Science.gov

Sample records for aberration correction algorithm

  1. Adaptive phase aberration correction based on imperialist competitive algorithm.

    PubMed

    Yazdani, R; Hajimahmoodzadeh, M; Fallah, H R

    2014-01-01

    We investigate numerically the feasibility of phase aberration correction in a wavefront sensorless adaptive optical system, based on the imperialist competitive algorithm (ICA). Considering a 61-element deformable mirror (DM) and the Strehl ratio as the cost function of ICA, this algorithm is employed to search the optimum surface profile of DM for correcting the phase aberrations in a solid-state laser system. The correction results show that ICA is a powerful correction algorithm for static or slowly changing phase aberrations in optical systems, such as solid-state lasers. The correction capability and the convergence speed of this algorithm are compared with those of the genetic algorithm (GA) and stochastic parallel gradient descent (SPGD) algorithm. The results indicate that these algorithms have almost the same correction capability. Also, ICA and GA are almost the same in convergence speed and SPGD is the fastest of these algorithms.

  2. Aberration correction in an adaptive free-space optical interconnect with an error diffusion algorithm

    NASA Astrophysics Data System (ADS)

    Gil-Leyva, Diego; Robertson, Brian; Wilkinson, Timothy D.; Henderson, Charley J.

    2006-06-01

    Aberration correction within a free-space optical interconnect based on a spatial light modulator for beam steering and holographic wavefront correction is presented. The wavefront sensing technique is based on an extension of a modal wavefront sensor described by Neil et al. [J. Opt. Soc. Am. A 17, 1098 (2000)], which uses a diffractive element. In this analysis such a wavefront sensor is adapted with an error diffusion algorithm that yields a low reconstruction error and fast reconfigurability. Improvement of the beam propagation quality (Strehl ratio) for different channels across the input plane is achieved. However, due to the space invariancy of the system, a trade-off among the beam propagation quality for channels is obtained. Experimental results are presented and discussed.

  3. Correction of Distributed Optical Aberrations

    SciTech Connect

    Baker, K; Olivier, S; Carrano, C; Phillion, D

    2006-02-12

    The objective of this project was to demonstrate the use of multiple distributed deformable mirrors (DMs) to improve the performance of optical systems with distributed aberrations. This concept is expected to provide dramatic improvement in the optical performance of systems in applications where the aberrations are distributed along the optical path or within the instrument itself. Our approach used multiple actuated DMs distributed to match the aberration distribution. The project developed the algorithms necessary to determine the required corrections and simulate the performance of these multiple DM systems.

  4. Implementation of the near-field signal redundancy phase-aberration correction algorithm on two-dimensional arrays.

    PubMed

    Li, Yue; Robinson, Brent

    2007-01-01

    Near-field signal-redundancy (NFSR) algorithms for phase-aberration correction have been proposed and experimentally tested for linear and phased one-dimensional arrays. In this paper the performance of an all-row-plus-two-column, two-dimensional algorithm has been analyzed and tested with simulated data sets. This algorithm applies the NFSR algorithm for one-dimensional arrays to all the rows as well as the first and last columns of the array. The results from the two column measurements are used to derive a linear term for each row measurement result. These linear terms then are incorporated into the row results to obtain a two-dimensional phase aberration profile. The ambiguity phase aberration profile, which is the difference between the true and the derived phase aberration profiles, of this algorithm is not linear. Two methods, a trial-and-error method and a diagonal-measurement method, are proposed to linearize the ambiguity profile. The performance of these algorithms is analyzed and tested with simulated data sets.

  5. Chicago aberration correction work.

    PubMed

    Beck, V D

    2012-12-01

    The author describes from his personal involvement the many improvements to electron microscopy Albert Crewe and his group brought by minimizing the effects of aberrations. The Butler gun was developed to minimize aperture aberrations in a field emission electron gun. In the 1960s, Crewe anticipated using a spherical aberration corrector based on Scherzer's design. Since the tolerances could not be met mechanically, a method of moving the center of the octopoles electrically was developed by adding lower order multipole fields. Because the corrector was located about 15 cm ahead of the objective lens, combination aberrations would arise with the objective lens. This fifth order aberration would then limit the aperture of the microscope. The transformation of the off axis aberration coefficients of a round lens was developed and a means to cancel anisotropic coma was developed. A new method of generating negative spherical aberration was invented using the combination aberrations of hexapoles. Extensions of this technique to higher order aberrations were developed. An electrostatic electron mirror was invented, which allows the cancellation of primary spherical aberration and first order chromatic aberration. A reduction of chromatic aberration by two orders of magnitude was demonstrated using such a system.

  6. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  7. A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy.

    PubMed

    Fontanarosa, Davide; Pesente, Silvia; Pascoli, Francesco; Ermacora, Denis; Rumeileh, Imad Abu; Verhaegen, Frank

    2013-03-07

    Conventional ultrasound (US) devices use the time of flight (TOF) of reflected US pulses to calculate distances inside the scanned tissues and thus create images. The speed of sound (SOS) is assumed to be constant in all human soft tissues at a generally accepted average value of 1540 m s(-1). This assumption is a source of systematic errors up to several millimeters and of image distortion in quantitative US imaging. In this work, an extension of a method recently published by Fontanarosa et al (2011 Med. Phys. 38 2665-73) is presented: the aim is to correct SOS aberrations in three-dimensional (3D) US images in those cases where a spatially co-registered computerized tomography (CT) scan is also available; the algorithm is then applicable to a more general case where the lines of view (LOV) of the US device are not necessarily parallel and coplanar, thus allowing correction also for US transducers other than linear. The algorithm was applied on a multi-modality pelvic US phantom, scanned through three different liquid layers on top of the phantom with different SOS values; the results show that the correction restores a better match between the CT and the US images, reducing the differences to sub-millimeter agreement. Fifteen clinical cases of prostate cancer patients were also investigated: the SOS corrections of prostate centroids were on average +3.1 mm (max + 4.9 mm-min + 1.3 mm). This is in excellent agreement with reports in the literature on differences between measured prostate positions by US and other techniques, where often the discrepancy was attributed to other causes.

  8. A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Fontanarosa, Davide; Pesente, Silvia; Pascoli, Francesco; Ermacora, Denis; Abu Rumeileh, Imad; Verhaegen, Frank

    2013-03-01

    Conventional ultrasound (US) devices use the time of flight (TOF) of reflected US pulses to calculate distances inside the scanned tissues and thus create images. The speed of sound (SOS) is assumed to be constant in all human soft tissues at a generally accepted average value of 1540 m s-1. This assumption is a source of systematic errors up to several millimeters and of image distortion in quantitative US imaging. In this work, an extension of a method recently published by Fontanarosa et al (2011 Med. Phys. 38 2665-73) is presented: the aim is to correct SOS aberrations in three-dimensional (3D) US images in those cases where a spatially co-registered computerized tomography (CT) scan is also available; the algorithm is then applicable to a more general case where the lines of view (LOV) of the US device are not necessarily parallel and coplanar, thus allowing correction also for US transducers other than linear. The algorithm was applied on a multi-modality pelvic US phantom, scanned through three different liquid layers on top of the phantom with different SOS values; the results show that the correction restores a better match between the CT and the US images, reducing the differences to sub-millimeter agreement. Fifteen clinical cases of prostate cancer patients were also investigated: the SOS corrections of prostate centroids were on average +3.1 mm (max + 4.9 mm-min + 1.3 mm). This is in excellent agreement with reports in the literature on differences between measured prostate positions by US and other techniques, where often the discrepancy was attributed to other causes.

  9. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  10. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  11. Algorithms and applications of aberration correction and American standard-based digital evaluation in surface defects evaluating system

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Cao, Pin; Yang, Yongying; Li, Chen; Chai, Huiting; Zhang, Yihui; Xiong, Haoliang; Xu, Wenlin; Yan, Kai; Zhou, Lin; Liu, Dong; Bai, Jian; Shen, Yibing

    2016-11-01

    The inspection of surface defects is one of significant sections of optical surface quality evaluation. Based on microscopic scattering dark-field imaging, sub-aperture scanning and stitching, the Surface Defects Evaluating System (SDES) can acquire full-aperture image of defects on optical elements surface and then extract geometric size and position information of defects with image processing such as feature recognization. However, optical distortion existing in the SDES badly affects the inspection precision of surface defects. In this paper, a distortion correction algorithm based on standard lattice pattern is proposed. Feature extraction, polynomial fitting and bilinear interpolation techniques in combination with adjacent sub-aperture stitching are employed to correct the optical distortion of the SDES automatically in high accuracy. Subsequently, in order to digitally evaluate surface defects with American standard by using American military standards MIL-PRF-13830B to judge the surface defects information obtained from the SDES, an American standard-based digital evaluation algorithm is proposed, which mainly includes a judgment method of surface defects concentration. The judgment method establishes weight region for each defect and adopts the method of overlap of weight region to calculate defects concentration. This algorithm takes full advantage of convenience of matrix operations and has merits of low complexity and fast in running, which makes itself suitable very well for highefficiency inspection of surface defects. Finally, various experiments are conducted and the correctness of these algorithms are verified. At present, these algorithms have been used in SDES.

  12. Pulse compressor with aberration correction

    SciTech Connect

    Mankos, Marian

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  13. Iteration of ultrasound aberration correction methods

    NASA Astrophysics Data System (ADS)

    Maasoey, Svein-Erik; Angelsen, Bjoern; Varslot, Trond

    2004-05-01

    Aberration in ultrasound medical imaging is usually modeled by time-delay and amplitude variations concentrated on the transmitting/receiving array. This filter process is here denoted a TDA filter. The TDA filter is an approximation to the physical aberration process, which occurs over an extended part of the human body wall. Estimation of the TDA filter, and performing correction on transmit and receive, has proven difficult. It has yet to be shown that this method works adequately for severe aberration. Estimation of the TDA filter can be iterated by retransmitting a corrected signal and re-estimate until a convergence criterion is fulfilled (adaptive imaging). Two methods for estimating time-delay and amplitude variations in receive signals from random scatterers have been developed. One method correlates each element signal with a reference signal. The other method use eigenvalue decomposition of the receive cross-spectrum matrix, based upon a receive energy-maximizing criterion. Simulations of iterating aberration correction with a TDA filter have been investigated to study its convergence properties. A weak and strong human-body wall model generated aberration. Both emulated the human abdominal wall. Results after iteration improve aberration correction substantially, and both estimation methods converge, even for the case of strong aberration.

  14. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  15. Aberration corrected Lorentz scanning transmission electron microscopy.

    PubMed

    McVitie, S; McGrouther, D; McFadzean, S; MacLaren, D A; O'Shea, K J; Benitez, M J

    2015-05-01

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale.

  16. Aberration correction of zoom lenses using evolutionary programming.

    PubMed

    Pal, Sourav

    2013-08-10

    A systematic approach for the aberration correction of zoom systems is presented. It is assumed that the powers and movements of the components of the zoom systems are known. Each component is considered as a system of thin lenses in contact. An evolutionary algorithm is developed to explore the multivariate hyperspace of design variables formed by spherical aberration, central coma, and longitudinal chromatic aberration of each component for infinite conjugate. The primary aberrations for each component at any zoom position are deduced from three central aberration coefficients of the component for infinite conjugate using conjugate shift formulas. Overall system aberrations of the zoom systems are determined by using stop shift formulas. In most of the zoom lens systems it is important to achieve stability in the primary aberrations of the system over the zoom range. This is facilitated by proper formulation of the merit function for the optimization process. Investigations have been carried out on four-component zoom lenses, and an ab initio structure of a four-component zoom lens is presented.

  17. Aspherical surfaces design for extreme ultraviolet lithographic objective with correction of thermal aberration

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yanqiu

    2016-09-01

    At present, few projection objectives for extreme ultraviolet (EUV) lithography pay attention to correct thermal aberration in optical design phase, which would lead to poor image quality in a practical working environment. We present an aspherical modification method for helping the EUV lithographic objective additionally correct the thermal aberration. Based on the thermal aberration and deformation predicted by integrated optomechanical analysis, the aspherical surfaces in an objective are modified by an iterative algorithm. The modified aspherical surfaces could correct the thermal aberration and maintain the initial high image quality in a practical working environment. A six-mirror EUV lithographic objective with 0.33-numerical aperture is taken as an example to illustrate the presented method. The results show that the thermal aberration can be corrected effectively, and the image quality of the thermally deformed system is improved to the initial design level, which proves the availability of the method.

  18. Peripheral Aberrations and Image Quality for Contact Lens Correction

    PubMed Central

    Shen, Jie; Thibos, Larry N.

    2011-01-01

    Purpose Contact lenses reduced the degree of hyperopic field curvature present in myopic eyes and rigid contact lenses reduced sphero-cylindrical image blur on the peripheral retina, but their effect on higher order aberrations and overall optical quality of the eye in the peripheral visual field is still unknown. The purpose of our study was to evaluate peripheral wavefront aberrations and image quality across the visual field before and after contact lens correction. Methods A commercial Hartmann-Shack aberrometer was used to measure ocular wavefront errors in 5° steps out to 30° of eccentricity along the horizontal meridian in uncorrected eyes and when the same eyes are corrected with soft or rigid contact lenses. Wavefront aberrations and image quality were determined for the full elliptical pupil encountered in off-axis measurements. Results Ocular higher-order aberrations increase away from fovea in the uncorrected eye. Third-order aberrations are larger and increase faster with eccentricity compared to the other higher-order aberrations. Contact lenses increase all higher-order aberrations except 3rd-order Zernike terms. Nevertheless, a net increase in image quality across the horizontal visual field for objects located at the foveal far point is achieved with rigid lenses, whereas soft contact lenses reduce image quality. Conclusions Second order aberrations limit image quality more than higher-order aberrations in the periphery. Although second-order aberrations are reduced by contact lenses, the resulting gain in image quality is partially offset by increased amounts of higher-order aberrations. To fully realize the benefits of correcting higher-order aberrations in the peripheral field requires improved correction of second-order aberrations as well. PMID:21873925

  19. Temperature Corrected Bootstrap Algorithm

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.; Zwally, H. Jay

    1997-01-01

    A temperature corrected Bootstrap Algorithm has been developed using Nimbus-7 Scanning Multichannel Microwave Radiometer data in preparation to the upcoming AMSR instrument aboard ADEOS and EOS-PM. The procedure first calculates the effective surface emissivity using emissivities of ice and water at 6 GHz and a mixing formulation that utilizes ice concentrations derived using the current Bootstrap algorithm but using brightness temperatures from 6 GHz and 37 GHz channels. These effective emissivities are then used to calculate surface ice which in turn are used to convert the 18 GHz and 37 GHz brightness temperatures to emissivities. Ice concentrations are then derived using the same technique as with the Bootstrap algorithm but using emissivities instead of brightness temperatures. The results show significant improvement in the area where ice temperature is expected to vary considerably such as near the continental areas in the Antarctic, where the ice temperature is colder than average, and in marginal ice zones.

  20. Adaptive aberration correction using a triode hyperbolic electron mirror.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties.

  1. Lesion generation through ribs using histotripsy therapy without aberration correction.

    PubMed

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A

    2011-11-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction.

  2. Generalized Alvarez lens for correction of laser aberrations

    SciTech Connect

    LaFortune, K N

    2004-12-02

    The Alvarez lens (US Patent No. 3,305,294 [1]) is a compact aberration corrector. The original design emphasized in the patent consists of a pair of adjacent optical elements that provide a variable focus. A lens system with a variable effective focal length is nothing new. Such systems are widely used in cameras, for example. It is the compactness and simplicity of operation that is the key advantage of the Alvarez lens. All of the complexity is folded into the design and fabrication of the optical elements. As mentioned in the Alvarez patent [1] and elaborated upon in Palusinski et al. [2], if one is willing to fold even more complexity into the optical elements, it is possible to correct higher-order aberrations as well. There is no theoretical limit to the number or degree of wavefront distortions that can be corrected. The only limitation is that there must be a fixed relative magnitude of the aberrations. Independent correction of each component of the higher-order aberrations can not be performed without additional elements and degrees of freedom [3]. Under some circumstances, coupling may be observed between different aberrations. This can be mitigated with the appropriate choice of design parameters. New methods are available today that increase the practicality of making higher-order aberration correctors [4,5,6].

  3. Lesion Generation Through Ribs Using Histotripsy Therapy Without Aberration Correction

    PubMed Central

    Kim, Yohan; Wang, Tzu-Yin; Xu, Zhen; Cain, Charles A.

    2012-01-01

    This study investigates the feasibility of using high-intensity pulsed therapeutic ultrasound, or histotripsy, to non-invasively generate lesions through the ribs. Histotripsy therapy mechanically ablates tissue through the generation of a cavitation bubble cloud, which occurs when the focal pressure exceeds a certain threshold. We hypothesize that histotripsy can generate precise lesions through the ribs without aberration correction if the main lobe retains its shape and exceeds the cavitation initiation threshold and the secondary lobes remain below the threshold. To test this hypothesis, a 750-kHz focused transducer was used to generate lesions in tissue-mimicking phantoms with and without the presence of rib aberrators. In all cases, 8000 pulses with 16 to 18 MPa peak rarefactional pressure at a repetition frequency of 100 Hz were applied without aberration correction. Despite the high secondary lobes introduced by the aberrators, high-speed imaging showed that bubble clouds were generated exclusively at the focus, resulting in well-confined lesions with comparable dimensions. Collateral damage from secondary lobes was negligible, caused by single bubbles that failed to form a cloud. These results support our hypothesis, suggesting that histotripsy has a high tolerance for aberrated fields and can generate confined focal lesions through rib obstacles without aberration correction. PMID:22083767

  4. Dynamic aberration correction for conformal optics using model-based wavefront sensorless adaptive optics

    NASA Astrophysics Data System (ADS)

    Han, Xinli; Dong, Bing; Li, Yan; Wang, Rui; Hu, Bin

    2016-10-01

    For missiles and airplanes with high Mach number, traditional spherical or flat window can cause a lot of air drag. Conformal window that follow the general contour of surrounding surface can substantially decrease air drag and extend operational range. However, the local shape of conformal window changes across the Field Of Regard (FOR), leading to time-varying FOR-dependent wavefront aberration and degraded image. So the correction of dynamic aberration is necessary. In this paper, model-based Wavefront Sensorless Adaptive Optics (WSAO) algorithm is investigated both by simulation and experiment for central-obscured pupil. The algorithm is proved to be effective and the correction accuracy of using DM modes is higher than Lukosz modes. For dynamic aberration in our system, the SR can be better than 0.8 when the change of looking angle is less than 2° after t seconds which is the time delay of the control system.

  5. Intrinsic instability of aberration-corrected electron microscopes.

    PubMed

    Schramm, S M; van der Molen, S J; Tromp, R M

    2012-10-19

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an "instability budget" which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  6. Intrinsic Instability of Aberration-Corrected Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Schramm, S. M.; van der Molen, S. J.; Tromp, R. M.

    2012-10-01

    Aberration-corrected microscopes with subatomic resolution will impact broad areas of science and technology. However, the experimentally observed lifetime of the corrected state is just a few minutes. Here we show that the corrected state is intrinsically unstable; the higher its quality, the more unstable it is. Analyzing the contrast transfer function near optimum correction, we define an “instability budget” which allows a rational trade-off between resolution and stability. Unless control systems are developed to overcome these challenges, intrinsic instability poses a fundamental limit to the resolution practically achievable in the electron microscope.

  7. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    SciTech Connect

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; Stach, Eric A.; Ross, Frances M.

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  8. Sub-ångstrom resolution using aberration corrected electron optics

    NASA Astrophysics Data System (ADS)

    Batson, P. E.; Dellby, N.; Krivanek, O. L.

    2002-08-01

    Following the invention of electron optics during the 1930s, lens aberrations have limited the achievable spatial resolution to about 50 times the wavelength of the imaging electrons. This situation is similar to that faced by Leeuwenhoek in the seventeenth century, whose work to improve the quality of glass lenses led directly to his discovery of the ubiquitous ``animalcules'' in canal water, the first hints of the cellular basis of life. The electron optical aberration problem was well understood from the start, but more than 60 years elapsed before a practical correction scheme for electron microscopy was demonstrated, and even then the remaining chromatic aberrations still limited the resolution. We report here the implementation of a computer-controlled aberration correction system in a scanning transmission electron microscope, which is less sensitive to chromatic aberration. Using this approach, we achieve an electron probe smaller than 1Å. This performance, about 20 times the electron wavelength at 120keV energy, allows dynamic imaging of single atoms, clusters of a few atoms, and single atomic layer `rafts' of atoms coexisting with Au islands on a carbon substrate. This technique should also allow atomic column imaging of semiconductors, for detection of single dopant atoms, using an electron beam with energy below the damage threshold for silicon.

  9. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  10. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  11. Differential aberration correction (DAC) microscopy: a new molecular ruler.

    PubMed

    Vallotton, P

    2008-11-01

    Considerable efforts have been deployed towards measuring molecular range distances in fluorescence microscopy. In the 1-10 nm range, Förster energy transfer microscopy is difficult to beat. Above 300 nm, conventional diffraction limited microscopy is suitable. We introduce a simple experimental technique that allows bridging the gap between those two resolution scales in both 2D and 3D with a resolution of about 20 nm. The method relies on a computational approach to accurately correct optical aberrations over the whole field of view. The method is differential because the probes of interest are affected in exactly the same manner by aberrations as are the reference probes used to construct the aberration deformation field. We expect that this technique will have significant implications for investigating structural and functional questions in bio-molecular sciences.

  12. Conformal dome aberration correction by designing the inner surface

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Chen, Shouqian; Fan, Zhigang

    2016-12-01

    The ray transmission models of optical domes were established, and the characteristics of the rays while passing through a hemispherical dome and a conformal dome were comparatively analysed. Acquiring the minimum deviated angles from the inner surface of the conformal dome was then determined to be the designing goal for reducing the dynamic aberrations. Based on this, the inner surface of the conformal dome was optimized and thus, the dynamic aberrations were reduced. Finally, a completely cooled conformal optical system was designed. The results show that the optical system have produced good imaging quality within all the fields of regard, which further illustrates that designing the inner surface of a conformal dome is an effective method for aberration correction.

  13. Aberration correction for time-domain ultrasound diffraction tomography.

    PubMed

    Mast, T Douglas

    2002-07-01

    Extensions of a time-domain diffraction tomography method, which reconstructs spatially dependent sound speed variations from far-field time-domain acoustic scattering measurements, are presented and analyzed. The resulting reconstructions are quantitative images with applications including ultrasonic mammography, and can also be considered candidate solutions to the time-domain inverse scattering problem. Here, the linearized time-domain inverse scattering problem is shown to have no general solution for finite signal bandwidth. However, an approximate solution to the linearized problem is constructed using a simple delay-and-sum method analogous to "gold standard" ultrasonic beamforming. The form of this solution suggests that the full nonlinear inverse scattering problem can be approximated by applying appropriate angle- and space-dependent time shifts to the time-domain scattering data; this analogy leads to a general approach to aberration correction. Two related methods for aberration correction are presented: one in which delays are computed from estimates of the medium using an efficient straight-ray approximation, and one in which delays are applied directly to a time-dependent linearized reconstruction. Numerical results indicate that these correction methods achieve substantial quality improvements for imaging of large scatterers. The parametric range of applicability for the time-domain diffraction tomography method is increased by about a factor of 2 by aberration correction.

  14. Effect of chromatic aberration on atomic-resolved spherical aberration corrected STEM images.

    PubMed

    Kuramochi, Koji; Yamazaki, Takashi; Kotaka, Yasutoshi; Ohtsuka, Masahiro; Hashimoto, Iwao; Watanabe, Kazuto

    2009-12-01

    The effect of the chromatic aberration (C(c)) coefficient in a spherical aberration (C(s))- corrected electromagnetic lens on high-resolution high-angle annular dark field (HAADF) scanning transmission electron microscope (STEM) images is explored in detail. A new method for precise determination of the C(c) coefficient is demonstrated, requiring measurement of an atomic-resolution one-frame through-focal HAADF STEM image. This method is robust with respect to instrumental drift, sample thickness, all lens parameters except C(c), and experimental noise. It is also demonstrated that semi-quantitative structural analysis on the nanometer scale can be achieved by comparing experimental C(s)- corrected HAADF STEM images with their corresponding simulated images when the effects of the C(c) coefficient and spatial incoherence are included.

  15. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields.

    PubMed

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael

    2009-11-01

    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized noninvasively through direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows determination of the precise estimation of the phase and amplitude aberrations, and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2pi). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from sigma = 1.89 radian before correction to sigma = 0.53 radian following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be -7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of -0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus

  16. Eliminating chromatic aberration in Gauss-type lens design using a novel genetic algorithm.

    PubMed

    Fang, Yi-Chin; Tsai, Chen-Mu; Macdonald, John; Pai, Yang-Chieh

    2007-05-01

    Two different types of Gauss lens design, which effectively eliminate primary chromatic aberration, are presented using an efficient genetic algorithm (GA). The current GA has to deal with too many targets in optical global optimization so that the performance is not much improved. Generally speaking, achromatic aberrations have a great relationship with variable glass sets for all elements. For optics whose design is roughly convergent, glass sets for optics will play a significant role in axial and lateral color aberration. Therefore better results might be derived from the optimal process of eliminating achromatic aberration, which could be carried out by finding feasible glass sets in advance. As an alternative, we propose a new optimization process by using a GA and involving theories of geometrical optics in order to select the best optical glass combination. Two Gauss-type lens designs are employed in this research. First, a telephoto lens design is sensitive to axial aberration because of its long focal length, and second, a wide-angle Gauss design is complicated by lateral color aberration at the extreme corners because Gauss design is well known not to deal well with wide-angle problems. Without numbers of higher chief rays passing the element, it is difficult to correct lateral color aberration altogether for the Gauss design. The results and conclusions show that the attempts to eliminate primary chromatic aberrations were successful.

  17. Correcting for Beam Aberrations in a Beam-Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Franco, Manuel; Slobin, Stephen; Veruttipong, Watt

    2003-01-01

    A method for correcting the aim of a beam-waveguide microwave antenna compensates for the beam aberration that occurs during radio tracking of a target that has a component of velocity transverse to the line of sight from the tracking station. The method was devised primarily for use in tracking of distant target spacecraft by large terrestrial beam-waveguide antennas of NASA's Deep Space Network (DSN). The method should also be adaptable to tracking, by other beam-waveguide antennas, of targets that move with large transverse velocities at large distances from the antennas.

  18. Adaptive dispersion formula for index interpolation and chromatic aberration correction.

    PubMed

    Li, Chia-Ling; Sasián, José

    2014-01-13

    This paper defines and discusses a glass dispersion formula that is adaptive. The formula exhibits superior convergence with a minimum number of coefficients. Using this formula we rationalize the correction of chromatic aberration per spectrum order. We compare the formula with the Sellmeier and Buchdahl formulas for glasses in the Schott catalogue. The six coefficient adaptive formula is found to be the most accurate with an average maximum index of refraction error of 2.91 × 10(-6) within the visible band.

  19. Transcranial phase aberration correction using beam simulations and MR-ARFI

    SciTech Connect

    Vyas, Urvi Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.

  20. Active Correction of Aberrations of Low-Quality Telescope Optics

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijian

    2007-01-01

    A system of active optics that includes a wavefront sensor and a deformable mirror has been demonstrated to be an effective means of partly correcting wavefront aberrations introduced by fixed optics (lenses and mirrors) in telescopes. It is envisioned that after further development, active optics would be used to reduce wavefront aberrations of about one wave or less in telescopes having aperture diameters of the order of meters or tens of meters. Although this remaining amount of aberration would be considered excessive in scientific applications in which diffraction-limited performance is required, it would be acceptable for free-space optical- communication applications at wavelengths of the order of 1 m. To prevent misunderstanding, it is important to state the following: The technological discipline of active optics, in which the primary or secondary mirror of a telescope is directly and dynamically tilted, distorted, and/or otherwise varied to reduce wavefront aberrations, has existed for decades. The term active optics does not necessarily mean the same thing as does adaptive optics, even though active optics and adaptive optics are related. The term "adaptive optics" is often used to refer to wavefront correction at speeds characterized by frequencies ranging up to between hundreds of hertz and several kilohertz high enough to enable mitigation of adverse effects of fluctuations in atmospheric refraction upon propagation of light beams. The term active optics usually appears in reference to wavefront correction at significantly lower speeds, characterized by times ranging from about 1 second to as long as minutes. Hence, the novelty of the present development lies, not in the basic concept of active or adaptive optics, but in the envisioned application of active optics in conjunction with a deformable mirror to achieve acceptably small wavefront errors in free-space optical communication systems that include multi-meter-diameter telescope mirrors that are

  1. Primary chromatic aberration elimination via optimization work with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Bo-Wen; Liu, Tung-Kuan; Fang, Yi-Chin; Chou, Jyh-Horng; Tsai, Hsien-Lin; Chang, En-Hao

    2008-09-01

    Chromatic Aberration plays a part in modern optical systems, especially in digitalized and smart optical systems. Much effort has been devoted to eliminating specific chromatic aberration in order to match the demand for advanced digitalized optical products. Basically, the elimination of axial chromatic and lateral color aberration of an optical lens and system depends on the selection of optical glass. According to reports from glass companies all over the world, the number of various newly developed optical glasses in the market exceeds three hundred. However, due to the complexity of a practical optical system, optical designers have so far had difficulty in finding the right solution to eliminate small axial and lateral chromatic aberration except by the Damped Least Squares (DLS) method, which is limited in so far as the DLS method has not yet managed to find a better optical system configuration. In the present research, genetic algorithms are used to replace traditional DLS so as to eliminate axial and lateral chromatic, by combining the theories of geometric optics in Tessar type lenses and a technique involving Binary/Real Encoding, Multiple Dynamic Crossover and Random Gene Mutation to find a much better configuration for optical glasses. By implementing the algorithms outlined in this paper, satisfactory results can be achieved in eliminating axial and lateral color aberration.

  2. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens

    PubMed Central

    Kretz, Florian T A; Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd U

    2015-01-01

    AIM To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting, monofocal intraocular lens (IOL). METHODS Twenty-one patients (34 eyes) aged 50 to 83y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL (Tecnis ZCB00, Abbott Medical Optics). Three months after surgery they were examined for uncorrected (UDVA) and corrected distance visual acuity (CDVA), contrast sensitivity (CS) under photopic and mesopic conditions with and without glare source, ocular high order aberrations (HOA, Zywave II) and retinal straylight (C-Quant). RESULTS Postoperatively, patients achieved a postoperative CDVA of 0.0 logMAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27 (primary coma components) and -0.04±0.16 (spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed (P≥0.28). CONCLUSION The implantation of an aspherical aberration correcting monofocal IOL after cataract surgery resulted in very low residual higher order aberration (HOA) and normal straylight. PMID:26309872

  3. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    PubMed

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope.

  4. A method of dynamic chromatic aberration correction in low-voltage scanning electron microscopes.

    PubMed

    Khursheed, Anjam

    2005-07-01

    A time-of-flight concept that dynamically corrects for chromatic aberration effects in scanning electron microscopes (SEMs) is presented. The method is predicted to reduce the microscope's chromatic aberration by an order of magnitude. The scheme should significantly improve the spatial resolution of low-voltage scanning electron microscopes (LVSEMs). The dynamic means of correcting for chromatic aberration also allows for the possibility of obtaining high image resolution from electron guns that have relatively large energy spreads.

  5. Sensor-less aberration correction in optical imaging systems using blind optimization

    NASA Astrophysics Data System (ADS)

    Avanaki, Mohammad R. N.; Mazraeh Khoshki, R.; Hojjatoleslami, S. A.; Podoleanu, A. Gh.

    2012-02-01

    The imperfection of optical devices in an optical imaging system deteriorates wavefront which results in aberration. This reduces the optical signal to noise ratio of the imaging system and the quality of the produced images. Adaptive optics composed of wavefront sensor (WFS) and deformable mirror (DM) is a straightforward solution for this problem. The need for a WFS in an AO system, raises the cost of the overall system, and there are also instances when they cannot be used, such as in microscopy. Moreover stray reflections from lens surfaces affect the performance of the WFS. In this paper, we describe a blind optimization technique with an in-expensive electronics without using the WFS to correct the aberration in order to achieve better quality images. The correction system includes an electromagnetic DM from Imagine, Mirao52d, with 52 actuators which are controlled by particle swarm optimization (PSO) algorithm. The results of the application of simulated annealing (SA), and genetic algorithm (GA) techniques that we have implemented in the sensor-less AO are used for comparison.

  6. Sextupole system for the correction of spherical aberration

    DOEpatents

    Crewe, A.V.; Kopf, D.A.

    In an electron beam device in which an electron beam is developed and then focused by a lens to a particular spot, there is provided a means for eliminating spherical aberration. A sextupole electromagnetic lens is positioned between two focusing lenses. The interaction of the sextupole with the beam compensates for spherical aberration. (GHT)

  7. Information transfer in a TEM corrected for spherical and chromatic aberration.

    PubMed

    Haider, M; Hartel, P; Müller, H; Uhlemann, S; Zach, J

    2010-08-01

    For the transmission electron aberration-corrected microscope (TEAM) initiative of five U.S. Department of Energy laboratories in the United States, a correction system for the simultaneous compensation of the primary axial aberrations, the spherical aberration Cs, and the chromatic aberration Cc has been developed and successfully installed. The performance of the resulting Cc /Cs-corrected TEAM instrument has been investigated thoroughly. A significant improvement of the linear contrast transfer can be demonstrated. The information about the instrument one obtains using Young's fringe method is compared for uncorrected, Cs-corrected, and Cc /Cs-corrected instruments. The experimental results agree well with simulations. The conclusions might be useful to others in understanding the process of image formation in a Cc /Cs-corrected transmission electron microscope.

  8. Study on the modification of measured wavefront aberration data for customized visual correction

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Zhang, Yong; Zhang, Zhidong; Quan, Wei; An, Li

    2008-12-01

    Wavefront aberration of human eye is an important foundation for customized vision correction. In most current aberrometers, near infrared light is used to measure ocular wavefront aberration, whereas for customized visual correction, wavefront aberration data in visible range are required. With the measured wavefront aberration, corneal topography and eye's axial lengths data, individual eye models for twenty normal human eyes are constructed with the optical design software ZEMAX. Changing the incidence light wavelength and the refractive indexes of eye models, the values of defocus, astigmatism, higher-order aberrations in the measuring wavelength (833nm) and at the most sensitive wavelength of human eye (555nm) are obtained. Average focus shift between 833nm and 555nm is found to be about 0.94D, and different slightly for different individuals; the differences of astigmatism and higher-order aberrations between 833nm and 555nm are quite slight. For customized visual correction, the measured defocus value should be modified, whereas the measured astigmatism and higher-order aberrations could be used directly for the current correction precision. Individual eye model is a useful tool for accurate transformation of the measured wavefront aberration data into the data for visible spectrum.

  9. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  10. Correction of chromatic aberrations at television registration of image through protective viewing systems

    NASA Astrophysics Data System (ADS)

    Kulyas, Oleg L.; Nikitin, Konstantin A.

    2016-03-01

    Ways of chromatic aberration in images are examined and analyzed which are generated at television supervision through protective glasses of a considerable thickness. The results of experimental check up of the given method of correction is introduced and described.

  11. Accommodation with higher-order monochromatic aberrations corrected with adaptive optics

    NASA Astrophysics Data System (ADS)

    Chen, Li; Kruger, Philip B.; Hofer, Heidi; Singer, Ben; Williams, David R.

    2006-01-01

    Higher-order monochromatic aberrations in the human eye cause a difference in the appearance of stimuli at distances nearer and farther from best focus that could serve as a signed error signal for accommodation. We explored whether higher-order monochromatic aberrations affect the accommodative response to 0.5 D step changes in vergence in experiments in which these aberrations were either present as they normally are or removed with adaptive optics. Of six subjects, one could not accommodate at all for steps in either condition. One subject clearly required higher-order aberrations to accommodate at all. The remaining four subjects could accommodate in the correct direction even when higher-order aberrations were removed. No subjects improved their accommodation when higher-order aberrations were corrected, indicating that the corresponding decrease in the depth of field of the eye did not improve the accommodative response. These results are consistent with previous findings of large individual differences in the ability to accommodate in impoverished conditions. These results suggest that at least some subjects can use monochromatic higher-order aberrations to guide accommodation. They also show that some subjects can accommodate correctly when higher-order monochromatic aberrations as well as established cues to accommodation are greatly reduced.

  12. Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations.

    PubMed

    De Nicola, S; Finizio, A; Pierattini, G; Alfieri, D; Grilli, S; Sansone, L; Ferraro, P

    2005-10-15

    We demonstrate experimentally that correct phase imaging without 2pi ambiguity is obtainable in digital holography by using a multiwavelength approach in the microscope configuration. We describe a general approach for removing chromatic aberrations and for controlling the pixel size of the reconstructed phase image in multiwavelength digital holography when the Fourier transform method is adopted for the numerical reconstruction of digital holograms. The retrieved phase is affected by the unavoidable, unwanted chromatic aberration. The correct phase can be obtained by evaluating the phase from the reference holograms reconstructed at different wavelengths to compensate for the chromatic aberration.

  13. Characterization of misfit dislocations in Si quantum well structures enabled by STEM based aberration correction.

    PubMed

    Batson, Philip E; Lagos, Maureen J

    2017-03-02

    The success of aberration correction techniques at the end of the 20th century came at a time of increasing need for atomic resolution imaging to better understand known structural defects that influence semiconductor device operation, and to advance the search for new structures and behavior that will form the basis for devices in the future. With this in mind, it is a pleasure to recognize the contributions of Ondrej Krivanek to the success of aberration correction techniques, and his extension of aberration techniques to EELS equipment that further promises to unite structural studies with characterization of behavior from meV to keV energies in the STEM.

  14. Design of macro-filter-lens with simultaneous chromatic and geometric aberration correction.

    PubMed

    Prasad, Dilip K; Brown, Michael S

    2014-01-01

    A macro-filter-lens design that can correct for chromatic and geometric aberrations simultaneously while providing for a long focal length is presented. The filter is easy to fabricate since it involves two spherical surfaces and a planar surface. Chromatic aberration correction is achieved by making all the rays travel the same optical distance inside the filter element (negative meniscus). Geometric aberration is corrected for by the lens element (plano-convex), which makes the output rays parallel to the optic axis. This macro-filter-lens design does not need additional macro lenses and it provides an inexpensive and optically good (aberration compensated) solution for macro imaging of objects not placed close to the camera.

  15. Surgical correction of an aberrant right subclavian artery in a dog

    PubMed Central

    Yoon, Hun-Young; Jeong, Soon-wuk

    2011-01-01

    A diagnosis of an aberrant right subclavian artery was made in a 3-month-old Boston terrier. Surgical correction was performed after confirming adequate collateral circulation. Reports of surgical correction and evaluation of the perioperative thoracic limb blood pressure are rare in dogs. PMID:22467968

  16. Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice.

    PubMed

    Oana, Kosuke; Oma, Yoko; Suo, Satoshi; Takahashi, Masanori P; Nishino, Ichizo; Takeda, Shin'ichi; Ishiura, Shoichi

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults and as yet no cure for DM1. Here, we report the potential of manumycin A for a novel DM1 therapeutic reagent. DM1 is caused by expansion of CTG repeat. Mutant transcripts containing expanded CUG repeats lead to aberrant regulation of alternative splicing. Myotonia (delayed muscle relaxation) is the most commonly observed symptom in DM1 patients and is caused by aberrant splicing of the skeletal muscle chloride channel (CLCN1) gene. Identification of small-molecule compounds that correct aberrant splicing in DM1 is attracting much attention as a way of improving understanding of the mechanism of DM1 pathology and improving treatment of DM1 patients. In this study, we generated a reporter screening system and searched for small-molecule compounds. We found that manumycin A corrects aberrant splicing of Clcn1 in cell and mouse models of DM1.

  17. Effect of correction of aberration dynamics on chaos in human ocular accommodation.

    PubMed

    Hampson, Karen M; Cufflin, Matthew P; Mallen, Edward A H

    2013-11-15

    We used adaptive optics to determine the effect of monochromatic aberration dynamics on the level of chaos in the accommodation control system. Four participants viewed a stationary target while the dynamics of their aberrations were either left uncorrected, defocus was corrected, or all aberrations except defocus were corrected. Chaos theory analysis was used to discern changes in the accommodative microfluctuations. We found a statistically significant reduction in the chaotic nature of the accommodation microfluctuations during correction of defocus, but not when all aberrations except defocus were corrected. The Lyapunov exponent decreased from 0.71 ± 0.07 D/s (baseline) to 0.55 ± 0.03 D/s (correction of defocus fluctuations). As the reduction of chaos in physiological signals is indicative of stress to the system, the results indicate that for the participants included in this study, fluctuations in defocus have a more profound effect than those of the other aberrations. There were no changes in the power spectrum between experimental conditions. Hence chaos theory analysis is a more subtle marker of changes in the accommodation control system and will be of value in the study of myopia onset and progression.

  18. Improving the quality perception of digital images using modified method of the eye aberration correction

    NASA Astrophysics Data System (ADS)

    Kvyetnyy, Roman; Sofina, Olga; Orlyk, Pavel; Utreras, Andres J.; Smolarz, Andrzej; Wójcik, Waldemar; Orazalieva, Sandugash

    2016-09-01

    A new approach to solve the problem of image correction to improve the quality perception of graphic information by people with aberrations of the eye optical system is considered in given article. The model of higher order aberrations which may appear in the human eye optical system is described. The developed approach is based on the pre-processing of digital images and applying of the filtration methods to the adjusted images.

  19. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    PubMed Central

    Huang, Chao; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-01-01

    Abstract. A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT. PMID:22734772

  20. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Nie, Liming; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-06-01

    A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT.

  1. Modeling of Optical Aberration Correction using a Liquid Crystal Device

    NASA Technical Reports Server (NTRS)

    Xinghua, Wang; Bin, Wang; McManamon, Paul F.; Pouch, John J.; Miranda, Felix A.

    2006-01-01

    Gruneisen (sup 1-3), has shown that small, light weight, liquid crystal based devices can correct for the optical distortion caused by an imperfect primary mirror in a telescope and has discussed the efficiency of this correction. In this paper we expand on that work and propose a semi-analytical approach for quantifying the efficiency of a liquid crystal based wavefront corrector for this application.

  2. Aberration correction of double-sided telecentric zoom lenses using lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-09-20

    A systematic approach for the aberration design of a four-component double-sided telecentric zoom lens system is presented. The Gaussian structure of the zoom system is specified previously which means the powers and movements of components are known. Each component is treated as a lens module during the design stage with specified first-order properties and third-order aberration targets. The third-order aberration targets of the first component are determined by minimizing the whole aberrations of the zoom lens system using a genetic algorithm (GA). And the aberration targets of components behind are determined by reoptimization with already fixed structures of previous components. Mean pupil spherical aberration of every component in every zoom position is adopted in the objective function to control high-order aberrations. The thin lens structure of each component can be determined from their first-order properties and aberration targets. After lens thickening and reoptimization, the zoom lens system can finally be determined.

  3. Aberration-corrected STEM/TEM imaging at 15kV.

    PubMed

    Sasaki, Takeo; Sawada, Hidetaka; Hosokawa, Fumio; Sato, Yuta; Suenaga, Kazu

    2014-10-01

    The performance of aberration-corrected (scanning) transmission electron microscopy (S/TEM) at an accelerating voltage of 15kV was evaluated in a low-voltage microscope equipped with a cold-field emission gun and a higher-order aberration corrector. Aberrations up to the fifth order were corrected by the aberration measurement and auto-correction system using the diffractogram tableau method in TEM and Ronchigram analysis in STEM. TEM observation of nanometer-sized particles demonstrated that aberrations up to an angle of 50mrad were compensated. A TEM image of Si[110] exhibited lattice fringes with a spacing of 0.192nm, and the power spectrum of the image showed spots corresponding to distances of 0.111nm. An annular dark-field STEM image of Si[110] showed lattice fringes of (111) and (22¯0) planes corresponding to lattice distances of 0.314nm and 0.192nm, respectively. At an accelerating voltage of 15kV, the developed low-voltage microscope achieved atomic-resolution imaging with a small chromatic aberration and a large uniform phase.

  4. Correction of axial and lateral chromatic aberration with false color filtering.

    PubMed

    Chang, Joonyoung; Kang, Hee; Kang, Moon Gi

    2013-03-01

    In this paper, we propose a chromatic aberration (CA) correction algorithm based on a false color filtering technique. In general, CA produces color distortions called color fringes near the contrasting edges of captured images, and these distortions cause false color artifacts. In the proposed method, a false color filtering technique is used to filter out the false color components from the chroma-signals of the input image. The filtering process is performed with the adaptive weights obtained from both the gradient and color differences, and the weights are designed to reduce the various types of color fringes regardless of the colors of the artifacts. Moreover, as preprocessors of the filtering process, a transient improvement (TI) technique is applied to enhance the slow transitions of the red and blue channels that are blurred by the CA. The TI process improves the filtering performance by narrowing the false color regions before the filtering process when severe color fringes (typically purple fringes) occur widely. Last, the CA-corrected chroma-signal is combined with the TI chroma-signal to avoid incorrect color adjustment. The experimental results show that the proposed method substantially reduces the CA artifacts and provides natural-looking replacement colors, while it avoids incorrect color adjustment.

  5. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    SciTech Connect

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  6. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  7. Aberration and boresight error correction for conformal aircraft windows using the inner window surface and tilted fixed correctors.

    PubMed

    Zhao, Chunzhu; Cui, Qingfeng; Mao, Shan

    2016-04-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported. The solution uses the inner window surface to correct the window aberrations at a 0° look angle and uses fixed correctors behind the window to correct the residual window aberrations at other look angles. Then, the boresight error for the window at different look angles is corrected by tilting the fixed correctors. The principle of the solution is discussed, and a design example shows that the solution is effective in correcting the aberrations and boresight error for a tilted conformal aircraft window at different look angles.

  8. Digital aberration correction of fluorescent images with coherent holographic image reconstruction by phase transfer (CHIRPT)

    NASA Astrophysics Data System (ADS)

    Field, Jeffrey J.; Bartels, Randy A.

    2016-03-01

    Coherent holographic image reconstruction by phase transfer (CHIRPT) is an imaging method that permits digital holographic propagation of fluorescent light. The image formation process in CHIRPT is based on illuminating the specimen with a precisely controlled spatio-temporally varying intensity pattern. This pattern is formed by focusing a spatially coherent illumination beam to a line focus on a spinning modulation mask, and image relaying the mask plane to the focal plane of an objective lens. Deviations from the designed spatio-temporal illumination pattern due to imperfect mounting of the circular modulation mask onto the rotation motor induce aberrations in the recovered image. Here we show that these aberrations can be measured and removed non-iteratively by measuring the disk aberration phase externally. We also demonstrate measurement and correction of systematic optical aberrations in the CHIRPT microscope.

  9. CLASSICAL AREAS OF PHENOMENOLOGY: Conformal optical design with combination of static and dynamic aberration corrections

    NASA Astrophysics Data System (ADS)

    Li, Yan; Li, Lin; Huang, Yi-Fan; Liu, Jia-Guo

    2009-02-01

    Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aberrations are induced which vary with the field-of-regard (FOR) angle. A system for correcting optical aberrations created by a conformal dome has an outer surface and an inner surface. Optimizing the inner surface is regard as static aberration correction. A deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. An ellipsoidal MgF2 conformal dome with a fineness ratio of 1.0 is designed as an example. The FOR angle is 0°- 30°, and the design wavelength is 4 μm. After the optimization at 7 zoom positions by using the design tools Code V, the root-mean-square (RMS) spot size is reduced to approximately 0.99 to 1.48 times the diffraction limit. The design results show that the performances of the conformal optical systems can be greatly improved by the combination of the static correction and the dynamic correction.

  10. Chromatic aberration correction of the human eye for retinal imaging in the near infrared

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Unterhuber, Angelika; Považay, Boris; Hermann, Boris; Artal, Pablo; Drexler, Woflgang

    2006-06-01

    An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

  11. Chromatic aberration correction of the human eye for retinal imaging in the near infrared.

    PubMed

    Fernández, Enrique J; Unterhuber, Angelika; Povazay, Boris; Hermann, Boris; Artal, Pablo; Drexler, Woflgang

    2006-06-26

    An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

  12. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses

    NASA Astrophysics Data System (ADS)

    Zhong, Xing; Zhang, Yuan; Jin, Guang

    2015-03-01

    The design of the high performance imaging spectrometer using low-cost plane grating is researched in this paper. In order to correct the aberrations well, under the guidance of the vector aberration theory, the modification of Czerny-Turner system with inserted tilt lenses is proposed. The novel design of a short-wave infrared imaging spectrometer working at between wavelengths of 1-2.5 μm is shown as an example, whose numerical aperture achieves 0.15 in image space. The aberrations are corrected well and the Modulation Transfer Function (MTF) performance is the same as the convex gratings systems. The smiles and keystones of the spectral image are acceptable. Advantages of the proposed design with a plane grating are obviously that the diffraction efficiency is high while the cost is very low.

  13. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.

    PubMed

    Shaw, Michael; Hall, Simon; Knox, Steven; Stevens, Richard; Paterson, Carl

    2010-03-29

    In this paper we describe the wavefront aberrations that arise when imaging biological specimens using an optical sectioning microscope and generate simulated wavefronts for a planar refractive index mismatch. We then investigate the capability of two deformable mirrors for correcting spherical aberration at different focusing depths for three different microscope objective lenses. Along with measurement and analysis of the mirror influence functions we determine the optimum mirror pupil size and number of spatial modes included in the wavefront expansion and we present measurements of actuator linearity and hysteresis. We find that both mirrors are capable of correcting the wavefront aberration to improve imaging and greatly extend the depth at which diffraction limited imaging is possible.

  14. The correction of aberrations computed in the aperture plane of multifrequency microwave radiometer antennas

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1984-01-01

    An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.

  15. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2014-09-01

    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth.

  16. Device and method for creating Gaussian aberration-corrected electron beams

    SciTech Connect

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  17. Wavefront-guided correction of ocular aberrations: Are phase plate and refractive surgery solutions equal?

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Munger, Rejean; Priest, David

    2005-08-01

    Wavefront-guided laser eye surgery has been recently introduced and holds the promise of correcting not only defocus and astigmatism in patients but also higher-order aberrations. Research is just beginning on the implementation of wavefront-guided methods in optical solutions, such as phase-plate-based spectacles, as alternatives to surgery. We investigate the theoretical differences between the implementation of wavefront-guided surgical and phase plate corrections. The residual aberrations of 43 model eyes are calculated after simulated refractive surgery and also after a phase plate is placed in front of the untreated eye. In each case, the current wavefront-guided paradigm that applies a direct map of the ocular aberrations to the correction zone is used. The simulation results demonstrate that an ablation map that is a Zernike fit of a direct transform of the ocular wavefront phase error is not as efficient in correcting refractive errors of sphere, cylinder, spherical aberration, and coma as when the same Zernike coefficients are applied to a phase plate, with statistically significant improvements from 2% to 6%.

  18. Gold clusters showing pentagonal atomic arrays revealed by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Mayoral, Alvaro; Blom, Douglas A; Mariscal, Marcelo M; Guiterrez-Wing, Claudia; Aspiazu, Juan; Jose-Yacaman, Miguel

    2010-12-14

    In this work we present the analysis by aberration corrected electron microscopy of the formation of gold clusters based on the proton irradiation of larger nanoparticles (NP). Pentagonal arrays have been observed and energetic calculations have been performed in order to prove the stability of these materials.

  19. Recursive wavefront aberration correction method for LCoS spatial light modulators

    NASA Astrophysics Data System (ADS)

    García-Márquez, J.; Landgrave, J. E. A.; Alcalá-Ochoa, N.; Pérez-Santos, C.

    2011-06-01

    We present two accurate and relatively simple interferometric methods for the correction of wavefront aberrations of about 3 wavelengths (3 λ) in spatial light modulators (SLMs) of the liquid crystal on silicon (LCoS) type. The first is based on a recursive use of a wavefront fitting algorithm in a Wyko™ interferometer, in which Zernike polynomials are employed as the basis functions. We show here that the successive use of only three measurements is required to obtain a peak-to-valley (PV) error as low as λ/10, with an uncertainty of λ/30, in the compensated wavefront. The second method makes use of the actual optical path difference (OPD) computed by the interferometer at each pixel of the image of the interferogram of the LCoS modulator (LCoS-M). From numerical interpolation of these OPD values we were able to assign the required OPD compensation at each pixel of the LCoS-M. With this method, PV errors of the compensated wavefront as low as λ/16, with an uncertainty of λ/30, were obtained for the entire LCoS-M, or of λ/33 for the disk that we used as the domain of the Zernike polynomials in the first method.

  20. Eigenfunction analysis of stochastic backscatter for aberration correction in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Mo, Eirik; Krogstad, Harald; Angelsen, Bjørn

    2004-05-01

    A filter for aberration correction in medical ultrasound imaging is presented. The filter is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wave length of the transmit pulse. The scatterer distribution is therefore assumed to be δ-correlated. Theoretical considerations imply that maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction have been studied for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtained using a diffraction limited time-reversal filter based on simulated point source data.

  1. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

    NASA Astrophysics Data System (ADS)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-01

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  2. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    PubMed

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  3. Characterization and correction of spherical aberration due to glass substrate in the design and fabrication of Fresnel zone lenses.

    PubMed

    Vijayakumar, A; Bhattacharya, S

    2013-08-20

    As with a conventional lens, a Fresnel zone lens (FZL) can be used to image objects at infinity or nearby. In the latter case, the FZL converts a diverging spherical wavefront into a converging spherical wavefront. The glass substrate on which the FZL is fabricated introduces spherical aberration resulting in a shift of the image plane and blurring of the image. Two novel schemes for correction of this spherical aberration are proposed and studied in this paper. To demonstrate them, FZLs are designed with and without aberration correction. They are fabricated using electron beam direct writing. The devices are evaluated and the accuracy of the proposed aberration correction schemes is validated.

  4. Training to improve contrast sensitivity in amblyopia: correction of high-order aberrations

    PubMed Central

    Liao, Meng; Zhao, Haoxing; Liu, Longqian; Li, Qian; Dai, Yun; Zhang, Yudong; Zhou, Yifeng

    2016-01-01

    Perceptual learning is considered a potential treatment for amblyopia even in adult patients who have progressed beyond the critical period of visual development because adult amblyopes retain sufficient visual plasticity. When perceptual learning is performed with the correction of high-order aberrations (HOAs), a greater degree of neural plasticity is present in normal adults and those with highly aberrated keratoconic eyes. Because amblyopic eyes show more severe HOAs than normal eyes, it is interesting to study the effects of HOA-corrected visual perceptual learning in amblyopia. In the present study, we trained twenty-six older child and adult anisometropic amblyopes while their HOAs were corrected using a real-time closed-loop adaptive optics perceptual learning system (AOPL). We found that adaptive optics (AO) correction improved the modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of older children and adults with anisometropic amblyopia. When perceptual learning was performed with AO correction of the ocular HOAs, the improvements in visual function were not only demonstrated in the condition with AO correction but were also maintained in the condition without AO correction. Additionally, the learning effect with AO correction was transferred to the untrained visual acuity and fellow eyes in the condition without AO correction. PMID:27752122

  5. Automatic low-order aberration correction based on geometry optics: simulations

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Dong, Lizhi; Liu, Yong; Yang, Ping; Tang, Guomao; Xu, Bing

    2016-10-01

    The slab laser is a promising architecture to achieve high beam quality and high power. By propagating the laser beams in zigzag geometries, the temperature gradient in the gain medium can be well averaged, and the beam quality in this direction can be excellent. However, the temperature gradient in the non-zigzag direction is not compensated, resulting in aberrations in this direction which lead to poorer beam quality. Among the overall aberrations, the main contributors are two low-order aberrations: astigmatism and defocus. These aberrations will magnify beam divergence angle and degrade beam quality. If the beam divergence angles in both directions are almost zero, the astigmatism and defocus are well corrected. Besides, the output beams of slab lasers are generally in a rectangular aperture with high aspect ratio (normally 1:10), which need to be reshaped into square in many applications. In this paper, a new method is proposed to correct low-order aberrations and reshape the beams of slab lasers. Three lenses are adapted, one is a spherical lens and the others are cylindrical lenses. These lenses work as a beam shaping system, which converts the beam from rectangular into square and the low-order aberrations are compensated simultaneously. Two wavefront sensors are used to detect input and output beam parameters. The initial size of the beam is 4mm×20mm, and peak to valley (PV) value of the wavefront is several tens of microns. Simulation results show that after correction, the dimension becomes 40mm×40mm, and peak to valley (PV) value of the wavefront is less than 1microns.

  6. Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites

    SciTech Connect

    Fontanarosa, Davide; Meer, Skadi van der; Bloemen-van Gurp, Esther; Stroian, Gabriela; Verhaegen, Frank

    2012-08-15

    Purpose: The purpose of this work is to assess the magnitude of speed of sound (SOS) aberrations in three-dimensional ultrasound (US) imaging systems in image guided radiotherapy. The discrepancy between the fixed SOS value of 1540 m/s assumed by US systems in human soft tissues and its actual nonhomogeneous distribution in patients produces small but systematic errors of up to a few millimeters in the positions of scanned structures. Methods: A correction, provided by a previously published density-based algorithm, was applied to a set of five prostate, five liver, and five breast cancer patients. The shifts of the centroids of target structures and the change in shape were evaluated. Results: After the correction the prostate cases showed shifts up to 3.6 mm toward the US probe, which may explain largely the reported positioning discrepancies in the literature on US systems versus other imaging modalities. Liver cases showed the largest changes in volume of the organ, up to almost 9%, and shifts of the centroids up to more than 6 mm either away or toward the US probe. Breast images showed systematic small shifts of the centroids toward the US probe with a maximum magnitude of 1.3 mm. Conclusions: The applied correction in prostate and liver cancer patients shows positioning errors of several mm due to SOS aberration; the errors are smaller in breast cancer cases, but possibly becoming more important when breast tissue thickness increases.

  7. An aberration corrected photoemission electron microscope at the advanced light source

    SciTech Connect

    Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2003-11-01

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.

  8. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound.

    PubMed

    Ziksari, Mahsa Sotoodeh; Asl, Babak Mohammadzadeh

    2017-03-01

    In recent years, applying adaptive beamforming to ultrasound imaging improves image quality in terms of resolution and contrast. One of the best adaptive beamformers in this field is the minimum variance (MV) beamformer which presents better resolution and edge definition compared to the traditional delay-and-sum (DAS) beamformer. However, in real situations, sound-velocity inhomogeneities cause phase aberration which leads to ambiguity in targets' location and degradation in resolution. This effect is a fundamental obstacle to utilize advantages of MV beamformer, although, in aberrating medium MV beamformer results in better performance compared to DAS. In this paper, two different levels of phase screens have been applied to simulate aberrator layers located close to the transducer. Also, prior to beamforming process, a conventional correction technique based on phase screen model is used. Simulations are performed in majority resolution of MV which has the lowest robustness. The results demonstrate that applying this correction method can retrieve the efficiency of the MV beamformer. Moreover, the method improves the performance of the MV in both terms of resolution and contrast. As corrected MV achieved at least 22% improvement in sidelobe reduction and 24% increase in contrast to noise ratio (CNR) with respect to the DAS corrected data. Also, according to experimental dataset 17% enhancement in CNR is yielded by MV.

  9. The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy.

    PubMed

    Lupini, Andrew R; de Jonge, Niels

    2011-10-01

    Aberration correction reduces the depth of field in scanning transmission electron microscopy (STEM) and thus allows three-dimensional (3D) imaging by depth sectioning. This imaging mode offers the potential for sub-Ångstrom lateral resolution and nanometer-scale depth sensitivity. For biological samples, which may be many microns across and where high lateral resolution may not always be needed, optimizing the depth resolution even at the expense of lateral resolution may be desired, aiming to image through thick specimens. Although there has been extensive work examining and optimizing the probe formation in two dimensions, there is less known about the probe shape along the optical axis. Here the probe shape is examined in three dimensions in an attempt to better understand the depth resolution in this mode. Examples are presented of how aberrations change the probe shape in three dimensions, and it is found that off-axial aberrations may need to be considered for focal series of large areas. It is shown that oversized or annular apertures theoretically improve the vertical resolution for 3D imaging of nanoparticles. When imaging nanoparticles of several nanometer size, regular STEM can thereby be optimized such that the vertical full-width at half-maximum approaches that of the aberration-corrected STEM with a standard aperture.

  10. Simultaneous and independent adaptive correction of spherical and chromatic aberration using an electron mirror and lens combination.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-04-01

    We present a theoretical analysis of an electrostatic triode mirror combined with an einzel lens for the correction of spherical and chromatic aberration. We show that this device adaptively corrects spherical and chromatic aberration simultaneously and independently. Chromatic aberration can be compensated over a relative range of -38% to +100%, and spherical aberration over ±100% range. We compare the analytic calculation with a numerical simulation and show that the two descriptions agree to within 5% in the relevant operating regime of the device.

  11. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, Richard H.

    1996-01-01

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface.

  12. Apparatus for and method of correcting for aberrations in a light beam

    DOEpatents

    Sawicki, R.H.

    1996-09-17

    A technique for adjustably correcting for aberrations in a light beam is disclosed herein. This technique utilizes first means which defines a flat, circular light reflecting surface having opposite reinforced circumferential edges and a central post and which is resiliently distortable, to a limited extent, into different concave and/or convex curvatures, which may be Gaussian-like, about the central axis, and second means acting on the first means for adjustably distorting the light reflecting surface into a particular selected one of the different curvatures depending upon the aberrations to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably distorted into the selected curvature by application of particular axial moments to the central post on the opposite side from the light reflecting surface and lateral moments to the circumference of the reflecting surface. 8 figs.

  13. Performance and Image Analysis of the Aberration Corrected Hitachi HD-2700C Stem

    SciTech Connect

    Inada, H.; Zhu, Y.; Wu, L.; Wall, J.; Su, D.

    2009-03-01

    We report the performance of the first aberration-corrected scanning transmission electron microscope (STEM) manufactured by Hitachi. We describe its unique features and versatile capabilities in atomic-scale characterization and its applications in materials research. We also discuss contrast variation of the STEM images obtained from different annular dark-field (ADF) detectors of the instrument, and the increased complexity in contrast interpretation and quantification due to the increased convergent angles of the electron probe associated with the aberration corrector. We demonstrate that the intensity of atomic columns in an ADF image depends strongly on a variety of imaging parameters, sample thickness, as well as the nuclear charge and the deviation from their periodic position of the atoms we are probing. Image simulations are often required to correctly interpret the atomic structure of an ADF-STEM image.

  14. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    SciTech Connect

    Borisevich, Albina Y; Lupini, Andrew R; Pennycook, Stephen J

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed.

  15. In situ correction of the spherical aberration in a double-toroidal electron analyzer

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Nicolas, Christophe; Miron, Catalin

    2017-02-01

    In an energy-dispersive electron spectrometer, the electrons with the same kinetic energy but different polar angles fly along different paths and impinge upon the detector at different locations. This behavior materializes the spherical aberration of the electron optics, which deteriorates the focussing quality on the detector, and thus the energy resolution of the instrument. Here, we demonstrate that, in general, the electron time of flight changes monotonically as a function of the polar angle. Combining the impact position on the detector and the time of flight of electrons, the spherical aberration can be corrected and the energy resolution can be significantly improved, 1.5× in the case of our double toroidal analyser. This correction method has a general applicability and can be of interest to experimentalists willing to push further the performances of their electron spectrometers when the time of flight is available.

  16. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  17. Aberration and boresight error correction for conformal windows using tilted and decentered fixed correctors

    NASA Astrophysics Data System (ADS)

    Zhao, Chunzhu; Mao, Shan

    2016-10-01

    A static solution to aberrations and boresight error for tilted conformal aircraft windows at different look angles is reported, which is the use of tilted and decentered fixed correctors. The principle of the static solution is discussed, and three tilted and decentered fixed correctors are designed to correct the aberrations and boresight error for a conformal window. The correctors are fixed in position between the conformal window and the gimbaled imaging system, thus requiring no moving parts. The design result shows that the predominant astigmatism introduced by the conformal window is corrected by the tilted and decentered fixed correctors at different look angles. Moreover, the boresight error for the conformal window, as a function of look angle, is also corrected by the correctors. The root mean square wavefront aberration for the final conformal window imaging system is less than 0.2 wave across the full field of regard on the visible spectrum, and the boresight error is less than 0.5' across the full field of regard.

  18. Correction of NIRI/ Altair non-common path aberrations using focal plane sharpening

    NASA Astrophysics Data System (ADS)

    Ball, Jesse G.; Lai, Olivier; Trujillo, Chadwick; White, John

    2016-07-01

    Non-common path aberrations (NCPA), in an adaptive optics system, are static aberrations induced by the science and wavefront sensor's (WFS) separate light paths, for which the latter is corrected (although not present in the former), and the former is not. It was suspected1 that this type of aberration may significantly affect the image quality performance of Altair + NIRI, the Gemini North Observatory's adaptive optics facility instrument and the near-infrared imaging camera. A simple and effective focal plane sharpening technique was developed to optimize these static aberrations for Altair & NIRI at f/32, and 2.12μm. By varying the shape of the deformable mirror (DM) to introduce Zernike aberration coefficients through a reasonable range of values, the images produced were read out on the NIRI detector and analyzed for Strehl ratio. Fitting a second-order polynomial to this data set gave an optimized value for each coefficient out to Z49. The Strehl ratio was improved by 6% +/- 2% and the Z5 (45° astigmatism) term showed the only appreciable error contribution to the current NCPA offset of 0.15μm in k-prime (2.12μm). Aside from resulting in a slight improvement in image quality, the technique developed is non-invasive and will be implemented in other instruments and cameras that typically couple with Altair and have outdated or erroneous NCPA files currently. Furthermore, some high spatial-frequency structure in the PSF was found that limited the effect of these corrections, and may be a key component in further investigations towards image quality degradation in Altair + NIRI.

  19. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2013-07-21

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source's emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system's resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  20. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  1. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-07-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  2. A correction method for the axial maladjustment of transmission-type optical system based on aberration theory

    NASA Astrophysics Data System (ADS)

    Xu, Chunmei; Huang, Fu-yu; Yin, Jian-ling; Chen, Yu-dan; Mao, Shao-juan

    2016-10-01

    The influence of aberration on misalignment of optical system is considered fully, the deficiencies of Gauss optical correction method is pointed, and a correction method for transmission-type misalignment optical system is proposed based on aberration theory. The variation regularity of single lens aberration caused by axial displacement is analyzed, and the aberration effect is defined. On this basis, through calculating the size of lens adjustment induced by the image position error and the magnifying rate error, the misalignment correction formula based on the constraints of the aberration is deduced mathematically. Taking the three lens collimation system for an example, the test is carried out to validate this method, and its superiority is proved.

  3. Active site of bimetallic heterogeneous catalyst by atomic resolution aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Hsiao, Chien-Nan; Lin, Chun-Ting

    2015-11-01

    The localized defect of Au-Pd bimetallic heterogeneous nanoparticles catalyst was investigated using HRTEM and aberration-corrected HRSTEM. The phase plates were calculated from the aberration coefficients of the measured probe tableau for various outer tilt angle of the optical axis and the accuracy required for the compensation of the various residual aberration coefficients in order to achieve sub-angstrom resolution with the electron optics system was evaluated up to the fifth order aberrations. It is found that the interplanar spacing of the Au-Pd nanoparticle (1 1 1) planes observed along the [1 1 0] zone axis was approximately 0.24 nm measured by HRTEM. In addition, the HRSTEM HAADF image demonstrated that the twin boundaries on the surfaces of heterogeneous nanoparticles catalysts at atomic scale. These defects might be introduced during the growth to alleviate the internal stress caused by the 4.6% lattice mismatch of Au-Pd bimetallic system. Current research could be applied to the study of active sites in nanocatalysts.

  4. Dynamic optical aberration correction with adaptive coded apertures techniques in conformal imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hu, Bin; Zhang, Pengbin; Zhang, Binglong

    2015-02-01

    Conformal imaging systems are confronted with dynamic aberration in optical design processing. In classical optical designs, for combination high requirements of field of view, optical speed, environmental adaption and imaging quality, further enhancements can be achieved only by the introduction of increased complexity of aberration corrector. In recent years of computational imaging, the adaptive coded apertures techniques which has several potential advantages over more traditional optical systems is particularly suitable for military infrared imaging systems. The merits of this new concept include low mass, volume and moments of inertia, potentially lower costs, graceful failure modes, steerable fields of regard with no macroscopic moving parts. Example application for conformal imaging system design where the elements of a set of binary coded aperture masks are applied are optimization designed is presented in this paper, simulation results show that the optical performance is closely related to the mask design and the reconstruction algorithm optimization. As a dynamic aberration corrector, a binary-amplitude mask located at the aperture stop is optimized to mitigate dynamic optical aberrations when the field of regard changes and allow sufficient information to be recorded by the detector for the recovery of a sharp image using digital image restoration in conformal optical system.

  5. Algorithmic Error Correction of Impedance Measuring Sensors

    PubMed Central

    Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira

    2009-01-01

    This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177

  6. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  7. Design and progress toward a multi-conjugate adaptive optics system for distributed aberration correction

    SciTech Connect

    Baker, K; Olivier, S; Tucker, J; Silva, D; Gavel, D; Lim, R; Gratrix, E

    2004-08-17

    This article investigates the use of a multi-conjugate adaptive optics system to improve the field-of-view for the system. The emphasis of this research is to develop techniques to improve the performance of optical systems with applications to horizontal imaging. The design and wave optics simulations of the proposed system are given. Preliminary results from the multi-conjugate adaptive optics system are also presented. The experimental system utilizes a liquid-crystal spatial light modulator and an interferometric wave-front sensor for correction and sensing of the phase aberrations, respectively.

  8. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy

    NASA Astrophysics Data System (ADS)

    Tiruvalam, R.; He, Q.; Herzing, A. A.; Pritchard, J.; Dimitratos, N.; Lopez-Sanchez, J. A.; Edwards, J. K.; Carley, A. F.; Hutchings, G. J.; Kiely, C. J.

    2012-07-01

    The recent availability of aberration corrected analytical electron microscopes (ACAEM) is revolutionizing our ability to characterize nanostructured catalyst materials. Some recent case studies are presented whereby the application of the high angle annular dark field (HAADF) imaging technique, coupled with STEM-XEDS analysis, has given us a more detailed and realistic view of the catalyst morphology. The examples chosen include supported Au catalysts for low temperature CO oxidation and supported AuPd bimetallic alloy catalysts for the direct production of H2O2.

  9. New views of materials through aberration-corrected scanning transmission electron microscopy.

    PubMed

    Pennycook, S J; Varela, M

    2011-01-01

    The successful correction of third-order and, more recently, fifth-order aberrations has enormously enhanced the capabilities of the scanning transmission electron microscope (STEM), by not only achieving record resolution, but also allowing near 100% efficiency for electron energy loss spectroscopy, and higher currents for two-dimensional spectrum imaging. These advances have meant that the intrinsic advantages of the STEM, incoherent imaging and simultaneous collection of multiple complementary images can now give new insights into many areas of materials physics. Here, we review a number of examples, mostly from the field of complex oxides, and look towards new directions for the future.

  10. Derivative Form of Off-axis Aberration Correction Surface and Its Application in Solar Energy Concentration

    NASA Astrophysics Data System (ADS)

    Li, Li; Chen, Ying-Tian; Hu, Sen

    2009-02-01

    By using the derivative method, we obtained the same result with that of the previous work of Chen et al. in 2006. Different from the integral form, the derivative form of the surface expression published in this paper is derived from differential equation and based on the theory of non-imaging focusing heliostat proposed by Chen et al. in 2001. The comparison of the derivative form of fixed aberration correction surface has been made with that of integral form surface as well as that of spherical surface in concentrating the solar ray.

  11. Pupil-phase optimization for extended-focus, aberration-corrected imaging systems

    NASA Astrophysics Data System (ADS)

    Prasad, Sudhakar; Pauca, V. Paul; Plemmons, Robert J.; Torgersen, Todd C.; van der Gracht, Joseph

    2004-10-01

    The insertion of a suitably designed phase plate in the pupil of an imaging system makes it possible to encode the depth dimension of an extended three-dimensional scene by means of an approximately shift-invariant PSF. The so-encoded image can then be deblurred digitally by standard image recovery algorithms to recoup the depth dependent detail of the original scene. A similar strategy can be adopted to compensate for certain monochromatic aberrations of the system. Here we consider two approaches to optimizing the design of the phase plate that are somewhat complementary - one based on Fisher information that attempts to reduce the sensitivity of the phase encoded image to misfocus and the other based on a minimax formulation of the sum of singular values of the system blurring matrix that attempts to maximize the resolution in the final image. Comparisons of these two optimization approaches are discussed. Our preliminary demonstration of the use of such pupil-phase engineering to successfully control system aberrations, particularly spherical aberration, is also presented.

  12. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-09-02

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method.

  13. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics

    PubMed Central

    Dong, Bing; Li, Yan; Han, Xin-li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10−5 in optimized correction and is 1.427 × 10−5 in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  14. Performance analysis of adaptive fiber laser array propagating in atmosphere with correction of high order aberrations in sub-aperture

    NASA Astrophysics Data System (ADS)

    Li, Feng; Geng, Chao; Li, Xinyang; Qiu, Qi

    2016-10-01

    Recently developed adaptive fiber laser array technique provides a promising way incorporating aberrations correction with laser beams transmission. Existing researches are focused on sub-aperture low order aberrations (pistons and tips/tilts) compensation and got excellent correction results for weak and moderate turbulence in short range. While such results are not adequate for future laser applications which face longer range and stronger turbulence. So sub-aperture high aberrations compensation is necessary. Relationship between corrigible orders of sub-aperture aberrations and far-field metrics as power-in-the-bucket (PIB) and Strehl ratio is investigated with numeric simulation in this paper. Numerical investigation results shows that increment in array number won't result in effective improvement of the far-field metric if sub-aperture size is fixed. Low order aberrations compensation in sub-apertures gets its best performances only when turbulence strength is weak. Pistons compensation becomes invalid and higher order aberrations compensation is necessary when turbulence gets strong enough. Cost functions of the adaptive fiber laser array with high order aberrations correction in sub-apertures are defined and the optimum corrigible orders are discussed. Results shows that high order (less than first ten Zernike orders) compensation is acceptable where balance between increment of the far-field metric and the cost and complexity of the system could be reached.

  15. SMART:. An Aberration-Corrected XPEEM/LEEM with Energy Filter

    NASA Astrophysics Data System (ADS)

    Wichtendahl, R.; Fink, R.; Kuhlenbeck, H.; Preikszas, D.; Rose, H.; Spehr, R.; Hartel, P.; Engel, W.; Schlögl, R.; Freund, H.-J.; Bradshaw, A. M.; Lilienkamp, G.; Schmidt, Th.; Bauer, E.; Benner, G.; Umbach, E.

    A new UHV spectroscopic X-ray photoelectron emission and low energy electron microscope is presently under construction for the installation at the PM-6 soft X-ray undulator beamline at BESSY II. Using a combination of a sophisticated magnetic beam splitter and an electrostatic tetrode mirror, the spherical and chromatic aberrations of the objective lens are corrected and thus the lateral resolution and sensitivity of the instrument improved. In addition a corrected imaging energy filter (a so-called omega filter) allows high spectral resolution (ΔE=0.1 eV) in the photoemission modes and back-ground suppression in LEEM and small-spot LEED modes. The theoretical prediction for the lateral resolution is 5 Å a realistic goal is about 2 nm. Thus, a variety of electron spectroscopies (XAS, XPS, UPS, XAES) and electron diffraction (LEED, LEEM) or reflection techniques (MEM) will be available with spatial resolution unreached so far.

  16. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-11-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.

  17. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations

    PubMed Central

    Arbabi, Amir; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Horie, Yu; Han, Seunghoon; Faraon, Andrei

    2016-01-01

    Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision. PMID:27892454

  18. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  19. Pitch-catch phase aberration correction of multiple isoplanatic patches for 3-D transcranial ultrasound imaging.

    PubMed

    Lindsey, Brooks D; Smith, Stephen W

    2013-03-01

    Having previously presented the ultrasound brain helmet, a system for simultaneous 3-D ultrasound imaging via both temporal bone acoustic windows, the scanning geometry of this system is utilized to allow each matrix array to serve as a correction source for the opposing array. Aberration is estimated using cross-correlation of RF channel signals, followed by least mean squares solution of the resulting overdetermined system. Delay maps are updated and real-time 3-D scanning resumes. A first attempt is made at using multiple arrival time maps to correct multiple unique aberrators within a single transcranial imaging volume, i.e., several isoplanatic patches. This adaptive imaging technique, which uses steered unfocused waves transmitted by the opposing, or beacon, array, updates the transmit and receive delays of 5 isoplanatic patches within a 64° x 64° volume. In phantom experiments, color flow voxels above a common threshold have also increased by an average of 92%, whereas color flow variance decreased by an average of 10%. This approach has been applied to both temporal acoustic windows of two human subjects, yielding increases in echo brightness in 5 isoplanatic patches with a mean value of 24.3 ± 9.1%, suggesting that such a technique may be beneficial in the future for performing noninvasive 3-D color flow imaging of cerebrovascular disease, including stroke.

  20. [An Algorithm for Correcting Fetal Heart Rate Baseline].

    PubMed

    Li, Xiaodong; Lu, Yaosheng

    2015-10-01

    Fetal heart rate (FHR) baseline estimation is of significance for the computerized analysis of fetal heart rate and the assessment of fetal state. In our work, a fetal heart rate baseline correction algorithm was presented to make the existing baseline more accurate and fit to the tracings. Firstly, the deviation of the existing FHR baseline was found and corrected. And then a new baseline was obtained finally after treatment with some smoothing methods. To assess the performance of FHR baseline correction algorithm, a new FHR baseline estimation algorithm that combined baseline estimation algorithm and the baseline correction algorithm was compared with two existing FHR baseline estimation algorithms. The results showed that the new FHR baseline estimation algorithm did well in both accuracy and efficiency. And the results also proved the effectiveness of the FHR baseline correction algorithm.

  1. Phase aberration correction by multi-stencils fast marching method using sound speed image in ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Imoto, Haruka; Tamano, Satoshi; Takagi, Shu; Umemura, Shin-Ichiro; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-04-01

    Reflection image from ultrasound computed tomography (USCT) system can be obtained by synthetic aperture technique, however its quality is decreased by phase aberration caused by inhomogeneous media. Therefore, phase aberration correction is important to improve image quality. In this study, multi-stencils fast marching method (MSFMM) is employed for phase correction. The MSFMM is an accurate and fast solution of Eikonal equation which considers the refraction. The proposed method includes two steps. First, the MSFMM is used to compute sound propagation time from each element to each image gird point using sound speed image of USCT. Second, synthetic aperture technique is employed to obtain reflection image using the computed propagation time. To evaluate the proposed method, both numerical simulation and phantom experiment were conducted. With regard to numerical simulation, both quantitative and qualitative comparisons between reflection images with and without phase aberration correction were given. In the quantitative comparison, the diameters of point spread function (PSF) in reflection images of a two layer structure were presented. In the qualitative comparison, reflection images of simple circle and complex breast modes with phase aberration correction show higher quality than that without the correction. In respect to phantom experiment, a piece of breast phantom with artificial glandular structure inside was scanned by a USCT prototype, and the artificial glandular structure is able to be visible more clearly in the reflection image with phase aberration correction than in that without the correction. In this study, a phase aberration correction method by the MSFMM are proposed for reflection image of the USCT.

  2. Surface contribution to high-order aberrations using the Aldis therem and Andersen's algorithms

    NASA Astrophysics Data System (ADS)

    Ortiz-Estardante, A.; Cornejo-Rodriguez, Alejandro

    1990-07-01

    Formulae and computer programs were developed for surface contributions to high order aberrations coefficients using the Aldis theorem and Andersen algor ithms for a symmetr ical optical system. 2. THEORY Using the algorithms developed by T. B. Andersent which allow to calculate the high order aberrations coefficients of an optical system. We were able to obtain a set of equations for the contributions of each surface of a centered optical system to such aberration coefficiets by using the equations of Andersen and the so called Aldis theorem 3. COMPUTER PROGRAMS AND EXAMPLES. The study for the case of an object at infinite has been completed and more recently the object to finite distance case has been also finished . The equations have been properly programed for the two above mentioned situations . Some typical designs of optical systems will be presented and some advantages and disadvantages of the developed formulae and method will be discussed. 4. CONCLUSIONS The algorithm developed by Anderson has a compact notation and structure which is suitable for computers. Using those results obtained by Anderson together with the Aldis theorem a set of equations were derived and programmed for the surface contributions of a centered optical system to high order aberrations. 5. REFERENCES 1. T . B. Andersen App 1. Opt. 3800 (1980) 2. A. Cox A system of Optical Design Focal Press 1964 18 / SPIE

  3. Chromatic aberration correction and deconvolution for UV sensitive imaging of fluorescent sterols in cytoplasmic lipid droplets.

    PubMed

    Wüstner, Daniel; Faergeman, Nils J

    2008-08-01

    Intrinsically fluorescent sterols, like dehydroergosterol (DHE), mimic cholesterol closely and are therefore suitable to determine cholesterol transport by fluorescence microscopy. Disadvantages of DHE are its low quantum yield, rapid bleaching, and the fact that its excitation and emission is in the UV region of the spectrum. Thus, one has to deal with chromatic aberration and low signal-to-noise ratio. We developed a method to correct for chromatic aberration between the UV channel and the red/green channel in multicolor imaging of DHE compared with the lipid droplet marker Nile Red in living macrophage foam cells and in adipocytes. We used deconvolution microscopy and developed image segmentation techniques to assess the DHE content of lipid droplets in both cell types in an automated manner. Pulse-chase studies and colocalization analysis were performed to monitor the redistribution of DHE upon adipocyte differentiation. DHE is targeted to transferrin-positive recycling endosomes in preadipocytes but associates with droplets in mature adipocytes. Only in adipocytes but not in foam cells fluorescent sterol was confined to the droplet-limiting membrane. We developed an approach to visualize and quantify sterol content of lipid droplets in living cells with potential for automated high content screening of cellular sterol transport.

  4. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction.

    PubMed

    Zawadzki, Robert J; Cense, Barry; Zhang, Yan; Choi, Stacey S; Miller, Donald T; Werner, John S

    2008-05-26

    We have developed an improved adaptive optics - optical coherence tomography (AO-OCT) system and evaluated its performance for in vivo imaging of normal and pathologic retina. The instrument provides unprecedented image quality at the retina with isotropic 3D resolution of 3.5 x 3.5 x 3.5 microm(3). Critical to the instrument's resolution is a customized achromatizing lens that corrects for the eye's longitudinal chromatic aberration and an ultra broadband light source (Delta lambda=112 nm lambda(0)= approximately 836 nm). The eye's transverse chromatic aberrations is modeled and predicted to be sufficiently small for the imaging conditions considered. The achromatizing lens was strategically placed at the light input of the AO-OCT sample arm. This location simplifies use of the achromatizing lens and allows straightforward implementation into existing OCT systems. Lateral resolution was achieved with an AO system that cascades two wavefront correctors, a large stroke bimorph deformable mirror (DM) and a micro-electromechanical system (MEMS) DM with a high number of actuators. This combination yielded diffraction-limited imaging in the eyes examined. An added benefit of the broadband light source is the reduction of speckle size in the axial dimension. Additionally, speckle contrast was reduced by averaging multiple B-scans of the same proximal patch of retina. The combination of improved micron-scale 3D resolution, and reduced speckle size and contrast were found to significantly improve visibility of microscopic structures in the retina.

  5. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope.

    PubMed

    Nickel, F; Gottlob, D M; Krug, I P; Doganay, H; Cramm, S; Kaiser, A M; Lin, G; Makarov, D; Schmidt, O G; Schneider, C M

    2013-07-01

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern.

  6. Perfect X-ray focusing via fitting corrective glasses to aberrated optics.

    PubMed

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  7. Element discrimination in a hexagonal boron nitride nanosheet by aberration corrected transmission electron microscopy.

    PubMed

    Mitome, Masanori; Sawada, Hidetaka; Kondo, Yukihito; Tanishiro, Yasumasa; Takayanagi, Kunio

    2012-11-01

    Boron nitride nanosheets prepared by an exfoliation technique were observed by aberration corrected transmission electron microscopy at 300 kV acceleration voltage. Single boron and nitrogen atoms in a monolayer region were imaged with different image contrast; a boron atom gave 16% less intensity reduction than a nitrogen atom. The number of atoms at each hexagonal ring site was determined by the image intensity that changed discretely with a 0.25-0.30 intensity difference. A double BN sheet was found to have a boron vacancy layer, and a triple BN layer has also a boron deficient layer on the incident surface resulting from the electron beam thinning process. The high sensitivity for atomic species was achieved by the high resolution and a small information limit due to the use of a cold field emission electron source.

  8. Observations of carbon nanotube oxidation in an aberration-corrected environmental transmission electron microscope.

    PubMed

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-03-26

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and, on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for a greater scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate the nanotubes' structure or prevent their oxidation.

  9. Observations of Carbon Nanotube Oxidation in an Aberration-Corrected, Environmental Transmission Electron Microscope

    PubMed Central

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-01-01

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in-situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for much scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate their structure or prevent their oxidation. PMID:23360330

  10. Optical aberration correction by real-time holography in liquid crystals.

    PubMed

    Karaguleff, C; Clark, G L

    1990-07-15

    We present results of experiments that use nematic-phase liquid crystal as a real-time holographic recording medium. Plane-wave gratings were written with as little as 10 mJ/cm(2) of incident write-beam energy from a pulsed Nd:YAG laser, and diffraction efficiencies greater than 25% were measured at 633 nm. Grating decay times were observed to fall within two distinct time regimes: a rapid-decay time of 60 to 100 microsec and a slower-decay time of 6 to 30 msec. The rapid-decay regime was used to demonstrate real-time correction of severely aberrated images by degenerate four-wave mixing.

  11. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope.

    PubMed

    Wang, Peng; Behan, Gavin; Kirkland, Angus I; Nellist, Peter D; Cosgriff, Eireann C; D'Alfonso, Adrian J; Morgan, Andrew J; Allen, Leslie J; Hashimoto, Ayako; Takeguchi, Masaki; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2011-06-01

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored.

  12. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    NASA Astrophysics Data System (ADS)

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-03-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.

  13. Perfect X-ray focusing via fitting corrective glasses to aberrated optics

    PubMed Central

    Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C.; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G.

    2017-01-01

    Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers. PMID:28248317

  14. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy.

  15. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy.

    PubMed

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D; Tselepis, Chris; Palmer, Richard E

    2016-11-18

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  16. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.

    2016-11-01

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  17. Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities.

    PubMed

    Marcos, Susana; Sawides, Lucie; Gambra, Enrique; Dorronsoro, Carlos

    2008-10-06

    We evaluated the visual benefit of correcting astigmatism and high-order aberrations with adaptive optics (AO) on visual acuity (VA) measured at 7 different luminances (ranging from 0.8 to 50 cd/m(2)) and two contrast polarities (black letters on white background, BoW, and white letters on black background, WoB) on 7 subjects. For the BoW condition, VA increased with background luminance in both natural and AO-corrected conditions, and there was a benefit of AO correction at all luminances (by a factor of 1.29 on average across luminances). For WoB VA increased with foreground luminance but decreased for the highest luminances. In this reversed polarity condition AO correction increased VA by a factor of 1.13 on average and did not produce a visual benefit at high luminances. The improvement of VA (averaged across conditions) was significantly correlated (p = 0.04) with the amount of corrected aberrations (in terms of Strehl ratio). The improved performance with WoB targets with respect to BoW targets is decreased when correcting aberrations, suggesting a role of ocular aberrations in the differences in visual performance between contrast polarities.

  18. Surgical Correction of Aberrant Right Coronary Anomalies Stranding an Aortic Commissure with and Without Unroofing.

    PubMed

    Abdelhady, Khaled; Durgam, Samarth; Elzein, Chawki; Ilbawi, Michel N; Rhoiney, David; Massad, Malek G

    2017-02-18

    The technique for successful surgical correction of an anomalous origin of the right coronary artery from the opposite aortic cusp with an aberrant course between the aorta and pulmonary artery is illustrated in a symptomatic 62-year-old woman. The intramural course of the right coronary artery traversed the tip of the commissure between the anterior and posterior leaflets, and its repair entailed unroofing of the intramural segment from inside the aortic intima. This technique required resuspension of the overlying commissure to maintain optimal aortic valve leaflet coaptation and prevent aortic insufficiency. Modifications of this technique have been utilized by us whenever the intramural segment traversed behind the commissure. In these cases, partial or subtotal unroofing of the intramural segment was performed to preserve the integrity of the intima behind the overlying commissure. More recently, we have performed the surgical correction by probing the intramural segment within the aortic wall to its most anterior location and then performing a wide anterior unroofing in the aortic intima, and marsupializing the aortic and coronary intima to avoid dissection or intimal flap development. We favor utilizing these techniques of anatomic correction of the anomalous coronary to other techniques involving coronary artery bypass grafting of the anomalous coronary, especially in adult patients, as unroofing provides more lasting results.

  19. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    SciTech Connect

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-07-15

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  20. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  1. Nanostructural and Chemical Characterization of Supported Metal Oxide Catalysts by Aberration Corrected Analytical Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Wu

    In this thesis, aberration corrected STEM imaging and chemical analysis techniques have been extensively applied in the structural and chemical characterization of supported tungsten oxide catalysts in an attempt to reveal the structure-activity relationships at play in these catalyst systems. The supported WO3/ZrO2 solid acid catalyst system is a major focal point of this thesis, and detailed aberration-corrected STEM-HAADF imaging studies were performed on a systematic set of catalysts showing different level of catalytic performance. The nature of the catalytically most active WOx species was identified by correlating structural information, obtained from STEM-HAADF and in-situ optical spectroscopy studies, with catalytic testing results. Specifically, ˜1nm distorted Zr-WOx mixed oxide clusters were identified to be the most active species for both the methanol dehydration and n-pentane isomerization reactions in the WO3/ZrO2 catalyst system. The use of amorphous zirconia as a precursor support material makes it much easier to extract and incorporate Zr cations into the surface WOx clusters during calcination. The calcination temperature was also identified to also play an important role in the formation of these most active Zr-WOx clusters. When the calcination temperature is comparable to or higher than the 896K Huttig temperature of ZrO2 (at which surface ZrO x species have sufficient mobility to agglomerate and sinter), the chance for successful surface WOx and ZrOx intermixing is significantly increased. Based on this perceived structure-activity relationship, several new catalyst synthesis strategies were developed in an attempt to optimize the catalytic performance of WOx-based catalysts. We have demonstrated in Chapter 3 that co-impregnation of WOx and ZrOx precursors onto an inactive model WO3/ZrO2 catalyst, followed by a calcination treatment above the 896K Huttig temperature of ZrO 2, promotes the surface diffusion of ZrO2 and intermixing of Zr

  2. Application of polymer graded-index materials for aberration correction of progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Shitanoki, Yuki; Tagaya, Akihiro; Koike, Yasuhiro

    2009-02-01

    Graded-index (GRIN) progressive addition lens (PAL) was successfully fabricated, and GRIN's potential for aberration correction of PAL was confirmed. GRIN material was prepared by partial diffusion of methyl methacrylate (MMA (nd at polymer = 1.492)) monomer into cross-linked benzyl methacrylate (BzMA (nd at polymer=1.568)) flat gel, and GRINPAL was prepared by polymerization of the GRIN material attached to a mold of commercially available PAL. GRIN polymer materials have been used for various applications such as rod lenses and optical fibers. GRIN represents gradual change of refractive index in a material, which adds or reduces light focusing power of the material. PAL is a multifocal spectacle lens for presbyopia. However, some localized aberrations (especially astigmatism) in PAL have not yet been reduced satisfactorily for decades by optimizing surface geometry of a lens. In this research, we propose to employ GRIN materials for astigmatism reduction of PALs. BzMA flat gel was prepared by UV polymerization of BzMA, crosslinking agent ethylene glycol dimethacrylate (EDMA) and photopolymerization initiator DAROCURE 1173. MMA monomer was diffused into BzMA flat gel from a portion of periphery for several hours. The obtained GRIN material was attached to a mold of commercially available PAL and polymerized by UV. As a result, reduction of astigmatism was confirmed locally in the fabricated PAL and GRIN-PAL using lens meter. In conclusion, GRIN-PAL was successfully fabricated. The validity of GRIN employment for the astigmatism reduction in PAL was demonstrated experimentally.

  3. Camera processing with chromatic aberration.

    PubMed

    Korneliussen, Jan Tore; Hirakawa, Keigo

    2014-10-01

    Since the refractive index of materials commonly used for lens depends on the wavelengths of light, practical camera optics fail to converge light to a single point on an image plane. Known as chromatic aberration, this phenomenon distorts image details by introducing magnification error, defocus blur, and color fringes. Though achromatic and apochromatic lens designs reduce chromatic aberration to a degree, they are complex and expensive and they do not offer a perfect correction. In this paper, we propose a new postcapture processing scheme designed to overcome these problems computationally. Specifically, the proposed solution is comprised of chromatic aberration-tolerant demosaicking algorithm and post-demosaicking chromatic aberration correction. Experiments with simulated and real sensor data verify that the chromatic aberration is effectively corrected.

  4. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L.; Chase, George G.; Reneker, Darrell H.

    2015-12-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of

  5. Quantitative Phase Microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography.

    PubMed

    Ferraro, P; Miccio, L; Grilli, S; Paturzo, M; De Nicola, S; Finizio, A; Osellame, R; Laporta, P

    2007-10-29

    Quantitative Phase Microscopy (QPM) by interferometric techniques can require a multiwavelength configuration to remove 2pi ambiguity and improve accuracy. However, severe chromatic aberration can affect the resulting phase-contrast map. By means of classical interference microscope configuration it is quite unpractical to correct such aberration. We propose and demonstrate that by Digital Holography (DH) in a microscope configuration it is possible to clear out the QPM map from the chromatic aberration in a simpler and more effective way with respect to other approaches. The proposed method takes benefit of the unique feature of DH to record in a plane out-of-focus and subsequently reconstruct numerically at the right focal image plane. In fact, the main effect of the chromatic aberration is to shift differently the correct focal image plane at each wavelength and this can be readily compensated by adjusting the corresponding reconstruction distance for each wavelength. A procedure is described in order to determine easily the relative focal shift among different imaging wavelengths by performing a scanning of the numerical reconstruction along the optical axis, to find out the focus and to remove at the same time the chromatic aberration.

  6. High Resolution Imaging with an Aberration Corrected JEOL 2200FS-AC STEM/TEM

    SciTech Connect

    Blom, Douglas Allen; Allard Jr, Lawrence Frederick; O'Keefe, Michael A.; Mishina, Satoshi

    2005-01-01

    A new JEOL 2200FS 200kV field emission STEM/TEM with a hexapole Cs-corrector (CEOS GmbH) for the probe-forming lens and an in-column Omega-type energy filter has recently been installed at the Advanced Microscopy Laboratory (AML) at Oak Ridge National Laboratory (ORNL). The microscope is intended primarily for high-resolution imaging of catalyst systems that are of interest to the U.S. Department of Energy for increased energy efficiency and energy security. In this paper we report on the high-resolution imaging characteristics of our microscope for both conventional high-resolution TEM and STEM imaging. The TEM Scherzer point resolution for our objective lens polepiece (C{sub s} = 0.5 mm) is 0.19 nm, but more significantly the information limit has been demonstrated to be better than 0.09 nm, as shown in Fig. 1. This figure shows a Young's fringe experiment carried out on an amorphous Ge specimen which was estimated to be 10 nm thick. The thickness of the sample damps out the Thon rings to some extent, but the information transfer to sub 0.1 nm resolution is clearly evident. The electron wave at the specimen exit surface with resolution out to the information limit of a microscope may be reconstructed via computational processing of a focal or tilt series of images. The extension of the TEM information limit to the sub-0.1 nm range in our microscope can be attributed primarily to the improved objective lens and high tension power supply stabilities provided by JEOL Co. to satisfy our instrument specifications. A contrast transfer function (CTF) calculated using the parameters for our microscope is shown in Fig. 2, computed at the alpha-null defocus condition used for FSR processing. The CTF closely matches the demonstrated Young's fringe pattern, indicating the ability of the microscope to achieve ultimate performance in TEM mode. Characterization of catalyst systems will be a primary focus of the aberration-corrected JEOL 2200FS and therefore high-resolution STEM

  7. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy.

    PubMed

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L; Chase, George G; Reneker, Darrell H

    2016-01-07

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.

  8. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  9. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca , Sr)Fe2O5 Brownmillerite superlattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debangshu; Stone, Greg; Moon, Eun Ju; Young, Joshua; Gopalan, Venkatraman; Rondinelli, James; May, Steven; Alem, Nasim

    The brownmillerite phase A2B2O5 consists of ordered oxygen vacancies in alternate perovskite layers forming chiral tetrahedral chains. The handedness of these tetrahedral chains control the polarization of the structure. The current study focuses on 1-1 brownmillerite superlattices grown on a SrTiO3 substrates using molecular beam epitaxy. The B-site in this structure is iron throughout the superlattice film, while the A-site alternates between calcium and strontium in the superlattice layers. In this study, we use atomic resolution aberration corrected scanning transmission electron microscopy (STEM) to investigate the structure and chemistry of the film-substrate interface as well as the chemical structure of the superlattice. Atom positions are determined to measure displacement vectors of A-site cations in the superlattice structure. D.M., G.A.S., V.G. and N.A. were supported by the National Science Foundation under Grant No. DMR-1420620. E.J.M. and S.J.M. were supported by the National Science Foundation under Grant No. DMR-1151649.

  10. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    PubMed Central

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-01-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D. PMID:26868264

  11. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    DOE PAGES

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less

  12. Phase-contrast imaging in aberration-corrected scanning transmission electron microscopy.

    PubMed

    Krumeich, F; Müller, E; Wepf, R A

    2013-06-01

    Although the presence of phase-contrast information in bright field images recorded with a scanning transmission electron microscope (STEM) has been known for a long time, its systematic exploitation for the structural characterization of materials began only with the availability of aberration-corrected microscopes that allow sufficiently large illumination angles. Today, phase-contrast STEM (PC-STEM) imaging represents an increasingly important alternative to the well-established HRTEM method. In both methods, the image contrast is coherently generated and thus depends not only on illumination and collection angles but on defocus and specimen thickness as well. By PC-STEM, a projection of the crystal potential is obtained in thin areas, with the scattering sites being represented either with dark or bright contrast at two different defocus values which are both close to Gaussian defocus. This imaging behavior can be further investigated by image simulations performed with standard HRTEM simulation software based on the principle of reciprocity. As examples for the application of this method, PC-STEM results obtained on metal nanoparticles and dodecagonal quasicrystals dd-(Ta,V)₁.₆Te are discussed.

  13. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    SciTech Connect

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  14. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; Trautmann, Christina; Chisholm, Matthew F.; Weber, William J.

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.

  15. New insights on ion track morphology in pyrochlores by aberration corrected scanning transmission electron microscopy

    DOE PAGES

    Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...

    2016-12-13

    Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd2Ti2O7 and Gd2TiZrO7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performed on the ion tracks. Finally,more » a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less

  16. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  17. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.

    PubMed

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  18. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy.

    PubMed

    Shah, A B; Ramasse, Q M; Wen, J G; Bhattacharya, A; Zuo, J M

    2011-08-01

    The resolution of electron energy loss spectroscopy (EELS) is limited by delocalization of inelastic electron scattering rather than probe size in an aberration corrected scanning transmission electron microscope (STEM). In this study, we present an experimental quantification of EELS spatial resolution using chemically modulated 2×(LaMnO(3))/2×(SrTiO(3)) and 2×(SrVO(3))/2×(SrTiO(3)) superlattices by measuring the full width at half maxima (FWHM) of integrated Ti M(2,3), Ti L(2,3), V L(2,3), Mn L(2,3), La N(4,5), La N(2,3) La M(4,5) and Sr L(3) edges over the superlattices. The EELS signals recorded using large collection angles are peaked at atomic columns. The FWHM of the EELS profile, obtained by curve-fitting, reveals a systematic trend with the energy loss for the Ti, V, and Mn edges. However, the experimental FWHM of the Sr and La edges deviates significantly from the observed experimental tendency.

  19. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-01

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.

  20. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing

    PubMed Central

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-01

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing. PMID:28112246

  1. Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing.

    PubMed

    Wang, Peng; Qi, Jia; Liu, Zhengming; Liao, Yang; Chu, Wei; Cheng, Ya

    2017-01-23

    Writing optical waveguides with femtosecond laser pulses provides the capability of forming three-dimensional photonic circuits for manipulating light fields in both linear and nonlinear manners. To fully explore this potential, large depths of the buried waveguides in transparent substrates are often desirable to facilitate achieving vertical integration of waveguides in a multi-layer configuration, which, however, is hampered by rapidly degraded axial resolution caused by optical aberration. Here, we show that with the correction of the spherical aberration, polarization-independent waveguides can be inscribed in a nonlinear optical crystal lithium niobate (LN) at depths up to 1400 μm, which is more than one order of magnitude deeper than the waveguides written with aberration uncorrected femtosecond laser pulses. Our technique is beneficial for applications ranging from miniaturized nonlinear light sources to quantum information processing.

  2. Chromosome therapy. Correction of large chromosomal aberrations by inducing ring chromosomes in induced pluripotent stem cells (iPSCs).

    PubMed

    Kim, Taehyun; Bershteyn, Marina; Wynshaw-Boris, Anthony

    2014-01-01

    The fusion of the short (p) and long (q) arms of a chromosome is referred to as a "ring chromosome." Ring chromosome disorders occur in approximately 1 in 50,000-100,000 patients. Ring chromosomes can result in birth defects, mental disabilities, and growth retardation if additional genes are deleted during the formation of the ring. Due to the severity of these large-scale aberrations affecting multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have so far been proposed. Our recent study (Bershteyn et al.) using patient-derived fibroblast lines containing ring chromosomes, found that cellular reprogramming of these fibroblasts into induced pluripotent stem cells (iPSCs) resulted in the cell-autonomous correction of the ring chromosomal aberration via compensatory uniparental disomy (UPD). These observations have important implications for studying the mechanism of chromosomal number control and may lead to the development of effective therapies for other, more common, chromosomal aberrations.

  3. Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory.

    PubMed

    Blom, Douglas A; Allard, Lawrence E; Mishina, Satoshi; O'Keefe, Michael A

    2006-12-01

    The resolution-limiting aberrations of round electromagnetic lenses can now be successfully overcome via the use of multipole element "aberration correctors." The installation and performance of a hexapole-based corrector (CEOS GmbH) integrated on the probe-forming side of a JEOL 2200FS FEG STEM/TEM is described. For the resolution of the microscope not to be severely compromised by its environment, a new, specially designed building at Oak Ridge National Laboratory has been built. The Advanced Microscopy Laboratory was designed with the goal of providing a suitable location for aberration-corrected electron microscopes. Construction methods and performance of the building are discussed in the context of the performance of the microscope. Initial performance of the microscope on relevant specimens and modifications made to eliminate resolution-limiting conditions are also discussed.

  4. A microwave radiometer weather-correcting sea ice algorithm

    NASA Technical Reports Server (NTRS)

    Walters, J. M.; Ruf, C.; Swift, C. T.

    1987-01-01

    A new algorithm for estimating the proportions of the multiyear and first-year sea ice types under variable atmospheric and sea surface conditions is presented, which uses all six channels of the SMMR. The algorithm is specifically tuned to derive sea ice parameters while accepting error in the auxiliary parameters of surface temperature, ocean surface wind speed, atmospheric water vapor, and cloud liquid water content. Not only does the algorithm naturally correct for changes in these weather conditions, but it retrieves sea ice parameters to the extent that gross errors in atmospheric conditions propagate only small errors into the sea ice retrievals. A preliminary evaluation indicates that the weather-correcting algorithm provides a better data product than the 'UMass-AES' algorithm, whose quality has been cross checked with independent surface observations. The algorithm performs best when the sea ice concentration is less than 20 percent.

  5. Stochastic Formal Correctness of Numerical Algorithms

    NASA Technical Reports Server (NTRS)

    Daumas, Marc; Lester, David; Martin-Dorel, Erik; Truffert, Annick

    2009-01-01

    We provide a framework to bound the probability that accumulated errors were never above a given threshold on numerical algorithms. Such algorithms are used for example in aircraft and nuclear power plants. This report contains simple formulas based on Levy's and Markov's inequalities and it presents a formal theory of random variables with a special focus on producing concrete results. We selected four very common applications that fit in our framework and cover the common practices of systems that evolve for a long time. We compute the number of bits that remain continuously significant in the first two applications with a probability of failure around one out of a billion, where worst case analysis considers that no significant bit remains. We are using PVS as such formal tools force explicit statement of all hypotheses and prevent incorrect uses of theorems.

  6. A Novel Concept for a Deformable Membrane Mirror for Correction of Large Amplitude Aberrations

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Patrick, Brian

    2006-01-01

    Very large, light weight mirrors are being developed for applications in space. Due to launch mass and volume restrictions these mirrors will need to be much more flexible than traditional optics. The use of primary mirrors with these characteristics will lead to requirements for adaptive optics capable of correcting wave front errors with large amplitude relatively low spatial frequency aberrations. The use of low modulus membrane mirrors actuated with electrostatic attraction forces is a potential solution for this application. Several different electrostatic membrane mirrors are now available commercially. However, as the dynamic range requirement of the adaptive mirror is increased the separation distance between the membrane and the electrodes must increase to accommodate the required face sheet deformations. The actuation force applied to the mirror decreases inversely proportional to the square of the separation distance; thus for large dynamic ranges the voltage requirement can rapidly increase into the high voltage regime. Experimentation with mirrors operating in the KV range has shown that at the higher voltages a serious problem with electrostatic field cross coupling between actuators can occur. Voltage changes on individual actuators affect the voltage of other actuators making the system very difficult to control. A novel solution has been proposed that combines high voltage electrodes with mechanical actuation to overcome this problem. In this design an array of electrodes are mounted to a backing structure via light weight large dynamic range flextensional actuators. With this design the control input becomes the separation distance between the electrode and the mirror. The voltage on each of the actuators is set to a uniform relatively high voltage, thus the problem of cross talk between actuators is avoided and the favorable distributed load characteristic of electrostatic actuation is retained. Initial testing and modeling of this concept

  7. Parallel direct laser writing in three dimensions with spatially dependent aberration correction.

    PubMed

    Jesacher, Alexander; Booth, Martin J

    2010-09-27

    We propose a hologram design process which aims at reducing aberrations in parallel three-dimensional direct laser writing applications. One principle of the approach is to minimise the diffractive power of holograms while retaining the degree of parallelisation. This reduces focal distortion caused by chromatic aberration. We address associated problems such as the zero diffraction order and aberrations induced by a potential refractive index mismatch between the immersion medium of the microscope objective and the fabrication substrate. Results from fabrication in diamond, fused silica and lithium niobate are presented.

  8. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2016-12-27

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm.

  9. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    SciTech Connect

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki; Müller, Heiko; Haider, Maximilian; Tonomura, Akira

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  10. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    SciTech Connect

    MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E.; Kelez, N.; Marcus, M.A.; Miller, T.; Padmore, H.A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  11. Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration.

    PubMed

    Schwiegerling, J; Snyder, R W

    1998-09-01

    Photorefractive keratectomy is an evolving refractive procedure for correcting myopia, hyperopia, and astigmatism. Earlier descriptions of the patterns required for this surgery are based on paraxial optics. In this investigation the required pattern is generalized to account for spherical refractive error (defocus), axial astigmatism of arbitrary orientation, and fourth-order aberrations of the eye. The patterns described in this study can be used to customize photorefractive keratectomy and to provide corrections that account for aberration content as well as paraxial values. Furthermore, a description of the pattern along the boundary of the optical zone is given, which may prove useful in designing blending zones. An example of the use of these techniques is given for a schematic eye model.

  12. Adaptive bad pixel correction algorithm for IRFPA based on PCNN

    NASA Astrophysics Data System (ADS)

    Leng, Hanbing; Zhou, Zuofeng; Cao, Jianzhong; Yi, Bo; Yan, Aqi; Zhang, Jian

    2013-10-01

    Bad pixels and response non-uniformity are the primary obstacles when IRFPA is used in different thermal imaging systems. The bad pixels of IRFPA include fixed bad pixels and random bad pixels. The former is caused by material or manufacture defect and their positions are always fixed, the latter is caused by temperature drift and their positions are always changing. Traditional radiometric calibration-based bad pixel detection and compensation algorithm is only valid to the fixed bad pixels. Scene-based bad pixel correction algorithm is the effective way to eliminate these two kinds of bad pixels. Currently, the most used scene-based bad pixel correction algorithm is based on adaptive median filter (AMF). In this algorithm, bad pixels are regarded as image noise and then be replaced by filtered value. However, missed correction and false correction often happens when AMF is used to handle complex infrared scenes. To solve this problem, a new adaptive bad pixel correction algorithm based on pulse coupled neural networks (PCNN) is proposed. Potential bad pixels are detected by PCNN in the first step, then image sequences are used periodically to confirm the real bad pixels and exclude the false one, finally bad pixels are replaced by the filtered result. With the real infrared images obtained from a camera, the experiment results show the effectiveness of the proposed algorithm.

  13. Algorithmic scatter correction in dual-energy digital mammography

    SciTech Connect

    Chen, Xi; Mou, Xuanqin; Nishikawa, Robert M.; Lau, Beverly A.; Chan, Suk-tak; Zhang, Lei

    2013-11-15

    Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In this paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of

  14. Multiple sextupole system for the correction of third and higher order aberration

    DOEpatents

    Crewe, Albert V.

    1983-01-01

    A means is provided for compensating for third and higher order aberration in charged particle beam devices. The means includes two sextupoles with an intermediate focusing lens, all positioned between two focusing lenses.

  15. Higher-order aberrations and best-corrected visual acuity in Native American children with a high prevalence of astigmatism

    PubMed Central

    Miller, Joseph M.; Harvey, Erin M.; Schwiegerling, Jim

    2016-01-01

    Purpose To determine whether higher-order aberrations (HOAs) in children from a highly astigmatic population differ from population norms and whether HOAs are associated with astigmatism and reduced best-corrected visual acuity. Methods Subjects were 218 Tohono O’odham Native American children 5–9 years of age. Noncycloplegic HOA measurements were obtained with a handheld Shack-Hartmann sensor (SHS). Signed (z06s to z14s) and unsigned (z06u to z14u) wavefront aberration Zernike coefficients Z(3,−3) to Z(4,4) were rescaled for a 4 mm diameter pupil and compared to adult population norms. Cycloplegic refraction and best-corrected logMAR letter visual acuity (BCVA) were also measured. Regression analyses assessed the contribution of astigmatism (J0) and HOAs to BCVA. Results The mean root-mean-square (RMS) HOA of 0.191 ± 0.072 μm was significantly greater than population norms (0.100 ± 0.044 μm. All unsigned HOA coefficients (z06u to z14u) and all signed coefficients except z09s, z10s, and z11s were significantly larger than population norms. Decreased BCVA was associated with astigmatism (J0) and spherical aberration (z12u) but not RMS coma, with the effect of J0 about 4 times as great as z12u. Conclusions Tohono O’odham children show elevated HOAs compared to population norms. Astigmatism and unsigned spherical aberration are associated with decreased acuity, but the effects of spherical aberration are minimal and not clinically significant. PMID:26239206

  16. Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fraser, Robert S.; Kaufman, Yoram J.; Ferrare, Richard A.; Mattoo, Shana

    1989-01-01

    A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 micron. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.

  17. Algorithm for atmospheric corrections of aircraft and satellite imagery

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Ferrare, R. A.; Kaufman, Y. J.; Markham, B. L.; Mattoo, S.

    1992-01-01

    A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 microns. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.

  18. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  19. First experimental proof for aberration correction in XPEEM: resolution, transmission enhancement, and limitation by space charge effects.

    PubMed

    Schmidt, Th; Sala, A; Marchetto, H; Umbach, E; Freund, H-J

    2013-03-01

    The positive effect of double aberration correction in x-ray induced Photoelectron Emission Microscopy (XPEEM) has been successfully demonstrated for both, the lateral resolution and the transmission, using the Au 4f XPS peak for element specific imaging at a kinetic energy of 113 eV. The lateral resolution is improved by a factor of four, compared to a non-corrected system, whereas the transmission is enhanced by a factor of 5 at a moderate resolution of 80 nm. With an optimized system setting, a lateral resolution of 18 nm could be achieved, which is up to now the best value reported for energy filtered XPEEM imaging. However, the absolute resolution does not yet reach the theoretical limit of 2 nm, which is due to space charge limitation. This occurs along the entire optical axis up to the contrast aperture. In XPEEM the pulsed time structure of the exciting soft x-ray light source causes a short and highly intense electron pulse, which results in an image blurring. In contrast, the imaging with elastically reflected electrons in the low energy electron microscopy (LEEM) mode yields a resolution clearly below 5 nm. Technical solutions to reduce the space charge effect in an aberration-corrected spectro-microscope are discussed.

  20. Characterization of durable nanostructured thin film catalysts tested under transient conditions using analytical aberration-corrected electron microscopy

    SciTech Connect

    Cullen, David A; More, Karren Leslie; Reeves, Kimberly Shawn; Vernstrom, George; Atanasoska, Liliana; Haugen, Gregory; Atanasoski, Radoslav

    2011-01-01

    The stability of Ru0.1Ir0.9 oxidation evolution reaction (OER) catalysts deposited on Pt-coated nanostructured thin films (NSTFs) has been investigated by aberration-corrected electron microscopy. Accelerated stress tests showed that the OER catalysts significantly improved the durability of the Pt under cell reversal conditions. High-resolution images of the end-of-life NSTFs showed significant Ir loss from the whisker surfaces, while no Pt loss was observed, indicating that the OER catalysts had protected the catalyst coated whisker surfaces from degradation.

  1. Multiphoton Fluorescence Microscopy with GRIN Objective Aberration Correction by Low Order Adaptive Optics

    PubMed Central

    Bortoletto, Favio; Bonoli, Carlotta; Panizzolo, Paolo; Ciubotaru, Catalin D.; Mammano, Fabio

    2011-01-01

    Graded Index (GRIN) rod microlenses are increasingly employed in the assembly of optical probes for microendoscopy applications. Confocal, two–photon and optical coherence tomography (OCT) based on GRIN optical probes permit in–vivo imaging with penetration depths into tissue up to the centimeter range. However, insertion of the probe can be complicated by the need of several alignment and focusing mechanisms along the optical path. Furthermore, resolution values are generally not limited by diffraction, but rather by optical aberrations within the endoscope probe and feeding optics. Here we describe a multiphoton confocal fluorescence imaging system equipped with a compact objective that incorporates a GRIN probe and requires no adjustment mechanisms. We minimized the effects of aberrations with optical compensation provided by a low–order electrostatic membrane mirror (EMM) inserted in the optical path of the confocal architecture, resulting in greatly enhanced image quality. PMID:21814575

  2. Resolution Improvement in Aberration-Corrected Low- Voltage TEM with Monochromator at 60 kV

    NASA Astrophysics Data System (ADS)

    Morishita, S.; Mukai, M.; Sasaki, T.; Suenaga, K.; Sawada, H.

    2015-10-01

    We have developed a low-voltage electron microscope equipped with a monochromator and Delta-type Cs correctors, which shows atomic resolution at accelerating voltages of 60, 30 and 15 kV. In theory, resolution of TEM images at 60 kV is severely affected by chromatic aberration, which is proven by our calculations of contrast transfer functions and multi-slice image simulation taking chromatic aberration into account with experimental conditions. Experimentally, TEM images of gold nano-particles were observed with non-monochromated and monochromated electron sources at 60 kV. Detectable spatial frequency in the image with the monochromated source was higher than that with non- monochromated source. We have demonstrated that the TEM image resolution at the low- voltage is improved by using a monochromated electron source, which reduce the energy spread of the electron source.

  3. Evaluating optical aberrations using fluorescent microspheres: methods, analysis, and corrective actions.

    PubMed

    Goodwin, Paul C

    2013-01-01

    Obtaining optimal performance from a microscopy system requires careful evaluation of the entire optics train of the imaging system. This evaluation starts with a fundamental evaluation of the optical components in the microscope. Concise and visual methods are provided for understanding the optical performance of the microscope as a system using subdiffraction fluorescent microspheres to evaluate both monochromatic and polychromatic aberrations. Further practical guides are given to troubleshooting optical problems and final comments are made on optimizing sample preparation.

  4. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  5. Algorithm for correcting optimization convergence errors in Eclipse.

    PubMed

    Zacarias, Albert S; Mills, Michael D

    2009-10-14

    IMRT plans generated in Eclipse use a fast algorithm to evaluate dose for optimization and a more accurate algorithm for a final dose calculation, the Analytical Anisotropic Algorithm. The use of a fast optimization algorithm introduces optimization convergence errors into an IMRT plan. Eclipse has a feature where optimization may be performed on top of an existing base plan. This feature allows for the possibility of arriving at a recursive solution to optimization that relies on the accuracy of the final dose calculation algorithm and not the optimizer algorithm. When an IMRT plan is used as a base plan for a second optimization, the second optimization can compensate for heterogeneity and modulator errors in the original base plan. Plans with the same field arrangement as the initial base plan may be added together by adding the initial plan optimal fluence to the dose correcting plan optimal fluence.A simple procedure to correct for optimization errors is presented that may be implemented in the Eclipse treatment planning system, along with an Excel spreadsheet to add optimized fluence maps together.

  6. Comparison of inhomogeneity correction algorithms in small photon fields.

    PubMed

    Jones, Andrew O; Das, Indra J

    2005-03-01

    Algorithms such as convolution superposition, Batho, and equivalent pathlength which were originally developed and validated for conventional treatments under conditions of electronic equilibrium using relatively large fields greater than 5 x 5 cm2 are routinely employed for inhomogeneity corrections. Modern day treatments using intensity modulated radiation therapy employ small beamlets characterized by the resolution of the multileaf collimator. These beamlets, in general, do not provide electronic equilibrium even in a homogeneous medium, and these effects are exaggerated in media with inhomogenieties. Monte Carlo simulations are becoming a tool of choice in understanding the dosimetry of small photon fields as they encounter low density media. In this study, depth dose data from the Monte Carlo simulations are compared to the results of the convolution superposition, Batho, and equivalent pathlength algorithms. The central axis dose within the low-density inhomogeneity as calculated by Monte Carlo simulation and convolution superposition decreases for small field sizes whereas it increases using the Batho and equivalent pathlength algorithms. The dose perturbation factor (DPF) is defined as the ratio of dose to a point within the inhomogeneity to the same point in a homogeneous phantom. The dose correction factor is defined as the ratio of dose calculated by an algorithm at a point to the Monte Carlo derived dose at the same point, respectively. DPF is noted to be significant for small fields and low density for all algorithms. Comparisons of the algorithms with Monte Carlo simulations is reflected in the DCF, which is close to 1.0 for the convolution-superposition algorithm. The Batho and equivalent pathlength algorithms differ significantly from Monte Carlo simulation for most field sizes and densities. Convolution superposition shows better agreement with Monte Carlo data versus the Batho or equivalent pathlength corrections. As the field size increases the

  7. Full correction for spatially distributed speed-of-sound in echo ultrasound based on measuring aberration delays via transmit beam steering

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Robinson, Elise; Günhan Akarçay, H.; Frenz, Martin

    2015-06-01

    Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.

  8. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  9. Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy.

    PubMed

    Allard, Lawrence F; Borisevich, Albina; Deng, Weiling; Si, Rui; Flytzani-Stephanopoulos, Maria; Overbury, Steven H

    2009-06-01

    High-resolution aberration-corrected electron microscopy was performed on a series of catalysts derived from a parent material, 2 at.% Au/Fe(2)O(3) (WGC ref. no. 60C), prepared by co-precipitation and calcined in air at 400 degrees C, and a catalyst prepared by leaching surface gold from the parent catalyst and exposed to various treatments, including use in the water-gas shift reaction at 250 degrees C. Aberration-corrected JEOL 2200FS (JEOL USA, Peabody, MA) and Vacuum Generators HB-603U STEM instruments were used to image fresh, reduced, leached, used and re-oxidized catalyst samples. A new in situ heating technology (Protochips Inc., Raleigh, NC, USA), which permits full sub-Angström imaging resolution in the JEOL 2200FS was used to study the effects of temperature on the behavior of gold species. A remarkable stability of gold to redox treatments up to 400 degrees C, with atomic gold decorating step surfaces of iron oxide was identified. On heating the samples in vacuum to 700 degrees C, it was found that monodispersed gold began to sinter to form nanoparticles above 500 degrees C. Gold species internal to the iron oxide support material was shown to diffuse to the surface at elevated temperature, coalescing into discrete nanocrystals. The results demonstrate the value of in situ heating for understanding morphological changes in the catalyst with elevated temperature treatments.

  10. Correcting lateral chromatic aberrations in non-monochromatic X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Falch, Ken Vidar; Detlefs, Carsten; Di Michiel, Marco; Snigireva, Irina; Snigirev, Anatoly; Mathiesen, Ragnvald H.

    2016-08-01

    Lateral chromatic aberration in microscopy based on refractive optics may be reduced significantly by adjustments to the illumination scheme. By taking advantage of a broadened bandwidth illumination, the proposed scheme could open for x-ray microscopy with spatial resolution in the range 150-200 nm at millisecond frame rates. The scheme is readily implemented and is achievable using only standard refractive x-ray lenses, which has the advantage of high efficiency. It also maximizes the transmission and removes the spatial filtering effects associated with absorption in x-ray lenses.

  11. Aberrant Lower Extremity Arterial Anatomy in Microvascular Free Fibula Flap Candidates: Management Algorithm and Case Presentations.

    PubMed

    Golas, Alyssa R; Levine, Jamie P; Ream, Justin; Rodriguez, Eduardo D

    2016-10-14

    An accurate and comprehensive understanding of lower extremity arterial anatomy is essential for the successful harvest and transfer of a free fibula osteoseptocutaneous flap (FFF). Minimum preoperative evaluation includes detailed history and physical including lower extremity pulse examination. Controversy exists regarding whether preoperative angiographic imaging should be performed for all patients. Elevation of an FFF necessitates division of the peroneal artery in the proximal lower leg and eradicates its downstream flow. For patients in whom the peroneal artery comprises the dominant arterial supply to the foot, FFF elevation is contraindicated. Detailed preoperative knowledge of patient-specific lower extremity arterial anatomy can help to avoid ischemia or limb loss resulting from FFF harvest. If preoperative angiographic imaging is omitted, careful attention must be paid to intraoperative anatomy. Should pedal perfusion rely on the peroneal artery, reconstructive options other than an FFF must be pursued. Given the complexity of surgical decision making, the authors propose an algorithm to guide the surgeon from the preoperative evaluation of the potential free fibula flap patient to the final execution of the surgical plan. The authors also provide 3 clinical patients in whom aberrant lower extremity anatomy was encountered and describe each patient's surgical course.

  12. Aberrant Lower Extremity Arterial Anatomy in Microvascular Free Fibula Flap Candidates: Management Algorithm and Case Presentations.

    PubMed

    Golas, Alyssa R; Levine, Jamie P; Ream, Justin; Rodriguez, Eduardo D

    2016-11-01

    An accurate and comprehensive understanding of lower extremity arterial anatomy is essential for the successful harvest and transfer of a free fibula osteoseptocutaneous flap (FFF). Minimum preoperative evaluation includes detailed history and physical including lower extremity pulse examination. Controversy exists regarding whether preoperative angiographic imaging should be performed for all patients. Elevation of an FFF necessitates division of the peroneal artery in the proximal lower leg and eradicates its downstream flow. For patients in whom the peroneal artery comprises the dominant arterial supply to the foot, FFF elevation is contraindicated. Detailed preoperative knowledge of patient-specific lower extremity arterial anatomy can help to avoid ischemia or limb loss resulting from FFF harvest. If preoperative angiographic imaging is omitted, careful attention must be paid to intraoperative anatomy. Should pedal perfusion rely on the peroneal artery, reconstructive options other than an FFF must be pursued. Given the complexity of surgical decision making, the authors propose an algorithm to guide the surgeon from the preoperative evaluation of the potential free fibula flap patient to the final execution of the surgical plan. The authors also provide 3 clinical patients in whom aberrant lower extremity anatomy was encountered and describe each patient's surgical course.

  13. Practical correction of a phase-aberrated laser beam using a triphenyldiamine-based photorefractive composite

    NASA Astrophysics Data System (ADS)

    Liang, Yichen; Winiarz, Jeffrey G.

    2017-03-01

    A photorefractive composite based on a triphenyldiamine (TPD) derivative was used to restore a severely phase-aberrated laser beam to a nearly aberration-free state. Here, a forward degenerate four-wave mixing geometry was employed for the elimination of phase distortions and its practical applicability in the transmission of optically encoded data is demonstrated. In addition, it is demonstrated that the experimental geometry is able to effectively restore dynamically updating images. Conventional two-beam coupling and degenerate four-wave mixing experiments were used to characterize the composite subject to the current experimental setup. The two-beam coupling net gain coefficient was 100 cm-1 with an applied external electric field of 70 V/µm. Internal and external diffraction efficiencies of 10 and 6%, respectively, were observed with a similar external electric field. Due to its superior charge-carrier mobility, the TPD-based composite exhibited a response time of 0.28 s, approximately five times faster than traditional PVK-based composites.

  14. Achieving Algorithmic Resilience for Temporal Integration through Spectral Deferred Corrections

    SciTech Connect

    Grout, R. W.; Kolla, H.; Minion, M. L.; Bell, J. B.

    2015-04-06

    Spectral deferred corrections (SDC) is an iterative approach for constructing higher- order accurate numerical approximations of ordinary differential equations. SDC starts with an initial approximation of the solution defined at a set of Gaussian or spectral collocation nodes over a time interval and uses an iterative application of lower-order time discretizations applied to a correction equation to improve the solution at these nodes. Each deferred correction sweep increases the formal order of accuracy of the method up to the limit inherent in the accuracy defined by the collocation points. In this paper, we demonstrate that SDC is well suited to recovering from soft (transient) hardware faults in the data. A strategy where extra correction iterations are used to recover from soft errors and provide algorithmic resilience is proposed. Specifically, in this approach the iteration is continued until the residual (a measure of the error in the approximation) is small relative to the residual on the first correction iteration and changes slowly between successive iterations. We demonstrate the effectiveness of this strategy for both canonical test problems and a comprehen- sive situation involving a mature scientific application code that solves the reacting Navier-Stokes equations for combustion research.

  15. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2015-10-01

    Two-photon excitation laser scanning microscopy has enabled the visualization of deep regions in a biospecimen. However, refractive-index mismatches in the optical path cause spherical aberrations that degrade spatial resolution and the fluorescence signal, especially during observation at deeper regions. Recently, we developed transmissive liquid-crystal devices for correcting spherical aberration without changing the basic design of the optical path in a conventional laser scanning microscope. In this study, the device was inserted in front of the objective lens and supplied with the appropriate voltage according to the observation depth. First, we evaluated the device by observing fluorescent beads in single- and two-photon excitation laser scanning microscopes. Using a 25× water-immersion objective lens with a numerical aperture of 1.1 and a sample with a refractive index of 1.38, the device recovered the spatial resolution and the fluorescence signal degraded within a depth of ±0.6 mm. Finally, we implemented the device for observation of a mouse brain slice in a two-photon excitation laser scanning microscope. An optical clearing reagent with a refractive index of 1.42 rendered the fixed mouse brain transparent. The device improved the spatial resolution and the yellow fluorescent protein signal within a depth of 0-0.54 mm.

  16. Chromatic aberration-corrected tilt series transmission electron microscopy of nanoparticles in a whole mount macrophage cell.

    PubMed

    Baudoin, Jean-Pierre; Jinschek, Joerg R; Boothroyd, Chris B; Dunin-Borkowski, Rafal E; de Jonge, Niels

    2013-08-01

    Transmission electron microscopy (TEM) in combination with electron tomography is widely used to obtain nanometer scale three-dimensional (3D) structural information about biological samples. However, studies of whole eukaryotic cells are limited in resolution and/or contrast on account of the effect of chromatic aberration of the TEM objective lens on electrons that have been scattered inelastically in the specimen. As a result, 3D information is usually obtained from sections and not from whole cells. Here, we use chromatic aberration-corrected TEM to record bright-field TEM images of nanoparticles in a whole mount macrophage cell. Tilt series of images are used to generate electron tomograms, which are analyzed to assess the spatial resolution that can be achieved for different vertical positions in the specimen. The uptake of gold nanoparticles coated with low-density lipoprotein (LDL) is studied. The LDL is found to assemble in clusters. The clusters contain nanoparticles taken up on different days, which are joined without mixing their nanoparticle cargo.

  17. The Stanford Nanocharacterization Laboratory (SNL) and Recent Applications of an Aberration-Corrected Environmental Transmission Electron Microscope.

    PubMed

    Sinclair, Robert; Kempen, Paul Joseph; Chin, Richard; Koh, Ai Leen

    2014-05-01

    This article describes the establishment, over a period of ten years or so, of a multi-user, institution-wide facility for the characterization of materials and devices at the nano-scale. Emphasis is placed on the type of equipment that we have found to be most useful for our users, and the business strategy that maintains its operations. A central component of our facility is an aberration-corrected environmental transmission electron microscope and its application is summarized in the studies of plasmon energies of silver nanoparticles, the band gap of PbS quantum dots, atomic site occupancy near grain boundaries in yttria stabilized zirconia, the lithiation of silicon nanoparticles, in situ observations on carbon nanotube oxidation and the electron tomography of varicella zoster virus nucleocapsids.

  18. The Stanford Nanocharacterization Laboratory (SNL) and Recent Applications of an Aberration-Corrected Environmental Transmission Electron Microscope**

    PubMed Central

    Sinclair, Robert; Kempen, Paul Joseph; Chin, Richard; Koh, Ai Leen

    2014-01-01

    This article describes the establishment, over a period of ten years or so, of a multi-user, institution-wide facility for the characterization of materials and devices at the nano-scale. Emphasis is placed on the type of equipment that we have found to be most useful for our users, and the business strategy that maintains its operations. A central component of our facility is an aberration-corrected environmental transmission electron microscope and its application is summarized in the studies of plasmon energies of silver nanoparticles, the band gap of PbS quantum dots, atomic site occupancy near grain boundaries in yttria stabilized zirconia, the lithiation of silicon nanoparticles, in situ observations on carbon nanotube oxidation and the electron tomography of varicella zoster virus nucleocapsids. PMID:25364299

  19. Direct measurement of precipitate induced strain in an Al-Zn-Mg-Cu alloy with aberration corrected transmission electron microscopy.

    PubMed

    Ying, X R; Du, Y X; Song, M; Lu, N; Ye, H Q

    2016-11-01

    Precipitates and their associated strain fields significantly influence mechanical properties and, consequently, the industrial performance of aluminum alloys. In this work, we present a direct measurement of strains induced by η' and η precipitates in an Al-Zn-Mg-Cu alloy using aberration-corrected high-resolution transmission electron microscopy and quantitative strain analysis. The results demonstrate that the strain induced by precipitates in the Al-Zn-Mg-Cu alloy shows significant tensile strains perpendicular to the longitudinal direction of the precipitate discs on the side of the discs and along the longitudinal direction at both ends of the η' and η precipitates. This strain field can be described by an equivalent dislocation model, in which the lattice mismatch between the precipitate and the matrix is equivalent to a series of dislocation pairs along the precipitate/matrix interfaces.

  20. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-28

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  1. The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ramachandra, Ranjan; Demers, Hendrix; de Jonge, Niels

    2013-02-01

    The lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.

  2. Compositional analysis with atomic column spatial resolution by 5th-order aberration-corrected scanning transmission electron microscopy.

    PubMed

    Hernández-Maldonado, David; Herrera, Miriam; Alonso-González, Pablo; González, Yolanda; González, Luisa; Gazquez, Jaume; Varela, María; Pennycook, Stephen J; Guerrero-Lebrero, María de la Paz; Pizarro, Joaquín; Galindo, Pedro L; Molina, Sergio I

    2011-08-01

    We show in this article that it is possible to obtain elemental compositional maps and profiles with atomic-column resolution across an InxGa1-xAs multilayer structure from 5th-order aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The compositional profiles obtained from the analysis of HAADF-STEM images describe accurately the distribution of In in the studied multilayer in good agreement with Muraki's segregation model [Muraki, K., Fukatsu, S., Shiraki, Y. & Ito, R. (1992). Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantums wells. Appl Phys Lett 61, 557-559].

  3. Atomic resolution imaging of YAlO3: Ce in the chromatic and spherical aberration corrected PICO electron microscope.

    PubMed

    Jin, Lei; Barthel, Juri; Jia, Chun-Lin; Urban, Knut W

    2017-01-31

    The application of combined chromatic and spherical aberration correction in high-resolution transmission electron microscopy enables a significant improvement of the spatial resolution down to 50 pm. We demonstrate that such a resolution can be achieved in practice at 200kV. Diffractograms of images of gold nanoparticles on amorphous carbon demonstrate corresponding information transfer. The Y atom pairs in [010] oriented yttrium orthoaluminate are successfully imaged together with the Al and the O atoms. Although the 57 pm pair separation is well demonstrated separations between 55 pm and 80 pm are measured. This observation is tentatively attributed to structural relaxations and surface reconstruction in the very thin samples used. Quantification of the resolution limiting effective image spread is achieved based on an absolute match between experimental and simulated image intensity distributions.

  4. Letter: A method for the chromatic aberration correction of a laser time of-flight mass analyzer.

    PubMed

    Sysoeva, Elizaveta A; Sysoev, Alexander A

    2016-01-01

    The new ion-optical system of the laser time-of-flight (TOF) mass spectrometer on the basis of two tandem wedge-shape reflectors has been offered and implemented. A new method of correcting chromatic aberration by the ion energy was proposed that used a wire electrode unit with adjustable potentials. This unit allows one to adjust the local TOF of the ions in a narrow energy range ± (1-2)% within the total ion packet with an energy spread of ± 20%. The method reduces the duration of the ion packets by up to 1.5ns, which enables us to obtain the restriction of resolution at a level not worse than R ~ 10500 for a TOF ~35 µs. The aim of the project is to increase the separation of isobaric ions to improve the limit of detection of the laser TOF-MS for the analysis of high-purity samples.

  5. High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy.

    PubMed

    Krivanek, Ondrej L; Ursin, Jonathan P; Bacon, Neil J; Corbin, George J; Dellby, Niklas; Hrncirik, Petr; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S

    2009-09-28

    An all-magnetic monochromator/spectrometer system for sub-30 meV energy-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope is described. It will link the energy being selected by the monochromator to the energy being analysed by the spectrometer, without resorting to decelerating the electron beam. This will allow it to attain spectral energy stability comparable to systems using monochromators and spectrometers that are raised to near the high voltage of the instrument. It will also be able to correct the chromatic aberration of the probe-forming column. It should be able to provide variable energy resolution down to approximately 10 meV and spatial resolution less than 1 A.

  6. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy

    PubMed Central

    von Diezmann, Alex; Lee, Maurice Y.; Lew, Matthew D.; Moerner, W. E.

    2016-01-01

    The localization of single fluorescent molecules enables the imaging of molecular structure and dynamics with subdiffraction precision and can be extended to three dimensions using point spread function (PSF) engineering. However, the nanoscale accuracy of localization throughout a 3D single-molecule microscope’s field of view has not yet been rigorously examined. By using regularly spaced subdiffraction apertures filled with fluorescent dyes, we reveal field-dependent aberrations as large as 50–100 nm and show that they can be corrected to less than 25 nm over an extended 3D focal volume. We demonstrate the applicability of this technique for two engineered PSFs, the double-helix PSF and the astigmatic PSF. We expect these results to be broadly applicable to 3D single-molecule tracking and superresolution methods demanding high accuracy. PMID:26973863

  7. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT.

    PubMed

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A

    2015-04-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 [Formula: see text]for a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 [Formula: see text]at a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue.

  8. Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT

    PubMed Central

    Kumar, Abhishek; Kamali, Tschackad; Platzer, René; Unterhuber, Angelika; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-01-01

    In this paper a numerical technique is presented to compensate for anisotropic optical aberrations, which are usually present across the lateral field of view in the out of focus regions, in high resolution optical coherence tomography and microscopy (OCT/OCM) setups. The recorded enface image field at different depths in the tomogram is digitally divided into smaller sub-regions or the regions of interest (ROIs), processed individually using subaperture based digital adaptive optics (DAO), and finally stitched together to yield a final image with a uniform diffraction limited resolution across the entire field of view (FOV). Using this method, a sub-micron lateral resolution is achieved over a depth range of 218 μmfor a nano-particle phantom sample imaged using a fiber based point scanning spectral domain (SD) OCM system with a limited depth of focus (DOF) of ~7 μmat a numerical aperture (NA) of 0.6. Thus, an increase in DOF by ~30x is demonstrated in this case. The application of this method is also shown in ex vivo mouse adipose tissue. PMID:25908999

  9. Scattering correction through a space-variant blind deconvolution algorithm

    NASA Astrophysics Data System (ADS)

    Benno, Koberstein-Schwarz; Lars, Omlor; Tobias, Schmitt-Manderbach; Timo, Mappes; Vasilis, Ntziachristos

    2016-09-01

    Scattering within biological samples limits the imaging depth and the resolution in microscopy. We present a prior and regularization approach for blind deconvolution algorithms to correct the influence of scattering to increase the imaging depth and resolution. The effect of the prior is demonstrated on a three-dimensional image stack of a zebrafish embryo captured with a selective plane illumination microscope. Blind deconvolution algorithms model the recorded image as a convolution between the distribution of fluorophores and a point spread function (PSF). Our prior uses image information from adjacent z-planes to estimate the unknown blur in tissue. The increased size of the PSF due to the cascading effect of scattering in deeper tissue is accounted for by a depth adaptive regularizer model. In a zebrafish sample, we were able to extend the point in depth, where scattering has a significant effect on the image quality by around 30 μm.

  10. Aerosol Retrieval and Atmospheric Correction Algorithms for EPIC

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei; Marshak, Alexander; Korkin, Sergey; Herman, Jay

    2011-01-01

    EPIC is a multi-spectral imager onboard planned Deep Space Climate ObserVatoRy (DSCOVR) designed for observations of the full illuminated disk of the Earth with high temporal and coarse spatial resolution (10 km) from Lagrangian L1 point. During the course of the day, EPIC will view the same Earth surface area in the full range of solar and view zenith angles at equator with fixed scattering angle near the backscattering direction. This talk will describe a new aerosol retrieval/atmospheric correction algorithm developed for EPIC and tested with EPIC Simulator data. This algorithm uses the time series approach and consists of two stages: the first stage is designed to periodically re-initialize the surface spectral bidirectional reflectance (BRF) on stable low AOD days. Such days can be selected based on the same measured reflectance between the morning and afternoon reciprocal view geometries of EPIC. On the second stage, the algorithm will monitor the diurnal cycle of aerosol optical depth and fine mode fraction based on the known spectral surface BRF. Testing of the developed algorithm with simulated EPIC data over continental USA showed a good accuracy of AOD retrievals (10-20%) except over very bright surfaces.

  11. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  12. Three-dimensional transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: A pilot human study with microbubble contrast enhancement

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on healthcare outcomes and costs. While clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well-suited to the task of examining blood flow dynamics in real-time and may allow for localization of a clot. A prototype bilateral 3D ultrasound imaging system utilizing two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in 5 healthy volunteers with Definity® microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3D color flow mode. The number of color flow voxels above a common threshold increased due to aberration correction in 5/5 subjects, with a mean increase of 33.9%. The percentage of large arteries visualized in 3D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. PMID:24239360

  13. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2014-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on health care outcomes and costs. Although clinical examination and standard computed tomography alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well suited to the task of examining blood flow dynamics in real time and may allow for localization of a clot. A prototype bilateral 3-D ultrasound imaging system using two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in five healthy volunteers with Definity microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3-D color flow mode. The number of color flow voxels above a common threshold increased as a result of aberration correction in five of five subjects, with a mean increase of 33.9%. The percentage of large arteries visualized by 3-D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction.

  14. Transmissive liquid-crystal device for correcting primary coma aberration and astigmatism in biospecimen in two-photon excitation laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-12-01

    All aberrations produced inside a biospecimen can degrade the quality of a three-dimensional image in two-photon excitation laser scanning microscopy. Previously, we developed a transmissive liquid-crystal device to correct spherical aberrations that improved the image quality of a fixed-mouse-brain slice treated with an optical clearing reagent. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism. The motivation for this study is that asymmetric aberration can be induced by the shape of a biospecimen and/or by a complicated refractive-index distribution in a sample; this can considerably degrade optical performance even near the sample surface. The device's performance was evaluated by observing fluorescence beads. The device was inserted between the objective lens and microscope revolver and succeeded in improving the spatial resolution and fluorescence signal of a bead image that was originally degraded by asymmetric aberration. Finally, we implemented the device for observing a fixed whole mouse brain with a sloping surface shape and complicated internal refractive-index distribution. The correction with the device improved the spatial resolution and increased the fluorescence signal by ˜2.4×. The device can provide a simple approach to acquiring higher-quality images of biospecimens.

  15. Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects.

    PubMed

    Gordon, H R; Castaño, D J

    1987-06-01

    An analysis of the errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm is presented in detail. This was prompted by the observations of others that significant errors would be encountered if the present algorithm were applied to a hypothetical instrument possessing higher radiometric sensitivity than the present CZCS. This study provides CZCS users sufficient information with which to judge the efficacy of the current algorithm with the current sensor and enables them to estimate the impact of the algorithm-induced errors on their applications in a variety of situations. The greatest source of error is the assumption that the molecular and aerosol contributions to the total radiance observed at the sensor can be computed separately. This leads to the requirement that a value epsilon'(lambda,lambda(0)) for the atmospheric correction parameter, which bears little resemblance to its theoretically meaningful counterpart, must usually be employed in the algorithm to obtain an accurate atmospheric correction. The behavior of '(lambda,lambda(0)) with the aerosol optical thickness and aerosol phase function is thoroughly investigated through realistic modeling of radiative transfer in a stratified atmosphere over a Fresnel reflecting ocean. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates allowing elucidation of the errors along typical CZCS scan lines; this is important since, in the normal application of the algorithm, it is assumed that the same value of can be used for an entire CZCS scene or at least for a reasonably large subscene. Two types of variation of ' are found in models for which it would be constant in the single scattering approximation: (1) variation with scan angle in scenes in which a relatively large portion of the aerosol scattering phase function would be examined

  16. Development of Topological Correction Algorithms for ADCP Multibeam Bathymetry Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Kee; Kim, Dong-Su; Kim, Soo-Jeong; Jung, Woo-Yul

    2013-04-01

    Acoustic Doppler Current Profilers (ADCPs) are increasingly popular in the river research and management communities being primarily used for estimation of stream flows. ADCPs capabilities, however, entail additional features that are not fully explored, such as morphologic representation of river or reservoir bed based upon multi-beam depth measurements. In addition to flow velocity, ADCP measurements include river bathymetry information through the depth measurements acquired in individual 4 or 5 beams with a given oblique angle. Such sounding capability indicates that multi-beam ADCPs can be utilized as an efficient depth-sounder to be more capable than the conventional single-beam eco-sounders. The paper introduces the post-processing algorithms required to deal with raw ADCP bathymetry measurements including the following aspects: a) correcting the individual beam depths for tilt (pitch and roll); b) filtering outliers using SMART filters; d) transforming the corrected depths into geographical coordinates by UTM conversion; and, e) tag the beam detecting locations with the concurrent GPS information; f) spatial representation in a GIS package. The developed algorithms are applied for the ADCP bathymetric dataset acquired from Han-Cheon in Juju Island to validate their applicability.

  17. Goldindec: A Novel Algorithm for Raman Spectrum Baseline Correction

    PubMed Central

    Liu, Juntao; Sun, Jianyang; Huang, Xiuzhen; Li, Guojun; Liu, Binqiang

    2016-01-01

    Raman spectra have been widely used in biology, physics, and chemistry and have become an essential tool for the studies of macromolecules. Nevertheless, the raw Raman signal is often obscured by a broad background curve (or baseline) due to the intrinsic fluorescence of the organic molecules, which leads to unpredictable negative effects in quantitative analysis of Raman spectra. Therefore, it is essential to correct this baseline before analyzing raw Raman spectra. Polynomial fitting has proven to be the most convenient and simplest method and has high accuracy. In polynomial fitting, the cost function used and its parameters are crucial. This article proposes a novel iterative algorithm named Goldindec, freely available for noncommercial use as noted in text, with a new cost function that not only conquers the influence of great peaks but also solves the problem of low correction accuracy when there is a high peak number. Goldindec automatically generates parameters from the raw data rather than by empirical choice, as in previous methods. Comparisons with other algorithms on the benchmark data show that Goldindec has a higher accuracy and computational efficiency, and is hardly affected by great peaks, peak number, and wavenumber. PMID:26037638

  18. Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-corrected Electron Microscope with 0.5 ? Information Limit

    SciTech Connect

    Kisielowski, Christian; Bischoff, Maarten; van Lin, Hans; Lazar, Sorin; Freitag, Bernhard; Knippels, Georg; Tiemeijer, Peter; van der Stam, Maarten; von Harrach, Sebastian; Stekelenburg, Michael; Haider, Maximilian; M�ller, Hans; Hartel, Peter; Kabius, Bernd; Miller, Dean; Petrov, Ivan; Olson, Eric; Donchev, Tomas; Kenik, Edward A; Lupini, Andrew R; Bentley, James; Pennycook, Stephen J; Minor, Andrew; Schmid, Andreas; Duden, Thomas; Radmilovic, Velimir; Ramasse, Quentin; Watanabe, Masashi; Stach, Eric; Denes, Peter; Dahmen, Ulrich

    2008-01-01

    The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Σ3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub- ngstrom resolution. These results mark an important step toward meeting the challenge of determining the 3D atomic-scale structure of nanomaterials.

  19. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence.

    PubMed

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-12-07

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover's QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels' deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover's QSA at an aggressive depolarizing probability of 10(-3), the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane's quantum error correction code is employed. Finally, apart from Steane's code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered.

  20. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence

    NASA Astrophysics Data System (ADS)

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-12-01

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10‑3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered.

  1. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence

    PubMed Central

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-01-01

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10−3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered. PMID:27924865

  2. The Algorithm Theoretical Basis Document for Tidal Corrections

    NASA Technical Reports Server (NTRS)

    Fricker, Helen A.; Ridgway, Jeff R.; Minster, Jean-Bernard; Yi, Donghui; Bentley, Charles R.`

    2012-01-01

    This Algorithm Theoretical Basis Document deals with the tidal corrections that need to be applied to range measurements made by the Geoscience Laser Altimeter System (GLAS). These corrections result from the action of ocean tides and Earth tides which lead to deviations from an equilibrium surface. Since the effect of tides is dependent of the time of measurement, it is necessary to remove the instantaneous tide components when processing altimeter data, so that all measurements are made to the equilibrium surface. The three main tide components to consider are the ocean tide, the solid-earth tide and the ocean loading tide. There are also long period ocean tides and the pole tide. The approximate magnitudes of these components are illustrated in Table 1, together with estimates of their uncertainties (i.e. the residual error after correction). All of these components are important for GLAS measurements over the ice sheets since centimeter-level accuracy for surface elevation change detection is required. The effect of each tidal component is to be removed by approximating their magnitude using tidal prediction models. Conversely, assimilation of GLAS measurements into tidal models will help to improve them, especially at high latitudes.

  3. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  4. Wavefront correction for static and dynamic aberrations to within 1 second of the system shot in the NIF Beamlet demonstration facility

    SciTech Connect

    Hartley, R.; Kartz, M.; Behrendt, W.

    1996-10-01

    The laser wavefront of the NIF Beamlet demonstration system is corrected for static aberrations with a wavefront control system. The system operates closed loop with a probe beam prior to a shot and has a loop bandwidth of about 3 Hz. However, until recently the wavefront control system was disabled several minutes prior to the shot to allow time to manually reconfigure its attenuators and probe beam insertion mechanism to shot mode. Thermally-induced dynamic variations in gas density in the Beamlet main beam line produce significant wavefront error. After about 5-8 seconds, the wavefront error has increased to a new, higher level due to turbulence- induced aberrations no longer being corrected- This implies that there is a turbulence-induced aberration noise bandwidth of less than one Hertz, and that the wavefront controller could correct for the majority of turbulence-induced aberration (about one- third wave) by automating its reconfiguration to occur within one second of the shot, This modification was recently implemented on Beamlet; we call this modification the t{sub 0}-1 system.

  5. Deconvolution and chromatic aberration corrections in quantifying colocalization of a transcription factor in three-dimensional cellular space.

    PubMed

    Abraham, Thomas; Allan, Sarah E; Levings, Megan K

    2010-08-01

    with DNA molecules. In conclusion, our studies clearly demonstrate the importance of PSF measurements, chromatic aberration corrections followed by deconvolution in the accurate determination of transcription factors in the 3D cellular space. The reported imaging and processing methods can be a practical guide for quantitative fluorescence imaging of similar cellular systems and can provide a basis for further development.

  6. Double-aberration corrected TEM/STEM of solid acid nanocatalysts in the development of pharmaceutical NSAIDS

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N.; Brown, R.; Wright, I.; Boyes, E. D.; Gai, P. L.

    2012-07-01

    We report nanostructural and physico-chemical studies in the development of an efficient low temperature heterogeneous catalytic process for nonsteroidal anti-inflammatory drugs (NSAIDS) such as N-acetyl-p-aminophenol (paracetamol or acetaminophen) on tungstated zirconia nanocatalysts. Using a double-aberration corrected TEM/STEM, modified in-house for in-situ studies at the sub-Angstrom level, we directly observed in real-time, the dynamic precursor transformation to the active catalyst. We quantified the observations with catalytic activity studies for the NSAIDS. The studies have provided the direct evidence for single tungsten promoter atoms and surface WOx species of <= 0.35 nm, with nanoclusters of WOx (0.6 to 1nm), located at grain boundaries on the surface of the zirconia nanoparticles. The correlation between the nanostructure and catalytic activity indicates that the species create Brønsted acid sites highly active for the low temperature process. The results open up opportunities for developing green heterogeneous methods for pharmaceuticals.

  7. Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ramachandra, Ranjan; de Jonge, Niels

    2012-02-01

    Three-dimensional (3D) datasets were recorded of gold nanoparticles placed on both sides of silicon nitride membranes using focal series aberration-corrected scanning transmission electron microscopy (STEM). Deconvolution of the 3D datasets was applied to obtain the highest possible axial resolution. The deconvolution involved two different point spread functions, each calculated iteratively via blind deconvolution. Supporting membranes of different thicknesses were tested to study the effect of beam broadening on the deconvolution. It was found that several iterations of deconvolution was efficient in reducing the imaging noise. With an increasing number of iterations, the axial resolution was increased, and most of the structural information was preserved. Additional iterations improved the axial resolution by maximal a factor of 4 to 6, depending on the particular dataset, and up to 8 nm maximal, but also led to a reduction of the lateral size of the nanoparticles in the image. Thus, the deconvolution procedure optimized for the highest axial resolution is best suited for applications where one is interested in the 3D locations of nanoparticles only.

  8. New Insights into the structure of Pd-Au nanoparticles as revealed by aberration-corrected STEM

    PubMed Central

    Deepak, Francis Leonard; Casillas-Garcia, Gilberto; Esparza, Rodrigo; Barron, H.; Jose-Yacaman, Miguel

    2011-01-01

    Bimetallic nanoparticles of Au-Pd find important applications in catalysis. Their catalytic performance is directly related to the structure, alloy formation and variation of composition in the structure. A standard idea is that bimetallic nanoparticles can be either an alloy or a core shell structure. Our group has investigated the structure and composition of Pd-Au nanoparticles by using aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). We reported previously that the nanoparticles are composed of an evenly alloyed inner core, an Au-rich intermediate layer, and a Pd-rich outer shell. The structure is more complicated than what simple models can predict. In this paper we report additional studies of this system wherein by carrying out spectral and chemical analysis (STEM*-EDAX, STEM-EELS) the interface structure can now be better identified and understood. Apart from the three-layered core-shell structures we have also been able to observe in some cases a four-layered core-shell structure as well. The entire core-shell structure is not rigid and there is indeed intercalation of Au-Pd into the other layers as well. In addition we have been able to locate stacking faults present in the nanoparticles. We also address the problem of the interface structure between the layers. By using nanodiffraction we have found that the whole structure of the nanoparticles becomes hcp in contrast to the bulk structure of Au or Pd. PMID:21804646

  9. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  10. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2016-11-22

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au144(SCH2CH2Ph)60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au144(SR)60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters.

  11. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

    DTIC Science & Technology

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses

  12. Practical algorithms for algebraic and logical correction in precedent-based recognition problems

    NASA Astrophysics Data System (ADS)

    Ablameyko, S. V.; Biryukov, A. S.; Dokukin, A. A.; D'yakonov, A. G.; Zhuravlev, Yu. I.; Krasnoproshin, V. V.; Obraztsov, V. A.; Romanov, M. Yu.; Ryazanov, V. V.

    2014-12-01

    Practical precedent-based recognition algorithms relying on logical or algebraic correction of various heuristic recognition algorithms are described. The recognition problem is solved in two stages. First, an arbitrary object is recognized independently by algorithms from a group. Then a final collective solution is produced by a suitable corrector. The general concepts of the algebraic approach are presented, practical algorithms for logical and algebraic correction are described, and results of their comparison are given.

  13. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.

    PubMed

    Nelayah, Jaysen; Nguyen, Nhat Tai; Alloyeau, Damien; Wang, Guillaume Yangshu; Ricolleau, Christian

    2014-09-07

    Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures.

  14. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  15. An algorithm for the treatment of schizophrenia in the correctional setting: the Forensic Algorithm Project.

    PubMed

    Buscema, C A; Abbasi, Q A; Barry, D J; Lauve, T H

    2000-10-01

    The Forensic Algorithm Project (FAP) was born of the need for a holistic approach in the treatment of the inmate with schizophrenia. Schizophrenia was chosen as the first entity to be addressed by the algorithm because of its refractory nature and high rate of recidivism in the correctional setting. Schizophrenia is regarded as a spectrum disorder, with symptom clusters and behaviors ranging from positive to negative symptoms to neurocognitive dysfunction and affective instability. Furthermore, the clinical picture is clouded by Axis II symptomatology (particularly prominent in the inmate population), comorbid Axis I disorders, and organicity. Four subgroups of schizophrenia were created to coincide with common clinical presentations in the forensic inpatient facility and also to parallel 4 tracks of intervention, consisting of pharmacologic management and programming recommendations. The algorithm begins with any antipsychotic medication and proceeds to atypical neuroleptic usage, augmentation with other psychotropic agents, and, finally, the use of clozapine as the common pathway for refractory schizophrenia. Outcome measurement of pharmacologic intervention is assessed every 6 weeks through the use of a 4-item subscale, specific for each forensic subgroup. A "floating threshold" of 40% symptom severity reduction on Positive and Negative Syndrome Scale and Brief Psychiatric Rating Scale items over a 6-week period is considered an indication for neuroleptic continuation. The forensic algorithm differs from other clinical practice guidelines in that specific programming in certain prison environments is stipulated. Finally, a social commentary on the importance of state-of-the-art psychiatric treatment for all members of society is woven into the clinical tapestry of this article.

  16. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  17. Correction of Depth-Dependent Aberrations in 3D Single Molecule Localization and Super-resolution Microscopy

    PubMed Central

    McGorty, Ryan; Schnitzbauer, Joerg; Zhang, Wei; Huang, Bo

    2014-01-01

    Single molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive-index-mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here, we show a method to obtain accurate, depth dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 μm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane. PMID:24562125

  18. A correction to a highly accurate voight function algorithm

    NASA Technical Reports Server (NTRS)

    Shippony, Z.; Read, W. G.

    2002-01-01

    An algorithm for rapidly computing the complex Voigt function was published by Shippony and Read. Its claimed accuracy was 1 part in 10^8. It was brought to our attention by Wells that Shippony and Read was not meeting its claimed accuracy for extremely small but non zero y values. Although true, the fix to the code is so trivial to warrant this note for those who use this algorithm.

  19. Evaluation of algorithms for automated phase correction of NMR spectra.

    PubMed

    de Brouwer, Hans

    2009-12-01

    In our attempt to fully automate the data acquisition and processing of NMR analysis of dissolved synthetic polymers, phase correction was found to be the most challenging aspect. Several approaches in literature were evaluated but none of these was found to be capable of phasing NMR spectra with sufficient robustness and high enough accuracy to fully eliminate intervention by a human operator. Step by step, aspects from the process of manual/visual phase correction were translated into mathematical concepts and evaluated. This included area minimization, peak height maximization, negative peak minimization and baseline correction. It was found that not one single approach would lead to acceptable results but that a combination of aspects was required, in line again with the process of manual phase correction. The combination of baseline correction, area minimization and negative area penalization was found to give the desired results. The robustness was found to be 100% which means that the correct zeroth order and first order phasing parameters are returned independent of the position of the starting point of the search in this parameter space. When applied to high signal-to-noise proton spectra, the accuracy was such that the returned phasing parameters were within a distance of 0.1-0.4 degrees in the two dimensional parameter space which resulted in an average error of 0.1% in calculated properties such as copolymer composition and end groups.

  20. Design and Performance Characteristics of the ORNL Advanced Microscopy Laboratory and JEOL 2200FS-AC Aberration-Corrected STEM/TEM

    SciTech Connect

    Allard Jr, Lawrence Frederick; Blom, Douglas Allen; O'Keefe, Michael A.; Mishina, Satoshi

    2005-01-01

    To achieve the highest performance with today's generation of aberration-corrected electron microscopes, it is increasingly evident that the environment of the facility in which the microscope is installed must be considered an integral component of the microscopy program. Such instruments are the world's best detectors of the influence of parameters such as alternating magnetic fields, floor vibrations, acoustic vibrations, airflow, and temperature and pressure fluctuations. At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. Design criteria for the facility include the following: magnetic fields below 0.1mG rms in all directions, floor vibrations below 1{mu}m/sec, air flow less than 5cm/sec horizontally, temperature stability {+-}0.2 C/hr, and provision for instrument operation from an adjacent control room to minimize the influence of the operator on instrument performance. The JEOL 2200FS-AC, being installed as of this writing, has demonstrated a TEM information limit of 0.9 {angstrom}. This is the limit expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. However, in STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in <1 1 0> zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect.

  1. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  2. [Baseline Correction Algorithm for Raman Spectroscopy Based on Non-Uniform B-Spline].

    PubMed

    Fan, Xian-guang; Wang, Hai-tao; Wang, Xin; Xu, Ying-jie; Wang, Xiu-fen; Que, Jing

    2016-03-01

    As one of the necessary steps for data processing of Raman spectroscopy, baseline correction is commonly used to eliminate the interference of fluorescence spectra. The traditional baseline correction algorithm based on polynomial fitting is simple and easy to implement, but its flexibility is poor due to the uncertain fitting order. In this paper, instead of using polynomial fitting, non-uniform B-spline is proposed to overcome the shortcomings of the traditional method. Based on the advantages of the traditional algorithm, the node vector of non-uniform B-spline is fixed adaptively using the peak position of the original Raman spectrum, and then the baseline is fitted with the fixed order. In order to verify this algorithm, the Raman spectra of parathion-methyl and colza oil are detected and their baselines are corrected using this algorithm, the result is made comparison with two other baseline correction algorithms. The experimental results show that the effect of baseline correction is improved by using this algorithm with a fixed fitting order and less parameters, and there is no over or under fitting phenomenon. Therefore, non-uniform B-spline is proved to be an effective baseline correction algorithm of Raman spectroscopy.

  3. Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides.

    PubMed

    Vetrini, Francesco; Tammaro, Roberta; Bondanza, Sergio; Surace, Enrico M; Auricchio, Alberto; De Luca, Michele; Ballabio, Andrea; Marigo, Valeria

    2006-05-01

    An intronic point mutation was identified in the ocular albinism type 1 (OA1) gene (HUGO symbol, GPR143) in a family with the X-linked form of ocular albinism. Interestingly, the mutation creates a new acceptor splice site in intron 7 of the OA1 gene. In addition to low levels of normally spliced mRNA product of the OA1 gene, the patient samples contained also an aberrantly spliced mRNA with a 165 bp fragment of intron 7 (from position +750 to +914) inserted between exons 7 and 8. The abnormal transcript contained a premature stop codon and was unstable, as revealed by Northern blot analysis. We defined that mutation NC_000023.8:g.25288G>A generated a consensus binding motif for the splicing factor enhancer ASF/SF2, which most likely favored transcription of the aberrant mRNA. Furthermore, it activated a cryptic donor-splice site causing the inclusion between exons 7 and 8 of the 165 bp intronic fragment. Thus, the aberrant splicing is most likely explained by the generation of a de novo splicing enhancer motif. Finally, to rescue OA1 expression in the patient's melanocytes, we designed an antisense morpholino modified oligonucleotide complementary to the mutant sequence. The morpholino oligonucleotide (MO) was able to rescue OA1 expression and restore the OA1 protein level in the patient's melanocytes through skipping of the aberrant inclusion. The use of MO demonstrated that the lack of OA1 was caused by the generation of a new splice site. Furthermore, this technique will lead to new approaches to correct splice site mutations that cause human diseases.

  4. Weighted SVD algorithm for close-orbit correction and 10 Hz feedback in RHIC

    SciTech Connect

    Liu C.; Hulsart, R.; Marusic, A.; Michnoff, R.; Minty, M.; Ptitsyn, V.

    2012-05-20

    Measurements of the beam position along an accelerator are typically treated equally using standard SVD-based orbit correction algorithms so distributing the residual errors, modulo the local beta function, equally at the measurement locations. However, sometimes a more stable orbit at select locations is desirable. In this paper, we introduce an algorithm for weighting the beam position measurements to achieve a more stable local orbit. The results of its application to close-orbit correction and 10 Hz orbit feedback are presented.

  5. Algorithm-supported visual error correction (AVEC) of heart rate measurements in dogs, Canis lupus familiaris.

    PubMed

    Schöberl, Iris; Kortekaas, Kim; Schöberl, Franz F; Kotrschal, Kurt

    2015-12-01

    Dog heart rate (HR) is characterized by a respiratory sinus arrhythmia, and therefore makes an automatic algorithm for error correction of HR measurements hard to apply. Here, we present a new method of error correction for HR data collected with the Polar system, including (1) visual inspection of the data, (2) a standardized way to decide with the aid of an algorithm whether or not a value is an outlier (i.e., "error"), and (3) the subsequent removal of this error from the data set. We applied our new error correction method to the HR data of 24 dogs and compared the uncorrected and corrected data, as well as the algorithm-supported visual error correction (AVEC) with the Polar error correction. The results showed that fewer values were identified as errors after AVEC than after the Polar error correction (p < .001). After AVEC, the HR standard deviation and variability (HRV; i.e., RMSSD, pNN50, and SDNN) were significantly greater than after correction by the Polar tool (all p < .001). Furthermore, the HR data strings with deleted values seemed to be closer to the original data than were those with inserted means. We concluded that our method of error correction is more suitable for dog HR and HR variability than is the customized Polar error correction, especially because AVEC decreases the likelihood of Type I errors, preserves the natural variability in HR, and does not lead to a time shift in the data.

  6. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer

    PubMed Central

    Ali, Hamad; Bitar, Milad S.; Al Madhoun, Ashraf; Marafie, Makia; Al-Mulla, Fahd

    2017-01-01

    Array-based comparative genomic hybridization (aCGH) emerged as a powerful technology for studying copy number variations at higher resolution in many cancers including colorectal cancer. However, the lack of standardized systematic protocols including bioinformatic algorithms to obtain and analyze genomic data resulted in significant variation in the reported copy number aberration (CNA) data. Here, we present genomic aCGH data obtained using highly stringent and functionally relevant statistical algorithms from 116 well-defined microsatellites instable (MSI) and microsatellite stable (MSS) colorectal cancers. We utilized aCGH to characterize genomic CNAs in 116 well-defined sets of colorectal cancer (CRC) cases. We further applied the significance testing for aberrant copy number (STAC) and Genomic Identification of Significant Targets in Cancer (GISTIC) algorithms to identify functionally relevant (nonrandom) chromosomal aberrations in the analyzed colorectal cancer samples. Our results produced high resolution genomic landscapes of both, MSI and MSS sporadic CRC. We found that CNAs in MSI and MSS CRCs are heterogeneous in nature but may be divided into 3 distinct genomic patterns. Moreover, we show that although CNAs in MSI and MSS CRCs differ with respect to their size, number and chromosomal distribution, the functional copy number aberrations obtained from MSI and MSS CRCs were in fact comparable but not identical. These unifying CNAs were verified by MLPA tumor-loss gene panel, which spans 15 different chromosomal locations and contains 50 probes for at least 20 tumor suppressor genes. Consistently, deletion/amplification in these frequently cancer altered genes were identical in MSS and MSI CRCs. Our results suggest that MSI and MSS copy number aberrations driving CRC may be functionally comparable. PMID:28231327

  7. Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3nm precision using aberration-corrected scanning transmission electron microscopy.

    PubMed

    Dukes, Madeline J; Ramachandra, Ranjan; Baudoin, Jean-Pierre; Gray Jerome, W; de Jonge, Niels

    2011-06-01

    Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.

  8. Self-Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units

    SciTech Connect

    Fernandez, Nicholas; Brambley, Michael R.; Katipamula, Srinivas

    2009-12-31

    This report documents the self-correction algorithms developed in the Self-Correcting Heating, Ventilating and Air-Conditioning (HVAC) Controls project funded jointly by the Bonneville Power Administration and the Building Technologies Program of the U.S. Department of Energy. The algorithms address faults for temperature sensors, humidity sensors, and dampers in air-handling units and correction of persistent manual overrides of automated control systems. All faults considered create energy waste when left uncorrected as is frequently the case in actual systems.

  9. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser.

    SciTech Connect

    LaFortune, K N; Hurd, R L; Johansson, E M; Dane, C B; Fochs, S N; Brase, J M

    2004-01-12

    The Solid-State, Heat-Capacity Laser (SSHCL), under development at Lawrence Livermore National Laboratory is a large aperture (100 cm{sup 2}), confocal, unstable resonator requiring near-diffraction-limited beam quality. There are two primary sources of the aberrations in the system: residual, static aberrations from the fabrication of the optical components and predictable, time-dependent, thermally-induced index gradients within the gain medium. A deformable mirror placed within the cavity is used to correct the aberrations that are sensed externally with a Shack-Hartmann wavefront sensor. Although it is more challenging than external correction, intracavity correction enables control of the mode growth within the resonator, resulting in the ability to correct a more aberrated system longer. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results from initial correction of the static aberrations and dynamic correction of the time-dependent aberrations are presented.

  10. Intracavity adaptive correction of a 10 kW, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2004-05-13

    The Solid-State, Heat-Capacity Laser (SSHCL), under development at Lawrence Livermore National Laboratory (LLNL) is a large aperture (100 cm{sup 2}), confocal, unstable resonator requiring near-diffraction-limited beam quality. There are two primary sources of the aberrations in the system: residual, static aberrations from the fabrication of the optical components and predictable, time-dependent, thermally-induced index gradients within the gain medium. A deformable mirror placed within the cavity is used to correct the aberrations that are sensed externally with a Shack-Hartmann wavefront sensor. Although the complexity of intracavity adaptive correction is greater than that of external correction, it enables control of the mode growth within the resonator, resulting in the ability to correct a more aberrated system longer. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results from initial correction of the static aberrations and dynamic correction of the time-dependent aberrations are presented.

  11. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2014-09-08

    A new approach for the near-infrared (NIR) ocean reflectance correction in atmospheric correction for satellite ocean color data processing in coastal and inland waters is proposed, which combines the advantages of the three existing NIR ocean reflectance correction algorithms, i.e., Bailey et al. (2010) [Opt. Express18, 7521 (2010)Appl. Opt.39, 897 (2000)Opt. Express20, 741 (2012)], and is named BMW. The normalized water-leaving radiance spectra nLw(λ) obtained from this new NIR-based atmospheric correction approach are evaluated against those obtained from the shortwave infrared (SWIR)-based atmospheric correction algorithm, as well as those from some existing NIR atmospheric correction algorithms based on several case studies. The scenes selected for case studies are obtained from two different satellite ocean color sensors, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP), with an emphasis on several turbid water regions in the world. The new approach has shown to produce nLw(λ) spectra most consistent with the SWIR results among all NIR algorithms. Furthermore, validations against the in situ measurements also show that in less turbid water regions the new approach produces reasonable and similar results comparable to the current operational algorithm. In addition, by combining the new NIR atmospheric correction with the SWIR-based approach, the new NIR-SWIR atmospheric correction can produce further improved ocean color products. The new NIR atmospheric correction can be implemented in a global operational satellite ocean color data processing system.

  12. A scene based nonuniformity correction algorithm for line scanning infrared image

    NASA Astrophysics Data System (ADS)

    Fan, Fan; Ma, Yong; Zhou, Bo; Fang, Yu; Han, Jinhui; Liu, Zhe

    2014-11-01

    In this paper, a fast scene based nonuniformity correction algorithm using Landweber iteration is proposed for line scanning infrared imaging systems (LSIR). The method introduces a novel framework of nonuniformity correction for LSIR by optimization. More specifically, first a "desired" image is obtained by an 1D Guassian filter from the corrected image; then a weighted mean square error optimization function is established in each line to minimize the mean square error between the corrected value and "desired" image. Correction parameters update adaptively by Landweber iteration, and then update the desired image. A stopping rule of the framework is also proposed. The quantitative comparisons with other state-of-the-art methods demonstrate that the proposed algorithm has low complexity and is much more robust on fixed-pattern noise reduction in the static scene.

  13. Robustness properties of hill-climbing algorithm based on Zernike modes for laser beam correction.

    PubMed

    Liu, Ying; Ma, Jianqiang; Chen, Junjie; Li, Baoqing; Chu, Jiaru

    2014-04-01

    A modified hill-climbing algorithm based on Zernike modes is used for laser beam correction. The algorithm adopts the Zernike mode coefficients, instead of the deformable mirror actuators' voltages in a traditional hill-climbing algorithm, as the adjustable variables to optimize the object function. The effect of the mismatches between the laser beam and the deformable mirror both in the aperture size and the center position was analyzed numerically and experimentally to test the robustness of the algorithm. Both simulation and experimental results show that the mismatches have almost no influence on the laser beam correction, unless the laser beam exceeds the effective aperture of the deformable mirror, which indicates the good robustness of the algorithm.

  14. Approximate string matching algorithms for limited-vocabulary OCR output correction

    NASA Astrophysics Data System (ADS)

    Lasko, Thomas A.; Hauser, Susan E.

    2000-12-01

    Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.

  15. An Algorithm to Atmospherically Correct Visible and Thermal Airborne Imagery

    NASA Technical Reports Server (NTRS)

    Rickman, Doug L.; Luvall, Jeffrey C.; Schiller, Stephen; Arnold, James E. (Technical Monitor)

    2000-01-01

    The program Watts implements a system of physically based models developed by the authors, described elsewhere, for the removal of atmospheric effects in multispectral imagery. The band range we treat covers the visible, near IR and the thermal IR. Input to the program begins with atmospheric pal red models specifying transmittance and path radiance. The system also requires the sensor's spectral response curves and knowledge of the scanner's geometric definition. Radiometric characterization of the sensor during data acquisition is also necessary. While the authors contend that active calibration is critical for serious analytical efforts, we recognize that most remote sensing systems, either airborne or space borne, do not as yet attain that minimal level of sophistication. Therefore, Watts will also use semi-active calibration where necessary and available. All of the input is then reduced to common terms, in terms of the physical units. From this it Is then practical to convert raw sensor readings into geophysically meaningful units. There are a large number of intricate details necessary to bring an algorithm or this type to fruition and to even use the program. Further, at this stage of development the authors are uncertain as to the optimal presentation or minimal analytical techniques which users of this type of software must have. Therefore, Watts permits users to break out and analyze the input in various ways. Implemented in REXX under OS/2 the program is designed with attention to the probability that it will be ported to other systems and other languages. Further, as it is in REXX, it is relatively simple for anyone that is literate in any computer language to open the code and modify to meet their needs. The authors have employed Watts in their research addressing precision agriculture and urban heat island.

  16. Thickness variations and absence of lateral compositional fluctuations in aberration-corrected STEM images of InGaN LED active regions at low dose.

    PubMed

    Yankovich, Andrew B; Kvit, Alexander V; Li, Xing; Zhang, Fan; Avrutin, Vitaliy; Liu, Huiyong; Izyumskaya, Natalia; Özgür, Ümit; Van Leer, Brandon; Morkoç, Hadis; Voyles, Paul M

    2014-06-01

    Aberration-corrected scanning transmission electron microscopy images of the In(0.15)Ga(0.85)N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer's upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.

  17. A curvature filter and PDE based non-uniformity correction algorithm

    NASA Astrophysics Data System (ADS)

    Cheng, Kuanhong; Zhou, Huixin; Qin, Hanlin; Zhao, Dong; Qian, Kun; Rong, Shenghui; Yin, Shimin

    2016-10-01

    In this paper, a curvature filter and PDE based non-uniformity correction algorithm is proposed, the key point of this algorithm is the way to estimate FPN. We use anisotropic diffusion to smooth noise and Gaussian curvature filter to extract the details of original image. Then combine these two parts together by guided image filter and subtract the result from original image to get the crude approximation of FPN. After that, a Temporal Low Pass Filter (TLPF) is utilized to filter out random noise and get the accurate FPN. Finally, subtract the FPN from original image to achieve non-uniformity correction. The performance of this algorithm is tested with two infrared image sequences, and the experimental results show that the proposed method achieves a better non-uniformity correction performance.

  18. Design and Performance Characteristics of the ORNL AdvancedMicroscopy Laboratory and JEOL 2200FS-AC Aberration-CorrectedSTEM/TEM

    SciTech Connect

    Allard, Lawrence F.; Blom, Douglas A.; O'Keefe, Michael A.; Mishina, S.

    2005-02-15

    At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. The installed JEOL 2200FS-AC has demonstrated aTEM information limit of 0.9A. This limit is expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. In STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in<110>zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect. The microscope is fitted with three magnetically levitated turbo pumps (one on the column at about the specimen position,and two near floor level) that pump the Omega energy filter and detector chamber. These pumps run at 48,000 rpm, precisely equivalent to 800Hz. It was determined that the upper turbo pump was contributing essentially all of the 800Hz signal to the image, and in fact that the pump was defective. After replacing the pump with one significantly quieter than the original, the Si atomic column image and associated diffractogram(Fig. 4b) show a much-reduced effect of the 800Hz signal, but still some residual effect from the turbo pump. The upper pump will be removed from the main column to an adjacent frame on the floor, and will have a large-diameter, well-damped, pump line to the original connection to the column to effectively isolate the pump from the column. If the 800Hz signal results from mechanical vibrations, they will be damped, and if the signal results from acoustic coupling to the column, it can be damped by appropriate acoustic materials.

  19. Atmospheric correction algorithm for hyperspectral remote sensing of ocean color from space.

    PubMed

    Gao, B C; Montes, M J; Ahmad, Z; Davis, C O

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses look-up tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 mum. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.

  20. Assessment, Validation, and Refinement of the Atmospheric Correction Algorithm for the Ocean Color Sensors. Chapter 19

    NASA Technical Reports Server (NTRS)

    Wang, Menghua

    2003-01-01

    The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.

  1. Simplified Decoding of Trellis-Based Error-Correcting Modulation Codes Using the M-Algorithm for Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Kim, Jinyoung; Lee, Jaejin

    2012-08-01

    In this paper, we investigate a simplified decoding method for the trellis-based error-correcting modulation codes using the M-algorithm for holographic data storage. The M-algorithm, which sacrifices the bit error rate performance, can reduce the Viterbi algorithm's complexity. When the M-algorithm is used in the trellis-based error-correcting modulation codes, common delay and complexity problems can be reduced.

  2. A FORTRAN algorithm for correcting normal resistivity logs for borehole diameter and mud resistivity

    USGS Publications Warehouse

    Scott, James Henry

    1978-01-01

    The FORTRAN algorithm described in this report was developed for applying corrections to normal resistivity logs of any electrode spacing for the effects of drilling mud of known resistivity in boreholes of variable diameter. The corrections are based on Schlumberger departure curves that are applicable to normal logs made with a standard Schlumberger electric logging probe with an electrode diameter of 8.5 cm (3.35 in). The FORTRAN algorithm has been generalized to accommodate logs made with other probes with different electrode diameters. Two simplifying assumptions used by Schlumberger in developing the departure curves also apply to the algorithm: (1) bed thickness is assumed to be infinite (at least 10 times larger than the electrode spacing), and (2) invasion of drilling mud into the formation is assumed to be negligible. * The use of a trade name does not necessarily constitute endorsement by the U.S. Geological Survey.

  3. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE PAGES

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    2016-04-12

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV), downwellingmore » radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes

  4. A survey of the baseline correction algorithms for real-time spectroscopy processing

    NASA Astrophysics Data System (ADS)

    Liu, Yuanjie; Yu, Yude

    2016-11-01

    In spectroscopy data analysis, such as Raman spectra, X-ray diffraction, fluorescence and etc., baseline drift is a ubiquitous issue. In high speed testing which generating huge data, automatic baseline correction method is very important for efficient data processing. We will survey the algorithms from classical Shirley background to state-of-the-art methods to present a summation for this specific field. Both advantages and defects of each algorithm are scrutinized. To compare the algorithms with each other, experiments are also carried out under SVM gap gain criteria to show the performance quantitatively. Finally, a rank table of these methods is built and the suggestions for practical choice of adequate algorithms is provided in this paper.

  5. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms.

    PubMed

    Dawood, Mohammad; Buther, Florian; Jiang, Xiaoyi; Schafers, Klaus P

    2008-08-01

    The problem of motion is well known in positron emission tomography (PET) studies. The PET images are formed over an elongated period of time. As the patients cannot hold breath during the PET acquisition, spatial blurring and motion artifacts are the natural result. These may lead to wrong quantification of the radioactive uptake. We present a solution to this problem by respiratory-gating the PET data and correcting the PET images for motion with optical flow algorithms. The algorithm is based on the combined local and global optical flow algorithm with modifications to allow for discontinuity preservation across organ boundaries and for application to 3-D volume sets. The superiority of the algorithm over previous work is demonstrated on software phantom and real patient data.

  6. Application and assessment of a robust elastic motion correction algorithm to dynamic MRI.

    PubMed

    Herrmann, K-H; Wurdinger, S; Fischer, D R; Krumbein, I; Schmitt, M; Hermosillo, G; Chaudhuri, K; Krishnan, A; Salganicoff, M; Kaiser, W A; Reichenbach, J R

    2007-01-01

    The purpose of this study was to assess the performance of a new motion correction algorithm. Twenty-five dynamic MR mammography (MRM) data sets and 25 contrast-enhanced three-dimensional peripheral MR angiographic (MRA) data sets which were affected by patient motion of varying severeness were selected retrospectively from routine examinations. Anonymized data were registered by a new experimental elastic motion correction algorithm. The algorithm works by computing a similarity measure for the two volumes that takes into account expected signal changes due to the presence of a contrast agent while penalizing other signal changes caused by patient motion. A conjugate gradient method is used to find the best possible set of motion parameters that maximizes the similarity measures across the entire volume. Images before and after correction were visually evaluated and scored by experienced radiologists with respect to reduction of motion, improvement of image quality, disappearance of existing lesions or creation of artifactual lesions. It was found that the correction improves image quality (76% for MRM and 96% for MRA) and diagnosability (60% for MRM and 96% for MRA).

  7. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI.

    PubMed

    Asllani, Iris; Borogovac, Ajna; Brown, Truman R

    2008-12-01

    Partial volume effects (PVE) are a consequence of limited spatial resolution in brain imaging. In arterial spin labeling (ASL) MRI, the problem is exacerbated by the nonlinear dependency of the ASL signal on magnetization contributions from each tissue within an imaged voxel. We have developed an algorithm that corrects for PVE in ASL imaging. The algorithm is based on a model that represents the voxel intensity as a weighted sum of pure tissue contribution, where the weighting coefficients are the tissue's fractional volume in the voxel. Using this algorithm, we were able to estimate cerebral blood flow (CBF) for gray matter (GM) and white matter (WM) independently. The average voxelwise ratio of GM to WM CBF was approximately 3.2, in good agreement with reports in the literature. As proof of concept, data from PVE-corrected method were compared with those from the conventional, PVE-uncorrected method. As hypothesized, the two yielded similar CBF values for voxels containing >95% GM and differed in proportion with the voxels' heterogeneity. More importantly, the GM CBF assessed with the PVE-corrected method was independent of the voxels' heterogeneity, implying that estimation of flow was unaffected by PVE. An example of application of this algorithm in motor-activation data is also given.

  8. A Comparative Dosimetric Analysis of the Effect of Heterogeneity Corrections Used in Three Treatment Planning Algorithms

    NASA Astrophysics Data System (ADS)

    Herrick, Andrea Celeste

    Successful treatment in radiation oncology relies on the evaluation of a plan for each individual patient based on delivering the maximum dose to the tumor while sparing the surrounding normal tissue (organs at risk) in the patient. Organs at risk (OAR) typically considered include the heart, the spinal cord, healthy lung tissue, and any other organ in the vicinity of the target that is not affected by the disease being treated. Depending on the location of the tumor and its proximity to these OARs, several plans may be created and evaluated in order to assess which "solution" most closely meets all of the specified criteria. In order to successfully review a treatment plan and take the correct course of action, a physician needs to rely on the computer model (treatment planning algorithm) of dose distribution to reconstruct CT scan data to proceed with the plan that best achieves all of the goals. There are many available treatment planning systems from which a Radiation Oncology center can choose from. While the radiation interactions considered are identical among clinics, the way the chosen algorithm handles these interactions can vary immensely. The goal of this study was to provide a comparison between two commonly used treatment planning systems (Pinnacle and Eclipse) and their associated dose calculation algorithms. In order to this, heterogeneity correction models were evaluated via test plans, and the effects of going from heterogeneity uncorrected patient representation to a heterogeneity correction representation were studied. The results of this study indicate that the actual dose delivered to the patient varies greatly between treatment planning algorithms in areas of low density tissue such as in the lungs. Although treatment planning algorithms are attempting to come to the same result with heterogeneity corrections, the reality is that the results depend strongly on the algorithm used in the situations studied. While the Anisotropic Analytic Method

  9. Image nonlinearity and non-uniformity corrections using Papoulis - Gerchberg algorithm in gamma imaging systems

    NASA Astrophysics Data System (ADS)

    Shemer, A.; Schwarz, A.; Gur, E.; Cohen, E.; Zalevsky, Z.

    2015-04-01

    In this paper, the authors describe a novel technique for image nonlinearity and non-uniformity corrections in imaging systems based on gamma detectors. The limitation of the gamma detector prevents the producing of high quality images due to the radionuclide distribution. This problem causes nonlinearity and non-uniformity distortions in the obtained image. Many techniques have been developed to correct or compensate for these image artifacts using complex calibration processes. The presented method is based on the Papoulis - Gerchberg(PG) iterative algorithm and is obtained without need of detector calibration, tuning process or using any special test phantom.

  10. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    SciTech Connect

    Han, Chang W.; Iddir, Hakim; Uzun, Alper; Curtiss, Larry A.; Browning, Nigel D.; Gates, Bruce C.; Ortalan, Volkan

    2015-11-06

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  11. On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns.

    PubMed

    Tang, Y L; Zhu, Y L; Ma, X L

    2016-01-01

    Revealing strains on the unit-cell level is essential for understanding the particular performance of materials. Large-scale strain variations with a unit-cell resolution are important for studying ferroelectric materials since the spontaneous polarizations of such materials are strongly coupled with strains. Aberration-corrected high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) is not so sensitive to the sample thickness and therefore thickness gradients. Consequently it is extremely useful for large-scale strain determination, which can be readily extracted by geometrical phase analysis (GPA). Such a combination has various advantages: it is straightforward, accurate on the unit-cell scale, relatively insensitive to crystal orientation and therefore helpful for large-scale. We take a tetragonal ferroelectric PbTiO3 film as an example in which large-scale strains are determined. Furthermore, based on the specific relationship between lattice rotation and spontaneous polarization (Ps) at 180° domain-walls, the Ps directions are identified, which makes the investigation of ferroelectric domain structures accurate and straightforward. This method is proposed to be suitable for investigating strain-related phenomena in other ferroelectric materials.

  12. High resolution structural and compositional mapping of the SrTiO3/LaFeO3 interface using chromatic aberration corrected energy filtered imaging

    NASA Astrophysics Data System (ADS)

    Kabius, Bernd; Houben, Lothar; Dwyer, Christian; Colby, Robert; Chambers, Scott A.; Dunin-Borkowski, Rafal

    2014-03-01

    Interfaces between insulating polar perovskites have demonstrated a wealth of electronic and magnetic properties. Understanding and predicting the properties of a specific interface requires atomic level knowledge of interface structure and chemistry. Electron microscopy is capable of this task, and has been frequently applied to oxide interfaces using a combination of high-angle angular dark field scanning transmission electron microscopy (HAADF-STEM) and electron energy-loss spectroscopy (EELS). Energy-filtered TEM (EFTEM) captures a full image for a given energy losses, allowing a larger field of view than typical for STEM-EELS in far less time. However, EFTEM has not, to date, demonstrated the spatial resolution of STEM-EELS due to the limits set by chromatic aberration Cc. This study of LaFeO3/SrTiO3 demonstrates that Cc correction enhances the resolution of EFTEM for elemental mapping, allowing a unit cell-by-unit cell analysis of the concentration gradients across the SrTiO3/LaFeO3 interface. The charge distribution at the interface will be discussed. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory

  13. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  14. Direct atomic-scale imaging of hydrogen and oxygen interstitials in pure niobium using atom-probe tomography and aberration-corrected scanning transmission electron microscopy.

    PubMed

    Kim, Yoon-Jun; Tao, Runzhe; Klie, Robert F; Seidman, David N

    2013-01-22

    Imaging the three-dimensional atomic-scale structure of complex interfaces has been the goal of many recent studies, due to its importance to technologically relevant areas. Combining atom-probe tomography and aberration-corrected scanning transmission electron microscopy (STEM), we present an atomic-scale study of ultrathin (~5 nm) native oxide layers on niobium (Nb) and the formation of ordered niobium hydride phases near the oxide/Nb interface. Nb, an elemental type-II superconductor with the highest critical temperature (T(c) = 9.2 K), is the preferred material for superconducting radio frequency (SRF) cavities in next-generation particle accelerators. Nb exhibits high solubilities for oxygen and hydrogen, especially within the RF-field penetration depth, which is believed to result in SRF quality factor losses. STEM imaging and electron energy-loss spectroscopy followed by ultraviolet laser-assisted local-electrode atom-probe tomography on the same needle-like sample reveals the NbO(2), Nb(2)O(5), NbO, Nb stacking sequence; annular bright-field imaging is used to visualize directly hydrogen atoms in bulk β-NbH.

  15. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT

    SciTech Connect

    Miller, Michael K; Parish, Chad M

    2014-01-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  16. A residual range cell migration correction algorithm for bistatic forward-looking SAR

    NASA Astrophysics Data System (ADS)

    Pu, Wei; Huang, Yulin; Wu, Junjie; Yang, Jianyu; Li, Wenchao

    2016-12-01

    For bistatic forward-looking synthetic aperture radar (BFSAR), images are often blurred by uncompensated radar motion errors. To get refocused images, autofocus is a useful postprocessing technique. However, a severe drawback of the autofocus algorithms is that they are only capable of removing one-dimensional azimuth phase errors. In BFSAR, motion errors and approximations of imaging algorithms introduce residual range cell migration (RCM) on BFSAR data as well. When residual RCM is within a range resolution cell, it can be neglected. However, the residual migration, which exceeds a range cell, is increasingly encountered as resolution becomes finer and finer. A novel residual RCM correction method is proposed in this paper. By fitting the low-frequency phase difference of adjacent azimuth cells, residual RCM of each azimuth cell can be corrected precisely and effectively. Simulations and real data experiments are carried out to validate the effectiveness of the proposed method.

  17. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-01

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp–Davis–Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  18. A fast beam hardening correction method incorporated in a filtered back-projection based MAP algorithm.

    PubMed

    Luo, Shouhua; Wu, Huazhen; Sun, Yi; Li, Jing; Li, Guang; Gu, Ning

    2017-03-07

    The beam hardening effect can induce strong artifacts in CT images, which result in severely deteriorated image quality with incorrect intensities (CT numbers). This paper develops an effective and efficient beam hardening correction algorithm incorporated in a filtered back-projection based maximum a posteriori (BHC-FMAP). In the proposed algorithm, the beam hardening effect is modeled and incorporated into the forward-projection of the MAP to suppress beam hardening induced artifacts, and the image update process is performed by Feldkamp-Davis-Kress method based back-projection to speed up the convergence. The proposed BHC-FMAP approach does not require information about the beam spectrum or the material properties, or any additional segmentation operation. The proposed method was qualitatively and quantitatively evaluated using both phantom and animal projection data. The experimental results demonstrate that the BHC-FMAP method can efficiently provide a good correction of beam hardening induced artefacts.

  19. Closed Loop, DM Diversity-based, Wavefront Correction Algorithm for High Contrast Imaging Systems

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Belikov, Ruslan; Shaklan, Stuart; Kasdin, Jeremy

    2007-01-01

    High contrast imaging from space relies on coronagraphs to limit diffraction and a wavefront control systems to compensate for imperfections in both the telescope optics and the coronagraph. The extreme contrast required (up to 10(exp -10) for terrestrial planets) puts severe requirements on the wavefront control system, as the achievable contrast is limited by the quality of the wavefront. This paper presents a general closed loop correction algorithm for high contrast imaging coronagraphs by minimizing the energy in a predefined region in the image where terrestrial planets could be found. The estimation part of the algorithm reconstructs the complex field in the image plane using phase diversity caused by the deformable mirror. This method has been shown to achieve faster and better correction than classical speckle nulling.

  20. Performance evaluation of operational atmospheric correction algorithms over the East China Seas

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; He, Mingxia; Fischer, Jürgen

    2017-01-01

    To acquire high-quality operational data products for Chinese in-orbit and scheduled ocean color sensors, the performances of two operational atmospheric correction (AC) algorithms (ESA MEGS 7.4.1 and NASA SeaDAS 6.1) were evaluated over the East China Seas (ECS) using MERIS data. The spectral remote sensing reflectance R rs(λ), aerosol optical thickness (AOT), and Ångström exponent (α) retrieved using the two algorithms were validated using in situ measurements obtained between May 2002 and October 2009. Match-ups of R rs, AOT, and α between the in situ and MERIS data were obtained through strict exclusion criteria. Statistical analysis of R rs(λ) showed a mean percentage difference (MPD) of 9%-13% in the 490-560 nm spectral range, and significant overestimation was observed at 413 nm (MPD>72%). The AOTs were overestimated (MPD>32%), and although the ESA algorithm outperformed the NASA algorithm in the blue-green bands, the situation was reversed in the red-near-infrared bands. The value of α was obviously underestimated by the ESA algorithm (MPD=41%) but not by the NASA algorithm (MPD=35%). To clarify why the NASA algorithm performed better in the retrieval of α, scatter plots of the α single scattering albedo (SSA) density were prepared. These α-SSA density scatter plots showed that the applicability of the aerosol models used by the NASA algorithm over the ECS is better than that used by the ESA algorithm, although neither aerosol model is suitable for the ECS region. The results of this study provide a reference to both data users and data agencies regarding the use of operational data products and the investigation into the improvement of current AC schemes over the ECS.

  1. Comparison and evaluation of atmospheric correction algorithms of QUAC, DOS, and FLAASH for HICO hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Shi, Liangliang; Mao, Zhihua; Chen, Peng; Han, Sha'ou; Gong, Fang; Zhu, Qiankun

    2016-10-01

    In order to obtain the spectral information of objects and improve the retrieval of quantitative parameters from remotely sensing data accurately on land or over water bodies, atmospheric correction is a vital step, certainly, it is also a prerequisite to hyperspectral imagery data analysis approaches. On the base of previous studies, the atmospheric correction algorithms were divided to two categories: image-based empirical and model-based correction methods. The Quick Atmospheric Correction (QUAC) and Dark Object Subtraction (DOS) methods belong to the empirical or semiempirical methods, however, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) method was developed from the radiative transfer model. In this paper, we initially evaluated the performance from Hyperspectral Imager for the Coastal Ocean (HICO) of 16 Nov 2013 using QUAC, DOS, and MODTRAN integrated in FLAASH, and compared the results of these correction methods with in situ data. The results indicate that the method of FLAASH model performs much better than DOS and QUAC in atmospheric correction for HICO hyperspectral imagery, although the DOS and QUAC method is conducted more easily and do not require inputs of complex parameters.

  2. The Design of Flux-Corrected Transport (FCT) Algorithms for Structured Grids

    NASA Astrophysics Data System (ADS)

    Zalesak, Steven T.

    A given flux-corrected transport (FCT) algorithm consists of three components: (1) a high order algorithm to which it reduces in smooth parts of the flow; (2) a low order algorithm to which it reduces in parts of the flow devoid of smoothness; and (3) a flux limiter which calculates the weights assigned to the high and low order fluxes in various regions of the flow field. One way of optimizing an FCT algorithm is to optimize each of these three components individually. We present some of the ideas that have been developed over the past 30 years toward this end. These include the use of very high order spatial operators in the design of the high order fluxes, non-clipping flux limiters, the appropriate choice of constraint variables in the critical flux-limiting step, and the implementation of a "failsafe" flux-limiting strategy. This chapter confines itself to the design of FCT algorithms for structured grids, using a finite volume formalism, for this is the area with which the present author is most familiar. The reader will find excellent material on the design of FCT algorithms for unstructured grids, using both finite volume and finite element formalisms, in the chapters by Professors Löhner, Baum, Kuzmin, Turek, and Möller in the present volume.

  3. Reconstruction algorithm for polychromatic CT imaging: application to beam hardening correction

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.

    2000-01-01

    This paper presents a new reconstruction algorithm for both single- and dual-energy computed tomography (CT) imaging. By incorporating the polychromatic characteristics of the X-ray beam into the reconstruction process, the algorithm is capable of eliminating beam hardening artifacts. The single energy version of the algorithm assumes that each voxel in the scan field can be expressed as a mixture of two known substances, for example, a mixture of trabecular bone and marrow, or a mixture of fat and flesh. These assumptions are easily satisfied in a quantitative computed tomography (QCT) setting. We have compared our algorithm to three commonly used single-energy correction techniques. Experimental results show that our algorithm is much more robust and accurate. We have also shown that QCT measurements obtained using our algorithm are five times more accurate than that from current QCT systems (using calibration). The dual-energy mode does not require any prior knowledge of the object in the scan field, and can be used to estimate the attenuation coefficient function of unknown materials. We have tested the dual-energy setup to obtain an accurate estimate for the attenuation coefficient function of K2 HPO4 solution.

  4. Correcting encoder interpolation error on the Green Bank Telescope using an iterative model based identification algorithm

    NASA Astrophysics Data System (ADS)

    Franke, Timothy; Weadon, Tim; Ford, John; Garcia-Sanz, Mario

    2015-10-01

    Various forms of measurement errors limit telescope tracking performance in practice. A new method for identifying the correcting coefficients for encoder interpolation error is developed. The algorithm corrects the encoder measurement by identifying a harmonic model of the system and using that model to compute the necessary correction parameters. The approach improves upon others by explicitly modeling the unknown dynamics of the structure and controller and by not requiring a separate system identification to be performed. Experience gained from pin-pointing the source of encoder error on the Green Bank Radio Telescope (GBT) is presented. Several tell-tale indicators of encoder error are discussed. Experimental data from the telescope, tested with two different encoders, are presented. Demonstration of the identification methodology on the GBT as well as details of its implementation are discussed. A root mean square tracking error reduction from 0.68 arc seconds to 0.21 arc sec was achieved by changing encoders and was further reduced to 0.10 arc sec with the calibration algorithm. In particular, the ubiquity of this error source is shown and how, by careful correction, it is possible to go beyond the advertised accuracy of an encoder.

  5. A baseline correction algorithm for Raman spectroscopy by adaptive knots B-spline

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Fan, Xian-guang; Xu, Ying-jie; Wang, Xiu-fen; He, Hao; Zuo, Yong

    2015-11-01

    The Raman spectroscopy technique is a powerful and non-invasive technique for molecular fingerprint detection which has been widely used in many areas, such as food safety, drug safety, and environmental testing. But Raman signals can be easily corrupted by a fluorescent background, therefore we presented a baseline correction algorithm to suppress the fluorescent background in this paper. In this algorithm, the background of the Raman signal was suppressed by fitting a curve called a baseline using a cyclic approximation method. Instead of the traditional polynomial fitting, we used the B-spline as the fitting algorithm due to its advantages of low-order and smoothness, which can avoid under-fitting and over-fitting effectively. In addition, we also presented an automatic adaptive knot generation method to replace traditional uniform knots. This algorithm can obtain the desired performance for most Raman spectra with varying baselines without any user input or preprocessing step. In the simulation, three kinds of fluorescent background lines were introduced to test the effectiveness of the proposed method. We showed that two real Raman spectra (parathion-methyl and colza oil) can be detected and their baselines were also corrected by the proposed method.

  6. Holographically Correcting Synthetic Aperture Aberrations.

    DTIC Science & Technology

    1987-12-01

    Malacara (20:105-148). The synthetic aperture was aligned in accordance with the synthetic-aperture alignment technique of Gill (8:61-64). The...1987. 20. Malacara , Daniel, ed. Optical Shop Testing. New York: John Wiley & Sons, 1978. 21. Marciniak, Capt Michael. Tutorial Presentation of mV

  7. Cosmic Aberration, and Its Correction

    ERIC Educational Resources Information Center

    Dixon, Robert

    2011-01-01

    Because the speed of light is finite, the further we look into space, the earlier we see. A galaxy seen 50 million light years away is 50 million years ago. How far out in space and how far back in time can we expect to see, and what should it look like? To a first approximation and ignoring local galactic interactions, the Hubble model of the…

  8. Adaptation of a Hyperspectral Atmospheric Correction Algorithm for Multi-spectral Ocean Color Data in Coastal Waters. Chapter 3

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.

    2003-01-01

    This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.

  9. A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; Browning, N; Gates , B

    2010-01-01

    Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C{sub 2}H{sub 4}){sub 2}(acac) (acac is CH{sub 3}COCHCOCH{sub 3}) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C{sub 2}H{sub 4}){sub 2}, formed by the dissociation of the acac ligand from Ir(C{sub 2}H{sub 4}){sub 2}(acac) and bonding of the Ir(C{sub 2}H{sub 4}){sub 2} species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO){sub 2} complexes on the MgO surface. The breadth of the {nu}{sub CO} bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

  10. Quantitative (177)Lu SPECT imaging using advanced correction algorithms in non-reference geometry.

    PubMed

    D'Arienzo, M; Cozzella, M L; Fazio, A; De Felice, P; Iaccarino, G; D'Andrea, M; Ungania, S; Cazzato, M; Schmidt, K; Kimiaei, S; Strigari, L

    2016-12-01

    Peptide receptor therapy with (177)Lu-labelled somatostatin analogues is a promising tool in the management of patients with inoperable or metastasized neuroendocrine tumours. The aim of this work was to perform accurate activity quantification of (177)Lu in complex anthropomorphic geometry using advanced correction algorithms. Acquisitions were performed on the higher (177)Lu photopeak (208keV) using a Philips IRIX gamma camera provided with medium-energy collimators. System calibration was performed using a 16mL Jaszczak sphere surrounded by non-radioactive water. Attenuation correction was performed using μ-maps derived from CT data, while scatter and septal penetration corrections were performed using the transmission-dependent convolution-subtraction method. SPECT acquisitions were finally corrected for dead time and partial volume effects. Image analysis was performed using the commercial QSPECT software. The quantitative SPECT approach was validated on an anthropomorphic phantom provided with a home-made insert simulating a hepatic lesion. Quantitative accuracy was studied using three tumour-to-background activity concentration ratios (6:1, 9:1, 14:1). For all acquisitions, the recovered total activity was within 12% of the calibrated activity both in the background region and in the tumour. Using a 6:1 tumour-to-background ratio the recovered total activity was within 2% in the tumour and within 5% in the background. Partial volume effects, if not properly accounted for, can lead to significant activity underestimations in clinical conditions. In conclusion, accurate activity quantification of (177)Lu can be obtained if activity measurements are performed with equipment traceable to primary standards, advanced correction algorithms are used and acquisitions are performed at the 208keV photopeak using medium-energy collimators.

  11. Beam-centric algorithm for pretreatment patient position correction in external beam radiation therapy

    SciTech Connect

    Bose, Supratik; Shukla, Himanshu; Maltz, Jonathan

    2010-05-15

    Purpose: In current image guided pretreatment patient position adjustment methods, image registration is used to determine alignment parameters. Since most positioning hardware lacks the full six degrees of freedom (DOF), accuracy is compromised. The authors show that such compromises are often unnecessary when one models the planned treatment beams as part of the adjustment calculation process. The authors present a flexible algorithm for determining optimal realizable adjustments for both step-and-shoot and arc delivery methods. Methods: The beam shape model is based on the polygonal intersection of each beam segment with the plane in pretreatment image volume that passes through machine isocenter perpendicular to the central axis of the beam. Under a virtual six-DOF correction, ideal positions of these polygon vertices are computed. The proposed method determines the couch, gantry, and collimator adjustments that minimize the total mismatch of all vertices over all segments with respect to their ideal positions. Using this geometric error metric as a function of the number of available DOF, the user may select the most desirable correction regime. Results: For a simulated treatment plan consisting of three equally weighted coplanar fixed beams, the authors achieve a 7% residual geometric error (with respect to the ideal correction, considered 0% error) by applying gantry rotation as well as translation and isocentric rotation of the couch. For a clinical head-and-neck intensity modulated radiotherapy plan with seven beams and five segments per beam, the corresponding error is 6%. Correction involving only couch translation (typical clinical practice) leads to a much larger 18% mismatch. Clinically significant consequences of more accurate adjustment are apparent in the dose volume histograms of target and critical structures. Conclusions: The algorithm achieves improvements in delivery accuracy using standard delivery hardware without significantly increasing

  12. ECHO: a reference-free short-read error correction algorithm.

    PubMed

    Kao, Wei-Chun; Chan, Andrew H; Song, Yun S

    2011-07-01

    Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth.

  13. Artificial-neural-network-based atmospheric correction algorithm: application to MERIS data

    NASA Astrophysics Data System (ADS)

    Schroeder, Thomas; Fischer, Juergen; Schaale, Michael; Fell, Frank

    2003-05-01

    After the successful launch of the Medium Resolution Imaging Spectrometer (MERIS) on board of the European Space Agency (ESA) Environmental Satellite (ENVISAT) on March 1st 2002, first MERIS data are available for validation purposes. The primary goal of the MERIS mission is to measure the color of the sea with respect to oceanic biology and marine water quality. We present an atmospheric correction algorithm for case-I waters based on the inverse modeling of radiative transfer calculations by artificial neural networks. The proposed correction scheme accounts for multiple scattering and high concentrations of absorbing aerosols (e.g. desert dust). Above case-I waters, the measured near infrared path radiance at Top-Of-Atmosphere (TOA) is assumed to originate from atmospheric processes only and is used to determine the aerosol properties with the help of an additional classification test in the visible spectral region. A synthetic data set is generated from radiative transfer simulations and is subsequently used to train different Multi-Layer-Perceptrons (MLP). The atmospheric correction scheme consists of two steps. First a set of MLPs is used to derive the aerosol optical thickness (AOT) and the aerosol type for each pixel. Second these quantities are fed into a further MLP trained with simulated data for various chlorophyll concentrations to perform the radiative transfer inversion and to obtain the water-leaving radiance. In this work we apply the inversion algorithm to a MERIS Level 1b data track covering the Indian Ocean along the west coast of Madagascar.

  14. Line end shortening and application of novel correction algorithms in e-beam direct write

    NASA Astrophysics Data System (ADS)

    Freitag, Martin; Choi, Kang-Hoon; Gutsch, Manuela; Hohle, Christoph

    2011-03-01

    For the manufacturing of semiconductor technologies following the ITRS roadmap, we will face the nodes well below 32nm half pitch in the next 2~3 years. Despite being able to achieve the required resolution, which is now possible with electron beam direct write variable shaped beam (EBDW VSB) equipment and resists, it becomes critical to precisely reproduce dense line space patterns onto a wafer. This exposed pattern must meet the targets from the layout in both dimensions (horizontally and vertically). For instance, the end of a line must be printed in its entire length to allow a later placed contact to be able to land on it. Up to now, the control of printed patterns such as line ends is achieved by a proximity effect correction (PEC) which is mostly based on a dose modulation. This investigation of the line end shortening (LES) includes multiple novel approaches, also containing an additional geometrical correction, to push the limits of the available data preparation algorithms and the measurement. The designed LES test patterns, which aim to characterize the status of LES in a quick and easy way, were exposed and measured at Fraunhofer Center Nanoelectronic Technologies (CNT) using its state of the art electron beam direct writer and CD-SEM. Simulation and exposure results with the novel LES correction algorithms applied to the test pattern and a large production like pattern in the range of our target CDs in dense line space features smaller than 40nm will be shown.

  15. Pile-up correction by Genetic Algorithm and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kafaee, M.; Saramad, S.

    2009-08-01

    Pile-up distortion is a common problem for high counting rates radiation spectroscopy in many fields such as industrial, nuclear and medical applications. It is possible to reduce pulse pile-up using hardware-based pile-up rejections. However, this phenomenon may not be eliminated completely by this approach and the spectrum distortion caused by pile-up rejection can be increased as well. In addition, inaccurate correction or rejection of pile-up artifacts in applications such as energy dispersive X-ray (EDX) spectrometers can lead to losses of counts, will give poor quantitative results and even false element identification. Therefore, it is highly desirable to use software-based models to predict and correct any recognized pile-up signals in data acquisition systems. The present paper describes two new intelligent approaches for pile-up correction; the Genetic Algorithm (GA) and Artificial Neural Networks (ANNs). The validation and testing results of these new methods have been compared, which shows excellent agreement with the measured data with 60Co source and NaI detector. The Monte Carlo simulation of these new intelligent algorithms also shows their advantages over hardware-based pulse pile-up rejection methods.

  16. EM-IntraSPECT algorithm with ordered subsets (OSEMIS) for nonuniform attenuation correction in cardiac imaging

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Echeruo, Ifeanyi; Solgado, Roberto B.; Hardikar, Amol S.; Bowsher, James E.; Feiglin, David H.; Thomas, Frank D.; Lipson, Edward; Coman, Ioana L.

    2002-05-01

    Performance of the EM-IntraSPECT (EMIS) algorithm with ordered subsets (OSEMIS) for non-uniform attenuation correction in the chest was assessed. EMIS is a maximum- likelihood expectation maximization(MLEM) algorithm for simultaneously estimating SPECT emission and attenuation parameters from emission data alone. EMIS uses the activity within the patient as transmission tomography sources, with which attenuation coefficients can be estimated. However, the reconstruction time is long. The new algorithm, OSEMIS, is a modified EMIS algorithm based on ordered subsets. Emission Tc-99m SPECT data were acquired over 360 degree(s) in non-circular orbit from a physical chest phantom using clinical protocol. Both a normal and a defect heart were considered. OSEMIS was evaluated in comparison to EMIS and a conventional MLEM with a fixed uniform attenuation map. Wide ranges of image measures were evaluated, including noise, log-likelihood, and region quantification. Uniformity was assessed from bull's eye plots of the reconstructed images. For the appropriate subset size, OSEMIS yielded essentially the same images as EMIS and better than MLEM, but required only one-tenth as many iterations. Consequently, adequate images were available in about fifteen iterations.

  17. Algorithm for Atmospheric and Glint Corrections of Satellite Measurements of Ocean Pigment

    NASA Technical Reports Server (NTRS)

    Fraser, Robert S.; Mattoo, Shana; Yeh, Eueng-Nan; McClain, C. R.

    1997-01-01

    An algorithm is developed to correct satellite measurements of ocean color for atmospheric and surface reflection effects. The algorithm depends on taking the difference between measured and tabulated radiances for deriving water-leaving radiances. 'ne tabulated radiances are related to the measured radiance where the water-leaving radiance is negligible (670 nm). The tabulated radiances are calculated for rough surface reflection, polarization of the scattered light, and multiple scattering. The accuracy of the tables is discussed. The method is validated by simulating the effect of different wind speeds than that for which the lookup table is calculated, and aerosol models different from the maritime model for which the table is computed. The derived water-leaving radiances are accurate enough to compute the pigment concentration with an error of less than q 15% for wind speeds of 6 and 10 m/s and an urban atmosphere with aerosol optical thickness of 0.20 at lambda 443 nm and decreasing to 0.10 at lambda 670 nm. The pigment accuracy is less for wind speeds less than 6 m/s and is about 30% for a model with aeolian dust. On the other hand, in a preliminary comparison with coastal zone color scanner (CZCS) measurements this algorithm and the CZCS operational algorithm produced values of pigment concentration in one image that agreed closely.

  18. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  19. Parallel algorithms of relative radiometric correction for images of TH-1 satellite

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhang, Tingtao; Cheng, Jiasheng; Yang, Tao

    2014-05-01

    The first generation of transitive stereo-metric satellites in China, TH-1 Satellite, is able to gain stereo images of three-line-array with resolution of 5 meters, multispectral images of 10 meters, and panchromatic high resolution images of 2 meters. The procedure between level 0 and level 1A of high resolution images is so called relative radiometric correction (RRC for short). The processing algorithm of high resolution images, with large volumes of data, is complicated and time consuming. In order to bring up the processing speed, people in industry commonly apply parallel processing techniques based on CPU or GPU. This article firstly introduces the whole process and each step of the algorithm - that is in application - of RRC for high resolution images in level 0; secondly, the theory and characteristics of MPI (Message Passing Interface) and OpenMP (Open Multi-Processing) parallel programming techniques is briefly described, as well as the superiority for parallel technique in image processing field; thirdly, aiming at each step of the algorithm in application and based on MPI+OpenMP hybrid paradigm, the parallelizability and the strategies of parallelism for three processing steps: Radiometric Correction, Splicing Pieces of TDICCD (Time Delay Integration Charge-Coupled Device) and Gray Level Adjustment among pieces of TDICCD are deeply discussed, and furthermore, deducts the theoretical acceleration rates of each step and the one of whole procedure, according to the processing styles and independence of calculation; for the step Splicing Pieces of TDICCD, two different strategies of parallelism are proposed, which are to be chosen with consideration of hardware capabilities; finally, series of experiments are carried out to verify the parallel algorithms by applying 2-meter panchromatic high resolution images of TH-1 Satellite, and the experimental results are analyzed. Strictly on the basis of former parallel algorithms, the programs in the experiments

  20. Scattering correction algorithm for neutron radiography and tomography tested at facilities with different beam characteristics

    NASA Astrophysics Data System (ADS)

    Hassanein, René; de Beer, Frikkie; Kardjilov, Nikolay; Lehmann, Eberhard

    2006-11-01

    A precise quantitative analysis with the neutron radiography technique of materials with a high-neutron scattering cross section, imaged at small distances from the detector, is impossible if the scattering contribution from the investigated material onto the detector is not eliminated in the right way. Samples with a high-neutron scattering cross section, e.g. hydrogenous materials such as water, cause a significant scattering component in their radiographs. Background scattering, spectral effects and detector characteristics are identified as additional causes for disturbances. A scattering correction algorithm based on Monte Carlo simulations has been developed and implemented to take these effects into account. The corrected radiographs can be used for a subsequent tomographic reconstruction. From the results one can obtain quantitative information, in order to detect e.g. inhomogeneity patterns within materials, or to measure differences of the mass thickness in these materials. Within an IAEA-CRP collaboration the algorithms have been tested for applicability on results obtained at the South African SANRAD facility at Necsa, the Swiss NEUTRA facilities at PSI as well as the German CONRAD facility at HMI, all with different initial neutron spectra. Results of a set of dedicated neutron radiography experiments are being reported.

  1. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  2. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGES

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; ...

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  3. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    SciTech Connect

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-02-15

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A {beta}-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction.

  4. Determination of aberration center of Ronchigram for automated aberration correctors in scanning transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Sawada, Hidetaka; Nakamichi, Tomohiro; Hosokawa, Fumio; Nakamura, Yoshio; Tanishiro, Yasumasa; Takayanagi, Kunio

    2013-12-01

    A generic method to determine the aberration center is established, which can be utilized for aberration calculation and axis alignment for aberration corrected electron microscopes. In this method, decentering induced secondary aberrations from inherent primary aberrations are minimized to find the appropriate axis center. The fitness function to find the optimal decentering vector for the axis was defined as a sum of decentering induced secondary aberrations with properly distributed weight values according to the aberration order. Since the appropriate decentering vector is determined from the aberration values calculated at an arbitrary center axis, only one aberration measurement is in principle required to find the center, resulting in /very fast center search. This approach was tested for the Ronchigram based aberration calculation method for aberration corrected scanning transmission electron microscopy. Both in simulation and in experiments, the center search was confirmed to work well although the convergence to find the best axis becomes slower with larger primary aberrations. Such aberration center determination is expected to fully automatize the aberration correction procedures, which used to require pre-alignment of experienced users. This approach is also applicable to automated aperture positioning.

  5. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers

    NASA Astrophysics Data System (ADS)

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-01

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  6. Algorithms for calculating mass-velocity and Darwin relativistic corrections with n-electron explicitly correlated Gaussians with shifted centers.

    PubMed

    Stanke, Monika; Palikot, Ewa; Adamowicz, Ludwik

    2016-05-07

    Algorithms for calculating the leading mass-velocity (MV) and Darwin (D) relativistic corrections are derived for electronic wave functions expanded in terms of n-electron explicitly correlated Gaussian functions with shifted centers and without pre-exponential angular factors. The algorithms are implemented and tested in calculations of MV and D corrections for several points on the ground-state potential energy curves of the H2 and LiH molecules. The algorithms are general and can be applied in calculations of systems with an arbitrary number of electrons.

  7. Smooth particle hydrodynamics: importance of correction terms in adaptive resolution algorithms

    NASA Astrophysics Data System (ADS)

    Alimi, J.-M.; Serna, A.; Pastor, C.; Bernabeu, G.

    2003-11-01

    We describe TREEASPH, a new code to evolve self-gravitating fluids, both with and without a collisionless component. In TREEASPH, gravitational forces are computed from a hierarchical tree algorithm (TREEcode), while hydrodynamic properties are computed by using a SPH method that includes the ∇h correction terms appearing when the spatial resolution h(t,r) is not a constant. Another important feature, which considerably increases the code efficiency on sequential and vectorial computers, is that time-stepping is performed from a PEC scheme (Predict-Evaluate-Correct) modified to allow for individual timesteps. Some authors have previously noted that the ∇h correction terms are needed to avoid the introduction on simulations of a non-physical entropy. By using TREEASPH we show here that, in cosmological simulations, this non-physical entropy has a negative sign. As a consequence, when the ∇h terms are neglected, the density peaks associated to shock fronts are overestimated. This in turn results in an overestimated efficiency of star-formation processes.

  8. Correcting the optimal resampling-based error rate by estimating the error rate of wrapper algorithms.

    PubMed

    Bernau, Christoph; Augustin, Thomas; Boulesteix, Anne-Laure

    2013-09-01

    High-dimensional binary classification tasks, for example, the classification of microarray samples into normal and cancer tissues, usually involve a tuning parameter. By reporting the performance of the best tuning parameter value only, over-optimistic prediction errors are obtained. For correcting this tuning bias, we develop a new method which is based on a decomposition of the unconditional error rate involving the tuning procedure, that is, we estimate the error rate of wrapper algorithms as introduced in the context of internal cross-validation (ICV) by Varma and Simon (2006, BMC Bioinformatics 7, 91). Our subsampling-based estimator can be written as a weighted mean of the errors obtained using the different tuning parameter values, and thus can be interpreted as a smooth version of ICV, which is the standard approach for avoiding tuning bias. In contrast to ICV, our method guarantees intuitive bounds for the corrected error. Additionally, we suggest to use bias correction methods also to address the conceptually similar method selection bias that results from the optimal choice of the classification method itself when evaluating several methods successively. We demonstrate the performance of our method on microarray and simulated data and compare it to ICV. This study suggests that our approach yields competitive estimates at a much lower computational price.

  9. Image aberrations in optical three-dimensional measurement systems with fringe projection.

    PubMed

    Brakhage, Peter; Notni, Gunther; Kowarschik, Richard

    2004-06-01

    In optical shape measurement systems, systematic errors appear as a result of imaging aberrations of the lens assemblies in the cameras and projectors. A mathematical description of this effect is intended to correct the whole measurement area with a few independent coefficients. We apply the ideas of photogrammetry to one- and two-dimensional fringe projection techniques. We also introduce some new terms for close-range applications and telecentric objectives. Further, an algorithm for distance-dependent corrections is introduced. Also, we describe a new method with which to determine coefficients of aberration with an optimization-based method.

  10. Validation of The Standard Aerosol Models Used In The Atmospheric Correction Algorithms For Satellite Ocean Observation

    NASA Astrophysics Data System (ADS)

    Martiny, N.; Santer, R.

    Over ocean, the total radiance measured by the satellite sensors at the top of the atmo- sphere is mainly atmospheric. In order to access to the water leaving radiance, directly related to the concentration of the different components of the water, we need to cor- rect the satellite measurements from the important atmospheric contribution. In the atmosphere, the light emitted by the sun is scattered by the molecules, absorbed by the gases, and both scattered and absorbed in unknown proportions by the aerosols, particles confined in the first layer of the atmosphere due to their large size. The remote sensing of the aerosols represents then a complex step in the atmospheric correction scheme. Over ocean, the principle of the aerosol remote sensing lies on the assump- tion that the water is absorbent in the red and the near-infrared. The aerosol model is then deduced from these spectral bands and used to extrapolate the aerosol optical properties in the visible wavelengths. For ocean color sensors such as CZCS, OCTS, POLDER, SeaWiFS or MODIS, the atmospheric correction algorithms use standard aerosol models defined by Shettle &Fenn for their look-up-tables. Over coastal wa- ters, are these models still suitable? The goal of this work is to validate the standard aerosol models used in the atmospheric correction algorithms over coastal zones. For this work, we use ground-based in-situ measurements from the CIMEL sunphotome- ter instrument. Using the extinction measurements, we can deduce the aerosol spectral dependency which falls between the spectral dependency of two standard Shettle &Fenn aerosol models. After the interpolation of the aerosol model, we can use it to extrapolate in the visible the optical parameters needed for the atmospheric correction scheme: Latm, the atmospheric radiance and T, the atmospheric transmittance. The simulations are done using a radiative transfer code based on the successive order of scattering. Latm and T are then used for

  11. Bilateral Symmetry before and Six Months after Aberration-Free™ Correction with the SCHWIND AMARIS TotalTech Laser: Clinical Outcomes

    PubMed Central

    Arbelaez, Maria Clara; Vidal, Camila; Arba-Mosquera, Samuel

    2010-01-01

    Purpose To compare the preoperative and postoperative bilateral symmetry between OD and OS eyes that have undergone femto-LASIK using the Ziemer LDV femtosecond laser system, the SCHWIND AMARIS Excimer Laser and the Aberrationfree™ profiles implemented in the SCHWIND Custom Ablation Manager software. Methods A total of 25 LASIK patients were bilaterally evaluated at the six-month follow-up visit. In all cases standard examinations, pre- and postoperative analysis with corneal wavefront topography (OPTIKON Scout) were performed. Aberration-free™ aspheric treatments were devised using the Custom Ablation Manager software and ablations were performed by means of the SCHWIND AMARIS flying-spot excimer laser system (both SCHWIND eyetech- solutions). In all cases LASIK flaps were created using an LDV femtosecond laser (Ziemer Group). The OD/OS bilateral symmetry was evaluated in terms of corneal wavefront aberration. Results Preoperatively, 11 Zernike terms showed significant bilateral (OS-vs.-OD) symmetry, and only 6 Zernike terms were significantly different. Overall, 23 out of the 25 patients showed significant bilateral symmetry, and only 2 out of 25 patients showed significant differences. None of the aberration metrics changed from pre- to postoperative values by a clinically relevant amount. At the 6-month postoperative visit, 12 Zernike terms showed significant symmetry, and 8 terms were significantly different. Overall, 22 out of 25 patients showed significant bilateral symmetry (OS vs. OD), and only 3 out of 25 patients showed significant differences. Also, this postoperative examination revealed that 6 Zernike terms lost significant OS-vs.-OD symmetry, but 4 Zernike terms gained significant symmetry. Finally, 4 patients lost significant bilaterality, and 2 patients gained significant bilaterality: bilateral symmetry between eyes was better maintained in those patients with a clear preoperative bilateral symmetry. Conclusions Aberration-Free Treatments with

  12. Neural compensation for the eye's optical aberrations.

    PubMed

    Artal, Pablo; Chen, Li; Fernández, Enrique J; Singer, Ben; Manzanera, Silvestre; Williams, David R

    2004-04-16

    A fundamental problem facing sensory systems is to recover useful information about the external world from signals that are corrupted by the sensory process itself. Retinal images in the human eye are affected by optical aberrations that cannot be corrected with ordinary spectacles or contact lenses, and the specific pattern of these aberrations is different in every eye. Though these aberrations always blur the retinal image, our subjective impression is that the visual world is sharp and clear, suggesting that the brain might compensate for their subjective influence. The recent introduction of adaptive optics to control the eye's aberrations now makes it possible to directly test this idea. If the brain compensates for the eye's aberrations, vision should be clearest with the eye's own aberrations rather than with unfamiliar ones. We asked subjects to view a stimulus through an adaptive optics system that either recreated their own aberrations or a rotated version of them. For all five subjects tested, the stimulus seen with the subject's own aberrations was always sharper than when seen through the rotated version. This supports the hypothesis that the neural visual system is adapted to the eye's aberrations, thereby removing somehow the effects of blur generated by the sensory apparatus from visual experience. This result could have important implications for methods to correct higher order aberrations with customized refractive surgery because some benefits of optimizing the correction optically might be undone by the nervous system's compensation for the old aberrations.

  13. A procedure for testing the quality of LANDSAT atmospheric correction algorithms

    NASA Technical Reports Server (NTRS)

    Dias, L. A. V. (Principal Investigator); Vijaykumar, N. L.; Neto, G. C.

    1982-01-01

    There are two basic methods for testing the quality of an algorithm to minimize atmospheric effects on LANDSAT imagery: (1) test the results a posteriori, using ground truth or control points; (2) use a method based on image data plus estimation of additional ground and/or atmospheric parameters. A procedure based on the second method is described. In order to select the parameters, initially the image contrast is examined for a series of parameter combinations. The contrast improves for better corrections. In addition the correlation coefficient between two subimages, taken at different times, of the same scene is used for parameter's selection. The regions to be correlated should not have changed considerably in time. A few examples using this proposed procedure are presented.

  14. A Local Corrections Algorithm for Solving Poisson's Equation inThree Dimensions

    SciTech Connect

    McCorquodale, Peter; Colella, Phillip; Balls, Gregory T.; Baden,Scott B.

    2006-10-30

    We present a second-order accurate algorithm for solving thefree-space Poisson's equation on a locally-refined nested grid hierarchyin three dimensions. Our approach is based on linear superposition oflocal convolutions of localized charge distributions, with the nonlocalcoupling represented on coarser grids. There presentation of the nonlocalcoupling on the local solutions is based on Anderson's Method of LocalCorrections and does not require iteration between different resolutions.A distributed-memory parallel implementation of this method is observedto have a computational cost per grid point less than three times that ofa standard FFT-based method on a uniform grid of the same resolution, andscales well up to 1024 processors.

  15. Algorithms for computing the time-corrected instantaneous frequency (reassigned) spectrogram, with applications.

    PubMed

    Fulop, Sean A; Fitz, Kelly

    2006-01-01

    A modification of the spectrogram (log magnitude of the short-time Fourier transform) to more accurately show the instantaneous frequencies of signal components was first proposed in 1976 [Kodera et al., Phys. Earth Planet. Inter. 12, 142-150 (1976)], and has been considered or reinvented a few times since but never widely adopted. This paper presents a unified theoretical picture of this time-frequency analysis method, the time-corrected instantaneous frequency spectrogram, together with detailed implementable algorithms comparing three published techniques for its computation. The new representation is evaluated against the conventional spectrogram for its superior ability to track signal components. The lack of a uniform framework for either mathematics or implementation details which has characterized the disparate literature on the schemes has been remedied here. Fruitful application of the method is shown in the realms of speech phonation analysis, whale song pitch tracking, and additive sound modeling.

  16. Error correction algorithm for high accuracy bio-impedance measurement in wearable healthcare applications.

    PubMed

    Kubendran, Rajkumar; Lee, Seulki; Mitra, Srinjoy; Yazicioglu, Refet Firat

    2014-04-01

    Implantable and ambulatory measurement of physiological signals such as Bio-impedance using miniature biomedical devices needs careful tradeoff between limited power budget, measurement accuracy and complexity of implementation. This paper addresses this tradeoff through an extensive analysis of different stimulation and demodulation techniques for accurate Bio-impedance measurement. Three cases are considered for rigorous analysis of a generic impedance model, with multiple poles, which is stimulated using a square/sinusoidal current and demodulated using square/sinusoidal clock. For each case, the error in determining pole parameters (resistance and capacitance) is derived and compared. An error correction algorithm is proposed for square wave demodulation which reduces the peak estimation error from 9.3% to 1.3% for a simple tissue model. Simulation results in Matlab using ideal RC values show an average accuracy of for single pole and for two pole RC networks. Measurements using ideal components for a single pole model gives an overall and readings from saline phantom solution (primarily resistive) gives an . A Figure of Merit is derived based on ability to accurately resolve multiple poles in unknown impedance with minimal measurement points per decade, for given frequency range and supply current budget. This analysis is used to arrive at an optimal tradeoff between accuracy and power. Results indicate that the algorithm is generic and can be used for any application that involves resolving poles of an unknown impedance. It can be implemented as a post-processing technique for error correction or even incorporated into wearable signal monitoring ICs.

  17. A method of generalized projections (MGP) ghost correction algorithm for interleaved EPI.

    PubMed

    Lee, K J; Papadakis, N G; Barber, D C; Wilkinson, I D; Griffiths, P D; Paley, M N J

    2004-07-01

    Investigations into the method of generalized projections (MGP) as a ghost correction method for interleaved EPI are described. The technique is image-based and does not require additional reference scans. The algorithm was found to be more effective if a priori knowledge was incorporated to reduce the degrees of freedom, by modeling the ghosting as arising from a small number of phase offsets. In simulations with phase variation between consecutive shots for n-interleaved echo planar imaging (EPI), ghost reduction was achieved for n = 2 only. With no phase variation between shots, ghost reduction was obtained with n up to 16. Incorporating a relaxation parameter was found to improve convergence. Dependence of convergence on the region of support was also investigated. A fully automatic version of the method was developed, using results from the simulations. When tested on in vivo 2-, 16-, and 32-interleaved spin-echo EPI data, the method achieved deghosting and image restoration close to that obtained by both reference scan and odd/even filter correction, although some residual artifacts remained.

  18. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters

    PubMed Central

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. PMID:27014050

  19. Accuracy of inhomogeneity correction algorithm in intensity-modulated radiotherapy of head-and-neck tumors

    SciTech Connect

    Yoon, Myonggeun; Lee, Doo-Hyun; Shin, Dongho; Lee, Se Byeong; Park, Sung Yong . E-mail: cool_park@ncc.re.kr; Cho, Kwan Ho

    2007-04-01

    We examined the degree of calculated-to-measured dose difference for nasopharyngeal target volume in intensity-modulated radiotherapy (IMRT) based on the observed/expected ratio using patient anatomy with humanoid head-and-neck phantom. The plans were designed with a clinical treatment planning system that uses a measurement-based pencil beam dose-calculation algorithm. Two kinds of IMRT plans, which give a direct indication of the error introduced in routine treatment planning, were categorized and evaluated. The experimental results show that when the beams pass through the oral cavity in anthropomorphic head-and-neck phantom, the average dose difference becomes significant, revealing about 10% dose difference to prescribed dose at isocenter. To investigate both the physical reasons of the dose discrepancy and the inhomogeneity effect, we performed the 10 cases of IMRT quality assurance (QA) with plastic and humanoid phantoms. Our result suggests that the transient electronic disequilibrium with the increased lateral electron range may cause the inaccuracy of dose calculation algorithm, and the effectiveness of the inhomogeneity corrections used in IMRT plans should be evaluated to ensure meaningful quality assurance and delivery.

  20. Corrections.

    PubMed

    2015-07-01

    Lai Y-S, Biedermann P, Ekpo UF, et al. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect Dis 2015; published online May 22. http://dx.doi.org/10.1016/S1473-3099(15)00066-3—Figure 1 of this Article should have contained a box stating ‘100 references added’ with an arrow pointing inwards, rather than a box stating ‘199 records excluded’, and an asterisk should have been added after ‘1473 records extracted into GNTD’. Additionally, the positioning of the ‘§ and ‘†’ footnotes has been corrected in table 1. These corrections have been made to the online version as of June 4, 2015.

  1. Correction.

    PubMed

    2016-02-01

    In the article by Guessous et al (Guessous I, Pruijm M, Ponte B, Ackermann D, Ehret G, Ansermot N, Vuistiner P, Staessen J, Gu Y, Paccaud F, Mohaupt M, Vogt B, Pechère-Bertschi A, Martin PY, Burnier M, Eap CB, Bochud M. Associations of ambulatory blood pressure with urinary caffeine and caffeine metabolite excretions. Hypertension. 2015;65:691–696. doi: 10.1161/HYPERTENSIONAHA.114.04512), which published online ahead of print December 8, 2014, and appeared in the March 2015 issue of the journal, a correction was needed.One of the author surnames was misspelled. Antoinette Pechère-Berstchi has been corrected to read Antoinette Pechère-Bertschi.The authors apologize for this error.

  2. Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide.

    PubMed

    Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali

    2014-09-10

    The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.

  3. Algorithms for calculating the leading quantum electrodynamics P(1/r 3) correction with all-electron molecular explicitly correlated Gaussians

    NASA Astrophysics Data System (ADS)

    Stanke, Monika; Jurkowski, Jacek; Adamowicz, Ludwik

    2017-03-01

    Algorithms for calculating the quantum electrodynamics Araki–Sucher correction for n-electron explicitly correlated molecular Gaussian functions with shifted centers are derived and implemented. The algorithms are tested in calculations concerning the H2 molecule and applied in ground-state calculations of LiH and {{{H}}}3+ molecules. The implementation will significantly increase the accuracy of the calculations of potential energy surfaces of small diatomic and triatomic molecules and their rovibrational spectra.

  4. Correction

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars Geology, v. 26, p. 947 950 (October 1998) This article had the following printing errors: p. 947, Abstract, line 11, “sepia” should be “septa” p. 947, 1st paragraph under Introduction, line 2, “creep” should be “deep” p. 948, column 1, 2nd paragraph, line 7, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 1, “creep” should be “deep” p. 949, column 1, 1st paragraph, line 5, “19774” should be “1977)” p. 949, column 1, 4th paragraph, line 7, “in particular” should be “In particular” CORRECTION Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming Geology, v. 26, p. 1011 1014 (November 1998) An error appeared in the References Cited. The correct reference appears below: Fricke, H. C., Clyde, W. C., O'Neil, J. R., and Gingerich, P. D., 1998, Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming): Earth and Planetary Science Letters, v. 160, p. 193 208.

  5. Denoising Algorithm for the Pixel-Response Non-Uniformity Correction of a Scientific CMOS Under Low Light Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Changmiao; Bai, Yang; Tang, Ping

    2016-06-01

    We present a denoising algorithm for the pixel-response non-uniformity correction of a scientific complementary metal-oxide-semiconductor (CMOS) image sensor, which captures images under extremely low-light conditions. By analyzing the integrating sphere experimental data, we present a pixel-by-pixel flat-field denoising algorithm to remove this fixed pattern noise, which occur in low-light conditions and high pixel response readouts. The response of the CMOS image sensor imaging system to the uniform radiance field shows a high level of spatial uniformity after the denoising algorithm has been applied.

  6. Aberration estimation from single point image in a simulated adaptive optics system.

    PubMed

    Grisan, Enrico; Frassetto, Fabio; Da Deppo, Vania; Naletto, Giampiero; Ruggeri, Alfredo

    2005-01-01

    Adaptive optics has been recently applied for the development of ophthalmic devices, with the main objective of obtaining higher resolution images for diagnostic purposes or ideally correcting high-order eye aberrations. The core of every adaptive optics systems is an optical device that is able to modify the wavefront shape of the light entering a system: once the shape of the incoming wavefront has been estimated, by means of this device it is possible to correct the aberrations introduced along the optical path. The aim of this paper is to demonstrate the feasibility, although in a simulated system, of estimating and correcting the wavefront shape simply by means of an iterative software analysis of a single point source image, thus avoiding expensive wavefront sensors or the burdensome computation of the PSF of the optical system. To test the proposed algorithm, a simple optical system has been simulated with a ray-tracing software and a program to estimate the Zernike coefficients of the simulated aberration from the analysis of the source image has been developed. Numerical indexes were used to evaluate the capability of the software of correctly estimating the Zernike coefficients. Even if only defocus, astigmatism and coma were considered, the very satisfactory results obtained confirm the soundness of this new approach and encourage further work in this direction, in order to develop a system able to estimate also spherical aberration, tilt and field curvature. An implementation of this aberration estimation in a real AO system is also currently in progress.

  7. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems.

    PubMed

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality.

  8. An Efficient Correction Algorithm for Eliminating Image Misalignment Effects on Co-Phasing Measurement Accuracy for Segmented Active Optics Systems

    PubMed Central

    Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang

    2016-01-01

    The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045

  9. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    SciTech Connect

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  10. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  11. A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected].

    PubMed

    Miyazaki, Yusei; Li, Rui; Rezk, Ayman; Misirliyan, Hétoum; Moore, Craig; Farooqi, Nasr; Solis, Mayra; Goiry, Lorna Galleguillos; de Faria Junior, Omar; Dang, Van Duc; Colman, David; Dhaunchak, Ajit Singh; Antel, Jack; Gommerman, Jennifer; Prat, Alexandre; Fillatreau, Simon; Bar-Or, Amit

    2014-01-01

    Clinical trial results demonstrating that B-cell depletion substantially reduces new relapses in patients with multiple sclerosis (MS) have established that B cells play a role in the pathophysiology of MS relapses. The same treatment appears not to impact antibodies directed against the central nervous system, which underscores the contribution of antibody-independent functions of B cells to disease activity. One mechanism by which B cells are now thought to contribute to MS activity is by over-activating T cells, including through aberrant expression of B cell pro-inflammatory cytokines. However, the mechanisms underlying the observed B cell cytokine dysregulation in MS remain unknown. We hypothesized that aberrant expression of particular microRNAs might be involved in the dysregulated pro-inflammatory cytokine responses of B cells of patients with MS. Through screening candidate microRNAs in activated B cells of MS patients and matched healthy subjects, we discovered that abnormally increased secretion of lymphotoxin and tumor necrosis factor α by MS B cells is associated with abnormally increased expression of miR-132. Over-expression of miR-132 in normal B cells significantly enhanced their production of lymphotoxin and tumor necrosis factor α. The over-expression of miR-132 also suppressed the miR-132 target, sirtuin-1. We confirmed that pharmacological inhibition of sirtuin-1 in normal B cells induces exaggerated lymphotoxin and tumor necrosis factor α production, while the abnormal production of these cytokines by MS B cells can be normalized by resveratrol, a sirtuin-1 activator. These results define a novel miR-132-sirtuin-1 axis that controls pro-inflammatory cytokine secretion by human B cells, and demonstrate that a dysregulation of this axis underlies abnormal pro-inflammatory B cell cytokine responses in patients with MS.

  12. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data

    PubMed Central

    Chiarelli, Antonio M.; Maclin, Edward L.; Fabiani, Monica; Gratton, Gabriele

    2015-01-01

    Movements are a major source of artifacts in functional Near-Infrared Spectroscopy (fNIRS). Several algorithms have been developed for motion artifact correction of fNIRS data, including Principal Component Analysis (PCA), targeted Principal Component Analysis (tPCA), Spline Interpolation (SI), and Wavelet Filtering (WF). WF is based on removing wavelets with coefficients deemed to be outliers based on their standardized scores, and it has proven to be effective on both synthetized and real data. However, when the SNR is high, it can lead to a reduction of signal amplitude. This may occur because standardized scores inherently adapt to the noise level, independently of the shape of the distribution of the wavelet coefficients. Higher-order moments of the wavelet coefficient distribution may provide a more diagnostic index of wavelet distribution abnormality than its variance. Here we introduce a new procedure that relies on eliminating wavelets that contribute to generate a large fourth-moment (i.e., kurtosis) of the coefficient distribution to define “outliers” wavelets (kurtosis-based Wavelet Filtering, kbWF). We tested kbWF by comparing it with other existing procedures, using simulated functional hemodynamic responses added to real resting-state fNIRS recordings. These simulations show that kbWF is highly effective in eliminating transient noise, yielding results with higher SNR than other existing methods over a wide range of signal and noise amplitudes. This is because: (1) the procedure is iterative; and (2) kurtosis is more diagnostic than variance in identifying outliers. However, kbWF does not eliminate slow components of artifacts whose duration is comparable to the total recording time. PMID:25747916

  13. Ground based measurements on reflectance towards validating atmospheric correction algorithms on IRS-P6 AWiFS data

    NASA Astrophysics Data System (ADS)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.

    In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with

  14. Skew aberration: a form of polarization aberration.

    PubMed

    Yun, Garam; Crabtree, Karlton; Chipman, Russell A

    2011-10-15

    We define a new class of aberration, skew aberration, which is a component of polarization aberration. Skew aberration is an intrinsic rotation of polarization states due to the geometric transformation of local coordinates, independent of coatings and interface polarization. Skew aberration in a radially symmetric system has the form of a circular retardance tilt plus coma aberration. Skew aberration causes undesired polarization distribution in the exit pupil. We demonstrate statistics on skew aberration of 2383 optical systems described in Code V's U.S. patent library [Code V Version 10.3 (Synopsys, 2011), pp. 22-24]; the mean skew aberration is 0.89° and the standard deviation is 1.37°. The maximum skew aberration found is 17.45° and the minimum is -11.33°. U.S. patent 2,896,506, which has ±7.01° of skew aberration, is analyzed in detail. Skew aberration should be of concern in microlithography optics and other high NA and large field of view optical systems.

  15. Stack emission monitoring using non-dispersive infrared with optimized nonlinear absorption cross-interference correction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y.-W.; Liu, C.; Chan, K.-L.; Xie, P.-H.; Liu, W.-Q.; Zeng, Y.; Wang, S.-M.; Huang, S.-H.; Chen, J.; Wang, Y.-P.; Si, F.-Q.

    2013-02-01

    In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR) to monitor stack emissions. The newly developed analysis algorithm simultaneously compensates for nonlinear absorption and cross-interference between different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The optimized algorithm is derived from a classical one and uses interference functions to quantify cross-interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO) serves as an example for the validation of the optimized algorithm. The interference functions in this case can be obtained by least-squares fitting with three-order polynomials. Experiments show that the results of cross-interference correction are improved significantly by utilizing fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial NDIR multi-gas analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new cross-interference correction algorithm was embedded. Both measurements well agreed.

  16. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  17. Accommodative lag and fluctuations when optical aberrations are manipulated.

    PubMed

    Gambra, Enrique; Sawides, Lucie; Dorronsoro, Carlos; Marcos, Susana

    2009-06-09

    We evaluated the accommodative response to a stimulus moving from 0 to 6 D following a staircase function under natural, corrected, and induced optical aberrations, using an adaptive-optics (AO) electromagnetic deformable mirror. The accommodative response of the eye (through the mirror) and the change of aberrations were measured on 5 subjects using a Hartmann-Shack wavefront sensor operating at 12.8 Hz. Five conditions were tested: (1) natural aberrations, (2) AO correction of the unaccommodated state and induction (over 6-mm pupils) of (3) +1 microm and (4) -1 microm of spherical aberration and (5) -2 microm of vertical coma. Four subjects showed a better accommodative response with AO correction than with their natural aberrations. The induction of negative spherical aberration also produced a better accommodative response in the same subjects. Accommodative lag increased in all subjects when positive spherical aberration and coma were induced. Fluctuations of the accommodative response (computed during each 1-D period of steady accommodation) increased with accommodative response when high-order aberrations were induced. The largest fluctuations occurred for induced negative spherical aberration and the smallest for natural and corrected aberrations. The study demonstrates that aberrations influence accommodative lag and fluctuations of accommodation and that correcting aberrations improves rather than compromises the accommodative response.

  18. Correction algorithm for online continuous flow δ13C and δ18O carbonate and cellulose stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Selmer, K. J.; Breeden, B. T.; Lopatka, A. S.; Plummer, R. E.

    2016-09-01

    We describe an algorithm to correct for scale compression, runtime drift, and amplitude effects in carbonate and cellulose oxygen and carbon isotopic analyses made on two online continuous flow isotope ratio mass spectrometry (CF-IRMS) systems using gas chromatographic (GC) separation. We validate the algorithm by correcting measurements of samples of known isotopic composition which are not used to estimate the corrections. For carbonate δ13C (δ18O) data, median precision of validation estimates for two reference materials and two calibrated working standards is 0.05‰ (0.07‰); median bias is 0.04‰ (0.02‰) over a range of 49.2‰ (24.3‰). For α-cellulose δ13C (δ18O) data, median precision of validation estimates for one reference material and five working standards is 0.11‰ (0.27‰); median bias is 0.13‰ (-0.10‰) over a range of 16.1‰ (19.1‰). These results are within the 5th-95th percentile range of subsequent routine runtime validation exercises in which one working standard is used to calibrate the other. Analysis of the relative importance of correction steps suggests that drift and scale-compression corrections are most reliable and valuable. If validation precisions are not already small, routine cross-validated precision estimates are improved by up to 50% (80%). The results suggest that correction for systematic error may enable these particular CF-IRMS systems to produce δ13C and δ18O carbonate and cellulose isotopic analyses with higher validated precision, accuracy, and throughput than is typically reported for these systems. The correction scheme may be used in support of replication-intensive research projects in paleoclimatology and other data-intensive applications within the geosciences.

  19. Filtering chromatic aberration for wide acceptance angle electrostatic lenses.

    PubMed

    Fazekas, Ádám; Tóth, László

    2014-07-01

    Chromatic aberration is a major issue for imaging mainly with large acceptance angle electrostatic lenses. Its correction is necessary to take advantage of the outstanding spatial and angular resolution that these lenses provide. We propose a method to eliminate the effect of chromatic aberration on the measured images by determining the impact resulting from higher and lower kinetic energies. Based on a spectral image sequence and a matrix, which describes the transmission function of the lens, a system of linear equations is solved to approximate the 2D spectral intensity distribution of the sample surface. We present the description of our method and preliminary test results, which show significant contrast and image quality improvement. The presented algorithm can also be applied as a software-based energy analyzer.

  20. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.

    PubMed

    Shi, Haixiang; Schmidt, Bertil; Liu, Weiguo; Müller-Wittig, Wolfgang

    2010-04-01

    Emerging DNA sequencing technologies open up exciting new opportunities for genome sequencing by generating read data with a massive throughput. However, produced reads are significantly shorter and more error-prone compared to the traditional Sanger shotgun sequencing method. This poses challenges for de novo DNA fragment assembly algorithms in terms of both accuracy (to deal with short, error-prone reads) and scalability (to deal with very large input data sets). In this article, we present a scalable parallel algorithm for correcting sequencing errors in high-throughput short-read data so that error-free reads can be available before DNA fragment assembly, which is of high importance to many graph-based short-read assembly tools. The algorithm is based on spectral alignment and uses the Compute Unified Device Architecture (CUDA) programming model. To gain efficiency we are taking advantage of the CUDA texture memory using a space-efficient Bloom filter data structure for spectrum membership queries. We have tested the runtime and accuracy of our algorithm using real and simulated Illumina data for different read lengths, error rates, input sizes, and algorithmic parameters. Using a CUDA-enabled mass-produced GPU (available for less than US$400 at any local computer outlet), this results in speedups of 12-84 times for the parallelized error correction, and speedups of 3-63 times for both sequential preprocessing and parallelized error correction compared to the publicly available Euler-SR program. Our implementation is freely available for download from http://cuda-ec.sourceforge.net .

  1. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  2. A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system

    PubMed Central

    Li, Chaohong; Sredar, Nripun; Ivers, Kevin M.; Queener, Hope; Porter, Jason

    2010-01-01

    We present a direct slope-based correction algorithm to simultaneously control two deformable mirrors (DMs) in a woofer-tweeter adaptive optics system. A global response matrix was derived from the response matrices of each deformable mirror and the voltages for both deformable mirrors were calculated simultaneously. This control algorithm was tested and compared with a 2-step sequential control method in five normal human eyes using an adaptive optics scanning laser ophthalmoscope. The mean residual total root-mean-square (RMS) wavefront errors across subjects after adaptive optics (AO) correction were 0.128 ± 0.025 μm and 0.107 ± 0.033 μm for simultaneous and 2-step control, respectively (7.75-mm pupil). The mean intensity of reflectance images acquired after AO convergence was slightly higher for 2-step control. Radially-averaged power spectra calculated from registered reflectance images were nearly identical for all subjects using simultaneous or 2-step control. The correction performance of our new simultaneous dual DM control algorithm is comparable to 2-step control, but is more efficient. This method can be applied to any woofer-tweeter AO system. PMID:20721058

  3. Phase Aberrations in Diffraction Microscopy

    SciTech Connect

    Marchesini, S; Chapman, H N; Barty, A; Howells, M R; Spence, J H; Cui, C; Weierstall, U; Minor, A M

    2005-09-29

    In coherent X-ray diffraction microscopy the diffraction pattern generated by a sample illuminated with coherent x-rays is recorded, and a computer algorithm recovers the unmeasured phases to synthesize an image. By avoiding the use of a lens the resolution is limited, in principle, only by the largest scattering angles recorded. However, the imaging task is shifted from the experiment to the computer, and the algorithm's ability to recover meaningful images in the presence of noise and limited prior knowledge may produce aberrations in the reconstructed image. We analyze the low order aberrations produced by our phase retrieval algorithms. We present two methods to improve the accuracy and stability of reconstructions.

  4. Atmospheric Correction, Vicarious Calibration and Development of Algorithms for Quantifying Cyanobacteria Blooms from Oceansat-1 OCM Satellite Data

    NASA Astrophysics Data System (ADS)

    Dash, P.; Walker, N. D.; Mishra, D. R.; Hu, C.; D'Sa, E. J.; Pinckney, J. L.

    2011-12-01

    Cyanobacteria represent a major harmful algal group in fresh to brackish water environments. Lac des Allemands, a freshwater lake located southwest of New Orleans, Louisiana on the upper end of the Barataria Estuary, provides a natural laboratory for remote characterization of cyanobacteria blooms because of their seasonal occurrence. The Ocean Colour Monitor (OCM) sensor provides radiance measurements similar to SeaWiFS but with higher spatial resolution. However, OCM does not have a standard atmospheric correction procedure, and it is difficult to find a detailed description of the entire atmospheric correction procedure for ocean (or lake) in one place. Atmospheric correction of satellite data over small lakes and estuaries (Case 2 waters) is also challenging due to difficulties in estimation of aerosol scattering accurately in these areas. Therefore, an atmospheric correction procedure was written for processing OCM data, based on the extensive work done for SeaWiFS. Since OCM-retrieved radiances were abnormally low in the blue wavelength region, a vicarious calibration procedure was also developed. Empirical inversion algorithms were developed to convert the OCM remote sensing reflectance (Rrs) at bands centered at 510.6 and 556.4 nm to concentrations of phycocyanin (PC), the primary cyanobacterial pigment. A holistic approach was followed to minimize the influence of other optically active constituents on the PC algorithm. Similarly, empirical algorithms to estimate chlorophyll a (Chl a) concentrations were developed using OCM bands centered at 556.4 and 669 nm. The best PC algorithm (R2=0.7450, p<0.0001, n=72) yielded a root mean square error (RMSE) of 36.92 μg/L with a relative RMSE of 10.27% (PC from 2.75-363.50 μg/L, n=48). The best algorithm for Chl a (R2=0.7510, p<0.0001, n=72) produced an RMSE of 31.19 μg/L with a relative RMSE of 16.56% (Chl a from 9.46-212.76 μg/L, n=48). While more field data are required to further validate the long

  5. HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY 1ST QUARTER 2010 MILESTONE REPORT: Simulations of fast correction of chromatic aberrations to establish physics specifications for implementation on NDCX-1 and NDCX-2

    SciTech Connect

    LIDIA, S.M.; LUND, S.M.; SEIDL, P.A.

    2010-01-04

    This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. This milestone has been accomplished. The Heavy Ion Fusion Science Virtual National Laboratory has completed simulations of a fast correction scheme to compensate for chromatic and time-dependent defocusing effects in the transport of ion beams to the target plane in the NDCX-1 facility. Physics specifications for implementation in NDCX-1 and NDCX-2 have been established. Focal spot differences at the target plane between the compressed and uncompressed regions of the beam pulse have been modeled and measured on NDCX-1. Time-dependent focusing and energy sweep from the induction bunching module are seen to increase the compressed pulse spot size at the target plane by factors of two or more, with corresponding scaled reduction in the peak intensity and fluence on target. A time-varying beam envelope correction lens has been suggested to remove the time-varying aberration. An Einzel (axisymmetric electric) lens system has been analyzed and optimized for general transport lines, and as a candidate correction element for NDCX-1. Attainable high-voltage holdoff and temporal variations of the lens driving waveform are seen to effect significant changes on the beam envelope angle over the duration of interest, thus confirming the utility of such an element on NDCX-1. Modeling of the beam dynamics in NDCX-1 was performed using a time-dependent (slice) envelope code and with the 3-D, self-consistent, particle-in-cell code WARP. Proof of concept was established with the slice envelope model such that the spread in beam waist positions relative to the target plane can be minimized with a carefully designed

  6. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-10-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.

  7. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y. W.; Liu, C.; Chan, K. L.; Xie, P. H.; Liu, W. Q.; Zeng, Y.; Wang, S. M.; Huang, S. H.; Chen, J.; Wang, Y. P.; Si, F. Q.

    2013-08-01

    In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR) to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO) serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  8. Proving Correctness of a Controller Algorithm for the RAID Level 5 System

    DTIC Science & Technology

    1998-03-01

    appear in the Proceedings of the International Symposium on Fault-Tolerant Computing, 1998. STAUEN ENT A Distritut1om Un..Ited 19980508 079 This...a first step towards building such a tool, our approach consists of studying several controller algorithms manually, to determine the key properties...a tool, our validity of the controller algorithm obtained. However approach consists of studying several controller algo- the latter task may be

  9. Correction of Aberrant NADPH Oxidase Activity in Blood-Derived Mononuclear Cells from Type II Diabetes Mellitus Patients by a Naturally Fermented Papaya Preparation

    PubMed Central

    Dickerson, Ryan; Deshpande, Bhakthi; Gnyawali, Urmila; Lynch, Debbie; Gordillo, Gayle M.; Schuster, Dara; Osei, Kwame

    2012-01-01

    Abstract Supplementation of standardized fermented papaya preparation (FPP) to adult diabetic mice improves dermal wound healing outcomes. Peripheral blood mononuclear cells (PBMC) from type II diabetes mellitus (T2DM) patients elicit a compromised respiratory burst activity resulting in increased risk of infections for the diabetic patients. Aims: The objectives of the current study were to determine the effect of FPP supplementation on human diabetic PBMC respiratory burst activity and to understand underlying mechanisms of such action of FPP. Results: When stimulated with phorbol 12-myristate 13-acetate, the production of reactive oxygen species by T2DM PBMC was markedly compromised compared to that of the PBMC from non-DM donors. FPP treated ex vivo improved respiratory burst outcomes in T2DM PBMC. FPP treatment significantly increased phosphorylation of the p47phox subunit of NADPH oxidase. In addition, the protein and mRNA expression of Rac2 was potently upregulated after FPP supplemention. The proximal human Rac2 gene promoter is G–C rich and contains consensus binding sites for Sp1 and AP-1. While FPP had no significant effect on the AP-1 DNA binding activity, the Sp1 DNA binding activity was significantly upregulated in PBMC after treatment of the cells with FPP. Innovation: This work provided first evidence that compromised respiratory burst performance of T2DM PBMC may be corrected by a nutritional supplement. Conclusion: FPP can correct respiratory burst performance of T2DM PBMC via an Sp-1-dependant pathway. Studies testing the outcome of FPP supplementation in diabetic patients are warranted. Antioxid. Redox Signal. 17, 485–491. PMID:22369197

  10. Distributed processing (DP) based e-beam lithography simulation with long range correction algorithm in e-beam machine

    NASA Astrophysics Data System (ADS)

    Ki, Won-Tai; Choi, Ji-Hyeon; Kim, Byung-Gook; Woo, Sang-Gyun; Cho, Han-Ku

    2008-05-01

    As the design rule with wafer process is getting smaller down below 50nm node, the specification of CDs on a mask is getting more tightened. Therefore, more tight and accurate E-Beam Lithography simulation is highly required in these days. However, in reality most of E-Beam simulation cases, there is a trade-off relationship between the accuracy and the simulation speed. Moreover, the necessity of full chip based simulation has been increasing in order to estimate more accurate mask CDs based on real process condition. Therefore, without consideration of long range correction algorithm such as fogging effect and loading effect correction in E-beam machine, it would be impossible and meaningless to pursue the full chip based simulation. In this paper, we introduce a breakthrough method to overcome the obstacles of E-Beam simulation. In-house E-beam simulator, ELIS (E-beam LIthography Simulator), has been upgraded to solve these problems. First, DP (Distributed Processing) strategy was applied to improve calculation speed. Secondly, the long range correction algorithm of E-beam machine was also applied to compute intensity of exposure on a full chip based (Mask). Finally, ELIS-DP has been evaluated possibility of expecting or analyzing CDs on full chip base.

  11. Fast characterization of line-end shortening and application of novel correction algorithms in e-beam direct write

    NASA Astrophysics Data System (ADS)

    Freitag, Martin; Choi, Kang-Hoon; Gutsch, Manuela; Hohle, Christoph; Galler, Reinhard; Krüger, Michael; Weidenmueller, Ulf

    2011-04-01

    For the manufacturing of semiconductor technologies following the ITRS roadmap, we will face the nodes well below 32nm half pitch in the next 2~3 years. Despite being able to achieve the required resolution, which is now possible with electron beam direct write variable shaped beam (EBDW VSB) equipment and resists, it becomes critical to precisely reproduce dense line space patterns onto a wafer. This exposed pattern must meet the targets from the layout in both dimensions (horizontally and vertically). For instance, the end of a line must be printed in its entire length to allow a later placed contact to be able to land on it. Up to now, the control of printed patterns such as line ends is achieved by a proximity effect correction (PEC) which is mostly based on a dose modulation. This investigation of the line end shortening (LES) includes multiple novel approaches, also containing an additional geometrical correction, to push the limits of the available data preparation algorithms and the measurement. The designed LES test patterns, which aim to characterize the status of LES in a quick and easy way, were exposed and measured at Fraunhofer Center Nanoelectronic Technologies (CNT) using its state of the art electron beam direct writer and CD-SEM. Simulation and exposure results with the novel LES correction algorithms applied to the test pattern and a large production like pattern in the range of our target CDs in dense line space features smaller than 40nm will be shown.

  12. Evaluation of Residual Static Corrections by Hybrid Genetic Algorithm Steepest Ascent Autostatics Inversion.Application southern Algerian fields

    NASA Astrophysics Data System (ADS)

    Eladj, Said; bansir, fateh; ouadfeul, sid Ali

    2016-04-01

    The application of genetic algorithm starts with an initial population of chromosomes representing a "model space". Chromosome chains are preferentially Reproduced based on Their fitness Compared to the total population. However, a good chromosome has a Greater opportunity to Produce offspring Compared To other chromosomes in the population. The advantage of the combination HGA / SAA is the use of a global search approach on a large population of local maxima to Improve Significantly the performance of the method. To define the parameters of the Hybrid Genetic Algorithm Steepest Ascent Auto Statics (HGA / SAA) job, we Evaluated by testing in the first stage of "Steepest Ascent," the optimal parameters related to the data used. 1- The number of iterations "Number of hill climbing iteration" is equal to 40 iterations. This parameter defines the participation of the algorithm "SA", in this hybrid approach. 2- The minimum eigenvalue for SA '= 0.8. This is linked to the quality of data and S / N ratio. To find an implementation performance of hybrid genetic algorithms in the inversion for estimating of the residual static corrections, tests Were Performed to determine the number of generation of HGA / SAA. Using the values of residual static corrections already calculated by the Approaches "SAA and CSAA" learning has Proved very effective in the building of the cross-correlation table. To determine the optimal number of generation, we Conducted a series of tests ranging from [10 to 200] generations. The application on real seismic data in southern Algeria allowed us to judge the performance and capacity of the inversion with this hybrid method "HGA / SAA". This experience Clarified the influence of the corrections quality estimated from "SAA / CSAA" and the optimum number of generation hybrid genetic algorithm "HGA" required to have a satisfactory performance. Twenty (20) generations Were enough to Improve continuity and resolution of seismic horizons. This Will allow

  13. A graphics processing unit accelerated motion correction algorithm and modular system for real-time fMRI.

    PubMed

    Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R Todd; Papademetris, Xenophon

    2013-07-01

    Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project ( www.bioimagesuite.org ). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.

  14. The design of the control algorithm for corrective manufacturing of 5 axis machining centre

    NASA Astrophysics Data System (ADS)

    Beneš, J.; Procháska, F.; Matoušek, O.

    2016-11-01

    The work deals with the creation of correction data when generating spherical and aspherical surfaces. Generation is performed on the converted 5-axis milling machine, for which it is necessary to generate control programs. In the process of generating surfaces may be formed random errors. Hence the need to measure workpieces, and errors corrected. There is thus solved a measurement of generated surface on coordinate measuring machine Mitutoyo LEGEX 744 and draft methods of data processing by using polynomial of nth order. The measured data are processed by Matlab, specifically CFTool module. This method is further tested and subsequently the experiment evaluated.

  15. A distortion correction algorithm for fish-eye panoramic image of master-slave visual surveillance system

    NASA Astrophysics Data System (ADS)

    Zuo, Chenglin; Liu, Yu; Li, Yongle; Xu, Wei; Zhang, Maojun

    2013-09-01

    A master-slave visual surveillance system is composed of one fish-eye panoramic camera and one dynamic pan-tilt-zoom (PTZ) dome camera. In order to make PTZ dome camera zoom into all targets of interest in panoramic image, the fish-eye panoramic camera is fixed inclining towards the gravity direction, which may cause more obvious distortion. This paper proposed a novel method for the distortion correction of captured panoramic image based on the midpoint circle algorithm (MCA). The method uses incremental calculation of decision parameters to determine the pixel positions along a circle circumference, and both of the vertical and horizontal are rectilinearised. Experimental results show that our correction method based on MCA is efficient and effective. In particular, due to its low computational cost, our method can be applied on embedded camera platform without any extra hardware resources.

  16. Depth-resolved analytical model and correction algorithm for photothermal optical coherence tomography

    PubMed Central

    Lapierre-Landry, Maryse; Tucker-Schwartz, Jason M.; Skala, Melissa C.

    2016-01-01

    Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors. PMID:27446693

  17. Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images.

    PubMed

    Meena Prakash, R; Shantha Selva Kumari, R

    2017-01-01

    The Fuzzy C Means (FCM) and Expectation Maximization (EM) algorithms are the most prevalent methods for automatic segmentation of MR brain images into three classes Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The major difficulties associated with these conventional methods for MR brain image segmentation are the Intensity Non-uniformity (INU) and noise. In this paper, EM and FCM with spatial information and bias correction are proposed to overcome these effects. The spatial information is incorporated by convolving the posterior probability during E-Step of the EM algorithm with mean filter. Also, a method of pixel re-labeling is included to improve the segmentation accuracy. The proposed method is validated by extensive experiments on both simulated and real brain images from standard database. Quantitative and qualitative results depict that the method is superior to the conventional methods by around 25% and over the state-of-the art method by 8%.

  18. TOPEX/POSEIDON Microwave Radiometer (TMR): III. Wet Troposphere Range Correction Algorithm and Pre-Launch Error Budget

    NASA Technical Reports Server (NTRS)

    Keihm, S. J.; Janssen, M. A.; Ruf, C. S.

    1993-01-01

    The sole mission function of the TOPEX/POSEIDON Microwave Radiometer (TMR) is to provide corrections for the altimeter range errors induced by the highly variable atmospheric water vapor content. The three TMR frequencies are shown to be near-optimum for measuring the vapor-induced path delay within an environment of variable cloud cover and variable sea surface flux background. After a review of the underlying physics relevant to the prediction of 5-40 GHz nadir-viewing microwave brightness temperatures, we describe the development of the statistical, iterative algorithm used for the TMR retrieval of path delay. Test simulations are presented which demonstrate the uniformity of algorithm performance over a range of cloud liquid and sea surface wind speed conditions...

  19. A novel algorithm for bad pixel detection and correction to improve quality and stability of geometric measurements

    NASA Astrophysics Data System (ADS)

    Celestre, R.; Rosenberger, M.; Notni, G.

    2016-11-01

    An algorithm for detection and individually substitution of bad pixels for further restoration of an image in the presence of such outliers without altering overall image texture is presented. This work presents three phases concerning image processing: bad pixel identification and mapping by means of linear regression and the coefficient of determination of the pixel output as a function of exposure time, local correction of the linear and angular coefficients of the outlier pixels based on their neighbourhood and, finally, image restoration. Simulation and experimental data were used as means of code benchmarking, showing satisfactory results.

  20. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Evans, P. M.; Hansen, V. N.; Webb, S.

    2009-06-01

    A new method is proposed for scatter-correction of cone-beam CT images. A coarse reconstruction is used in initial iteration steps. Modelling of the x-ray tube spectra and detector response are included in the algorithm. Photon diffusion inside the imaging subject is calculated using the Monte Carlo method. Photon scoring at the detector is calculated using forced detection to a fixed set of node points. The scatter profiles are then obtained by linear interpolation. The algorithm is referred to as the coarse reconstruction and fixed detection (CRFD) technique. Scatter predictions are quantitatively validated against a widely used general-purpose Monte Carlo code: BEAMnrc/EGSnrc (NRCC, Canada). Agreement is excellent. The CRFD algorithm was applied to projection data acquired with a Synergy XVI CBCT unit (Elekta Limited, Crawley, UK), using RANDO and Catphan phantoms (The Phantom Laboratory, Salem NY, USA). The algorithm was shown to be effective in removing scatter-induced artefacts from CBCT images, and took as little as 2 min on a desktop PC. Image uniformity was greatly improved as was CT-number accuracy in reconstructions. This latter improvement was less marked where the expected CT-number of a material was very different to the background material in which it was embedded.

  1. Model and algorithmic framework for detection and correction of cognitive errors.

    PubMed

    Feki, Mohamed Ali; Biswas, Jit; Tolstikov, Andrei

    2009-01-01

    This paper outlines an approach that we are taking for elder-care applications in the smart home, involving cognitive errors and their compensation. Our approach involves high level modeling of daily activities of the elderly by breaking down these activities into smaller units, which can then be automatically recognized at a low level by collections of sensors placed in the homes of the elderly. This separation allows us to employ plan recognition algorithms and systems at a high level, while developing stand-alone activity recognition algorithms and systems at a low level. It also allows the mixing and matching of multi-modality sensors of various kinds that go to support the same high level requirement. Currently our plan recognition algorithms are still at a conceptual stage, whereas a number of low level activity recognition algorithms and systems have been developed. Herein we present our model for plan recognition, providing a brief survey of the background literature. We also present some concrete results that we have achieved for activity recognition, emphasizing how these results are incorporated into the overall plan recognition system.

  2. Structural Channels and Atomic-Cluster Insertion in CsxBi4Te6 (1 ≤ x ≤ 1.25) As Observed by Aberration-Corrected Scanning Transmission Electron Microscopy.

    PubMed

    Zhang, Ruixin; Yang, Huaixin; Guo, Cong; Tian, Huanfang; Shi, Honglong; Chen, Genfu; Li, Jianqi

    2016-12-19

    Microstructural analyses based on aberration-corrected scanning transmission electron microscopy (STEM) observations demonstrate that low-dimensional CsxBi4Te6 materials, known to be a novel thermoelectric and superconducting system, contain notable structural channels that go directly along the b axis, which can be partially filled by atom clusters depending on the thermal treatment process. We successfully prepared two series of CsxBi4Te6 single-crystalline samples using two different sintering processes. The CsxBi4Te6 samples prepared using an air-quenching method show superconductivity at approximately 4 K, while the CsxBi4Te6 with the same nominal compositions prepared by slowly cooling are nonsuperconductors. Moreover, atomic structural investigations of typical samples reveal that the structural channels are often empty in superconducting materials; thus, we can represent the superconducting phase as Cs1-yBi4Te6 with considering the point defects in the Cs layers. In addition, the channels in the nonsuperconducting crystals are commonly partially occupied by triplet Bi clusters. Moreover, the average structures for these two phases are also different in their monoclinic angles (β), which are estimated to be 102.3° for superconductors and 100.5° for nonsuperconductors.

  3. Beam hardening correction using iterative total variation (ITV)-based algorithm in CBCT reconstruction

    SciTech Connect

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae; Huh, Young

    2015-07-01

    Recently, beam hardening reduction is required to produce high-quality reconstructions of X-ray cone-beam computed tomography (CBCT) system for medical applications. This paper introduces the iterative total variation (ITV) for filtered-backprojection suffering from the serious beam hardening problems. Feldkamp, Davis, and Kress (FDK) reconstruction algorithm for CBCT system is widely used reconstruction technique. FDK reconstruction algorithm could be realized by generating the weighted projection data, filtering the projection images, and back-projecting the filtered projection data into the volume. However, FDK algorithm suffers from the beam hardening artifacts by X-ray attenuation coefficients. Recently, total variation (TV) method for compressed sensing (CS) has been particularly useful in exploiting the prior knowledge of minimal variation in the X-ray attenuation characteristics across object or human body. But a practical implementation of this method still remains a challenge. The main problem is the iterative nature of solving the TV-based CS formulation, which generally requires multiple iterations of forward and backward projections of a large dataset in clinically or industrially feasible time frame. In this paper, we propose ITV method after FDK reconstruction for reducing the beam hardening artifacts. The beam hardening problems are reduced by the ITV method to promote sparsity inherent in the X-ray attenuation characteristics. (authors)

  4. An efficient algorithm for multiphase image segmentation with intensity bias correction.

    PubMed

    Zhang, Haili; Ye, Xiaojing; Chen, Yunmei

    2013-10-01

    This paper presents a variational model for simultaneous multiphase segmentation and intensity bias estimation for images corrupted by strong noise and intensity inhomogeneity. Since the pixel intensities are not reliable samples for region statistics due to the presence of noise and intensity bias, we use local information based on the joint density within image patches to perform image partition. Hence, the pixel intensity has a multiplicative distribution structure. Then, the maximum-a-posteriori (MAP) principle with those pixel density functions generates the model. To tackle the computational problem of the resultant nonsmooth nonconvex minimization, we relax the constraint on the characteristic functions of partition regions, and apply primal-dual alternating gradient projections to construct a very efficient numerical algorithm. We show that all the variables have closed-form solutions in each iteration, and the computation complexity is very low. In particular, the algorithm involves only regular convolutions and pointwise projections onto the unit ball and canonical simplex. Numerical tests on a variety of images demonstrate that the proposed algorithm is robust, stable, and attains significant improvements on accuracy and efficiency over the state-of-the-arts.

  5. Fast 4D cone-beam reconstruction using the McKinnon-Bates algorithm with truncation correction and nonlinear filtering

    NASA Astrophysics Data System (ADS)

    Zheng, Ziyi; Sun, Mingshan; Pavkovich, John; Star-Lack, Josh

    2011-03-01

    A challenge in using on-board cone beam computed tomography (CBCT) to image lung tumor motion prior to radiation therapy treatment is acquiring and reconstructing high quality 4D images in a sufficiently short time for practical use. For the 1 minute rotation times typical of Linacs, severe view aliasing artifacts, including streaks, are created if a conventional phase-correlated FDK reconstruction is performed. The McKinnon-Bates (MKB) algorithm provides an efficient means of reducing streaks from static tissue but can suffer from low SNR and other artifacts due to data truncation and noise. We have added truncation correction and bilateral nonlinear filtering to the MKB algorithm to reduce streaking and improve image quality. The modified MKB algorithm was implemented on a graphical processing unit (GPU) to maximize efficiency. Results show that a nearly 4x improvement in SNR is obtained compared to the conventional FDK phase-correlated reconstruction and that high quality 4D images with 0.4 second temporal resolution and 1 mm3 isotropic spatial resolution can be reconstructed in less than 20 seconds after data acquisition completes.

  6. Improved MODIS Dark Target aerosol optical depth algorithm over land: angular effect correction

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-11-01

    Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the

  7. Nonmechanical Multizoom Telescope Design Using A Liquid Crystal Spatial Light Modulator and Focus-Correction Algorithm

    DTIC Science & Technology

    2008-03-27

    Captain, USAF AFIT/GEO/ENP/08-03 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio...automatically for solar tele- scopes. [7] Guidelines for the algorithm have been clearly defined for over a decade. [20] The process is based on the idea...6m, and 10m. If this were setup on a real bench, then a camera would record a blurry bar patters that changed based on za. Simulating this requires

  8. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization

    NASA Astrophysics Data System (ADS)

    Raghunath, N.; Faber, T. L.; Suryanarayanan, S.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. When patient motion is known, deconvolution methods can be used to correct the reconstructed image and reduce motion blur. This paper describes the implementation and optimization of an iterative deconvolution method that uses an ordered subset approach to make it practical and clinically viable. We performed ten separate FDG PET scans using the Hoffman brain phantom and simultaneously measured its motion using the Polaris Vicra tracking system (Northern Digital Inc., Ontario, Canada). The feasibility and effectiveness of the technique was studied by performing scans with different motion and deconvolution parameters. Deconvolution resulted in visually better images and significant improvement as quantified by the Universal Quality Index (UQI) and contrast measures. Finally, the technique was applied to human studies to demonstrate marked improvement. Thus, the deconvolution technique presented here appears promising as a valid alternative to existing motion correction methods for PET. It has the potential for deblurring an image from any modality if the causative motion is known and its effect can be represented in a system matrix.

  9. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  10. Efficient fast heuristic algorithms for minimum error correction haplotyping from SNP fragments.

    PubMed

    Anaraki, Maryam Pourkamali; Sadeghi, Mehdi

    2014-01-01

    Availability of complete human genome is a crucial factor for genetic studies to explore possible association between the genome and complex diseases. Haplotype, as a set of single nucleotide polymorphisms (SNPs) on a single chromosome, is believed to contain promising data for disease association studies, detecting natural positive selection and recombination hotspots. Various computational methods for haplotype reconstruction from aligned fragment of SNPs have already been proposed. This study presents a novel approach to obtain paternal and maternal haplotypes form the SNP fragments on minimum error correction (MEC) model. Reconstructing haplotypes in MEC model is an NP-hard problem. Therefore, our proposed methods employ two fast and accurate clustering techniques as the core of their procedure to efficiently solve this ill-defined problem. The assessment of our approaches, compared to conventional methods, on two real benchmark datasets, i.e., ACE and DALY, proves the efficiency and accuracy.

  11. Simplified ASE correction algorithm for variable gain-flattened erbium-doped fiber amplifier.

    PubMed

    Mahdi, Mohd Adzir; Sheih, Shou-Jong; Adikan, Faisal Rafiq Mahamd

    2009-06-08

    We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.

  12. Correcting Aberrated Wavefronts from Synthetic Apertures Holographically.

    DTIC Science & Technology

    1986-12-01

    subject and reference legs was proven to be planar through both shear-plate interferometric analysis ( Malacara , pp 105-48) and by observing the...London: Cam- bridge University Press, 1969 Malacara . Daniel, ed. Optical Shop Testing. New York: John Wiley and Sons, 1978. Marathay, Arvind S

  13. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  14. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.

    PubMed

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno

    2015-10-07

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  15. Noise correction on LANDSAT images using a spline-like algorithm

    NASA Technical Reports Server (NTRS)

    Vijaykumar, N. L. (Principal Investigator); Dias, L. A. V.

    1985-01-01

    Many applications using LANDSAT images face a dilemma: the user needs a certain scene (for example, a flooded region), but that particular image may present interference or noise in form of horizontal stripes. During automatic analysis, this interference or noise may cause false readings of the region of interest. In order to minimize this interference or noise, many solutions are used, for instane, that of using the average (simple or weighted) values of the neighboring vertical points. In the case of high interference (more than one adjacent line lost) the method of averages may not suit the desired purpose. The solution proposed is to use a spline-like algorithm (weighted splines). This type of interpolation is simple to be computer implemented, fast, uses only four points in each interval, and eliminates the necessity of solving a linear equation system. In the normal mode of operation, the first and second derivatives of the solution function are continuous and determined by data points, as in cubic splines. It is possible, however, to impose the values of the first derivatives, in order to account for shapr boundaries, without increasing the computational effort. Some examples using the proposed method are also shown.

  16. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  17. SU-E-T-477: An Efficient Dose Correction Algorithm Accounting for Tissue Heterogeneities in LDR Brachytherapy

    SciTech Connect

    Mashouf, S; Lai, P; Karotki, A; Keller, B; Beachey, D; Pignol, J

    2014-06-01

    Purpose: Seed brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose surrounding the brachytherapy seeds is based on American Association of Physicist in Medicine Task Group No. 43 (TG-43 formalism) which generates the dose in homogeneous water medium. Recently, AAPM Task Group No. 186 emphasized the importance of accounting for tissue heterogeneities. This can be done using Monte Carlo (MC) methods, but it requires knowing the source structure and tissue atomic composition accurately. In this work we describe an efficient analytical dose inhomogeneity correction algorithm implemented using MIM Symphony treatment planning platform to calculate dose distributions in heterogeneous media. Methods: An Inhomogeneity Correction Factor (ICF) is introduced as the ratio of absorbed dose in tissue to that in water medium. ICF is a function of tissue properties and independent of source structure. The ICF is extracted using CT images and the absorbed dose in tissue can then be calculated by multiplying the dose as calculated by the TG-43 formalism times ICF. To evaluate the methodology, we compared our results with Monte Carlo simulations as well as experiments in phantoms with known density and atomic compositions. Results: The dose distributions obtained through applying ICF to TG-43 protocol agreed very well with those of Monte Carlo simulations as well as experiments in all phantoms. In all cases, the mean relative error was reduced by at least 50% when ICF correction factor was applied to the TG-43 protocol. Conclusion: We have developed a new analytical dose calculation method which enables personalized dose calculations in heterogeneous media. The advantages over stochastic methods are computational efficiency and the ease of integration into clinical setting as detailed source structure and tissue segmentation are not needed. University of Toronto, Natural Sciences and

  18. Correcting Hubble Vision.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1994-01-01

    Describes the theory behind the workings of the Hubble Space Telescope, the spherical aberration in the primary mirror that caused a reduction in image quality, and the corrective device that compensated for the error. (JRH)

  19. Wavefront correction using machine learning methods for single molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan F.; Xu, Jianquan; Kner, Peter

    2015-03-01

    Optical Aberrations are a major challenge in imaging biological samples. In particular, in single molecule localization (SML) microscopy techniques (STORM, PALM, etc.) a high Strehl ratio point spread function (PSF) is necessary to achieve sub-diffraction resolution. Distortions in the PSF shape directly reduce the resolution of SML microscopy. The system aberrations caused by the imperfections in the optics and instruments can be compensated using Adaptive Optics (AO) techniques prior to imaging. However, aberrations caused by the biological sample, both static and dynamic, have to be dealt with in real time. A challenge for wavefront correction in SML microscopy is a robust optimization approach in the presence of noise because of the naturally high fluctuations in photon emission from single molecules. Here we demonstrate particle swarm optimization for real time correction of the wavefront using an intensity independent metric. We show that the particle swarm algorithm converges faster than the genetic algorithm for bright fluorophores.

  20. Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Li, Xinyang

    2011-04-01

    Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate "Deformable Mirror" control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.

  1. Sensing Phase Aberrations behind Lyot Coronagraphs

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  2. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  3. Tuning fifth-order aberrations in a Quadrupole-Octupole Corrector

    SciTech Connect

    Lupini, Andrew R; Pennycook, Stephen J

    2012-01-01

    The resolution of conventional electron microscopes is usually limited by spherical aberration. Microscopes equipped with aberration-correctors are then primarily limited by higher-order, chromatic, and misalignment aberrations. In particular the Nion third-order aberration correctors installed on machines with a low energy spread and possessing sophisticated alignment software were limited by the uncorrected fifth-order aberrations. Here we show how the Nion fifth-order aberration corrector can be used to adjust and reduce some of the fourth and fifth-order aberrations in a probe-corrected scanning transmission electron microscope.

  4. Reactivation of latently infected HIV-1 viral reservoirs and correction of aberrant alternative splicing in the LMNA gene via AMPK activation: Common mechanism of action linking HIV-1 latency and Hutchinson-Gilford progeria syndrome.

    PubMed

    Finley, Jahahreeh

    2015-09-01

    AMPK, a master regulator of cellular metabolism which has been shown to activate PKC-theta (θ) and is essential for T cell activation, may modulate the splicing activities of SRp55 as well as enhance a p32-mediated inhibition of ASF/SF2-induced alternative splicing, potentially correcting aberrant alternative splicing in the LMNA gene and reactivating latent viral HIV-1 reservoirs. Moreover, similar epigenetic modifications and cell cycle regulators also characterize the analogous stages of premature senescence in progeroid cells and latency in HIV-1 infected T cells. AMPK-activating compounds including metformin and resveratrol may thus embody a novel treatment paradigm linking the pathophysiology of HGPS with that of HIV-1 latency.

  5. Matrix and position correction of shuffler assays by application of the alternating conditional expectation algorithm to shuffler data

    SciTech Connect

    Pickrell, M M; Rinard, P M

    1992-01-01

    The {sup 252}Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to dispose the matrix and position effects on {sup 252}Cf shuffler assays. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay. Although shufflers have previously been equipped neutron monitors, the functional relationship between the flux monitor sepals and the matrix-induced perturbation has been unknown. There are several flux monitors so the problem is multivariate, and the response is complicated. Conventional regression techniques cannot address complicated multivariate problems unless the underlying functional form and approximate parameter values are known in advance. Neither was available in this case. To address this problem, we used a new technique called alternating conditional expectations (ACE), which requires neither the functional relationship nor the initial parameters. The ACE algorithm develops the functional form and performs a numerical regression from only the empirical data. We applied the ACE algorithm to the shuffler-assay and flux-monitor data and developed an analytic function for the matrix correction. This function was optimized using conventional multivariate techniques. We were able to reduce the matrix-induced-bias error for homogeneous samples to 12.7%. The bias error for inhomogeneous samples was reduced to 13.5%. These results used only a few adjustable parameters compared to the number of available data points; the data were not over fit,'' but rather the results are general and robust.

  6. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    NASA Astrophysics Data System (ADS)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2017-03-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  7. Geometrical Aberration Suppression for Large Aperture Sub-THz Lenses

    NASA Astrophysics Data System (ADS)

    Rachon, M.; Liebert, K.; Siemion, A.; Bomba, J.; Sobczyk, A.; Knap, W.; Coquillat, D.; Suszek, J.; Sypek, M.

    2016-11-01

    Advanced THz setups require high performance optical elements with large numerical apertures and small focal lengths. This is due to the high absorption of humid air and relatively low efficiency of commercially available detectors. Here, we propose a new type of double-sided sub-THz diffractive optical element with suppressed geometrical aberration for narrowband applications (0.3 THz). One side of the element is designed as thin structure in non-paraxial approach which is the exact method, but only for ideally flat elements. The second side will compensate phase distribution differences between ideal thin structure and real volume one. The computer-aided optimization algorithm is performed to design an additional phase distribution of correcting layer assuming volume designing of the first side of the element. The experimental evaluation of the proposed diffractive component created by 3D printing technique shows almost two times larger performance in comparison with uncorrected basic diffractive lens.

  8. Wide-angle chromatic aberration corrector for the human eye.

    PubMed

    Benny, Yael; Manzanera, Silvestre; Prieto, Pedro M; Ribak, Erez N; Artal, Pablo

    2007-06-01

    The human eye is affected by large chromatic aberration. This may limit vision and makes it difficult to see fine retinal details in ophthalmoscopy. We designed and built a two-triplet system for correcting the average longitudinal chromatic aberration of the eye while keeping a reasonably wide field of view. Measurements in real eyes were conducted to examine the level and optical quality of the correction. We also performed some tests to evaluate the effect of the corrector on visual performance.

  9. A Portable Ground-Based Atmospheric Monitoring System (PGAMS) for the Calibration and Validation of Atmospheric Correction Algorithms Applied to Aircraft and Satellite Images

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements

  10. Laser correcting mirror

    DOEpatents

    Sawicki, Richard H.

    1994-01-01

    An improved laser correction mirror (10) for correcting aberrations in a laser beam wavefront having a rectangular mirror body (12) with a plurality of legs (14, 16, 18, 20, 22, 24, 26, 28) arranged into opposing pairs (34, 36, 38, 40) along the long sides (30, 32) of the mirror body (12). Vector force pairs (49, 50, 52, 54) are applied by adjustment mechanisms (42, 44, 46, 48) between members of the opposing pairs (34, 36, 38, 40) for bending a reflective surface 13 of the mirror body 12 into a shape defining a function which can be used to correct for comatic aberrations.

  11. Retrieving water surface temperature from archive LANDSAT thermal infrared data: Application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs

    NASA Astrophysics Data System (ADS)

    Simon, R. N.; Tormos, T.; Danis, P.-A.

    2014-08-01

    Water surface temperature is a key element in characterizing the thermodynamics of waterbodies, and for irregularly-shaped inland reservoirs, LANDSAT thermal infrared images are the best alternative yet for the retrieval of this parameter. However, images must be corrected mainly for atmospheric effects in order to be fully exploitable. The objective of this study is to validate the mono-channel correction algorithm for single-band thermal infrared LANDSAT data as put forward by Jiménez-Muñoz et al. (2009). Two freshwater reservoirs in continental France were selected as study sites, and best use was made of all accessible image and field data. Results obtained are satisfactory and in accordance with the literature: r2 values are above 0.90 and root-mean-square error values are comprised between 1 and 2 °C. Moreover, paired Wilcoxon signed rank tests showed a highly significant difference between field and uncorrected image data, a very highly significant difference between uncorrected and corrected image data, and no significant difference between field and corrected image data. The mono-channel algorithm is hence recommended for correcting archive LANDSAT single-band thermal infrared data for inland waterbody monitoring and study.

  12. Measurement of large low-order aberrations by using a series of through-focus Ronchigrams.

    PubMed

    Akima, Hisanao; Yoshida, Takaho

    2014-08-01

    A method for measuring large aberrations up to second order (defocus, 2-fold astigmatism and axial coma), which uses a through-focus series of Ronchigrams, is proposed. The method is based on the principle that line-focus conditions in Ronchigrams can be locally detected and low-order aberrations can thereby be measured. The proposed method provides auto-tuning of large low-order aberration; in particular, iterative aberration measurement and correction reduce low-order aberrations from several thousand nanometers to less than a few hundred nanometers, which can be handled by conventional fine-aberration tuning methods.

  13. Accelerated multiple-pass moving average: a novel algorithm for baseline estimation in CE and its application to baseline correction on real-time bases.

    PubMed

    Solis, Alejandro; Rex, Mathew; Campiglia, Andres D; Sojo, Pedro

    2007-04-01

    We present a novel algorithm for baseline estimation in CE. The new algorithm which we have named as accelerated multiple-pass moving average (AMPMA) is combined to three preexisting low-pass filters, spike-removal, moving average, and multi-pass moving average filter, to achieve real-time baseline correction with commercial instrumentation. The successful performance of AMPMA is demonstrated with simulated and experimental data. Straightforward comparison of experimental data clearly shows the improvement AMPMA provides to the linear fitting, LOD, and accuracy (absolute error) of CE analysis.

  14. A dose calculation algorithm with correction for proton-nucleus interactions in non-water materials for proton radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Inaniwa, T.; Kanematsu, N.; Sato, S.; Kohno, R.

    2016-01-01

    In treatment planning for proton radiotherapy, the dose measured in water is applied to the patient dose calculation with density scaling by stopping power ratio {ρ\\text{S}} . Since the body tissues are chemically different from water, this approximation may cause dose calculation errors, especially due to differences in nuclear interactions. We proposed and validated an algorithm for correcting these errors. The dose in water is decomposed into three constituents according to the physical interactions of protons in water: the dose from primary protons continuously slowing down by electromagnetic interactions, the dose from protons scattered by elastic and/or inelastic interactions, and the dose resulting from nonelastic interactions. The proportions of the three dose constituents differ between body tissues and water. We determine correction factors for the proportion of dose constituents with Monte Carlo simulations in various standard body tissues, and formulated them as functions of their {ρ\\text{S}} for patient dose calculation. The influence of nuclear interactions on dose was assessed by comparing the Monte Carlo simulated dose and the uncorrected dose in common phantom materials. The influence around the Bragg peak amounted to  -6% for polytetrafluoroethylene and 0.3% for polyethylene. The validity of the correction method was confirmed by comparing the simulated and corrected doses in the materials. The deviation was below 0.8% for all materials. The accuracy of the correction factors derived with Monte Carlo simulations was separately verified through irradiation experiments with a 235 MeV proton beam using common phantom materials. The corrected doses agreed with the measurements within 0.4% for all materials except graphite. The influence on tumor dose was assessed in a prostate case. The dose reduction in the tumor was below 0.5%. Our results verify that this algorithm is practical and accurate for proton radiotherapy treatment planning, and

  15. Validation of Correction Algorithms for Near-IR Analysis of Human Milk in an Independent Sample Set-Effect of Pasteurization.

    PubMed

    Kotrri, Gynter; Fusch, Gerhard; Kwan, Celia; Choi, Dasol; Choi, Arum; Al Kafi, Nisreen; Rochow, Niels; Fusch, Christoph

    2016-02-26

    Commercial infrared (IR) milk analyzers are being increasingly used in research settings for the macronutrient measurement of breast milk (BM) prior to its target fortification. These devices, however, may not provide reliable measurement if not properly calibrated. In the current study, we tested a correction algorithm for a Near-IR milk analyzer (Unity SpectraStar, Brookfield, CT, USA) for fat and protein measurements, and examined the effect of pasteurization on the IR matrix and the stability of fat, protein, and lactose. Measurement values generated through Near-IR analysis were compared against those obtained through chemical reference methods to test the correction algorithm for the Near-IR milk analyzer. Macronutrient levels were compared between unpasteurized and pasteurized milk samples to determine the effect of pasteurization on macronutrient stability. The correction algorithm generated for our device was found to be valid for unpasteurized and pasteurized BM. Pasteurization had no effect on the macronutrient levels and the IR matrix of BM. These results show that fat and protein content can be accurately measured and monitored for unpasteurized and pasteurized BM. Of additional importance is the implication that donated human milk, generally low in protein content, has the potential to be target fortified.

  16. Parallelizable flood fill algorithm and corrective interface tracking approach applied to the simulation of multiple finite size bubbles merging with a free surface

    NASA Astrophysics Data System (ADS)

    Lafferty, Nathan; Badreddine, Hassan; Niceno, Bojan; Prasser, Horst-Michael

    2015-11-01

    A parallelizable flood fill algorithm is developed for identifying and tracking closed regions of fluids, dispersed phases, in CFD simulations of multiphase flows. It is used in conjunction with a newly developed method, corrective interface tracking, for simulating finite size dispersed bubbly flows in which the bubbles are too small relative to the grid to be simulated accurately with interface tracking techniques and too large relative to the grid for Lagrangian particle tracking techniques. The latter situation arising if local bubble induced turbulence is resolved, or modeled with LES. With corrective interface tracking the governing equations are solved on a static Eulerian grid. A correcting force, derived from empirical correlation based hydrodynamic forces, is applied to the bubble which is then advected using interface tracking techniques. This method results in accurate fluid-gas two-way coupling, bubble shapes, and terminal rise velocities. The flood fill algorithm and corrective interface tracking technique are applied to an air/water simulation of multiple bubbles rising and merging with a free surface. They are then validated against the same simulation performed using only interface tracking with a much finer grid.

  17. Quadrupole Alignment and Trajectory Correction for Future Linear Colliders: SLC Tests of a Dispersion-Free Steering Algorithm

    SciTech Connect

    Assmann, R

    2004-06-08

    The feasibility of future linear colliders depends on achieving very tight alignment and steering tolerances. All proposals (NLC, JLC, CLIC, TESLA and S-BAND) currently require a total emittance growth in the main linac of less than 30-100% [1]. This should be compared with a 100% emittance growth in the much smaller SLC linac [2]. Major advances in alignment and beam steering techniques beyond those used in the SLC are necessary for the next generation of linear colliders. In this paper, we present an experimental study of quadrupole alignment with a dispersion-free steering algorithm. A closely related method (wakefield-free steering) takes into account wakefield effects [3]. However, this method can not be studied at the SLC. The requirements for future linear colliders lead to new and unconventional ideas about alignment and beam steering. For example, no dipole correctors are foreseen for the standard trajectory correction in the NLC [4]; beam steering will be done by moving the quadrupole positions with magnet movers. This illustrates the close symbiosis between alignment, beam steering and beam dynamics that will emerge. It is no longer possible to consider the accelerator alignment as static with only a few surveys and realignments per year. The alignment in future linear colliders will be a dynamic process in which the whole linac, with thousands of beam-line elements, is aligned in a few hours or minutes, while the required accuracy of about 5 pm for the NLC quadrupole alignment [4] is a factor of 20 higher than in existing accelerators. The major task in alignment and steering is the accurate determination of the optimum beam-line position. Ideally one would like all elements to be aligned along a straight line. However, this is not practical. Instead a ''smooth curve'' is acceptable as long as its wavelength is much longer than the betatron wavelength of the accelerated beam. Conventional alignment methods are limited in accuracy by errors in the survey

  18. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses.

    PubMed

    Sun, Bangshan; Salter, Patrick S; Booth, Martin J

    2014-04-01

    Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.

  19. Multifocal multiphoton microscopy with adaptive optical correction

    NASA Astrophysics Data System (ADS)

    Coelho, Simao; Poland, Simon; Krstajic, Nikola; Li, David; Monypenny, James; Walker, Richard; Tyndall, David; Ng, Tony; Henderson, Robert; Ameer-Beg, Simon

    2013-02-01

    Fluorescence lifetime imaging microscopy (FLIM) is a well established approach for measuring dynamic signalling events inside living cells, including detection of protein-protein interactions. The improvement in optical penetration of infrared light compared with linear excitation due to Rayleigh scattering and low absorption have provided imaging depths of up to 1mm in brain tissue but significant image degradation occurs as samples distort (aberrate) the infrared excitation beam. Multiphoton time-correlated single photon counting (TCSPC) FLIM is a method for obtaining functional, high resolution images of biological structures. In order to achieve good statistical accuracy TCSPC typically requires long acquisition times. We report the development of a multifocal multiphoton microscope (MMM), titled MegaFLI. Beam parallelization performed via a 3D Gerchberg-Saxton (GS) algorithm using a Spatial Light Modulator (SLM), increases TCSPC count rate proportional to the number of beamlets produced. A weighted 3D GS algorithm is employed to improve homogeneity. An added benefit is the implementation of flexible and adaptive optical correction. Adaptive optics performed by means of Zernike polynomials are used to correct for system induced aberrations. Here we present results with significant improvement in throughput obtained using a novel complementary metal-oxide-semiconductor (CMOS) 1024 pixel single-photon avalanche diode (SPAD) array, opening the way to truly high-throughput FLIM.

  20. Algorithm for X-ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT.

    PubMed

    Maltz, Jonathan S; Gangadharan, Bijumon; Bose, Supratik; Hristov, Dimitre H; Faddegon, Bruce A; Paidi, Ajay; Bani-Hashemi, Ali R

    2008-12-01

    Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.

  1. Multiplexed aberration measurement for deep tissue imaging in vivo

    PubMed Central

    Wang, Chen; Liu, Rui; Milkie, Daniel E.; Sun, Wenzhi; Tan, Zhongchao; Kerlin, Aaron; Chen, Tsai-Wen; Kim, Douglas S.; Ji, Na

    2014-01-01

    We describe a multiplexed aberration measurement method that modulates the intensity or phase of light rays at multiple pupil segments in parallel to determine their phase gradients. Applicable to fluorescent-protein-labeled structures of arbitrary complexity, it allows us to obtain diffraction-limited resolution in various samples in vivo. For the strongly scattering mouse brain, a single aberration correction improves structural and functional imaging of fine neuronal processes over a large imaging volume. PMID:25128976

  2. Optical aberration compensation in a multiplexed optical trapping system

    NASA Astrophysics Data System (ADS)

    Čižmár, T.; Dalgarno, H. I. C.; Ashok, P. C.; Gunn-Moore, F. J.; Dholakia, K.

    2011-04-01

    In this paper we discuss optical aberrations within a multiplexed optical trapping system. We analyze two of the most powerful methods for optical trap multiplexing: time-shared beam steering and holographic beam shaping in a tandem system with an acousto-optic deflector and spatial light modulator. We show how to isolate and correct for the aberrations introduced by these individual optical components using the spatial light modulator and demonstrate the enhancement this provides to optical trapping.

  3. Model-based wavefront sensorless adaptive optics system for large aberrations and extended objects.

    PubMed

    Yang, Huizhen; Soloviev, Oleg; Verhaegen, Michel

    2015-09-21

    A model-based wavefront sensorless (WFSless) adaptive optics (AO) system with a 61-element deformable mirror is simulated to correct the imaging of a turbulence-degraded extended object. A fast closed-loop control algorithm, which is based on the linear relation between the mean square of the aberration gradients and the second moment of the image intensity distribution, is used to generate the control signals for the actuators of the deformable mirror (DM). The restoration capability and the convergence rate of the AO system are investigated with different turbulence strength wave-front aberrations. Simulation results show the model-based WFSless AO system can restore those images degraded by different turbulence strengths successfully and obtain the correction very close to the achievable capability of the given DM. Compared with the ideal correction of 61-element DM, the averaged relative error of RMS value is 6%. The convergence rate of AO system is independent of the turbulence strength and only depends on the number of actuators of DM.

  4. Three-dimensional polarization aberration functions in optical system based on three-dimensional polarization ray-tracing calculus

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Fu, Yuegang; Liu, Zhiying; Zhang, Lei; Wang, Jiake; Zheng, Yang; Li, Yahong

    2017-03-01

    The polarization aberrations of a complex optical system with multi-element lens have been investigated using a 3D polarization aberration function. The 3D polarization ray-tracing matrix has been combined with the optical path difference to obtain a 3D polarization aberration function, which avoids the need for a complicated phase unwrapping process. The polarization aberrations of a microscope objective have been analyzed to include, the distributions of 3D polarization aberration functions, diattenuation aberration, retardance aberration, and polarization-dependent intensity on the exit pupil. Further, the aberrations created by the field of view and the coating on the distribution rules of 3D polarization aberration functions are discussed in detail. Finally a novel appropriate field of view and wavelength correction is proposed for a polarization aberration function which optimizes the image quality of a multi-element optical system.

  5. Cosmological parameter estimation: impact of CMB aberration

    SciTech Connect

    Catena, Riccardo; Notari, Alessio E-mail: notari@ffn.ub.es

    2013-04-01

    The peculiar motion of an observer with respect to the CMB rest frame induces an apparent deflection of the observed CMB photons, i.e. aberration, and a shift in their frequency, i.e. Doppler effect. Both effects distort the temperature multipoles a{sub lm}'s via a mixing matrix at any l. The common lore when performing a CMB based cosmological parameter estimation is to consider that Doppler affects only the l = 1 multipole, and neglect any other corrections. In this paper we reconsider the validity of this assumption, showing that it is actually not robust when sky cuts are included to model CMB foreground contaminations. Assuming a simple fiducial cosmological model with five parameters, we simulated CMB temperature maps of the sky in a WMAP-like and in a Planck-like experiment and added aberration and Doppler effects to the maps. We then analyzed with a MCMC in a Bayesian framework the maps with and without aberration and Doppler effects in order to assess the ability of reconstructing the parameters of the fiducial model. We find that, depending on the specific realization of the simulated data, the parameters can be biased up to one standard deviation for WMAP and almost two standard deviations for Planck. Therefore we conclude that in general it is not a solid assumption to neglect aberration in a CMB based cosmological parameter estimation.

  6. Correction of Faulty Sensors in Phased Array Radars Using Symmetrical Sensor Failure Technique and Cultural Algorithm with Differential Evolution

    PubMed Central

    Khan, S. U.; Qureshi, I. M.; Zaman, F.; Shoaib, B.; Naveed, A.; Basit, A.

    2014-01-01

    Three issues regarding sensor failure at any position in the antenna array are discussed. We assume that sensor position is known. The issues include raise in sidelobe levels, displacement of nulls from their original positions, and diminishing of null depth. The required null depth is achieved by making the weight of symmetrical complement sensor passive. A hybrid method based on memetic computing algorithm is proposed. The hybrid method combines the cultural algorithm with differential evolution (CADE) which is used for the reduction of sidelobe levels and placement of nulls at their original positions. Fitness function is used to minimize the error between the desired and estimated beam patterns along with null constraints. Simulation results for various scenarios have been given to exhibit the validity and performance of the proposed algorithm. PMID:24688440

  7. Practical Atmospheric Correction Algorithms for a Multi-Spectral Sensor From the Visible Through the Thermal Spectral Regions

    SciTech Connect

    Borel, C.C.; Villeneuve, P.V.; Clodium, W.B.; Szymenski, J.J.; Davis, A.B.

    1999-04-04

    Deriving information about the Earth's surface requires atmospheric corrections of the measured top-of-the-atmosphere radiances. One possible path is to use atmospheric radiative transfer codes to predict how the radiance leaving the ground is affected by the scattering and attenuation. In practice the atmosphere is usually not well known and thus it is necessary to use more practical methods. The authors will describe how to find dark surfaces, estimate the atmospheric optical depth, estimate path radiance and identify thick clouds using thresholds on reflectance and NDVI and columnar water vapor. The authors describe a simple method to correct a visible channel contaminated by a thin cirrus clouds.

  8. A correction factor for ablation algorithms assuming deviations of Lambert-Beer's law with a Gaussian-profile beam

    NASA Astrophysics Data System (ADS)

    Rodríguez-Marín, Francisco; Anera, Rosario G.; Alarcón, Aixa; Hita, E.; Jiménez, J. R.

    2012-04-01

    In this work, we propose an adjustment factor to be considered in ablation algorithms used in refractive surgery. This adjustment factor takes into account potential deviations of Lambert-Beer's law and the characteristics of a Gaussian-profile beam. To check whether the adjustment factor deduced is significant for visual function, we applied it to the paraxial Munnerlyn formula and found that it significantly influences the post-surgical corneal radius and p-factor. The use of the adjustment factor can help reduce the discrepancies in corneal shape between the real data and corneal shape expected when applying laser ablation algorithms.

  9. Analysis of vegetation by the application of a physically-based atmospheric correction algorithm to OLI data: a case study of Leonessa Municipality, Italy

    NASA Astrophysics Data System (ADS)

    Mei, Alessandro; Manzo, Ciro; Petracchini, Francesco; Bassani, Cristiana

    2016-04-01

    Remote sensing techniques allow to estimate vegetation parameters related to large areas for forest health evaluation and biomass estimation. Moreover, the parametrization of specific indices such as Normalized Difference Vegetation Index (NDVI) allows to study biogeochemical cycles and radiative energy transfer processes between soil/vegetation and atmosphere. This paper focuses on the evaluation of vegetation cover analysis in Leonessa Municipality, Latium Region (Italy) by the use of 2015 Landsat 8 applying the OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) algorithm developed following the procedure described in Bassani et al. 2015. The OLI@CRI is based on 6SV radiative transfer model (Kotchenova et al., 2006) ables to simulate the radiative field in the atmosphere-earth coupled system. NDVI was derived from the OLI corrected image. This index, widely used for biomass estimation and vegetation analysis cover, considers the sensor channels falling in the near infrared and red spectral regions which are sensitive to chlorophyll absorption and cell structure. The retrieved product was then spatially resampled at MODIS image resolution and then validated by the NDVI of MODIS considered as reference. The physically-based OLI@CRI algorithm also provides the incident solar radiation at ground at the acquisition time by 6SV simulation. Thus, the OLI@CRI algorithm completes the remote sensing dataset required for a comprehensive analysis of the sub-regional biomass production by using data of the new generation remote sensing sensor and an atmospheric radiative transfer model. If the OLI@CRI algorithm is applied to a temporal series of OLI data, the influence of the solar radiation on the above-ground vegetation can be analysed as well as vegetation index variation.

  10. Depth-correction algorithm that improves optical quantification of large breast lesions imaged by diffuse optical tomography

    PubMed Central

    Tavakoli, Behnoosh; Zhu, Quing

    2011-01-01

    Optical quantification of large lesions imaged with diffuse optical tomography in reflection geometry is depth dependence due to the exponential decay of photon density waves. We introduce a depth-correction method that incorporates the target depth information provided by coregistered ultrasound. It is based on balancing the weight matrix, using the maximum singular values of the target layers in depth without changing the forward model. The performance of the method is evaluated using phantom targets and 10 clinical cases of larger malignant and benign lesions. The results for the homogenous targets demonstrate that the location error of the reconstructed maximum absorption coefficient is reduced to the range of the reconstruction mesh size for phantom targets. Furthermore, the uniformity of absorption distribution inside the lesions improve about two times and the median of the absorption increases from 60 to 85% of its maximum compared to no depth correction. In addition, nonhomogenous phantoms are characterized more accurately. Clinical examples show a similar trend as the phantom results and demonstrate the utility of the correction method for improving lesion quantification. PMID:21639570

  11. Improvement of Image Quality and Diagnostic Performance by an Innovative Motion-Correction Algorithm for Prospectively ECG Triggered Coronary CT Angiography

    PubMed Central

    Lu, Bin; Yan, Hong-Bing; Mu, Chao-Wei; Gao, Yang; Hou, Zhi-Hui; Wang, Zhi-Qiang; Liu, Kun; Parinella, Ashley H.; Leipsic, Jonathon A.

    2015-01-01

    Objective To investigate the effect of a novel motion-correction algorithm (Snap-short Freeze, SSF) on image quality and diagnostic accuracy in patients undergoing prospectively ECG-triggered CCTA without administering rate-lowering medications. Materials and Methods Forty-six consecutive patients suspected of CAD prospectively underwent CCTA using prospective ECG-triggering without rate control and invasive coronary angiography (ICA). Image quality, interpretability, and diagnostic performance of SSF were compared with conventional multisegment reconstruction without SSF, using ICA as the reference standard. Results All subjects (35 men, 57.6 ± 8.9 years) successfully underwent ICA and CCTA. Mean heart rate was 68.8±8.4 (range: 50–88 beats/min) beats/min without rate controlling medications during CT scanning. Overall median image quality score (graded 1–4) was significantly increased from 3.0 to 4.0 by the new algorithm in comparison to conventional reconstruction. Overall interpretability was significantly improved, with a significant reduction in the number of non-diagnostic segments (690 of 694, 99.4% vs 659 of 694, 94.9%; P<0.001). However, only the right coronary artery (RCA) showed a statistically significant difference (45 of 46, 97.8% vs 35 of 46, 76.1%; P = 0.004) on a per-vessel basis in this regard. Diagnostic accuracy for detecting ≥50% stenosis was improved using the motion-correction algorithm on per-vessel [96.2% (177/184) vs 87.0% (160/184); P = 0.002] and per-segment [96.1% (667/694) vs 86.6% (601/694); P <0.001] levels, but there was not a statistically significant improvement on a per-patient level [97.8 (45/46) vs 89.1 (41/46); P = 0.203]. By artery analysis, diagnostic accuracy was improved only for the RCA [97.8% (45/46) vs 78.3% (36/46); P = 0.007]. Conclusion The intracycle motion correction algorithm significantly improved image quality and diagnostic interpretability in patients undergoing CCTA with prospective ECG triggering and

  12. Photolithography for the static compensation of human eye aberrations

    NASA Astrophysics Data System (ADS)

    Bara, Salvador; Jaroszewicz, Zbigniew

    2004-08-01

    Recent developments in human eye aberration measurements allow to design and fabricate compensating elements aiming to achieve aberration-limited imaging. This is important not merely from a subject's viewpoint (improving the sharpness of the outer world images formed at the retina) but mainly for clinical instrumentation purposes, especially those dealing with high-resolution retinal imaging (eye fundus cameras, scanning laser ophtlalmosopes, etc.). Here we report recent developments in the correction of the static component of the eye aberrations. Aberration data of several subjects were used for manufacturing personally customized phase plates designed to compensate for the wave aberration in the human eye. These plates were made by gray-level single-mask photosculpture in photoresist and then placed in front of the eye. The effects of misalignments as well as the strategy to design wide-field correcting elements are briefly revised. Applications include improving images in scanning laser ophtalmoscopes. The future plans of research including application of axicons for compensation of the lack of accommodation and kinoforms cancelling high amounts of eye's aberrations in monochromatic illumination are also sketched.

  13. Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections

    NASA Astrophysics Data System (ADS)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (Ts) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of Ts over the diurnal cycle in non-polar regions, while polar Ts retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed Ts, along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly Ts observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived Ts data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, Ts validation with established references is essential, as is proper evaluation of Ts sensitivity to atmospheric correction source.This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based Ts product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction

  14. SU-E-I-05: A Correction Algorithm for Kilovoltage Cone-Beam Computed Tomography Dose Calculations in Cervical Cancer Patients

    SciTech Connect

    Zhang, J; Zhang, W; Lu, J

    2015-06-15

    Purpose: To investigate the accuracy and feasibility of dose calculations using kilovoltage cone beam computed tomography in cervical cancer radiotherapy using a correction algorithm. Methods: The Hounsfield units (HU) and electron density (HU-density) curve was obtained for both planning CT (pCT) and kilovoltage cone beam CT (CBCT) using a CIRS-062 calibration phantom. The pCT and kV-CBCT images have different HU values, and if the HU-density curve of CBCT was directly used to calculate dose in CBCT images may have a deviation on dose distribution. It is necessary to normalize the different HU values between pCT and CBCT. A HU correction algorithm was used for CBCT images (cCBCT). Fifteen intensity-modulated radiation therapy (IMRT) plans of cervical cancer were chosen, and the plans were transferred to the pCT and cCBCT data sets without any changes for dose calculations. Phantom and patient studies were carried out. The dose differences and dose distributions were compared between cCBCT plan and pCT plan. Results: The HU number of CBCT was measured by several times, and the maximum change was less than 2%. To compare with pCT, the CBCT and cCBCT has a discrepancy, the dose differences in CBCT and cCBCT images were 2.48%±0.65% (range: 1.3%∼3.8%) and 0.48%±0.21% (range: 0.1%∼0.82%) for phantom study, respectively. For dose calculation in patient images, the dose differences were 2.25%±0.43% (range: 1.4%∼3.4%) and 0.63%±0.35% (range: 0.13%∼0.97%), respectively. And for the dose distributions, the passing rate of cCBCT was higher than the CBCTs. Conclusion: The CBCT image for dose calculation is feasible in cervical cancer radiotherapy, and the correction algorithm offers acceptable accuracy. It will become a useful tool for adaptive radiation therapy.

  15. Algorithm for x-ray beam hardening and scatter correction in low-dose cone-beam CT: phantom studies

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2016-03-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), as well as beam hardening, resulting in image artifacts, contrast reduction, and lack of CT number accuracy. Meanwhile the x-ray radiation dose is also non-ignorable. Considerable scatter or beam hardening correction methods have been developed, independently, and rarely combined with low-dose CT reconstruction. In this paper, we combine scatter suppression with beam hardening correction for sparse-view CT reconstruction to improve CT image quality and reduce CT radiation. Firstly, scatter was measured, estimated, and removed using measurement-based methods, assuming that signal in the lead blocker shadow is only attributable to x-ray scatter. Secondly, beam hardening was modeled by estimating an equivalent attenuation coefficient at the effective energy, which was integrated into the forward projector of the algebraic reconstruction technique (ART). Finally, the compressed sensing (CS) iterative reconstruction is carried out for sparse-view CT reconstruction to reduce the CT radiation. Preliminary Monte Carlo simulated experiments indicate that with only about 25% of conventional dose, our method reduces the magnitude of cupping artifact by a factor of 6.1, increases the contrast by a factor of 1.4 and the CNR by a factor of 15. The proposed method could provide good reconstructed image from a few view projections, with effective suppression of artifacts caused by scatter and beam hardening, as well as reducing the radiation dose. With this proposed framework and modeling, it may provide a new way for low-dose CT imaging.

  16. Measuring chromatic aberrations in imaging systems using plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Gennaro, Sylvain D.; Roschuk, Tyler R.; Maier, Stefan A.; Oulton, Rupert F.

    2016-04-01

    Chromatic aberration in optical systems arises from the wavelength dependence of a glass's refractive index. Polychromatic rays incident upon an optical surface are refracted at slightly different angles and in traversing an optical system follow distinct paths creating images displaced according to color. Although arising from dispersion, it manifests as a spatial distortion correctable only with compound lenses with multiple glasses and accumulates in complicated imaging systems. While chromatic aberration is measured with interferometry, simple methods are attractive for their ease of use and low cost. In this letter we retrieve the longitudinal chromatic focal shift of high numerical aperture (NA) microscope objectives from the extinction spectra of metallic nanoparticles within the focal plane. The method is accurate for high NA objectives with apochromatic correction, and enables rapid assessment of the chromatic aberration of any complete microscopy systems, since it is straightforward to implement

  17. Improvement of transport-corrected scattering stability and performance using a Jacobi inscatter algorithm for 2D-MOC

    DOE PAGES

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    2017-03-10

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2Dmore » method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop$-$as is the case with the Gauss-Seidel sweeper$-$to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of

  18. Diffractively corrected counter-rotating Risley prisms.

    PubMed

    Nie, Xin; Yang, Hongfang; Xue, Changxi

    2015-12-10

    Using the vector refraction equation and the vector diffraction equation, we obtain the expressions of the direction cosines of the refractive rays for the two wedge prisms, and the direction cosines of the diffractive rays for two wedge grisms, in which diffractive gratings were etched into the prism faces to correct the chromatic aberrations. A mathematical model between the two vector equations is proposed to compare the difference angle chromatic aberrations when the Risley prisms/grisms are rotating at different angles. We conclude that the use of diffractively corrected prisms offers a new method to correct chromatic aberrations in Risley prisms.

  19. A simulation based approach to optimize inventory replenishment with RAND algorithm: An extended study of corrected demand using Holt's method for textile industry

    NASA Astrophysics Data System (ADS)

    Morshed, Mohammad Sarwar; Kamal, Mostafa Mashnoon; Khan, Somaiya Islam

    2016-07-01

    Inventory has been a major concern in supply chain and numerous researches have been done lately on inventory control which brought forth a number of methods that efficiently manage inventory and related overheads by reducing cost of replenishment. This research is aimed towards providing a better replenishment policy in case of multi-product, single supplier situations for chemical raw materials of textile industries in Bangladesh. It is assumed that industries currently pursue individual replenishment system. The purpose is to find out the optimum ideal cycle time and individual replenishment cycle time of each product for replenishment that will cause lowest annual holding and ordering cost, and also find the optimum ordering quantity. In this paper indirect grouping strategy has been used. It is suggested that indirect grouping Strategy outperforms direct grouping strategy when major cost is high. An algorithm by Kaspi and Rosenblatt (1991) called RAND is exercised for its simplicity and ease of application. RAND provides an ideal cycle time (T) for replenishment and integer multiplier (ki) for individual items. Thus the replenishment cycle time for each product is found as T×ki. Firstly, based on data, a comparison between currently prevailing (individual) process and RAND is provided that uses the actual demands which presents 49% improvement in total cost of replenishment. Secondly, discrepancies in demand is corrected by using Holt's method. However, demands can only be forecasted one or two months into the future because of the demand pattern of the industry under consideration. Evidently, application of RAND with corrected demand display even greater improvement. The results of this study demonstrates that cost of replenishment can be significantly reduced by applying RAND algorithm and exponential smoothing models.

  20. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  1. Using Aberrant Behaviors as Reinforcers for Autistic Children.

    ERIC Educational Resources Information Center

    Charlop, Marjorie H.; And Others

    1990-01-01

    Three experiments assessed the efficacy of various reinforcers to increase correct task responding in a total of 10 autistic children, aged 6-9. Of the reinforcers used (stereotypy, delayed echolalia, perseverative behavior, and food), task performance was highest with opportunities to engage in aberrant behaviors, and lowest with edible…

  2. Crystal and molecular structures of selected organic and organometallic compounds and an algorithm for empirical absorption correction

    SciTech Connect

    Karcher, B.

    1981-10-01

    Cr(CO)/sub 5/(SCMe/sub 2/) crystallizes in the monoclinic space group P2/sub 1//a with a = 10.468(8), b = 11.879(5), c = 9.575(6) A, and ..beta.. = 108.14(9)/sup 0/, with an octahedral coordination around the chromium atom. PSN/sub 3/C/sub 6/H/sub 12/ crystallizes in the monoclinic space group P2/sub 1//n with a = 10.896(1), b = 11.443(1), c = 7.288(1) A, and ..beta.. = 104.45(1)/sup 0/. Each of the five-membered rings in this structure contains a carbon atom which is puckered toward the sulfur and out of the nearly planar arrays of the remaining ring atoms. (RhO/sub 4/N/sub 4/C/sub 48/H/sub 56/)/sup +/(BC/sub 24/H/sub 20/)/sup -/.1.5NC/sub 2/H/sub 3/ crystallizes in the triclinic space group P1 with a = 17.355(8), b = 21.135(10), c = 10.757(5) A, ..cap alpha.. = 101.29(5), ..beta.. = 98.36(5), and ..gamma.. = 113.92(4)/sup 0/. Each Rh cation complex is a monomer. MoP/sub 2/O/sub 10/C/sub 16/H/sub 22/ crystallizes in the monoclinic space group P2/sub 1//c with a = 12.220(3), b = 9.963(2), c = 20.150(6) A, and ..beta.. = 103.01(3)/sup 0/. The molybdenum atom occupies the axial position of the six-membered ring of each of the two phosphorinane ligands. An empirical absorption correction program was written.

  3. Chromosome Aberrations in Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Durante, M.; Cucinotta, Francis A.

    2007-01-01

    A review of currently available data on in vivo induced chromosome damage in the blood lymphocytes of astronauts proves that, after protracted exposure of a few months or more to space radiation, cytogenetic biodosimetry analyses of blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk. Recent studies indicate that biodosimetry estimates from single spaceflights lie within the range expected from physical dosimetry and biophysical models, but very large uncertainties are associated with single individual measurements and the total sample population remains low. Retrospective doses may be more difficult to estimate because of the fairly rapid time-dependent loss of "stable" aberrations in blood lymphocytes. Also, biodosimetry estimates from individuals who participate in multiple missions, or very long (interplanetary) missions, may be complicated by an adaptive response to space radiation and/or changes in lymphocyte survival and repopulation. A discussion of published data is presented and specific issues related to space radiation biodosimetry protocols are discussed.

  4. Image Ellipticity from Atmospheric Aberrations

    SciTech Connect

    de Vries, W H; Olivier, S S; Asztalos, S J; Rosenberg, L J; Baker, K L

    2007-03-06

    We investigate the ellipticity of the point-spread function (PSF) produced by imaging an unresolved source with a telescope, subject to the effects of atmospheric turbulence. It is important to quantify these effects in order to understand the errors in shape measurements of astronomical objects, such as those used to study weak gravitational lensing of field galaxies. The PSF modeling involves either a Fourier transform of the phase information in the pupil plane or a ray-tracing approach, which has the advantage of requiring fewer computations than the Fourier transform. Using a standard method, involving the Gaussian weighted second moments of intensity, we then calculate the ellipticity of the PSF patterns. We find significant ellipticity for the instantaneous patterns (up to more than 10%). Longer exposures, which we approximate by combining multiple (N) images from uncorrelated atmospheric realizations, yield progressively lower ellipticity (as 1/{radical}N). We also verify that the measured ellipticity does not depend on the sampling interval in the pupil plane using the Fourier method. However, we find that the results using the ray-tracing technique do depend on the pupil sampling interval, representing a gradual breakdown of the geometric approximation at high spatial frequencies. Therefore, ray tracing is generally not an accurate method of modeling PSF ellipticity induced by atmospheric turbulence unless some additional procedure is implemented to correctly account for the effects of high spatial frequency aberrations. The Fourier method, however, can be used directly to accurately model PSF ellipticity, which can give insights into errors in the statistics of field galaxy shapes used in studies of weak gravitational lensing.

  5. Overlapped Fourier coding for optical aberration removal

    PubMed Central

    Horstmeyer, Roarke; Ou, Xiaoze; Chung, Jaebum; Zheng, Guoan; Yang, Changhuei

    2014-01-01

    We present an imaging procedure that simultaneously optimizes a camera’s resolution and retrieves a sample’s phase over a sequence of snapshots. The technique, termed overlapped Fourier coding (OFC), first digitally pans a small aperture across a camera’s pupil plane with a spatial light modulator. At each aperture location, a unique image is acquired. The OFC algorithm then fuses these low-resolution images into a full-resolution estimate of the complex optical field incident upon the detector. Simultaneously, the algorithm utilizes redundancies within the acquired dataset to computationally estimate and remove unknown optical aberrations and system misalignments via simulated annealing. The result is an imaging system that can computationally overcome its optical imperfections to offer enhanced resolution, at the expense of taking multiple snapshots over time. PMID:25321982

  6. Measurement of chromatic aberration in STEM and SCEM by coherent convergent beam electron diffraction.

    PubMed

    Zheng, C L; Etheridge, J

    2013-02-01

    A simple method is described for the accurate and precise measurement of chromatic aberration under electron-optical conditions pertinent to scanning transmission electron microscopy (STEM) and scanning confocal electron microscopy (SCEM). The method requires only the measurement of distances in a coherent CBED pattern and knowledge of the electron wavelength and the lattice spacing of a calibration specimen. The chromatic aberration of a spherical-aberration corrected 300 kV thermal field emission TEM is measured in STEM and SCEM operating modes and under different condenser lens settings. The effect of the measured chromatic aberrations on the 3 dimensional intensity distribution of the electron probe is also considered.

  7. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2016-01-01

    We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured.

  8. DNA Repair Defects and Chromosomal Aberrations

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  9. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  10. Evaluation and Analysis of SEASAT-A Scanning Multichannel Microwave Radiometer (SSMR) Antenna Pattern Correction (APC) Algorithm. Sub-task 4: Interim Mode T Sub B Versus Cross and Nominal Mode T Sub B

    NASA Technical Reports Server (NTRS)

    Kitzis, J. L.; Kitzis, S. N.

    1979-01-01

    The brightness temperature data produced by the SMMR Antenna Pattern Correction algorithm are evaluated. The evaluation consists of: (1) a direct comparison of the outputs of the interim, cross, and nominal APC modes; (2) a refinement of the previously determined cos beta estimates; and (3) a comparison of the world brightness temperature (T sub B) map with actual SMMR measurements.

  11. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  12. How To Measure Gravitational Aberration?

    NASA Astrophysics Data System (ADS)

    Krizek, M.; Solcova, A.

    2007-08-01

    In 1905, Henri Poincaré predicted the existence of gravitational waves and assumed that their speed c[g] would be that of the speed of light c. If the gravitational aberration would also have the same magnitude as the aberration of light, we would observe several paradoxical phenomena. For instance, the orbit of two bodies of equal mass would be unstable, since two attractive forces arise that are not in line and hence form a couple. This tends to increase the angular momentum, period, and total energy of the system. This can be modelled by a system of ordinary differential equations with delay. A big advantage of computer simulation is that we can easily perform many test for various possible values of the speed of gravity [1]. In [2], Carlip showed that gravitational aberration in general relativity is almost cancelled out by velocity-dependent interactions. This means that rays of sunlight are not parallel to the attractive gravitational force of the Sun, i.e., we do not see the Sun in the direction of its attractive force, but slightly shifted about an angle less than 20``. We show how the actual value of the gravitational aberration can be obtained by measurement of a single angle at a suitable time instant T corresponding to the perihelion of an elliptic orbit. We also derive an a priori error estimate that expresses how acurately T has to be determined to attain the gravitational aberration to a prescribed tolerance. [1] M. Křížek: Numerical experience with the finite speed of gravitational interaction, Math. Comput. Simulation 50 (1999), 237-245. [2] S. Carlip: Aberration and the speed of gravity, Phys. Lett. A 267 (2000), 81-87.

  13. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  14. Eigenfunction analysis of stochastic backscatter for characterization of acoustic aberration in medical ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Varslot, Trond; Krogstad, Harald; Mo, Eirik; Angelsen, Bjørn A.

    2004-06-01

    Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be δ correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.

  15. Aberration corrected STEM to study an ancient hair dyeing formula

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Van Elslande, E.; Castaing, J.; Walter, P.

    2014-05-01

    Lead-based chemistry was initiated in ancient Egypt for cosmetic preparation more than 4000 years ago. Here, we study a hair-dyeing recipe using lead salts described in text since Greco-Roman times. We report direct evidence about the shape and distribution of PbS nanocrystals that form within the hair during blackening.

  16. Non-iterative Aberration Correction of a Multiple Transmitter System

    DTIC Science & Technology

    2011-09-01

    pupil. The shift due to transmitter locations is given by xT and yT. Note that for a given aperture the phase error value is static and doesn’t shift ...wpafb.af.mil Abstract: Multi-transmitter aperture synthesis provides aperture gain and improves effective aperture fill factor by shifting the received...techniques; (090.1995) Digital holography . References and links 1. J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE

  17. An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.

    PubMed

    Sintupisut, Nardnisa; Liu, Pei-Ling; Yeang, Chen-Hsiang

    2013-10-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between 'effector' molecular aberrations and 'target' gene expressions in GBMs. A rich collection of prior studies attempted to combine copy number variation (CNV) and mRNA expression data. However, systematic methods to integrate multiple types of cancer genomic data-gene mutations, single nucleotide polymorphisms, CNVs, DNA methylations, mRNA and microRNA expressions and clinical information-are relatively scarce. We proposed an algorithm to build 'association modules' linking effector molecular aberrations and target gene expressions and applied the module-finding algorithm to the integrated TCGA GBM data sets. The inferred association modules were validated by six tests using external information and datasets of central nervous system tumors: (i) indication of prognostic effects among patients; (ii) coherence of target gene expressions; (iii) retention of effector-target associations in external data sets; (iv) recurrence of effector molecular aberrations in GBM; (v) functional enrichment of target genes; and (vi) co-citations between effectors and targets. Modules associated with well-known molecular aberrations of GBM-such as chromosome 7 amplifications, chromosome 10 deletions, EGFR and NF1 mutations-passed the majority of the validation tests. Furthermore, several modules associated with less well-reported molecular aberrations-such as chromosome 11 CNVs, CD40, PLXNB1 and GSTM1 methylations, and mir-21 expressions-were also validated by external information. In particular, modules constituting trans-acting effects with chromosome 11 CNVs and cis-acting effects with chromosome

  18. Chlorophyll-a concentration estimation with three bio-optical algorithms: correction for the low concentration range for the Yiam Reservoir, Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-optical algorithms have been applied to monitor water quality in surface water systems. Empirical algorithms, such as Ritchie (2008), Gons (2008), and Gilerson (2010), have been applied to estimate the chlorophyll-a (chl-a) concentrations. However, the performance of each algorithm severely degr...

  19. Phase aberration simulation study of MRgFUS breast treatments

    PubMed Central

    Farrer, Alexis I.; Almquist, Scott; Dillon, Christopher R.; Neumayer, Leigh A.; Parker, Dennis L.; Christensen, Douglas A.; Payne, Allison

    2016-01-01

    Purpose: This simulation study evaluates the effects of phase aberration in breast MR-guided focused ultrasound (MRgFUS) ablation treatments performed with a phased-array transducer positioned laterally to the breast. A quantification of these effects in terms of thermal dose delivery and the potential benefits of phase correction is demonstrated in four heterogeneous breast numerical models. Methods: To evaluate the effects of varying breast tissue properties on the quality of the focus, four female volunteers with confirmed benign fibroadenomas were imaged using 3T MRI. These images were segmented into numerical models with six tissue types, with each tissue type assigned standard acoustic properties from the literature. Simulations for a single-plane 16-point raster-scan treatment trajectory centered in a fibroadenoma in each modeled breast were performed for a breast-specific MRgFUS system. At each of the 16 points, pressure patterns both with and without applying a phase correction technique were determined with the hybrid-angular spectrum method. Corrected phase patterns were obtained using a simulation-based phase aberration correction technique to adjust each element’s transmit phase to obtain maximized constructive interference at the desired focus. Thermal simulations were performed for both the corrected and uncorrected pressure patterns using a finite-difference implementation of the Pennes bioheat equation. The effect of phase correction was evaluated through comparison of thermal dose accumulation both within and outside a defined treatment volume. Treatment results using corrected and uncorrected phase aberration simulations were compared by evaluating the power required to achieve a 20 °C temperature rise at the first treatment location. The extent of the volumes that received a minimum thermal dose of 240 CEM at 43 °C inside the intended treatment volume as well as the volume in the remaining breast tissues was also evaluated in the form of

  20. Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    N'Diaye, M.; Vigan, A.; Dohlen, K.; Sauvage, J.-F.; Caillat, A.; Costille, A.; Girard, J. H. V.; Beuzit, J.-L.; Fusco, T.; Blanchard, P.; Le Merrer, J.; Le Mignant, D.; Madec, F.; Moreaux, G.; Mouillet, D.; Puget, P.; Zins, G.

    2016-08-01

    Warm or massive gas giant planets, brown dwarfs, and debris disks around nearby stars are now routinely observed by dedicated high-contrast imaging instruments that are mounted on large, ground-based observatories. These facilities include extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve unprecedented sensitivities for exoplanet detection and their spectral characterization. However, low spatial frequency differential aberrations between the ExAO sensing path and the science path represent critical limitations for the detection of giant planets with a contrast lower than a few 10-6 at very small separations (<0.3'') from their host star. In our previous work, we proposed a wavefront sensor based on Zernike phase-contrast methods to circumvent this problem and measure these quasi-static aberrations at a nanometric level. We present the design, manufacturing, and testing of ZELDA, a prototype that was installed on VLT/SPHERE during its reintegration in Chile. Using the internal light source of the instrument, we first performed measurements in the presence of Zernike or Fourier modes introduced with the deformable mirror. Our experimental results are consistent with the results in simulations, confirming the ability of our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy. Following these results, we corrected the long-lived non-common path aberrations in SPHERE based on ZELDA measurements and estimated a contrast gain of 10 in the coronagraphic image at 0.2'', reaching the raw contrast limit set by the coronagraph in the instrument. In addition to this encouraging result, the simplicity of the design and its phase reconstruction algorithm makes ZELDA an excellent candidate for the online measurements of quasi-static aberrations during the observations. The implementation of a ZELDA-based sensing path on the current and future facilities (ELTs, future space missions) could facilitate the observation of cold gaseous

  1. Wave aberration function and its definition

    NASA Astrophysics Data System (ADS)

    Zverev, V. A.; Rytova, E. S.; Timoshchuk, I. N.

    2011-06-01

    A definition of a wave aberration as a phase shift upon composition of light waves in the image of a point is given using the concept of point eikonal. An expression that determines the total differential of a wave aberration function is obtained and the condition of its integrability is determined. The sequence of the wave aberration function definition at the known functions of the meridional and sagittal components of lateral aberration is presented.

  2. Using geometric algebra to study optical aberrations

    SciTech Connect

    Hanlon, J.; Ziock, H.

    1997-05-01

    This paper uses Geometric Algebra (GA) to study vector aberrations in optical systems with square and round pupils. GA is a new way to produce the classical optical aberration spot diagrams on the Gaussian image plane and surfaces near the Gaussian image plane. Spot diagrams of the third, fifth and seventh order aberrations for square and round pupils are developed to illustrate the theory.

  3. Sensitivity of Satellite-Based Skin Temperature to Different Surface Emissivity and NWP Reanalysis Sources Demonstrated Using a Single-Channel, Viewing-Angle-Corrected Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Minnis, P.; Yost, C. R.; Chee, T.; Palikonda, R.

    2015-12-01

    Single-channel algorithms for satellite thermal-infrared- (TIR-) derived land and sea surface skin temperature (LST and SST) are advantageous in that they can be easily applied to a variety of satellite sensors. They can also accommodate decade-spanning instrument series, particularly for periods when split-window capabilities are not available. However, the benefit of one unified retrieval methodology for all sensors comes at the cost of critical sensitivity to surface emissivity (ɛs) and atmospheric transmittance estimation. It has been demonstrated that as little as 0.01 variance in ɛs can amount to more than a 0.5-K adjustment in retrieved LST values. Atmospheric transmittance requires calculations that employ vertical profiles of temperature and humidity from numerical weather prediction (NWP) models. Selection of a given NWP model can significantly affect LST and SST agreement relative to their respective validation sources. Thus, it is necessary to understand the accuracies of the retrievals for various NWP models to ensure the best LST/SST retrievals. The sensitivities of the single-channel retrievals to surface emittance and NWP profiles are investigated using NASA Langley historic land and ocean clear-sky skin temperature (Ts) values derived from high-resolution 11-μm TIR brightness temperature measured from geostationary satellites (GEOSat) and Advanced Very High Resolution Radiometers (AVHRR). It is shown that mean GEOSat-derived, anisotropy-corrected LST can vary by up to ±0.8 K depending on whether CERES or MODIS ɛs sources are used. Furthermore, the use of either NOAA Global Forecast System (GFS) or NASA Goddard Modern-Era Retrospective Analysis for Research and Applications (MERRA) for the radiative transfer model initial atmospheric state can account for more than 0.5-K variation in mean Ts. The results are compared to measurements from the Surface Radiation Budget Network (SURFRAD), an Atmospheric Radiation Measurement (ARM) Program ground

  4. Analysis of nodal aberration properties in off-axis freeform system design.

    PubMed

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design.

  5. CLASSICAL AREAS OF PHENOMENOLOGY: Study on the design and Zernike aberrations of a segmented mirror telescope

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Yu; Li, Lin; Huang, Yi-Fan

    2009-07-01

    The segmented mirror telescope is widely used. The aberrations of segmented mirror systems are different from single mirror systems. This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems. It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem. The design of a segmented space telescope and segmented schemes are discussed, and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.

  6. Pathophysiology of MDS: genomic aberrations.

    PubMed

    Ichikawa, Motoshi

    Myelodysplastic syndromes (MDS) are characterized by clonal proliferation of hematopoietic stem/progenitor cells and their apoptosis, and show a propensity to progress to acute myelogenous leukemia (AML). Although MDS are recognized as neoplastic diseases caused by genomic aberrations of hematopoietic cells, the details of the genetic abnormalities underlying disease development have not as yet been fully elucidated due to difficulties in analyzing chromosomal abnormalities. Recent advances in comprehensive analyses of disease genomes including whole-genome sequencing technologies have revealed the genomic abnormalities in MDS. Surprisingly, gene mutations were found in approximately 80-90% of cases with MDS, and the novel mutations discovered with these technologies included previously unknown, MDS-specific, mutations such as those of the genes in the RNA-splicing machinery. It is anticipated that these recent studies will shed new light on the pathophysiology of MDS due to genomic aberrations.

  7. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  8. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images.

    PubMed

    Barrett, T K; Sandler, D G

    1993-04-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 microm rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  9. A practical comparison of phase diversity to interferometry in measuring the aberrations in an adaptive optics system

    SciTech Connect

    Bauman, B; Campbell, G; Carrano, C; Gavel, D T; Olivier, S

    1999-07-01

    Any adaptive optics system must be calibrated with respect to internal aberrations in order for it to properly correct the starlight before it enters the science camera. Typical internal calibration consists of using a point source stimulus at the input to the AO system and recording the wavefront at the output. Two methods for such calibration have been implemented on the adaptive optics system at Lick Observatory. The first technique, Phase Diversity, consists of taking out of focus images with the science camera and using an iterative algorithm to estimate the system wavefront. A second technique uses a newly installed instrument, the Phase-Shifting Diffraction Interferometer, which has the promise of providing very high accuracy wavefront measurements. During observing campaigns in 1998, both of these methods were used for initial calibrations. In this paper we present results and compare the two methods in regard to accuracy and their practical aspects.

  10. Wide-field aberration corrector for spherical gossamer primary mirrors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2000-10-01

    If gossamer primary mirrors were to be constructed in a spherical form, it would be possible to arrange a simple null- test in situ. However, spherical mirrors would require correction of the large amount of spherical aberration created in pupils that generally will be greater than 2 m diameter. The design requirement is for diffraction-limited performance over a useful angular field. The otherwise excellent wide- field design solutions of the classical Schmidt and Maksutov are inapplicable in gossamer structures because of the mass and size penalty of large refractive components. However, it is possible for this mode of correction to be achieved near the prime focus by means of pupil transfer optics that minify the large entrance pupil down to more acceptable dimensions. A problem with these solutions is constraint of field coverage due to pupil aberrations created by the large spherical aberration of the primary mirror. This leads the designer towards slower primaries and the penalty of larger, heavier structures. A solution is presented here for spherical primaries with speeds up to f/4. This is based on the 'KiwiStar' principle presented here in 1997, in which a large spherical catoptric is combined by pupil-transfer with a smaller spherical catadioptric to give well corrected wide field images of high speed. This system is well suited to correction at the prime focus of large spherical mirrors, and has only one relatively small weak aspheric surface to provide zonal correction, all other surfaces being spherical. An example is presented of a 4 m diameter, f/2.5 system that is diffraction-limited over the whole of a 0.25 degree field (43 mm diameter), for a bandpass of 486 - 850 nm.

  11. Seidel aberrations of the Gabor superlens.

    PubMed

    Hamilton Shepard, R

    2014-02-10

    Equations are presented for the third-order Seidel aberrations of the Gabor superlens (GSL) as a function of microtelescope channel position within the aperture array. To reveal the origin and form of increasing aberration with channel height, Seidel coefficients are derived as a function of the accumulating pitch difference between the lens arrays and the aberrations present in the centered channel. Two- and three-element Gabor lenses are investigated and their aberrations are expressed as a function of first-order design parameters. The derived theory is then compared to a real ray trace simulation to demonstrate the accuracy of third-order aberration theory to predict GSL image quality.

  12. The Effects of Observation of Learn Units during Reinforcement and Correction Conditions on the Rate of Learning Math Algorithms by Fifth Grade Students

    ERIC Educational Resources Information Center

    Neu, Jessica Adele

    2013-01-01

    I conducted two studies on the comparative effects of the observation of learn units during (a) reinforcement or (b) correction conditions on the acquisition of math objectives. The dependent variables were the within-session cumulative numbers of correct responses emitted during observational sessions. The independent variables were the…

  13. Aberration

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (1) The apparent displacement of a star from its mean position on the celestial sphere due to the velocity of the Earth in its orbit around the Sun. The phenomenon was discovered in 1729 by James Bradley (1693-1762) who was, in fact, trying to measure stellar parallax. The displacement is caused by the combination of the velocity of the Earth and the velocity of light approaching from the source. ...

  14. Correlations between corneal and total wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Mrochen, Michael; Jankov, Mirko; Bueeler, Michael; Seiler, Theo

    2002-06-01

    Purpose: Corneal topography data expressed as corneal aberrations are frequently used to report corneal laser surgery results. However, the optical image quality at the retina depends on all optical elements of the eye such as the human lens. Thus, the aim of this study was to investigate the correlations between the corneal and total wavefront aberrations and to discuss the importance of corneal aberrations for representing corneal laser surgery results. Methods: Thirty three eyes of 22 myopic subjects were measured with a corneal topography system and a Tschernig-type wavefront analyzer after the pupils were dilated to at least 6 mm in diameter. All measurements were centered with respect to the line of sight. Corneal and total wavefront aberrations were calculated up to the 6th Zernike order in the same reference plane. Results: Statistically significant correlations (p < 0.05) between the corneal and total wavefront aberrations were found for the astigmatism (C3,C5) and all 3rd Zernike order coefficients such as coma (C7,C8). No statistically significant correlations were found for all 4th to 6th order Zernike coefficients except for the 5th order horizontal coma C18 (p equals 0.003). On average, all Zernike coefficients for the corneal aberrations were found to be larger compared to Zernike coefficients for the total wavefront aberrations. Conclusions: Corneal aberrations are only of limited use for representing the optical quality of the human eye after corneal laser surgery. This is due to the lack of correlation between corneal and total wavefront aberrations in most of the higher order aberrations. Besides this, the data present in this study yield towards an aberration balancing between corneal aberrations and the optical elements within the eye that reduces the aberration from the cornea by a certain degree. Consequently, ideal customized ablations have to take both, corneal and total wavefront aberrations, into consideration.

  15. Intracavity, adaptive correction of a high-average-power, solid-state, heat-capacity laser

    SciTech Connect

    LaFortune, K N; Hurd, R L; Brase, J M; Yamamoto, R M

    2005-01-05

    The Solid-State, Heat-Capacity Laser (SSHCL) program at Lawrence Livermore National Laboratory is a multigeneration laser development effort scalable to the megawatt power levels. Wavefront quality is a driving metric of its performance. A deformable mirror with over 100 degrees of freedom situated within the cavity is used to correct both the static and dynamic aberrations sensed with a Shack-Hartmann wavefront sensor. The laser geometry is an unstable, confocal resonator with a clear aperture of 10 cm x 10 cm. It operates in a pulsed mode at a high repetition rate (up to 200 Hz) with a correction being applied before each pulse. Wavefront information is gathered in real-time from a low-power pick-off of the high-power beam. It is combined with historical trends of aberration growth to calculate a correction that is both feedback and feed-forward driven. The overall system design, measurement techniques and correction algorithms are discussed. Experimental results are presented.

  16. Design of a Four-Element, Hollow-Cube Corner Retroreflector for Satellites by use of a Genetic Algorithm.

    PubMed

    Minato, A; Sugimoto, N

    1998-01-20

    A four-element retroreflector was designed for satellite laser ranging and Earth-satellite-Earth laser long-path absorption measurement of the atmosphere. The retroreflector consists of four symmetrically located corner retroreflectors. Each retroreflector element has curved mirrors and tuned dihedral angles to correct velocity aberrations. A genetic algorithm was employed to optimize dihedral angles of each element and the directions of the four elements. The optimized four-element retroreflector has high reflectance with a reasonably broad angular coverage. It is also shown that the genetic algorithm is effective for optimizing optics with many parameters.

  17. Aberrations for Grazing Incidence Optics

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.

    2008-01-01

    Large number of grazing incidence telescope configurations have been designed and studied. Wolte1 telescopes are commonly used in astronomical applications. Wolter telescopes consist of a paraboloidal primary mirror and a hyperboloidal or an ellipsoidal secondary mirror. There are 8 possible combinations of Wolter telescopes. Out of these possible designs only type 1 and type 2 telescopes are widely used. Type 1 telescope is typically used for x-ray applications and type 2 telescopes are used for EUV applications. Wolter-Schwarzshild (WS) telescopes offer improved image quality over a small field of view. The WS designs are stigmatic and free of third order coma and, therefore, the PSF is significantly better over a small field of view. Typically the image is more symmetric about its centroid. As for the Wolter telescopes there are 8 possible combinations of WS telescopes. These designs have not been widely used because the surface equations are complex parametric equations complicating the analysis and typically the resolution requirements are too low to take full advantage of the WS designs. There are several other design options. Most notable are wide field x-ray telescope designs. Polynomial designs were originally suggested by Burrows4 and hyperboloid-hyperboloid designs for solar physics applications were designed by Harvey5. No general aberration theory exists for grazing incidence telescopes that would cover all the design options. Several authors have studied the aberrations of grazing incidence telescopes. A comprehensive theory of Wolter type 1 and 2 telescopes has been developed. Later this theory was expanded to include all possible combinations of grazing incidence and also normal incidence paraboloid-hyperboloid and paraboloid-ellipsoid telescopes. In this article the aberration theory of Wolter type telescopes is briefly reviewed.

  18. The Sensitivity of Shaped Pupil Coronagraphs to Optical Aberrations

    NASA Technical Reports Server (NTRS)

    Green, Joseph J.; Shaklan, Stuart B.; Vanderbei, Robert J.; Kasdin, N. Jeremy

    2004-01-01

    Unlike focal-plane coronagraphs that use occulting spots and Lyot stops to eliminate diffraction, pupil-plane coronagraphs operate by shaping the pupil to redirect the diffracted stellar light into a tight core. As in focal-plane coronagraphs, the optical aberrations in the telescope must be sufficiently corrected to enable high contrast imaging. However, in shaped-pupil coronagraphs, the low-order aberrations resulting from misalignment and optical figure drift have a much smaller influence upon the contrast at at the inner working angle. These weaker sensitivities greatly relax the strict low-order wavefront stability required for high-contrast imaging the cost of some throughput. In this paper, we present the simulated performance of the concentric ring shaped pupil concepts comparing them to focal-plane coronagraphs that are optimized for the same inner working angles.

  19. Adaptive variable selection for extended Nijboer-Zernike aberration retrieval via lasso

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Diao, Huai-An; Guo, Jianhua; Liu, Xiyang; Wu, Yuanhao

    2017-02-01

    In this paper, we propose extended Nijboer-Zernike (ENZ) method for aberration retrieval by incorporating lasso variable selection method which can improve the accuracy of aberration retrieval. The proposed model is computed by the state-of-art algorithm of the Bregman iterative algorithm (Bregman, 1967 [1]; Cai et al., 2008 [2]; Yin et al., 2008 [3]) for L1 minimization problem with adaptive regularized parameter choice based on the strategy (Ito et al., 2011 [4]). Numerical simulations for real world and simulated phase data validate the effectiveness of the proposed ENZ AR via lasso.

  20. The misalignment induced aberrations of TMA telescopes.

    PubMed

    Thompson, Kevin P; Schmid, Tobias; Rolland, Jannick P

    2008-12-08

    The next major space-borne observatory, the James Webb Space Telescope, will be a 6.6M field-biased, obscured, three-mirror anastigmat (TMA). Over the used field of view, the performance of TMA telescopes is dominated by 3(rd) order misalignment aberrations. Here it is shown that two dominant 3(rd) order misalignment aberrations arise for any TMA telescope. One aberration, field constant 3(rd) order coma is a well known misalignment aberration commonly seen in two-mirror Ritchey Chretien telescopes. The second aberration, field-asymmetric, field-linear, 3(rd) order astigmatism is a new and unique image orientation dependence with field derived here for the first time using nodal aberration theory.

  1. Aberrations of ellipsoidal reflectors for unit magnification.

    PubMed

    Mielenz, K D

    1974-12-01

    Ellipsoidal reflectors are useful for the 1:1 imaging of small objects without spherical and chromatic aberration. The magnitude of the off-axis aberrations of such reflectors is computed by application of Fermat's principle to the Hamiltonian point characteristic. The limiting form of the mirror aperture for which these aberrations do not exceed a set tolerance is an ellipse whose semiaxes depend on object size and angle of incidence.

  2. Breaking the spherical and chromatic aberration barrier in transmission electron microscopy.

    PubMed

    Freitag, B; Kujawa, S; Mul, P M; Ringnalda, J; Tiemeijer, P C

    2005-02-01

    Since the invention of transmission electron microscopy (TEM) in 1932 (Z. Physik 78 (1932) 318) engineering improvements have advanced system resolutions to levels that are now limited only by the two fundamental aberrations of electron lenses; spherical and chromatic aberration (Z. Phys. 101 (1936) 593). Since both aberrations scale with the dimensions of the lens, research resolution requirements are pushing the designs to lenses with only a few mm space in the pole-piece gap for the specimen. This is in conflict with the demand for more and more space at the specimen, necessary in order to enable novel techniques in TEM, such as He-cooled cryo electron microscopy, 3D-reconstruction through tomography (Science 302 (2003) 1396) TEM in gaseous environments, or in situ experiments (Nature 427 (2004) 426). All these techniques will only be able to achieve Angstrom resolution when the aberration barriers have been overcome. The spherical aberration barrier has recently been broken by introducing spherical aberration correctors (Nature 392 (1998) 392, 418 (2002) 617), but the correction of the remaining chromatic aberrations have proved to be too difficult for the present state of technology (Optik 57 (1980) 73). Here we present an alternative and successful method to eliminate the chromatic blur, which consists of monochromating the TEM beam (Inst. Phys. Conf. Ser. 161 (1999) 191). We show directly interpretable resolutions well below 1A for the first time, which is significantly better than any TEM operating at 200 KV has reached before.

  3. Chromatic aberration measurement for transmission interferometric testing.

    PubMed

    Seong, Kibyung; Greivenkamp, John E

    2008-12-10

    A method of chromatic aberration measurement is described based on the transmitted wavefront of an optical element obtained from a Mach-Zehnder interferometer. The chromatic aberration is derived from transmitted wavefronts measured at five different wavelengths. Reverse ray tracing is used to remove induced aberrations associated with the interferometer from the measurement. In the interferometer, the wavefront transmitted through the sample is tested against a plano reference, allowing for the absolute determination of the wavefront radius of curvature. The chromatic aberrations of a singlet and a doublet have been measured.

  4. Monochromatic ocular wave aberrations in young monkeys

    PubMed Central

    Ramamirtham, Ramkumar; Kee, Chea-su; Hung, Li-Fang; Qiao-Grider, Ying; Roorda, Austin; Smith, Earl L.

    2006-01-01

    High-order monochromatic aberrations could potentially influence vision-dependent refractive development in a variety of ways. As a first step in understanding the effects of wave aberration on refractive development, we characterized the maturational changes that take place in the high-order aberrations of infant rhesus monkey eyes. Specifically, we compared the monochromatic wave aberrations of infant and adolescent animals and measured the longitudinal changes in the high-order aberrations of infant monkeys during the early period when emmetropization takes place. Our main findings were that (1) adolescent monkey eyes have excellent optical quality, exhibiting total RMS errors that were slightly better than those for adult human eyes that have the same numerical aperture and (2) shortly after birth, infant rhesus monkeys exhibited relatively larger magnitudes of high-order aberrations predominately spherical aberration, coma, and trefoil, which decreased rapidly to assume adolescent values by about 200 days of age. The results demonstrate that rhesus monkey eyes are a good model for studying the contribution of individual ocular components to the eye’s overall aberration structure, the mechanisms responsible for the improvements in optical quality that occur during early ocular development, and the effects of high-order aberrations on ocular growth and emmetropization. PMID:16750549

  5. Aberrations of varied line-space grazing incidence gratings in converging light beams

    NASA Technical Reports Server (NTRS)

    Hettrick, M. C.

    1984-01-01

    Analyses of the imaging properties of several designs for varied-line space gratings in converging beams of light in grazing-incidence spectrometers are presented. An explicit model is defined for the case of a plane-reflection grating intercepting light that converges and is reflected to a stigmatic point associated with the zero-order image of the grating. Smooth spatial variation of the grating constant then permits aberration correction. The aberrations are expressed as polynomials in the grating lens coordinates using power series expansions. Application of the model is illustrated in terms of aberrations experienced with the short wavelength spectrometer on the EUVE satellite. Attention is given to straight and parallel in-plane grooves, curved groove in-plane designs and off-plane grooves. Aberrations due to dispersions and misalignment are also considered.

  6. Binocular adaptive optics visual simulator: understanding the impact of aberrations on actual vision

    NASA Astrophysics Data System (ADS)

    Fernández, Enrique J.; Prieto, Pedro M.; Artal, Pablo

    2010-02-01

    A novel adaptive optics system is presented for the study of vision. The apparatus is capable for binocular operation. The binocular adaptive optics visual simulator permits measuring and manipulating ocular aberrations of the two eyes simultaneously. Aberrations can be corrected, or modified, while the subject performs visual testing under binocular vision. One of the most remarkable features of the apparatus consists on the use of a single correcting device, and a single wavefront sensor (Hartmann-Shack). Both the operation and the total cost of the instrument largely benefit from this attribute. The correcting device is a liquid-crystal-on-silicon (LCOS) spatial light modulator. The basic performance of the visual simulator consists in the simultaneous projection of the two eyes' pupils onto both the corrector and sensor. Examples of the potential of the apparatus for the study of the impact of the aberrations under binocular vision are presented. Measurements of contrast sensitivity with modified combinations of spherical aberration through focus are shown. Special attention was paid on the simulation of monovision, where one eye is corrected for far vision while the other is focused at near distance. The results suggest complex binocular interactions. The apparatus can be dedicated to the better understanding of the vision mechanism, which might have an important impact in developing new protocols and treatments for presbyopia. The technique and the instrument might contribute to search optimized ophthalmic corrections.

  7. Performance of Dispersed Fringe Sensor in the Presence of Segmented Mirror Aberrations: Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Redding, David C.

    2006-01-01

    Dispersed Fringe Sensing (DFS) is an efficient and robust method for coarse phasing of a segmented primary mirror such as the James Webb Space Telescope (JWST). In this paper, modeling and simulations are used to study the effect of segmented mirror aberrations on the fringe image, DFS signals and DFS detection accuracy. The study has shown due to the pixilation spatial filter effect from DFS signal extraction the effect of wavefront error is reduced and DFS algorithm will be more robust against wavefront aberration by using multi-trace DFS approach. We also studied the JWST Dispersed Hartmann Sensor (DHS) performance in presence of wavefront aberrations caused by the gravity sag and we use the scaled gravity sag to explore the JWST DHS performance relationship with the level of the wavefront aberration. This also includes the effect from line-of-sight jitter.

  8. Extremely high-power CO2 laser beam correction.

    PubMed

    Kudryashov, Alexis; Alexandrov, Alexander; Rukosuev, Alexey; Samarkin, Vadim; Galarneau, Pierre; Turbide, Simon; Châteauneuf, François

    2015-05-10

    This paper presents the results of high-power CO2 laser-aberration correction and jitter stabilization. A bimorph deformable mirror and two tip-tilt piezo correctors were used as executive elements. Two types of wavefront sensors, one Hartmann to measure higher-order aberrations (defocus, astigmatism etc.) based on an uncooled microbolometer long-wave infrared camera and the other a tip-tilt one based on the technology of obliquely sputtered, thin chromium films on Si substrates, were applied to measure wavefront aberrations. We discuss both positive and negative attributes of suggested wavefront sensors. The adaptive system is allowed to reduce aberrations of incoming laser radiation by seven times peak-to-valley and to stabilize the jitter of incoming beams up to 25 μrad at a speed of 100 Hz. The adaptive system frequency range for high-order aberration correction was 50 Hz.

  9. Removing lateral chromatic aberration in bright field optical microscopy.

    PubMed

    Guzmán-Altamirano, Miguel; Gutiérrez-Medina, Braulio

    2015-06-01

    We present an efficient alternative to remove lateral chromatic aberration (LCA) in bright field light microscopy images. Our procedure is based on error calibration using time-sequential acquisition at different wavelengths, and error correction through digital image warping. Measurement of the displacements of fiducial marks in the red and green images relative to blue provide calibration factors that are subsequently used in test images to realign color channels digitally. We demonstrate quantitative improvement in the position and boundaries of objects in target slides and in the color content and morphology of specimens in stained biological samples. Our results show a reduction of LCA content below the 0.1% level.

  10. Learning Disorders and Sex Chromosome Aberrations.

    ERIC Educational Resources Information Center

    Hier, D. B.; And Others

    1980-01-01

    In a prospective study of 20 adult dyslexic men, no sex chromosome aberrations were detected. A retrospective study of 89 Ss with known sex chromosome aberrations revealed 20 of them to be mentally retarded. Among the 69 Ss of normal intelligence, learning, speech, and attention disorders were frequent. (Author/DLS)

  11. RECIPES FOR WRITING ALGORITHMS FOR ATMOSPHERIC CORRECTIONS AND TEMPERATURE/EMISSIVITY SEPARATIONS IN THE THERMAL REGIME FOR A MULTI-SPECTRAL SENSOR

    SciTech Connect

    C. BOREL; W. CLODIUS

    2001-04-01

    This paper discusses the algorithms created for the Multi-spectral Thermal Imager (MTI) to retrieve temperatures and emissivities. Recipes to create the physics based water temperature retrieval, emissivity of water surfaces are described. A simple radiative transfer model for multi-spectral sensors is developed. A method to create look-up-tables and the criterion of finding the optimum water temperature are covered. Practical aspects such as conversion from band-averaged radiances to brightness temperatures and effects of variations in the spectral response on the atmospheric transmission are discussed. A recipe for a temperature/emissivity separation algorithm when water surfaces are present is given. Results of retrievals of skin water temperatures are compared with in-situ measurements of the bulk water temperature at two locations are shown.

  12. Quantitative interferometric microscopy with improved full-field phase aberration compensation

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Wang, Shouyu; Yan, Keding; Sun, Nan; Li, Zhenhua; Liu, Fei

    2014-11-01

    Single-shot quantitative interferometric microscopy (QIM) needs a high-accuracy and rapid phase retrieval algorithm. Retrieved phase distributions are often influenced by phase aberration background caused by both imaging system and phase retrieval algorithms. Here, we propose an improved phase aberration compensation (PAC) approach in order to eliminate the phase aberrations inherent in the data. With this method, sample-free parts are identified and used to calculate the background phase, reducing phase errors induced in samples and providing high-quality phase images. We now demonstrate that QIM based on this PAC approach realizes high-quality phase imaging from a single interferogram. This is of great potential for a real-time speedy diagnosis.

  13. The research of calibration method on lens-tilt displacement transmission-type system based on the aberration bounded model

    NASA Astrophysics Data System (ADS)

    Xu, Chun-mei; Liu, Bing-qi; Li, Li; Huang, Fu-yu; Zhang, Chu

    2015-10-01

    As the developing appliance range of high-resolution optical design, the requirement on the aberration of system design is becoming higher and higher, but the installation and adjustment error of optical components is an important element which influences the aberration. The decentration and tilt of optical components result not only the image lateral displacement but also the aberration enlargement of the optical system, the research on image quality of plane symmetric optical system is becoming more and more popular. The Gaussian correction methods on lens decentration already exist, but it is short of theoretical research to guide the correction on the lens tilt, which leads to the effect of image lateral displacement. This thesis analyzes theoretically a mathematical model between the lens tilt degree and wave aberration, and deduces mathematically the correction equation of zero aberration increment under the aberration constraint condition. Taking an example of some type optical sight, the ZEMAX simulation is carried out to validate this method, and the results show that: This method can effectively guide the correction of lens tilt, and reduce the influence of lens position change on the optical imaging quality. It has important practical significance to guide high-resolution optical design.

  14. Practical comparison of aberration detection algorithms for biosurveillance systems.

    PubMed

    Zhou, Hong; Burkom, Howard; Winston, Carla A; Dey, Achintya; Ajani, Umed

    2015-10-01

    National syndromic surveillance systems require optimal anomaly detection methods. For method performance comparison, we injected multi-day signals stochastically drawn from lognormal distributions into time series of aggregated daily visit counts from the U.S. Centers for Disease Control and Prevention's BioSense syndromic surveillance system. The time series corresponded to three different syndrome groups: rash, upper respiratory infection, and gastrointestinal illness. We included a sample of facilities with data reported every day and with median daily syndromic counts ⩾1 over the entire study period. We compared anomaly detection methods of five control chart adaptations, a linear regression model and a Poisson regression model. We assessed sensitivity and timeliness of these methods for detection of multi-day signals. At a daily background alert rate of 1% and 2%, the sensitivities and timeliness ranged from 24 to 77% and 3.3 to 6.1days, respectively. The overall sensitivity and timeliness increased substantially after stratification by weekday versus weekend and holiday. Adjusting the baseline syndromic count by the total number of facility visits gave consistently improved sensitivity and timeliness without stratification, but it provided better performance when combined with stratification. The daily syndrome/total-visit proportion method did not improve the performance. In general, alerting based on linear regression outperformed control chart based methods. A Poisson regression model obtained the best sensitivity in the series with high-count data.

  15. The BHVI-EyeMapper: Peripheral Refraction and Aberration Profiles

    PubMed Central

    Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Bakaraju, Ravi C.; Holden, Brien A.

    2014-01-01

    ABSTRACT Purpose The aim of this article was to present the optical design of a new instrument (BHVI-EyeMapper, EM), which is dedicated to rapid peripheral wavefront measurements across the visual field for distance and near, and to compare the peripheral refraction and higher-order aberration profiles obtained in myopic eyes with and without accommodation. Methods Central and peripheral refractive errors (M, J180, and J45) and higher-order aberrations (C[3, 1], C[3, 3], and C[4, 0]) were measured in 26 myopic participants (mean [±SD] age, 20.9 [±2.0] years; mean [±SD] spherical equivalent, −3.00 [±0.90] diopters [D]) corrected for distance. Measurements were performed along the horizontal visual field with (−2.00 to −5.00 D) and without (+1.00 D fogging) accommodation. Changes as a function of accommodation were compared using tilt and curvature coefficients of peripheral refraction and aberration profiles. Results As accommodation increased, the relative peripheral refraction profiles of M and J180 became significantly (p < 0.05) more negative and the profile of M became significantly (p < 0.05) more asymmetric. No significant differences were found for the J45 profiles (p > 0.05). The peripheral aberration profiles of C[3, 1], C[3, 3], and C[4, 0] became significantly (p < 0.05) less asymmetric as accommodation increased, but no differences were found in the curvature. Conclusions The current study showed that significant changes in peripheral refraction and higher-order aberration profiles occurred during accommodation in myopic eyes. With its extended measurement capabilities, that is, permitting rapid peripheral refraction and higher-order aberration measurements up to visual field angles of ±50 degrees for distance and near (up to −5.00 D), the EM is a new advanced instrument that may provide additional insights in the ongoing quest to understand and monitor myopia development. PMID:25105690

  16. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron

  17. Atmospheric Correction of Ocean Color Imagery: Test of the Spectral Optimization Algorithm with the Sea-Viewing Wide Field-of-View Sensor.

    PubMed

    Chomko, R M; Gordon, H R

    2001-06-20

    We implemented the spectral optimization algorithm [SOA; Appl. Opt. 37, 5560 (1998)] in an image-processing environment and tested it with Sea-viewing Wide Field-of-View Sensor (SeaWiFS) imagery from the Middle Atlantic Bight and the Sargasso Sea. We compared the SOA and the standard SeaWiFS algorithm on two days that had significantly different atmospheric turbidities but, because of the location and time of the year, nearly the same water properties. The SOA-derived pigment concentration showed excellent continuity over the two days, with the relative difference in pigments exceeding 10% only in regions that are characteristic of high advection. The continuity in the derived water-leaving radiances at 443 and 555 nm was also within ~10%. There was no obvious correlation between the relative differences in pigments and the aerosol concentration. In contrast, standard processing showed poor continuity in derived pigments over the two days, with the relative differences correlating strongly with atmospheric turbidity. SOA-derived atmospheric parameters suggested that the retrieved ocean and atmospheric reflectances were decoupled on the more turbid day. On the clearer day, for which the aerosol concentration was so low that relatively large changes in aerosol properties resulted in only small changes in aerosol reflectance, water patterns were evident in the aerosol properties. This result implies that SOA-derived atmospheric parameters cannot be accurate in extremely clear atmospheres.

  18. Active optics concept for hypertelescope aberration control and pupil densification

    NASA Astrophysics Data System (ADS)

    Dohlen, Kjetil; Dargent, Pascal; Ferrari, Marc; Lemaitre, Gerard R.

    2003-02-01

    One of the instrumental concepts under study for large baseline interferometers for high resolution astronomical imaging, in particular applied to exoplanet search and characterisation, is the hypertelescope (HT). Mainly considered for space deployment, this sparse array of mirror segments supported either by a struss structure or by free-flying micro satellites form a giant, diluted primary mirror. The focal plane instrumentation, including pupil densification optics, is located in the primary focus instrument space craft (ISC). Baselines considered for first-generation HTs are of the order of 100 m, but one can envisage kilometric arrays capable of unprecedented angular resolution. Pointing with such a telescope poses orbital navigation problems. Letting the entire array perform a slow sky-scanning motion and navigating the ISC within the primary focal plane in order to follow the image of the object may solve these problems. The ISC must therefore be equipped with aberration correction optics capable of covering a sufficiently large primary field of view, of the order of a few degrees. In this paper we present optical and mechanical concepts for combined aberration correction and pupil densification using multimode deformable mirror (MDM) and mechanically amplified piezo actuator technologies. Among the advantages of such a system over large monolithic corrector optics is the relaxation of piston alignment requirements for primary segments.

  19. Polarization aberrations of crossed folding mirrors

    NASA Astrophysics Data System (ADS)

    Crandall, David G.; Chipman, Russell A.

    1995-08-01

    Polarization aberrations due to varying polarization state across the field of view (FOV) are investigated for crossed folding mirrors. We define crossed mirrors as oriented in space such that s-polarized light incident on the first mirror is p-polarized at the second mirror. This completely compensates for polarization state changes at one point in the field of view. The resulting polarization aberrations are explored across the FOV using the example of aluminum mirrors overcoated with a 12 layer, highly reflective, dielectric stack. The polarization aberration is very low along a band across the field of view. For arbitrary points in the FOV, the retardance and diattenuation are slightly elliptical.

  20. Pharmacological correction of misfolding of ABC proteins☆

    PubMed Central

    Rudashevskaya, Elena L.; Stockner, Thomas; Trauner, Michael; Freissmuth, Michael; Chiba, Peter

    2014-01-01

    The endoplasmic reticulum (ER) quality control system distinguishes between correctly and incorrectly folded proteins to prevent processing of aberrantly folded conformations along the secretory pathway. Non-synonymous mutations can lead to misfolding of ABC proteins and associated disease phenotypes. Specific phenotypes may at least partially be corrected by small molecules, so-called pharmacological chaperones. Screening for folding correctors is expected to open an avenue for treatment of diseases such as cystic fibrosis and intrahepatic cholestasis. PMID:25027379

  1. A New Method for Finding Optical Aberrations on the Basis of Analysis of the Object Hologram Without Additional Measurements

    NASA Astrophysics Data System (ADS)

    Matkivsky, V. A.; Moiseev, A. A.; Shilyagin, P. A.; Shabanov, D. V.; Gelikonov, G. V.; Gelikonov, V. M.

    2016-11-01

    We propose a new method of compensating for the wavefront aberrations during the image processing. The method employs the digital-holography potential. The developed algorithms allow one to find the wavefront distortions caused by the optical-path nonuniformities during the interference recording of images without additional measurements (i.e., without using the reference point source and measuring the wavefront distortions). The possibility of decreasing the wavefront aberrations from tens to several radians using digital methods is demonstrated.

  2. Visual and optical performance of eyes with different corneal spherical aberration implanted with aspheric intraocular lens

    PubMed Central

    Gong, Xian-Hui; Zheng, Qin-Xiang; Wang, Na; Chen, Ding; Zhao, Juan; Li, Jin; Zhao, Yun-E

    2012-01-01

    AIM To compare the visual and optical performance of eyes with different corneal spherical aberration (SA) implanted with spherical aberration-free intraocular lens (IOLs). METHODS Thirty-six patients with different corneal SA had phacoemulsification with implantation of spherical aberration-free IOLs. Patients were divided into 3 groups according to the value of preoperative corneal SA. Eyes with corneal SA <0.10µm were assigned to group A, those with 0.10 ≤corneal SA <0.20µm to Group B, and those with 0.20≤ corneal SA <0.35µm to Group C. Best-corrected visual acuity (BCVA), contrast sensitivity, corneal SA, total ocular aberrations, and depth of focus were recorded 3 months postoperatively. Distance-corrected near and intermediate visual acuity was studied to measure depth of focus. RESULTS BCVA and contrast sensitivity were similar between groups. There were no significant differences in distance-corrected near or intermediate visual acuity. Corneal SA was similar before and 3 months after surgery in the 3 groups. With a 5.0mm pupil diameter, root mean square values for total ocular higher-order aberrations (HOAs) were lower in groups A and B than in group C. Total ocular SA was lower in group A than in groups B and C. SA was also lower in group B than in group C. Coma and trefoil were similar between the groups. CONCLUSION Implantation of spherical aberration-free IOLs in eyes with different corneal SA results in similar visual performance at BCVA, contrast sensitivity and depth of focus. PMID:22773981

  3. Aspherical lens design using hybrid neural-genetic algorithm of contact lenses.

    PubMed

    Yen, Chih-Ta; Ye, Jhe-Wen

    2015-10-01

    The design of complex contact lenses involves numerous uncertain variables. How to help an optical designer to first design the optimal contact lens to reduce discomfort when wearing a pair of glasses is an essential design concern. This study examined the impact of aberrations on contact lenses to optimize a contact lens design for myopic and astigmatic eyes. In general, two aspherical surfaces can be assembled in an optical system to reduce the overall volume size. However, this design reduces the spherical aberration (SA) values at wide contact radii. The proposed optimization algorithm with optical design can be corrected to improve the SA value and, thus, reduce coma aberration (TCO) values and enhance the modulation transfer function (MTF). This means integrating a modified genetic algorithm (GA) with a neural network (NN) to optimize multiple-quality characteristics, namely the SA, TCO, and MTF, of contact lenses. When the proposed optional weight NN-GA is implemented, the weight values of the fitness function can be varied to adjust system performance. The method simplifies the selection of parameters in the optimization of optical systems. Compared with the traditional CODE V built-in optimal scheme, the proposed scheme is more flexible and intuitive to improve SA, TCO, and MTF values by 50.03%, 45.78%, and 24.7%, respectively.

  4. Prediction of Visual Acuity from Wavefront Aberrations

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor); Ahumada, Albert J. (Inventor)

    2013-01-01

    A method for generating a visual acuity metric, based on wavefront aberrations (WFAs), associated with a test subject and representing classes of imperfections, such as defocus, astigmatism, coma and spherical aberrations, of the subject's visual system. The metric allows choices of different image template, can predict acuity for different target probabilities, can incorporate different and possibly subject-specific neural transfer functions, can predict acuity for different subject templates, and incorporates a model of the optotype identification task.

  5. Chromosome aberrations in decondensed sperm DNA

    SciTech Connect

    Preston, R.J.

    1982-01-01

    Factors that could influence the chromosomal aberration frequency observed at first cleavage following in vivo exposure of germ cells to chemical mutagens are discussed. The techniques of chromosome aberration analysis following sperm DNA condensation by in vitro fertilization or fusion seem to be viable research areas for providing information of human germ cell exposures. However, the potential sensitivity of the assay needs to be better understood, and factors that can influence this sensitivity require a great deal of further study using animal models.

  6. Analysis of the optical field on the human retina from wavefront aberration data.

    PubMed

    Barbero, Sergio; Marcos, Susana

    2008-09-01

    Wave aberrations in the human eye are usually known with respect to the ideal spherical wavefront in the exit pupil. Using Kirchhoff's diffraction theory, we have derived a diffraction integral to compute the optical field on the retina from the wave aberration data. We have proposed a numerical algorithm based on the Stamnes-Spjelkavik-Pedersen (SSP) method to solve that integral. We have shown which approximations are admissible to reduce the complexity of the diffraction integral. In addition, we have compared our results with those of the conventional procedure used to compute intensities on the retina. We have found significant differences between our results and the conventional ones.

  7. Individual eye model based on wavefront aberration

    NASA Astrophysics Data System (ADS)

    Guo, Huanqing; Wang, Zhaoqi; Zhao, Qiuling; Quan, Wei; Wang, Yan

    2005-03-01

    Based on the widely used Gullstrand-Le Grand eye model, the individual human eye model has been established here, which has individual corneal data, anterior chamber depth and the eyeball depth. Furthermore, the foremost thing is that the wavefront aberration calculated from the individual eye model is equal to the eye's wavefront aberration measured with the Hartmann-shack wavefront sensor. There are four main steps to build the model. Firstly, the corneal topography instrument was used to measure the corneal surfaces and depth. And in order to input cornea into the optical model, high-order aspheric surface-Zernike Fringe Sag surface was chosen to fit the corneal surfaces. Secondly, the Hartmann-shack wavefront sensor, which can offer the Zernike polynomials to describe the wavefront aberration, was built to measure the wavefront aberration of the eye. Thirdly, the eye's axial lengths among every part were measured with A-ultrasonic technology. Then the data were input into the optical design software-ZEMAX and the crystalline lens's shapes were optimized with the aberration as the merit function. The individual eye model, which has the same wavefront aberrations with the real eye, is established.

  8. Numerical nonwavefront-guided algorithm for expansion or recentration of the optical zone

    NASA Astrophysics Data System (ADS)

    Arba Mosquera, Samuel; Verma, Shwetabh

    2014-08-01

    Complications may arise due to the decentered ablations during refractive surgery, resulting from human or mechanical errors. Decentration may cause over-/under-corrections, with patients complaining about seeing glares and halos after the procedure. Customized wavefront-guided treatments are often used to design retreatment procedures. However, due to the limitations of wavefront sensors in precisely measuring very large aberrations, some extreme cases may suffer when retreated with wavefront-guided treatments. We propose a simple and inexpensive numerical (nonwavefront-guided) algorithm to recenter the optical zone (OZ) and to correct the refractive error with minimal tissue removal. Due to its tissue-saving capabilities, this method can benefit patients with critical residual corneal thickness. Based on the reconstruction of ablation achieved in the first surgical procedure, we calculate a target ablation (by manipulating the achieved OZ) with adequate centration and an OZ sufficient enough to envelope the achieved ablation. The net ablation map for the retreatment procedure is calculated from the achieved and target ablations and is suitable to expand, recenter, and modulate the lower-order refractive components in a retreatment procedure. The results of our simulations suggest minimal tissue removal with OZ centration and expansion. Enlarging the OZ implies correcting spherical aberrations, whereas inducing centration implies correcting coma. This method shows the potential to improve visual outcomes in extreme cases of retreatment, possibly serving as an uncomplicated and inexpensive alternative to wavefront-guided retreatments.

  9. Algorithms and Algorithmic Languages.

    ERIC Educational Resources Information Center

    Veselov, V. M.; Koprov, V. M.

    This paper is intended as an introduction to a number of problems connected with the description of algorithms and algorithmic languages, particularly the syntaxes and semantics of algorithmic languages. The terms "letter, word, alphabet" are defined and described. The concept of the algorithm is defined and the relation between the algorithm and…

  10. An algorithm for temperature correcting substrate moisture measurements: aligning substrate moisture responses with environmental drivers in polytunnel-grown strawberry plants

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Janes, Stuart; Jenkins, Malcolm; Nicholl, Chris; Kühn, Karl

    2015-04-01

    The aim of this work is to assess the use of temperature corrected substrate moisture data to improve the relationship between environmental drivers and the measurement of substrate moisture content in high porosity soil-free growing environments such as coir. Substrate moisture sensor data collected from strawberry plants grown in coir bags installed in a table-top system under a polytunnel illustrates the impact of temperature on capacitance-based moisture measurements. Substrate moisture measurements made in our coir arrangement possess the negative temperature coefficient of the permittivity of water where diurnal changes in moisture content oppose those of substrate temperature. The diurnal substrate temperature variation was seen to range from 7° C to 25° C resulting in a clearly observable temperature effect in substrate moisture content measurements during the 23 day test period. In the laboratory we measured the ML3 soil moisture sensor (ThetaProbe) response to temperature in Air, dry glass beads and water saturated glass beads and used a three-phase alpha (α) mixing model, also known as the Complex Refractive Index Model (CRIM), to derive the permittivity temperature coefficients for glass and water. We derived the α value and estimated the temperature coefficient for water - for sensors operating at 100MHz. Both results are good agreement with published data. By applying the CRIM equation with the temperature coefficients of glass and water the moisture temperature coefficient of saturated glass beads has been reduced by more than an order of magnitude to a moisture temperature coefficient of

  11. Perceived no reference image quality measurement for chromatic aberration

    NASA Astrophysics Data System (ADS)

    Lamb, Anupama B.; Khambete, Madhuri

    2016-03-01

    Today there is need for no reference (NR) objective perceived image quality measurement techniques as conducting subjective experiments and making reference image available is a very difficult task. Very few NR perceived image quality measurement algorithms are available for color distortions like chromatic aberration (CA), color quantization with dither, and color saturation. We proposed NR image quality assessment (NR-IQA) algorithms for images distorted with CA. CA is mostly observed in images taken with digital cameras, having higher sensor resolution with inexpensive lenses. We compared our metric performance with two state-of-the-art NR blur techniques, one full reference IQA technique and three general-purpose NR-IQA techniques, although they are not tailored for CA. We used a CA dataset in the TID-2013 color image database to evaluate performance. Proposed algorithms give comparable performance with state-of-the-art techniques in terms of performance parameters and outperform them in terms of monotonicity and computational complexity. We have also discovered that the proposed CA algorithm best predicts perceived image quality of images distorted with realistic CA.

  12. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer

    PubMed Central

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A. Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-01-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm. PMID:23082292

  13. Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer.

    PubMed

    Wang, Jinyu; Léger, Jean-François; Binding, Jonas; Boccara, A Claude; Gigan, Sylvain; Bourdieu, Laurent

    2012-10-01

    Aberrations limit the resolution, signal intensity and achievable imaging depth in microscopy. Coherence-gated wavefront sensing (CGWS) allows the fast measurement of aberrations in scattering samples and therefore the implementation of adaptive corrections. However, CGWS has been demonstrated so far only in weakly scattering samples. We designed a new CGWS scheme based on a Linnik interferometer and a SLED light source, which is able to compensate dispersion automatically and can be implemented on any microscope. In the highly scattering rat brain tissue, where multiply scattered photons falling within the temporal gate of the CGWS can no longer be neglected, we have measured known defocus and spherical aberrations up to a depth of 400 µm.

  14. Diagnosing unknown aberrations in an adaptive optics system by use of phase diversity.

    PubMed

    Lee, D J; Welsh, B M; Roggemann, M C; Ellerbroek, B L

    1997-07-01

    We outline a novel method for estimating a fixed aberration that is in the image path but not in the wave-front-sensor (WFS) path of an adaptive optics (AO) imaging system. We accomplish this through a nontraditional application of the Gonsalves [Proc. SPIE 207, 32 (1997)] least-squares phase-diversity technique, using an ensemble of images and WFS data. The diversity phases required for this technique are provided by the temporal differences in WFS residual phase measurements for different members of the ensemble. We demonstrate the technique by using actual observations from an operational AO system exhibiting such an aberration. An estimate of this aberration was obtained by the proposed algorithm that agrees reasonably well with the observed point-spread function.

  15. Striatal Activity is Associated with Deficits of Cognitive Control and Aberrant Salience for Patients with Schizophrenia

    PubMed Central

    Ceaser, Alan E.; Barch, Deanna M.

    2016-01-01

    A recent meta-analysis has shown that a large dopamine abnormality exists in the striatum when comparing patients with schizophrenia and controls, and this abnormality is thought to contribute to aberrant salience assignment (or a misattribution of relevance to irrelevant stimuli). This abnormality may also disrupt striatal contributions to cognitive control processing. We examined the relationship between striatal involvement in cognition and aberrant salience symptoms using a task of cognitive control that involves updating, interference control, and simple maintenance. The current study included a sample of 22 patients with schizophrenia and 20 healthy controls and used a slow event-related fMRI design. We predicted that (1) aberrant salience symptoms would be greater for patient's, (2) patients would demonstrate increased errors during interference control trials, given that patients may be inappropriately assigning salience to distracters, and (3) striatal activity during those errors would be correlated with aberrant salience symptoms. We found a trend toward a significant difference between patients and controls on aberrant salience symptoms, and a significant difference between groups on select task conditions. During interference control trials, patients were more likely to inappropriately encode distracters. For patients, both prefrontal and striatal activity was significantly greater when patients inappropriately identified the distracter as correct compared to activity during distracter rejection. During updating, patient prefrontal and striatal activity was significantly lower for incorrect than correct updating trials. Finally, as predicted, for patients the increase of activity during incorrect distracter trials was positively correlated with aberrant salience symptoms, but only for the striatal region. These relationships may have implications for treatments that improve cognitive function and reduce symptom expression. PMID:26869912

  16. Measurement of optical system aberrations based on randomly encoded hybrid grating

    NASA Astrophysics Data System (ADS)

    Jiang, Jiabin; Ling, Tong; Yang, Yongying; Zhang, Rui

    2016-10-01

    A lateral shearing interferometer based on randomly encoded hybrid grating (REHG) is proposed to measure the optical system aberrations. According to the theory of Fraunhofer diffraction, the REHG is designed to be a combination of a randomly encoded binary amplitude grating and a phase chessboard. Compared with the conventional cross-grating lateral shearing interferometer, the REHG is more suitable for the general aberration testing since no order selection mask is needed. Collimated beam for aberration measurement will converge after passing through the optics system under test. Then the quadriwave lateral shearing interferogram containing the wave-front aberration information is then recorded by the CCD. By selecting its +1 order of the Fourier spectrum in both X and Y directions, the shearing wavefronts in both two orthogonal directions can be obtained employing phase unwarping algorithm. Zernike polynomials are used as basic functions for the original wave-front, and the coefficients of Zernike polynomials can be obtained with shearing wave-fronts. In the experiment, we employed a REHG with a grating pitch of 240μm to test a cemented doublet optics with an aperture of 50mm and a focal lengths of 90mm. The test results showed the peak-to-valley (PTV) aberration is 0.242λ while the root-mean-square (RMS) is 0.064λ. The test results by the REHG are very close to the results by the ZYGO GPI interferometer while the error of PTV is 0.003λ and the error of RMS is 0.007λ. The measurement of optical system aberrations by REHG can reach high precision and exhibit good immunity to environmental disturbance. The REHG can be applied to the optical testing of beam quality, optical system aberration and biomedical research.

  17. Assessing the significance of conserved genomic aberrations using high resolution genomic microarrays.

    PubMed

    Guttman, Mitchell; Mies, Carolyn; Dudycz-Sulicz, Katarzyna; Diskin, Sharon J; Baldwin, Don A; Stoeckert, Christian J; Grant, Gregory R

    2007-08-01

    using an amplification protocol. We demonstrate the accurate detection on simulated data, and on real datasets involving known regions of aberration within subtypes of breast cancer at a resolution consistent with that of the array. Similarly, we apply our method to previously published datasets, including a 250K SNP array, and verify known results as well as detect novel regions of concordant aberration. The algorithm has been fully implemented and tested and is freely available as a Java application at http://www.cbil.upenn.edu/MSA.

  18. Impact of Treatment Decentration on Higher-Order Aberrations after SMILE

    PubMed Central

    Zhang, Wenwen; Cheng, Xinliang; Cai, Jianru

    2017-01-01

    Purpose. To evaluate decentration following femtosecond laser small incision lenticule extraction (SMILE) and sub-Bowman keratomileusis (SBK) and its impact on higher-order aberrations (HOAs). Methods. Prospective, nonrandom, and comparison study. There were 96 eyes of 52 patients who received SMILE and 96 eyes of 49 patients who received SBK in this study. Decentration was calculated 6 months after surgery with Pentacam. HOAs and visual acuity after the surgery were examined for patients in both groups before and 6 months after surgery. Results. The mean decentration displacement in SMILE group was significantly less than SBK group (P = 0.020). 89 eyes were decentered within 0.50 mm after SMILE and SBK. The association between vertical decentration and the induced spherical aberration was insignificant in SMILE group (P = 0.035). There was an association between decentration and safety index, efficacy index, vertical coma, spherical aberration, and HOAs in root mean square (RMS, μm) after SBK (all P < 0.05). No difference was found in uncorrected and corrected distance visual acuity, safety index, efficacy index, and wavefront aberrations between the two subgroups at any delimited value after SMILE (all P > 0.05). Decentration exceeding 0.37 mm affected vertical coma and RMSh of SBK eyes (P = 0.002, 0.005). Conclusion. SMILE surgery achieved more accurate centration than SBK surgery. Vertical decentration is associated with the induced spherical aberration in SMILE.

  19. Exaggerated translation causes synaptic and behavioural aberrations associated with autism.

    PubMed

    Santini, Emanuela; Huynh, Thu N; MacAskill, Andrew F; Carter, Adam G; Pierre, Philippe; Ruggero, Davide; Kaphzan, Hanoch; Klann, Eric

    2013-01-17

    Autism spectrum disorders (ASDs) are an early onset, heterogeneous group of heritable neuropsychiatric disorders with symptoms that include deficits in social interaction skills, impaired communication abilities, and ritualistic-like repetitive behaviours. One of the hypotheses for a common molecular mechanism underlying ASDs is altered translational control resulting in exaggerated protein synthesis. Genetic variants in chromosome 4q, which contains the EIF4E locus, have been described in patients with autism. Importantly, a rare single nucleotide polymorphism has been identified in autism that is associated with increased promoter activity in the EIF4E gene. Here we show that genetically increasing the levels of eukaryotic translation initiation factor 4E (eIF4E) in mice results in exaggerated cap-dependent translation and aberrant behaviours reminiscent of autism, including repetitive and perseverative behaviours and social interaction deficits. Moreover, these autistic-like behaviours are accompanied by synaptic pathophysiology in the medial prefrontal cortex, striatum and hippocampus. The autistic-like behaviours displayed by the eIF4E-transgenic mice are corrected by intracerebroventricular infusions of the cap-dependent translation inhibitor 4EGI-1. Our findings demonstrate a causal relationship between exaggerated cap-dependent translation, synaptic dysfunction and aberrant behaviours associated with autism.

  20. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory.

    PubMed

    Ju, Guohao; Yan, Changxiang; Gu, Zhiyuan; Ma, Hongcai

    2016-05-01

    In active optics systems, one concern is how to quantitatively separate the effects of astigmatic and trefoil figure errors and misalignments that couple together in determining the total aberration fields when wavefront measurements are available at only a few field points. In this paper, we first quantitatively describe the impact of mount-induced trefoil deformation on the net aberration fields by proposing a modified theoretical formulation for the field-dependent aberration behavior of freeform surfaces based on the framework of nodal aberration theory. This formulation explicitly expresses the quantitative relationships between the magnitude of freeform surfaces and the induced aberration components where the freeform surfaces can be located away from the aperture stop and decentered from the optical axis. On this basis, and in combination with the mathematical presentation of nodal aberration theory for the effects of misalignments, we present the analytic expressions for the aberration fields of two-mirror telescopes in the presence of astigmatic primary mirror figure errors, mount-induced trefoil deformations on both mirrors, and misalignments. We quantitatively separate these effects using the analytical expressions with wavefront measurements at a few field points and pointing errors. Valuable insights are provided on how to separate these coupled effects in the computation process. Monte Carlo simulations are conducted to demonstrate the correctness and accuracy of the analytic method presented in this paper.