agents may be able to reset OCSC towards a differentiated phenotype, by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH+ OC cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low dose SGI-110 reduced the stem-like properties of ALDH+ cells, including their tumor initiating capacity, resensitized these OCSCs to platinum, and induced re-expression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by re-programming residual cancer stem-like cells. Further, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer. PMID:25035395

  7. Evidence supporting the primacy of Joseph Petzval in the discovery of aberration coefficients and their application to lens design

    NASA Astrophysics Data System (ADS)

    Rakich, Andrew; Wilson, Raymond

    2007-09-01

    In 1839 Louis Daguerre published his process for permanently fixing optical images, and created an instant need for a high-aperture, relatively wide-field and well-corrected lens. Within a year, an optical design meeting all of these requirements was provided by Professor Joseph Petzval, a mathematician with no previous background in optics. This optical design was revolutionary in that it was well corrected for aberration over a wide-field at the unprecedented speed of f/3.5. As Petzval never published explicit details of his method for designing lenses, the credit for the invention of an aberration theory applicable to lens design has gone in the first place to Seidel, and later to those who developed high-order coefficients such as Schwarzschild, T Smith and Buchdahl. It is the contention of this paper that this has been an historical injustice, and that sufficient evidence exists, and indeed has existed in part since well before Seidel published his derivation of third-order aberration coefficients, to establish Petzval as the original pioneer of third-and-higher-order aberration theory as a tool for lens design.

  8. 78 FR 75449 - Miscellaneous Corrections; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ..., 50, 52, and 70 RIN 3150-AJ23 Miscellaneous Corrections; Corrections AGENCY: Nuclear Regulatory... final rule in the Federal Register on June 7, 2013, to make miscellaneous corrections to its regulations... miscellaneous corrections to its regulations in chapter I of Title 10 of the Code of Federal Regulations (10...

  9. Grain boundary atomic structures and light-element visualization in ceramics: combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations.

    PubMed

    Ikuhara, Yuichi

    2011-01-01

    Grain boundaries and interfaces of crystals have peculiar electronic structures, caused by the disorder in periodicity, providing the functional properties, which cannot be observed in a perfect crystal. In the vicinity of the grain boundaries and interfaces, dopants or impurities are often segregated, and they play a crucial role in deciding the properties of a material. Spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM), allowing the formation of sub-angstrom-sized electron probes, can directly observe grain boundary-segregated dopants. On the other hand, ceramic materials are composed of light elements, and these light elements also play an important role in the properties of ceramic materials. Recently, annular bright-field (ABF)-STEM imaging has been proposed, which is now known to be a very powerful technique in producing images showing both light- and heavy-element columns simultaneously. In this review, the atomic structure determination of ceramic grain boundaries and direct observation of grain boundary-segregated dopants and light elements in ceramics were shown to combine with the theoretical calculations. Examples are demonstrated for well-defined grain boundaries in rare earth-doped Al(2)O(3) and ZnO ceramics, CeO(2) and SrTiO(3) grain boundary, lithium battery materials and metal hydride, which were characterized by Cs-corrected high-angle annular dark-field and ABF-STEM. It is concluded that the combination of STEM characterization and first-principles calculation is very useful in interpreting the structural information and in understanding the origin of the properties in various ceramics.

  10. Erratum: "Utilization of the Wavefront Sensor and Short-exposure Images for Simultaneous Estimation of Quasi-static Aberration and Exoplanet Intensity" (ApJ, 767, 21)

    NASA Astrophysics Data System (ADS)

    Frazin, Richard A.

    2016-04-01

    This paper first demonstrates analytically that, at millisecond timescales, the adaptive optics system in a ground-based telescope will maintain the faint planetary emission nearly constant in time, while the speckle intensity at the planet’s location will undergo wild fluctuations. Then, it presents a method for the simultaneous determination of the image of an exo-planetary system and pupil-plane aberrations that are not corrected by the adaptive optics system (so-called “non-common path aberrations”), which cause a confounding speckle background. The central idea of the method is to take simultaneous millisecond exposures in both the wavefront sensor and science camera, and then perform statistical inference procedures to determine both the aberrations and planetary image. The statistical inference is based on a Taylor expansion of an exponential containing the aberration function. While the first order terms given in the paper are correct, it is missing some second-order terms, which are important when the aberrations are large enough so that a first order expansion is not adequate. Since the numerical experiments used small aberrations, this correction has little effect on the results.

  11. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.

    PubMed

    Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel

    2015-09-21

    A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.

  12. Overlapped Fourier coding for optical aberration removal

    PubMed Central

    Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei

    2014-01-01

    We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982

  13. Structural aberrations in group A Staphylococcus bacteriophages.

    PubMed Central

    Ackermann, H W; Berthiaume, L; Sonea, S; Kasatiya, S S

    1976-01-01

    Six related Staphylococcus phages spontaneously produced various abnormal head and tail structures: (i) giant capsids which were tailed and apparently contained nucleic acid; (ii) regular and irregular smooth polyheads; (iii) heads and polyheads with wavy outlines; (iv) mottled heads and polyheads; (v) abnormally long and short tails; and (vi) "double capsids" connected by a small bridge. Some of these structures are rare, or have not yet been reported. The frequency os specific aberrant particles varied from one phage to another. Length distribution of smooth irregular polyheads and of abnormal tails indicated that these structures assemble at random from protein synthesized in excess. These phages represent an interesting model for genetic and morphogentic studies. Images PMID:131865

  14. Patterns of Chromosomal Aberrations in Solid Tumors

    PubMed Central

    Grade, Marian; Difilippantonio, Michael J.

    2016-01-01

    Chromosomal abnormalities are a defining feature of solid tumors. Such cytogenetic alterations are mainly classified into structural chromosomal aberrations and copy number alterations, giving rise to aneuploid karyotypes. The increasing detection of these genetic changes allowed the description of specific tumor entities and the associated patterns of gene expression. In fact, tumor-specific landscapes of gross genomic copy number changes, including aneuploidies of entire chromosome arms and chromosomes result in a global deregulation of the transcriptome of cancer cells. Furthermore, the molecular characterization of cytogenetic abnormalities has provided insights into the mechanisms of tumorigenesis and has, in a few instances, led to the clinical implementation of effective diagnostic and prognostic tools, as well as treatment strategies that target a specific genetic abnormality. PMID:26376875

  15. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Carreño-Fuentes, Liliana; Bahena, Daniel; José-Yacamán, Miguel; Palomares, Laura A.; Ramírez, Octavio T.

    2014-09-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications.

  16. Congenital Aberrant Tearing: A Re-Look

    PubMed Central

    Miller, Marilyn T.; Strömland, Kerstin; Ventura, Liana

    2008-01-01

    Purpose Congenital aberrant tearing is characterized by tearing when eating (“crocodile tears”), lack of emotional tearing, or both. Most reported cases are associated with Duane syndrome. In our previous studies we observed aberrant tearing in individuals with thalidomide embryopathy and Möbius sequence. This report summarizes the literature on the subject and adds 3 new studies that give information on this unusual condition. Methods Twenty-eight individuals with Möbius sequence were interviewed about tearing symptoms at a support group meeting in Italy. In Sweden 30 adults primarily from the original thalidomide series were reexamined. In this latter study, a Schirmer test was done at baseline and repeated 5 minutes after eating. Twenty families in Brazil who have children with Möbius sequence were questioned about tearing symptoms and exposure to misoprostol during pregnancy. Results In the 28 Italian individuals, either “crocodile tears” or lack of emotional tearing was noted in 7 cases. In the thalidomide study, 10 of 30 patients had tearing when eating and 7 had no emotional tearing. Low Schirmer scores or increased tearing after eating was noted in a few asymptomatic individuals. Among the 20 Brazilian children with Möbius sequence, 10 had some tearing abnormality. Conclusion Congenital anomalous lacrimation is rare but usually associated with Duane syndrome or abduction deficits, as in Möbius sequence and, less frequently, facial nerve palsy. Studies implicate an early insult in development at 4 to 6 weeks. At that time the facial nerve, sixth nerve, and lacrimal nucleus are in close proximity in the embryo. PMID:19277226

  17. Eye-tracking technology for real-time monitoring of transverse chromatic aberration

    PubMed Central

    Privitera, Claudio M.; Sabesan, Ramkumar; Winter, Simon; Tiruveedhula, Pavan; Roorda, Austin

    2017-01-01

    Objective measurements of transverse chromatic aberration (TCA) between two or more wavelengths with an adaptive optics scanning laser ophthalmoscope (AOSLO) are very accurate, but frequent measurements are impractical in many experimental settings. Here, we demonstrate a pupil-tracker that can accurately measure relative changes in TCA that are caused by small shifts in the pupil relative to the AOSLO imaging beam. Corrections for TCA caused by these shifts improve the measurement of TCA as a function of eccentricity, revealing a strong linear relationship. We propose that pupil tracking be integrated into AOSLO systems where robust and unobtrusive control of TCA is required. PMID:27082330

  18. Eye-tracking technology for real-time monitoring of transverse chromatic aberration.

    PubMed

    Privitera, Claudio M; Sabesan, Ramkumar; Winter, Simon; Tiruveedhula, Pavan; Roorda, Austin

    2016-04-15

    Objective measurements of transverse chromatic aberration (TCA) between two or more wavelengths with an adaptive optics scanning laser ophthalmoscope (AOSLO) are very accurate, but frequent measurements are impractical in many experimental settings. Here, we demonstrate a pupil tracker that can accurately measure relative changes in TCA that are caused by small shifts in the pupil relative to the AOSLO imaging beam. Corrections for TCA caused by these shifts improve the measurement of TCA as a function of eccentricity, revealing a strong linear relationship. We propose that pupil tracking be integrated into AOSLO systems, where robust and unobtrusive control of TCA is required.

  19. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

    PubMed

    Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-08-04

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.

  20. Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations.

    PubMed

    Salci, Kyle R; Lee, Jong-Hee; Laronde, Sarah; Dingwall, Steve; Kushwah, Rahul; Fiebig-Comyn, Aline; Leber, Brian; Foley, Ronan; Dal Cin, Arianna; Bhatia, Mickie

    2015-06-01

    Current treatments that use hematopoietic progenitor cell (HPC) transplantation in acute myeloid leukemia (AML) patients substantially reduce the risk of relapse, but are limited by the availability of immune compatible healthy HPCs. Although cellular reprogramming has the potential to provide a novel autologous source of HPCs for transplantation, the applicability of this technology toward the derivation of healthy autologous hematopoietic cells devoid of patient-specific leukemic aberrations from AML patients must first be evaluated. Here, we report the generation of human AML patient-specific hematopoietic progenitors that are capable of normal in vitro differentiation to myeloid lineages and are devoid of leukemia-associated aberration found in matched patient bone marrow. Skin fibroblasts were obtained from AML patients whose leukemic cells possessed a distinct, leukemia-associated aberration, and used to create AML patient-specific induced pluripotent stem cells (iPSCs). Through hematopoietic differentiation of AML patient iPSCs, coupled with cytogenetic interrogation, we reveal that AML patient-specific HPCs possess normal progenitor capacity and are devoid of leukemia-associated mutations. Importantly, in rare patient skin samples that give rise to mosaic fibroblast cultures that continue to carry leukemia-associated mutations; healthy hematopoietic progenitors can also be generated via reprogramming selection. Our findings provide the proof of principle that cellular reprogramming can be applied on a personalized basis to generate healthy HPCs from AML patients, and should further motivate advances toward creating transplantable hematopoietic stem cells for autologous AML therapy.