Science.gov

Sample records for aberration-corrected electron microscopes

  1. Image transfer with spatial coherence for aberration corrected transmission electron microscopes.

    PubMed

    Hosokawa, Fumio; Sawada, Hidetaka; Shinkawa, Takao; Sannomiya, Takumi

    2016-08-01

    The formula of spatial coherence involving an aberration up to six-fold astigmatism is derived for aberration-corrected transmission electron microscopy. Transfer functions for linear imaging are calculated using the newly derived formula with several residual aberrations. Depending on the symmetry and origin of an aberration, the calculated transfer function shows characteristic symmetries. The aberrations that originate from the field's components, having uniformity along the z direction, namely, the n-fold astigmatism, show rotational symmetric damping of the coherence. The aberrations that originate from the field's derivatives with respect to z, such as coma, star, and three lobe, show non-rotational symmetric damping. It is confirmed that the odd-symmetric wave aberrations have influences on the attenuation of an image via spatial coherence. Examples of image simulations of haemoglobin and Si [211] are shown by using the spatial coherence for an aberration-corrected electron microscope. PMID:27155359

  2. Depth Sectioning with the Aberration-Corrected Scanning Transmission Electron Microscope

    SciTech Connect

    Borisevich, Albina Y; Lupini, Andrew R; Pennycook, Stephen J

    2006-01-01

    The ability to correct the aberrations of the probe-forming lens in the scanning transmission electron microscope provides not only a significant improvement in transverse resolution but in addition brings depth resolution at the nanometer scale. Aberration correction therefore opens up the possibility of 3D imaging by optical sectioning. Here we develop a definition for the depth resolution for scanning transmission electron microscope depth sectioning and present initial results from this method. Objects such as catalytic metal clusters and single atoms on various support materials are imaged in three dimensions with a resolution of several nanometers. Effective focal depth is determined by statistical analysis and the contributing factors are discussed. Finally, current challenges and future capabilities available through new instruments are discussed.

  3. An aberration corrected photoemission electron microscope at the advanced light source

    SciTech Connect

    Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N.; Marcus, M.; Munson, D.; Padmore, H.; Petermann, K.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2003-11-01

    Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.

  4. Sub-Angstrom Low Voltage Performance of a Monochromated, Aberration-Corrected Transmission Electron Microscope

    PubMed Central

    Bell, David C.; Russo, Christopher J.; Benner, Gerd

    2011-01-01

    Lowering the electron energy in the transmission electron microscope allows for a significant improvement in contrast of light elements, and reduces knock-on damage for most materials. If low-voltage electron microscopes are defined as those with accelerating voltages below 100 kV, the introduction of aberration correctors and monochromators to the electron microscope column enables Ångstrom-level resolution, which was previously reserved for higher voltage instruments. Decreasing electron energy has three important advantages: 1) knock-on damage is lower, which is critically important for sensitive materials such as graphene and carbon nanotubes; 2) cross sections for electron-energy-loss spectroscopy increase, improving signal-to-noise for chemical analysis; 3) elastic scattering cross sections increase, improving contrast in high-resolution, zero-loss images. The results presented indicate that decreasing the acceleration voltage from 200 kV to 80 kV in a monochromated, aberration-corrected microscope enhances the contrast while retaining sub-angstrom resolution. These improvements in low-voltage performance are expected to produce many new results and enable a wealth of new experiments in materials science. PMID:20598206

  5. Materials Characterization in the Aberration-Corrected Scanning Transmission Electron Microscope

    SciTech Connect

    Varela del Arco, Maria; Lupini, Andrew R; van Benthem, Klaus; Borisevich, Albina Y; Chisholm, Matthew F; Shibata, Naoya; Abe, E.; Pennycook, Stephen J

    2005-01-01

    In the nanoscience era, the properties of many exciting new materials and devices will depend on the details of their composition down to the level of single atoms. Thus the characterization of the structure and electronic properties of matter at the atomic scale is becoming ever more vital for economic and technological as well as for scientific reasons. The combination of atomic-resolution Z-contrast scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) represents a powerful method to link the atomic and electronic structure to macroscopic properties, allowing materials, nanoscale systems, and interfaces to be probed in unprecedented detail. Z-contrast STEM uses electrons that have been scattered to large angles for imaging. The relative intensity of each atomic column is roughly proportional to Z{sup 2}, where Z is the atomic number. Recent developments in correcting the aberrations of the lenses in the electron microscope have pushed the achievable spatial resolution and the sensitivity for imaging and spectroscopy in the STEM into the sub-Angstrom (sub-{angstrom}) regime, providing a new level of insight into the structure/property relations of complex materials. Images acquired with an aberration-corrected instrument show greatly improved contrast. The signal-to-noise ratio is sufficiently high to allow sensitivity even to single atoms in both imaging and spectroscopy. This is a key achievement because the detection and measurement of the response of individual atoms has become a challenging issue to provide new insight into many fields, such as catalysis, ceramic materials, complex oxide interfaces, or grain boundaries. In this article, the state-of-the-art for the characterization of all of these different types of materials by means of aberration-corrected STEM and EELS are reviewed.

  6. Observations of Carbon Nanotube Oxidation in an Aberration-Corrected, Environmental Transmission Electron Microscope

    PubMed Central

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2013-01-01

    We report the first direct study on the oxidation of carbon nanotubes at the resolution of an aberration-corrected environmental transmission electron microscope (ETEM), as we locate and identify changes in the same nanotubes as they undergo oxidation at increasing temperatures in-situ in the ETEM. Contrary to earlier reports that CNT oxidation initiates at the end of the tube and proceeds along its length, our findings show that only the outside graphene layer is being removed and on occasion, the interior inner wall is oxidized, presumably due to oxygen infiltrating into the hollow nanotube through an open end or breaks in the tube. We believe that this work provides the foundation for much scientific understanding of the mechanism underlying the nanotube oxidation process, as well as guidelines to manipulate their structure or prevent their oxidation. PMID:23360330

  7. Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

    SciTech Connect

    MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E.; Kelez, N.; Marcus, M.A.; Miller, T.; Padmore, H.A.; Raoux, S.; Robin, D.; Scholl, A.; Schlueter, R.; Schmid, P.; Stohr, J.; Wan, W.; Wei, D.H.; Wu, Y.

    2006-05-20

    A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.

  8. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    SciTech Connect

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki; Müller, Heiko; Haider, Maximilian; Tonomura, Akira

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  9. The Stanford Nanocharacterization Laboratory (SNL) and Recent Applications of an Aberration-Corrected Environmental Transmission Electron Microscope**

    PubMed Central

    Sinclair, Robert; Kempen, Paul Joseph; Chin, Richard; Koh, Ai Leen

    2014-01-01

    This article describes the establishment, over a period of ten years or so, of a multi-user, institution-wide facility for the characterization of materials and devices at the nano-scale. Emphasis is placed on the type of equipment that we have found to be most useful for our users, and the business strategy that maintains its operations. A central component of our facility is an aberration-corrected environmental transmission electron microscope and its application is summarized in the studies of plasmon energies of silver nanoparticles, the band gap of PbS quantum dots, atomic site occupancy near grain boundaries in yttria stabilized zirconia, the lithiation of silicon nanoparticles, in situ observations on carbon nanotube oxidation and the electron tomography of varicella zoster virus nucleocapsids. PMID:25364299

  10. In situ observation on hydrogenation of Mg-Ni films using environmental transmission electron microscope with aberration correction

    SciTech Connect

    Matsuda, Junko; Yoshida, Kenta; Sasaki, Yukichi; Uchiyama, Naoki; Akiba, Etsuo

    2014-08-25

    In situ transmission electron microscopy (TEM) was performed to observe the hydrogenation of Mg-Ni films in a hydrogen atmosphere of 80–100 Pa. An aberration-corrected environmental TEM with a differential pumping system allows us to reveal the Angstrom-scale structure of the films in the initial stage of hydrogenation: first, nucleation and growth of Mg{sub 2}NiH{sub 4} crystals with a lattice spacing of 0.22 nm in an Mg-rich amorphous matrix of the film occurs within 20 s after the start of the high-resolution observation, then crystallization of MgH{sub 2} with a smaller spacing of 0.15 nm happens after approximately 1 min. Our in situ TEM method is also applicable to the analysis of other hydrogen-related materials.

  11. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    SciTech Connect

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-05-21

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  12. Prospects for aberration corrected electron precession.

    PubMed

    Own, C S; Sinkler, W; Marks, L D

    2007-01-01

    Recent developments in aberration control in the TEM have yielded a tremendous enhancement of direct imaging capabilities for studying atomic structures. However, aberration correction also has substantial benefits for achieving ultra-resolution in the TEM through reciprocal space techniques. Several tools are available that allow very accurate detection of the electron distribution in surfaces allowing precise atomic-scale characterization through statistical inversion techniques from diffraction data. The precession technique now appears to extend this capability to the bulk. This article covers some of the progress in this area and details requirements for a next-generation analytical diffraction instrument. An analysis of the contributions offered by aberration correction for precision electron precession is included. PMID:17207934

  13. Restoring defect structures in 3C-SiC/Si (001) from spherical aberration-corrected high-resolution transmission electron microscope images by means of deconvolution processing.

    PubMed

    Wen, C; Wan, W; Li, F H; Tang, D

    2015-04-01

    The [110] cross-sectional samples of 3C-SiC/Si (001) were observed with a spherical aberration-corrected 300 kV high-resolution transmission electron microscope. Two images taken not close to the Scherzer focus condition and not representing the projected structures intuitively were utilized for performing the deconvolution. The principle and procedure of image deconvolution and atomic sort recognition are summarized. The defect structure restoration together with the recognition of Si and C atoms from the experimental images has been illustrated. The structure maps of an intrinsic stacking fault in the area of SiC, and of Lomer and 60° shuffle dislocations at the interface have been obtained at atomic level. PMID:25637810

  14. Adaptive aberration correction using a triode hyperbolic electron mirror.

    PubMed

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2011-01-01

    A converging electron mirror can be used to compensate spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a novel triode (three electrode) hyperbolic mirror as an improvement to the well-known diode (two electrode) hyperbolic mirror for aberration correction. A weakness of the diode mirror is a lack of flexibility in changing the chromatic and spherical aberration coefficients independently without changes in the mirror geometry. In order to remove this limitation, a third electrode can be added. We calculate the optical properties of the resulting triode mirror analytically on the basis of a simple model field distribution. We present the optical properties-the object/image distance, z(0), and the coefficients of spherical and chromatic aberration, C(s) and C(c), of both mirror types from an analysis of electron trajectories in the mirror field. From this analysis, we demonstrate that while the properties of both designs are similar, the additional parameters in the triode mirror improve the range of aberration that can be corrected. The triode mirror is also able to provide a dynamic adjustment range of chromatic aberration for fixed spherical aberration and focal length, or any permutation of these three parameters. While the dynamic range depends on the values of aberration correction needed, a nominal 10% tuning range is possible for most configurations accompanied by less than 1% change in the other two properties. PMID:21930022

  15. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy.

    PubMed

    Chou, Yi-Chia; Panciera, Federico; Reuter, Mark C; Stach, Eric A; Ross, Frances M

    2016-04-14

    We visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas. PMID:27041654

  16. Seeing Inside Materials by Aberration-Corrected Electron Microscopy

    SciTech Connect

    Pennycook, Stephen J

    2011-01-01

    The recent successful correction of lens aberrations in the electron microscope has improved resolution by more than a factor of two in just a few years, bringing many benefits for the study of materials. These benefits extend significantly beyond enhanced resolution alone. Aberration correction gives higher resolution by allowing the objective lens to have a wider aperture, which also results in a reduced depth of field. This effect can be used to only focus specific sections inside materials for the first time. In this contribution we describe recent results exploiting this capability. Additionally, we show how combining the microscopy data with first-principles theory gives new insights into materials properties. We cover two applications, both involving heavy atoms in a lighter host. The first shows how single Hf atoms can be mapped in three dimensions inside the 1 nm-wide SiO2 region of a high dielectric constant device structure, and how a link to macroscopic device properties results through theoretical calculations. The second example is from the field of nanoscience, where individual Au atoms are imaged inside Si nanowires grown by a vapor-liquid-solid mechanism. The majority of Au atoms are probably injected by the highly energetic electron beam. However, their observed sites and atomic configurations represent at least meta-stable configurations and match well to results from density functional calculations.

  17. Aberration-Corrected Scanning Transmission Electron Microscope (STEM) Through-Focus Imaging for Three-Dimensional Atomic Analysis of Bismuth Segregation on Copper [001]/33° Twist Bicrystal Grain Boundaries.

    PubMed

    Wade, Charles Austin; McLean, Mark J; Vinci, Richard P; Watanabe, Masashi

    2016-06-01

    Scanning transmission electron microscope (STEM) through-focus imaging (TFI) has been used to determine the three-dimensional atomic structure of Bi segregation-induced brittle Cu grain boundaries (GBs). With TFI, it is possible to observe single Bi atom distributions along Cu [001] twist GBs using an aberration-corrected STEM operating at 200 kV. The depth resolution is ~5 nm. Specimens with GBs intentionally inclined with respect to the microscope's optic axis were used to investigate Bi segregant atom distributions along and through the Cu GB. It was found that Bi atoms exist at most once per Cu unit cell along the GB, meaning that no continuous GB film is present. Therefore, the reduced fracture toughness of this particular Bi-doped Cu boundary would not be caused by fracture of Bi-Bi bonds. PMID:27145975

  18. Bright-field imaging of compound semiconductors using aberration-corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aoki, Toshihiro; Lu, Jing; McCartney, Martha R.; Smith, David J.

    2016-09-01

    This study reports the observation of six different zincblende compound semiconductors in [110] projection using large-collection-angle bright-field (LABF) imaging with an aberration-corrected scanning transmission electron microscope. Phase contrast is completely suppressed when the collection semi-angle is set equal to the convergence semi-angle and there are no reversals in image contrast with changes in defocus or thickness. The optimum focus for imaging closely separated pairs of atomic columns (‘dumbbells’) is unique and easily recognized, and the positions of atomic columns occupied by heavier atoms always have darker intensity than those occupied by lighter atoms. Thus, the crystal polarity of compound semiconductors can be determined unambiguously. Moreover, it is concluded that the LABF imaging mode will be highly beneficial for studying other more complicated heterostructures at the atomic scale.

  19. Aberration Corrected Photoemission Electron Microscopy with Photonics Applications

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Joseph P. S.

    Photoemission electron microscopy (PEEM) uses photoelectrons excited from material surfaces by incident photons to probe the interaction of light with surfaces with nanometer-scale resolution. The point resolution of PEEM images is strongly limited by spherical and chromatic aberration. Image aberrations primarily originate from the acceleration of photoelectrons and imaging with the objective lens and vary strongly in magnitude with specimen emission characteristics. Spherical and chromatic aberration can be corrected with an electrostatic mirror, and here I develop a triode mirror with hyperbolic geometry that has two adjacent, field-adjustable regions. I present analytic and numerical models of the mirror and show that the optical properties agree to within a few percent. When this mirror is coupled with an electron lens, it can provide a large dynamic range of correction and the coefficients of spherical and chromatic aberration can be varied independently. I report on efforts to realize a triode mirror corrector, including design, characterization, and alignment in our microscope at Portland State University (PSU). PEEM may be used to investigate optically active nanostructures, and we show that photoelectron emission yields can be identified with diffraction, surface plasmons, and dielectric waveguiding. Furthermore, we find that photoelectron micrographs of nanostructured metal and dielectric structures correlate with electromagnetic field calculations. We conclude that photoemission is highly spatially sensitive to the electromagnetic field intensity, allowing the direct visualization of the interaction of light with material surfaces at nanometer scales and over a wide range of incident light frequencies.

  20. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L.; Chase, George G.; Reneker, Darrell H.

    2015-12-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of

  1. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy.

    PubMed

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L; Chase, George G; Reneker, Darrell H

    2016-01-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. PMID:26369731

  2. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Lotnyk, Andriy Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd

    2014-02-17

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  3. Historical aspects of aberration correction.

    PubMed

    Rose, Harald H

    2009-06-01

    A brief history of the development of direct aberration correction in electron microscopy is outlined starting from the famous Scherzer theorem established in 1936. Aberration correction is the long story of many seemingly fruitless efforts to improve the resolution of electron microscopes by compensating for the unavoidable resolution-limiting aberrations of round electron lenses over a period of 50 years. The successful breakthrough, in 1997, can be considered as a quantum step in electron microscopy because it provides genuine atomic resolution approaching the size of the radius of the hydrogen atom. The additional realization of monochromators, aberration-free imaging energy filters and spectrometers has been leading to a new generation of analytical electron microscopes providing elemental and electronic information about the object on an atomic scale. PMID:19254915

  4. Controlled polarity of sputter-deposited aluminum nitride on metals observed by aberration corrected scanning transmission electron microscopy

    SciTech Connect

    Harumoto, T.; Sannomiya, T.; Matsukawa, Y.; Muraishi, S.; Shi, J.; Nakamura, Y.; Sawada, H.; Tanaka, T.; Tanishiro, Y.; Takayanagi, K.

    2013-02-28

    The polarity determination process of sputter-deposited aluminum nitride (AlN) on metals has been analyzed using aberration corrected atomic resolution scanning transmission electron microscope. Direct growth of c-axis orientated AlN on face centered cubic metals (fcc) (111) with the local epitaxy has been observed, and the polarity was determined at the AlN/metal interface. We found that the AlN polarity can be controlled by the base metal layer: N-polarity AlN grows on Pt(111) while Al-polarity AlN forms on Al(111). Based on these results, the growth mechanism of AlN on metals is discussed.

  5. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. PMID:22726263

  6. The first observation of titanate nanotubes by spherical aberration corrected high-resolution transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miao, L.; Tanemura, S.; Jiang, T.; Tanemura, M.; Yoshida, K.; Tanaka, N.; Xu, G.

    2009-07-01

    Multi-wall titanate nanotubes (MW-TNNTs) with high aspect ratio, large surface area and good uniformity were produced by alkaline hydrothermal treatment of grounded TiO 2 aerogels and further by applying freeze-drying. Not only the crystal phase and diameter, but also morphology of the starting materials impact on the aspect ratio and transformation efficiency of the obtained nanotubes. Other parameters, such as pH value during neutralization process and drying method for the final products, are important to control length and dispersion of MW-TNNTs. By spherical aberration corrected high-resolution transmission-electron-microscopy (Cs-corrected HRTEM) with lateral space resolution of 0.14 nm at 200 kV accelerating voltage and electron energy loss spectrum (EELS), the detailed structural analysis of MW-TNNTs reveals that (1) diameters of inner and outer tubes are about 4-7 nm and 10 nm, respectively, (2) numbers of layers are different from part to part along the longitudinal tube axis, (3) the walls of the tubes have interlayer spacing of 0.70-0.80 nm and the lateral fringes which are vertical to the walls have spacing of 0.32 nm, (4) each layer of MW-TNNT is the nanosheet composed by the arrayed TiO 6 octahedrons, and respective octahedron being slightly strained, and (5) no chirality of MW-TNNT tubular structure is observed.

  7. Aberration Corrected Scanning Transmission Electron Microscopy of (Ca , Sr)Fe2O5 Brownmillerite superlattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debangshu; Stone, Greg; Moon, Eun Ju; Young, Joshua; Gopalan, Venkatraman; Rondinelli, James; May, Steven; Alem, Nasim

    The brownmillerite phase A2B2O5 consists of ordered oxygen vacancies in alternate perovskite layers forming chiral tetrahedral chains. The handedness of these tetrahedral chains control the polarization of the structure. The current study focuses on 1-1 brownmillerite superlattices grown on a SrTiO3 substrates using molecular beam epitaxy. The B-site in this structure is iron throughout the superlattice film, while the A-site alternates between calcium and strontium in the superlattice layers. In this study, we use atomic resolution aberration corrected scanning transmission electron microscopy (STEM) to investigate the structure and chemistry of the film-substrate interface as well as the chemical structure of the superlattice. Atom positions are determined to measure displacement vectors of A-site cations in the superlattice structure. D.M., G.A.S., V.G. and N.A. were supported by the National Science Foundation under Grant No. DMR-1420620. E.J.M. and S.J.M. were supported by the National Science Foundation under Grant No. DMR-1151649.

  8. Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy.

    PubMed

    Albert, O; Sherman, L; Mourou, G; Norris, T B; Vdovin, G

    2000-01-01

    Off-axis aberrations in a beam-scanning multiphoton confocal microscope are corrected with a deformable mirror. The optimal mirror shape for each pixel is determined by a genetic learning algorithm, in which the second-harmonic or two-photon fluorescence signal from a reference sample is maximized. The speed of the convergence is improved by use of a Zernike polynomial basis for the deformable mirror shape. This adaptive optical correction scheme is implemented in an all-reflective system by use of extremely short (10-fs) optical pulses, and it is shown that the scanning area of an f:1 off-axis parabola can be increased by nine times with this technique. PMID:18059779

  9. The Aberration Corrected SEM

    SciTech Connect

    Joy, David C.

    2005-09-09

    The performance of the conventional low-energy CD-SEM is limited by the aberrations inherent in the probe forming lens. Multi-pole correctors are now available which can reduce or eliminate these aberrations. An SEM equipped with such a corrector offers higher spatial resolution and more probe current from a given electron source, and other aspects of the optical performance are also improved, but the much higher numerical aperture associated with an aberration corrected lens results in a reduction in imaging depth of field.

  10. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Wei, Dan; Wei, Ling; He, Yi; Shi, Guohua; Wei, Xunbin; Zhang, Yudong

    2014-08-01

    We have demonstrated adaptive correction of specimen-induced aberration during in vivo imaging of mouse bone marrow vasculature with confocal fluorescence microscopy. Adaptive optics system was completed with wavefront sensorless correction scheme based on stochastic parallel gradient descent algorithm. Using image sharpness as the optimization metric, aberration correction was performed based upon Zernike polynomial modes. The experimental results revealed the improved signal and resolution leading to a substantially enhanced image contrast with aberration correction. The image quality of vessels at 38- and 75-μm depth increased three times and two times, respectively. The corrections allowed us to detect clearer bone marrow vasculature structures at greater contrast and improve the signal-to-noise ratio.

  11. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lozano, J. G.; Pennycook, T. J.; Jones, L.; Hirsch, P. B.; Nellist, P. D.

    2015-06-01

    Screw dislocations play an important role in materials' mechanical, electrical and optical properties. However, imaging the atomic displacements in screw dislocations remains challenging. Although advanced electron microscopy techniques have allowed atomic-scale characterization of edge dislocations from the conventional end-on view, for screw dislocations, the atoms are predominantly displaced parallel to the dislocation line, and therefore the screw displacements are parallel to the electron beam and become invisible when viewed end-on. Here we show that screw displacements can be imaged directly with the dislocation lying in a plane transverse to the electron beam by optical sectioning using annular dark field imaging in a scanning transmission electron microscope. Applying this technique to a mixed [a+c] dislocation in GaN allows direct imaging of a screw dissociation with a 1.65-nm dissociation distance, thereby demonstrating a new method for characterizing dislocation core structures.

  12. In-situ Study of Dynamic Phenomena at Metal Nanosolder Interfaces Using Aberration Corrected Scanning Transmission Electron Microcopy.

    SciTech Connect

    Lu, Ping

    2014-10-01

    Controlling metallic nanoparticle (NP) interactions plays a vital role in the development of new joining techniques (nanosolder) that bond at lower processing temperatures but remain viable at higher temperatures. The pr imary objective of this project is t o develop a fundamental understanding of the actual reaction processes, associated atomic mechanisms, and the resulting microstructure that occur during thermally - driven bond formation concerning metal - metal nano - scale (%3C50nm) interfaces. In this LDRD pr oject, we have studied metallic NPs interaction at the elevated temperatures by combining in - situ transmission electron microscopy (TEM ) using an aberration - corrected scanning transmission electron microscope (AC - STEM) and atomic - scale modeling such as m olecular dynamic (MD) simulations. Various metallic NPs such as Ag, Cu and Au are synthesized by chemical routines. Numerous in - situ e xperiments were carried out with focus of the research on study of Ag - Cu system. For the first time, using in - situ STEM he ating experiments , we directly observed t he formation of a 3 - dimensional (3 - D) epitaxial Cu - Ag core - shell nanoparticle during the thermal interaction of Cu and Ag NPs at elevated temperatures (150 - 300 o C). The reaction takes place at temperatures as low as 150 o C and was only observed when care was taken to circumvent the effects of electron beam irradiation during STEM imaging. Atomic - scale modeling verified that the Cu - Ag core - shell structure is energetically favored, and indicated that this phenomenon is a nano - scale effect related to the large surface - to - volume ratio of the NPs. The observation potentially can be used for developing new nanosolder technology that uses Ag shell as the "glue" that stic ks the particles of Cu together. The LDRD has led to several journal publications and numerous conference presentations, and a TA. In addition, we have developed new TEM characterization techniques and phase

  13. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Reneker, Darrell; Gorse, Joseph; Lolla, Dinesh; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip; Chase, George

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed. Electron micrographs of thin, self-supporting PVDF nanofibers showed conformations and relative locations of atoms in segments of polymer molecules. Rows of CF2 atomic groups, at 0.25 nm intervals, marked the paths of segments of the PVDF molecules. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, provide quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Synergism between high resolution electron micrographs and images created by molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. Support from Coalescence Filtration Nanofiber Consortium and from the Office of Basic Energy Sciences Contract No. DE-AC02-05CH11231.

  14. Sub-micron spatial resolution of a micro-XAFS electrostatic microscope with bending magnet radiation: Performance assessments and prospects for aberration correction

    NASA Astrophysics Data System (ADS)

    Tonner, B. P.; Dunham, D.

    1994-08-01

    The X-ray photoemission electron microscope (XPEEM) has been shown to be a valuable tool for small-area X-ray absorption fine-structure (XAFS) spectroscopy, and for state-selected imaging. The instrument currently in regular operation on bending-magnet monochromators uses electrostatic optics to create an image of a sample surface in vacuum. The instrument can be operated on a wide variety of X-ray and VUV beamlines, and the spectral resolution is determined by the beamline monochromator. The spatial resolution is determined primarily by the aberrations of the immersion lens accelerating field and the objective lens, although other factors such as surface roughness play an important, though less fundamental role. We have tested the spatial resolution of micro-XAFS with a high quality test object, consisting of a free-standing circular zone plate made of gold. These tests confirm the assessment that chromatic aberration limits the performance of the optics, because of the wide range of kinetic energies of secondary electrons produced in XAFS spectroscopy, and the highly asymmetric intensity distribution of these secondaries. One attempt at solving the chromatic aberration problem is the use of an energy filter, which solves the problem by allowing only a narrow band of electrons to produce an image. We describe an alternative approach, based on chromatic aberration correction, which has great potential for an XPEEM instrument with extremely high transmission, and spatial resolution below 10 nm. We also point out the performance improvements to be expected when XPEEM is adapted to high-throughput undulator beamlines.

  15. Local symmetry breaking of a thin crystal structure of β-Si3N4 as revealed by spherical aberration corrected high-resolution transmission electron microscopy images.

    PubMed

    Kim, Hwang Su; Zhang, Zaoli; Kaiser, Ute

    2012-06-01

    This report is an extension of the study for structural imaging of 5-6 nm thick β-Si(3)N(4) [0001] crystal with a spherical aberration corrected transmission electron microscope by Zhang and Kaiser [2009. Structure imaging of β-Si(3)N(4) by spherical aberration-corrected high-resolution transmission electron microscopy. Ultramicroscopy 109, 1114-1120]. In this work, a local symmetry breaking with an uneven resolution of dumbbells in the six-membered rings revealed in the reported images in the study of Zhang and Kaiser has been analyzed in detail. It is found that this local asymmetry in the image basically is not relevant to a slight mistilt of the specimen and/or a beam tilt (coma). Rather the certain variation of the tetrahedral bond length of Si-N(4) in the crystal structure is found to be responsible for the uneven resolution with a local structural variation from region to region. This characteristic of the variation is also supposed to give a distorted lattice of apparently 2°-2.5° deviations from the perfect hexagonal unit cell as observed in the reported image in the work of Zhang and Kaiser. It is discussed that this variation may prevail only in a thin specimen with a thickness ranging ~≤ 5-6 nm. At the same time, it is noted that the average of the bond length variation is close to the fixed length known in a bulk crystal of β-Si(3)N(4). PMID:22499470

  16. Device and method for creating Gaussian aberration-corrected electron beams

    DOEpatents

    McMorran, Benjamin; Linck, Martin

    2016-01-19

    Electron beam phase gratings have phase profiles that produce a diffracted beam having a Gaussian or other selected intensity profile. Phase profiles can also be selected to correct or compensate electron lens aberrations. Typically, a low diffraction order produces a suitable phase profile, and other orders are discarded.

  17. Aberration-corrected scanning transmission electron microscopy for complex transition metal oxides

    NASA Astrophysics Data System (ADS)

    Qing-Hua, Zhang; Dong-Dong, Xiao; Lin, Gu

    2016-06-01

    Lattice, charge, orbital, and spin are the four fundamental degrees of freedom in condensed matter, of which the interactive coupling derives tremendous novel physical phenomena, such as high-temperature superconductivity (high-T c SC) and colossal magnetoresistance (CMR) in strongly correlated electronic system. Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it, and also indispensable for designing new materials and devices. Scanning transmission electron microscopy (STEM) integrating multiple techniques of structure imaging and spectrum analysis, is a comprehensive platform for providing structural, chemical and electronic information of materials with a high spatial resolution. Benefiting from the development of aberration correctors, STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization; many improvements have been achieved in recent years, thereby giving an in-depth insight into material research. Here, we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides; atomic-scale mapping of ferroelectric polarization, octahedral distortions and rotations, valence state, coordination and spin ordering are presented. We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides. Project supported by the National Key Basic Research Project, China (Grant No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB07030200), and the National Natural Science Foundation of China (Grant Nos. 51522212 and 51421002).

  18. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  19. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.

    PubMed

    Nelayah, Jaysen; Nguyen, Nhat Tai; Alloyeau, Damien; Wang, Guillaume Yangshu; Ricolleau, Christian

    2014-09-01

    Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures. PMID:25079393

  20. Evaluation of stacking faults and associated partial dislocations in AlSb/GaAs (001) interface by aberration-corrected high-resolution transmission electron microscopy

    SciTech Connect

    Wen, C.; Ge, B. H.; Cui, Y. X.; Li, F. H.; Zhu, J.; Yu, R.; Cheng, Z. Y.

    2014-11-15

    The stacking faults (SFs) in an AlSb/GaAs (001) interface were investigated using a 300 kV spherical aberration-corrected high-resolution transmission electron microscope (HRTEM). The structure and strain distribution of the single and intersecting (V-shaped) SFs associated with partial dislocations (PDs) were characterized by the [110] HRTEM images and geometric phase analysis, respectively. In the biaxial strain maps ε{sub xx} and ε{sub yy}, a SF can be divided into several sections under different strain states (positive or negative strain values). Furthermore, the strain state for the same section of a SF is in contrast to each other in ε{sub xx} and ε{sub yy} strain maps. The modification in the strain states was attributed to the variation in the local atomic displacements for the SF in the AlSb film on the GaAs substrate recorded in the lattice image. Finally, the single SF was found to be bounded by two 30° PDs. A pair of 30° PDs near the heteroepitaxial interface reacted to form a Lomer-Cottrell sessile dislocation located at the vertices of V-shaped SFs with opposite screw components. The roles of misfit dislocations, such as the PDs, in strain relaxation were also discussed.

  1. Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy.

    PubMed

    Sales, D L; Varela, M; Pennycook, S J; Galindo, P L; González, L; González, Y; Fuster, D; Molina, S I

    2010-08-13

    Evolution of the size, shape and composition of self-assembled InAs/InP quantum wires through the Stranski-Krastanov transition has been determined by aberration-corrected Z-contrast imaging. High resolution compositional maps of the wires in the initial, intermediate and final formation stages are presented. (001) is the main facet at their very initial stage of formation, which is gradually reduced in favour of [114] or [118], ending with the formation of mature quantum wires with {114} facets. Significant changes in wire dimensions are measured when varying slightly the amount of InAs deposited. These results are used as input parameters to build three-dimensional models that allow calculation of the strain energy during the quantum wire formation process. The observed morphological evolution is explained in terms of the calculated elastic energy changes at the growth front. Regions of the wetting layer close to the nanostructure perimeters have higher strain energy, causing migration of As atoms towards the quantum wire terraces, where the structure is partially relaxed; the thickness of the wetting layer is reduced in these zones and the island height increases until the (001) facet is removed. PMID:20647625

  2. Effect of oxygen stoichiometry in LuFe2O(4-δ) and its microstructure observed by aberration-corrected transmission electron microscopy.

    PubMed

    Yang, H X; Tian, H F; Wang, Z; Qin, Y B; Ma, C; Li, J Q; Cheng, Z Y; Yu, R; Zhu, J

    2012-10-31

    A series of oxygen deficient LuFe(2)O(4-δ) materials have been prepared under a controlled oxygen partial-pressure atmosphere. Measurements of magnetization reveal that the increase of oxygen deficiencies could evidently depress the ferrimagnetic phase transition temperature (T(N)). In additional to the well-known charge ordering within the (11(-)0) crystal plane, a visible structural modulation with q = (0,1/4.2,7/8) commonly appears on the (100) plane in the oxygen deficient samples. An aberration-corrected transmission electron microscopy study on the oxygen deficient samples demonstrates the presence of oxygen vacancies and local structural distortion. The atomic structural features in correlation with the structural modulation, distortion of the FeO(5) polyhedron and the (001) twinning domains have been also examined. PMID:23032863

  3. A ‘jump-to-coalescence’ mechanism during nanoparticle growth revealed by in situ aberration-corrected transmission electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Neng, Wan; Shuang-ying, Lei; Jun, Xu; Martini, Matteo

    2016-05-01

    In this work, we used in situ aberration-corrected transmission electron microscopy (AC-TEM) to observe the coalescence of gold nanoparticles. We observed a critical edge-to-edge distance {d}ec∼ 0.5 {nm} below which the two particles will coalesce rapidly (jump-to-coalescence). A model based on the single-atom-triggered rapid particle contraction was proposed and verified by first-principles calculations, in which evident energy decrease was detected when adding a gold atom between two gold nanoparticles. Our ex situ TEM study of sputtering-deposited gold nanoparticles on different substrates with varied time also supports the jump-to-contact mechanism. This observation afforded physical insight into the fundamental growth mechanism during dynamic particle coalescence processes.

  4. Quantification of the Information Limit of Transmission Electron Microscopes

    SciTech Connect

    Barthel, J.; Thust, A.

    2008-11-14

    The resolving power of high-resolution transmission electron microscopes is characterized by the information limit, which reflects the size of the smallest object detail observable with a particular instrument. We introduce a highly accurate measurement method for the information limit, which is suitable for modern aberration-corrected electron microscopes. An experimental comparison with the traditionally applied Young's fringe method yields severe discrepancies and confirms theoretical considerations according to which the Young's fringe method does not reveal the information limit.

  5. A Site-isolated Mononuclear Iridium Complex Catalyst Supported on MgO: Characterization by Spectroscopy and Aberration-corrected Scanning Transmission Electron Microscopy

    SciTech Connect

    Uzun, A.; Ortalan, V; Browning, N; Gates , B

    2010-01-01

    Supported mononuclear iridium complexes with ethene ligands were prepared by the reaction of Ir(C{sub 2}H{sub 4}){sub 2}(acac) (acac is CH{sub 3}COCHCOCH{sub 3}) with highly dehydroxylated MgO. Characterization of the supported species by extended X-ray absorption fine structure (EXAFS) and infrared (IR) spectroscopies showed that the resultant supported organometallic species were Ir(C{sub 2}H{sub 4}){sub 2}, formed by the dissociation of the acac ligand from Ir(C{sub 2}H{sub 4}){sub 2}(acac) and bonding of the Ir(C{sub 2}H{sub 4}){sub 2} species to the MgO surface. Direct evidence of the site-isolation of these mononuclear complexes was obtained by aberration-corrected scanning transmission electron microscopy (STEM); the images demonstrate the presence of the iridium complexes in the absence of any clusters. When the iridium complexes were probed with CO, the resulting IR spectra demonstrated the formation of Ir(CO){sub 2} complexes on the MgO surface. The breadth of the {nu}{sub CO} bands demonstrates a substantial variation in the metal-support bonding, consistent with the heterogeneity of the MgO surface; the STEM images are not sufficient to characterize this heterogeneity. The supported iridium complexes catalyzed ethene hydrogenation at room temperature and atmospheric pressure in a flow reactor, and EXAFS spectra indicated that the mononuclear iridium species remained intact. STEM images of the used catalyst confirmed that almost all of the iridium complexes remained intact, but this method was sensitive enough to detect a small degree of aggregation of the iridium on the support.

  6. Aberration correction past and present.

    PubMed

    Hawkes, P W

    2009-09-28

    Electron lenses are extremely poor: if glass lenses were as bad, we should see as well with the naked eye as with a microscope! The demonstration by Otto Scherzer in 1936 that skillful lens design could never eliminate the spherical and chromatic aberrations of rotationally symmetric electron lenses was therefore most unwelcome and the other great electron optician of those years, Walter Glaser, never ceased striving to find a loophole in Scherzer's proof. In the wartime and early post-war years, the first proposals for correcting C(s) were made and in 1947, in a second milestone paper, Scherzer listed these and other ways of correcting lenses; soon after, Dennis Gabor invented holography for the same purpose. These approaches will be briefly summarized and the work that led to the successful implementation of quadupole-octopole and sextupole correctors in the 1990 s will be analysed. In conclusion, the elegant role of image algebra in describing image formation and processing and, above all, in developing new methods will be mentioned. PMID:19687058

  7. Brief history of the Cambridge STEM aberration correction project and its progeny.

    PubMed

    Brown, L Michael; Batson, Philip E; Dellby, Niklas; Krivanek, Ondrej L

    2015-10-01

    We provide a brief history of the project to correct the spherical aberration of the scanning transmission electron microscope (STEM) that started in Cambridge (UK) and continued in Kirkland (WA, USA), Yorktown Heights (NY, USA), and other places. We describe the project in the full context of other aberration correction research and related work, partly in response to the incomplete context presented in the paper "In quest of perfection in electron optics: A biographical sketch of Harald Rose on the occasion of his 80th birthday", recently published in Ultramicroscopy. PMID:26094204

  8. TEAM Electron Microscope Animation

    SciTech Connect

    2012-01-01

    The TEAM Electron Microscope, a device that enables atomic-scale imaging in 3-D, has a rotating stage that can hold and position samples inside electron microscopes with unprecedented stability, position-control accuracy, and range of motion.The TEAM Stage makes one of the world's most powerful electron microscopes even better, and enables previously impossible experiments.

  9. Direct imaging of crystal structure and defects in metastable Ge{sub 2}Sb{sub 2}Te{sub 5} by quantitative aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Ross, Ulrich; Lotnyk, Andriy Thelander, Erik; Rauschenbach, Bernd

    2014-03-24

    Knowledge about the atomic structure and vacancy distribution in phase change materials is of foremost importance in order to understand the underlying mechanism of fast reversible phase transformation. In this Letter, by combining state-of-the-art aberration-corrected scanning transmission electron microscopy with image simulations, we are able to map the local atomic structure and composition of a textured metastable Ge{sub 2}Sb{sub 2}Te{sub 5} thin film deposited by pulsed laser deposition with excellent spatial resolution. The atomic-resolution scanning transmission electron microscopy investigations display the heterogeneous defect structure of the Ge{sub 2}Sb{sub 2}Te{sub 5} phase. The obtained results are discussed. Highly oriented Ge{sub 2}Sb{sub 2}Te{sub 5} thin films appear to be a promising approach for further atomic-resolution investigations of the phase change behavior of this material class.

  10. Optical advantages of astigmatic aberration corrected heliostats

    NASA Astrophysics Data System (ADS)

    van Rooyen, De Wet; Schöttl, Peter; Bern, Gregor; Heimsath, Anna; Nitz, Peter

    2016-05-01

    Astigmatic aberration corrected heliostats adapt their shape in dependence of the incidence angle of the sun on the heliostat. Simulations show that this optical correction leads to a higher concentration ratio at the target and thus in a decrease in required receiver aperture in particular for smaller heliostat fields.

  11. Resolving 45-pm-separated Si-Si atomic columns with an aberration-corrected STEM.

    PubMed

    Sawada, Hidetaka; Shimura, Naoki; Hosokawa, Fumio; Shibata, Naoya; Ikuhara, Yuichi

    2015-06-01

    Si-Si atomic columns separated by 45 pm were successfully resolved with a 300-kV aberration-corrected scanning transmission electron microscope (STEM) equipped with a cold-field emission gun. Using a sufficiently small Gaussian effective source size and a 0.4-eV energy spread at 300 kV, the focused electron probe on the specimen was simulated to be sub-50 pm. Image simulation showed that the present probe condition was sufficient to resolve 45 pm Si-Si dumbbells. A silicon crystalline specimen was observed from the [114] direction with a high-angle annular dark field STEM and the intensity profile showed 45 pm separation. A spot corresponding to (45 pm)(-1) was confirmed in the power spectrum of the Fourier transform. PMID:25825509

  12. The atomic structural dynamics of γ-Al2O3 supported Ir-Pt nanocluster catalysts prepared from a bimetallic molecular precursor: a study using aberration-corrected electron microscopy and X-ray absorption spectroscopy.

    PubMed

    Small, Matthew W; Sanchez, Sergio I; Menard, Laurent D; Kang, Joo H; Frenkel, Anatoly I; Nuzzo, Ralph G

    2011-03-16

    This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions. PMID:21341654

  13. Electron microscope studies

    SciTech Connect

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  14. Observation of Materials Processes in Liquids in the Electron Microscope

    SciTech Connect

    Wang, Chong M.; Liao, Honggang; Ross, Frances M.

    2015-01-01

    Materials synthesis and the functioning of devices often indispensably involve liquid media. But direct visualization of dynamic process in liquids, especially with high spatial and temporal resolution, has been challenging. For solid materials, advances in aberration corrected electron microscopy have made observation of atomic level features a routine practice. Here we discuss the extent to which one can take advantage of the resolution of modern electron microscopes to image phenomenon occuring in liquids. We will describe the fundamentals of two different experimental approaches, closed and open liquid cells. We will illustrate the capabilities of each approach by considering processes in batteries and nucleation and growth of nanoparticles from solution. We conclude that liquid cell electron microscopy appears to be duly fulfilling its role for in situ studies of nanoscale processes in liquids, revealing physical and chemical processes otherwise difficult to observe.

  15. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  16. Forensic Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  17. Transmission electron microscope CCD camera

    DOEpatents

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  18. Interfacial atomic structure analysis at sub-angstrom resolution using aberration-corrected STEM

    PubMed Central

    2014-01-01

    The atomic structure of a SiGe/Si epitaxial interface grown via molecular beam epitaxy on a single crystal silicon substrate was investigated using an aberration-corrected scanning transmittance electron microscope equipped with a high-angle annular dark-field detector and an energy-dispersive spectrometer. The accuracy required for compensation of the various residual aberration coefficients to achieve sub-angstrom resolution with the electron optics system was also evaluated. It was found that the interfacial layer was composed of a silicon single crystal, connected coherently to epitaxial SiGe nanolaminates. In addition, the distance between the dumbbell structures of the Si and Ge atoms was approximately 0.136 nm at the SiGe/Si interface in the [110] orientation. The corresponding fast Fourier transform exhibited a sub-angstrom scale point resolution of 0.78 Å. Furthermore, the relative positions of the atoms in the chemical composition line scan signals could be directly interpreted from the corresponding incoherent high-angle annular dark-field image. PMID:25426003

  19. Developing a Quantum Electron Microscope

    NASA Astrophysics Data System (ADS)

    Kohstall, Christoph; Klopfer, Brannon; Francis, Josh; Skulason, Gunnar; Juffmann, Thomas; Kasevich, Mark; QEM Team

    2014-03-01

    We develop a new electron microscope based on the interaction-free measurement principle. Such a Quantum Electron Microscope (QEM) may enable imaging of biological samples with radiation doses so small that they are non-lethal. The realization of the QEM will require precise control over the quantum motion of free electrons. On this poster, we discuss our approach to build a QEM including the realization of an electron resonator and an electron amplitude beam-splitter. On top of the QEM application, these developments will advance the electron analogue to photon quantum optics. Funded by the Gordon and Betty Moore Foundation.

  20. Aberration corrected STEM of iron rhodium nanoislands

    NASA Astrophysics Data System (ADS)

    McLaren, M. J.; Hage, F. S.; Loving, M.; Ramasse, Q. M.; Lewis, L. H.; Marrows, C. H.; Brydson, R. M. D.

    2014-06-01

    Iron-rhodium (FeRh) nanoislands of equiatomic composition have been analysed using scanning transmission electron microscopy (STEM) electron energy loss spec-troscopy(EELS) and high angle annular dark field (HAADF) techniques. Previous magne-tometry results have lead to a hypothesis that at room temperature the core of the islands are antiferromagnetic while the shell has a small ferromagnetic signal. The causes of this effect are most likely to be a difference in composition at the edges or a strain on the island that stretches the lattice and forces the ferromagnetic transition. The results find, at the film-substrate interface, an iron-rich layer ~ 5 Å thick that could play a key role in affecting the magnetostructural transition around the interfacial region and account for the room temperature ferromagnetism.

  1. Electron microscope studies

    SciTech Connect

    Crewe, A.V.; Kapp, O.H.

    1991-06-01

    This year our laboratory has continued to make progress in the design of electron-optical systems, in the study of structure-function relationships of large multi-subunit proteins, in the development of new image processing software and in achieving a workable sub-angstrom STEM. We present an algebraic approach to the symmetrical Einzel (unipotential) lens wherein we simplify the analysis by specifying a field shape that meets some preferred set of boundary or other conditions and then calculate the fields. In a second study we generalize this approach to study of three element electrostatic lenses of which the symmetrical Einzel lens is a particular form. The purpose is to develop a method for assisting in the design of a lens for a particular purpose. In our biological work we study a stable and functional dodecameric complex of globin chains from the hemoglobin of Lumbricus terrestris. This is a complex lacking the linker'' subunit first imaged in this lab and required for maintenance of the native structure. In addition, we do a complete work-up on the hemoglobin of the marine polychaete Eudistylia vancouverii demonstrating the presence of a hierarchy of globin complexes. We demonstrate stable field-emission in the sub-angstrom STEM and the preliminary alignment of the beam. We continue our exploration of a algorithms for alignment of sequences of protein and DNA. Our computer facilities now include four second generation RISC workstations and we continue to take increasing advantage of the floating-point and graphical performance of these devices.

  2. Electron microscope studies

    NASA Astrophysics Data System (ADS)

    Crewe, A. V.; Kapp, O. H.

    1991-06-01

    This year our laboratory has continued to make progress in the design of electron-optical systems, in the study of structure-function relationships of large multi-subunit proteins, in the development of new image processing software and in achieving a workable sub-angstrom STEM. We present an algebraic approach to the symmetrical Einzel (unipotential) lens wherein we simplify the analysis by specifying a field shape that meets some preferred set of boundary or other conditions and then calculate the fields. In a second study we generalize this approach to study of three element electrostatic lenses of which the symmetrical Einzel lens is a particular form. The purpose is to develop a method for assisting in the design of a lens for a particular purpose. In our biological work we study a stable and functional dodecameric complex of globin chains from the hemoglobin of Lumbricus terrestris. This is a complex lacking the 'linker' subunit first imaged in this lab and required for maintenance of the native structure. In addition, we do a complete work-up on the hemoglobin of the marine polychaete Eudistylia vancouverii, demonstrating the presence of a hierarchy of globin complexes. We demonstrate stable field-emission in the sub-angstrom STEM and the preliminary alignment of the beam. We continue our exploration of a algorithms for alignment of sequences of protein and DNA. Our computer facilities now include four second generation RISC workstations and we continue to take increasing advantage of the floating-point and graphical performance of these devices.

  3. Automated computational aberration correction method for broadband interferometric imaging techniques.

    PubMed

    Pande, Paritosh; Liu, Yuan-Zhi; South, Fredrick A; Boppart, Stephen A

    2016-07-15

    Numerical correction of optical aberrations provides an inexpensive and simpler alternative to the traditionally used hardware-based adaptive optics techniques. In this Letter, we present an automated computational aberration correction method for broadband interferometric imaging techniques. In the proposed method, the process of aberration correction is modeled as a filtering operation on the aberrant image using a phase filter in the Fourier domain. The phase filter is expressed as a linear combination of Zernike polynomials with unknown coefficients, which are estimated through an iterative optimization scheme based on maximizing an image sharpness metric. The method is validated on both simulated data and experimental data obtained from a tissue phantom, an ex vivo tissue sample, and an in vivo photoreceptor layer of the human retina. PMID:27420526

  4. Towards Aberration Correction of Transcranial Ultrasound Using Acoustic Droplet Vaporization

    PubMed Central

    Haworth, Kevin J.; Fowlkes, J. Brian; Carson, Paul L.; Kripfgans, Oliver D.

    2008-01-01

    We report on the first experiments demonstrating the transcranial acoustic formation of stable gas bubbles that can be used for transcranial ultrasound aberration correction. It is demonstrated that the gas bubbles can be formed transcranially by phase-transitioning single, superheated, micron-size, liquid dodecafluoropentane droplets with ultrasound, a process known as acoustic droplet vaporization (ADV). ADV was performed at 550 kHz, where the skull is less attenuating and aberrating, allowing for higher-amplitudes to be reached at the focus. Additionally, it is demonstrated that time-reversal focusing at 1 MHz can be used to correct for transcranial aberrations with a single gas bubble acting as a point beacon. Aberration correction was performed using a synthetic aperture approach and verified by the realignment of the scattered waveforms. Under the conditions described below, time-reversal aberration correction using gas bubbles resulted in a gain of 1.9 ± 0.3 in an introduced focusing factor. This is a small fraction of the gain anticipated from complete transmit-receive of a fully-populated two-dimensional array with sub-wavelength elements. PMID:17935872

  5. Carbon nanotube electron sources for electron microscopes

    SciTech Connect

    De Jonge, Niels

    2009-01-01

    Electron sources were made from individual multi-walled carbon nanotubes with closed caps and thoroughly cleaned surfaces. Nanotubes from both chemical vapor deposition growth and arc discharge growth were investigated. These emitters provide a highly stable emission current up to a threshold current of a few microamperes. At too large currents several processes take place such as splitting, breaking and cap closing. The emission process is field emission for a workfunction of 5 eV. The electron optical per-formance is highly beneficial for their use as high-brightness point sources in electron microscopes and advantageous with respect to state-of-the-art electron sources. The life-time is at least two years. We have tested the source successfully in a scanning electron microscope.

  6. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  7. Holographic optical system for aberration corrections in laser Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Kim, R. C.; Case, S. K.; Schock, H. J.

    1985-01-01

    An optical system containing multifaceted holographic optical elements (HOEs) has been developed to correct for aberrations introduced by nonflat windows in laser Doppler velocimetry. The multifacet aberration correction approach makes it possible to record on one plate many sets of adjacent HOEs that address different measurement volume locations. By using 5-mm-diameter facets, it is practical to place 10-20 sets of holograms on one 10 x 12.5-cm plate, so that the procedure of moving the entire optical system to examine different locations may not be necessary. The holograms are recorded in dichromated gelatin and therefore are nonabsorptive and suitable for use with high-power argon laser beams. Low f-number optics coupled with a 90-percent efficient distortion-correcting hologram in the collection side of the system yield high optical efficiency.

  8. Spherical Aberration Corrections for the Electrostatic Gridded Lens

    SciTech Connect

    Pikin,A.

    2008-05-01

    Two methods of spherical aberration corrections of an electrostatic gridded lens have been studied with ray tracing simulations. Both methods are based on modifying electrostatic field on the periphery of the lens. In a simplest case such modification is done by extending the part of the grid support on its radial periphery in axial direction. In alternative method the electric field on the radial periphery of the lens is modified by applying an optimum voltage on an electrically isolated correcting electrode. It was demonstrated, that for a given focal length the voltage on this lens can be optimized for minimum aberration The performance of lenses is presented as a lens contribution to the beam RMS normalized emittance.

  9. New Views of Materials through Aberration-corrected STEM

    SciTech Connect

    Pennycook, Stephen J; Varela del Arco, Maria

    2011-01-01

    The successful correction of third-order and, more recently, fifth-order aberrations has enormously enhanced the capabilities of the scanning transmission electron microscope (STEM), by not only achieving record resolution, but also allowing near 100% efficiency for electron energy loss spectroscopy, and higher currents for two-dimensional spectrum imaging. These advances have meant that the intrinsic advantages of the STEM, incoherent imaging and simultaneous collection of multiple complementary images can now give new insights into many areas of materials physics. Here, we review a number of examples, mostly from the field of complex oxides, and look towards new directions for the future.

  10. Cationic surface reconstructions on cerium oxide nanocrystals: an aberration-corrected HRTEM study.

    PubMed

    Bhatta, Umananda M; Ross, Ian M; Sayle, Thi X T; Sayle, Dean C; Parker, Stephen C; Reid, David; Seal, Sudipta; Kumar, Amit; Möbus, Günter

    2012-01-24

    Instabilities of nanoscale ceria surface facets are examined on the atomic level. The electron beam and its induced atom migration are proposed as a readily available probe to emulate and quantify functional surface activity, which is crucial for, for example, catalytic performance. In situ phase contrast high-resolution transmission electron microscopy with spherical aberration correction is shown to be the ideal tool to analyze cationic reconstruction. Hydrothermally prepared ceria nanoparticles with particularly enhanced {100} surface exposure are explored. Experimental analysis of cationic reconstruction is supported by molecular dynamics simulations where the Madelung energy is shown to be directly related to the binding energy, which enables one to generate a visual representation of the distribution of "reactive" surface oxygen. PMID:22148265

  11. Isoplanatic patch size for aberration correction in ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Pilkington, Wayne C.

    Methods and experimental results are described for determination of the region size in an aberrating medium over which a single set of aberration estimates can achieve satisfactory b-scan resolution ( i.e., the isoplanatic patch) using time-shift compensation for aberration correction of ultrasonic transmit and receive beams. Based on twenty percent allowable increases in the -12 dB width of the receive or transmit beam focus using cross-correction compared to self-correction, the isoplanatic patch sizes were found to between 3 and 5 millimeters laterally for a linearly-scanned transducer, and at least 12 millimeters axially for a target distance of 55 millimeters and aberration comparable to human abdominal wall. These sizes depend on the aberration severity, reference site axial position, and allowable resolution degradation with cross-correction. The lateral isoplanatic patch size of a linearly scanned image can be more than doubled to match that of a beam-steered acquisition using aberration estimate position matching relative to the tissue surface. Further expansion of the lateral isoplanatic patch size by an additional 50 to 100 percent for both scanning methods is also shown through propagation path matched cross-correction mapping of aberration estimates. The specific mapping required to achieve the best propagation path match depends on the axial distribution of the aberrating structures, the focal depth being imaged, and the cross-correction distance. The effectiveness of alternate methods to derive propagation path matching maps with and without a priori knowledge of aberrator spatial distribution are contrasted; and a means to dynamically adjust correction maps to maximize isoplanatic patch sizes is proposed and verified. Lateral cross-correction mapping and the map changes required for each cross-correction distance can all be implemented with simple shifting of aberration estimates within the transducer aperture. Therefore, use of optimally mapped

  12. Phase aberration correction by correlation in digital holographic adaptive optics

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    We present a phase aberration correction method based on the correlation between the complex full-field and guide-star holograms in the context of digital holographic adaptive optics (DHAO). Removal of a global quadratic phase term before the correlation operation plays an important role in the correction. Correlation operation can remove the phase aberration at the entrance pupil plane and automatically refocus the corrected optical field. Except for the assumption that most aberrations lie at or close to the entrance pupil, the presented method does not impose any other constraints on the optical systems. Thus, it greatly enhances the flexibility of the optical design for DHAO systems in vision science and microscopy. Theoretical studies show that the previously proposed Fourier transform DHAO (FTDHAO) is just a special case of this general correction method, where the global quadratic phase term and a defocus term disappear. Hence, this correction method realizes the generalization of FTDHAO into arbitrary DHAO systems. The effectiveness and robustness of this method are demonstrated by simulations and experiments. PMID:23669707

  13. Aberration corrected imaging of a carbon nanotube encapsulated Lindqvist Ion and correlation with Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Sloan, J.; Bichoutskaia, E.; Liu, Z.; Kuganathan, N.; Faulques, E.; Suenaga, K.; Shannon, I. J.

    2012-07-01

    80 kV aberration-corrected transmission electron microscopy (AC-TEM) of discrete [W6O19]2- polyoxometalate ions mounted within double walled carbon nanotubes (DWNTs) allow high precision structural studies to be performed. W atom column separations within the octahedral W6 tungsten template can be visualized with sufficient clarity that correlation with full-scale density functional theory (DFT) can be achieved. Calculations performed on the gas phase and DWNT-mounted [W6O19]2- anions show good agreement, in the latter case, with measured separations between pairs of W2 atom columns imaged within equatorial WO6 octahedra and single W atoms within axial WO6 octahedra. Structural data from the tilted chiral encapsulating DWNT was also determined simultaneously with the anion structural measurements, allowing the nanotube conformation to be addressed in the DFT calculations.

  14. Multi-focus microscopy for aberration-corrected multi-color three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Abrahamsson, Sara

    Due to the classical conflict between spatial and temporal resolution, microscopy studies of fast events in living samples are often performed in 2D even when 3D imaging would be desirable and could provide new insights to biological function. This dissertation describes an instant 3D imaging system - a multi-focus microscope (MFM) - which provides high- resolution, aberration-corrected, multi-color fluorescence images of multiple focal planes simultaneously. Forming an instant focal series eliminates the need for multiple camera exposures and mechanical refocusing, allowing 3D imaging limited only by sample signal strength and the camera read-out rate for a single frame. A module containing the MFM optical components can easily be appended to the camera port of a commercial wide-field microscope. The excellent resolution and sensitivity of MFM is demonstrated on two different 3D biological imaging problems; neuronal imaging in the entire C.elegans embryo and mRNA imaging in cultured mammalian cells.

  15. Atomic sputtering in the analytical electron microscope

    SciTech Connect

    Bradley, C.R.; Zaluzec, N.J.

    1988-08-01

    The advent of UHV medium voltage electron microscopes has brought the microanalyst to a regime of operating conditions in which electron beam induced damage can now be introduced to metallic specimens of medium to high atomic number. We report upon calculations of electron beam induced atomic sputtering which will have bearing upon the next generation of medium voltage analytical electron microscopes. The cross-section calculations reported herein have been completed for all solid elements of the periodic table for incident electron energies up to 1.5 MeV. All computer codes needed to duplicate these computations are available through the EMMPDL. 12 refs., 2 figs., 1 tab.

  16. Light microscopic and electron microscopic histopathology of an iris microhaemangioma.

    PubMed Central

    Meades, K V; Francis, I C; Kappagoda, M B; Filipic, M

    1986-01-01

    A patient who had been observed to have an iris microhaemangioma (capillary haemangioma), confirmed on fluorescein iris angiography, came to cataract surgery. The lesion was excised at the time of surgery and submitted to light and electron microscopic study. It had the features of a hamartoma of the capillary haemangioma type, with its characteristics being specific for vessels seen in iris tissue. Images PMID:3964627

  17. Strain mapping of semiconductor specimens with nm-scale resolution in a transmission electron microscope.

    PubMed

    Cooper, David; Denneulin, Thibaud; Bernier, Nicolas; Béché, Armand; Rouvière, Jean-Luc

    2016-01-01

    The last few years have seen a great deal of progress in the development of transmission electron microscopy based techniques for strain mapping. New techniques have appeared such as dark field electron holography and nanobeam diffraction and better known ones such as geometrical phase analysis have been improved by using aberration corrected ultra-stable modern electron microscopes. In this paper we apply dark field electron holography, the geometrical phase analysis of high angle annular dark field scanning transmission electron microscopy images, nanobeam diffraction and precession diffraction, all performed at the state-of-the-art to five different types of semiconductor samples. These include a simple calibration structure comprising 10-nm-thick SiGe layers to benchmark the techniques. A SiGe recessed source and drain device has been examined in order to test their capabilities on 2D structures. Devices that have been strained using a nitride stressor have been examined to test the sensitivity of the different techniques when applied to systems containing low values of deformation. To test the techniques on modern semiconductors, an electrically tested device grown on a SOI wafer has been examined. Finally a GaN/AlN superlattice was tested in order to assess the different methods of measuring deformation on specimens that do not have a perfect crystalline structure. The different deformation mapping techniques have been compared to one another and the strengths and weaknesses of each are discussed. PMID:26606463

  18. Designs for a quantum electron microscope.

    PubMed

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. PMID:26998703

  19. Seismic isolation of an electron microscope

    SciTech Connect

    Godden, W.G.; Aslam, M.; Scalise, D.T.

    1980-01-01

    A unique two-stage dynamic-isolation problem is presented by the conflicting design requirements for the foundations of an electron microscope in a seismic region. Under normal operational conditions the microscope must be isolated from ambient ground noise; this creates a system extremely vulnerable to seismic ground motions. Under earthquake loading the internal equipment forces must be limited to prevent damage or collapse. An analysis of the proposed design solution is presented. This study was motivated by the 1.5 MeV High Voltage Electron Microscope (HVEM) to be installed at the Lawrence Berkeley Laboratory (LBL) located near the Hayward Fault in California.

  20. Molecular electronics under the microscope

    NASA Astrophysics Data System (ADS)

    2015-03-01

    The field of molecular electronics has developed significantly as experimental techniques to study charge transport through single molecules have become more reliable. Three Articles in this issue highlight how chemists can now better understand and control electronic properties at the molecular level.

  1. [Silhouettes: electron microscopic photography in bioscience].

    PubMed

    Breidbach, Olaf

    2005-06-01

    The paper describes the first attempts of biological electron microphotography. It starts with a description of the early use of electron microscopy in biology, showing that electron microscopy was used as an extension of former light microscopical studies. Thus, the pictures produced by electron microscopy are interpreted as describing the micro-texture of those structures already seen in light microscopy. That was done irrespective from the specific problems of tissue preparation for electron microscopy. The use of photography in electron microscopy is discussed in more detail. It is shown that in electron microscopy, not the preparation itself which is usually destroyed or damaged during observation in the electron microscope. Thus, biological electron microscopy can be described as a real image science. PMID:16060072

  2. Calculations of spherical aberration-corrected imaging behaviour.

    PubMed

    Chang, Lan Yun; Chen, Fu Rong; Kirkland, Angus I; Kai, Ji Jung

    2003-01-01

    Different optimal operating conditions for a C3-corrected transmission electron microscope were compared for both conventional field emission sources and for the next generation of monochromated instruments. In particular, the contrast transfer functions and corresponding wave aberration functions for two previously proposed optimal conditions in which C3 is adjusted to compensate, respectively, C5 or Cc are critically compared. The results indicate that in the presence of a small positive C5 the former provides flat transfer to the information limit whereas the latter shows oscillatory transfer at high spatial frequencies, which is more pronounced for the monochromated instrument. The effects of this behaviour were further investigated through multislice simulations of Si [110] and diamond [110] under the C5-limited condition. These confirm that for the former structure with an interatomic separation of 0.14 nm this aberration has little influence, but that for the latter with a sub-0.1 nm interatomic separation its presence leads to a restricted defocus range over which the structure is faithfully resolved. PMID:14599096

  3. Electron magnetic chiral dichroism in CrO2 thin films using monochromatic probe illumination in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Loukya, B.; Zhang, X.; Gupta, A.; Datta, R.

    2012-11-01

    Electron magnetic chiral dichroism (EMCD) has been studied in CrO2 thin films (with (100) and (110) growth orientations on TiO2 substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution ˜10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8-9 min in energy filtered imaging mode for a given Cr L2,3 energy scan (energy range ˜35 eV). We compared the EMCD signal obtained by extracting the Cr L2,3 spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO2 are compared and discussed with XMCD theoretical spectra.

  4. Miniature electron microscopes for lithography

    NASA Astrophysics Data System (ADS)

    Feinerman, Alan D.; Crewe, David A.; Perng, Dung-Ching; Spindt, Capp A.; Schwoebel, Paul R.; Crewe, Albert V.

    1994-05-01

    Two inexpensive and extremely accurate methods for fabricating miniature 10 - 50 kV and 0.5 - 10 kV electron beam columns have been developed: `slicing,' and `stacking.' Two or three miniature columns could be used to perform a 20 nm or better alignment of an x-ray mask to a substrate. An array of miniature columns could be used for rapid wafer inspection and high throughput electron beam lithography. The column fabrication methods combine the precision of semiconductor processing and fiber optic technologies to create macroscopic structures consisting of charged particle sources, deflecting and focusing electrodes, and detectors. The overall performance of the miniature column also depends on the emission characteristics of the micromachined electron source which is currently being investigated.

  5. Adaptive temporal and wavefront aberration correction for ultrafast lasers with a membrane deformable mirror

    NASA Astrophysics Data System (ADS)

    Sherman, Leah Bruner

    Two adaptive optic systems for correction of either temporal phase error and wavefront errors for ultrafast pulses are demonstrated. These systems consists of a computer controlled micromachined membrane deformable mirror (MMDM) and a genetic learning algorithm (GA). Nonlinear excitation such as two-photon fluorescence or second harmonic generation are used as feedback to the GA to determine the appropriate correction to apply to the mirror. Two MMDMs are used, a 30 x 8 mm, 39 actuator linear MMDM for pulse-shaping applications and a 15 mm diameter, 37 actuator wavefront MMDM. Linear pre-compensation of self-phase modulation (SPM) was experimentally demonstrated utilizing the linear MMDM in a linear pulse-shaper for ultrafast pulses. The nonlinear nature of SPM makes arbitrary polynomial compensation necessary. Pre-compensation of SPM generated in an optical fiber by a 10 fs pulse reduced the pulse from 30fs to 20fs. We demonstrates adaptive correction with the wavefront MMDM by corrected for coma and astigmatism in a reflective multiphoton scanning microscope. An f1, parabola produces a very tight focus with no aberration when it is perfectly aligned. However, when beam scanning is used for two-dimensional imaging the image is severely aberrated. The MMDM and the GA are able to find the best possible wavefront for aberration correction for each scanning position. The horizontal scanning range was increased from 60 mum without the adaptive correction to 170 mum, ≈3 times the uncorrected scanning range, and the vertical scanning range was increased by a comparable amount. This resulted in an increase in scanning area of 9 times. The wavefront MMDM was also used for adaptive correction of spherical aberration from focusing from air, deep into a water-based sample. This depth-based aberration results from an index of refraction mismatch between the sample and the immersion medium of the objective and occurs regardless of beam scanning or sample scanning. By

  6. Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Boyes, E. D.; Gai, P. L.

    2014-06-01

    Environmental scanning transmission electron microscopy (ESTEM) with aberration correction (AC) has recently been added to the capabilities of the more established ETEM for analysis of heterogeneous nanoparticle based catalysts. It has helped to reveal the importance and potentially unique properties of individual atoms as active sites in their own right as well as pathways between established nanoparticles. A new capability is introduced for dynamic in-situ experiments under controlled conditions of specimen temperature and gas environment related to real world conditions pertinent to a range of industrial and societal priorities for new and improved chemical processes, materials, fuels, pharmaceutical products and processes, and in control or remediation of environmental emissions.

  7. Tomographic diffractive microscopy and multiview profilometry with flexible aberration correction.

    PubMed

    Liu, H; Bailleul, J; Simon, B; Debailleul, M; Colicchio, B; Haeberlé, O

    2014-02-01

    We have developed a tomographic diffractive microscope in reflection, which permits observation of sample surfaces with an improved lateral resolution, compared to a conventional holographic microscope. From the same set of data, high-precision measurements can be performed on the shape of the reflective surface by reconstructing the phase of the diffracted field. Doing so allows for several advantages compared to classical holographic interferometric measurements: improvement in lateral resolution, easier phase unwrapping, reduction of the coherent noise, combined with the high-longitudinal precision provided by interferometric phase measurements. We demonstrate these capabilities by imaging various test samples. PMID:24514193

  8. Transmission electron microscope studies of extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  9. Science 101: How Does an Electron Microscope Work?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  10. Transmission Electron Microscope Measures Lattice Parameters

    NASA Technical Reports Server (NTRS)

    Pike, William T.

    1996-01-01

    Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.

  11. Ponderomotive phase plate for transmission electron microscopes

    DOEpatents

    Reed, Bryan W.

    2012-07-10

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  12. A Hemispherical Sparse Phased Array Design For Low Frequency Transcranial Focused Ultrasound Applications Without Skull-Specific Phase Aberration Correction

    NASA Astrophysics Data System (ADS)

    Yin, Xiangtao; Hynynen, Kullervo

    2006-05-01

    A sparse large-element hemispherical phased array scheme was investigated for low frequency transcranial focused ultrasound applications without skull-specific phase aberration correction. The simulated transcranial focused beams in brain from the randomly distributed sparse array elements (0.25 MHz, 125 mm radius of curvature, 250 mm diameter, 50% sparsity of 953 square elements of 10 mm spacing) could be steered without skull specific aberration correction at 0.25 MHz. The 28 foci were on average 1.7±1.2 mm shifted from their intended locations. The average -3 dB beam width and length were 3.3±1.2 mm and 6.3±2.2 mm, respectively. The sidelobe levels ranged from 28% to 62% of the peak pressure values. The focal beam was steerable 35 mm laterally away from the transducer center axis and 30 mm axially in the transducer center axis when the sidelobe pressure values were 50% of or less than the peak pressure values. This allows the array to be mechanically aimed to one quarter of the brain and then electronically steered. The sparse array design offers a tradeoff between the best beam steering range and the manageable number of elements for a practical clinical system.

  13. Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Francis, E. M.; Harte, A.; Frankel, P.; Haigh, S. J.; Jädernäs, D.; Romero, J.; Hallstadius, L.; Preuss, M.

    2014-11-01

    Zirconium alloys used as cladding materials in nuclear reactors can exhibit accelerated irradiation induced growth, often termed linear growth, after sustained neutron irradiation. This phenomenon has been linked to the formation of -component dislocation loops and to the concentration of interstitial solute atoms. It is well documented for the Zircaloys that Fe dissolves from second phase particles (SPPs) during irradiation thus increasing the interstitial solute concentration in the matrix. However, no progress has yet been made into understanding whether a similar process occurs for the newer ZIRLO™ alloys. We aim to overcome this shortcoming here by studying compositional changes in second phase particles in Low Tin ZIRLO™ after neutron and proton irradiation using energy dispersive X-ray (EDX) spectroscopy. Material irradiated to 18 dpa (displacements per atom) using neutrons and to 2.3 and 7 dpa by protons was investigated. The results show that Fe is lost from Zr-Nb-Fe-SPPs during both neutron and proton irradiation. Prior to irradiation, Fe was detected at the interface of β-Nb-SPPs. This Fe enrichment is also dispersed during irradiation. Qualitatively, excellent agreement was found regarding the elemental redistribution processes observed after proton and neutron irradiation.

  14. Scanning electron microscopic autoradiography of lung

    SciTech Connect

    Lauhala, K.E.; Sanders, C.L.; McDonald, K.E.

    1988-09-01

    Scanning electron microscopic (SEM) autoradiography of the lung is being used to determine the distribution of inhaled, alpha particle-emitting, plutonium dioxide particles. SEM autoradiography provides high visual impact views of alpha activity. Particles irradiating the bronchiolar epithelium were detected both on the bronchiolar surface and in peribronchiolar alveoli. The technique is being used to obtain quantitative data on the clearance rates of plutonium particles from bronchi and bronchioles.

  15. Adaptive Optics Analysis of Visual Benefit with Higher-order Aberrations Correction of Human Eye - Poster Paper

    NASA Astrophysics Data System (ADS)

    Xue, Lixia; Dai, Yun; Rao, Xuejun; Wang, Cheng; Hu, Yiyun; Liu, Qian; Jiang, Wenhan

    2008-01-01

    Higher-order aberrations correction can improve visual performance of human eye to some extent. To evaluate how much visual benefit can be obtained with higher-order aberrations correction we developed an adaptive optics vision simulator (AOVS). Dynamic real time optimized modal compensation was used to implement various customized higher-order ocular aberrations correction strategies. The experimental results indicate that higher-order aberrations correction can improve visual performance of human eye comparing with only lower-order aberration correction but the improvement degree and higher-order aberration correction strategy are different from each individual. Some subjects can acquire great visual benefit when higher-order aberrations were corrected but some subjects acquire little visual benefit even though all higher-order aberrations were corrected. Therefore, relative to general lower-order aberrations correction strategy, customized higher-order aberrations correction strategy is needed to obtain optimal visual improvement for each individual. AOVS provides an effective tool for higher-order ocular aberrations optometry for customized ocular aberrations correction.

  16. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  17. Reply to L.M. Brown et al. "Brief history of the Cambridge STEM aberration correction project and its progeny" in Ultramicroscopy 157, 88 (2015).

    PubMed

    Urban, K W; Rose, H

    2016-02-01

    We comment on a Short Communication recently published in Ultramicroscopy in which Brown et al. criticize our description of the time sequence of events in the development of aberration correction systems in electron optics during the 1990s put forward in the introduction to the Ultramicroscopy April 2015 Special Issue. We present an analysis of the published literature furnishing evidence that our description is correct. PMID:26624509

  18. Direct-write liquid phase transformations with a scanning transmission electron microscope.

    PubMed

    Unocic, Raymond R; Lupini, Andrew R; Borisevich, Albina Y; Cullen, David A; Kalinin, Sergei V; Jesse, Stephen

    2016-08-25

    The highly energetic electron beam (e-beam) in a scanning transmission electron microscope (STEM) can induce local changes in the state of matter, ranging from knock-on and atomic movement, to amorphization/crystallization, and to localized chemical/electrochemical reactions. To date, fundamental studies of e-beam induced phenomena and practical applications have been limited by conventional STEM e-beam rastering modes that allow only for uniform e-beam exposures. Here, an automated liquid phase nanolithography method has been developed that enables the direct writing of nanometer scaled features within microfabricated liquid cells. An external e-beam control system, connected to the scan coils of an aberration-corrected STEM, is used to precisely control the position, dwell time, and scan rate of a sub-nanometer STEM probe. Site-specific locations in a sealed liquid cell containing an aqueous solution of H2PdCl4 are irradiated to deposit palladium nanocrystals onto silicon nitride membranes in a highly controlled manner. The threshold electron dose required for the radiolytic deposition of metallic palladium has been determined, the influence of electron dose on the nanolithographically patterned feature size and morphology is explored, and a feedback-controlled monitoring method for active control of the nanofabricated structures through STEM detector signal monitoring is proposed. This approach enables fundamental studies of electron beam induced interactions with matter in liquid cells and opens new pathways to fabricate nanostructures with tailored architectures and chemistries via shape-controlled nanolithographic patterning from liquid-phase precursors. PMID:27510435

  19. Aberration-Corrected Stem of Q-Rich Separates from the Saratov (L4) Meteorite

    NASA Astrophysics Data System (ADS)

    Stroud, R. M.; Chisholm, M. F.; Amari, A.; Matsuda, J.

    2012-09-01

    TEM and aberration-corrected STEM analysis of two nanodiamond- and SiC-free Saratov (L4) separates, AJ (most Q-rich) and AI (Q-rich), show that the carrier is porous carbon consisting of nanoscale graphene platelets.

  20. Harmonic source wavefront aberration correction for ultrasound imaging

    PubMed Central

    Dianis, Scott W.; von Ramm, Olaf T.

    2011-01-01

    A method is proposed which uses a lower-frequency transmit to create a known harmonic acoustical source in tissue suitable for wavefront correction without a priori assumptions of the target or requiring a transponder. The measurement and imaging steps of this method were implemented on the Duke phased array system with a two-dimensional (2-D) array. The method was tested with multiple electronic aberrators [0.39π to 1.16π radians root-mean-square (rms) at 4.17 MHz] and with a physical aberrator 0.17π radians rms at 4.17 MHz) in a variety of imaging situations. Corrections were quantified in terms of peak beam amplitude compared to the unaberrated case, with restoration between 0.6 and 36.6 dB of peak amplitude with a single correction. Standard phantom images before and after correction were obtained and showed both visible improvement and 14 dB contrast improvement after correction. This method, when combined with previous phase correction methods, may be an important step that leads to improved clinical images. PMID:21303031

  1. Studies of a magnetically focused electrostatic mirror. II. Aberration corrections

    PubMed

    Tsai

    2000-02-01

    A magnetically focused electrostatic mirror is shown to be able to correct the spherical and chromatic aberrations of a probe forming system simultaneously. The probe forming system comprises a uniform magnetic lens and a uniform electrostatic mirror. Previous theoretical investigations showed that the spherical and chromatic aberration coefficients of these two components are the same values but with opposite sign, whose combination will therefore be free from aberrations. The experimental arrangement used a solenoid to produce a uniform magnetic field, and a series of plate electrodes to produce a uniform electrostatic field. These fields are shown to satisfy the experimental requirements. By deliberately changing the extraction voltage to defocus the electron beam, the author is able to observe correction of chromatic aberration by one order of magnitude. By deliberately changing the lens field and the mirror field, the author is able to observe the reduction of the asymmetry caused by the spherical aberration, which the author believes also indicates correction by one order of magnitude. PMID:10652006

  2. Atomic-Scale Observation of Migration and Coalescence of Au Nanoclusters on YSZ Surface by Aberration-Corrected STEM

    PubMed Central

    Li, Junjie; Wang, Zhongchang; Chen, Chunlin; Huang, Sumei

    2014-01-01

    Unraveling structural dynamics of noble metal nanoclusters on oxide supports is critical to understanding reaction process and origin of catalytic activity in heterogeneous catalysts. Here, we show that aberration-corrected scanning transmission electron microscopy can provide direct atomic-resolution imaging of surface migration, coalescence, and atomic rearrangement of Au clusters on an Y:ZrO2 (YSZ) support. The high resolution enables us to reveal migration and coalescence process of Au clusters at the atomic scale, and to demonstrate that the coalesced clusters undergo a cooperative atomic rearrangement, which transforms the coherent into incoherent Au/YSZ interface. This approach can help to elucidate atomistic mechanism of catalytic activities and to develop novel catalysts with enhanced functionality. PMID:24980655

  3. Computerized analytical electron microscope for elemental imaging

    NASA Astrophysics Data System (ADS)

    Gorlen, K. E.; Barden, L. K.; Del Priore, J. S.; Fiori, C. E.; Gibson, C. C.; Leapman, R. D.

    1984-06-01

    A computer system has been interfaced to an analytical scanning transmission electron microscope (STEM) to form an integrated system for high-resolution mapping of the elemental constituents of a specimen. The system controls the electron beam position, acquires data from electron energy-loss spectroscopy (EELS) and energy dispersive x-ray spectroscopy (EDS) detectors, and constructs elemental images by analyzing EELS and EDS spectra taken at each pixel. Data also are acquired and digitized from conventional STEM bright-field and dark-field detectors. Since image registration errors are eliminated by acquiring data from all detectors concurrently, elemental distribution images obtained from energy-loss and x-ray detectors can be correlated with morphological images taken from bright-field and dark-field detectors. Energy-loss and x-ray spectra of user-defined target areas can also be obtained. Data can be acquired, processed, and displayed at the same time because a satellite microcomputer interfaced to the microscope does much of the data acquisition, freeing the host computer to subtract the spectral background from the electron energy-loss and x-ray data ``on the fly,'' and also to display dynamically the background corrected energy-loss spectrum at each image pixel. Such a display is important for correct operation of the instrument and interpretation of the results. Images are displayed on a color display system equipped with a digital video array processor, where they can be enhanced, compared, measured, annotated, and photographed. Operation of the system is simplified by using menus for function selection and by filling out forms displayed on a video terminal to enter data-acquisition and processing parameters. The computer-controlled analytical electron microscope is used to provide elemental distributions from thin specimens in biology and materials science. Results show that concentrations of a few atomic percent can be mapped at a resolution of 10 to 20

  4. Characterizing wear with the scanning electron microscope

    SciTech Connect

    Lee, R.H.

    1991-07-01

    The Scanning Electron Microscope (SEM) is used extensively to characterize and analyze wear mechanisms and coatings on material. Wear mechanisms and severity can be identified by the characteristic scars on sample surfaces and by examining wear debris. Backscattered electron imaging is very useful in identifying oxidized materials and locations where coatings have worn thin. These images are compared with spectra from energy-dispersive X-ray spectroscopy or wavelength-dispersive spectroscopy data to verify the identifications. Micrographs of typical wear mechanisms are presented and techniques for analysis of wear surfaces are discussed. Examples of the evaluation of coatings are also presented and an ultramicrohardness tester installed in the SEM to evaluate coating hardness and fracture toughness is described. 3 refs., 15 figs.

  5. Temporal integration property of stereopsis after higher-order aberration correction

    PubMed Central

    Kang, Jian; Dai, Yun; Zhang, Yudong

    2015-01-01

    Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010

  6. Temporal integration property of stereopsis after higher-order aberration correction.

    PubMed

    Kang, Jian; Dai, Yun; Zhang, Yudong

    2015-11-01

    Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about -0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010

  7. Structure and Dynamics with Ultrafast Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley

    In this talk I will describe how combining ultrafast lasers and electron microscopes in novel ways makes it possible to directly `watch' the time-evolving structure of condensed matter, both at the level of atomic-scale structural rearrangements in the unit cell and at the level of a material's nano- microstructure. First, I will briefly describe my group's efforts to develop ultrafast electron diffraction using radio- frequency compressed electron pulses in the 100keV range, a system that rivals the capabilities of xray free electron lasers for diffraction experiments. I will give several examples of the new kinds of information that can be gleaned from such experiments. In vanadium dioxide we have mapped the detailed reorganization of the unit cell during the much debated insulator-metal transition. In particular, we have been able to identify and separate lattice structural changes from valence charge density redistribution in the material on the ultrafast timescale. In doing so we uncovered a previously unreported optically accessible phase/state of vanadium dioxide that has monoclinic crystallography like the insulator, but electronic structure and properties that are more like the rutile metal. We have also combined these dynamic structural measurements with broadband ultrafast spectroscopy to make detailed connections between structure and properties for the photoinduced insulator to metal transition. Second, I will show how dynamic transmission electron microscopy (DTEM) can be used to make direct, real space images of nano-microstructural evolution during laser-induced crystallization of amorphous semiconductors at unprecedented spatio-temporal resolution. This is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond timescales all of which can be imaged directly with DTEM.

  8. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields

    PubMed Central

    Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael

    2009-01-01

    An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This

  9. Electron Gun Technologies for High Resolution Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Fujita, Shin

    High-brightness electron gun technologies for high resolution electron microscopes are reviewed. High performance electron beam apparatuses today are equipped with either Schottky emission or field emission type cathodes, both of which have sharply etched tips for electric field enhancement that promotes electron emission. One of the key elements in these pointed cathodes is a proper control of the tip geometry. It substantially affects the emitter optics and performance. It is shown that the geometry is dictated by the faceting of the tip, which is in turn determined by the Equilibrium Crystal Shape (ECS). The ECS is the tip geometry that minimizes the surface free energy and dependent on the emitter operation environment. By proper choice of the tip field and temperature, one can control the degree of faceting and achieve optically desirable tip geometries.

  10. A Fresh Twist on The Electron Microscope: Probing Broken Symmetries at a New Level

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan Carlos

    The introduction of aberration-correction in scanning transmission electron microscopy (STEM) has allowed the realization of Richard Feynman's long sought dream, atom-by-atom structural and elemental identification of materials by simply looking ``at the thing.'' Until now, the goal of aberration-correction in STEM has been to produce the smallest possible electron probes, which essentially corresponds to a near constant phase across the probe. Phases increase the size of electron probes and result in images and spectra with a lower spatial resolution. In this talk, calculations will be presented showing that aberrations in lenses are intrinsic generators of angular momentum, and that phases introduced in atomic-size electron probes can actually be beneficial when studying the symmetry of materials. In particular, examples of mapping magnetic ordering of materials with atomic size electron probes will be shown. Magnetic dichroism is one of the new frontiers where aberration-correction STEM can have a significant impact, and reveal information that is physically out of reach in X-ray and neutron synchrotrons. Current and future limitations in the experiments and requirements to reveal the magnetic moment (orbital and spin), charge ordering, crystal field splitting, spin-orbit-coupling, optical dichroism, and other physical phenomena associated with broken symmetries will be discussed. This research was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Collaborators: J. Rusz, J. Spiegelberg, M.A. McGuire, C.T. Symons, R.R. Vatsavai, C. Cantoni and A.R. Lupini.

  11. Bayesian-based aberration correction and numerical diffraction for improved lensfree on-chip microscopy of biological specimens.

    PubMed

    Wong, Alexander; Kazemzadeh, Farnoud; Jin, Chao; Wang, Xiao Yu

    2015-05-15

    Lensfree on-chip microscopy is an emerging imaging technique that can be used to visualize and study biological specimens without the need for imaging lens systems. Important issues that can limit the performance of lensfree on-chip microscopy include interferometric aberrations, acquisition noise, and image reconstruction artifacts. In this study, we introduce a Bayesian-based method for performing aberration correction and numerical diffraction that accounts for all three of these issues to improve the effective numerical aperture (NA) and signal-to-noise ratio (SNR) of the reconstructed microscopic image. The proposed method was experimentally validated using the USAF resolution target as well as real waterborne Anabaena flos-aquae samples, demonstrating improvements in NA by ∼25% over the standard method, and improvements in SNR of 2.8 and 8.2 dB in the reconstructed image when compared to the reconstructed images produced using the standard method and a maximum likelihood estimation method, respectively. PMID:26393707

  12. Structural investigation of precipitates with Cu and Zn atomic columns in Al-Mg-Si alloys by aberration-corrected HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Marioara, Calin D.; Andersen, Sigmund J.; Lefebvre, Williams; Holmestad, Randi

    2014-06-01

    Precipitates in Al-Mg-Si alloys with Cu addition (~0.1 wt%) and Zn addition (~1 wt%) were investigated by aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Most precipitates had no overall unit cell but contained ordered network of Si atomic columns for both the Cu and the Zn containing precipitates. It was found that both Cu and Zn atomic columns are located at specific sites and producing characteristic local configurations on the Si atomic columns.

  13. A sub-cm micromachined electron microscope

    NASA Technical Reports Server (NTRS)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  14. Miniature electron microscope beam column optics

    NASA Astrophysics Data System (ADS)

    Loyd, Jody Stuart

    This investigation is in the area of electrostatic lens design with the overarching goal of contributing to the creation of a miniaturized scanning electron microscope (SEM) for use in mineralogical analysis or detection of signs of life on the surface of Mars. Such an instrument could also have application in the exploration of Earth's moon, planetary moons, asteroids, or comets. Other embodiments could include tabletop or field portable SEMs for use on Earth. The scope of this research is in the design of a beam column that attains focusing, demagnification, and aberration control within the smallest achievable package. The goals of planetary exploration and of spaceflight in general impose severe constraints on the instrument's mass and electrical power consumption, while favoring a robust design of small size and high rigidity that is also simple to align. To meet these requirements a design using electrostatic lenses was favored because of the lower power requirement and mass of electrostatic versus magnetic lenses, their relatively simple construction, as well as inherently easier shielding from extraneous fields. In modeling the lens field, a hybrid of a Boundary Element Method (BEM) and a Fourier series solution was employed, whereby an initial solution from the BEM is used to derive the bounding potential of a cylindrical subdomain for the subsequent Fourier series solution. The approach is applicable to many problems in physics and combines the inherent precision of this series solution with the flexibility of BEM to describe practical, non-idealized electrode shapes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. A significant speed increase in tracing rays is also observed. The modeling technique has been validated by reproducing example ray-traces through

  15. The trajectories of secondary electrons in the scanning electron microscope.

    PubMed

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection. PMID:17063762

  16. Real-Time 3D Contrast-Enhanced Transcranial Ultrasound and Aberration Correction

    PubMed Central

    Ivancevich, Nikolas M.; Pinton, Gianmarco F.; Nicoletto, Heather A.; Bennett, Ellen; Laskowitz, Daniel T.; Smith, Stephen W.

    2008-01-01

    Contrast-enhanced (CE) transcranial ultrasound (US) and reconstructed 3D transcranial ultrasound have shown advantages over traditional methods in a variety of cerebrovascular diseases. We present the results from a novel ultrasound technique, namely real-time 3D contrast-enhanced transcranial ultrasound. Using real-time 3D (RT3D) ultrasound and micro-bubble contrast agent, we scanned 17 healthy volunteers via a single temporal window and 9 via the sub-occipital window and report our detection rates for the major cerebral vessels. In 71% of subjects, both of our observers identified the ipsilateral circle of Willis from the temporal window, and in 59% we imaged the entire circle of Willis. From the sub-occipital window, both observers detected the entire vertebrobasilar circulation in 22% of subjects, and in 44% the basilar artery. After performing phase aberration correction on one subject, we were able to increase the diagnostic value of the scan, detecting a vessel not present in the uncorrected scan. These preliminary results suggest that RT3D CE transcranial US and RT3D CE transcranial US with phase aberration correction have the potential to greatly impact the field of neurosonology. PMID:18395321

  17. Electron Vortex Production and Control Using Aberration Induced Diffraction Catastrophes

    NASA Astrophysics Data System (ADS)

    Petersen, T. C.; Weyland, M.; Paganin, D. M.; Simula, T. P.; Eastwood, S. A.; Morgan, M. J.

    2013-01-01

    An aberration corrected electron microscope is used to create electron diffraction catastrophes, containing arrays of intensity zeros threading vortex cores. Vortices are ascribed to these arrays using catastrophe theory, scalar diffraction integrals, and experimentally retrieved phase maps. From measured wave function phases, obtained using focal-series phase retrieval, the orbital angular momentum density is mapped for highly astigmatic electron probes. We observe vortex rings and topological reconnections of nodal lines by tracking the vortex cores using the retrieved phases.

  18. Method of forming aperture plate for electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K. (Inventor)

    1974-01-01

    An electron microscope is described with an electron source a condenser lens having either a circular aperture for focusing a solid cone of electrons onto a specimen or an annular aperture for focusing a hollow cone of electrons onto the specimen. It also has objective lens with an annular objective aperture, for focusing electrons passing through the specimen onto an image plane. A method of making the annular objective aperture using electron imaging, electrolytic deposition and ion etching techniques is included.

  19. The Scanning Electron Microscope and the Archaeologist

    ERIC Educational Resources Information Center

    Ponting, Matthew

    2004-01-01

    Images from scanning electron microscopy are now quite common and they can be of great value in archaeology. Techniques such as secondary electron imaging, backscattered electron imaging and energy-dispersive x-ray analysis can reveal information such as the presence of weevils in grain in Roman Britain, the composition of Roman coins and the…

  20. Adaptive, spatially-varying aberration correction for real-time holographic projectors.

    PubMed

    Kaczorowski, Andrzej; Gordon, George S D; Wilkinson, Timothy D

    2016-07-11

    A method of generating an aberration- and distortion-free wide-angle holographically projected image in real time is presented. The target projector is first calibrated using an automated adaptive-optical mechanism. The calibration parameters are then fed into the hologram generation program, which applies a novel piece-wise aberration correction algorithm. The method is found to offer hologram generation times up to three orders of magnitude faster than the standard method. A projection of an aberration- and distortion-free image with a field of view of 90x45 degrees is demonstrated. The implementation on a mid-range GPU achieves high resolution at a frame rate up to 12fps. The presented methods are automated and can be performed on any holographic projector. PMID:27410846

  1. Flexible high-voltage supply for experimental electron microscope

    NASA Technical Reports Server (NTRS)

    Chapman, G. L.; Jung, E. A.; Lewis, R. N.; Van Loon, L. S.; Welter, L. M.

    1969-01-01

    Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms.

  2. Simultaneous specimen and stage cleaning device for analytical electron microscope

    DOEpatents

    Zaluzec, Nestor J.

    1996-01-01

    An improved method and apparatus are provided for cleaning both a specimen stage, a specimen and an interior of an analytical electron microscope (AEM). The apparatus for cleaning a specimen stage and specimen comprising a plasma chamber for containing a gas plasma and an air lock coupled to the plasma chamber for permitting passage of the specimen stage and specimen into the plasma chamber and maintaining an airtight chamber. The specimen stage and specimen are subjected to a reactive plasma gas that is either DC or RF excited. The apparatus can be mounted on the analytical electron microscope (AEM) for cleaning the interior of the microscope.

  3. Direct observation of atomic columns in a Bi-2223 polycrystal by aberration-corrected STEM using a low accelerating voltage

    NASA Astrophysics Data System (ADS)

    Nagai, Takuro; Haruta, Mitsutaka; Kikuchi, Masashi; Zhang, Weizhu; Takeguchi, Masaki; Kimoto, Koji

    2014-05-01

    Aberration correction in scanning transmission electron microscopy (STEM) enables an atomic-scale probe size of ˜0.1 nm at a low accelerating voltage of 80 kV that avoids knock-on damage in materials including light elements such as oxygen. We used this advanced method of microscopy to directly observe atomic columns in a (Bi,Pb)2Sr2Ca2Cu3O10+δ (Bi-2223) superconducting wire produced by a powder-in-tube method. Using the atomic-number (Z) contrast mechanism, incoherent high-angle annular dark-field (HAADF) imaging clearly showed the atomic columns. Atomic displacements toward the boundary with a maximum magnitude of ˜0.26 nm enable each atomic layer to be continuous at edge grain boundaries (EGBs). The grains tend to be terminated with deficient (Bi,Pb)-O single layers at c-axis twist boundaries (TWBs) and small-angle asymmetrical tilt boundaries (ATBs); a quantitative HAADF analysis showed that the occupancies of the (Bi,Pb) sites around these boundaries are ˜0.66 and ˜0.72, respectively. Electron energy-loss spectroscopy (EELS) mapping successfully visualized atomic columns in the half-unit cell intergrowth of (Bi,Pb)2Sr2CaCu2O8+δ (Bi-2212) and (Bi,Pb)2Sr2Ca3Cu4O12+δ (Bi-2234) phases. Furthermore, the HAADF analysis indicated that the occupancy of the (Bi,Pb) sites is modulated between ˜0.88 and 1.0 along the diagonal direction of the primitive perovskite cell with the same period as the structural modulation.

  4. Influence of mechanical noise inside a scanning electron microscope

    SciTech Connect

    Gaudenzi de Faria, Marcelo; Haddab, Yassine Le Gorrec, Yann; Lutz, Philippe

    2015-04-15

    The scanning electron microscope is becoming a popular tool to perform tasks that require positioning, manipulation, characterization, and assembly of micro-components. However, some of these applications require a higher level of performance with respect to dynamics and precision of positioning. One limiting factor is the presence of unidentified noises and disturbances. This work aims to study the influence of mechanical disturbances generated by the environment and by the microscope, identifying how these can affect elements in the vacuum chamber. To achieve this objective, a dedicated setup, including a high-resolution vibrometer, was built inside the microscope. This work led to the identification and quantification of main disturbances and noise sources acting on a scanning electron microscope. Furthermore, the effects of external acoustic excitations were analysed. Potential applications of these results include noise compensation and real-time control for high accuracy tasks.

  5. Observation of Cu nanometre scale clusters formed in Fe85Si2B8P4Cu1 nanocrystalline soft magnetic alloy by a spherical aberration-corrected TEM/STEM

    NASA Astrophysics Data System (ADS)

    Nishijima, Masahiko; Matsuura, Makoto; Zhang, Yan; Makino, Akihiro

    2015-05-01

    Microstructure of a nanocrystalline soft magnetic Fe85Si2B8P4Cu1 alloy (NANOMET®) was investigated by the state of the art spherical aberration-corrected TEM/STEM. Observation by TEM shows that the microstructure of NANOMET® heat treated at 738 K for 600 s which exhibits the optimum soft magnetic properties has homogeneously distributed bcc-Fe nanocrystallites with the average grain size of 30 nm embedded in an amorphous matrix. Elemental mappings indicate that P is excluded from bcc-Fe grains and enriched outside the grains, which causes to retard the grain growth of bcc-Fe crystallites. The aberration-corrected STEM-EDS analysis with the ultrafine electron probe successfully proved that Cu atoms form nanometre scale clusters inside and/or outside the bcc-Fe nanocrystallites.

  6. Phase aberration correction by multi-stencils fast marching method using sound speed image in ultrasound computed tomography

    NASA Astrophysics Data System (ADS)

    Qu, Xiaolei; Azuma, Takashi; Lin, Hongxiang; Imoto, Haruka; Tamano, Satoshi; Takagi, Shu; Umemura, Shin-Ichiro; Sakuma, Ichiro; Matsumoto, Yoichiro

    2016-04-01

    Reflection image from ultrasound computed tomography (USCT) system can be obtained by synthetic aperture technique, however its quality is decreased by phase aberration caused by inhomogeneous media. Therefore, phase aberration correction is important to improve image quality. In this study, multi-stencils fast marching method (MSFMM) is employed for phase correction. The MSFMM is an accurate and fast solution of Eikonal equation which considers the refraction. The proposed method includes two steps. First, the MSFMM is used to compute sound propagation time from each element to each image gird point using sound speed image of USCT. Second, synthetic aperture technique is employed to obtain reflection image using the computed propagation time. To evaluate the proposed method, both numerical simulation and phantom experiment were conducted. With regard to numerical simulation, both quantitative and qualitative comparisons between reflection images with and without phase aberration correction were given. In the quantitative comparison, the diameters of point spread function (PSF) in reflection images of a two layer structure were presented. In the qualitative comparison, reflection images of simple circle and complex breast modes with phase aberration correction show higher quality than that without the correction. In respect to phantom experiment, a piece of breast phantom with artificial glandular structure inside was scanned by a USCT prototype, and the artificial glandular structure is able to be visible more clearly in the reflection image with phase aberration correction than in that without the correction. In this study, a phase aberration correction method by the MSFMM are proposed for reflection image of the USCT.

  7. [Electron microscopic study of forest soil].

    PubMed

    Kilbertus, G; Proth, J

    1979-08-01

    Scanning electron microscopy was used to evidence the aggregated structure of a forest soil as well as the presence of fungal hyphae external to soil aggregates. The supernatant of soil suspension in water mainly contained isolated bacteria, while ultrathin sections of aggregates frequently revealed groups of bacteria surrounded by a sheath of mucilage with adhering clay minerals on the outside. These results confirm the existence of two particular biotopes in the soil studied: one is located inside aggregates, and the other, in the inter-aggregate spaces. PMID:526892

  8. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-07-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.

  9. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    PubMed Central

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-01-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging. PMID:27403922

  10. Fully Mechanically Controlled Automated Electron Microscopic Tomography.

    PubMed

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-01-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging. PMID:27403922

  11. Electron microscope study of Sarcocystis sp

    USGS Publications Warehouse

    Zeve, V.H.; Price, D.L.; Herman, C.M.

    1966-01-01

    Sarcocystis sp. obtained from wild populations of grackles, Quiscalus quiscula (Linn.), were examined to clarify the effect of the parasite on the host. Electron micrographs are presented to show areas of muscle destruction adjacent to the parasite which appear to be mechanically produced by the parasite. The microtubules within the villus-like projections of the cyst suggest that their possible function is absorptive and/or conductive with regard to the production of a toxin or the conveyance of nutritive material to the developing cells. The proposed function of submembranous filaments and their relation to the conoid is discussed. Similarities in the ultrastructure to Toxoplasma and other protozoa tend to negate the relegation of Sarcocystis to the fungi and further emphasize its protozoan nature.

  12. ELECTRON MICROSCOPIC STUDIES OF RENAL DISEASE

    PubMed Central

    Latta, Harrison

    1960-01-01

    The nephrotic syndrome, glomerulonephritis, disseminated lupus erythematosus and the Fanconi syndrome show characteristic changes with electron microscopy. Experimental studies of animals were carried out to determine the significance of such changes by observing reactions that occur under carefully controlled conditions. A lesion with collagen deposition that was found in the centrolobular region of glomeruli sheds new light on the function of this region. This evidence must be considered in developing an understanding of how the production of urine is controlled. Fluid-filled compartments and various bodies associated with the ultrastructure of tubule cells can be produced under conditions which suggest that these structures play a role in tubular resorption. ImagesFigure 1, 2.Figure 3.Figure 4, 5.Figure 6, 7.Figure 8, 9.Figure 10.Figure 11, 12.Figure 13, 14.Figure 15, 16.Figure 17. PMID:13759386

  13. Development of scanning electron and x-ray microscope

    NASA Astrophysics Data System (ADS)

    Matsumura, Tomokazu; Hirano, Tomohiko; Suyama, Motohiro

    2016-01-01

    We have developed a new type of microscope possessing a unique feature of observing both scanning electron and X-ray images under one unit. Unlike former X-ray microscopes using SEM [1, 2], this scanning electron and X-ray (SELX) microscope has a sample in vacuum, thus it enables one to observe a surface structure of a sample by SEM mode, to search the region of interest, and to observe an X-ray image which transmits the region. For the X-ray observation, we have been focusing on the soft X-ray region from 280 eV to 3 keV to observe some bio samples and soft materials. The resolutions of SEM and X-ray modes are 50 nm and 100 nm, respectively, at the electron energy of 7 keV.

  14. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    DOE PAGESBeta

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-12

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm,more » respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Lastly, our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.« less

  15. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    PubMed Central

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-01-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D. PMID:26868264

  16. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.

    PubMed

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-01-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D. PMID:26868264

  17. Double aberration-corrected TEM/STEM of tungstated zirconia nanocatalysts for the synthesis of paracetamol

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N. R.; Brown, D. R.; Boyes, E. D.; Gai, P. L.

    2010-07-01

    We report highly active tungstated zirconia nanocatalysts for the synthesis of paracetamol by Beckmann rearrangement of 4-hydroxyacetophenone oxime. Double aberration-corrected (2AC)-TEM/STEM studies were performed in a JEOL 2200FS FEG TEM/STEM at the 1 Angstrom (1 Å = 0.1 nanometer) level. Observations at close to zero defocus were carried out using the AC-TEM as well as AC-STEM including high angle annular dark field (HAADF) imaging, from the same areas of the catalyst crystallites. The studies from the same areas have revealed the location and the nanostructure of the polytungstate species (clusters) and the nanograins of zirconia. The AC (S)TEM was crucial to observe the nanostructure and location of polytungstate clusters on the zirconia grains. Polytungstate clusters as small as 0.5 nm have been identified using the HAADF-STEM. The nanostructures of the catalyst and the W surface density have been correlated with paracetamol reaction studies. The results demonstrate the nature of active sites and high activity of the tungstated zirconia nanocatalyst, which is an environmentally clean alternative to the current homogeneous process.

  18. A lateral chromatic aberration correction system for ultrahigh-definition color video camera

    NASA Astrophysics Data System (ADS)

    Yamashita, Takayuki; Shimamoto, Hiroshi; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji

    2006-02-01

    We have developed color camera for an 8k x 4k-pixel ultrahigh-definition video system, which is called Super Hi- Vision, with a 5x zoom lens and a signal-processing system incorporating a function for real-time lateral chromatic aberration correction. The chromatic aberration of the lens degrades color image resolution. So in order to develop a compact zoom lens consistent with ultrahigh-resolution characteristics, we incorporated a real-time correction function in the signal-processing system. The signal-processing system has eight memory tables to store the correction data at eight focal length points on the blue and red channels. When the focal length data is inputted from the lens control units, the relevant correction data are interpolated from two of eights correction data tables. This system performs geometrical conversion on both channels using this correction data. This paper describes that the correction function can successfully reduce the lateral chromatic aberration, to an amount small enough to ensure the desired image resolution was achieved over the entire range of the lens in real time.

  19. Prospects of atomic resolution imaging with an aberration-corrected STEM.

    PubMed

    Ishizuka, K

    2001-01-01

    We investigated high-resolution scanning transmission electron microscope (STEM) images obtained from a microscope equipped with a spherical aberration corrector. The probe size (full-width at half-maximum) is reduced to 0.76 A at 200 kV by assuming the fifth-order spherical aberration coefficient C5 = 100 mm. For the simulation we have used the recently developed scheme for a STEM image simulation based on the Fast Fourier Transform (FFT) multislice algorithm. The peak-to-background (P/B) ratio of the high-angle annular dark-field (HAADF) image is significantly improved at a thin specimen region. Although the P/B ratio becomes worse at a thicker region, the resolution is kept high even at such a region. An almost true HAADF signal will be obtained even from a weak-scattering phosphorous column in InP [001] when the background is subtracted. In the bright-field image the coherent character of elastic scattering is suppressed by averaging over a large convergence angle, making the specimen effectively self-luminous. The claim that HAADF imaging is relatively insensitive to a defocus as well as a specimen thickness is valid only qualitatively, and a detailed image simulation will be required for a quantitative analysis as in the case of the conventional transmission electron microscope. It was noted that the delta function approximation for the object function may not be applicable for a very fine probe, and that the achievable resolution of the HAADF imaging will be limited by the widths of the high-angle thermal diffuse scattering potential. PMID:11592674

  20. Improved coating and fixation methods for scanning electron microscope autoradiography.

    PubMed

    Weiss, R L

    1984-01-01

    A simple apparatus for emulsion coating is described. The apparatus is inexpensive and easily assembled in a standard glass shop. Emulsion coating for scanning electron microscope autoradiography with this apparatus consistently yields uniform layers. When used in conjunction with newly described fixation methods, this new approach produces reliable autoradiographs of undamaged specimens. PMID:6234956

  1. [A view of tropical biology through the electron microscope].

    PubMed

    Hernández-Chavarría, Francisco

    2002-01-01

    The first electron microscope in Costa Rica was a donation from the government of Japan through its International Cooperation Agency (JICA) in 1974. This donation made possible the consolidation of what was to become the University of Costa Rica's Electron Microscope Unit (UME). Within three years the first scientific papers were published, dealing with ultrastructural aspects of "Corn's rayado fino virus" and rotavirus, viral agent of human diarrhea. Subsequent papers out of the UME were published for the most part in the Journal of Tropical Biology, totaling at least 50 in that journal alone by the year 2000. With the recent acquisition of Energy Dispersive Spectrometer to coupled in transmission electron microscope and scanning electron microscope to X ray analysis, the data acquisition of the UME has been greatly enhanced, making possible to analyze both structure and elemental chemical composition in a specimen. Other applications of this new technology include studies of environmental pollution with heavy metals, such as comparative analysis of residues on leaves from urban areas and those on leaves from primary forest. PMID:12947579

  2. In situ nanoindentation in a transmission electron microscope

    SciTech Connect

    Minor, Andrew M.

    2002-12-02

    This dissertation presents the development of the novel mechanical testing technique of in situ nanoindentation in a transmission electron microscope (TEM). This technique makes it possible to simultaneously observe and quantify the mechanical behavior of nano-scale volumes of solids.

  3. Transcranial phase aberration correction using beam simulations and MR-ARFI

    SciTech Connect

    Vyas, Urvi Kaye, Elena; Pauly, Kim Butts

    2014-03-15

    Purpose: Transcranial magnetic resonance-guided focused ultrasound surgery is a noninvasive technique for causing selective tissue necrosis. Variations in density, thickness, and shape of the skull cause aberrations in the location and shape of the focal zone. In this paper, the authors propose a hybrid simulation-MR-ARFI technique to achieve aberration correction for transcranial MR-guided focused ultrasound surgery. The technique uses ultrasound beam propagation simulations with MR Acoustic Radiation Force Imaging (MR-ARFI) to correct skull-caused phase aberrations. Methods: Skull-based numerical aberrations were obtained from a MR-guided focused ultrasound patient treatment and were added to all elements of the InSightec conformal bone focused ultrasound surgery transducer during transmission. In the first experiment, the 1024 aberrations derived from a human skull were condensed into 16 aberrations by averaging over the transducer area of 64 elements. In the second experiment, all 1024 aberrations were applied to the transducer. The aberrated MR-ARFI images were used in the hybrid simulation-MR-ARFI technique to find 16 estimated aberrations. These estimated aberrations were subtracted from the original aberrations to result in the corrected images. Each aberration experiment (16-aberration and 1024-aberration) was repeated three times. Results: The corrected MR-ARFI image was compared to the aberrated image and the ideal image (image with zero aberrations) for each experiment. The hybrid simulation-MR-ARFI technique resulted in an average increase in focal MR-ARFI phase of 44% for the 16-aberration case and 52% for the 1024-aberration case, and recovered 83% and 39% of the ideal MR-ARFI phase for the 16-aberrations and 1024-aberration case, respectively. Conclusions: Using one MR-ARFI image and noa priori information about the applied phase aberrations, the hybrid simulation-MR-ARFI technique improved the maximum MR-ARFI phase of the beam's focus.

  4. Application of polymer graded-index materials for aberration correction of progressive addition lenses

    NASA Astrophysics Data System (ADS)

    Shitanoki, Yuki; Tagaya, Akihiro; Koike, Yasuhiro

    2009-02-01

    Graded-index (GRIN) progressive addition lens (PAL) was successfully fabricated, and GRIN's potential for aberration correction of PAL was confirmed. GRIN material was prepared by partial diffusion of methyl methacrylate (MMA (nd at polymer = 1.492)) monomer into cross-linked benzyl methacrylate (BzMA (nd at polymer=1.568)) flat gel, and GRINPAL was prepared by polymerization of the GRIN material attached to a mold of commercially available PAL. GRIN polymer materials have been used for various applications such as rod lenses and optical fibers. GRIN represents gradual change of refractive index in a material, which adds or reduces light focusing power of the material. PAL is a multifocal spectacle lens for presbyopia. However, some localized aberrations (especially astigmatism) in PAL have not yet been reduced satisfactorily for decades by optimizing surface geometry of a lens. In this research, we propose to employ GRIN materials for astigmatism reduction of PALs. BzMA flat gel was prepared by UV polymerization of BzMA, crosslinking agent ethylene glycol dimethacrylate (EDMA) and photopolymerization initiator DAROCURE 1173. MMA monomer was diffused into BzMA flat gel from a portion of periphery for several hours. The obtained GRIN material was attached to a mold of commercially available PAL and polymerized by UV. As a result, reduction of astigmatism was confirmed locally in the fabricated PAL and GRIN-PAL using lens meter. In conclusion, GRIN-PAL was successfully fabricated. The validity of GRIN employment for the astigmatism reduction in PAL was demonstrated experimentally.

  5. Response function and optimum configuration of semiconductor backscattered-electron detectors for scanning electron microscopes

    SciTech Connect

    Rau, E. I.; Orlikovskiy, N. A.; Ivanova, E. S.

    2012-06-15

    A new highly efficient design for semiconductor detectors of intermediate-energy electrons (1-50 keV) for application in scanning electron microscopes is proposed. Calculations of the response function of advanced detectors and control experiments show that the efficiency of the developed devices increases on average twofold, which is a significant positive factor in the operation of modern electron microscopes in the mode of low currents and at low primary electron energies.

  6. High order aberration and straylight evaluation after cataract surgery with implantation of an aspheric, aberration correcting monofocal intraocular lens

    PubMed Central

    Kretz, Florian T A; Tandogan, Tamer; Khoramnia, Ramin; Auffarth, Gerd U

    2015-01-01

    AIM To evaluate the quality of vision in respect to high order aberrations and straylight perception after implantation of an aspheric, aberration correcting, monofocal intraocular lens (IOL). METHODS Twenty-one patients (34 eyes) aged 50 to 83y underwent cataract surgery with implantation of an aspheric, aberration correcting IOL (Tecnis ZCB00, Abbott Medical Optics). Three months after surgery they were examined for uncorrected (UDVA) and corrected distance visual acuity (CDVA), contrast sensitivity (CS) under photopic and mesopic conditions with and without glare source, ocular high order aberrations (HOA, Zywave II) and retinal straylight (C-Quant). RESULTS Postoperatively, patients achieved a postoperative CDVA of 0.0 logMAR or better in 97.1% of eyes. Mean values of high order abberations were +0.02±0.27 (primary coma components) and -0.04±0.16 (spherical aberration term). Straylight values of the C-Quant were 1.35±0.44 log which is within normal range of age matched phakic patients. The CS measurements under mesopic and photopic conditions in combination with and without glare did not show any statistical significance in the patient group observed (P≥0.28). CONCLUSION The implantation of an aspherical aberration correcting monofocal IOL after cataract surgery resulted in very low residual higher order aberration (HOA) and normal straylight. PMID:26309872

  7. Foucault imaging by using non-dedicated transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshifumi; Matsumoto, Hiroaki; Harada, Ken

    2012-08-01

    An electron optical system for observing Foucault images was constructed using a conventional transmission electron microscope without any special equipment for Lorentz microscopy. The objective lens was switched off and an electron beam was converged by a condenser optical system to the crossover on the selected area aperture plane. The selected area aperture was used as an objective aperture to select the deflected beam for Foucault mode, and the successive image-forming lenses were controlled for observation of the specimen images. The irradiation area on the specimen was controlled by selecting the appropriate diameter of the condenser aperture.

  8. Secondary electron imaging of monolayer materials inside a transmission electron microscope

    SciTech Connect

    Cretu, Ovidiu Lin, Yung-Chang; Suenaga, Kazutomo

    2015-08-10

    A scanning transmission electron microscope equipped with a backscattered and secondary electron detector is shown capable to image graphene and hexagonal boron nitride monolayers. Secondary electron contrasts of the two lightest monolayer materials are clearly distinguished from the vacuum level. A signal difference between these two materials is attributed to electronic structure differences, which will influence the escape probabilities of the secondary electrons. Our results show that the secondary electron signal can be used to distinguish between the electronic structures of materials with atomic layer sensitivity, enhancing its applicability as a complementary signal in the analytical microscope.

  9. Interaction-Free Quantum Electron Microscope in Free-Space

    NASA Astrophysics Data System (ADS)

    Yang, Yujia; Kim, Chung-Soo; Hobbs, Richard; Manfrinato, Vitor; Celiker, Orhan; Kruit, Pieter; Berggren, Karl

    2015-03-01

    We propose the design and theoretical analysis of a quantum electron microscope (QEM), which utilizes interaction-free quantum measurement with electrons for nanoscale imaging. The QEM can be used to image electron-irradiation-sensitive materials, such as biological samples, with a high resolution and low radiation damage. Our QEM scheme is an electron interferometer with a storage resonator. The incoming electron beam is asymmetrically split into a strong reference beam and a weak sample beam, both of which are stored in the resonator. Only the weak sample beam transmits through the sample for multiple times. We propose to build the QEM with free-space electron optics. We develop a scattering matrix method to theoretically analyze the contrast mechanism, radiation damage, and measurement accuracy. We propose an electron-mirror-based storage resonator and we have performed electron optics simulation of electron trajectories within the resonator. We also report experimental implementation and characterization of the electron beam-splitter to be used in the QEM. Thin crystals fabricated with focused ion beam and nano-gratings fabricated with electron-beam lithography are two candidate beam-splitters, both of which are characterized by electron diffraction. This work is funded by Gordon and Betty Moore Foundation.

  10. Transmission Electron Microscope Studies of Martian 'Iddingsite' in the Nakhlite Meteorite MIL 090032

    NASA Astrophysics Data System (ADS)

    Hallis, L.; Ishii, H.; Bradley, J. P.; Taylor, J.

    2012-12-01

    As with the other nakhlites, MIL 090032 contains iddingsite-like alteration veins in the olivine phenocrysts that reportedly originated on Mars[1]. These 'iddingsite' veins have been analysed in a number of the nakhlite meteorites[2], and the presence of hydrous silicate gel, smectite clays, siderite, Fe-oxides, gypsum and carbonate have been reported. The presence and proportion of these phases in the different nakhlites appears to relate to the composition and concentration of the martian brine that flowed through each, thus supporting the theory that the nakhlite secondary alteration phases were produced by an evaporation sequence on the surface of Mars[3]. We analyzed these martian 'iddingsite' veins in MIL 090032 with the aim of placing it and its three paired meteorites within the nakhlite alteration sequence. By expanding our knowledge of this alteration sequence, we will gain extra insight into the conditions on the martian surface at the time these 'iddingsite' veins formed (<1.3 Ga). We utilized the 80-300 kV aberration-corrected FEI Titan (Scanning) Transmission Electron Microscope (S-TEM) system at Lawrence Livermore National Laboratory to analyse a ~15×8μm Focused Ion Beam (FIB) section of an 'iddingsite' vein in MIL 090032. To allow the electrons to be transmitted through the FIB section, it was milled down to ~150 nm thickness. Our initial TEM data indicate this FIB section contains hydrous amorphous silicate gel towards the center, with areas of phyllosilicate (possibly nontronite) interspersed within this central zone. Towards the outer edge of the vein jarosite and then gypsum sulfates were present. At the very edge only partially broken down olivine was observed. The presence of phyllosilicate and silicate gel in this vein suggests the 'iddingsite' in MIL 090032 was produced by water-rich brine, and the abundance of sulfates suggests the brine was enriched in sulfur. This assemblage of minerals is most in line with that of the 'iddingsite

  11. Achondrogenesis type I: light and electron-microscopic studies.

    PubMed

    Molz, G; Spycher, M A

    1980-06-01

    The light- and electron-microscopic structure of articular and costal cartilage in a case of achondrogenesis type I has been described. The most characteristic ultrastructural change in the chondrocytes was conspicuous dilatation of the rough endoplasmatic reticulum (RER) which contained amorphous electronopaque material. This change in the RER was accompanied by marked hypertrophy of the Golgi apparatus; the matrix was basically unchanged. PMID:6250850

  12. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  13. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. PMID:25969945

  14. In Situ Nanomechanical Testing of Crystalline Nanowires in Electron Microscopes

    NASA Astrophysics Data System (ADS)

    Zhu, Yong

    2016-01-01

    This article reviews in situ mechanical testing of crystalline nanowires in scanning and transmission electron microscopes, focusing on bottom-up synthesized, single-crystalline nanowires. Major experimental methods including resonance, bending, tension and buckling are summarized. In addition to commonly encountered experimental issues, deformation mechanisms learned from the in situ nanomechanical characterization are discussed highlighting the roles of free surfaces, internal planar defects and point defects.

  15. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV.

    PubMed

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-12

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C_{c}/C_{s} corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations. PMID:27563976

  16. Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

    NASA Astrophysics Data System (ADS)

    Linck, Martin; Hartel, Peter; Uhlemann, Stephan; Kahl, Frank; Müller, Heiko; Zach, Joachim; Haider, Max.; Niestadt, Marcel; Bischoff, Maarten; Biskupek, Johannes; Lee, Zhongbo; Lehnert, Tibor; Börrnert, Felix; Rose, Harald; Kaiser, Ute

    2016-08-01

    Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed Cc/Cs corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

  17. Circular dichroism in the electron microscope: Progress and applications (invited)

    SciTech Connect

    Schattschneider, P.; Loeffler, S.; Ennen, I.; Stoeger-Pollach, M.; Verbeeck, J.

    2010-05-15

    According to theory, x-ray magnetic circular dichroism in a synchrotron is equivalent to energy loss magnetic chiral dichroism (EMCD) in a transmission electron microscope (TEM). After a synopsis of the development of EMCD, the theoretical background is reviewed and recent results are presented, focusing on the study of magnetic nanoparticles for ferrofluids and Heusler alloys for spintronic devices. Simulated maps of the dichroic strength as a function of atom position in the crystal allow evaluating the influence of specimen thickness and sample tilt on the experimental EMCD signal. Finally, the possibility of direct observation of chiral electronic transitions with atomic resolution in a TEM is discussed.

  18. A fast iterative technique for restoring scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Miyamoto, Atsushi; Honda, Toshifumi

    2014-12-01

    This paper proposes a fast new technique for restoring scanning electron microscope images to improve their sharpness. The images with our approach are sharpened by deconvolution with the point spread function modeled as the intensity distribution of the electron beam at the specimen's surface. We propose an iterative technique that employs a modified cost function based on the Richardson-Lucy method to achieve faster processing. The empirical results indicate significant improvements in image quality. The proposed approach speeds up deconvolution by about 10-50 times faster than that with the conventional Richardson-Lucy method.

  19. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGESBeta

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  20. Characterization of quantum well structures using a photocathode electron microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Michael G.; Scott, Craig J.

    1989-01-01

    Present day integrated circuits pose a challenge to conventional electronic and mechanical test methods. Feature sizes in the submicron and nanometric regime require radical approaches in order to facilitate electrical contact to circuits and devices being tested. In addition, microwave operating frequencies require careful attention to distributed effects when considering the electrical signal paths within and external to the device under test. An alternative testing approach which combines the best of electrical and optical time domain testing is presented, namely photocathode electron microscope quantitative voltage contrast (PEMQVC).

  1. Pulsed Power for a Dynamic Transmission Electron Microscope

    SciTech Connect

    dehope, w j; browning, n; campbell, g; cook, e; king, w; lagrange, t; reed, b; stuart, b; Shuttlesworth, R; Pyke, B

    2009-06-25

    Lawrence Livermore National Laboratory (LLNL) has converted a commercial 200kV transmission electron microscope (TEM) into an ultrafast, nanoscale diagnostic tool for material science studies. The resulting Dynamic Transmission Electron Microscope (DTEM) has provided a unique tool for the study of material phase transitions, reaction front analyses, and other studies in the fields of chemistry, materials science, and biology. The TEM's thermionic electron emission source was replaced with a fast photocathode and a laser beam path was provided for ultraviolet surface illumination. The resulting photoelectron beam gives downstream images of 2 and 20 ns exposure times at 100 and 10 nm spatial resolution. A separate laser, used as a pump pulse, is used to heat, ignite, or shock samples while the photocathode electron pulses, carefully time-synchronized with the pump, function as probe in fast transient studies. The device functions in both imaging and diffraction modes. A laser upgrade is underway to make arbitrary cathode pulse trains of variable pulse width of 10-1000 ns. Along with a fast e-beam deflection scheme, a 'movie mode' capability will be added to this unique diagnostic tool. This talk will review conventional electron microscopy and its limitations, discuss the development and capabilities of DTEM, in particularly addressing the prime and pulsed power considerations in the design and fabrication of the DTEM, and conclude with the presentation of a deflector and solid-state pulser design for Movie-Mode DTEM.

  2. Simulation of transmission electron microscope images of biological specimens.

    PubMed

    Rullgård, H; Ofverstedt, L-G; Masich, S; Daneholt, B; Oktem, O

    2011-09-01

    We present a new approach to simulate electron cryo-microscope images of biological specimens. The framework for simulation consists of two parts; the first is a phantom generator that generates a model of a specimen suitable for simulation, the second is a transmission electron microscope simulator. The phantom generator calculates the scattering potential of an atomic structure in aqueous buffer and allows the user to define the distribution of molecules in the simulated image. The simulator includes a well defined electron-specimen interaction model based on the scalar Schrödinger equation, the contrast transfer function for optics, and a noise model that includes shot noise as well as detector noise including detector blurring. To enable optimal performance, the simulation framework also includes a calibration protocol for setting simulation parameters. To test the accuracy of the new framework for simulation, we compare simulated images to experimental images recorded of the Tobacco Mosaic Virus (TMV) in vitreous ice. The simulated and experimental images show good agreement with respect to contrast variations depending on dose and defocus. Furthermore, random fluctuations present in experimental and simulated images exhibit similar statistical properties. The simulator has been designed to provide a platform for development of new instrumentation and image processing procedures in single particle electron microscopy, two-dimensional crystallography and electron tomography with well documented protocols and an open source code into which new improvements and extensions are easily incorporated. PMID:21631500

  3. A new clustering algorithm for scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  4. Simultaneous fluorescence and high-resolution bright-field imaging with aberration correction over a wide field-of-view with Fourier ptychographic microscopy (FPM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chung, Jaebum; Kim, Jinho; Ou, Xiaoze; Horstmeyer, Roarke; Yang, Changhuei

    2016-03-01

    We present a method to acquire both fluorescence and high-resolution bright-field images with correction for the spatially varying aberrations over a microscope's wide field-of-view (FOV). First, the procedure applies Fourier ptychographic microscopy (FPM) to retrieve the amplitude and phase of a sample, at a resolution that significantly exceeds the cutoff frequency of the microscope objective lens. At the same time, FPM algorithm is able to leverage on the redundancy within the set of acquired FPM bright-field images to estimate the microscope aberrations, which usually deteriorate in regions further away from the FOV's center. Second, the procedure acquires a raw wide-FOV fluorescence image within the same setup. Lack of moving parts allows us to use the FPM-estimated aberration map to computationally correct for the aberrations in the fluorescence image through deconvolution. Overlaying the aberration-corrected fluorescence image on top of the high-resolution bright-field image can be done with accurate spatial correspondence. This can provide means to identifying fluorescent regions of interest within the context of the sample's bright-field information. An experimental demonstration successfully improves the bright-field resolution of fixed, stained and fluorescently tagged HeLa cells by a factor of 4.9, and reduces the error caused by aberrations in a fluorescence image by 31%, over a field of view of 6.2 mm by 9.3 mm. For optimal deconvolution, we show the fluorescence image needs to have a signal-to-noise ratio of ~18.

  5. STEM electron tomography in the Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Ferroni, M.; Signoroni, A.; Sanzogni, A.; Sberveglieri, G.; Migliori, A.; Ortolani, L.; Christian, M.; Masini, L.; Morandi, V.

    2015-10-01

    The scanning-transmission imaging mode in the SEM allows for the threedimensional tomographic reconstruction of a specimen, starting from a set of projection images. Compressed sensing was used to solve the undetermined problem of structure reconstruction and was proven capable of overcoming the limitations arising from the sampling scheme. Reconstructions of cobalt particles within a carbon nanotube and collagen fibrils in a dermal tissue are presented, demonstrating the potential of this technique in the set of 3-D electron microscopy methods for both physical and biological science.

  6. Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report

    SciTech Connect

    Ellis, P; Flom, Z; Heinselman, K; Nguyen, T; Tung, S; Haskell, R; Reed, B W; LaGrange, T

    2011-08-04

    The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and the team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.

  7. Simulation of magnetic circular dichroism in the electron microscope

    NASA Astrophysics Data System (ADS)

    Rubino, Stefano; Schattschneider, Peter; Rusz, Jan; Verbeeck, Johan; Leifer, Klaus

    2010-12-01

    As electron energy-loss spectroscopy (EELS) and x-ray absorption spectroscopy (XAS) probe the same transitions from core-shell states to unoccupied states above the Fermi energy, it should always be possible to apply the two techniques to the same physical phenomena, such as magnetic dichroism, and obtain the same information. Indeed, the similarity in the expression of the electron and x-ray cross-sections had been already exploited to prove the equivalence of x-ray magnetic linear dichroism and anisotropy in EELS, by noting that the polarization vector of a photon plays the same role as the momentum transfer in electron scattering. Recently, the same was proven true for x-ray magnetic circular dichroism (XMCD) by establishing a new TEM technique called EMCD (electron energy-loss magnetic chiral dichroism) (Schattschneider P et al 2006 Nature 441 486-8), which makes use of special electron scattering conditions to force the absorption of a circularly polarized virtual photon. The intrinsic advantage of EMCD over XMCD is the high spatial resolution of electron microscopes, which are readily available. Among the particular obstacles in EMCD that do not exist for synchrotron radiation, is the notoriously low signal and the very particular scattering conditions necessary to observe a chiral dichroic signal. In spite of that, impressive progress has been made in recent years. The signal strength could be considerably increased, and some innovations such as using a convergent beam have been introduced. EMCD has evolved into several techniques, which make full use of the versatility of the TEM and energy filtering, spectroscopy or STEM conditions (Rubino S 2007 Magnetic circular dichroism in the transmission electron microscope PhD Thesis Vienna University of Technology, Vienna, Austria).

  8. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-17

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials. PMID:26762871

  9. [Aberration corrected intraocular lens for microincision cataract surgery (MICS). Intraindividual comparison with a conventional lens - 1-year follow-up].

    PubMed

    Möglich, M; Häberle, H; Pham, D T; Wirbelauer, C

    2009-10-01

    Microincision cataract surgery (MICS) is an important advancement in the field of cataract surgery. This article compares an aberration corrected hydrophilic acrylic intraocular lens (IOL) having a hydrophobic surface for MICS with a one-piece hydrophobic acrylic IOL with respect to capsule sac stability, image quality, and after-cataract formation over the course of 1 year. The operations were performed as bimanual MICS or coaxial phacoemulsification. Overall the results after implantation of the IOL by MICS can be regarded as positive in comparison to the standard operation. PMID:18836727

  10. In situ laser processing in a scanning electron microscope

    SciTech Connect

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D.

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  11. In situ laser processing in a scanning electron microscope

    SciTech Connect

    Roberts, Nicholas; Fowlkes, Jason Davidson; Rack, Prof. Philip; Moore, Tom; Magel, Greg; Hartfield, Cheryl

    2012-01-01

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {micro}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  12. Characteristics of different frequency ranges in scanning electron microscope images

    SciTech Connect

    Sim, K. S. Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  13. Quantitative in situ nanoindentation in an electron microscope

    SciTech Connect

    Minor, A. M.; Morris, J. W.; Stach, E. A.

    2001-09-10

    We report the development of a method for quantitative, in situ nanoindentation in an electron microscope and its application to study the onset of deformation during the nanoindentation of aluminum films. The force--displacement curve developed shows the characteristic ''staircase'' instability at the onset of plastic deformation. This instability corresponds to the first appearance of dislocations in a previously defect-free grain. Plastic deformation proceeds through the formation and propagation of prismatic loops punched into the material, and half loops that emanate from the sample surface. These results represent the first real time observations of the discrete microstructural events that occur during nanoindentation.

  14. Transmission electron microscope evidence of telocytes in canine dura mater.

    PubMed

    Xu, Ting; Lu, Shanshan; Zhang, Hongqi

    2016-01-01

    Telocytes (TCs) are a novel type of interstitial cells present in a wide variety of organs and tissues (www.telocytes.com). Telocytes are identified morphologically by a small cell body and specific long prolongations (telopodes) alternating thin segments (podomers) with dilations (podoms). The presence of TCs in rat meninges has been identified in previous research. We here present further evidence that TCs existed in canine dura mater, closed to capillary and surrounded by a great deal of collagen fibres under transmission electron microscope. PMID:26781033

  15. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments. PMID:26235517

  16. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Nicolas, D. P.

    1974-01-01

    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  17. Ultrahigh vacuum scanning electron microscope system combined with wide-movable scanning tunneling microscope

    SciTech Connect

    Kaneko, A.; Homma, Y.; Hibino, H.; Ogino, T.

    2005-08-15

    A surface analysis system has been newly developed with combination of ultrahigh vacuum scanning electron microscope (SEM) and wide-movable scanning tunneling microscope (STM). The basic performance is experimentally demonstrated. These SEM and STM images are clear enough to obtain details of surface structures. The STM unit moves horizontally over several millimeters by sliding motion of PZT actuators. The motion resolution is proved to be submicrometers. The STM tip mounted on another PZT scanner can be guided to a specific object on the sample surface during SEM observation. In the observation of a Si(111) surface rapidly cooled from high temperature, the STM tip was accurately guided to an isolated atomic step and slightly moved along it during SEM observation. The STM observation shows an asymmetry of the (7x7)-transformed region along the step between the upper and lower terraces. (7x7) bands continuously formed along the edge of terraces, while (7x7) domains distributed on the terraces slightly far from the step. These experiments show the wide-movable STM unit resolves a gap of observation area between SEM and STM and the system enables a specific object found in the SEM image to be observed easily by STM.

  18. Morphological abnormalities of rabbit spermatozoa studied by scanning electron microscope and quantified by light microscope.

    PubMed

    Kuzminsky, G; Fausto, A M; Morera, P

    1996-01-01

    Rabbit spermatozoa morphological abnormalities were examined to establish criteria for judging the quality of ejaculates. Ten New Zealand White bucks, aged 9 months and weighing 4.3 +/- 0.2 kg, were placed in a climatic chamber for 3 weeks at +20 degrees C and 70% RH. Sperm was collected three times a week using an artificial vagina. The use of a scanning electron microscope (from x 2000 to x 15,000) in this study produced an illustrated guide for the classification of abnormalities. Mean percentage quantitative values studied by light microscope (x 400) observation were: 18.2% total abnormalities, 2.9% head abnormalities, 13.6% tail abnormalities and 1.7% broken spermatozoa. Variability was very high (CV 35.7, 54.0, 45.3 and 32.5%, respectively); consequently, each ejaculate should be analysed before use for artificial insemination. Among the different tail abnormalities observed, the most frequent were coiled tails, 9.1%, cytoplasmic droplets, 2.4%, bent tails, 1.3% and swollen tails, 0.5%. PMID:8987108

  19. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-07-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  20. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  1. Aberration-corrected concave grating for the mid-infrared spectrometer aboard the Infrared Telescope in Space.

    PubMed

    Onaka, T

    1995-02-01

    A mechanically ruled aberration-corrected concave grating was developed for use in the low-resolution mid-infrared spectrometer aboard the cryogenically cooled Infrared Telescope in Space. The design and the performance testing of the grating are reported. The spectrometer requires a wide spectral range (4.5-11.7 µm) and a wide field of view (8 × 8 arcmin) with a low wavelength resolution (Δλ ≤ 0.3 µm). The aberration-corrected concave grating provides a flat focal plane with a small aberration in the spatial direction compared with those caused by the finite size of the entrance slit. It also permits a simple design for the spectrometer, which is advantageous for applications in space cryogenic instruments. The measurements of the wavelength resolution and the spatial resolution are shown to be in good agreement with the predicted performance. The diffraction efficiency of the grating is more than 80% at the blaze wavelength (6 µm) and fairly high (>30%) over the entire wavelength range in question. The grating produces polarization of less than 10% for λ < 6.4 µm and of 10-20% for 6.7 µm <λ 9.7 µm. These results indicate the potential applicability of this type of grating to the wide-field IR spectroscopic observations. PMID:20963166

  2. Scanning electron microscope study of Pseudomonas putida colonies.

    PubMed Central

    Shapiro, J A

    1985-01-01

    Pseudomonas putida colonies were examined by scanning electron microscope. A variety of cell morphologies, multicellular arrangements, and extracellular materials were observed in the fixed material. Different regions of a single colony showed characteristic organizations of these architectural elements. In some cases, the detailed microstructure of the fixed colony surfaces observed by scanning electron microscopy could be correlated with macroscopic patterns visualized by histochemical staining and surface relief photography of live colonies. Extracellular materials were seen to extend onto the agar surface beyond the boundaries of the cell mass, and the final structures of these materials, after fixation and desiccation, were colony specific. The significance of these features of colony microstructure for formulating hypotheses about the control of colony morphogenesis is discussed. Images PMID:4066611

  3. Coherent Chromatic Effect in the Transmission Electron Microscope.

    PubMed

    Erni, Rolf

    2016-03-18

    Under the assumption of local atomic scattering, elastic electron scattering at finite scattering angles implies a small but finite energy loss. This energy loss, which under conventional imaging conditions in high-resolution transmission electron microscopy is of the order of 0.1 meV and thus negligible, increases by more than 2 orders of magnitude if light elements are investigated at sub-Ångström resolution. For a microscope of finite chromatic aberration, the energy loss leads to an element-specific chromatic effect which increases with the instrument resolution and with decreasing mass of the scattering atom. Despite that this effect is small, it can degrade the achievable image contrast. However, the effect can be considered in the optimization of the phase-contrast imaging conditions and even be beneficial to enhance the relative image contrast of light atoms in the presence of heavy atoms. PMID:27035311

  4. Electric field stimulation setup for photoemission electron microscopes.

    PubMed

    Buzzi, M; Vaz, C A F; Raabe, J; Nolting, F

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures. PMID:26329198

  5. Electric field stimulation setup for photoemission electron microscopes

    NASA Astrophysics Data System (ADS)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  6. Electric field stimulation setup for photoemission electron microscopes

    SciTech Connect

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  7. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    NASA Astrophysics Data System (ADS)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  8. Light- and electron-microscopic histochemistry of Fabry's disease.

    PubMed Central

    Faraggiana, T.; Churg, J.; Grishman, E.; Strauss, L.; Prado, A.; Bishop, D. F.; Schuchman, E.; Desnick, R. J.

    1981-01-01

    A histochemical study was performed on light- and electron-microscopic level in a case of Fabry's disease. The patient underwent kidney transplantation for renal failure and died of heart failure 6 months later. Patient's tissues were studied at the light- and electron-microscopic levels with various embedding and staining techniques for lipids and carbohydrates. Two peroxidase-labeled lectins (from Ricinus communis and from Bandeiraea simplicifolia) known to have affinity for alpha- and beta-D-galactose, were strongly reactive with the storage material on frozen sections. The ultrahistochemical and extraction tests showed that the typical granules had a variable reactivity and morphologic characteristics in different cells, probably reflecting different composition. A small number of typical deposits were also observed in the transplanted kidney. This is the first reported case of recurrence of the storage disease in the allograft. Of interest was also the fact that the patient's blood inhibited normal alpha-galactosidase activity, suggesting a possible inhibitor-related mechanism in the pathogenesis of the recurrence. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 PMID:6786101

  9. A new apparatus for electron tomography in the scanning electron microscope

    SciTech Connect

    Morandi, V. Maccagnani, P.; Masini, L.; Migliori, A.; Ortolani, L.; Pezza, A.; Del Marro, M.; Pallocca, G.; Vinciguerra, P.; Rossi, M.; Ferroni, M.; Sberveglieri, G.; Vittori-Antisari, M.

    2015-06-23

    The three-dimensional reconstruction of a microscopic specimen has been obtained by applying the tomographic algorithm to a set of images acquired in a Scanning Electron Microscope. This result was achieved starting from a series of projections obtained by stepwise rotating the sample under the beam raster. The Scanning Electron Microscope was operated in the scanning-transmission imaging mode, where the intensity of the transmitted electron beam is a monotonic function of the local mass-density and thickness of the specimen. The detection strategy has been implemented and tailored in order to maintain the projection requirement over the large tilt range, as required by the tomographic workflow. A Si-based electron detector and an eucentric-rotation specimen holder have been specifically developed for the purpose.

  10. Examination of Surveyor 3 parts with the scanning electron microscope and electron microprobe

    NASA Technical Reports Server (NTRS)

    Chodos, A. A.; Devaney, J. R.; Evens, K. C.

    1972-01-01

    Two screws and two washers, several small chips of tubing, and a fiber removed from a third screw were examined with the scanning electron microscope and the electron microprobe. The purpose of the examination was to determine the nature of the material on the surface of these samples and to search for the presence of meteoritic material.

  11. Miniature self-contained vacuum compatible electronic imaging microscope

    DOEpatents

    Naulleau, Patrick P.; Batson, Phillip J.; Denham, Paul E.; Jones, Michael S.

    2001-01-01

    A vacuum compatible CCD-based microscopic camera with an integrated illuminator. The camera can provide video or still feed from the microscope contained within a vacuum chamber. Activation of an optional integral illuminator can provide light to illuminate the microscope subject. The microscope camera comprises a housing with a objective port, modified objective, beam-splitter, CCD camera, and LED illuminator.

  12. Miniaturized Environmental Scanning Electron Microscope for In Situ Planetary Studies

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Abbott, Terry; Medley, Stephanie; Gregory, Don; Thaisen, Kevin; Taylor , Lawrence; Ramsey, Brian; Jerman, Gregory; Sampson, Allen; Harvey, Ralph

    2010-01-01

    The exploration of remote planetary surfaces calls for the advancement of low power, highly-miniaturized instrumentation. Instruments of this nature that are capable of multiple types of analyses will prove to be particularly useful as we prepare for human return to the moon, and as we continue to explore increasingly remote locations in our Solar System. To this end, our group has been developing a miniaturized Environmental-Scanning Electron Microscope (mESEM) capable of remote investigations of mineralogical samples through in-situ topographical and chemical analysis on a fine scale. The functioning of an SEM is well known: an electron beam is focused to nanometer-scale onto a given sample where resulting emissions such as backscattered and secondary electrons, X-rays, and visible light are registered. Raster scanning the primary electron beam across the sample then gives a fine-scale image of the surface topography (texture), crystalline structure and orientation, with accompanying elemental composition. The flexibility in the types of measurements the mESEM is capable of, makes it ideally suited for a variety of applications. The mESEM is appropriate for use on multiple planetary surfaces, and for a variety of mission goals (from science to non-destructive analysis to ISRU). We will identify potential applications and range of potential uses related to planetary exploration. Over the past few of years we have initiated fabrication and testing of a proof-of-concept assembly, consisting of a cold-field-emission electron gun and custom high-voltage power supply, electrostatic electron-beam focusing column, and scanning-imaging electronics plus backscatter detector. Current project status will be discussed. This effort is funded through the NASA Research Opportunities in Space and Earth Sciences - Planetary Instrument Definition and Development Program.

  13. Microscopic theory of the residual surface resistivity of Rashba electrons

    NASA Astrophysics Data System (ADS)

    Bouaziz, Juba; Lounis, Samir; Blügel, Stefan; Ishida, Hiroshi

    2016-07-01

    A microscopic expression of the residual electrical resistivity tensor is derived in linear response theory for Rashba electrons scattering at a magnetic impurity with cylindrical or noncylindrical potential. The behavior of the longitudinal and transversal residual resistivity is obtained analytically and computed for an Fe impurity at the Au(111) surface. We studied the evolution of the resistivity tensor elements as a function of the Rashba spin-orbit strength and the magnetization direction of the impurity. We found that the absolute values of longitudinal resistivity reduce with increasing spin-orbit strength of the substrate and that the scattering of the conduction electrons at magnetic impurities with magnetic moments pointing in directions not perpendicular to the surface plane produce a planar Hall effect and an anisotropic magnetoresistance even if the impurity carries no spin-orbit interaction. Functional forms are provided describing the anisotropy of the planar Hall effect and the anisotropic magnetoresistance with respect to the direction of the impurity moment. In the limit of no spin-orbit interaction and a nonmagnetic impurity of cylindrical symmetry, the expression of the residual resistivity of a two-dimensional electron gas has the same simplicity and form as for the three-dimensional electron gas [J. Friedel, J. Nuovo. Cim. 7, 287 (1958), 10.1007/BF02751483] and can also be expressed in terms of scattering phase shifts.

  14. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  15. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT

    SciTech Connect

    Miller, Michael K; Parish, Chad M

    2014-01-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.

  16. Aberration-corrected X-ray spectrum imaging and Fresnel contrast to differentiate nanoclusters and cavities in helium-irradiated alloy 14YWT.

    PubMed

    Parish, Chad M; Miller, Michael K

    2014-04-01

    Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, that are resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized cavities such as helium bubbles from the Ti-Y-O rich nanoclusters (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-corrected scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging, have been used for such a purpose. Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs. MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs. PMID:24598435

  17. Comparison of 3-D Multi-Lag Cross-Correlation and Speckle Brightness Aberration Correction Algorithms on Static and Moving Targets

    PubMed Central

    Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.

    2010-01-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503

  18. Migration of Single Iridium Atoms and Tri-iridium Clusters on MgO Surfaces. Aberration-Corrected STEM Imaging and ab-initio Calculations

    SciTech Connect

    Han, Chang W.; Iddir, Hakim; Uzun, Alper; Curtiss, Larry A.; Browning, Nigel D.; Gates, Bruce C.; Ortalan, Volkan

    2015-11-06

    To address the challenge of fast, direct atomic-scale visualization of the diffusion of atoms and clusters on surfaces, we used aberration-corrected scanning transmission electron microscopy (STEM) with high scan speeds (as little as ~0.1 s per frame) to visualize the diffusion of (1) a heavy atom (Ir) on the surface of a support consisting of light atoms, MgO(100), and (2) an Ir3 cluster on MgO(110). Sequential Z-contrast images elucidate the diffusion mechanisms, including the hopping of Ir1 and the rotational migration of Ir3 as two Ir atoms remain anchored to the surface. Density functional theory (DFT) calculations provided estimates of the diffusion energy barriers and binding energies of the iridium species to the surfaces. The results show how the combination of fast-scan STEM and DFT calculations allow real-time visualization and fundamental understanding of surface diffusion phenomena pertaining to supported catalysts and other materials.

  19. Comparison of analytical and numerical approaches for CT-based aberration correction in transcranial passive acoustic imaging

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; Hynynen, Kullervo

    2016-01-01

    Computed tomography (CT)-based aberration corrections are employed in transcranial ultrasound both for therapy and imaging. In this study, analytical and numerical approaches for calculating aberration corrections based on CT data were compared, with a particular focus on their application to transcranial passive imaging. Two models were investigated: a three-dimensional full-wave numerical model (Connor and Hynynen 2004 IEEE Trans. Biomed. Eng. 51 1693-706) based on the Westervelt equation, and an analytical method (Clement and Hynynen 2002 Ultrasound Med. Biol. 28 617-24) similar to that currently employed by commercial brain therapy systems. Trans-skull time delay corrections calculated from each model were applied to data acquired by a sparse hemispherical (30 cm diameter) receiver array (128 piezoceramic discs: 2.5 mm diameter, 612 kHz center frequency) passively listening through ex vivo human skullcaps (n  =  4) to emissions from a narrow-band, fixed source emitter (1 mm diameter, 516 kHz center frequency). Measurements were taken at various locations within the cranial cavity by moving the source around the field using a three-axis positioning system. Images generated through passive beamforming using CT-based skull corrections were compared with those obtained through an invasive source-based approach, as well as images formed without skull corrections, using the main lobe volume, positional shift, peak sidelobe ratio, and image signal-to-noise ratio as metrics for image quality. For each CT-based model, corrections achieved by allowing for heterogeneous skull acoustical parameters in simulation outperformed the corresponding case where homogeneous parameters were assumed. Of the CT-based methods investigated, the full-wave model provided the best imaging results at the cost of computational complexity. These results highlight the importance of accurately modeling trans-skull propagation when calculating CT-based aberration corrections

  20. Transmission electron microscope sample holder with optical features

    DOEpatents

    Milas, Mirko; Zhu, Yimei; Rameau, Jonathan David

    2012-03-27

    A sample holder for holding a sample to be observed for research purposes, particularly in a transmission electron microscope (TEM), generally includes an external alignment part for directing a light beam in a predetermined beam direction, a sample holder body in optical communication with the external alignment part and a sample support member disposed at a distal end of the sample holder body opposite the external alignment part for holding a sample to be analyzed. The sample holder body defines an internal conduit for the light beam and the sample support member includes a light beam positioner for directing the light beam between the sample holder body and the sample held by the sample support member.

  1. Pigmentosis tubae, a new entity: light and electron microscopic study

    SciTech Connect

    Herrera, G.A.; Reimann, B.E.; Greenberg, H.L.; Miles, P.A.

    1983-03-01

    The authors noted an unusual finding in the fallopian tubes of a 31-year-old woman who had received external and internal whole pelvis radiotherapy for squamous cell carcinoma of the cervix. Aggregates of macrophages containing pigment, identified in a subepithelial location, were reminiscent of melanosis coli, which is caused by abuse of anthracene-containing laxatives. Electron microscopic examination of the pigment revealed cytoplasmic material with the appearance of lipofuscin, identical to the pigment described in cases of colonic melanosis. After a careful study of possible etiologic agents, it was concluded that the pigment most likely resulted from cellular damage caused by radiotherapy. The authors are not aware of any other reported case of this entity, which will be called pigmentosis tubae.

  2. Scanning electron microscopic observations of Anopheles albimanus (Diptera: Culicidae) eggs.

    PubMed

    Rodriguez, M H; Chavez, B; Orozco, A; Loyola, E G; Martinez-Palomo, A

    1992-05-01

    To investigate the existence of subspecies of Anopheles albimanus Wiedeman in southern Mexico, the egg morphology of specimens obtained from several field populations and from insectary-adapted colonies of uniform pupal phenotype was examined. Scanning electron microscopic observations have shown that the eggs of An. albimanus are polymorphic in respect to the size and shape of their floats, but not in their ornamentation. Four types of eggs were found. Differences in the proportion of the various morphological types were statistically significant, although proportions of egg types were variable among individuals within the same population. These observations are suggestive of distinctive populations and warrant further studies using more sensitive methods to investigate sibling species in An. albimanus sensu lato. PMID:1625289

  3. [Multiple transmission electron microscopic image stitching based on sift features].

    PubMed

    Li, Mu; Lu, Yanmeng; Han, Shuaihu; Wu, Zhuobin; Chen, Jiajing; Liu, Zhexing; Cao, Lei

    2015-08-01

    We proposed a new stitching method based on sift features to obtain an enlarged view of transmission electron microscopic (TEM) images with a high resolution. The sift features were extracted from the images, which were then combined with fitted polynomial correction field to correct the images, followed by image alignment based on the sift features. The image seams at the junction were finally removed by Poisson image editing to achieve seamless stitching, which was validated on 60 local glomerular TEM images with an image alignment error of 62.5 to 187.5 nm. Compared with 3 other stitching methods, the proposed method could effectively reduce image deformation and avoid artifacts to facilitate renal biopsy pathological diagnosis. PMID:26403733

  4. Dynamics of a nanodroplet under a transmission electron microscope

    SciTech Connect

    Leong, Fong Yew; Mirsaidov, Utkur M.; Matsudaira, Paul; Mahadevan, L.

    2014-01-15

    We investigate the cyclical stick-slip motion of water nanodroplets on a hydrophilic substrate viewed with and stimulated by a transmission electron microscope. Using a continuum long wave theory, we show how the electrostatic stress imposed by non-uniform charge distribution causes a pinned convex drop to deform into a toroidal shape, with the shape characterized by the competition between the electrostatic stress and the surface tension of the drop, as well as the charge density distribution which follows a Poisson equation. A horizontal gradient in the charge density creates a lateral driving force, which when sufficiently large, overcomes the pinning induced by surface heterogeneities in the substrate disjoining pressure, causing the drop to slide on the substrate via a cyclical stick-slip motion. Our model predicts step-like dynamics in drop displacement and surface area jumps, qualitatively consistent with experimental observations.

  5. A novel low energy electron microscope for DNA sequencing and surface analysis

    SciTech Connect

    Mankos, M.; Shadman, K.; Persson, H. H. J.; N’Diaye, A. T.; Schmid, A. K.; Davis, R. W.

    2014-01-31

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the

  6. A Novel Low Energy Electron Microscope for DNA Sequencing and Surface Analysis

    PubMed Central

    Mankos, M.; Shadman, K.; Persson, H.H.J.; N’Diaye, A.T.; Schmid, A.K.; Davis, R.W.

    2014-01-01

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of

  7. A novel low energy electron microscope for DNA sequencing and surface analysis

    DOE PAGESBeta

    Mankos, M.; Shadman, K.; Persson, H. H. J.; N’Diaye, A. T.; Schmid, A. K.; Davis, R. W.

    2014-01-31

    Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts.more » The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Finally, experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the

  8. A radial mirror analyzer for scanning electron/ion microscopes

    NASA Astrophysics Data System (ADS)

    Hoang, Hung Quang; Khursheed, Anjam

    2011-04-01

    This paper presents a high-resolution transmittance electron energy analyzer suitable for use as an attachment inside the specimen chambers of scanning electron/ion microscopes. The analyzer uses a rotationally symmetric electric field distribution to transport electrons/ions emitted from a central point source in a radial direction on to a ring-shaped collection/detection area. The analyzer is designed to fit around a conical shaped objective lens pole-piece/electrode, allowing for a relatively short minimum working distance, 5 mm or less. Simulation results for the analyzer design predict that it will have a relative energy resolution of 0.025% for an entrance angular spread of ±6°, around an order of magnitude better then the well-known Cylindrical Mirror Analyzer (CMA). The analyzer design allows for a parallel mode of operation in which the energy bandwidth on a conical shaped detection plane is predicted to be as high as 32% (±16%) of the central-band energy. On a flat ring-shaped detection plane, the energy bandwidth is predicted to be around 12% (±6%) of the central-band energy, over which the simulated relative energy resolution remains below 0.06% for angular spreads of ±6°.

  9. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  10. Large area fabrication of plasmonic nanoparticle grating structure by conventional scanning electron microscope

    SciTech Connect

    Sudheer, Tiwari, P.; Rai, V. N.; Srivastava, A. K.; Mukharjee, C.

    2015-06-24

    Plasmonic nanoparticle grating (PNG) structure of different periods has been fabricated by electron beam lithography using silver halide based transmission electron microscope film as a substrate. Conventional scanning electron microscope is used as a fabrication tool for electron beam lithography. Optical microscope and energy dispersive spectroscopy (EDS) have been used for its morphological and elemental characterization. Optical characterization is performed by UV-Vis absorption spectroscopic technique.

  11. Design and Performance Characteristics of the ORNL AdvancedMicroscopy Laboratory and JEOL 2200FS-AC Aberration-CorrectedSTEM/TEM

    SciTech Connect

    Allard, Lawrence F.; Blom, Douglas A.; O'Keefe, Michael A.; Mishina, S.

    2005-02-15

    At ORNL, the new Advanced Microscopy Laboratory (AML) has recently been completed, with two aberration-corrected instruments installed, and two more planned in the near future to fill the 4-laboratory building. The installed JEOL 2200FS-AC has demonstrated aTEM information limit of 0.9A. This limit is expected given the measured instrument parameters (HT and OL power supply stabilities, beam energy spread, etc.), and illustrates that the environmental influences are not adversely affecting the instrument performance. In STEM high-angle annular dark-field (HA-ADF) mode, images of a thin Si crystal in<110>zone axis orientation, after primary aberrations in the illuminating beam were optimally corrected, showed a significant vibration effect. The microscope is fitted with three magnetically levitated turbo pumps (one on the column at about the specimen position,and two near floor level) that pump the Omega energy filter and detector chamber. These pumps run at 48,000 rpm, precisely equivalent to 800Hz. It was determined that the upper turbo pump was contributing essentially all of the 800Hz signal to the image, and in fact that the pump was defective. After replacing the pump with one significantly quieter than the original, the Si atomic column image and associated diffractogram(Fig. 4b) show a much-reduced effect of the 800Hz signal, but still some residual effect from the turbo pump. The upper pump will be removed from the main column to an adjacent frame on the floor, and will have a large-diameter, well-damped, pump line to the original connection to the column to effectively isolate the pump from the column. If the 800Hz signal results from mechanical vibrations, they will be damped, and if the signal results from acoustic coupling to the column, it can be damped by appropriate acoustic materials.

  12. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes

    PubMed Central

    Grassucci, Robert A; Taylor, Derek; Frank, Joachim

    2009-01-01

    This protocol details the steps used for visualizing the frozen-hydrated grids as prepared following the accompanying protocol entitled ‘Preparation of macromolecular complexes for visualization using cryo-electron microscopy.’ This protocol describes how to transfer the grid to the microscope using a standard cryo-transfer holder or, alternatively, using a cryo-cartridge loading system, and how to collect low-dose data using an FEI Tecnai transmission electron microscope. This protocol also summarizes and compares the various options that are available in data collection for three-dimensional (3D) single-particle reconstruction. These options include microscope settings, choice of detectors and data collection strategies both in situations where a 3D reference is available and in the absence of such a reference (random-conical and common lines). PMID:18274535

  13. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    SciTech Connect

    Lorut, F.; Imbert, G.; Roggero, A.

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  14. High cycle fatigue in the transmission electron microscope

    DOE PAGESBeta

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S. A.; Boyce, Brad L.; Hattar, Khalid

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12 m·cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  15. High Cycle Fatigue in the Transmission Electron Microscope.

    PubMed

    Bufford, Daniel C; Stauffer, Douglas; Mook, William M; Syed Asif, S A; Boyce, Brad L; Hattar, Khalid

    2016-08-10

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 10(6) cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10(-12) m·cycle(-1). This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu. PMID:27351706

  16. Atomic Resolution Imaging with a sub-50 pm Electron Probe

    SciTech Connect

    Erni, Rolf P.; Rossell, Marta D.; Kisielowski, Christian; Dahmen, Ulrich

    2009-03-02

    Using a highly coherent focused electron probe in a 5th order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29percent contrast. Our experimental data show the 47 pm spacing of a Ge 114 crystal imaged with 11-18percent contrast at a 60-95percent confidence level, providing the first direct evidence for sub 50-pm resolution in ADF STEM imaging.

  17. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction

    PubMed Central

    Zawadzki, Robert J.; Cense, Barry; Zhang, Yan; Choi, Stacey S.; Miller, Donald T.; Werner, John S.

    2008-01-01

    We have developed an improved adaptive optics - optical coherence tomography (AO-OCT) system and evaluated its performance for in vivo imaging of normal and pathologic retina. The instrument provides unprecedented image quality at the retina with isotropic 3D resolution of 3.5 × 3.5 × 3.5 μm3. Critical to the instrument's resolution is a customized achromatizing lens that corrects for the eye's longitudinal chromatic aberration and an ultra broadband light source (Δλ=112nm λ0=∼836 nm). The eye's transverse chromatic aberrations is modeled and predicted to be sufficiently small for the imaging conditions considered. The achromatizing lens was strategically placed at the light input of the AO-OCT sample arm. This location simplifies use of the achromatizing lens and allows straightforward implementation into existing OCT systems. Lateral resolution was achieved with an AO system that cascades two wavefront correctors, a large stroke bimorph deformable mirror (DM) and a micro-electromechanical system (MEMS) DM with a high number of actuators. This combination yielded diffraction-limited imaging in the eyes examined. An added benefit of the broadband light source is the reduction of speckle size in the axial dimension. Additionally, speckle contrast was reduced by averaging multiple B-scans of the same proximal patch of retina. The combination of improved micron-scale 3D resolution, and reduced speckle size and contrast were found to significantly improve visibility of microscopic structures in the retina. PMID:18545525

  18. Solar cell evaluation using electron beam induced current with the large chamber scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Wink, Tara; Kintzel, Edward; Marienhoff, Peter; Klein, Martin

    2012-02-01

    An initial study using electron beam induced current (EBIC) to evaluate solar cells has been carried out with the large chamber scanning electron microscope (LC-SEM) at the Western Kentucky University Nondestructive Analysis Center. EBIC is a scanning electron microscope technique used for the characterization of semiconductors. To facilitate our studies, we developed a Solar Amplification System (SASY) for analyzing current distribution and defects within a solar cell module. Preliminary qualitative results will be shown for a solar cell module that demonstrates the viability of the technique using the LC-SEM. Quantitative EBIC experiments will be carried out to analyze defects and minority carrier properties. Additionally, a well-focused spot of light from an LED mounted at the side of the SEM column will scan the same area of the solar cell using the LC-SEM positioning system. SASY will then output the solar efficiency to be compared with the minority carrier properties found using EBIC.

  19. Electron sputtering in the analytical electron microscope: Calculations and experimental data

    SciTech Connect

    Zaluzec, N.J.; Mansfield, J.F.

    1987-03-01

    The environment of the electron microscope is particularly severe when one considers the energy deposited in a specimen during typical experimental conditions. Conventional imaging experiments tend to employ electron current densities ranging from approx.0.1 to 1 A/cm/sup 2/ while during microanalysis conditions probe current densities can range from 10 to values as high as 10/sup 5/ A/cm/sup 2/. At 100 kV this corresponds to power densities from 100 Kilowatts/cm/sup 2/ to 10/sup 4/ Megawatts/cm/sup 2/. These energy deposition rates can result in electron irradiation damage which can substantially alter the structure and composition of a specimen through either ionization damage in organics or by displacement damage in inorganics and/or combinations thereof. For the most part materials scientists operating an analytical electron microscope (AEM) in the 100 to 200 kV regime studying metallic and/or ceramic specimens have been spared the need to consider either of these effects as their specimens have tended to be sufficiently resilient. However, the advent of the new medium voltage microscopes operating in the 300 to 400 kV regime with high brightness guns and clean or ultrahigh vacuum systems has necessitated a reevaluation of the effects of higher voltage operation in light of the destructive nature of the electron beam particularly under microanalysis conditions.

  20. Semiautomatic classification of cementitious materials using scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Drumetz, Lucas; Mura, Mauro Dalla; Meulenyzer, Samuel; Lombard, Sébastien; Chanussot, Jocelyn

    2015-11-01

    Segmentation and classification are prolific research topics in the image processing community. These topics have been increasingly used in the context of analysis of cementitious materials on images acquired with a scanning electron microscope. Indeed, there is a need to be able to detect and to quantify the materials present in a cement paste in order to follow the chemical reactions occurring in the material even days after the solidification. We propose a new approach for segmentation and classification of cementitious materials based on the denoising of the data with a block-matching three-dimensional (3-D) algorithm, binary partition tree (BPT) segmentation, support vector machines (SVM) classification, and interactivity with the user. The BPT provides a hierarchical representation of the spatial regions of the data, allowing a segmentation to be selected among the admissible partitions of the image. SVMs are used to obtain a classification map of the image. This approach combines state-of-the-art image processing tools with user interactivity to allow a better segmentation to be performed, or to help the classifier discriminate the classes better. We show that the proposed approach outperforms a previous method when applied to synthetic data and several real datasets coming from cement samples, both qualitatively with visual examination and quantitatively with the comparison of experimental results with theoretical ones.

  1. Coonhound paralysis. Further clinical studies and electron microscopic observations.

    PubMed

    Cummings, J F; de Lahunta, A; Holmes, D F; Schultz, R D

    1982-01-01

    Prior study of coonhound paralysis (CHP) revealed an acute polyradiculoneuritis in raccoon-hunting dogs with clinical and pathologic features resembling those of Guillain-Barré syndrome (GBS). In the present series of five cases, the clinical features were investigated with emphasis on electrodiagnostic and CSF findings, and pathologic changes were evaluated with both the light and electron microscope. The demonstration of motor nerve conduction delay and CSF albuminocytologic dissociation in affected dogs further supported the clinical similarity of CHP and GBS. As in GBS, affected roots and nerves contained mononuclear cell infiltrates, segmental myelin changes and axon degeneration. Despite these general pathologic similarities, the present study suggested that axon damage was a more consistent finding in CHP than in GBS. In contrast to ultrastructural findings in GBS, the demyelinating process in CHP did not appear dependent upon macrophages for its initiation. Swelling, separation and vesiculation of myelin occurred around axons of reduced diameter often in the absence of proximate macrophages. Macrophages, rather than initiating demyelination, appeared to be superimposed on existing damage. In this regard, the observed changes resembled those reported in galactocerebroside-induced EAN and sera-mediated in vivo demyelination. PMID:7072488

  2. High-speed electron microscope autoradiographic studies of diffusible compounds

    SciTech Connect

    Mizuhira, V.; Shiihashi, M.; Futaesaku, Y.

    1981-01-01

    Three important factors are necessary for successful electron microscope autoradiography (EM-ARG): good resolution, proper preparation of the radioactive isotope (RI) labeled diffusible compounds, and shortened exposure time for ARG. The resolution problem is fundamental to EM-ARG. However, unless the diffusible RI compounds have been fixed correctly in the tissues during preparation, good resolution is useless. It is also necessary to shorten the exposure time for ARG. As yet, a high-speed ARG method for electron microscopy has not been reported, although scintillation ARG methods have been applied to macro- and micro-ARG since 1960. High specific activity, a large amount of radioactivity per unit exposure for radio incorporation (incubation), and careful selection of labeled compounds that concentrate in the DNA or RNA of cell organelles may increase the sensitivity of the emulsion and shorten the exposure time for ARG. For example, labeled thymidine accumulates in nuclear DNA, /sup 3/H-SPG (Schizophyllan-produced polyglucan) is incorporated into lysosomal granules, and labeled iodine concentrates in thyroid follicles, often increasing the sensitivity of the emulsion and shortening the exposure time, but high-resolution ARG continues to be necessary, even though it requires 4 weeks or more of exposure time. Scintillation autoradiography using tritium seems unstable. We propose a new way to shorten exposure time for EM-ARG, by combining overdevelopment with coating both sides of the grid with emulsion. This method is approximately 100 times more sensitive than the conventional method, and only 4 days of exposure time are required, in contrast to the 1 month usually needed.

  3. Visualizing bone porosities using a tabletop scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, D.; DaPonte, J.; Broadbridge, C. C.; Daniel, D.; Alter, L.

    2010-04-01

    Pores are naturally occurring entities in bone. Changes in pore size and number are often associated with diseases such as Osteoporosis and even microgravity during spaceflight. Studying bone perforations may yield great insight into bone's material properties, including bone density and may contribute to identifying therapies to halt or potentially reverse bone loss. Current technologies used in this field include nuclear magnetic resonance, micro-computed tomography and the field emission scanning electron microscope (FE-SEM) 2, 5. However, limitations in each method limit further advancement. The objective of this study was to assess the effectiveness of using a new generation of analytical instruments, the TM-1000 tabletop, SEM with back-scatter electron (BSE) detector, to analyze cortical bone porosities. Hind limb unloaded and age-based controlled mouse femurs were extracted and tested in vitro for changes in pores on the periosteal surface. An important advantage of using the tabletop is the simplified sample preparation that excludes extra coatings, dehydration and fixation steps that are otherwise required for conventional SEM. For quantitative data, pores were treated as particles in order to use an analyze particles feature in the NIH ImageJ software. Several image-processing techniques for background smoothing, thresholding and filtering were employed to produce a binary image suitable for particle analysis. It was hypothesized that the unloaded bones would show an increase in pore area, as the lack of mechanical loading would affect bone-remodeling processes taking place in and around pores. Preliminary results suggest only a slight different in frequency but not in size of pores between unloaded and control femurs.

  4. Ethanol teratogenicity in mice: an electron microscopic study.

    PubMed

    Bannigan, J; Cottell, D

    1984-10-01

    In this study, the neuroepithelium (NE) cells of the mouse embryo were examined with the electron microscope at various intervals after maternal injection of 0.03 ml/g body weight 25% (v/v) ethanol on day 9 of gestation (plug day = day 1), by the intraperitoneal route. Within 1 hour of treatment, the mitochondria of the NE cells became greatly swollen but could recover. Recovery occurred in two phases: a rapid one during the second hour after treatment, followed by a more gradual one that lasted until 12 hours after treatment. About 5 hours after treatment, dying and fragmenting cells were seen in the NE of all embryos examined. The debris from this necrosis was phagocytosed by neighbouring healthy cells. Also at 5 hours after treatment there was an apparent expansion of the intercellular space of the NE and an enlargement of the apical pseudopodial processes of the NE cells. The latter two changes may have been the result of failure of energy-dependent cell fluid homeostasis consequent to mitochondrial dysfunction. All of these changes were reversed by 15 hours after treatment. Although all embryos examined had abnormalities of the NE, including cell necrosis, at 24 hours after treatment only 28% had failed to complete neural tube formation. Hence, either the degree of ethanol-induced damage varies between embryos in the same litter, or the sensitive period is so restricted that variations in stage of development within a litter can account for the lack of concordance between the presence of cellular damage and the subsequent occurrence of a neural tube defect. PMID:6495228

  5. New methods for cathodoluminescence in the scanning electron microscope.

    PubMed

    Boyde, A; Reid, S A

    1983-01-01

    Experiments using the CL imaging mode to recognise osteoid in the polished, cut surfaces of bone biopsies embedded in PMMA led to the development of a number of new methods for contrast formation in CL images in the SEM. These involve: (1) enhancing or (2) reducing the CL signal by staining the specimen, (3) utilising the cathodoluminescence of glass microscope slides to produce images of histological sections mounted on glass so that features in the section which scatter the electron beam appear dark against a light background, and (4) enhancing the CL signal from PMMA so that features which are less penetrated by the scintillator show up dark against a bright background. Efforts to increase the efficiency of light collection resulted in the development of a new means for manufacturing reflector-cum-light guide CL detectors by wrapping aluminum foil around a wooden former. These detectors enshroud the specimen so that CL light can only escape to the photomultiplier window (or back up the final lens). A variety of such designs have proved more efficient than the conventional plastic light guides used as CL detectors. By enlarging the beam entry aperture, other SE and BSE detectors can be used simultaneously. Examples of the value of the CL mode in mineralised tissue research include the use of enhanced CL plastic embedding media to detect marrow space and of enhanced osteoid CL to detect unmineralised bone matrix; the use of tetracycline as a growth marker in pathological studies of bone and experimental studies with bone, dentine and enamel; the use of bisbenzamid to locate and count nuclei in osteoclasts, the hard tissue resorbtive cells; and the use of superficial stain absorption of auto-CL to locate stained material on tooth surfaces, with the view to monitor the efficiency of periodontal therapy. PMID:6669948

  6. Electron microscopic studies of magnetosomes in magnetotactic bacteria.

    PubMed

    Bazylinski, D A; Garratt-Reed, A J; Frankel, R B

    1994-04-01

    Electron microscopic studies on magnetosomes in magnetotactic bacteria have revealed much information on their composition, structure, and even the formation of their mineral phase. The mineral phases of the magnetosomes are of two general types: iron oxides and iron sulfides. Iron oxide-type magnetosomes contain particles of the ferrimagnetic mineral magnetite (Fe3O4) while the iron sulfide-type contain ferrimagnetic greigite (Fe3S4), greigite and non-magnetic pyrite (FeS2), or possibly ferrimagnetic pyrrhotite (Fe7S8). Regardless of their composition, the crystalline particles in magnetosomes have a narrow size range: approximately 35 to 120 nm. Magnetite crystals in this size range are single-magnetic-domains and confer a permanent magnetic dipole moment to the cell. The single-domain size range for greigite is not known but is probably similar to that for magnetite. The morphology of the particles in the bacterial magnetosomes appears to be species-specific. Morphologies of magnetite crystals in different species of magnetotactic bacteria include cubo-octahedra, parallelepipedal (truncated hexahedral or octahedral prisms), and tooth- or bullet-shaped (anisotropic). Morphologies of greigite particles include cubo-octahedra and rectangular prismatic. The greigite-pyrite particles are generally pleomorphic with no consistent crystalline morphology. A membrane has been shown to surround the particles in some organisms and may be involved in the formation of the crystalline phase while also providing physical constraints on the size and the shape of the crystal. These results clearly indicate that the biomineralization process involved in the bacterial magnetosome, a good example of a self-assembled structure on a nanometer scale, is highly controlled by the organism. PMID:8018991

  7. The Design and Construction of a Simple Transmission Electron Microscope for Educational Purposes.

    ERIC Educational Resources Information Center

    Hearsey, Paul K.

    This document presents a model for a simple transmission electron microscope for educational purposes. This microscope could demonstrate thermonic emission, particle acceleration, electron deflection, and flourescence. It is designed to be used in high school science courses, particularly physics, taking into account the size, weight, complexity…

  8. Electron Microscopic Studies of the Antigen-Antibody Complex

    PubMed Central

    Easty, G. C.; Mercer, E. H.

    1958-01-01

    Electron micrographs of the ferritin antibody (rabbit) and ferritin (horse) complex have been obtained. The high iron content of the ferritin molecule (23 per cent Fe) allows its molecules to be recognized within the particles of precipitate. Three methods of visualizing the molecular distribution have been developed: (a) small particles of the precipitated complex have been dried on to electron microscope grids and either examined directly or first shadowed with metal and then examined, (b) the precipitate has been centrifuged to a plug which was embedded and thin sections cut from it for examination, (c) the bands formed by allowing antibody and antigen to diffuse together in agar gels have been fixed, embedded and sectioned. All methods have yielded pictures of the distribution of the ferritin within the complex which are broadly similar to what might have been expected from a somewhat irregular lattice as pictured in the Marrack-Heidelberger Lattice Theory. The antibody molecules are not clearly defined but appear as a halo of low density enveloping the ferritin clusters. The distance, centre to centre, between the ferritin molecules is variable, but is, on the average, in the range 200–400 Å. This is greater than the ferritin-ferritin contact distance (100 Å) and is thought to mean that the ferritin molecules are bridged by antibody molecules as pictured in the Lattice Theory. The bands produced in the gel-diffusion test contain islands of ferritin-antibody complex. When equivalent concentrations of reagents are used a single band of precipitate is formed. When excess of either antigen or antibody is used multiple bands of precipitate are formed which contain islands of ferritin antibody complex indistinguishable from those formed in the single band at equivalent concentrations, providing direct evidence for the formation of multiple bands from a single antigen. Ferritin-ferritin contacts have been observed within the complex. Under all the conditions of

  9. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics.

    PubMed

    Dong, Bing; Li, Yan; Han, Xin-Li; Hu, Bin

    2016-01-01

    For high-speed aircraft, a conformal window is used to optimize the aerodynamic performance. However, the local shape of the conformal window leads to large amounts of dynamic aberrations varying with look angle. In this paper, deformable mirror (DM) and model-based wavefront sensorless adaptive optics (WSLAO) are used for dynamic aberration correction of an infrared remote sensor equipped with a conformal window and scanning mirror. In model-based WSLAO, aberration is captured using Lukosz mode, and we use the low spatial frequency content of the image spectral density as the metric function. Simulations show that aberrations induced by the conformal window are dominated by some low-order Lukosz modes. To optimize the dynamic correction, we can only correct dominant Lukosz modes and the image size can be minimized to reduce the time required to compute the metric function. In our experiment, a 37-channel DM is used to mimic the dynamic aberration of conformal window with scanning rate of 10 degrees per second. A 52-channel DM is used for correction. For a 128 × 128 image, the mean value of image sharpness during dynamic correction is 1.436 × 10(-5) in optimized correction and is 1.427 × 10(-5) in un-optimized correction. We also demonstrated that model-based WSLAO can achieve convergence two times faster than traditional stochastic parallel gradient descent (SPGD) method. PMID:27598161

  10. Double-aberration corrected TEM/STEM of solid acid nanocatalysts in the development of pharmaceutical NSAIDS

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Shiju, N.; Brown, R.; Wright, I.; Boyes, E. D.; Gai, P. L.

    2012-07-01

    We report nanostructural and physico-chemical studies in the development of an efficient low temperature heterogeneous catalytic process for nonsteroidal anti-inflammatory drugs (NSAIDS) such as N-acetyl-p-aminophenol (paracetamol or acetaminophen) on tungstated zirconia nanocatalysts. Using a double-aberration corrected TEM/STEM, modified in-house for in-situ studies at the sub-Angstrom level, we directly observed in real-time, the dynamic precursor transformation to the active catalyst. We quantified the observations with catalytic activity studies for the NSAIDS. The studies have provided the direct evidence for single tungsten promoter atoms and surface WOx species of <= 0.35 nm, with nanoclusters of WOx (0.6 to 1nm), located at grain boundaries on the surface of the zirconia nanoparticles. The correlation between the nanostructure and catalytic activity indicates that the species create Brønsted acid sites highly active for the low temperature process. The results open up opportunities for developing green heterogeneous methods for pharmaceuticals.

  11. Electron channeling contrast imaging studies of nonpolar nitrides using a scanning electron microscope

    SciTech Connect

    Naresh-Kumar, G.; Kraeusel, S.; Bruckbauer, J.; Edwards, P. R.; Hourahine, B.; Trager-Cowan, C.; Mauder, C.; Heuken, M.; Wang, K. R.; Trampert, A.; Kalisch, H.; Vescan, A.; Giesen, C.; Day, A. P.

    2013-04-08

    Threading dislocations, stacking faults, and associated partial dislocations significantly degrade the optical and electrical properties of materials such as non-polar III-nitride semiconductor thin films. Stacking faults are generally difficult to detect and quantify with existing characterization techniques. We demonstrate the use of electron channeling contrast imaging in the scanning electron microscope to non-destructively reveal basal plane stacking faults terminated by partial dislocations in m-plane GaN and InGaN/GaN multiple quantum well structures grown on {gamma}-LiAlO{sub 2} by metal organic vapor phase epitaxy.

  12. Apparatus and methods for controlling electron microscope stages

    SciTech Connect

    Duden, Thomas

    2015-08-11

    Methods and apparatus for generating an image of a specimen with a microscope (e.g., TEM) are disclosed. In one aspect, the microscope may generally include a beam generator, a stage, a detector, and an image generator. A plurality of crystal parameters, which describe a plurality of properties of a crystal sample, are received. In a display associated with the microscope, an interactive control sphere based at least in part on the received crystal parameters and that is rotatable by a user to different sphere orientations is presented. The sphere includes a plurality of stage coordinates that correspond to a plurality of positions of the stage and a plurality of crystallographic pole coordinates that correspond to a plurality of polar orientations of the crystal sample. Movement of the sphere causes movement of the stage, wherein the stage coordinates move in conjunction with the crystallographic coordinates represented by pole positions so as to show a relationship between stage positions and the pole positions.

  13. Increase of penetration depth in real-time clinical epi-optoacoustic imaging: clutter reduction and aberration correction

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Gashi, Kujtim; Peeters, Sara; Held, Gerrit; Preisser, Stefan; Gruenig, Michael; Frenz, Martin

    2014-03-01

    Optoacoustic (OA) imaging will experience broadest clinical application if implemented in epi-style with the irradiation optics and the acoustic probe integrated in a single probe. This will allow most flexible imaging of the human body in a combined system together with echo ultrasound (US). In such a multimodal combination, the OA signal could provide functional information within the anatomical context shown in the US image, similar to what is already done with colour flow imaging. Up to date, successful deep epi-OA imaging was difficult to achieve, owing to clutter and acoustic aberrations. Clutter signals arise from strong optical absorption in the region of tissue irradiation and strongly reduce contrast and imaging depth. Acoustic aberrations are caused by the inhomogeneous speed of sound and degrade the spatial resolution of deep tissue structures, further reducing contrast and thus imaging depth. In past years we have developed displacement-compensated averaging (DCA) for clutter reduction based on the clutter decorrelation that occurs when palpating the tissue using the ultrasound probe. We have now implemented real-time DCA on a research ultrasound system to evaluate its clutter reduction performance in freehand scanning of human volunteers. Our results confirm that DCA significantly improves image contrast and imaging depth, making clutter reduction a basic requirement for a clinically successful combination of epi-OA and US imaging. In addition we propose a novel technique which allows automatic full aberration correction of OA images, based on measuring the effect of aberration spatially resolved using echo US. Phantom results demonstrate that this technique allows spatially invariant diffraction-limited resolution in presence of a strong aberrator.

  14. Voids and Mn-rich inclusions in a (Ga,Mn)As ferromagnetic semiconductor investigated by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Sadowski, J.; Kasama, T.; Domagała, J.; Mathieu, R.; Dietl, T.; Dunin-Borkowski, R. E.

    2011-04-01

    Voids adjacent to cubic (ZnS-type) and hexagonal (NiAs-type) Mn-rich nanocrystals are characterized using aberration-corrected transmission electron microscopy in an annealed Ga0.995Mn0.005As magnetic semiconductor specimen grown by molecular beam epitaxy. Nanobeam electron diffraction measurements suggest that the nanocrystals exhibit deviations in lattice parameter as compared to bulk MnAs. After annealing at 903 K, the magnetic transition temperature of the specimen is likely to be dominated by the presence of cubic ferromagnetic nanocrystals. In situ annealing inside the electron microscope is used to study the nucleation, coalescence, and grain growth of individual nanocrystals.

  15. Three-dimensional transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: A pilot human study with microbubble contrast enhancement

    PubMed Central

    Lindsey, Brooks D.; Nicoletto, Heather A.; Bennett, Ellen R.; Laskowitz, Daniel T.; Smith, Stephen W.

    2013-01-01

    With stroke currently the second-leading cause of death globally, and 87% of all strokes classified as ischemic, the development of a fast, accessible, cost-effective approach for imaging occlusive stroke could have a significant impact on healthcare outcomes and costs. While clinical examination and standard CT alone do not provide adequate information for understanding the complex temporal events that occur during an ischemic stroke, ultrasound imaging is well-suited to the task of examining blood flow dynamics in real-time and may allow for localization of a clot. A prototype bilateral 3D ultrasound imaging system utilizing two matrix array probes on either side of the head allows for correction of skull-induced aberration throughout two entire phased array imaging volumes. We investigated the feasibility of applying this custom correction technique in 5 healthy volunteers with Definity® microbubble contrast enhancement. Subjects were scanned simultaneously via both temporal acoustic windows in 3D color flow mode. The number of color flow voxels above a common threshold increased due to aberration correction in 5/5 subjects, with a mean increase of 33.9%. The percentage of large arteries visualized in 3D color Doppler imaging increased from 46% without aberration correction to 60% with aberration correction. PMID:24239360

  16. In situ conversion of nanostructures from solid to hollow in transmission electron microscopes using electron beam

    NASA Astrophysics Data System (ADS)

    El Mel, Abdel-Aziz; Bittencourt, Carla

    2016-05-01

    With the current development of electron beam sources, the use of transmission electron microscopes is no more limited to imaging or chemical analysis but has rather been extended to nanoengineering. This includes the e-beam induced growth, etching and structural transformation of nanomaterials. In this review we summarize recent progress on the e-beam induced morphological transformation of nanostructures from solid to hollow. We provide a detailed account of the processes reported so far in the literature with a special emphasis on the mechanistic understanding of the e-beam induced hollowing of nanomaterials. Through an important number of examples, we discuss how one can achieve a precise control of such hollowing processes by understanding the fundamental mechanisms occurring at the atomic scale during the irradiation of solid nanostructures. Finally, we conclude with remarks and our own view on the prospective future directions of this research field.

  17. In situ conversion of nanostructures from solid to hollow in transmission electron microscopes using electron beam.

    PubMed

    El Mel, Abdel-Aziz; Bittencourt, Carla

    2016-06-01

    With the current development of electron beam sources, the use of transmission electron microscopes is no more limited to imaging or chemical analysis but has rather been extended to nanoengineering. This includes the e-beam induced growth, etching and structural transformation of nanomaterials. In this review we summarize recent progress on the e-beam induced morphological transformation of nanostructures from solid to hollow. We provide a detailed account of the processes reported so far in the literature with a special emphasis on the mechanistic understanding of the e-beam induced hollowing of nanomaterials. Through an important number of examples, we discuss how one can achieve a precise control of such hollowing processes by understanding the fundamental mechanisms occurring at the atomic scale during the irradiation of solid nanostructures. Finally, we conclude with remarks and our own view on the prospective future directions of this research field. PMID:27172892

  18. Evolutionary developments in x ray and electron energy loss microanalysis instrumentation for the analytical electron microscope

    NASA Astrophysics Data System (ADS)

    Zaluzec, Nester J.

    Developments in instrumentation for both X ray Dispersive and Electron Energy Loss Spectroscopy (XEDS/EELS) over the last ten years have given the experimentalist a greatly enhanced set of analytical tools for characterization. Microanalysts have waited for nearly two decades now in the hope of getting a true analytical microscope and the development of 300 to 400 kV instruments should have allowed us to attain this goal. Unfortunately, this has not generally been the case. While there have been some major improvements in the techniques, there has also been some devolution in the modern AEM (Analytical Electron Microscope). In XEDS, the majority of today's instruments are still plagued by the hole count effect, which was first described in detail over fifteen years ago. The magnitude of this problem can still reach the 20 percent level for medium atomic number species in a conventional off-the-shelf intermediate voltage AEM. This is an absurd situation and the manufacturers should be severely criticized. Part of the blame, however, also rests on the AEM community for not having come up with a universally agreed upon standard test procedure. Fortunately, such a test procedure is in the early stages of refinement. The proposed test specimen consists of an evaporated Cr film approx. 500 to 1000A thick supported upon a 3mm diameter Molybdenum 200 micron aperture.

  19. Understanding the structure of nanocatalysts with high resolution scanning/transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Francis, L. D.; Rivas, J.; José-Yacamán, M.

    2014-03-01

    Nanomaterials including nanoparticles, nanowires and nanotubes play an important role in heterogeneous catalysis. Thanks to the rapid improvement of the electron microscopic techniques and with the advent of aberration corrected electron microscopy as well as theoretical methodologies, the potential effects induced by nanocatalysts are better understood than before by unravelling their atomic structure. A brief introduction to advanced electron microscopic techniques namely aberration corrected scanning transmission electron microscopy (Cs-STEM) is presented and subsequently two examples of nanocatalysts are considered in the present review. The first example will focus on the study of bimetallic/core-shell nanoalloys. In heterogeneous catalysis, catalysts containing two or more metals might show significantly different catalytic properties compared to the parent metals and thus are widely utilized in several catalytic reactions. Atom-by-atom insights of the nanoalloy based catalysts ex: Au-Pd will be described in the present review using a combination of advanced electron microscopic and spectroscopic techniques. A related example on the understanding of bimetallic clusters by HAADF-STEM will also be presented in addition to nanoparticles. In the second case understanding the structure of transition metal chalcogenide based nanocatalysts by HRTEM and aberration corrected STEM, for the case of MoS2 will be discussed. MoS2-based catalysts serve as model catalysts and are employed in the hydrodesulphurisations (HDS) reactions in the removal of sulphur from gasoline and related petrochemical products. They have been studied in various forms including nanowires, nanotubes and nanoplates. Their structure, atomic insights and as a consequence elucidation of their corresponding catalytic activity are thus important.

  20. Observation of the freeze-drying process of biological materials with a scanning electron microscope.

    PubMed

    Nei, T; Fujikawa, S

    1976-10-01

    Over the past few decades, numerous studies have been done on the freeze-drying of biological materials from a physical, chemical and biological point of view. Morphological observation of the freeze-drying process of specimens, however, has been tried by only a few investigators. In those studies, thin-layered aqueous specimens, which were sandwiched between two cover slips, were mostly observed with an optical microscope. For ultrastructural and stereoscopic observation, the scanning electron microscope has a great advantage, unlike that of the optical microscope. A specially designed cryo-scanning electron microscope, employed in the present study, made it possible to observe the freezing patterns of the specimens and also the sublimation process of ice in frozen specimens under vacuum. With this specially designed microscope, shrinkage of some specimens due to dehydration during the freeze-drying process was revealed and the extent of such shrinkage was quantitatively determined. PMID:1036327

  1. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Purpose: Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981–5005 (2013)]. Methods: A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11–0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. Results: For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors’ previous experimental measurements using source-based skull corrections O’Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285–1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood–brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position

  2. Unveiling nanometric plasmons optical properties with advanced electron spectroscopy in the Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Kociak, Mathieu

    Since the pioneering work of Yamamoto, the use of electron spectroscopy such as Cathodoluminescence (CL) and Electron Energy Loss Spectroscopy (EELS) in a Scanning (Transmission) Electron Microscope (STEM) has considerably helped improving our understanding of the optical properties of metallic nanoparticles. The resemblance of spectroscopic signals from electron and pure optical techniques leads to the intuition that both types of techniques are very close, an idea theoretically discussed by F.J. Garcia de Abajo and coworkers. However, it is also quite intuitive that CL and EELS should be different. For example, EELS helps detecting any sort of modes while CL can only detect radiative ones. On the other hand, even between optical spectroscopy techniques, clear differences such as energy shifts or spectral shapes changes are expected in the case of plasmons. The lack of adapted instrumentation capable of performing combined EELS and CL, as well as theoretical developments allowing to account for the generic difference between EELS and CL and their optical counterparts impeached a comprehensive understanding of plasmons physics with the otherwise amazing electron spectroscopies. In this talk, I will present recent experimental results showing combined EELS and CL spectral mapping of plasmonic properties for nanoparticles with several shapes (triangles, cubes, stars...) and composition (gold, silver, aluminum...). Helped with different theoretical tools, I will try to show how these results can be related to their optical counterparts (extinction, scattering), and what type of physical insights can be gained from these combined measurements. Finally, if time allows, pointing the weaknesses of state-of-the-art CL and EELS (in terms of spectral range and/or spectral resolution), I will present EELS results obtained on highly monochromated electron beams that could cope with these limitations

  3. Scanning electron microscope studies of human metaphase chromosomes

    PubMed Central

    Shemilt, L. A.; Estandarte, A. K. C.; Yusuf, M.; Robinson, I. K.

    2014-01-01

    Scanning electron microscopy (SEM) is used to evaluate potential chromosome preparations and staining methods for application in high-resolution three-dimensional X-ray imaging. Our starting point is optical fluorescence microscopy, the standard method for chromosomes, which only gives structural detail at the 200 nm scale. In principle, with suitable sample preparation protocols, including contrast enhancing staining, the surface structure of the chromosomes can be viewed at the 1 nm level by SEM. Here, we evaluate a heavy metal nucleic-acid-specific stain, which gives strong contrast in the backscattered electron signal. This study uses SEM to examine chromosomes prepared in different ways to establish a sample preparation protocol for X-rays. Secondary electron and backscattered electron signals are compared to evaluate the effectiveness of platinum-based stains used to enhance the contrast. PMID:24470422

  4. The effect of beam diameter on the electron skirt in a high pressure scanning electron microscope.

    PubMed

    Belkorissat, R; Kadoun, A; Khelifa, B; Mathieu, C

    2004-01-01

    Helium gas and air are commonly used in the high pressure scanning electron microscope (HPSEM). The presence of a gaseous environment in the specimen chamber modifies the electron beam profile. In order to fully understand the beam-gas interaction, we have investigated the beam-diameter effect for two gases (helium and air) by Monte Carlo simulation. In this calculation, we have assumed that the electron beam is Gaussian and we have explored the influence of the nature of the gas at low voltage. When the beam diameter varies between 1 and 100 nm, there is no influence on the beam profile for these two gases. The resolving power of the HPSEM is not affected by the beam-gas interaction. These theoretical results have been compared with experimental images obtained at low voltage under air and helium gases. The variation of image quality at low voltage has confirmed the interest of helium for use in a Field Emission Gun SEM (FEGSEM) in high pressure (or low vacuum) conditions. PMID:15219900

  5. Defect structural evolution in high purity tungsten irradiated with electrons using high voltage electron microscope

    NASA Astrophysics Data System (ADS)

    Fukuzumi, S.; Yoshiie, T.; Satoh, Y.; Xu, Q.; Mori, H.; Kawai, M.

    2005-08-01

    Four types of high purity tungsten were irradiated with 2 MeV electrons to 5 dpa using a high voltage electron microscope, and defect structural evolutions were examined as a function of the irradiation temperature and the concentration of impurity atoms. Three of materials were made by sintering of tungsten powder with purity of 99.999% (5N-W), 99.99% (PF-W) and 99.95% (N-W), and one was a chemical vapor deposited tungsten of 99.9999% (CVD-W) purity. The formation of interstitial type dislocation loops is observed above room temperature by electron irradiation. In sintered tungsten, the number density of loops increases with increasing density of impurity atoms, i.e., N-W > PF-W > 5N-W. The density of loops in CVD-W is relatively high, contrary to its purity. In CVD-W, a heterogeneous formation of loops is observed at above 573 K. Loops are aligned on layers, and no loops are formed between the layers. All four types of specimens have a change in slop of the temperature dependence of loop number density at around 500 K which is caused by impurity atoms. Results of radioactivation analysis and hardness testing are also presented.

  6. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  7. Transmission electron microscopic examination of phosphoric acid fuel cell components

    NASA Technical Reports Server (NTRS)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  8. Angularly-selective transmission imaging in a scanning electron microscope.

    PubMed

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. PMID:27179301

  9. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  10. [Scanning electron microscope study of chemically disinfected endodontic files].

    PubMed

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made. PMID:1659857

  11. Electron-microscopic study of Sn-chrisotile asbestos nanocomposite

    NASA Astrophysics Data System (ADS)

    Sorokin, L. M.; Kalmykov, A. E.; Fokin, A. V.; Kumzerov, Yu. A.

    2014-04-01

    Transmission electron microscopy was used to study the structural state of tin in Sn-chrisotile asbestos nanocomposite. It is shown that tin in the nanocomposite forms a system of nanowires, which, in turn, consist of crystallites of different lengths. Various orientational relations between the matrix and crystallites are revealed.

  12. Design of an electron microscope phase plate using a focused continuous-wave laser

    SciTech Connect

    Spence, J.; Muller, H; Jin, Jian; Danev, R; Padmore, H; Glaeser, R.M

    2010-07-01

    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser–electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics.

  13. Design of an electron microscope phase plate using a focused continuous-wave laser

    PubMed Central

    Müller, H; Jin, Jian; Danev, R; Spence, J; Padmore, H; Glaeser, R M

    2010-01-01

    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser–electron interaction, study resonant cavities for enhancing the laser intensity and discuss applications in biology, soft-materials science and atomic and molecular physics. PMID:20808709

  14. The versatile electron microscope: an ultrastructural overview of autophagy.

    PubMed

    Biazik, Joanna; Vihinen, Helena; Anwar, Tahira; Jokitalo, Eija; Eskelinen, Eeva-Liisa

    2015-03-01

    Both light microscopy (LM) and electron microscopy (EM) are able to reveal important information about the formation and function of various autophagic compartments. In this article we will outline the various techniques that are emerging in EM, focusing on analyzing three-dimensional morphology, collectively known as volume electron microscopy (volume EM), as well as on methods that can be used to localize proteins and antigenic epitopes. Large cell volumes can now be visualized at the EM level by using one of the two complementary imaging techniques, namely Serial Block-face Scanning Electron Microscopy (SB-SEM) or Focused Ion Beam Scanning Electron Microscopy (FIB-SEM). These two block-face imaging methods reveal ultrastructural information from all membrane-bound organelles such as autophagic compartments to be visualized in a three-dimensional space, in association with their surrounding organelles. Another method which falls into the volume EM category is dual-axis electron tomography (ET). This method is more suited to reconstructing smaller volumes from areas of interest that require nano-structural detail to be confirmed such as membrane contact sites (MCSs) between autophagic compartments and various organelles. Further to this, to complement the morphological identification of autophagic compartments, immunolabeling can be carried out at the EM level to confirm the nature of various autophagic compartments depending on the localization of various antigens at a sub-cellular level. To determine this, various immunolabeling techniques can be carried out, namely the pre-embedding or the post-embedding immunolabeling methods. Examples of both of these methods will be described in this chapter. Correlative light-electron microscopy (CLEM) can be used to visualize the same autophagic organelles under the LM, followed by high-resolution imaging under the EM. Finally, cryofixation has revolutionized the EM field by allowing rapid immobilization of cells and

  15. Electron microscopic examination of wastewater biofilm formation and structural components.

    PubMed Central

    Eighmy, T T; Maratea, D; Bishop, P L

    1983-01-01

    This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

  16. Electron microscopic analysis of rotavirus assembly-replication intermediates

    SciTech Connect

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.

  17. High resolution transmission electron microscope Imaging and first-principles simulations of atomic-scale features in graphene membrane

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Bhandari, Sagar; Yi, Wei; Bell, David; Westervelt, Robert; Kaxiras, Efthimios

    2012-02-01

    Ultra-thin membranes such as graphene[1] are of great importance for basic science and technology applications. Graphene sets the ultimate limit of thinness, demonstrating that a free-standing single atomic layer not only exists but can be extremely stable and strong [2--4]. However, both theory [5, 6] and experiments [3, 7] suggest that the existence of graphene relies on intrinsic ripples that suppress the long-wavelength thermal fluctuations which otherwise spontaneously destroy long range order in a two dimensional system. Here we show direct imaging of the atomic features in graphene including the ripples resolved using monochromatic aberration-corrected transmission electron microscopy (TEM). We compare the images observed in TEM with simulated images based on an accurate first-principles total potential. We show that these atomic scale features can be mapped through accurate first-principles simulations into high resolution TEM contrast. [1] Geim, A. K. & Novoselov, K. S. Nat. Mater. 6, 183-191, (2007). [2] Novoselov, K. S.et al. Science 306, 666-669, (2004). [3] Meyer, J. C. et al. Nature 446, 60-63, (2007). [4] Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Science 321, 385-388, (2008). [5] Nelson, D. R. & Peliti, L. J Phys-Paris 48, 1085-1092, (1987). [6] Fasolino, A., Los, J. H. & Katsnelson, M. I. Nat. Mater. 6, 858-861, (2007). [7] Meyer, J. C. et al. Solid State Commun. 143, 101-109, (2007).

  18. Scanning Electron Microscope Characterization of Erosive Enamel in Human Teeth.

    PubMed

    Worawongvasu, Ratthapong

    2015-01-01

    This study aimed to examine the surface characteristics of erosive enamel in extracted human teeth by scanning electron microscopy. Morphologic changes in naturally eroded enamel depend on the stages of dental erosion. In its early stages, the enamel surfaces show a honeycomb appearance due to the dissolution of enamel rod ends. In its advanced stages, the erosive process involves the underlying dentin and the eroded dentin shows exposed dentinal tubules and the dentinal matrix may be exposed due to the dissolution of the peri- and intertubular dentin. Evidence of remineralization is seen at the early stage of natural dental erosion. PMID:26214120

  19. Acute hyperuricemic nephropathy in rats. An electron microscopic study.

    PubMed Central

    Waisman, J.; Mwasi, L. M.; Bluestone, R.; Klinenberg, J. R.

    1975-01-01

    Hyperuricemia and uricosuria were induced in rats fed uric acid and oxonic acid. Kidneys then were studied by light and electron microscopy. After 1 day of hyperuricemia, animals had deposits of uric acid and urate crystals within collecting tubules of the renal papillae, and tubular cells were altered. By 10 days, there was an exudative response with further injury to epithelium. Clear spaces within lumens, epithelium, and neutrophils suggested the presence of crystals; however, there was no direct ultrastructural evidence that neutrophils or epithelial cells ingested crystals and suffered injury. Presumably, crystals readily seen in frozen, unfixed tissue were lost during preparation for electron microscopy. Nonetheless, the ultrastructural findings indicated that hyperuricemic nephropathy was initiated in a fashion analogous to urate arthropathy. Urate crystals formed within collecting tubules, epithelial cells were altered, and most likely there was chemotaxis of neutrophils which underwent degranulation and vacuolation followed by lysis freeing any ingested urate. Release of ingested crystals plus precipitation of new crystals both might serve to sustain the nephritis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:1190294

  20. Intercomparison of lateral scales of scanning electron microscopes and atomic force microscopes in research institutes in Northern Europe

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Korpelainen, Virpi; Bergstrand, Sten; Karlsson, Helge; Lillepea, Lauri; Lassila, Antti

    2014-04-01

    An intercomparison of lateral scales of scanning electron microscopes (SEM) and atomic force microscopes (AFM) in various research laboratories in Northern Europe was organized by the local national metrology institutes. In this paper are presented the results of the comparison, with also an example uncertainty budget for AFM grating pitch measurement. Grating samples (1D) were circulated among the participating laboratories. The participating laboratories were also asked about the calibration of their instruments. The accuracy of the uncertainty estimates seemed to vary largely between the laboratories, and for some laboratories the appropriateness of the calibration procedures could be considered. Several institutes (60% of all results in terms of En value) also had good comprehension of their measurement capability. The average difference from reference value was 6.7 and 10.0 nm for calibrated instruments and 20.6 and 39.9 nm for uncalibrated instruments for 300 nm and 700 nm gratings, respectively. The correlation of the results for both nominally 300 and 700 nm gratings shows that a simple scale factor calibration would have corrected a large part of the deviations from the reference values.

  1. Electron microscopic observations of hydrogen implantation in ilmenites

    NASA Technical Reports Server (NTRS)

    Blanford, G. E.

    1983-01-01

    Hydrogen ion beams were found to form submicrometer, bumpy textures on the surface of ilmenite grains. From this effect, it is believed that similar bumpy textures seen on lunar ilmenite, pyroxene, and olivine grains are likely to be caused by solar wind irradiation. As a consequence, the concentration of bumpy textured grains may be a useful index of surface maturity for lunar soils. An attempt was made to search for grains with these bumpy textures in interplanetary dust and lunar and meteoritic regolith breccias in order to obtain information about the duration of their exposure to the solar wind. Solar wind irradiation was simulated on natural, terrestrial ilmenite. Hydrogen ion beams were directed at small grains and polished sections which were then examined by electron microscopy.

  2. Transmission electron microscope cells for use with liquid samples

    DOEpatents

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  3. Endogenous pneumoconiosis: Analytical scanning electron microscopic analysis of a case.

    PubMed

    Galeotti, Jonathan; Sporn, Thomas A; Ingram, Peter; Wahidi, Momen M; Roggli, Victor L

    2016-01-01

    Pneumoconiosis is often considered a disease of the lung initiated by exposure to dust or other airborne particles, resulting in injury to the lungs. The term "endogenous pneumoconiosis" has been used in the literature to describe the deposition of compounds on the elastic fibers of the lung, usually in the setting of cardiac failure. In the case we present here, the patient aspirated a foreign body resulting in damage to the lung tissue and subsequent deposition of endogenous compounds on the elastic fibers of the pulmonary parenchyma and vasculature. We determined the composition of this mineral and mapped the distribution of elements using a combination of backscattered electron microscopy and energy dispersive spectrometry. PMID:27281119

  4. Probing electron transport and structural properties of nanostructures on Si with a quadraprobe scanning tunneling microscope

    SciTech Connect

    Kim, Tae Hwan; Wendelken, J F; Li, An-Ping

    2008-01-01

    The electron transport and structural properties of nanostructured materials have been examined with a newly developed low temperature quadraprobe scanning tunneling microscope (STM) system. The quadraprobe STM system, as a "nano" version of a four-probe station provides an integrated research platform with a low temperature four-probe STM, a molecular-beam epitaxy growth chamber, a high resolution scanning electron microscope, and a scanning Auger microscope. The four STM probes can be driven independently with sub-nanometer precision, enabling conventional STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Self-assembled nanostructures grown on Si by doping with metal atoms (Au, Gd, Ag) have been fabricated and characterized in situ.

  5. Photoemission electron microscopy of graphene

    NASA Astrophysics Data System (ADS)

    Saliba, Sebastian; Wardini, Jenna; Fitzgerald, J. P. S.; Word, Robert C.; Kevek, Josh; Minot, Ethan; Koenenkamp, Rolf

    2012-10-01

    A study of chemical vapor deposited graphene on copper foil is conducted using an aberration-corrected photoemission electron microscope (PEEM). We demonstrate the efficacy such a PEEM has in identifying multi-layer graphene, defects and cracking. A model is developed to describe the observed reduction in photoemission rate where electrons originate from the copper foil and scatter through the graphene. A survey of several multi-layer feature line profiles demonstrates the reduced photoemission rate as the number of graphene layers increases. A mean-free-path length of l=3.8±0.8 nm is inferred assuming the layer spacing in graphene is δz=0.35 nm. The PEEM's high spatial resolution and surface sensitivity combined with no electron beam damage are promising for characterizing biosensors and other nanoscale graphene devices.

  6. Electron microscopic structure of human umbilical cord blood lipoproteins

    SciTech Connect

    Forte, T.M.; Davis, P.A.; Nordhausen, R.W.; Glueck, C.J.

    1982-01-01

    Neonatal VLDL, LDL, HDL/sub 2/ and HDL/sub 3/ were isolated from umbilical cord blood by preparative ultracentrifugation and analyzed by electron microscopy. Cord blood VLDL were round particles that were heterogeneous in size, mean diameter 49.5 +/- 10.3 nm. This size was very similar to that of the normal adult population. Cord blood LDL had a mean diameter of 25.9 +/- 3.4 nm. Most LDL particles were round in profile, but there was always a small fraction of particles which had flattened sides and formed short, linear aggregates. Cord blood HDL/sub 3/ were homogeneous round particles indistinguishable from those of the adult. HDL/sub 2/ from cord blood had a mean diameter of 11.5 +/- 1.7 nm and are larger than the adult population. The HDL/sub 2/ were characterized by the presence of small amounts of rectangular-shaped structures, 14.0 by 10.0 nm in size. These latter particles are enriched in the density fraction d 1.095 g/ml and are unique to the cord blood HDL. The presence of these unusual particles suggests that cord blood HDL may transport lipids in a somewhat different fashion from that of normal adult HDL.

  7. Quantitative Nanostructure Characterization Using Atomic Pair Distribution Functions Obtained From Laboratory Electron Microscopes

    SciTech Connect

    Abeykoon M.; Billinge S.; Malliakas, C.D.; Juhas, P.; Bozin, E.S.; Kanatzidis, M.G.

    2012-05-01

    Quantitatively reliable atomic pair distribution functions (PDFs) have been obtained from nanomaterials in a straightforward way from a standard laboratory transmission electron microscope (TEM). The approach looks very promising for making electron derived PDFs (ePDFs) a routine step in the characterization of nanomaterials because of the ubiquity of such TEMs in chemistry and materials laboratories. No special attachments such as energy filters were required on the microscope. The methodology for obtaining the ePDFs is described as well as some opportunities and limitations of the method.

  8. Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope

    SciTech Connect

    Chang Hung; Iqbal, Samir M.; Stach, Eric A.; King, Alexander H.; Zaluzec, Nestor J.; Bashir, Rashid

    2006-03-06

    The fabrication of solid-state nanopores using the electron beam of a transmission electron microscope (TEM) has been reported in the past. Here, we report a similar method to fabricate solid-state nanopores using the electron source of a conventional field-emission scanning electron microscope (FESEM) instead. Micromachining was used to create initial pore diameters between 50 nm and 200 nm, and controlled pore shrinking to sub 10 nm diameters was performed subsequently during in situ processing in the FESEM. Noticeably, different shrinking behavior was observed when using irradiation from the electron source of the FESEM than the TEM. Unlike previous reports of TEM mediated pore shrinkage, the mechanism of pore shrinkage when using the FESEM could be a result of surface defects generated by radiolysis and subsequent motion of silicon atoms to the pore periphery.

  9. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    PubMed Central

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-01-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578

  10. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    NASA Astrophysics Data System (ADS)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an `aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be `safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10 nm, simultaneously combined with imaging in the electron microscope.

  11. Correcting for 3D distortion when using backscattered electron detectors in a scanning electron microscope.

    PubMed

    Proctor, Jacob M

    2009-01-01

    A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two-dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore-space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59-64, 2009. (c) 2009 Wiley Periodicals, Inc. PMID:19204999

  12. Electronic Single Molecule Measurements with the Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Im, Jong One

    Richard Feynman said "There's plenty of room at the bottom". This inspired the techniques to improve the single molecule measurements. Since the first single molecule study was in 1961, it has been developed in various field and evolved into powerful tools to understand chemical and biological property of molecules. This thesis demonstrates electronic single molecule measurement with Scanning Tunneling Microscopy (STM) and two of applications of STM; Break Junction (BJ) and Recognition Tunneling (RT). First, the two series of carotenoid molecules with four different substituents were investigated to show how substituents relate to the conductance and molecular structure. The measured conductance by STM-BJ shows that Nitrogen induces molecular twist of phenyl distal substituents and conductivity increasing rather than Carbon. Also, the conductivity is adjustable by replacing the sort of residues at phenyl substituents. Next, amino acids and peptides were identified through STM-RT. The distribution of the intuitive features (such as amplitude or width) are mostly overlapped and gives only a little bit higher separation probability than random separation. By generating some features in frequency and cepstrum domain, the classification accuracy was dramatically increased. Because of large data size and many features, supporting vector machine (machine learning algorithm for big data) was used to identify the analyte from a data pool of all analytes RT data. The STM-RT opens a possibility of molecular sequencing in single molecule level. Similarly, carbohydrates were studied by STM-RT. Carbohydrates are difficult to read the sequence, due to their huge number of possible isomeric configurations. This study shows that STM-RT can identify not only isomers of mono-saccharides and disaccharides, but also various mono-saccharides from a data pool of eleven analytes. In addition, the binding affinity between recognition molecule and analyte was investigated by comparing with

  13. A new method of magnifying photographic images using the scanning electron microscope in the backscattered electron detection mode

    SciTech Connect

    Frasca, P.; Galkin, B.; Feig, S.; Muir, H.; Soriano, R.; Kaufman, H.

    1982-01-01

    This paper describes a new method of magnifying small images in photographic film by means of a scanning electron microscope (SEM) operated in the backscattered electron detection mode. The study included tests of several types of radiographic film, transmission electron microscopy film, and black and white 35 mm film. The electron optical enlargement method is particularly useful in situations where the film sample is opaque to light and for generating enlarged images at magnifications beyond the reach of light optical enlargement methods, i.e. up to approximately 2000X with ease and rapidity in a single step. The electron optical enlargements compare favorably in contrast and detail with the enlargements made with a light microscope and with a darkroom enlarger.

  14. Electron tomography of HEK293T cells using scanning electron microscope-based scanning transmission electron microscopy.

    PubMed

    You, Yun-Wen; Chang, Hsun-Yun; Liao, Hua-Yang; Kao, Wei-Lun; Yen, Guo-Ji; Chang, Chi-Jen; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-10-01

    Based on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged. PMID:23026379

  15. Combined electron beam imaging and ab initio modeling of T{sub 1} precipitates in Al-Li-Cu alloys

    SciTech Connect

    Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.

    2011-05-16

    Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T{sub 1} precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T{sub 1} structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.

  16. X-Ray Microanalysis in the Variable Pressure (Environmental) Scanning Electron Microscope

    PubMed Central

    Newbury, Dale E.

    2002-01-01

    Electron-excited x-ray microanalysis performed in the variable pressure and environmental scanning electron microscopes is subject to additional artifacts beyond those encountered in the conventional scanning electron microscope. Gas scattering leads to direct contributions to the spectrum from the environmental gas, as well as remote generation of x rays by electrons scattered out of the focussed beam. The analyst can exert some degree of control over these artifacts, but depending on the exact situation, spurious elements can appear at the trace (< 0.01 mass fraction), minor (0.01 mass fraction to 0.1 mass fraction), or even major (> 0.1 mass fraction) levels. Dispersed particle samples give the least compromised results, while fine scale microstructures are the most severely compromised. Procedures to optimize the situation based upon specimen preparation as well as spectral processing are described. PMID:27446754

  17. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  18. ELECTRON MICROSCOPE MEASUREMENT OF AIRBORNE ASBESTOS CONCENTRATIONS - A PROVISIONAL METHODOLOGY MANUAL

    EPA Science Inventory

    This manual describes a provisional optimum electron microscope (EM) procedure for measuring the concentration of asbestos in air samples. The main features of the method include depositing an air sample on a polycarbonate membrane filter, examining an EM grid specimen in a trans...

  19. ELECTRON MICROSCOPE MEASUREMENT OF AIRBORNE ASBESTOS CONCENTRATIONS. A PROVISIONAL METHODOLOGY MANUAL

    EPA Science Inventory

    This manual describes a provisional optimum electron microscope (EM) procedure for measuring the concentration of asbestos in air samples. The main features of the method include depositing an air sample on a polycarbonate membrane filter, examining an EM grid specimen in a trans...

  20. Scanning electron microscope view of iron crystal growing on pyroxene crystal

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.

  1. Practical application of HgI2 detectors to a space-flight scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Bradley, J. G.; Conley, J. M.; Albee, A. L.; Iwanczyk, J. S.; Dabrowski, A. J.

    1989-01-01

    Mercuric iodide X-ray detectors have been undergoing tests in a prototype scanning electron microscope system being developed for unmanned space flight. The detector program addresses the issues of geometric configuration in the SEM, compact packaging that includes separate thermoelectric coolers for the detector and FET, X-ray transparent hermetic encapsulation and electrical contacts, and a clean vacuum environment.

  2. The microscopic world: A demonstration of electron microscopy for younger students

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    The purpose is to excite students about the importance of scientific investigation and demonstrate why they should look at things in greater detail, extending beyond superficial examination. The topics covered include: microscopy, scanning electron microscopes, high magnification, and the scientific method.

  3. Sub-Angstrom electron microscopy for sub-Angstrom nano-metrology

    SciTech Connect

    O'Keefe, Michael A.; Allard, Lawrence F.

    2004-01-18

    The revolution in nanoscale science and technology requires instrumentation for observation and metrology - we must be able to see and measure what we build. Because nano-devices operate on the level of a few molecules, or even a few atoms, accurate atomic-scale imaging is called for. High-resolution aberration-corrected electron microscopes (both TEM and STEM) can provide valuable measurements at the sub-Angstrom level. Over the next decade, extension of TEM and STEM resolutions to half-Angstrom levels by next-generation aberration-corrected electron microscopes will advance the capabilities of these essential tools for atomic-scale structural characterization. Because improvements in resolution allow for separation of atom columns in many more projection directions, these microscopes will provide much improved three-dimensional characterization of the shape and internal structure of nanodevices and catalyst nanoparticles (perhaps even true 3-D imaging), and hence provide essential feedback in the nano-theory/construction/measurement loop.

  4. Image simulation for electron energy loss spectroscopy

    SciTech Connect

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations. Finally, the affect of the channelling of the electron probe within the sample is also discussed.

  5. Image simulation for electron energy loss spectroscopy

    DOE PAGESBeta

    Oxley, Mark P.; Pennycook, Stephen J.

    2007-10-22

    In this paper, aberration correction of the probe forming optics of the scanning transmission electron microscope has allowed the probe-forming aperture to be increased in size, resulting in probes of the order of 1 Å in diameter. The next generation of correctors promise even smaller probes. Improved spectrometer optics also offers the possibility of larger electron energy loss spectrometry detectors. The localization of images based on core-loss electron energy loss spectroscopy is examined as function of both probe-forming aperture and detector size. The effective ionization is nonlocal in nature, and two common local approximations are compared to full nonlocal calculations.more » Finally, the affect of the channelling of the electron probe within the sample is also discussed.« less

  6. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    SciTech Connect

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha Ropers, Claus

    2015-11-07

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  7. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    NASA Astrophysics Data System (ADS)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha; Ropers, Claus

    2015-11-01

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  8. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    NASA Technical Reports Server (NTRS)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  9. Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA Biogenesis Bodies in Drosophila Ovaries.

    PubMed

    Shibata, Shinsuke; Murota, Yukiko; Nishimoto, Yoshinori; Yoshimura, Mana; Nagai, Toshihiro; Okano, Hideyuki; Siomi, Mikiko C

    2015-01-01

    Immuno-electron microscopy and electron microscopic in situ hybridization are powerful tools to identify the precise subcellular localization of specific proteins and RNAs at the ultramicroscopic level. Here we describe detailed procedures for how to detect the precise location of a specific target labeled with both fluorescence and gold particles. Although they have been developed for the analysis of Drosophila ovarian somatic cells, these techniques are suitable for a wide range of biological applications including human, primate, and rodent analysis. PMID:26324437

  10. Electron microscope studies. Progress report, 1 July 1964--1 June 1992

    SciTech Connect

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  11. Comparative morphology of the pectinate ligaments of domestic mammals, as observed under the dissecting microscope and the scanning electron microscope.

    PubMed

    Simones, P; De Geest, J P; Lauwers, H

    1996-10-01

    The pectinate ligaments of ten horses, two donkeys, five oxen, five sheep, ten goats, five dogs, five cats, thirty pigs and two rabbits were studied under the stereomicroscope and the scanning electron microscope. In the horse and the donkey, the pectinate ligament was very prominent and was characterized by sturdy interconnected strands and relatively small intertrabecular spaces. The pectinate ligaments of ruminants were composed of shorter strands, separated by relatively larger spaces. Fusion between adjacent strands, resulting in the formation of fenestrated sheets, was regularly observed in these species, in particular in the superior and inferior ocular segments. In the dog and the cat, the pectinate ligament consisted of slender strands that were separated by large intertrabecular spaces. The strands of the pectinate ligaments of the pig and the rabbit were shorter and their diameters were intermediate between those of the herbivores and the carnivores. The clinical relevance of the normal variability in the structure of the pectinate ligament and proposals for a uniform anatomical nomenclature are discussed. PMID:8915997

  12. Analysis with electron microscope of multielement samples using pure element standards

    DOEpatents

    King, Wayne E.

    1987-01-01

    A method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons, simultaneously measuring the electron dosage and x-ray intensities for each sample of element to determine a "K.sub.AB " value to be used in the equation ##EQU1## where I is intensity and C is concentration for elements A and B, and exposing the multielement sample to determine the concentrations of the elements in the sample.

  13. Analysis with electron microscope of multielement samples using pure element standards

    DOEpatents

    King, W.E.

    1986-01-06

    This disclosure describes a method and modified analytical electron microscope for determining the concentration of elements in a multielement sample by exposing samples with differing thicknesses for each element to a beam of electrons. Simultaneously the electron dosage and x-ray intensities are measured for each sample of element to determine a ''K/sub AB/'' value to be used in the equation (I/sub A/I/sub B/) = K/sub AB/ (C/sub A//C/sub B/), where I is intensity and C is concentration for elements A and B. The multielement sample is exposed to determine the concentrations of the elements in the sample.

  14. Scanning image detection (SID) system for conventional transmission electron microscope (CTEM) images.

    PubMed

    Tanji, T; Tomita, M; Kobayashi, H

    1990-08-01

    A new image detection system has been developed to display transmission electron microscope (TEM) images on a CRT without a video camera system. Deflection coils placed in both the upper space of an objective lens and in the lower space of the first intermediate lens scan a small electron probe simultaneously. The electrical signal acquired through an improved scintillator and a photomultiplier is synchronized with the scanning signal and displayed in a similar fashion to a conventional scanning TEM (STEM) instrument. A preliminary system using a 100 kV conventional TEM (CTEM) equipped with a hairpin-type electron gun, produced an image with a spatial resolution of 1 nm. PMID:2391565

  15. Method and apparatus for a high-resolution three dimensional confocal scanning transmission electron microscope

    DOEpatents

    de Jonge, Niels [Oak Ridge, TN

    2010-08-17

    A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.

  16. Spectroscopic imaging in electron microscopy

    SciTech Connect

    Pennycook, Stephen J; Colliex, C.

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  17. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  18. Open-loop wavefront sensing scheme for specimen aberrations correction in two-photon excited fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Aviles-Espinosa, Rodrigo; Andilla, Jordi; Porcar-Guezenec, Rafael; Levecq, Xavier; Artigas, David; Loza-Alvarez, Pablo

    2011-07-01

    The recent linkage between adaptive optics, a technique borrowed from astronomy and various imaging devices, has enabled to push forward their imaging capabilities by improving its contrast and resolution. A specific case is nonlinear microscopy (NLM) that, although it brings several inherent advantages (compared to linear fluorescence techniques) due to its nonlinear dependence on the excitation beam, its enhanced capabilities can be limited by the sample inhomogeneous structure. In this work, we demonstrate how these imaging capabilities can be enhanced by, employing adaptive optics in a two step correction process. Firstly, a closed-loop methodology aided by Shack-Hartman Wavefront sensing scheme is implemented for compensating the aberrations produced by the laser and the optical elements before the high numerical aperture microscope objective, resulting in a one-time calibration process. Then the residual aberrations are produced by the microscope objective and the sample. These are measured in a similar way as it is done in astronomy (employing a laser guide-star), using the two-photon excited fluorescence. The properties of this incoherent emission produced inside a test sample are compared to a genetically modified Caenorhabditis. elegans nematode expressing GFP showing that the emission of this protein (at 810nm) can be sensed efficiently with our WFS by modifying the exposure time. Therefore the recorded wavefront will capture the sample aberrations which are used to shape a deformable mirror in an open-loop configuration. This correction principle is demonstrated in a test sample by correcting aberrations in a "single-shot" resulting in a reduced sample exposure.

  19. Scanning Electron Microscope Calibration Using a Multi-Image Non-Linear Minimization Process

    NASA Astrophysics Data System (ADS)

    Cui, Le; Marchand, Éric

    2015-04-01

    A scanning electron microscope (SEM) calibrating approach based on non-linear minimization procedure is presented in this article. A part of this article has been published in IEEE International Conference on Robotics and Automation (ICRA), 2014. . Both the intrinsic parameters and the extrinsic parameters estimations are achieved simultaneously by minimizing the registration error. The proposed approach considers multi-images of a multi-scale calibration pattern view from different positions and orientations. Since the projection geometry of the scanning electron microscope is different from that of a classical optical sensor, the perspective projection model and the parallel projection model are considered and compared with distortion models. Experiments are realized by varying the position and the orientation of a multi-scale chessboard calibration pattern from 300× to 10,000×. The experimental results show the efficiency and the accuracy of this approach.

  20. In-situ nanoindentation specimen holder for a high-voltage transmission electron microscope

    SciTech Connect

    Dahmen; U; Wall, M A

    1998-09-17

    This report describes the design, construction, and testing of a nanoindentation specimen holder used for dynamic observation of subsurface microstructure evolution under an indenter tip, while viewing in cross-section in a high-voltage transmission electron microscope (TEM). It also discusses the initial experimental results from in-situ indentation of Si samples in the TEM to demonstrate the capability of this new nanoindentation specimen holder, which uses three-axis position control of a diamond indenter in combination with micromachined specimens. Additionally, the sample design techniques developed for these procedures may eliminate the need for TEM specimen preparation in future ex-situ nanoindentation experiments and for sample preparation for characterizing these experiments in the electron microscope.

  1. Low thermal power electron beam annealing of scanning tunneling microscope tips

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Agne, M.; Breitenstein, O.; Jenniches, H.

    1997-08-01

    An add-on unit was developed that allows the cleaning of scanning tunneling microscope tips by electron beam annealing even if they cannot be disconnected from the piezo scanner in situ. The whole scanner tip combination, which is attached to a linear motion stage, is subjected to a pulsed annealing treatment. The heat impact is focused on the outermost tip by sticking the tip through a hole in a grounded Mo screening plate with the cathode mounted on the opposite side. Tungsten tips attached to the scanner of the Omicron ultrahigh vacuum Multiscan Lab were annealed to achieve atomic resolution of ultrahigh vacuum cleaved GaAs (110) faces. A highly doped superlattice package grown on semi-insulating GaAs was also able to be investigated on the cleaved (110) face due to the ability of exact tip positioning with a scanning electron microscope.

  2. LIGHT MICROSCOPICAL AND ELECTRON MICROSCOPICAL COMPARISONS OF NORMAL HEPATOCYTES OF WELL-DIFFERENTIATED HEPATOCELLULAR CARCINOMAS IN A TELEOST FISH

    EPA Science Inventory

    Well-differentiated hepatocellular carcinomas (HCC's) induced in the sheepshead minnow (Cyprinodon variagatus) with N-nitrosodiethylamine, permitted light microscopical and ultrastructural comparisons of normal hepatocytes and adjacent HCC cells. ormal hepatocytes contained typic...

  3. Bacterial Biofilm Morphology on a Failing Implant with an Oxidized Surface: A Scanning Electron Microscope Study.

    PubMed

    Simion, Massimo; Kim, David M; Pieroni, Stefano; Nevins, Myron; Cassinelli, Clara

    2016-01-01

    This case report provided a unique opportunity to investigate the extent of microbiota infiltration on the oxidized implant surface that has been compromised by peri-implantitis. Scanning electron microscopic analysis confirmed the etiologic role of the bacteria on the loss of supporting structure and the difficulty in complete removal of bacterial infiltration on the implant surface. This case report emphasizes the need to perform definitive surface decontamination on failing dental implants prior to a regeneration procedure. PMID:27333005

  4. Observation of an amalgam-bonded tooth through a scanning electron microscope.

    PubMed

    Orosa, Jose Luis B

    2003-01-01

    Bonding dental amalgam to tooth reduces the occurrence of marginal leakage, fracture and sensitivity. However, most studies of amalgam bonding have made use of resin cements and the conventional three-bottle bonding agents. In this study, a newer, single-bottle bonding agent was used to bond amalgam both to dentin and enamel. Interfaces of bonded amalgam and unbonded amalgam were observed under the scanning electron microscope. PMID:13677864

  5. [Electron-microscopic autoradiography of RNA synthesis in the myocardium after damage to it].

    PubMed

    Galankin, V N; Pal'tsyn, A A; Badikova, A K

    1977-06-01

    Thermic burn of the wall of the left cardiac ventricle was inflicted to new born rats. Twenty-four hours after the injury the RNA synthesis of the myocardial cells remote from the site of burn were investigated by electron-microscopic autoradiography. Tissue samples were fixed 2 and 6 hours after the 3H-uridine injections. As compared with the control, experimental animals displayed a reduction of silver grains density over the nucleus and the cytoplasm of cardiomyocytes. PMID:884310

  6. A Transmission Electron Microscope Investigation of Space Weathering Effects in Hayabusa Samples

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Berger, Eve L.

    2014-01-01

    The Hayabusa mission to asteroid 25143 Itokawa successfully returned the first direct samples of the regolith from the surface of an asteroid. The Hayabusa samples thus present a special opportunity to directly investigate the evolution of asteroidal surfaces, from the development of the regolith to the study of the more complex effects of space weathering. Here we describe the mineralogy, microstructure and composition of three Hayabusa mission particles using transmission electron microscope (TEM) techniques

  7. A sample holder with integrated laser optics for an ELMITEC photoemission electron microscope

    SciTech Connect

    Gierster, L.; Pape, L.; Ünal, A. A.; Kronast, F.

    2015-02-15

    We present a new sample holder compatible with ELMITEC Photoemission Electron Microscopes (PEEMs) containing an optical lens and a mirror. With the integrated optical elements, a laser beam is focused from the back side of the sample at normal incidence, yielding a minimum spot size of about 1 μm. This opens up new possibilities for local laser excitations in PEEM experiments such as imaging all-optical magnetization switching at a small length scale.

  8. [Intracytoplasmic lumina of benign and malignant breast diseases--a light and electron microscopic study].

    PubMed

    Gu, C M

    1990-07-01

    Intracytoplasmic lumina (ICLs) of 70 cases with breast carcinoma and 29 cases with benign breast diseases were observed by light and electron microscopy. ICLs were morphologically divided into two types. Type A was characterized by the presence of secretory materials stained with eosin in the lumen and Type B by the cytoplasmic vacuoles under light microscope. Electron microscopic observation on Type A ICLs showed numerous filiform microvilli projecting towards the lumen and various amounts of secretory materials in the lumen. Type B of ICLs only had scanty and short microvilli and rarely secretory materials in the lumen. The results indicated that: 1. The frequency of ICLs in breast cancer was significantly higher than that in benign breast disease (P less than 0.01). 2. The frequency of ICLs in breast cancer showed strong negative correlation with its histological grades but not with its histological types. 3. ICLs had similar frequency under both light and electron microscopes. As a relatively specific structure in breast carcinoma cells, ICLs may be helpful in the diagnosis of breast carcinoma and establishment of the breast origin for metastatic carcinoma. PMID:2176965

  9. Scanning electron microscopic analysis of incinerated teeth: An aid to forensic identification

    PubMed Central

    Pol, Chetan A; Gosavi, Suchitra R

    2014-01-01

    Background: Forensic dental identification of victims involved in fire accidents is often a complex and challenging endeavor. Knowledge of the charred human dentition and residues of restorative material can help in the recognition of bodies burned beyond recognition. Aim: To observe the effects of predetermined temperatures on healthy unrestored teeth and different restorative materials in restored teeth, by scanning electron microscope, for the purpose of identification. Materials and Methods: The study was conducted on 135 extracted teeth, which were divided into four groups. Group 1-healthy unrestored teeth, group 2-teeth restored with all ceramic crowns, group 3-teeth restored with class I composite resin and group 4-teeth restored with class I glass ionomer cement (GIC). Results: The scanning electron microscope is useful in the analysis of burned teeth, as it gives fine structural details, requires only a small sample and does not destroy the already fragile specimen. Conclusion: Scanning electron microscope can be a useful tool for the characterization and study of severely burnt teeth for victim identification. PMID:24959034

  10. Electron-microscope study of lanthanum-doped lead zirconate-titanate solid solutions

    SciTech Connect

    Ishchuk, V.M.; Presnyakova, O.V.

    1985-12-01

    This paper examines the structure of specimens of lanthanumdoped lead zirconate-titanate solid solutions in the hysteresis region of the phase diagram, using transmission electron microscopy. The electron-microscopic images of PLZT ceramic of composition display an unusual diffraction contrast. An analysis of the images obtained for different orientations of the cleavages of specimens of composition indicate that the second-phase inclusions are cylindrical in the main. The authors hypothesize that the inclusions are a ferroelectric phase in an antiferroelectric matrix.

  11. SEM analysis of ionizing radiation effects in linear integrated circuits. [Scanning Electron Microscope

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Gauthier, M. K.

    1977-01-01

    A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.

  12. In situ probing electrical response on bending of ZnO nanowires inside transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Gao, P.; Xu, Z.; Bai, X. D.; Wang, E. G.

    2008-05-01

    In situ electrical transport measurements on individual bent ZnO nanowires have been performed inside a high-resolution transmission electron microscope, where the crystal structures of ZnO nanowires were simultaneously imaged. A series of consecutively recorded current-voltage (I-V) curves along with an increase in nanowire bending show the striking effect of bending on their electrical behavior. The bending-induced changes of resistivity, electron concentration, and carrier mobility of ZnO nanowires have been retrieved based on the experimental I-V data, which suggests the applications of ZnO nanowires as nanoelectromechanical sensors.

  13. Enhanced microscopic nonlinear optical properties of novel Y-type chromophores with dual electron donor groups

    NASA Astrophysics Data System (ADS)

    Tang, Xiang; Pan, Lin; Jia, Kun; Tang, Xianzhong

    2016-03-01

    In this Letter, novel Y-type chromophores with dual electron donor groups, containing either styryl or azobenzene based π-conjugated bridge structures, were synthesized and their chemical structures, molecular configuration, microscopic optical properties as well as thermal properties were systematically characterized. The experimental results indicated that eight times increasing of second-order molecular hyperpolarizability as well as 50-100 nm blue shift of maximum absorption band for azobenzene based chromophore were observed by introducing Y-type dual electron donor groups, which was derived from the highly efficient 'total charge transfer' in this kind of chromophore as confirmed by the density functional theory calculation.

  14. Concurrent in situ ion irradiation transmission electron microscope

    SciTech Connect

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  15. Charging compensation of alumina samples by using an oxygen microinjector in the environmental scanning electron microscope.

    PubMed

    Quan, Xueling; Ji, Yuan; Zhang, Hong; Zhang, Yinqi; Xu, Xuedong; Zhong, Taoxing

    2006-01-01

    A gas microinjector system was set up in an environmental scanning electron microscope (ESEM) to create an oxygen atmosphere around the alumina samples for the charging compensation under a pressure between 2 x 10(-5) Pa approximately 2 x 10(-2) Pa. At low pressures, the skirt effect of the electron scattering can be degraded, which results in improvement of the imaging contrast and increase of the signal/noise ratio. The sample current (I(SC)) and the Duane-Hunt limit were measured to evaluate the charging effect. PMID:17063769

  16. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect

    Zhu,Y.; Wall, J.

    2008-04-01

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron

  17. Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.

    PubMed

    Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J

    2015-11-01

    In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. PMID:26173072

  18. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    DOE PAGESBeta

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less

  19. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    SciTech Connect

    Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H; Barber, Samuel K; Bouet, Nathalie; McKinney, Wayne R; Takacs, Peter Z; Voronov, Dmitriy L

    2010-09-17

    Verification of the reliability of metrology data from high quality x-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)} and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010)]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-ray microscopes. Corresponding work with x-ray microscopes is in progress.

  20. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-09-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1,2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  1. Characterization of Electron Microscopes with Binary Pseudo-random Multilayer Test Samples

    SciTech Connect

    V Yashchuk; R Conley; E Anderson; S Barber; N Bouet; W McKinney; P Takacs; D Voronov

    2011-12-31

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  2. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    SciTech Connect

    Yashchuk, V.V.; Conley, R.; Anderson, E.H.; Barber, S.K.; Bouet, N.; McKinney, W.R.; Takacs, P.Z. and Voronov, D.L.

    2010-12-08

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  3. Maskless, High-Precision, Persistent, and Extreme Wetting-Contrast Patterning in an Environmental Scanning Electron Microscope.

    PubMed

    Liimatainen, Ville; Shah, Ali; Johansson, Leena-Sisko; Houbenov, Nikolay; Zhou, Quan

    2016-04-13

    A maskless and programmable direct electron beam writing method is reported for making high-precision superhydrophilic-superhydrophobic wetting patterns with 152° contact angle contrast using an environmental scanning electron microscope (ESEM). The smallest linewidth achieved is below 1 μm. The reported effects of the electron beam induced local plasma may also influence a variety of microscopic wetting studies in ESEM. PMID:26880568

  4. Low-loss electron images of uncoated photoresist in the scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Wells, Oliver C.

    1986-09-01

    Low voltage scanning electron microscopy is an important part of microelectronic inspection technique. This makes it possible to examine devices without changing the electrical properties, and to examine nonconducting samples such as photoresist without the use of a surface metal layer. The secondary electron imaging method suffers, however, from the difficulty that the image can be spoiled by slight charging of the specimen by the incident electron beam. This problem can be solved by the use of the low-loss electron image.

  5. Rapid Nondestructive Analysis of Threading Dislocations in Wurtzite Materials Using the Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Naresh-Kumar, G.; Hourahine, B.; Edwards, P. R.; Day, A. P.; Winkelmann, A.; Wilkinson, A. J.; Parbrook, P. J.; England, G.; Trager-Cowan, C.

    2012-03-01

    We describe the use of electron channeling contrast imaging in the scanning electron microscope to rapidly and reliably image and identify threading dislocations (TDs) in materials with the wurtzite crystal structure. In electron channeling contrast imaging, vertical TDs are revealed as spots with black-white contrast. We have developed a simple geometric procedure which exploits the differences observed in the direction of this black-white contrast for screw, edge, and mixed dislocations for two electron channeling contrast images acquired from two symmetrically equivalent crystal planes whose g vectors are at 120° to each other. Our approach allows unambiguous identification of all TDs without the need to compare results with dynamical simulations of channeling contrast.

  6. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    PubMed

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam. PMID:27587179

  7. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  8. A simple method for preparing ferruginous bodies for electron microscopic examination.

    PubMed

    Churg, A; Sakoda, N; Warnock, M L

    1977-10-01

    A new method of preparing ferruginous (asbestos) bodies for electron-optical examination is described. Pulmonary tissue is dissolved in bleach and the residue collected on a Millipore filter. The ferruginous bodies are localized by light microscopy, and a portion of the filter containing a body is cut out and mounted on a coated electron microscope grid. The filter is dissolved in acetone vapor in a condensation washer, leaving the bodies, as well as uncoated submicroscopic fibers, on the grid. This method can be used to obtain bodies from the lungs of individuals after all degress of asbestos exposure, but it is particularly useful when dealing with minimally exposed or non-exposed individuals whose lungs contain very few bodies. The procedure allows easy identification of body cores by electron diffraction or electron microprobe analysis. PMID:906984

  9. Carbon-metal interfaces analyzed by aberration-corrected TEM: how copper and nickel nanoparticles interact with MWCNTs.

    PubMed

    Ilari, Gabriele M; Hage, Fredrik S; Zhang, Yucheng; Rossell, Marta D; Ramasse, Quentin M; Niederberger, Markus; Erni, Rolf

    2015-05-01

    Experimental confirmation for the stronger interaction of Ni with multi-walled carbon nanotubes (MWCNTs) compared to Cu with MWCNTs is presented. The interfaces between Cu (Ni) nanoparticles side-on oriented onto MWCNTs are analyzed with high spatial resolution electron energy-loss spectroscopy (EELS) of the carbon K-edge. The EEL spectra reveal a rehybridization from sp(2) to sp(3) hybridized carbon of the outermost MWCNT layer at the Ni interface, but no such rehybridization can be observed at the Cu interface. The EELS results are supported by transmission electron microscopy (TEM) images, which show a better wetting behavior of Ni and a smaller gap at the Ni-MWCNT interface, as compared to the corresponding Cu interfaces. The different behavior of Cu and Ni can be explained in terms of differing valence d-orbital occupancy. For the successful experimental demonstration of this effect the use of a soft chemical metal deposition technique is crucial. PMID:25836722

  10. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGESBeta

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  11. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  12. Electron microscopic observation of the sagittal structure of Drosophila mature sperm.

    PubMed

    Yasuno, Yusaku; Yamamoto, Masa-Toshi

    2014-09-01

    Observation of sperm development and determination of their morphological characteristics are very important to the understanding of phylogenetic relationships and the study of sperm function during fertilization. Although ultrastructural studies of sperm development in the testes of the fruit fly Drosophila have been performed, there are few reports describing electron microscopic morphology of mature sperm, that is, those released from the testes to the seminal vesicles. Here, we present the first report of the sagittal organization of Drosophila sperm head and neck regions by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The head and tail structures of a mature sperm, for example, the acrosome, nucleus, and flagellum, were easy to distinguish by the morphological characteristics of the sperm surface by SEM. The morphological relationships between the surface and internal structures of mature sperm were confirmed by observing longitudinal sections with TEM. Our approach overcame the technical difficulties involved in sample preparation for electron microscopic observation of the Drosophila mature sperm head, and therefore, this study serves as an important foundation for future genetic dissection of sperm ultrastructure and function in male sterile mutants. PMID:24911661

  13. High and low molecular weight tracers for the electron microscopical detection of sialoglycoconjugates.

    PubMed

    Mureşan, V; Simionescu, N

    1987-03-01

    Hydrazide-derivative tracers of different molecular weights have been synthesized for use in the electron microscopical detection of sodium periodate-oxidized sialyl residues of glycoconjugates in various tissues and cells. Haemundecapeptide hydrazide, horseradish peroxidase hydrazide, and Limulus polyphemus haemocyanin hydrazide were obtained by coupling adipic acid dihydrazide to the tracers with the aid of water-soluble carbodiimide. The enzymatic tracers thus prepared retained their peroxidatic activity. On conversion to the hydrazide derivative, the haemocyanin molecule dissociated into its hexameric subunits. In order to test by transmission electron microscopy the ability of the conjugates to bind to the sialoglycoconjugates of endothelial cell surfaces, each tracer was perfused in situ into rat pancreatic vasculature previously oxidized with 1 mM sodium periodate. The three tracers characteristically labelled the various microdomains of the luminal cell coat of the capillary endothelial cell. The electron opacity of the haemocyanin subunits allowed their easy detection when bound to the cell surface or to components of the extracellular matrix. The bound markers were not displaced by a high ionic strength buffer, and did not label desialylated cell surfaces. These results indicate that the three hydrazide-derivative tracers may be useful tools for the electron microscopical detection of cellular and extracellular sialoglycoconjugates. PMID:3597134

  14. Spatially resolved quantum nano-optics of single photons using an electron microscope.

    PubMed

    Tizei, L H G; Kociak, M

    2013-04-12

    We report on the experimental demonstration of single-photon state generation and characterization in an electron microscope. In this aim we have used low intensity relativistic (energy between 60 and 100 keV) electrons beams focused in a ca. 1 nm probe to excite diamond nanoparticles. This triggered individual neutral nitrogen-vacancy centers to emit photons which could be gathered and sent to a Hanbury Brown-Twiss intensity interferometer. The detection of a dip in the correlation function at small time delays clearly demonstrates antibunching and thus the creation of nonclassical light states. Specifically, we have also demonstrated single-photon states detection. We unveil the mechanism behind quantum states generation in an electron microscope, and show that it clearly makes cathodoluminescence the nanometer scale analog of photoluminescence. By using an extremely small electron probe size and the ability to monitor its position with subnanometer resolution, we also show the possibility of measuring the quantum character of the emitted beam with deep subwavelength resolution. PMID:25167267

  15. Fractal evaluation of drug amorphicity from optical and scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.

    2013-09-01

    Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.

  16. Frequency-doubled Alexandrite laser for use in periodontology: a scanning electron microscopic investigation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Hennig, Thomas

    1996-12-01

    During prior studies it could be demonstrated that engaging a frequency double Alexandrite-laser allows a fast and strictly selective ablation of supra- and subgingival calculus. Furthermore, the removal of unstained microbial plaque was observed. First conclusions were drawn following light microscopic investigations on undecalcified sections of irradiated teeth. In the present study the cementum surface after irradiation with a frequency doubled Alexandrite-laser was observed by means of a scanning electron microscope. After irradiation sections of teeth were dried in alcohol and sputtered with gold. In comparison irradiated cementum surfaces of unerupted operatively removed wisdom teeth and tooth surfaces after the selective removal of calculus were investigated. A complete removal of calculus was observed as well as a remaining smooth surface of irradiated cementum.

  17. Studies of the fossil dinosaur bone in the scanning electron microscope.

    PubMed

    Pawlicki, R

    1975-01-01

    A fossil dinosaur bone, 80 million years old, was subjected to investigation in the scanning microscope. The bone surfaces to be examined were prepared with appropritely modified methods used in the technique of replication in transmission electron microscopy. In the scanning microscope pictures of vascular canals were obtained. The walls of these canals were shown to be formed of collagen fibrils. Moreover, it was demonstrated that the internal surface of the canal wall is made up of bundles of collagen fibrils which run obliquely, corkscrewwise, and in the form of plexus to the long axis of tke canal; Besides, osteocytes of the dinosaur bone were isolated and pictures of their spatial structure together with characteristic points of departure of processes from the cell body were obtained. PMID:1224770

  18. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers. PMID:25971512

  19. High-speed multi-frame dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2016-02-23

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses each being of a programmable pulse duration, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has a plurality of plates. A control system having a digital sequencer controls the laser and a plurality of switching components, synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to enable programmable pulse durations and programmable inter-pulse spacings.

  20. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    DOEpatents

    Reed, Bryan W.; Dehope, William J; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M

    2016-06-21

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  1. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Hachtel, J. A.; Marvinney, C.; Mouti, A.; Mayo, D.; Mu, R.; Pennycook, S. J.; Lupini, A. R.; Chisholm, M. F.; Haglund, R. F.; Pantelides, S. T.

    2016-04-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

  2. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope.

    PubMed

    Hachtel, J A; Marvinney, C; Mouti, A; Mayo, D; Mu, R; Pennycook, S J; Lupini, A R; Chisholm, M F; Haglund, R F; Pantelides, S T

    2016-04-15

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. PMID:26934391

  3. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    SciTech Connect

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  4. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    SciTech Connect

    Gianola, D. S.; Sedlmayr, A.; Moenig, R.; Kraft, O.; Volkert, C. A.; Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L.

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  5. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy.

    PubMed

    Krivanek, Ondrej L; Chisholm, Matthew F; Nicolosi, Valeria; Pennycook, Timothy J; Corbin, George J; Dellby, Niklas; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S; Oxley, Mark P; Pantelides, Sokrates T; Pennycook, Stephen J

    2010-03-25

    Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom. Recently the technique has advanced greatly owing to the introduction of aberration-corrected optics. However, neither electron microscopy nor any other experimental technique has yet been able to resolve and identify all the atoms in a non-periodic material consisting of several atomic species. Here we show that annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects. Three types of atomic substitutions were found and identified: carbon substituting for boron, carbon substituting for nitrogen, and oxygen substituting for nitrogen. The substitutions caused in-plane distortions in the boron nitride monolayer of about 0.1 A magnitude, which were directly resolved, and verified by density functional theory calculations. The results demonstrate that atom-by-atom structural and chemical analysis of all radiation-damage-resistant atoms present in, and on top of, ultra-thin sheets has now become possible. PMID:20336141

  6. In vitro phagocytosis of exogenous collagen by fibroblasts from the periodontal ligament: an electron microscopic study.

    PubMed Central

    Svoboda, E L; Brunette, D M; Melcher, A H

    1979-01-01

    There have been numerous electron microscopic reports of apparent phagocytosis of collagen by fibroblasts and other cells in vivo. We have developed an in vitro system which, to the best of our knowledge, will permit for the first time the study of regulatory mechanisms governing phagocytosis and digestion of collagen fibres. Cells were cultured from explants of monkey periodontal ligament, subcultured, and grown to confluence in alpha-MEM plus 15% fetal calf serum plus antibiotics. The confluent cells were then cultured together with minced rat tail tendon collagen in alpha-MEM lacking proline, lysine, glycine and fetal calf serum for up to 7 days, after which they were processed for electron microscopy. Intracellular collagen profiles could be seen in cultured cells that were associated with exogenous collagen fibrils as early as 24 hours after addition of the collagen. Through electron microscopic examination of serial sections of the culture, we have demonstrated: (1) that fibroblasts can phagocytose collagen; (2) that the observed intracellular collagen is not the result of aggregation of endogenous synthesized collagen; (3) that it is not possible to base a decision as to whether a collagen fibril has been phagocytosed in whole or in part by the type of vesicle with which it is associated; (4) that cleavage of collagen into small pieces may not be a necessary prelude to its phagocytosis. Images Fig. 1 Fig. 2 Fig. 4 (cont.) Fig. 4 Fig. 6 (cont.) Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:108237

  7. Imaging Vortices in YBa2Cu4O8 using a Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Bowell, Charlotte; Loudon, James; Karpinski, Janusz; Midgley, Paul

    2010-03-01

    When magnetic flux penetrates a Type-II superconductor, it does so in the form of superconducting vortices. The study of these vortices can reveal information about the nature of the superconductivity in the material as well as being important for applications. These vortices can be imaged using a transmission electron microscope (TEM), as the electron beam is deflected by the penetrated magnetic flux. This technique was pioneered by Tonomura et al. [1], using a specially adapted microscope. Recently, it has been demonstrated that vortex imaging is also possible on a commercial TEM [2]. Here we present results on the cuprate superconductor YBa2Cu4O8, in which CuO chains running along the crystal b-direction are thought to become superconducting via a proximity effect with the CuO2 planes. A difficulty encountered with the TEM technique is in producing samples thin enough to be electron transparent. A sample, of size 30 μm x 30 μm x 200 nm, was cut from a bulk YBa2Cu4O8 single crystal using focussed ion beam milling. To look into the influence of the CuO chains, Lorentz imaging was used to investigate the vortex configuration and movement in real time, while holography was employed to study the vortex field profile. [1] Harada et al., Nature 360, 51 - 53 (1992) [2] J. C. Loudon and P. A. Midgley, Ultramicroscopy 109: 700-729 (2009)

  8. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  9. rRNA sequence-based scanning electron microscopic detection of bacteria.

    PubMed

    Kenzaka, Takehiko; Ishidoshiro, Ai; Yamaguchi, Nobuyasu; Tani, Katsuji; Nasu, Masao

    2005-09-01

    A new scanning electron microscopic method was developed for gaining both phylogenetic and morphological information about target microbes using in situ hybridization with rRNA-targeted oligonucleotide probes (SEM-ISH). Target cells were hybridized with oligonucleotide probes after gold labeling. Gold enhancement was used for amplification of probe signals from hybridized cells. The hybridized cells released a strong backscatter electron signal due to accumulation of gold atoms inside cells. SEM-ISH was applied to analyze bacterial community composition in freshwater samples, and bacterial cell counts determined by SEM-ISH with rRNA-targeted probes for major phyla within the domain Bacteria were highly correlated to those by fluorescent in situ hybridization (FISH). The bacterial composition on surface of river sediment particles before and after cell dispersion treatment by sonication was successfully revealed by SEM-ISH. Direct enumeration of bacterial cells on the surface of sonicated sediment particles by SEM-ISH demonstrated that members of Cytophaga-Flavobacterium existed tightly on the surface of particles. SEM-ISH allows defining the number and distribution of phylogenetically defined cells adherent to material surfaces, which is difficult in FISH, and it gives new insight into electron microscopic studies of microorganisms in their natural environment. PMID:16151145

  10. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    PubMed

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts. PMID:25180674

  11. Electron microscopic visualization of autophagosomes induced by infection of human papillomavirus pseudovirions

    SciTech Connect

    Ishii, Yoshiyuki

    2013-04-19

    Highlights: •HPV16 pseudovirions (16PsVs) infection induces an autophagy response. •The autophagy was analyzed by transmission electron microscope (TEM). •TEM showed the double-membrane vesicles in HeLa cells inoculated with 16PsVs. •These vesicles incorporated 16PsVs particles in the lumen. •These results imply that autophagosomes are generated from the plasma membrane. -- Abstract: Autophagy is a bulk degradation process for subcellular proteins and organelles to manage cell starvation. Autophagy is associated with the formation of autophagosomes and further functions as a defense mechanism against infection by various pathogens. Human papillomavirus (HPV) infection induces an autophagy response, such as up-regulation of marker proteins for autophagy, in host keratinocytes. However, direct microscopic evidence for autophagy induction by HPV infection is still lacking. Here, I report an electron microscopic analysis of autophagosomes elicited by the entry of HPV pseudovirions (PsVs). HeLa cells showed enhanced infectivity for PsVs of HPV type 16 (16PsVs) when treated with an autophagy inhibitor, suggesting the involvement of autophagy in HPV infection. In HeLa cells inoculated with 16PsVs, transmission electron microscopy showed the presence of cup-shaped, double-membrane vesicles (phagophores) and double-membrane-bound vesicles, which are typical structures of autophagosomes. These double-membrane vesicles displayed a large lumen volume and incorporated 10–50 16PsVs particles in the lumen. These results demonstrate that autophagy is indeed induced during the HPV16 entry process and imply that autophagosomes are generated from the plasma membrane by HPV infection.

  12. Electron microscopic and optical studies of prism faces of synthetic quartz

    NASA Technical Reports Server (NTRS)

    Buzek, B. C.; Vagh, A. S.

    1977-01-01

    Application of electron and optical microscopic techniques to the study of growth spirals on quartz crystal faces is described. Attention is centered on the centers of the spirals and on screw ledges; overhanging kinks are revealed on one side of the spiral centers. The possibility that these special features may have developed after growth of the crystals went to completion is explored. The conjecture is raised that such structures might result from adsorption of growth-inhibiting impurities at the center of the growth spiral on the quartz habit faces.

  13. Transmission electron microscope in situ fatigue experiments: a computer-control approach.

    PubMed

    Vecchio, K S; Hunt, J A; Williams, D B

    1991-03-01

    A computer-control procedure was developed to facilitate in situ fatigue experiments within an intermediate voltage transmission electron microscope using a goniometer-type straining holder. The procedure was designed to allow sine-wave tension-tension cyclic loading of a microfatigue specimen similar in geometry to a center-crack panel fatigue specimen. Computer control allows greater freedom for the operator to control the experiments while providing better reproducibility from one test to another. Further development of this procedure is possible by coupling this computer-control technique with computer-controlled stage motion and digitized TV imaging. PMID:2045966

  14. Magnetic lens apparatus for a low-voltage high-resolution electron microscope

    DOEpatents

    Crewe, Albert V.

    1996-01-01

    A lens apparatus in which a beam of charged particles of low accelerating voltage is brought to a focus by a magnetic field, the lens being situated behind the target position. The lens comprises an electrically-conducting coil arranged around the axis of the beam and a magnetic pole piece extending along the axis of the beam at least within the space surrounded by the coil. The lens apparatus comprises the sole focusing lens for high-resolution imaging in a low-voltage scanning electron microscope.

  15. A low temperature scanning tunneling microscope for electronic and force spectroscopy

    SciTech Connect

    Smit, R. H. M.; Grande, R.; Lasanta, B.; Riquelme, J. J.; Rubio-Bollinger, G.; Agraiet, N.

    2007-11-15

    In this article, we describe and test a novel way to extend a low temperature scanning tunneling microscope with the capability to measure forces. The tuning fork that we use for this is optimized to have a high quality factor and frequency resolution. Moreover, as this technique is fully compatible with the use of bulk tips, it is possible to combine the force measurements with the use of superconductive or magnetic tips, advantageous for electronic spectroscopy. It also allows us to calibrate both the amplitude and the spring constant of the tuning fork easily, in situ and with high precision.

  16. In-situ measurement of objective lens data of a high-resolution electron microscope.

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1971-01-01

    Bragg-reflex images of small individual crystallites in the size range of 20-100 A diameter with known crystallographic orientation were used in a transmission electron microscope to determine in-situ: (a) the relationship between objective lens current (or accelerating voltage) changes in discrete steps and corresponding defocus, (b) the spherical aberration coefficient, and (c) the axial chromatic aberration coefficient of the objective lens. The accuracy of the described method is better than 5%. The same specimen can advantageously be used to properly aline the illuminating beam with respect to the optical axis.

  17. Scanning-electron-microscope study of normal-impingement erosion of ductile metals

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Salik, J.

    1980-01-01

    Scanning electron microscopy was used to characterize the erosion of annealed copper and aluminum surfaces produced by both single- and multiple-particle impacts. Macroscopic 3.2 mm diameter steel balls and microscopic, brittle erodant particles were projected by a gas gun system so as to impact at normal incidence at speeds up to 140 m/sec. During the impacts by the brittle erodant particles, at lower speeds the erosion behavior was similar to that observed for the larger steel balls. At higher velocities, particle fragmentation and the subsequent cutting by the radial wash of debris created a marked change in the erosion mechanism.

  18. Electron microscopic study on the interaction between normal guinea pig peritoneal macrophages and Coxiella burnetii.

    PubMed Central

    Kishimoto, R A; Veltri, B J; Canonico, P G; Shirey, F G; Walker, J S

    1976-01-01

    An electron microscopic study was conducted to explore the interaction between normal guinea pig peritoneal macrophages and phase I and II Coxeilla burnetii previously treated with either normal or immune serum. A comparison was made on the efficiency of phagocytosis and subsequent killing of rickettsiae by macrophages. Both phases of rickettsiae previously treated with normal serum multiplied within phagosomes after phagocytosis with resultant destruction of macrophages. In contrast, suspending rickettsiae in immune serum rendered them more susceptible to phagocytosis and potentiated their destruction within macrophages. Images PMID:825466

  19. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  20. Transmission electron microscopic observations of embrittlement of an aluminum alloy by liquid metal

    SciTech Connect

    Liu, X.M.; Su, Y.J.; Qiao, L.J.; Chu, W.Y.

    1999-09-01

    Change in dislocation configuration ahead of a loaded crack tip of Al alloy 7075 (UNS A97075) before and after adsorbing Hg-3at% Ga atoms, and initiation of liquid-metal-induced microcracking have been observed in a transmission electron microscope (TEM) using a special TEM constant-deflection device with precracked foil. Results showed that chemisorption of liquid metal atoms can facilitate dislocation emission multiplication and motion. A microcrack initiated in the dislocation free zone or at the crack tip and propagated by a cleavage made when the chemisorption-facilitated local plasticity developed to a critical level.

  1. Manipulation of nanoparticles of different shapes inside a scanning electron microscope

    PubMed Central

    Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar

    2014-01-01

    Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279

  2. Pushing the envelope of in situ transmission electron microscopy.

    PubMed

    Ramachandramoorthy, Rajaprakash; Bernal, Rodrigo; Espinosa, Horacio D

    2015-05-26

    Recent major improvements to the transmission electron microscope (TEM) including aberration-corrected electron optics, light-element-sensitive analytical instrumentation, sample environmental control, and high-speed and sensitive direct electron detectors are becoming more widely available. When these advances are combined with in situ TEM tools, such as multimodal testing based on microelectromechanical systems, key measurements and insights on nanoscale material phenomena become possible. In particular, these advances enable metrology that allows for unprecedented correlation to quantum mechanics and the predictions of atomistic models. In this Perspective, we provide a summary of recent in situ TEM research that has leveraged these new TEM capabilities as well as an outlook of the opportunities that exist in the different areas of in situ TEM experimentation. Although these advances have improved the spatial and temporal resolution of TEM, a critical analysis of the various in situ TEM fields reveals that further progress is needed to achieve the full potential of the technology. PMID:25942405

  3. Atmospheric scanning electron microscope system with an open sample chamber: configuration and applications.

    PubMed

    Nishiyama, Hidetoshi; Koizumi, Mitsuru; Ogawa, Koji; Kitamura, Shinich; Konyuba, Yuji; Watanabe, Yoshiyuki; Ohbayashi, Norihiko; Fukuda, Mitsunori; Suga, Mitsuo; Sato, Chikara

    2014-12-01

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240°C and sintered. PMID:25062041

  4. A light- and electron microscopic analysis of meiotic prophase in female mice.

    PubMed

    Dietrich, A J; Mulder, R J

    1983-01-01

    In the paper we describe meiotic prophase of female mice on successive days of embryonic and early postnatal development. For this purpose we used three different techniques on ovarian material, i.e., Giemsa staining for the light microscopic study of chromatin, silver staining for the light microscopic study of the synaptonemal complex (SC), and agar filtration followed by uranyl acetate staining for the electron microscopic study of the SC. In all types of preparation it was impossible to distinguish leptotene stages, and we conclude that if leptotene really exists, it is of very short duration.--Two types of zygotene stages were found: the "normal" one, resembling zygotene stages in male mice, and a second type that has never been described in males and is characterized by, probably stable, unpaired regions together with totally unpaired axial elements of the SC.--The duration of pachytene was found to be 3-4 days, which is considerably shorter than in males. During early diplotene despiralization of the chromatin and disintegration of the axes of the SC were usually found together with desynapsis.--A considerable variation in distribution of meiotic stages was found between different litters in the same day of gestation. Fetuses in the same litter showed no significant variation. However, the oocytes in an ovary did not pass through meiosis synchronously, with differences up several days. The appearance of chromosomes in a highly contracted state could not be interpreted as a preleptotene condensation stage but probably is a mitotic phenomenon. PMID:6197255

  5. Development of a sub-eV resolution soft-X-ray spectrometer for a transmission electron microscope.

    PubMed

    Terauchi, M; Yamamoto, H; Tanaka, M

    2001-01-01

    We constructed a grazing-incidence soft-X-ray spectrometer for a transmission electron microscope. The spectrometer, which was composed of a grating and a CCD detector, was attached to a JEM2000FX transmission electron microscope. B K-emission spectra of hexagonal boron-nitride, which give the density of states of the valence band of the material, were obtained with an energy resolution of about 0.6 eV. PMID:11347710

  6. Computed Ultrasound Tomography in Echo mode (CUTE) of speed of sound for diagnosis and for aberration correction in pulse-echo sonography

    NASA Astrophysics Data System (ADS)

    Jaeger, Michael; Held, Gerrit; Preisser, Stefan; Peeters, Sara; Grünig, Michael; Frenz, Martin

    2014-03-01

    Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound.

  7. Extended Depth of Field for High-Resolution Scanning Transmission Electron Microscopy

    SciTech Connect

    Hovden, Robert; Xin, Huolin L.; Muller, David A.

    2010-12-02

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ~6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α{sub max} = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map.

  8. Extended depth of field for high-resolution scanning transmission electron microscopy.

    PubMed

    Hovden, Robert; Xin, Huolin L; Muller, David A

    2011-02-01

    Aberration-corrected scanning transmission electron microscopes (STEMs) provide sub-Angstrom lateral resolution; however, the large convergence angle greatly reduces the depth of field. For microscopes with a small depth of field, information outside of the focal plane quickly becomes blurred and less defined. It may not be possible to image some samples entirely in focus. Extended depth-of-field techniques, however, allow a single image, with all areas in focus, to be extracted from a series of images focused at a range of depths. In recent years, a variety of algorithmic approaches have been employed for bright-field optical microscopy. Here, we demonstrate that some established optical microscopy methods can also be applied to extend the ∼ 6 nm depth of focus of a 100 kV 5th-order aberration-corrected STEM (α max = 33 mrad) to image Pt-Co nanoparticles on a thick vulcanized carbon support. These techniques allow us to automatically obtain a single image with all the particles in focus as well as a complimentary topography map. PMID:21122192

  9. Nanoscale diffraction gratings and electron vortex beams in a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Schachtner, Alexander; Wright, Carly; McMorran, Benjamin; Harvey, Tyler; Yahn, Tyler; Pierce, Jordan

    2012-10-01

    We use focused ion beam nanofabrication to manufacture forked diffraction gratings capable of producing electron beams with helical wavefronts and orbital angular momentum (OAM). A vast number of unique beam modes carrying OAM can be produced through manipulation of grating fork number or position. Generally these gratings are milled such that they produce a phase shift in the beam and are used with high energy electrons (300keV) in a TEM to investigate the quantum or magnetic properties of the electron or image magnetic materials. Our latest work focuses on manufacturing sub-100-nm pitch binary transmission gratings that produce only an amplitude modulation, which opens up imaging capability to lower energy electrons (5-30 keV) and thus expands their use to a wider range of commercially available SEMs. We use these amplitude gratings to show the relationship between the number/position of forks and OAM inherited by the beam. This work could lead to advances in imaging capability, and also creates a widely accessible and scalable demonstration of the quantum properties of the electron which can be leveraged by any science program with SEM access.

  10. Coherence of a spin-polarized electron beam emitted from a semiconductor photocathode in a transmission electron microscope

    SciTech Connect

    Kuwahara, Makoto Saitoh, Koh; Tanaka, Nobuo; Kusunoki, Soichiro; Nambo, Yoshito; Ujihara, Toru; Asano, Hidefumi; Jin, Xiuguang; Takeda, Yoshikazu

    2014-11-10

    The brightness and interference fringes of a spin-polarized electron beam extracted from a semiconductor photocathode excited by laser irradiation are directly measured via its use in a transmission electron microscope. The brightness was 3.8 × 10{sup 7 }A cm{sup −2 }sr{sup −1} for a 30-keV beam energy with the polarization of 82%, which corresponds to 3.1 × 10{sup 8 }A cm{sup −2 }sr{sup −1} for a 200-keV beam energy. The resulting electron beam exhibited a long coherence length at the specimen position due to the high parallelism of (1.7 ± 0.3) × 10{sup −5 }rad, which generated interference fringes representative of a first-order correlation using an electron biprism. The beam also had a high degeneracy of electron wavepacket of 4 × 10{sup −6}. Due to the high polarization, the high degeneracy and the long coherence length, the spin-polarized electron beam can enhance the antibunching effect.

  11. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Xu, T. T.; Ning, Z. Y.; Shi, T. W.; Fu, M. Q.; Wang, J. Y.; Chen, Q.

    2014-06-01

    We developed a new platform that enables in-situ four-probe electronic measurements, in-situ three-probe field-effect measurements, nanomanipulation, and in-situ modification of nanodevices inside a transmission electron microscope (TEM). The platform includes a specially designed chip-holder and a silicon (Si) chip with suspended metal electrodes. The chip-holder can hold one Si chip with a size up to 3 mm × 3 mm and provides four electrical connections that can be connected to the micrometer-sized electrodes on the Si chip by wire-bonding. The other side of the electrical connections on the chip-holder is connected to the electronic instruments outside the TEM through a commercial Nanofactory SPM-TEM holder. The Si chip with suspended metal electrodes on one of its edges was fabricated by lithography and wet etching. Carbon nanotubes (CNTs), InAs nanowires, and tungsten disulfide nanowires were placed to stride over and connect to the suspended electrodes on the Si chip by nanomanipulations inside a scanning electron microscope (SEM). By using the platform, I-V curves of an individual single-walled CNT connecting to four electrodes were in-situ measured between any two of the four suspended electrodes, and a high-resolution TEM image of the same CNT was obtained. Furthermore, four-terminal I-V measurement on an InAs nanowire was achieved on this platform, and with a movable probe used as a gate electrode, field-effect measurement on the same InAs nanowire device was accomplished in SEM. In addition, by using the movable probe on the SPM-TEM holder, we could further in-situ modify nanomaterial and nanodevices. The present work demonstrates a method that allows a direct correlation between the atomic-level structure and the electronic property of nanomaterials or nanodevices whose structure can be further modified in-situ.

  12. Detection of low contrasted membranes in electron microscope images: statistical contour validation

    NASA Astrophysics Data System (ADS)

    Karathanou, A.; Buessler, J.-L.; Kihl, H.; Urban, J.-P.

    2009-02-01

    Images of biological objects in transmission electron microscopy (TEM) are particularly noisy and low contrasted, making their processing a challenging task to accomplish. During these last years, several software tools were conceived for the automatic or semi-automatic acquisition of TEM images. However, tools for the automatic analysis of these images are still rare. Our study concerns in particular the automatic identification of artificial membranes at medium magnification for the control of an electron microscope. We recently proposed a segmentation strategy in order to detect the regions of interest. In this paper, we introduce a complementary technique to improve contour recognition by a statistical validation algorithm. Our technique explores the profile transition between two objects. A transition is validated if there exists a gradient orthogonal to the contour that is statistically significant.

  13. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.

    PubMed

    McNally, Elizabeth; Nan, Feihong; Botton, Gianluigi A; Schwarcz, Henry P

    2013-06-01

    Previously we presented (McNally et al., 2012) a model for the ultrastructure of bone showing that the mineral resides principally outside collagen fibrils in the form of 5 nm thick mineral structures hundreds of nanometers long oriented parallel to the fibrils. Here we use high-angle annular dark-field electron tomography in the scanning transmission electron microscope to confirm this model and further elucidate the composite structure. Views of a section cut parallel to the fibril axes show bundles of mineral structures extending parallel to the fibrils and encircling them. The mineral density inside the fibrils is too low to be visualized in these tomographic images. A section cut perpendicular to the fibril axes, shows quasi-circular walls composed of mineral structures, wrapping around apparently empty holes marking the sites of fibrils. These images confirm our original model that the majority of mineral in bone resides outside the collagen fibrils. PMID:23545162

  14. The Microstructure of Cellulose Nanocrystal Aerogels as Revealed by Transmission Electron Microscope Tomography.

    PubMed

    Buesch, Christian; Smith, Sean W; Eschbach, Peter; Conley, John F; Simonsen, John

    2016-09-12

    The microstructure of highly porous cellulose nanocrystal (CNC) aerogels is investigated via transmission electron microscope (TEM) tomography. The aerogels were fabricated by first supercritically drying a carboxylated CNC organogel and then coating via atomic layer deposition with a thin conformal layer of Al2O3 to protect the CNCs against prolonged electron beam exposure. A series of images was then acquired, reconstructed, and segmented in order to generate a three-dimensional (3D) model of the aerogel. The model agrees well with theory and macroscopic measurements, indicating that a thin conformal inorganic coating enables TEM tomography as an analysis tool for microstructure characterization of CNC aerogels. The 3D model also reveals that the aerogels consist of randomly orientated CNCs that attach to one another primarily in three ways: end to end contact, "T″ contact, and "X″ contact. PMID:27500897

  15. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    SciTech Connect

    Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.; Bekar, Kursat B.

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  16. Probing plasmons in three dimensions in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Hachtel, Jordan; Mouti, Anas; Mayo, Daniel; Marvinney, Claire; Mu, Richard; Haglund, Richard; Pennycook, Stephen; Chisholm, Matthew; Pantelides, Sokrates

    2015-03-01

    The optical behavior of nanostructured materials is of significant interest across many fields. Surface plasmons and their interactions with emitters in nanoscale devices allow us to control light below the coherence limit. By understanding the nature of plasmonics at the local level we can move towards unlocking the full potential of photonic devices. To this end, we examine plasmonic Ag nanoparticles suspended on insulating nanowires by combining cathodoluminescence spectroscopy, electron energy loss spectroscopy, and high resolution annular dark field imaging in a scanning transmission electron microscope. The complementary nature of CL and EELS allow us to extract optical data from a randomly shaped and oriented nanoparticle, and understand its plasmonic behavior in all three spatial dimensions. This work was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as well as NSF-EPS-1004083 and NSF-TN-SCORE.

  17. A new method for measurement of the vitrification rate of earthenware texture by scanning electron microscope.

    PubMed

    Moon, Eun Jung; Kim, Su Kyeong; Han, Min Su; Lee, Eun Woo; Heo, Jun Su; Lee, Han Hyoung

    2013-08-01

    A new method for determining the vitrification rate of pottery depending on the firing temperature was devised using secondary electron images (SEI) of scanning electron microscope (SEM). Several tests were performed to establish the appropriate operating conditions of SEM and reproducibility as well as to examine the applicability of the method. The grayscale values converted from each pixel of SEI were used to determine the vitrification rate of pottery, which in our study were artificially fired specimens composed of three types of clay. A comparison between the vitrification rate value and appearance temperature of minerals shows that mullite formation starts at 1,100°C, during which the vitrification rate rapidly increases by over 10%. In consequence, the result presented here demonstrates that the new method can be applied to estimate the firing temperature of pottery. PMID:23920198

  18. Novel method for controlled wetting of materials in the environmental scanning electron microscope.

    PubMed

    Jansson, Anna; Nafari, Alexandra; Sanz-Velasco, Anke; Svensson, Krister; Gustafsson, Stefan; Hermansson, Anne-Marie; Olsson, Eva

    2013-02-01

    Environmental scanning electron microscopy has been extensively used for studying the wetting properties of different materials. For some types of investigation, however, the traditional ways of conducting in situ dynamic wetting experiments do not offer sufficient control over the wetting process. Here, we present a novel method for controlled wetting of materials in the environmental scanning electron microscope (ESEM). It offers improved control of the point of interaction between the water and the specimen and renders it more accessible for imaging. It also enables the study of water transport through a material by direct imaging. The method is based on the use of a piezo-driven nanomanipulator to bring a specimen in contact with a water reservoir in the ESEM chamber. The water reservoir is established by local condensation on a Peltier-cooled surface. A fixture was designed to make the experimental setup compatible with the standard Peltier cooling stage of the microscope. The developed technique was successfully applied to individual cellulose fibers, and the absorption and transport of water by individual cellulose fibers were imaged. PMID:23332145

  19. Electron microscopic visualization of complementary labeled DNA with platinum-containing guanine derivative.

    PubMed

    Loukanov, Alexandre; Filipov, Chavdar; Mladenova, Polina; Toshev, Svetlin; Emin, Saim

    2016-04-01

    The object of the present report is to provide a method for a visualization of DNA in TEM by complementary labeling of cytosine with guanine derivative, which contains platinum as contrast-enhanced heavy element. The stretched single-chain DNA was obtained by modifying double-stranded DNA. The labeling method comprises the following steps: (i) stretching and adsorption of DNA on the support film of an electron microscope grid (the hydrophobic carbon film holding negative charged DNA); (ii) complementary labeling of the cytosine bases from the stretched single-stranded DNA pieces on the support film with platinum containing guanine derivative to form base-specific hydrogen bond; and (iii) producing a magnified image of the base-specific labeled DNA. Stretched single-stranded DNA on a support film is obtained by a rapid elongation of DNA pieces on the surface between air and aqueous buffer solution. The attached platinum-containing guanine derivative serves as a high-dense marker and it can be discriminated from the surrounding background of support carbon film and visualized by use of conventional TEM observation at 100 kV accelerated voltage. This method allows examination of specific nucleic macromolecules through atom-by-atom analysis and it is promising way toward future DNA-sequencing or molecular diagnostics of nucleic acids by electron microscopic observation. Microsc. Res. Tech. 79:280-284, 2016. © 2016 Wiley Periodicals, Inc. PMID:26805035

  20. Neuroprotective Effects of Memantine in the Retina of Glaucomatous Rats: An Electron Microscopic Study

    PubMed Central

    Celiker, Hande; Yuksel, Nursen; Solakoglu, Seyhun; Karabas, Levent; Aktar, Fadime; Caglar, Yusuf

    2016-01-01

    Purpose: In this experimental study, the effects of systemic memantine administration on the retinal ultrastructure of experimentally induced glaucomatous rats were investigated. Methods: Twenty-four Wistar albino rats were included in this study. Glaucoma was induced by injecting sodium hyaluronate into the anterior chamber of the rats for a period of three weeks. As a control, 8 rats were sham treated (Group C). Glaucoma induced animals were divided into two groups; Group M (n = 8) received a single daily dose of 10 mg/kg memantine, and Group G received the same volume of saline (n = 8), via intraperitoneal route for a period of six weeks, starting with the induction of glaucoma. Then, all rats were sacrificed and the retinas were prepared for electron microscopic examination. Electron microscopic damage findings were graded between 0 and 4 and mean damage scores for each cell or layer was calculated for each group. Statistical comparison was made between group G and group M. Results: Including the photoreceptor cells, marked ultrastructural changes were observed in the retinas of the animals in group G. The ultrastructural changes in group M were modest and there was no significant cell death. Statistical findings indicated these results. Conclusion: Results of the present study suggest that memantine treatment, when started in the early phase of glaucomatous process, may help to preserve the retinal ultrastructure and thus prevent neuronal injury in experimentally induced glaucoma.

  1. Investigation of Sterilization Effect by various Gas Plasmas and Electron Microscopic Observation of Bacteria

    NASA Astrophysics Data System (ADS)

    Sasaki, Yota; Takamatsu, Toshihiro; Uehara, Kodai; Oshita, Takaya; Miyahara, Hidekazu; Okino, Akitoshi; Ikeda, Keiko; Matsumura, Yuriko; Iwasawa, Atsuo; Kohno, Masahiro

    2014-10-01

    Atmospheric non-thermal plasmas have attracted attention as a new sterilization method. It is considered that factor of plasma sterilization are mainly reactive oxygen species (ROS). However, the sterilization mechanism hasn't been investigated in detail because conventional plasma sources have a limitation in usable gas species and lack variety of ROS. So we developed multi-gas plasma jet which can generate various gas plasmas. In this study, investigation of sterilization effect by various gas plasmas and electron microscopic observation of bacteria were performed. Oxygen, nitrogen, carbon dioxide, argon and air were used as plasma gas. To investigate gas-species dependence of sterilization effect, S.aureus was treated. As a result, nitrogen plasma and carbon dioxide plasma were effective for sterilization. To investigate sterilization mechanism, the surface of S.aureus was observed by scanning electron microscope. As a result, dimples were observed on the surface after irradiation of nitrogen plasma, but no change observed in the case of carbon dioxide plasma. These results suggest that bactericidal mechanism of nitrogen and carbon dioxide plasma should be different. In the presentation, Measurement result of ROS will be reported.

  2. Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

    SciTech Connect

    Jungjohann, K. L.; Evans, James E.; Aguiar, Jeff; Arslan, Ilke; Browning, Nigel D.

    2012-06-04

    Observation of growth, synthesis, dynamics and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope (TEM). In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle, and demonstrate characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution based catalysis and biological research.

  3. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    PubMed

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. PMID:22088441

  4. Phase and birefringence aberration correction

    DOEpatents

    Bowers, M.; Hankla, A.

    1996-07-09

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90{degree} such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system. 5 figs.

  5. Aberration correction of unstable resonators

    NASA Technical Reports Server (NTRS)

    Lang, Robert J. (Inventor)

    1994-01-01

    Construction of aspheric reflectors for unstable resonator lasers to provide an arbitrary laser mode inside the resonator to correct aberrations of an output beam by the construction of the shape of an end reflector opposite the output reflector of the resonator cavity, such as aberrations resulting from refraction of a beam exiting the solid of the resonator having an index of refraction greater than 1 or to produce an aberration in the output beam that will precisely compensate for the aberration of an optical train into which the resonator beam is coupled.

  6. Phase and birefringence aberration correction

    DOEpatents

    Bowers, Mark; Hankla, Allen

    1996-01-01

    A Brillouin enhanced four wave mixing phase conjugate mirror corrects phase aberrations of a coherent electromagnetic beam and birefringence induced upon that beam. The stimulated Brillouin scattering (SBS) phase conjugation technique is augmented to include Brillouin enhanced four wave mixing (BEFWM). A seed beam is generated by a main oscillator which arrives at the phase conjugate cell before the signal beams in order to initiate the Brillouin effect. The signal beam which is being amplified through the amplifier chain is split into two perpendicularly polarized beams. One of the two beams is chosen to be the same polarization as some component of the seed beam, the other orthogonal to the first. The polarization of the orthogonal beam is then rotated 90.degree. such that it is parallel to the other signal beam. The three beams are then focused into cell containing a medium capable of Brillouin excitation. The two signal beams are focused such that they cross the seed beam path before their respective beam waists in order to achieve BEFWM or the two signal beams are focused to a point or points contained within the focused cone angle of the seed beam to achieve seeded SBS, and thus negate the effects of all birefringent and material aberrations in the system.

  7. Micro-column Scanning Electron Microscope and X-ray Spectrometer (MSEMS) for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Ribaya, B.; Niemann, D.; Makarewicz, J.; Clevenson, H.; McKenzie, C.; Nguyen, C.; Blake, D. F.

    2009-12-01

    Scanning Electron Microscopy combined with electron-induced X-ray Fluorescence Spectroscopy (SEM-EDX) is one of the most powerful techniques for characterizing sub-µm surface morphology and composition. In terrestrial laboratories, SEM-EDX is used to elucidate natural processes such as low-temperature diagenesis, thermal or pressure induced metamorphism, volcanism/magmatism, atmosphere/crust interaction and biological activity. Such information would be highly useful for investigating the natural history of the terrestrial planets, satellites and primitive bodies, providing morphological and elemental information that is 2 orders of magnitude higher in resolution than optical techniques. Below we describe the development of a Micro-column Scanning Electron Microscope and X-ray Spectrometer (MSEMS) for flight. The enabling technology of the MSEMS is a carbon nanotube field emission (CNTFE) electron source that is integrated with micro-electro-mechanical-systems (MEMS) - based electron gun and electron optical structures. A hallmark of CNTFE electron sources is their low chromatic aberration, which reduces the need for high accelerating voltages to obtain small spot size. The CNTFE also offers exceptional brightness and nanometer source size, eliminating the need for condenser lenses, making simple electrostatic focusing optics possible. Moreover, the CNT field emission gun (CFEG) at low operating voltage dissipates 103 less power than thermally-assisted Schottky emitters. A key feature of the MSEMS design is the lack of scanning coils. Rather, a piezoelectric sample stage capable of sub-nanometer resolution scans the sample past the fixed crossover of the MSEMS electron beam. We will describe a MEMS-based templating technique for fabricating mechanically and electrically stable miniature CFEGs. Using existing silicon (Si) technology, we fabricated highly controlled and precise MEMS structures for both the CNT cathode and focusing optics for the micro-column. The

  8. Approaches for ultrafast imaging of transient materials processes in the transmission electron microscope.

    PubMed

    LaGrange, Thomas; Reed, Bryan W; Santala, Melissa K; McKeown, Joseph T; Kulovits, Andreas; Wiezorek, Jörg M K; Nikolova, Liliya; Rosei, Federico; Siwick, Bradely J; Campbell, Geoffrey H

    2012-11-01

    The growing field of ultrafast materials science, aimed at exploring short-lived transient processes in materials on the microsecond to femtosecond timescales, has spawned the development of time-resolved, in situ techniques in electron microscopy capable of capturing these events. This article gives a brief overview of two principal approaches that have emerged in the past decade: the stroboscopic ultrafast electron microscope and the nanosecond-time-resolved single-shot instrument. The high time resolution is garnered through the use of advanced pulsed laser systems and a pump-probe experimental platforms using laser-driven photoemission processes to generate time-correlated electron probe pulses synchronized with laser-driven events in the specimen. Each technique has its advantages and limitations and thus is complementary in terms of the materials systems and processes that they can investigate. The stroboscopic approach can achieve atomic resolution and sub-picosecond time resolution for capturing transient events, though it is limited to highly repeatable (>10(6) cycles) materials processes, e.g., optically driven electronic phase transitions that must reset to the material's ground state within the repetition rate of the femtosecond laser. The single-shot approach can explore irreversible events in materials, but the spatial resolution is limited by electron source brightness and electron-electron interactions at nanosecond temporal resolutions and higher. The first part of the article will explain basic operating principles of the stroboscopic approach and briefly review recent applications of this technique. As the authors have pursued the development of the single-shot approach, the latter part of the review discusses its instrumentation design in detail and presents examples of materials science studies and the near-term instrumentation developments of this technique. PMID:22595460

  9. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  10. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  11. Fibrous architecture of cementodentinal junction in disease: A scanning electron microscopic study

    PubMed Central

    Sudhakar, R; Pratebha, B

    2015-01-01

    Background: The cementodentinal junction (CDJ) forms a biological and structural link between cementum and dentin. This biological link is regarded as a distinct tissue in its own right. Certain important proteins responsible for periodontal regeneration are said to be present in this tissue. Few studies have described the structure and composition of this layer by light and electron microscopy. Scanning electron microscopic studies pertaining to CDJ in health and disease are few and documentation of periodontal pathological changes of CDJ is unclear. In the first phase of our study, the collagenous architecture of CDJ of healthy teeth has been reported. Aim: The objective of this study is to observe and report periodontal pathological changes in the fibrous or collagenous architecture of CDJ of periodontitis-affected teeth and discuss the probable clinical implications of CDJ in disease. Materials and Methods: Twenty periodontitis-affected teeth were collected and processed for observing under a scanning electron microscope. Results: The results are as follows: Increased width of interface at CDJ in periodontitis samples (7.1 μ) compared to that of healthy samples; fewer areas of fiber intermingling at CDJ in periodontitis samples as compared to healthy samples; frequent detachment of cementum from dentin during sodium hydroxide maceration of samples. Conclusion: It may be inferred from results that there is a possibility of a definite weakening of CDJ in periodontally affected root surfaces and we believe that clinical procedures such as scaling and root planning may have a detrimental effect on the cementodentinal attachment of periodontally involved root surfaces. PMID:26980960

  12. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    SciTech Connect

    Hammond, E.C. Jr.; Bridgers, K.; Brown, C.W.

    1995-02-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  13. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Fenton, J. C.; Chiatti, O.; Warburton, P. A.

    2013-07-01

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam-deposited tungsten cantilevers of radius ˜60-170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  14. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans.

    PubMed

    Wang, Huan; Fenton, J C; Chiatti, O; Warburton, P A

    2013-07-01

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam-deposited tungsten cantilevers of radius ~60-170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices. PMID:23902094

  15. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    SciTech Connect

    Wang, Huan; Fenton, J. C.; Chiatti, O.; Warburton, P. A.

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  16. Photoresist cross-sectional shape change caused by scanning electron microscope-induced shrinkage

    NASA Astrophysics Data System (ADS)

    Ohashi, Takeyoshi; Sekiguchi, Tomoko; Yamaguchi, Atsuko; Tanaka, Junichi; Kawada, Hiroki

    2015-07-01

    Change in the cross-sectional profile of a photoresist (PR) pattern due to shrinkage was evaluated to investigate the mechanism of electron beam-induced shrinkage. A scanning transmission electron microscope (STEM) was used to observe the cross-sectional profiles of PR lines after atomic-layer deposition of metal oxide and carbon deposition on the sample surface. A HfO2 thin layer enhanced the profile contrast in the STEM measurements without blurring the edge, which enabled the precise cross-sectional measurement of the PR patterns. We found interesting features associated with shrinkage from the detailed profile change obtained using this method, such as a rounding of the pattern top, a necking of the sidewall profile, a rounding of the foot in the pattern on the organic underlying layer, and voltage-independent sidewall shrinkage under a large electron beam dose. These behaviors along with the results from a Monte Carlo simulation are discussed. Consequently, these observations experimentally clarified that the elastic deformation effect and the impact of the secondary electrons emitted from the spaces around the pattern into the sidewall are important to interpret the change in the shape of the pattern induced by shrinkage.

  17. A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope.

    PubMed

    Caswell, T A; Ercius, P; Tate, M W; Ercan, A; Gruner, S M; Muller, D A

    2009-03-01

    A scanning transmission electron microscope (STEM) produces a convergent beam electron diffraction pattern at each position of a raster scan with a focused electron beam, but recording this information poses major challenges for gathering and storing such large data sets in a timely manner and with sufficient dynamic range. To investigate the crystalline structure of materials, a 16x16 analog pixel array detector (PAD) is used to replace the traditional detectors and retain the diffraction information at every STEM raster position. The PAD, unlike a charge-coupled device (CCD) or photomultiplier tube (PMT), directly images 120-200keV electrons with relatively little radiation damage, exhibits no afterglow and limits crosstalk between adjacent pixels. Traditional STEM imaging modes can still be performed by the PAD with a 1.1kHz frame rate, which allows post-acquisition control over imaging conditions and enables novel imaging techniques based on the retained crystalline information. Techniques for rapid, semi-automatic crystal grain segmentation with sub-nanometer resolution are described using cross-correlation, sub-region integration, and other post-processing methods. PMID:19162398

  18. Data processing for atomic resolution electron energy loss spectroscopy.

    PubMed

    Cueva, Paul; Hovden, Robert; Mundy, Julia A; Xin, Huolin L; Muller, David A

    2012-08-01

    The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches--linear combination of power laws and local background averaging--that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis. PMID:22697429

  19. Monitoring Synaptic Vesicle Protein Sorting with Enhanced Horseradish Peroxidase in the Electron Microscope.

    PubMed

    Schikorski, Thomas

    2016-01-01

    Protein sorting is the fundamental cellular process that creates and maintains cell organelles and subcellular structures. The synaptic vesicle (SV) is a unique cell organelle that contains a plethora of specific SV proteins and its protein composition is crucial for its function. Thus understanding the mechanisms that sort proteins to SVs and other cell organelles is central to neuroscience and cell biology.While in the past protein sorting was studied in the fluorescence and confocal microscope, we here present a protocol that reveals SV protein trafficking and sorting in the electron microscope (EM). The protocol exploits tagging SV proteins with a new genetically encoded label for EM: enhanced horseradish peroxidase (eHRP). eHRP gained its high sensitivity through direct evolution of its catalytic activity and is detectable in the EM and LM after expression in neurons and other mammalian cells. The protocol describes the use of eHRP, labeling of SVs in cultured hippocampal neurons, and analysis via serial section reconstruction. PMID:27515091

  20. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold

    SciTech Connect

    Wang, Guoyong; Lian, Jianshe; Jiang, Qing; Sun, Sheng; Zhang, Tong-Yi

    2014-09-14

    Nanocrystalline (nc) metals possess extremely high strength, while their capability to deform plastically has been debated for decades. Low ductility has hitherto been considered an intrinsic behavior for most nc metals, due to the lack of five independent slip systems actively operating during deformation in each nanograin. Here we report in situ high resolution transmission electron microscopic (HRTEM) observations of deformation process of nc gold under compression, showing the excellent ductility of individual and aggregate nanograins. Compression causes permanent change in the profile of individual nanograins, which is mediated by dislocation slip and grain rotation. The high rate of grain boundary sliding and large extent of widely exited grain rotation may meet the boundary compatibility requirements during plastic deformation. The in situ HRTEM observations suggest that nc gold is not intrinsically brittle under compressive loading.

  1. A maturation change detected in the semilunar cartilages with the scanning electron microscope.

    PubMed Central

    Moshurchak, E M; Ghadially, F N

    1978-01-01

    The surface of rabbit, cat, monkey and human semilunar cartilages was examined with the scanning electron microscope. A common feature was the occurrence of numerous ridges, undulations and furrows on the surface, but this was thought to be due to marked shrinkage and distortion of cartilage not firmly attached to bone. Humps were seen on the semilunar cartilages of young animals, but pits occurred in adults. This is thought to reflect a maturation change. Humps were seen in a young human semilunar cartilage, but pits were not seen in adult specimens. It is not clear whether pits are truly absent or just masked by the severe ridging produced during the preparation of large human specimens. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:99411

  2. Electron microscopic study on black pig skin irradiated with pulsed dye laser (504 nm)

    NASA Astrophysics Data System (ADS)

    Yasuda, Yukio; Tan, Oon T.; Kurban, Amal K.; Tsukada, Sadao

    1991-06-01

    Selective damage of epidermal pigment cells induced by 504 nm pulsed dye laser at different pulse durations and fluence on black pig skin was examined electron microscopically. Epidermal melanosomes were satisfactorily disrupted at shorter pulse duration (100 ns). Epidermal blister formation and necrosis were seen at 2 days postirradiation, and reepithelization was evident at 7 days postirradiation in all specimens. Repigmentation was evident 21 to 56 days after irradiation. Histological pigmentary incontinence was evident at 2 days and persisted until 56 days postirradiation. This phenomenon was observed more frequently in skin exposed to longer pulse duration and at low fluences. Optimal parameters required to induce epidermal melanosome disruption using the 504 nm pulsed dye laser will be discussed.

  3. Electron microscopic findings in BAL of a fire-eater after petroleum aspiration.

    PubMed

    Burkhardt, Olaf; Merker, Hans-Joachim; Shakibaei, Mehdi; Lode, Hartmut

    2003-07-01

    Hydrocarbon pneumonitis, known also as fire-eater pneumonia, always develops after aspiration of low-viscosity, volatile hydrocarbides. Despite the presence of clear-cut indicators for an infection, it is considered to be an acute pseudoinfectious lung disease. In this article, we report on a relatively rare clinical picture of a 30-year-old man after accidental petroleum aspiration. In addition to the usual clinical and instrumental examinations, we also performed, for the first time, electron microscopic investigations of the BAL specimen. A striking finding was the occurrence of macrophages (40%) with numerous lipoid inclusions that exhibited all morphologic signs of an activation as well as neutrophil granulocytes (33%), lymphocytes (21%), and eosinophils (6%). Despite a large and necrotizing infiltration of the right lower lobe, the clinical course was uneventful with complete recovery. PMID:12853552

  4. Three-dimensional architecture of hair-cell linkages as revealedby electron-microscopic tomography

    SciTech Connect

    Auer, Manfred; Koster, Bram; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng; Hudspeth, A. James

    2006-07-28

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of ankle or basal links, kinociliary links, and tip links. We observed clear differences in the dimensions and appearances of the three links. We found two distinct populations of tip links suggestive of the involvement of two proteins or splice variants. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.

  5. [Electron microscopic representation of the pili structure of Neisseria gonorrhoeae (author's transl)].

    PubMed

    Müller, G; Klug, H

    1979-01-01

    The technique of negative staining and ultra-thin section has been used for investigations of 30 Neisseria gonorrhoeae strains in order to represent the structure of pili (fimbriae) electron microscopically. The staining of the gonococci was effected by phosphotungstic acid (0,5%). The pili ascertained were 30 to 60 A thick. In course of in vitro passages up to 10. subculture morphological changes of the pili have been observed. The application of trisbuffer or solution of Hylase (hyaluronidase) showed not any improved results in comparison with buffered NaCl-solution as suspension medium. The investigation of ultra-thin sections showed that the structure of the pili could be exhibited not clearly. Therefore, these technique seems to be not suitable for qualitative representative of the pili. PMID:86464

  6. Pencil lead tips: A field ion and field electron emission microscopic study

    NASA Astrophysics Data System (ADS)

    Khairnar, Rajendra S.; Dharmadhikari, C. V.; Joag, Dilip S.

    1989-06-01

    Pencil lead tips composed of graphite flakes were subjected to field ion and field emission microscopic investigations. The ion micrographs showed elongated images of ledge atoms of the graphite flakes due to uneven magnification over the layers of the flake. The gross features of the field evaporated tip surface were observed by scanning electron microscopy. The field emission pattern showed emitting lobes which displayed intensity fluctuations consisting of a combination of emission spots turning on and off randomly and a localized flicker of individual spots. These effects gave rise to noise in the emission current involving isolated spikes of rapid rise time and trains of digital pulses of constant height. The variation of noise with residual gas pressure, emission current, and temperature has also been investigated. The results are discussed in view of the microtopography of the pencil lead tips and the nature of the emitting sites on the surface.

  7. Electron microscopic time-lapse visualization of surface pore filtration on particulate matter trapping process.

    PubMed

    Sanui, Ryoko; Hanamura, Katsunori

    2016-09-01

    A scanning electron microscope (SEM) was used to dynamically visualize the particulate matter (PM) trapping process on diesel particulate filter (DPF) walls at a micro scale as 'time-lapse' images corresponding to the increase in pressure drop simultaneously measured through the DPF. This visualization and pressure drop measurement led to the conclusion that the PM trapping in surface pores was driven by PM bridging and stacking at constricted areas in porous channels. This caused a drastic increase in the pressure drop during PM accumulation at the beginning of the PM trapping process. The relationship between the porous structure of the DPF and the depth of the surface pore was investigated in terms of the porosity distribution and PM penetration depth near the wall surface with respect to depth. The pressure drop calculated with an assumed surface pore depth showed a good correspondence to the measured pressure drop. PMID:26923765

  8. Iron partitioning between perovskite and post-perovskite: A transmission electron microscope study

    SciTech Connect

    Hirose, K.; Takafuji, N.; Shieh, S.R.; Duffy, T.S.

    2008-09-30

    The effect of iron on the post-perovskite phase transition has been controversial. We have performed direct chemical analyses of co-existing perovskite and post-perovskite that were synthesized from an (Mg{sub 0.91}Fe{sub 0.09})SiO{sub 3} bulk composition using a laser-heated diamond anvil cell at pressures above 100 GPa and temperatures of 1700-1800 K. Analysis on quenched samples was carried out using the transmission electron microscope (TEM). The results demonstrate that crystalline perovskite grains are enriched in iron compared to adjacent amorphous parts presumably converted from post-perovskite. This indicates that ferrous iron stabilizes perovskite to higher pressures. The ferrous and ferric irons are likely to have competing effects on the post-perovskite phase transition, and therefore the effect of iron may be controlled by aluminum.

  9. A scanning electron microscope technique for studying the sclerites of Cichlidogyrus.

    PubMed

    Fannes, Wouter; Vanhove, Maarten P M; Huyse, Tine; Paladini, Giuseppe

    2015-05-01

    The genus Cichlidogyrus (Monogenea: Ancyrocephalidae) includes more than 90 species, most of which are gill parasites of African cichlid fishes. Cichlidogyrus has been studied extensively in recent years, but scanning electron microscope (SEM) investigations of the isolated hard parts have not yet been undertaken. In this paper, we describe a method for isolating and scanning the sclerites of individual Cichlidogyrus worms. Twenty-year-old, formol-fixed specimens of Cichlidogyrus casuarinus were subjected to proteinase K digestion in order to release the sclerites from the surrounding soft tissues. SEM micrographs of the haptoral sclerites and the male copulatory organ are presented. The ability to digest formol-fixed specimens makes this method a useful tool for the study of historical museum collections. PMID:25828814

  10. Scanning Electron Microscopic Studies of the Pecten Oculi in the Quail (Coturnix coturnix japonica)

    PubMed Central

    Pourlis, Aris F.

    2013-01-01

    The main purpose of this study is to extend the microscopic investigations of the pecten oculi in the quail in order to add some information on the unresolved functional anatomy of this unique avian organ. The pecten oculi of the quail was studied by scanning electron microscopy. Eighteen- to-twenty two highly vascularised accordion-like folds were joined apically by a heavily pigmented bridge of tissue, which holds the pecten in a fanlike shape, widest at the base. The structure of the double layered limiting membrane was recorded. The presence of hyalocytes with macrophage-like appearance was illustrated. It is assumed that the pecten oculi of the quail resembles that of the chicken. Illustrated morphological features of this species may add information on the active physiological role of the pecten. But still, the functional significance of this organ is a matter of controversies. PMID:24198967

  11. The application of cobalt labelling to electron microscopic investigations of serial sections.

    PubMed

    Antal, M

    1984-11-01

    The cobalt labelling technique can be applied to ultrathin serial sections and subsequent electron microscopical investigations with the following modifications: a prolonged, up to 12 h, fixation of the tissue in aldehydes; a shortened, 15 min, postfixation in OsO4; embedding in soft resin block by using a higher proportion of plasticizer in the polimerizing mixture; mounting of 5 micrometers thick serial sections between two layers of Agar-Agar coatings; performing the intensification of the Agar section-Agar sandwich with a physical developer containing a low percentage of the reductive agent; reembedding selected thick sections for ultrathin serial sectioning and staining with uranile acetate and lead citrate. The technique unambiguously shows all labelled profiles, and preserves the fine structural details of the surrounding tissues. PMID:6392759

  12. An analytical electron microscope study of airborne industrial particles in Sosnowiec, Poland

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Janeczek, Janusz

    The types and the relative amounts of airborne particles in the city of Sosnowiec (Poland) during 21-22 June, 1994 were identified by analytical electron microscope analyses. They are mostly aspherical angular Al-bearing silica particles (0.1-5.15 μm) and clusters thereof. Carbonaceous particles form sheets of soluble volatile-rich materials (0.3-33.9 μm) and rare soot. Numerous nanometer-sized Al-bearing silica grains and salt minerals are associated with the larger particles. They resulted from inefficient combustion of low-grade coals by the local industries whereby the silica particles are coal impurities that survived combustion. The total particle emission was constant during a 24 h period but silica shards dominated the nighttime emission while carbonaceous particles abounded during the daytime. This study showed that tropospheric particles in regions dominated by inefficient coal combustion are fundamentally different from typical coal fly ash spheres.

  13. Quantitative scanning electron microscopic autoradiography of inhaled /sup 239/PuO/sub 2/

    SciTech Connect

    Sanders, C.L.; Lauhala, K.E.; McDonald, K.E.

    1989-03-01

    We have applied the scanning electron microscope (SEM) to obtain autoradiographs of particles of /sup 239/PuO/sub 2/ deposited in rat lung. The technique was used to obtain quantitative information on the clearance rates of particles from the alveoli, bronchioles and trachea up to 240 d after exposure. At all times, the concentration of particles on the surface of the bronchioles was an order of magnitude greater than on the tracheal surface. The clearance of Pu from both regions followed a biphasic pattern, similar to that obtained by radiometric analysis of the whole lung. Most of the radiation dose to the bronchiolar epithelium originated from Pu particles in peribronchiolar alveoli in which they were preferentially retained, compared to other alveolar regions. The prolonged retention of particles in the peribronchiolar alveoli may be a significant factor in the induction of lung carcinomas.

  14. Efficient elastic imaging of single atoms on ultrathin supports in a scanning transmission electron microscope.

    PubMed

    Hovden, Robert; Muller, David A

    2012-12-01

    Mono-atomic-layer membranes such as graphene offer new opportunities for imaging and detecting individual light atoms in transmission electron microscopes (TEM). For such applications where multiple scattering and diffraction effects are weak, we evaluate the detection efficiency and interpretability of single atom images for the most common detector geometries using quantitative quantum mechanical simulations. For well-resolved and atomically-thin specimens, the low angle annular dark field (LAADF) detector can provide a significant increase in signal-to-noise over other common detector geometries including annular bright field and incoherent bright field. This dramatically improves the visibility of organic specimens on atomic-layer membranes. Simulations of Adenosine Triphosphate (ATP) imaged under ideal conditions indicate the minimal dose requirements for elastic imaging by STEM or conventional TEM still exceed previously reported dose limits. PMID:22727335

  15. Dislocation structure in AlN films induced by in situ transmission electron microscope nanoindentation

    NASA Astrophysics Data System (ADS)

    Tokumoto, Yuki; Kutsukake, Kentaro; Ohno, Yutaka; Yonenaga, Ichiro

    2012-11-01

    To elucidate dislocation generation and propagation processes in AlN films containing a high density of grown-in threading dislocations (TDs), in situ nanoindentation (NI) was performed in a transmission electron microscope at room temperature. Dislocations with the Burgers vector b = 1/3<12¯10> were introduced not only on the primary slip plane, i.e., the (0001) basal planes, but also on the {101¯1} and {101¯2} pyramidal planes. The results are explained by considering the distribution of the resolved shear stress. It was found that the dislocations induced by NI interact with grown-in TDs: (1) for the NI-induced dislocations on pyramidal planes, edge grown-in TDs induce cross slip to basal planes, and (2) for the NI-induced dislocations on basal planes, screw grown-in TDs prevent their propagation, while edge grown-in TDs do not.

  16. Method of improving image sharpness for annular-illumination scanning electron microscopes

    NASA Astrophysics Data System (ADS)

    Enyama, Momoyo; Hamada, Koichi; Fukuda, Muneyuki; Kazumi, Hideyuki

    2016-06-01

    Annular illumination is effective in enhancing the depth of focus for scanning electron microscopes (SEMs). However, owing to high side lobes of the point-spread function (PSF), annular illumination results in poor image sharpness. The conventional deconvolution method, which converts the PSF to a delta function, can improve image sharpness, but results in artifacts due to noise amplification. In this paper, we propose an image processing method that can reduce the deterioration of image sharpness. With this method, the PSF under annular illumination is converted to that under standard illumination. Through simulations, we verified that the image sharpness of SEM images under annular illumination with the proposed method can be improved without noise amplification.

  17. Electron-microscopic cytochemical localization of diamine and polyamine oxidases in pea and maize tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Furey MJ, 3. d.

    1991-01-01

    An electron-microscopic cytochemical method was used to localize diamine oxidase (DAO) in pea and polyamine oxidase (PAO) in maize (Zea mays L.). The method, based on the precipitation of amine-oxidase-generated H2O2 by CeCl3, was shown to be specific for DAO and PAO and permitted their localization in plant tissues with a high degree of resolution. Both enzymes are localized exclusively in the cell wall. Both DAO- and PAO-activity staining is most intense in the middle lamellar region of the wall and in cells exhibiting highly lignified walls. The oxidases could provide H2O2 for peroxidase-mediated cross-linking reactions in the cell wall and may, in this capacity, play a role in the regulation of plant growth.

  18. Scanning Electron Microscope Observation of Carbon Nanotubes with Room Temperature Ionic Liquids: Effect of Their Hydrophilicities.

    PubMed

    Hyono, Atsushi; Abe, Shigeaki; Kawai, Koji; Yonezawa, Tetsu

    2015-11-01

    In this study, we succeeded in acquiring scanning electron microscope (SEM) images of carbon nanotube (CNT) derivatives with different surface properties based on an electro-conductive pretreatment using a room temperature ionic liquid (IL). The quality of the obtained SEM images depended on their surface properties and the hydrophilicities of IL used. When the hydrophilicities of both the sample surface and the IL were close, the obtained SEM images had a high resolution. In contrast, SEM imges of samples pretreated with an IL, which had different hydrophilicities from the sample, was observed with low resolution and low quality. This result suggests that the relationship between both hydrophilicities is the dominant factor for this visualization method. PMID:26726681

  19. Fundamentals of overlay measurement and inspection using scanning electron-microscope

    NASA Astrophysics Data System (ADS)

    Kato, T.; Okagawa, Y.; Inoue, O.; Arai, K.; Yamaguchi, S.

    2013-04-01

    Scanning electron-microscope (SEM) has been successfully applied to CD measurement as promising tools for qualifying and controlling quality of semiconductor devices in in-line manufacturing process since 1985. Furthermore SEM is proposed to be applied to in-die overlay monitor in the local area which is too small to be measured by optical overlay measurement tools any more, when the overlay control limit is going to be stringent and have un-ignorable dependence on device pattern layout, in-die location, and singular locations in wafer edge, etc. In this paper, we proposed new overlay measurement and inspection system to make an effective use of in-line SEM image, in consideration of trade-off between measurement uncertainty and measurement pattern density in each SEM conditions. In parallel, we make it clear that the best hybrid overlay metrology is in considering each tool's technology portfolio.

  20. [Electron microscopic studies of the gill epithelium of the amphibian teleost Periophthalmus vulgaris].

    PubMed

    Welsch, U; Storch, V

    1976-01-01

    The gill epithelium of the airdwelling fish Periophthalmus vulgaris has been studied with the electron microscope. The following celltypes can be distinguished: flat covering epithelial cells, chloride cells, mucous cells, basal cells, various leucocytes as well as a specific granule containing cell which is possibly an epithelial cell. The covering epithelial cells exhibit a relatively smooth apical surface and contain in their apical half densely packed microfilaments, pinocytotic vesicles are rare. These characteristics are not to be found in water dwelling fish and possibly represent adaptations to the air containing surroundings. In the chloride cells are numerous, especially in the basal halves of the secondary lamellae. The distal parts of the secondary lamellae the barrier for the respiratory gases measures about 0,9 micrometer. The basal cells are ribosome rich replacement cells. Two types of mucous cells occur. Individual intraepithelial nerve fibres have been observed. PMID:1036346

  1. Scanning electron microscope image enhancement using spread spectrum through dither signal imposition.

    PubMed

    Jung, Kwang Oh; Joo, Wonjong; Kim, Dong Hwan

    2011-12-01

    Noise is a primary issue in obtaining an image in a scanning microscope. This noise needs to be minimized in order to have a clear image of the sample in case of a nanosize level measurement. In this work, we propose a method to improve the image quality by applying dither signal injection to the scanning signal. This method involves minimizing the noise that occurs in scan control circuits, which results in a blurry or distorted image. The collected secondary electrons are first multiplied through a photomultiplier tube and are then converted into digital form using an analog/digital (A/D) converter. We propose a solution for the noise from the scan control circuit that appears on the image by adopting the spread spectrum method. PMID:21990426

  2. In-Situ Transmission Electron Microscope High Temperature Behavior in Nanocrystalline Platinum Thin Films

    NASA Astrophysics Data System (ADS)

    Garcia, Davil; Leon, Alexander; Kumar, Sandeep

    2016-01-01

    In this work, we present a micro electro-mechanical systems (MEMS)-based in situ transmission electron microscope (TEM) experimental setup for high-temperature uniaxial tensile behavior of nanocrystalline thin films. This setup utilizes self-heating (Ohmic) to raise the temperature of thin films while applying uniaxial tensile loading using electro-thermal actuators. Self-heating is achieved by passing a high-density direct current through the specimen. We carried out a qualitative uniaxial tensile experiment on a 75-nm platinum thin film at 360 K. Temperature is estimated using COMSOL modeling. In this qualitative experiment, we observed initial grain growth followed by formation of edge serrations. We propose that grain boundary sliding coupled with grain growth is the underlying mechanism responsible for the observed behavior.

  3. Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Jorge Villar, Susana E.; Edwards, Howell G. M.; Benning, Liane G.

    2006-09-01

    A novel type of colonisation of a basaltic rock, collected on the Arctic island of Svalbard, Norway, during the AMASE expedition in 2004, was characterised using Raman spectroscopy and Scanning Electron Microscopy (SEM). The sample contains two different types of extremophile communities, one occurring behind a radial white crystallisation and the other occurring inside a dark vacuole. Several types of minerals and microbial colonies have been identified by both Raman spectroscopy and SEM analyses. It is the first time that photosynthetic communities have been documented to colonise the inside of dark basaltic rocks. Our discovery has important implications for planetary exploration because it extends the analytical capability and our understanding of microbial rock colonisations to subaerial volcanic outcrops and has wide implications towards the search for life in extraterrestrial planets. In this work we also demonstrate that the use of different laser wavelengths for Raman spectroscopic studies and complementary microscopic analysis are critical for a comprehensive organic and inorganic compound identification.

  4. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater.

    PubMed

    Uchida, Tsutomu; Oshita, Seiichi; Ohmori, Masayuki; Tsuno, Takuo; Soejima, Koichi; Shinozaki, Satoshi; Take, Yasuhisa; Mitsuda, Koichi

    2011-01-01

    Unique properties of micro- and nanobubbles (MNBs), such as a high adsorption of impurities on their surface, are difficult to verify because MNBs are too small to observe directly. We thus used a transmission electron microscope (TEM) with the freeze-fractured replica method to observe oxygen (O2) MNBs in solutions. MNBs in pure water and in 1% NaCl solutions were spherical or oval. Their size distribution estimated from TEM images close to that of the original solution is measured by light-scattered methods. When we applied this technique to the observation of O2 MNBs formed in the wastewater of a sewage plant, we found the characteristic features of spherical MNBs that adsorbed surrounding impurity particles on their surface.PACS: 68.03.-g, 81.07.-b, 92.40.qc. PMID:21711798

  5. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater

    NASA Astrophysics Data System (ADS)

    Uchida, Tsutomu; Oshita, Seiichi; Ohmori, Masayuki; Tsuno, Takuo; Soejima, Koichi; Shinozaki, Satoshi; Take, Yasuhisa; Mitsuda, Koichi

    2011-12-01

    Unique properties of micro- and nanobubbles (MNBs), such as a high adsorption of impurities on their surface, are difficult to verify because MNBs are too small to observe directly. We thus used a transmission electron microscope (TEM) with the freeze-fractured replica method to observe oxygen (O2) MNBs in solutions. MNBs in pure water and in 1% NaCl solutions were spherical or oval. Their size distribution estimated from TEM images close to that of the original solution is measured by light-scattered methods. When we applied this technique to the observation of O2 MNBs formed in the wastewater of a sewage plant, we found the characteristic features of spherical MNBs that adsorbed surrounding impurity particles on their surface. PACS: 68.03.-g, 81.07.-b, 92.40.qc

  6. Determination of the sequence of intersecting lines using Focused Ion Beam/Scanning Electron Microscope.

    PubMed

    Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje

    2016-05-01

    The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. PMID:27122423

  7. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    SciTech Connect

    Rajabifar, Bahram; Maschmann, Matthew R.; Kim, Sanha; Hart, A. John; Slinker, Keith; Ehlert, Gregory J.

    2015-10-05

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0–100 microns are generated, corresponding to a material removal rate of up to 20.1 μm{sup 3}/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  8. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    ScienceCinema

    Lagrange, Thomas; Reed, Bryan

    2014-07-21

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  9. A Microscopic Model for the Strongly Coupled Electron-Ion System in VO2

    NASA Astrophysics Data System (ADS)

    Lovorn, Timothy; Sarker, Sanjoy

    The metal-insulator transition (MIT) in vanadium dioxide (VO2) near 340 K is accompanied by a structural transition, suggesting strong coupling between electronic and lattice degrees of freedom. To help elucidate this relationship, we construct and analyze a microscopic model in which electrons, described by a tight-binding Hamiltonian, are dynamically coupled to Ising-like ionic degrees of freedom. A mean-field decoupling leads to an interacting two-component (pseudo) spin-1 Ising model describing the ions. An analysis of the minimal ionic model reproduces the observed M1 and M2 dimerized phases and rutile metal phase, occurring in the observed order with increasing temperature. All three transitions are first order, as observed. We further find that both dimerization and correlations play crucial roles in describing the insulating M1 phase. We discuss why dynamical coupling of electrons and ions is key to obtain a full understanding of the phenomenology of VO2, particularly in the context of the phase coexistence observed near the MIT. This research was supported by the National Science Foundation (DMR-1508680).

  10. Scanning electron microscope studies of bone samples: Influence of simulated microgravity

    NASA Astrophysics Data System (ADS)

    Mehta, Rahul; Chowdhury, Parimal; Ali, Nawab

    2007-08-01

    A scanning electron microscope (SEM) with backscatter and secondary electron emission detectors plus a Si(Li) detector for photon yield measurements was used to study bone samples from skull and leg of mice and rats. These animals were either suspended by their tail to induce simulated microgravity, characterized as hind-limb suspension (HLS) or not suspended (control). Analyses of the SEM images and energy dispersive spectrometer (EDS) spectra using Si(Li) detector indicate variation in the lattice structures, and in intensities of the characteristics X-rays, produced from the exposed bone surface due to its interaction with the electron beam. Using Flame software, the X-ray spectra were analyzed and normalized ratios of the elements determined. The elemental analysis indicated a variation in the density of calcium, potassium, and oxygen near the knee joints and near the sutures in the skull bones. The comparison of simulated microgravity subjected samples of the rat skull bones with that of the control samples revealed that in the suture region there was a large increase in the ratio of calcium, and to some degree for phosphorus, suggesting simulated microgravity affects distribution of these elements. Elemental composition for control samples with depth (within the cross section of the leg bones) revealed decrease of oxygen and increase of calcium in the first millimeter of the bone depth after which the relative percentage of elements stayed constant.

  11. Detection efficiency and spatial resolution of the SIRAD ion electron emission microscope

    NASA Astrophysics Data System (ADS)

    Bisello, D.; Giubilato, P.; Kaminsky, A.; Mattiazzo, S.; Nigro, M.; Pantano, D.; Silvestrin, L.; Tessaro, M.; Wyss, J.; Bertazzoni, S.; Mongiardo, L.; Salmeri, M.; Salsano, A.

    2009-06-01

    An axial ion electron emission microscope (IEEM) has been built at the SIRAD irradiation facility at the 15 MV Tandem accelerator of INFN Legnaro National Laboratory (Padova, Italy) to obtain a micrometric sensitivity map to single event effects (SEE) of electronic devices. In this contribution we report on two experiments performed with the IEEM. Si 3N 4 ultra-thin membranes with a gold deposition were placed on the device under test (DUT) to ensure a uniform and abundant secondary electron emission In the first experiment we measured an IEEM ion detection efficiency of 83% with a 58Ni (220 MeV) beam, in good agreement with the expected value. The second experiment allowed us to estimate the lateral resolution of the IEEM. The positions of ion induced single event upsets (SEU) in a synchronous dynamic random access memory (SDRAM), used as a reference target, were compared with the corresponding ion impact points reconstructed by the IEEM. The result (FWHM ˜4.4 μm with a 79Br beam of 214 MeV) is encouraging because of the residual presence of distortions of the image and mechanical vibrations.

  12. 2013 R&D 100 Award: Movie-mode electron microscope captures nanoscale

    SciTech Connect

    Lagrange, Thomas; Reed, Bryan

    2014-04-03

    A new instrument developed by LLNL scientists and engineers, the Movie Mode Dynamic Transmission Electron Microscope (MM-DTEM), captures billionth-of-a-meter-scale images with frame rates more than 100,000 times faster than those of conventional techniques. The work was done in collaboration with a Pleasanton-based company, Integrated Dynamic Electron Solutions (IDES) Inc. Using this revolutionary imaging technique, a range of fundamental and technologically important material and biological processes can be captured in action, in complete billionth-of-a-meter detail, for the first time. The primary application of MM-DTEM is the direct observation of fast processes, including microstructural changes, phase transformations and chemical reactions, that shape real-world performance of nanostructured materials and potentially biological entities. The instrument could prove especially valuable in the direct observation of macromolecular interactions, such as protein-protein binding and host-pathogen interactions. While an earlier version of the technology, Single Shot-DTEM, could capture a single snapshot of a rapid process, MM-DTEM captures a multiframe movie that reveals complex sequences of events in detail. It is the only existing technology that can capture multiple electron microscopy images in the span of a single microsecond.

  13. Three-dimensional machining of carbon nanotube forests using water-assisted scanning electron microscope processing

    NASA Astrophysics Data System (ADS)

    Rajabifar, Bahram; Kim, Sanha; Slinker, Keith; Ehlert, Gregory J.; Hart, A. John; Maschmann, Matthew R.

    2015-10-01

    We demonstrate that vertically aligned carbon nanotubes (CNTs) can be precisely machined in a low pressure water vapor ambient using the electron beam of an environmental scanning electron microscope. The electron beam locally damages the irradiated regions of the CNT forest and also dissociates the water vapor molecules into reactive species including hydroxyl radicals. These species then locally oxidize the damaged region of the CNTs. The technique offers material removal capabilities ranging from selected CNTs to hundreds of cubic microns. We study how the material removal rate is influenced by the acceleration voltage, beam current, dwell time, operating pressure, and CNT orientation. Milled cuts with depths between 0-100 microns are generated, corresponding to a material removal rate of up to 20.1 μm3/min. The technique produces little carbon residue and does not disturb the native morphology of the CNT network. Finally, we demonstrate direct machining of pyramidal surfaces and re-entrant cuts to create freestanding geometries.

  14. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    SciTech Connect

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  15. Quantifying Transient States in Materials with the Dynamic Transmission Electron Microscope

    SciTech Connect

    Campbell, G; LaGrange, T; Kim, J; Reed, B; Browning, N

    2009-09-21

    The Dynamic Transmission Electron Microscope (DTEM) offers a means of capturing rapid evolution in a specimen through in-situ microscopy experiments by allowing 15 ns electron micrograph exposure times. The rapid exposure time is enabled by creating a burst of electrons at the emitter by ultraviolet pulsed laser illumination. This burst arrives a specified time after a second laser initiates the specimen reaction. The timing of the two Q-switched lasers is controlled by high-speed pulse generators with a timing error much less than the pulse duration. Both diffraction and imaging experiments can be performed, just as in a conventional TEM. The brightness of the emitter and the total current control the spatial and temporal resolutions. We have demonstrated 7 nm spatial resolution in single 15 ns pulsed images. These single-pulse imaging experiments have been used to study martensitic transformations, nucleation and crystallization of an amorphous metal, and rapid chemical reactions. Measurements have been performed on these systems that are possible by no other experimental approaches currently available.

  16. Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope.

    PubMed

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2010-05-01

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several microm across with an exposure time of 15 ns. This is more than six orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in microm-sized areas and could also be used in a nonpulsed system for high-throughput imaging and analytical TEM. PMID:20515144

  17. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    USGS Publications Warehouse

    Zhu, Chen; Veblen, D.R.; Blum, A.E.; Chipera, S.J.

    2006-01-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 ??m thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ???105 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  18. Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: Electron microscopic characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Veblen, David R.; Blum, Alex E.; Chipera, Stephen J.

    2006-09-01

    Naturally weathered feldspar surfaces in the Jurassic Navajo Sandstone at Black Mesa, Arizona, was characterized with high-resolution transmission and analytical electron microscope (HRTEM-AEM) and field emission gun scanning electron microscope (FEG-SEM). Here, we report the first HRTEM observation of a 10-nm thick amorphous layer on naturally weathered K-feldspar in currently slightly alkaline groundwater. The amorphous layer is probably deficient in K and enriched in Si. In addition to the amorphous layer, the feldspar surfaces are also partially coated with tightly adhered kaolin platelets. Outside of the kaolin coatings, feldspar grains are covered with a continuous 3-5 μm thick layer of authigenic smectite, which also coats quartz and other sediment grains. Authigenic K-feldspar overgrowth and etch pits were also found on feldspar grains. These characteristics of the aged feldspar surfaces accentuate the differences in reactivity between the freshly ground feldspar powders used in laboratory experiments and feldspar grains in natural systems, and may partially contribute to the commonly observed apparent laboratory-field dissolution rate discrepancy. At Black Mesa, feldspars in the Navajo Sandstone are dissolving at ˜10 5 times slower than laboratory rate at comparable temperature and pH under far from equilibrium condition. The tightly adhered kaolin platelets reduce the feldspar reactive surface area, and the authigenic K-feldspar overgrowth reduces the feldspar reactivity. However, the continuous smectite coating layer does not appear to constitute a diffusion barrier. The exact role of the amorphous layer on feldspar dissolution kinetics depends on the origin of the layer (leached layer versus re-precipitated silica), which is uncertain at present. However, the nanometer thin layer can be detected only with HRTEM, and thus our study raises the possibility of its wide occurrence in geological systems. Rate laws and proposed mechanisms should consider the

  19. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.

    2015-01-01

    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  20. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope.

    PubMed

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-01-01

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared. PMID:27285177

  1. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope

    PubMed Central

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-01-01

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared. PMID:27285177

  2. Biochemical, histopathological, and transmission electron microscopic ultrastructural changes in mice after exposure to silver nanoparticles.

    PubMed

    Ansari, Mohammad Azam; Khan, Haris M; Khan, Aijaz A; Alzohairy, Mohammad A; Waseem, Mohammad; Ahmad, Mohammad Kaleem; Mahdi, Abbas Ali

    2016-08-01

    Four-week-old mice, weighing about 25-35 g were divided into five groups (8 mice in each group): vehicle control, low- (0.5 g/kg), middle- (1 g/kg), high- (3 g/kg), and exceptionally high-dose (5 g/kg). After first and second weeks of intraperitoneal exposure to AgNPs, biochemical, histopathological, and electron microscopic ultrastructural changes were investigated. No significant changes were observed in SGOT and ALP levels after first week of exposure, while the level of SGPT significantly increased (p < 0.05) in 2nd week treated mice, indicating that inflammatory of liver might be induced by high-dose (3 and 5 g/kg) of AgNPs. No obvious changes were observed for UA and BUN in all groups of treated mice. However, significant (p < 0.05) decrease in CR level was noticed in all groups of treated mice only at high-dose (3 and 5 g/kg). No remarkable changes in lipid profile were observed. Light microscopic histopathological investigation shows that first week treatment had not perceptible effect on the cytoarchitecture on liver, kidney, and spleen; while, second week treatment had only sporadic mild effects on these organs. However, no ultrastructural electron microscopic changes were observed in liver, kidney, and spleen of mice treated with 0.5, 1, and 3 g/kg of AgNPs when sacrificed on first and second week; while, exceptionally high-dose (5 g/kg) of AgNPs resulted in slight nuclear chromatin condensation and irregularities in nuclear membrane. The results suggested that AgNPs could be well tolerated in mice when given intraperitoneally and no death has been found during the experiment in any groups of treated mice. Interestingly, significant (<0.05) decrease in glucose levels in all experiment group is suggestive of curious hypoglycemic role of AgNPs warranting further study to explore its possible therapeutic potential in hyperglycemic conditions as well as its mechanism of action at molecular level. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31

  3. Strain mapping at the nanoscale using precession electron diffraction in transmission electron microscope with off axis camera

    SciTech Connect

    Vigouroux, M. P.; Delaye, V.; Bernier, N.; Lafond, D.; Audoit, G.; Bertin, F.; Cipro, R.; Baron, T.; Martin, M.; Rouvière, J. L.; Chenevier, B.

    2014-11-10

    Precession electron diffraction is an efficient technique to measure strain in nanostructures by precessing the electron beam, while maintaining a few nanometre probe size. Here, we show that an advanced diffraction pattern treatment allows reproducible and precise strain measurements to be obtained using a default 512 × 512 DigiSTAR off-axis camera both in advanced or non-corrected transmission electron microscopes. This treatment consists in both projective geometry correction of diffraction pattern distortions and strain Delaunay triangulation based analysis. Precision in the strain measurement is improved and reached 2.7 × 10{sup −4} with a probe size approaching 4.2 nm in diameter. This method is applied to the study of the strain state in InGaAs quantum-well (QW) devices elaborated on Si substrate. Results show that the GaAs/Si mismatch does not induce in-plane strain fluctuations in the InGaAs QW region.

  4. Analysis of electron beam damage of exfoliated MoS2 sheets and quantitative HAADF-STEM imaging

    PubMed Central

    Garcia, A.; Raya, A.M.; Mariscal, M.M.; Esparza, R.; Herrera, M.; Molina, S.I.; Scavello, G.; Galindo, P.L.; Jose-Yacaman, M.; Ponce, A.

    2014-01-01

    In this work we examined MoS2 sheets by aberration-corrected scanning transmission electron microscopy (STEM) at three different energies: 80, 120 and 200 kV. Structural damage of the MoS2 sheets has been controlled at 80 kV according a theoretical calculation based on the inelastic scattering of the electrons involved in the interaction electron-matter. The threshold energy for the MoS2 material has been found and experimentally verified in the microscope. At energies higher than the energy threshold we show surface and edge defects produced by the electron beam irradiation. Quantitative analysis at atomic level in the images obtained at 80 kV has been performed using the experimental images and via STEM simulations using SICSTEM software to determine the exact number of MoS2 layers. PMID:24929924

  5. ELECTRON MICROSCOPIC OBSERVATIONS OF THE DEVELOPMENT OF COXIELLA BURNETII IN THE CHICK YOLK SAC1

    PubMed Central

    Anacker, R. L.; Fukushi, K.; Pickens, E. G.; Lackman, D. B.

    1964-01-01

    Anacker, R. L. (Rocky Mountain Laboratory, Hamilton, Mont.), K. Fukushi, E. G. Pickens, and D. B. Lackman. Electron microscopic observations of the development of Coxiella burnetii in the chick yolk sac. J. Bacteriol. 88:1130–1138. 1964.—Yolk sac material, obtained daily over a period of 1 week from embryos inoculated with seed of phase I Coxiella burnetii strain Ohio 314 containing 250 units of penicillin, was examined by electron microscopy and other techniques for the presence of rickettsiae. The concentration of rickettsiae in the yolk sac, as determined by electron microscopy, light microscopy, the complement-fixation test, recovery of organisms, and mouse infectivity, was low for the first 3 days, increased rapidly 3 to 5 days after infection, and then remained relatively constant. Rickettsiae in 3- to 7-day cultures, when observed by electron microscopy, had dense fibrillar centers surrounded by less-dense cytoplasmic material containing granules approximately 15 mμ in diameter. The whole was enclosed by multiple external layers. Many appeared to be in various stages of binary fission, and one form which contained a cross-wall was observed. These forms readily combined with ferritin-labeled specific antibody. In rare instances, several kinds of ”atypical” forms which did not combine with ferritin-labeled antibody were found in the cytoplasm of yolk-sac cells 4 to 5 days after inoculation; it is not certain whether these forms are artifacts or normal stages in the maturation of C. burnetii. These atypical forms were not observed in subsequent experiments in which embryonated eggs were inoculated with doses of penicillin varying from 0 to 4,000 units per egg. Images PMID:14219028

  6. Light and electron microscopic studies of the Gerbillus tarabuli (Thomas, 1902) Harderian gland.

    PubMed

    Saadi-Brenkia, Ouanassa; Haniche, Nadia; Bendjelloul, Mounira

    2013-01-01

    The purpose of this investigation was to study the morphological aspects of the Harderian gland in Gerbillus tarabuli. Tissues were obtained from both male and female adult Gerbillus tarabuli and processed for light and electron microscopy. The Harderian gland in gerbil is large and well developed, covered by a thin capsule, from which thin septae extend, subdividing the gland into lobes and lobules. The endpieces of the gland are tubuloalveolar, which produce a secretion of lipid character. The glandular epithelium is pseudostratified with two types of secretory cells, the type C cells are columnar in shape with large lipid vacuoles, and type P cells pyramidal and serous, they are basally located with no luminal aspect. The epithelium possesses well-developed myoepithelial cells. The wide lumina are filled with lipid vacuoles, cellular debris, and porphyrins. The Harderian gland of the gerbil has no morphologically distinct duct system; a single extraglandular excretory duct is detected. Electron microscopic examination revealed that type C cells contain large electron-light lipid vacuoles, a well and extensive reticulum endoplasmic and a large number of mitochondria. The pyramidal cells are characterized by a small number of PAS-positive granules at the basal region; these cells exhibit one or two round nuclei, many electron-dense granules, crystalloid bodies, abundant mitochondria and many ribosomes in their cytoplasm. The three mechanism of secretion are seen in the Harderian gland of Gerbillus tarabuli. In its overall characteristics, the Harderian gland of Gerbillus tarabuli conforms to the general pattern observed in rodents. However, further research will be needed to correlate the presence of cytoplasmic slashes, crystalloids bodies and glycoproteins in epithelial cells with the biology of these animals and to their functional significance. PMID:23317366

  7. Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory

    NASA Astrophysics Data System (ADS)

    Pardini, Lorenzo; Löffler, Stefan; Biddau, Giulio; Hambach, Ralf; Kaiser, Ute; Draxl, Claudia; Schattschneider, Peter

    2016-07-01

    Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope.

  8. Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory.

    PubMed

    Pardini, Lorenzo; Löffler, Stefan; Biddau, Giulio; Hambach, Ralf; Kaiser, Ute; Draxl, Claudia; Schattschneider, Peter

    2016-07-15

    Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope. PMID:27472127

  9. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Arena, J.; Song, M. J.; McEwen, B. F.

    1996-01-01

    Aspects of the ultrastructural interaction between collagen and mineral crystals in embryonic chick bone have been examined by the novel technique of high voltage electron microscopic tomography to obtain three-dimensional information concerning extracellular calcification in this tissue. Newly mineralizing osteoid along periosteal surfaces of mid-diaphyseal regions from normal chick tibiae was embedded, cut into 0.25 microns thick sections, and documented at 1.0 MV in the Albany AEI-EM7 high voltage electron microscope. The areas of the tissue studied contained electron dense mineral crystals associated with collagen fibrils, some marked by crystals disposed along their cylindrically shaped lengths. Tomographic reconstructions of one site with two mineralizing fibrils were computed from a 5 degrees tilt series of micrographs over a +/- 60 degrees range. Reconstructions showed that the mineral crystals were platelets of irregular shape. Their sizes were variable, measured here up to 80 x 30 x 8 nm in length, width, and thickness, respectively. The longest crystal dimension, corresponding to the c-axis crystallographically, was generally parallel to the collagen fibril long axis. Individual crystals were oriented parallel to one another in each fibril examined. They were also parallel in the neighboring but apparently spatially separate fibrils. Crystals were periodically (approximately 67 nm repeat distance) arranged along the fibrils and their location appeared to correspond to collagen hole and overlap zones defined by geometrical imaging techniques. The crystals appeared to be continuously distributed along a fibril, their size and number increasing in a tapered fashion from a relatively narrow tip containing smaller and infrequent crystals to wider regions having more densely packed and larger crystals. Defined for the first time by direct visual 3D imaging, these data describe the size, shape, location, orientation, and development of early crystals in normal

  10. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    SciTech Connect

    Karthik, Chinnathambi; Anderson, Thomas J.; Gout, Delphine; Ubic, Rick

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  11. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging.

    PubMed

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  12. [Regulatory elements in the skin epithelium of Saccoglossus mereschkowskii (Enteropneusta, Hemichordata): electron microscopic and immunocytochemical study].

    PubMed

    Stoliarova, M V; Val'kovich, E I

    2013-01-01

    The aim of this investigation was to demonstrate the regulatory elements in the skin epithelium of Enteropneusta which are supposed to be related to the chordate ancestors. Using electron microscopy, it was found that in the skin epithelium of a representative of enteropneusts Saccoglossus mereschkowskii, the basal parts of some epitheliocytes took part in formation of a nerve layer. These cells were considered as receptor ciliated cells. The granular epithelial cells were shown to release secretion according to both exocrine and endocrine mechanism; these cells were characterized as endocrine-like regulatory cells. Fine granular cells possibly represent special receptor-endocrine-like cell type. The immunocytochemical detection of FMRFamid neuropeptide localization in histological sections confirmed the electron microscopic data on the presence of receptor and endocrine-like cells in the epithelium. It is suggested that the skin epithelium of Enteropneusta contains a peculiar neuro-endocrine regulatory system that is represented by receptor cells, receptor-endocrine-like cells of an open type and nerve elements of the nerve layer. PMID:24707736

  13. Miniature Variable Pressure Scanning Electron Microscope for In-Situ Imaging and Chemical Analysis

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Jerman, Gregory; Gregory, Don; Sampson, Allen R.

    2012-01-01

    NASA Marshall Space Flight Center (MSFC) is leading an effort to develop a Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for in-situ imaging and chemical analysis of uncoated samples. This instrument development will be geared towards operation on Mars and builds on a previous MSFC design of a mini-SEM for the moon (funded through the NASA Planetary Instrument Definition and Development Program). Because Mars has a dramatically different environment than the moon, modifications to the MSFC lunar mini-SEM are necessary. Mainly, the higher atmospheric pressure calls for the use of an electron gun that can operate at High Vacuum, rather than Ultra-High Vacuum. The presence of a CO2-rich atmosphere also allows for the incorporation of a variable pressure system that enables the in-situ analysis of nonconductive geological specimens. Preliminary testing of Mars meteorites in a commercial Environmental SEM(Tradmark) (FEI) confirms the usefulness of lowcurrent/low-accelerating voltage imaging and highlights the advantages of using the Mars atmosphere for environmental imaging. The unique capabilities of the MVP-SEM make it an ideal tool for pursuing key scientific goals of NASA's Flagship Mission Max-C; to perform in-situ science and collect and cache samples in preparation for sample return from Mars.

  14. Three-dimensional localization of immunogold markers using two tilted electron microscope recordings.

    PubMed Central

    Starink, J P; Humbel, B M; Verkleij, A J

    1995-01-01

    A method is presented to determine the three-dimensional positions of immuno-labeled gold markers from tilted electron micrograph recordings by using image processing techniques. The method consists of three basic modules: localization of the markers in the recordings, estimation of the motion parameters, and matching corresponding markers between the views. Localization consists of a segmentation step based on edge detection and region growing. It also allows for the separation of (visually) aggregated markers. Initial estimates for the motion parameters are obtained from a small number of user-indicated correspondences. A matching algorithm based on simulated annealing is used to find corresponding markers. With the resulting mapping, the motion parameters are updated and used in a new matching step, etc. Once the parameters are stable, the marker depths are retrieved. The developed method has been applied to semithin resin sections of A431 cells labeled for DNA and detected by silver-enhanced ultrasmall gold particles. It represents a reliable method to analyze the three-dimensional distribution of gold markers in electron microscope samples. Images FIGURE 2 FIGURE 5 PMID:7612861

  15. Novel scanning electron microscope bulge test technique integrated with loading function

    SciTech Connect

    Li, Chuanwei; Xie, Huimin E-mail: xiehm@mail.tsinghua.edu.cn; Liu, Zhanwei E-mail: xiehm@mail.tsinghua.edu.cn

    2014-10-15

    Membranes and film-on-substrate structures are critical elements for some devices in electronics industry and for Micro Electro Mechanical Systems devices. These structures are normally at the scale of micrometer or even nanometer. Thus, the measurement for the mechanical property of these membranes poses a challenge over the conventional measurements at macro-scales. In this study, a novel bulge test method is presented for the evaluation of mechanical property of micro thin membranes. Three aspects are discussed in the study: (a) A novel bulge test with a Scanning Electron Microscope system realizing the function of loading and measuring simultaneously; (b) a simplified Digital Image Correlation method for a height measurement; and (c) an imaging distortion correction by the introduction of a scanning Moiré method. Combined with the above techniques, biaxial modulus as well as Young's modulus of the polyimide film can be determined. Besides, a standard tensile test is conducted as an auxiliary experiment to validate the feasibility of the proposed method.

  16. Preparation of human formalin-fixed brain slices for electron microscopic investigations.

    PubMed

    Krause, Martin; Brüne, Martin; Theiss, Carsten

    2016-07-01

    Ultra-structural analysis of human post-mortem brain tissue is important for investigations into the pathomechanism of neuropsychiatric disorders, especially those lacking alternative models of studying human-specific morphological features. For example, Von Economo Neurons (VENs) mainly located in the anterior cingulate cortex and in the anterior part of the insula, which seem to play a role in a variety of neuropsychiatric conditions, including frontotemporal dementia, autism and schizophrenia, can hardly be studied in nonhuman animals. Accordingly, little is known about the ultra-structural alterations of these neurons, though important research using qualitative stereological methods has revealed that protein expression of the VENs assigns them a role in immune function. Formaldehyde, which is the most common fixative in human pathology, interferes with the immunoreactivity of the tissue, possibly leading to unreliable results. Therefore, a method for ultra-structural investigations independent of antigenic properties of the fixated tissue is needed. Here, we propose an approach using electron microscopy to examine cytoskeletal structures, synapses and mitochondria in these cells. We also show that our methodology is able to keep tissue consumption to a minimum, while still allowing for the specimens to be handled with ease by using agar embedded slices in contrast to blocks for the embedding procedure. Accordingly, a stepwise protocol utilising 60μm thick human post mortem brain sections for electron microscopic ultra-structural investigations is presented. PMID:27136748

  17. Evaluation of the dentinal wall adaptation ability of MTA Fillapex using stereo electron microscope

    PubMed Central

    Demiriz, Levent; Koçak, Mustafa Murat; Koçak, Sibel; Sağlam, Baran Can; Türker, Sevinç Aktemur

    2016-01-01

    Background: An ideal root canal obturation requires a complete dentinal wall adaptation of sealer and Gutta-percha combinations without any gap formations. Aims: The aim of the study was to evaluate the dentinal wall adaptation ability of MTA Fillapex root canal sealer using stereo electron microscope (SEM). Methods: Twenty-four, single-rooted, human maxillary incisor teeth were used. All canals were prepared with a rotary nickel–titanium (Ni–Ti) instrument to a size F3 file. Teeth divided into two equal groups and one of the experimental groups was filled with AH Plus, and the other group was filled with MTA Fillapex using Gutta-percha single cone as a core material. The roots were prepared for SEM evaluation, and serial scanning electron photomicrographs were taken at ×50, ×100, ×500, and ×1000 magnifications. The gaps between the root canal sealer and canal walls were detected and measured in coronal, middle, and apical thirds. For each section, the highest value among the detected gap formations was recorded. Statistical Analysis: Mann–Whitney U-test, Freidman, and Wilcoxon tests were used. Results: The statistical analysis showed no significant difference between two sealers in terms of gap formation (P > 0.05). Conclusions: MTA Fillapex has a similar dentinal wall adaptation ability as AH Plus does. PMID:27217633

  18. Isolation, electron microscopic imaging, and 3-D visualization of native cardiac thin myofilaments.

    PubMed

    Spiess, M; Steinmetz, M O; Mandinova, A; Wolpensinger, B; Aebi, U; Atar, D

    1999-06-15

    An increasing number of cardiac diseases are currently pinpointed to reside at the level of the thin myofilaments (e.g., cardiomyopathies, reperfusion injury). Hence the aim of our study was to develop a new method for the isolation of mammalian thin myofilaments suitable for subsequent high-resolution electron microscopic imaging. Native cardiac thin myofilaments were extracted from glycerinated porcine myocardial tissue in the presence of protease inhibitors. Separation of thick and thin myofilaments was achieved by addition of ATP and several centrifugation steps. Negative staining and subsequent conventional and scanning transmission electron microscopy (STEM) of thin myofilaments permitted visualization of molecular details; unlike conventional preparations of thin myofilaments, our method reveals the F-actin moiety and allows direct recognition of thin myofilament-associated porcine cardiac troponin complexes. They appear as "bulges" at regular intervals of approximately 36 nm along the actin filaments. Protein analysis using SDS-polyacrylamide gel electrophoresis revealed that only approximately 20% troponin I was lost during the isolation procedure. In a further step, 3-D helical reconstructions were calculated using STEM dark-field images. These 3-D reconstructions will allow further characterization of molecular details, and they will be useful for directly visualizing molecular alterations related to diseased cardiac thin myofilaments (e.g., reperfusion injury, alterations of Ca2+-mediated tropomyosin switch). PMID:10388621

  19. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  20. Central nervous system changes in mitochondrial encephalomyopathy: light and electron microscopic study.

    PubMed

    Mizukami, K; Sasaki, M; Suzuki, T; Shiraishi, H; Koizumi, J; Ohkoshi, N; Ogata, T; Mori, N; Ban, S; Kosaka, K

    1992-01-01

    An autopsy case of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is reported. It presented with generalized muscle atrophy, stroke-like episodes, schizophrenia-like mental disorder and progressive dementia. Serum lactate and pyruvate levels were high. In the biopsied muscles, ragged-red fibers were observed by light microscopy and aggregation of abnormal mitochondria with paracrystaline formation by electron microscopy. The most characteristic neuropathological findings were infarct-like lesions widespread in the cerebral cortex. In addition, this case showed some unusual pathological features: (1) diffuse moderate fibrillary gliosis in the whole cerebral and cerebellar white matter, which might have been due to metabolic disturbances; (2) several focal lesions with demyelination and numerous spheroids in the pontocerebellar fibers; and (3) marked degeneration of the posterior columns and spinocerebellar tracts. Electron microscopic examination revealed that abnormal mitochondria were markedly aggregated in smooth muscle cells and endothelium of the cerebral and cerebellar blood vessels. These fine structural findings suggest a "mitochondrial angiopathy". PMID:1575024

  1. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  2. Development of an energy dispersive spectrometer for a transmission electron microscope utilizing a TES microcalorimeter array

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Mitsuda, Kazuhisa; Hara, Tom; Maehata, Keisuke; Yamasaki, Noriko Y.; Odawara, Akikazu; Nagata, Atsushi; Watanabe, Katsuaki; Takei, Yoh

    2009-12-01

    A high-energy-resolution energy dispersive spectrometer (EDS) utilizing a TES (transition edge sensor) microcalorimeter array is developed for a transmission electron microscope (TEM). The goals of the development are (1) an energy range of 0.3-10 keV, (2) an energy resolution of FWHM <10 eV, (3) a maximum counting rate of 3 kcps, and (4) a cryogen-free cooling system. We adopted a dilution refrigerator (DR) pre-cooled by a Gifford-McMahon (GM) refrigerator to cool the TES microcalorimeter to ˜100 mK. In order to avoid micro phonics of GM fridge to propagate to the TEM, pressurized He gas is circulated between the DR and the GM to reject heat from the DR. The GM is mechanically well isolated from the TEM. In oder to obtain 3 kcps counting rate, we utilize a ten pixel TES array and read out the signals in parallel wtih ten analog signal channels from cryogenic to room temperature electronics. One of the pixels can be always irradiated by a radio isotope for energy calibration. As the first step, we have attached a single pixel TES system cooled by the cryogen-free cooling system to the TEM and obtained an energy resolution of 8 eV at 1.8 keV without degrading the spatial resolution of the TEM at a 2 Å level. A ten pixel TES system is also being developed from the front-end detector assembly to the room temperature digital electronics. We describe the signal processing system and packaging of the detector assembly.

  3. Scanning Electron Microscopic Investigations on Natural and Synthetic Gas Hydrates: New Insights into the Formation Process

    NASA Astrophysics Data System (ADS)

    Techmer, K. S.; Kuhs, W. F.; Heinrichs, T.; Bohrmann, G.

    2001-12-01

    We present results of field-emission scanning electron microscopic investigations of gas hydrates from shallow marine sediments of Cascadia margin as well as from synthesis experiments. The natural hydrates were taken by TV-grab sampling during the TECFLUX project on RV SONNE cruises, SO143 and SO148 on the southern summit of Hydrate Ridge. The samples are dominantly methane hydrates with a low content of H2S (1.5-3.0 vol%). The hydrates develop as pure white ice-like layers in otherwise soft sediment deposits. The synthetic gas hydrates were prepared from pure CH4 gas at variable pressure and temperature including experimental conditions similar to the natural situation. All synthetic hydrates show a porous microstructure with pore diameters of a few hundred nm (see figure) and grain sizes of a few †m[1]. Samples were transferred to a pre-cooled cryo-stage field-emission scanning electron microscope via an interlock. No decomposition was observed during our work, which was carried out below -165° C in a vacuum of <10-5 mbar by using an electron beam of 1.0-1.5 keV. The microscope is connected with an energy-dispersive X-ray spectrographic analyzer, which can clearly identify methane in the clathrate structure by detecting the carbon peak in the elemental spectrum. The microstructures of the natural gas hydrates vary greatly with the magnification. In general, large pores between a few to hundreds of †m in diameter are observed, and these have been also documented in thin sections. These pores are interpreted to originate from gas bubbles that ascend from deeper in the sediment. The pores develop in the pore water as skins of hydrate around the former gas bubbles. We investigated the inner part of the former bubble walls by FE-SEM and could document tiny filaments that often form a network of honeycomb-like structures. EDX- analyses show that these filaments have Cl-Peaks, and we think the filaments are remnants of pore water salt that cannot be incorporated

  4. Development of wavelength-dispersive soft X-ray emission spectrometers for transmission electron microscopes--an introduction of valence electron spectroscopy for transmission electron microscopy.

    PubMed

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu(1-x)Zn(x) alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Malpha-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of pi- and sigma-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. PMID:20371492

  5. Toward structural/chemical cotailoring of phase-change Ge-Sb-Te in a transmission electron microscope.

    PubMed

    Zhang, W; Kim, J-G; Zheng, W T; Cui, X Q; Kim, Y-J; Song, S A

    2015-03-01

    Ge2Sb2Te5, as the prototype material for phase-change memory, can be transformed from amorphous phase into nanoscale rocksalt-type GeTe provided with an electron irradiation assisted by heating to 520°C in a 1250 kV transmission electron microscope. This sheds a new light into structural and chemical cotailoring of materials through coupling of thermal and electrical fields. PMID:25623497

  6. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction.

    PubMed

    Zheng, Shawn Q; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B; Cheng, Yifan; Sedat, John W; Agard, David A

    2011-07-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096(2) × 512 voxels from an input tilt series containing 122 projection images of 4096(2) pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024(2) × 256 voxels from 122 1024(2) pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. PMID:21741915

  7. Coloidal gold, ferritin and peroxidase as markers for electron microscopic double labeling lectin techniques.

    PubMed

    Roth, J; Binder, M

    1978-03-01

    Three markers, colloidal gold, ferritin and peroxidase, were checked for usefulness in double labeling of lectin-binding sites. The amount of various lectins for the stabilization of good sols of a different particle size was evaluated. Several lectin-gold complexes were prepared for electron microscopic labeling purposes, and the optimal amount of various lectins needed for stabilization of gold solutions of a different particle size was determined. The following combinations were investigated for their usefulness in labeling two different lectin-binding sites: lectin-gold and lectin-gold (different particle size), lectin-gold and lectin-ferritin, as well as lectin-ferritin and lectin-peroxidase. Of these combinations the latter did not give satisfactory results for double labeling. In all single and double labeling techniques with the above mentioned markers the quantitative evaluation of the number of lectin-binding sites is not feasible, but these techniques will be of considerable value for the investigation of the dynamics of different lectin-binding sites on the cell surface. PMID:632554

  8. Toward Fast Calibration of Global Drift in Scanning Electron Microscopes with Respect to Time and Magnification

    NASA Astrophysics Data System (ADS)

    Malti, Abed C.; Dembélé, Sounkalo; Piat, Nadine; Arnoult, Claire; Marturi, Naresh

    2012-01-01

    It is a well-known fact that scanning electron microscopic (SEM) image acquisition is mainly affected by nonlinearities and instabilities of the column and probe-specimen interaction; in turn, producing a shift in the image points with respect to many parameters and time, in particular. Even though this drift is comparatively less in modern SEMs, it is still an important factor to consider in most of the SEM-based applications. In this airticle, a simple and real-time method is proposed to estimate the global drift from a set of target images using image phase correlation, and to model its evolution by using the recursive equations of time and magnification. Based on the developed model, it is opted to use a Kalman filter in real time for accurate estimation and removal of the drift from the images. The developed method is tested using the images from a tungsten filament gun SEM (Jeol JSM 820) and a field effect gun SEM (FEI Quanta 200). The derived results show the effectiveness of the developed algorithm and also demonstrates its ability to be used in robotics as well as in material characterization under SEM.

  9. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.

    PubMed

    Hara, Toru; Tanaka, Keiichi; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y; Ohsaki, Mitsuaki; Watanabe, Katsuaki; Yu, Xiuzhen; Ito, Takuji; Yamanaka, Yoshihiro

    2010-01-01

    A new energy dispersive X-ray spectrometer (EDS) with a microcalorimeter detector equipped with a transmission electron microscope (TEM) has been developed for high- accuracy compositional analysis in the nanoscale. A superconducting transition-edge-sensor-type microcalorimeter is applied as the detector. A cryogen-free cooling system, which consists of a mechanical and a dilution refrigerator, is selected to achieve long-term temperature stability. In order to mount these detector and refrigerators on a TEM, the cooling system is specially designed such that these two refrigerators are separated. Also, the detector position and arrangement are carefully designed to avoid adverse affects between the superconductor detector and the TEM lens system. Using the developed EDS system, at present, an energy resolution of 21.92 eV full-width-at-half maximum has been achieved at the Cr K alpha line. This value is about seven times better than that of the current typical commercial Si(Li) detector, which is usually around 140 eV. The developed microcalorimeter EDS system can measure a wide energy range, 1-20 keV, at one time with this high energy resolution that can resolve peaks from most of the elements. Although several further developments will be needed to enable practical use, highly accurate compositional analysis with high energy resolution will be realized by this microcalorimeter EDS system. PMID:19717388

  10. Electron Microscopic Observations on the Structure of Treponema zuelzerae and Its Axial Filaments

    PubMed Central

    Bharier, M. A.; Eiserling, F. A.; Rittenberg, S. C.

    1971-01-01

    The fine structure of the spirochete Treponema zuelzerae, and particularly of its axial filaments, was investigated by using the electron microscope. The cell consists of a protoplasmic core surrounded by two concentric envelopes, each approximately 12 nm in width. Between these envelopes are two axial filaments, one originating at each pole of the cell, which overlap and lie side by side in the central region of the cell. The diameter of the axial filaments is 18.0 to 18.5 nm. The terminal region of each filament at its proximal end consists of a hook-like structure, very similar in appearance to the proximal end of a bacterial flagellum. The outer envelope of the cell is readily disrupted with distilled water, and this treatment often results in the release of the filaments from their axial position. A sheath is seen surrounding the filaments when cells are treated with distilled water for no more than 1 min and fixed immediately with osmium tetroxide or glutaraldehyde. This sheath has a striated fine structure and a diameter of 46 nm. Images PMID:5541022

  11. Orthodontic Cements and Demineralization: An In Vitro Comparative Scanning Electron Microscope Study

    PubMed Central

    Prabhavathi, V; Jacob, Josy; Kiran, M Shashi; Ramakrishnan, Murugesan; Sethi, Esha; Krishnan, C S

    2015-01-01

    Background: Comparison of the demineralization potential of four luting cements, i.e. zinc phosphate, conventional glass ionomer cement (GIC), resin-modified GIC and acid modified composite resin. Materials and Methods: This study was conducted on 75 extracted premolar teeth, which were grouped into five, each group containing 15 teeth. Groups were non-banded control, teeth cemented with the above-mentioned cements. These were incubated at 37°C for 30 days in sealable plastic containers, after which the teeth were debanded, cleaned and placed in acid gelatin solution at 37°C for 4 weeks to simulate the cariogenic solution. Then, the teeth were sectioned and examined under scanning electron microscope. The depth of the carious lesions was measured using image analysis with Digimizer software. Results: The depth of the carious lesions was maximum with non-banded group, followed by zinc phosphate, acid modified composite resin, resin-modified GIC and conventional GIC. Conclusions: Among the four orthodontic banding cements compared, the enamel demineralization potential is least with conventional GIC, followed by resin-modified GIC, acid modified composite resin and zinc phosphate. PMID:25859103

  12. Prevalence and Scanning Electron Microscopic Identification of Anoplocephalid Cestodes among Small Ruminants in Senegal

    PubMed Central

    Yanagida, Tetsuya; Ba, Cheikh Tidiane; Marchand, Bernard

    2016-01-01

    This study was undertaken to determine the prevalence of anoplocephalid cestodes in sheep and goats in Senegal. Intestines of 462 sheep and 48 goats were examined; 47.4% of sheep and 6.2% of goats were infected. The species identified and their prevalence were, among sheep, Avitellina centripunctata 38.7%, Moniezia expansa 15.4%, Stilesia globipunctata 16.7%, and Thysaniezia ovilla 0.4%. Among goats, they were M. expansa 6.2% and T. ovilla 2.1%. The prevalence of all species was not statistically different between dry and rainy seasons. The infections were single or multiple. Indeed, 56.2% of sheep were infected by a single species, 37.4% by two species, and 6.4% by three species. For goats, 66.7% were infected by M. expansa and 33.3% by both M. expansa and T. ovilla. Scanning electron microscopic (SEM) observations of tapeworms show the general diagnosis characters of these species. PMID:27597893

  13. [Development of ultrastructural changes in human cervix mucus during the ovarian cycle. Scanning electron microscope study].

    PubMed

    Chrétien, F C; Cohen, J; Psychoyos, A

    1976-01-01

    The use of the Scanning Electron Microscope has made it possible through observation to study the human cervical mucus through the various stages of the ovarian cycle, as well as to describe the significant variations of the meshed woof making up the ultrastructure during the ovarian cycle. While the slackening of the woof and the dimension of the meshes are minimal at both the beginning and end of the cycle, they reach a maximum on forteenth day. In the ovulatory period, lateral expansions from the filaments are numerous. On the other hand, median and terminal thicknesses are almost inexistant during the same period : their frequency decreases during the first part of the cycle, then increases during the luteal phase. During both the preceding and following days of ovulation, one can observe numerous twistings at the level of the filaments which probably express the relaxation and then contraction of the latter. The preparatory technique as well as the method of observation used appear reliable enough to allow a comparison of the cervical mucus ultrastructure in varied physiological, pathological and experimental situations. PMID:956619

  14. Charging of gold/metal oxide/gold nanocapacitors in a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Coutts, Michael J.; Zareie, Hadi M.; Cortie, Michael B.; McDonagh, Andrew M.

    2014-04-01

    Triangular parallel-plate nanocapacitors were fabricated by a combination of microsphere lithography and physical vapor deposition. The devices were comprised of a 20 nm layer of dielectric material sandwiched between two 20 nm layers of gold. Dielectric materials with a range of relative permittivities were investigated. Charging of the capacitors was probed in a scanning electron microscope (SEM) by monitoring the change in brightness of the images of the devices as a function of time. The time constants, RC, associated with the charging of the capacitors, were extracted from the SEM grayscale data. The resulting average RC values were 248 ± 27 s for SiO2, 70 ± 8 s for Al2O3, 113 ± 80 s for ZnO and 125 ± 13 s for HfO2. These values are consistent with the anticipated RC values based on the resistivities and permittivities of the materials used in the devices and importantly, were measured without the need to attach any wires or leads.

  15. Oxide nucleation on thin films of copper during in situ oxidation in an electron microscope

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Rao, D. B.; Douglass, D. L.

    1975-01-01

    Single-crystal copper thin films were oxidized at an isothermal temperature of 425 C and at an oxygen partial pressure of 0.005 torr. Specimens were prepared by epitaxial vapor deposition onto polished faces of rocksalt and were mounted in a hot stage inside the ultrahigh-vacuum chamber of a high-resolution electron microscope. An induction period of roughly 30 min was established which was independent of the film thickness but depended strongly on the oxygen partial pressure and to exposure to oxygen prior to oxidation. Neither stacking faults nor dislocations were found to be associated with the Cu2O nucleation sites. The experimental data, including results from oxygen dissolution experiments and from repetitive oxidation-reduction-oxidation sequences, fit well into the framework of an oxidation process involving the formation of a surface charge layer, oxygen saturation of the metal with formation of a supersaturated zone near the surface, and nucleation followed by surface diffusion of oxygen and bulk diffusion of copper for lateral and vertical oxide growth, respectively.

  16. Scanning electron microscopic study of laser-induced morphologic changes of a coated enamel surface

    SciTech Connect

    Hess, J.A. )

    1990-01-01

    A low-energy Nd:YAG laser was used to irradiate extracted human teeth coated with a black energy-absorbent laser initiator in a study to determine the extent of the morphologic changes produced in the enamel surface. The laser initiator was applied to a cleaned enamel surface and irradiated at an energy output of 30 mJ or 75 mJ. Both energy levels produced morphologic changes of the surface. There was a sharp line of demarcation between the coated, irradiated area and the surrounding noncoated enamel surface. The scanning electron microscope view at the lower energy level showed that the surface had melted and reformed with numerous small, bubble-like inclusions. The 75 mJ energy level showed individual impact craters with shallow centers and raised edges containing numerous pores and large, bubble-like inclusions. Etching is a dental procedure in which an acid is normally used to remove a thin outer layer of the tooth structure. This is necessary to create a roughened, irregular surface in order to provide mechanical retention for dental restorative materials. The changes produced by the laser in this study suggest a simple, effective, and controlled method of etching the enamel surface of a tooth by altering its surface characteristics.

  17. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope.

    PubMed

    Mrvar-Brecko, Anita; Sustar, Vid; Jansa, Vid; Stukelj, Roman; Jansa, Rado; Mujagić, Emir; Kruljc, Peter; Iglic, Ales; Hägerstrand, Henry; Kralj-Iglic, Veronika

    2010-04-15

    Microvesicles are sub-micron structures shed from the cell membrane in a final step of the budding process. After being released into the microenvironment they are free to move and carry signaling molecules to distant cells, thereby they represent a communication system within the body. Since all cells shed microvesicles, it can be expected that they will be found in different body fluids. The potential diagnostic value of microvesicles has been suggested, however, a standardized protocol for isolation has not yet been agreed upon. It is unclear what is the content of the isolates and whether the isolated microvesicles were present in vivo or-have they been created within the isolation procedure. To present evidence in this direction, in this work we focus on the visualization of the material obtained by the microvesicle isolation procedure. We present scanning electronic microscope images of microvesicles isolated from blood, ascites, pleural fluid, cerebrospinal fluid, postoperative drainage fluid and chyloid fluid acquired from human and animal patients. Vesicular structures sized from 1microm downto 50nm are present in isolates of all considered body fluids, however, the populations differ in size and shape reflecting also the composition of the corresponding sediments. Isolates of microvesicles contain numerous cells which indicates that methods of isolation and determination of the number of microvesicles in the peripheral blood are to be elaborated and improved. PMID:20199878

  18. An in vitro scanning electron microscope study to evaluate the efficacy of various root conditioning agents

    PubMed Central

    Garg, Jaishree; Maurya, Rajkumar; Gupta, Ankur; Tandon, Pradeep; Gupta, Krishna Kumar; Srivastava, Amitabh

    2015-01-01

    Aim: The purpose of present study was to investigate the scanning electron microscopic alterations produced on scaled and root planed dentin surfaces after application of different etching modalities namely citric acid, tetracycline hydrochloride and ethylenediaminetetraacetic acid (EDTA). Materials and Methods: Eighty specimens of teeth were collected and categorized into four groups. In group 1, control group specimens were treated with normal saline for 3 min, group 2 specimens were treated with citric acid, group 3 specimens were treated with tetracycline hydrochloride for 3 min and group 4 specimens were treated with 15% EDTA. Results: Opening of dentinal tubules was seen in all specimens except for control group that was treated with normal saline. The total number of tubules seen was highest in citric acid group as compared to tetracycline hydrochloride and EDTA Group. The total number of patent tubule opening was highest in citric acid as compared to EDTA and tetracycline. The diameter of patent dentinal tubules in citric acid group was more than EDTA and tetracycline. Conclusion: The study showed that all the three agents were effective in removing the smear layer however number of patent and wider diameter dentinal tubules was seen in vitro best in citric acid than EDTA and then in tetracycline hydrochloride. Hence, citric acid group is more efficient than EDTA and tetracycline HCl group in removing the smear layer and in opening of number of patent dentinal tubules. PMID:26644718

  19. In Situ Wear Test on Thermal Spray Coatings in a Large Chamber Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Luo, Weifeng; Tillmann, Wolfgang; Selvadurai, Ursula

    2015-01-01

    Currently, the determination of the mass loss is usually used for a quantitative evaluation of wear tests, while the analysis of wear tracks is utilized for a qualitative evaluation of wear. Both evaluation methods can only be used after the wear testing process and their results only present the final outcome of the wear test. However, the changes during the wear test and the time-dependent wear mechanisms are of great interest as well. A running wear test in a large chamber scanning electron microscope (SEM) offers the first opportunity to observe the wear process in situ. Different wear mechanisms, such as the adhesive, abrasive wear, surface fatigue and tribochemical reaction, can be recorded with high magnification. Within this research, a special pin-on-disk testing device is designed for a vacuum environment. Using this device, arc-sprayed NiCrBSi coatings and high-velocity-oxygen-fuel-sprayed WC-12Co coatings were tested in a large chamber SEM with Al2O3 ceramic balls as wear counterparts. During the wear testing, different wear mechanisms were determined and the processes were recorded in short video streams.

  20. Semi-automatic classification of cementitious materials using scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Drumetz, L.; Dalla Mura, M.; Meulenyzer, S.; Lombard, S.; Chanussot, J.

    2015-04-01

    A new interactive approach for segmentation and classification of cementitious materials using Scanning Electron Microscope images is presented in this paper. It is based on the denoising of the data with the Block Matching 3D (BM3D) algorithm, Binary Partition Tree (BPT) segmentation and Support Vector Machines (SVM) classification. The latter two operations are both performed in an interactive way. The BPT provides a hierarchical representation of the spatial regions of the data and, after an appropriate pruning, it yields a segmentation map which can be improved by the user. SVMs are used to obtain a classification map of the image with which the user can interact to get better results. The interactivity is twofold: it allows the user to get a better segmentation by exploring the BPT structure, and to help the classifier to better discriminate the classes. This is performed by improving the representativity of the training set, adding new pixels from the segmented regions to the training samples. This approach performs similarly or better than methods currently used in an industrial environment. The validation is performed on several cement samples, both qualitatively by visual examination and quantitatively by the comparison of experimental results with theoretical values.

  1. Electron-microscopic study of the apical region of the toad bladder epithelial cell.

    PubMed

    Sasaki, J; Tilles, S; Condeelis, J; Carboni, J; Meiteles, L; Franki, N; Bolon, R; Robertson, C; Hays, R M

    1984-09-01

    Antidiuretic hormone (ADH) promotes fusion of cytoplasmic tubules with the luminal membrane and delivery of particles from the tubules to the membrane. The particles are believed to be the water-conducting elements in the membrane. We have employed several scanning (SEM) and transmission electron-microscopic (TEM) techniques to study the relationship of the cytoplasmic tubules to the luminal membrane and to the apical cytoskeleton of the toad bladder epithelial cell. This paper reports the results of freeze-crack SEM and tannic acid-fixed TEM studies, as well as studies with a resinless method of embedding. Freeze-cracked epithelial cells reveal that the tubules are anchored in a matrix of cytoskeleton and granules just below the luminal membrane, and many, if not all, retain their anchorage to the matrix after ADH-induced fusion. Tannic acid-fixed specimens show that the tubules in unstimulated cells lie horizontally. Fusion appears to involve an angulation of the tubules, and this may be the major mode of ADH-induced tubule movement. There are suggestions in the tannic acid sections of filamentous attachments of tubules to the surrounding cytoskeleton. In addition there are prominent microfilament bundles running down the microvilli and a dense concentration of filaments just below the luminal membrane. The presence of these filaments is confirmed in the resinless sections, and their possible role in ADH action is discussed. PMID:6433717

  2. Comparative evaluation of enamel abrasivity by toothbrush and velcro: An in vitro scanning electron microscope study

    PubMed Central

    Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta

    2015-01-01

    Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing PMID:26229264

  3. In situ tensile testing of individual Co nanowires inside a scanning electron microscope.

    PubMed

    Zhang, Dongfeng; Breguet, Jean-Marc; Clavel, Reymond; Phillippe, Laetitia; Utke, Ivo; Michler, Johann

    2009-09-01

    Uniaxial quasi-static tensile testing on individual nanocrystalline Co nanowires (NWs), synthesized by electrochemical deposition process (EDP) in porous templates, was performed inside a scanning electron microscope (SEM) using a microfabricated tensile stage consisting of a comb drive actuator and a clamped-clamped beam force sensor. A 'three-beam structure' was fabricated by focused ion beam induced deposition (FIBID) on the stage, from which the specimen elongation and the tensile force could be measured simultaneously from SEM images at high magnification. A novel strategy of modifying device topography, e.g. in the form of trenches and pillars, was proposed to facilitate in situ SEM pick-and-place nanomanipulation, which could achieve a high yield of about 80% and reduce the difficulties in specimen preparation for tensile testing at the nanoscale. The measured apparent Young's modulus (75.3 +/- 14.6) GPa and tensile strength (1.6 +/- 0.4) GPa are significantly lower than the bulk modulus and the theoretical strength of monocrystalline samples, respectively. This result is important for designing Co NW-based devices. The origins of these distinctions are discussed in terms of the stiffnesses of the soldering portions, specimen misalignment, microstructure of the NWs and the experimental measurement uncertainty. PMID:19687546

  4. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation.

    PubMed

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  5. Examination of Scanning Electron Microscope and Computed Tomography Images of PICA

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Stackpoole, Margaret M.; Shklover, Valery

    2010-01-01

    Micrographs of PICA (Phenolic Impregnated Carbon Ablator) taken using a Scanning Electron Microscope (SEM) and 3D images taken with a Computed Tomography (CT) system are examined. PICA is a carbon fiber based composite (Fiberform ) with a phenolic polymer matrix. The micrographs are taken at different surface depths and at different magnifications in a sample after arc jet testing and show different levels of oxidative removal of the charred matrix (Figs 1 though 13). CT scans, courtesy of Xradia, Inc. of Concord CA, were captured for samples of virgin PICA, charred PICA and raw Fiberform (Fig. 14). We use these images to calculate the thermal conductivity (TC) of these materials using correlation function (CF) methods. CF methods give a mathematical description of how one material is embedded in another and is thus ideally suited for modeling composites like PICA. We will evaluate how the TC of the materials changes as a function of surface depth. This work is in collaboration with ETH-Zurich, which has expertise in high temperature materials and TC modeling (including CF methods).

  6. Evaluation of two different root-end cavity preparation techniques: A scanning electron microscope study

    PubMed Central

    Aydemir, Seda; Cimilli, Hale; Hazar Yoruç, Afife Binnaz; Kartal, Nevin

    2013-01-01

    Objective: In this study, we aimed to evaluate and compare the dentinal walls of root-end cavities for the presence of cracks after cavity preparation using US retrotips and Er: YAG laser. Materials and Methods: Fifty single-rooted teeth were prepared by Protaper NiTi rotary system and obturated by lateral condensation. Three milimeters of root-end was resected. Twenty teeth were prepared with US retrotip (Group 1), 20 teeth with Er: YAG laser (Group 2), and 10 teeth without retropreparation (control group). The root-end surfaces were examined under a scanning electron microscope (SEM). Then the cracks of the resected root surfaces were evaluated on microphotographs. Results: No statistically significant difference was detected between US Group and Laser Group for complete, incomplete, intradentinal, and total number of cracks (P = 0.47, P = 0.80, P = 0.69, P = 0.869, respectively). Conclusion: Statistical analysis revealed no significant effect of retropreparation technique on the development of apical cracks (P > 0.05). PMID:24883024

  7. Hybrid metrology co-optimization of critical dimension scanning electron microscope and optical critical dimension

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Osorio, Carmen; Tsai, Jamie; Bozdog, Cornel; Sendelbach, Matthew; Grubner, Eyal; Koret, Roy; Wolfling, Shay

    2014-10-01

    Work using the concept of a co-optimization-based metrology hybridization is presented. Hybrid co-optimization involves the combination of data from two or more metrology tools such that the output of each tool is improved by the output of the other tool. Here, the image analysis parameters from a critical dimension scanning electron microscope (CD-SEM) are modulated by the profile information from optical critical dimension (OCD, or scatterometry), while the OCD-extracted profile is concurrently optimized through addition of the CD-SEM CD results. The test vehicle utilized is the 14-nm technology node-based FinFET high-k/interfacial layer (HK/IL) structure. When compared with the nonhybrid approach, the correlation to reference measurements of the HK layer thickness measurement using hybrid co-optimization resulted in an improvement in relative accuracy of about 40% and in R2 from 0.81 to 0.91. The measurement of the IL thickness also shows an improvement with hybrid co-optimization: better matching to the expected conditions as well as data that contain less noise.

  8. Prevalence and Scanning Electron Microscopic Identification of Anoplocephalid Cestodes among Small Ruminants in Senegal.

    PubMed

    Ndom, Mallé; Diop, Gora; Quilichini, Yann; Yanagida, Tetsuya; Ba, Cheikh Tidiane; Marchand, Bernard

    2016-01-01

    This study was undertaken to determine the prevalence of anoplocephalid cestodes in sheep and goats in Senegal. Intestines of 462 sheep and 48 goats were examined; 47.4% of sheep and 6.2% of goats were infected. The species identified and their prevalence were, among sheep, Avitellina centripunctata 38.7%, Moniezia expansa 15.4%, Stilesia globipunctata 16.7%, and Thysaniezia ovilla 0.4%. Among goats, they were M. expansa 6.2% and T. ovilla 2.1%. The prevalence of all species was not statistically different between dry and rainy seasons. The infections were single or multiple. Indeed, 56.2% of sheep were infected by a single species, 37.4% by two species, and 6.4% by three species. For goats, 66.7% were infected by M. expansa and 33.3% by both M. expansa and T. ovilla. Scanning electron microscopic (SEM) observations of tapeworms show the general diagnosis characters of these species. PMID:27597893

  9. Examination of explanted polyurethane pacemaker leads using the scanning electron microscope.

    PubMed

    Beyersdorf, F; Kreuzer, J; Schmidts, L; Satter, P

    1985-07-01

    Since 1978, 2,365 polyurethane (PU) insulated cardiac pacing leads were implanted transvenously at our institution. To date, there have been no insulation failures in those leads. Thirty-seven PU leads were explanted, mainly for exit block, and 28 of these were investigated using the scanning electron microscope. We found a homogeneous distribution of surface changes in all lead segments in 56% of the 28 examined. These changes were more pronounced at the ligature site; severe surface cracking was noticed in 21%, with the deepest crack being 40 micron (average range of 10-15 micron). There appeared to be no time-dependency of the surface changes as indicated by regression analysis (r = 0.32, p greater than 0.05). The ultimate severity and outcome of this degradation process in the leads reported in this study will only be known in the future after longer use. We conclude that excess stress must be avoided during the implantation procedure and that careful surveillance is necessary. PMID:2410883

  10. Ultra-structural hair alterations of drug abusers: a scanning electron microscopic investigation

    PubMed Central

    Turkmenoglu, Fatma Pinar; Kasirga, Ugur Baran; Celik, Hakan Hamdi

    2015-01-01

    As drug abuse carries a societal stigma, patients do not often report their history of drug abuse to the healthcare providers. However, drug abuse is highly co-morbid with a host of other health problems such as psychiatric disorders and skin diseases, and majority of individuals with drug use disorders seek treatment in the first place for other problems. Therefore, it is very important for physicians to be aware of clinical signs and symptoms of drug use. Recently diagnostic value of dermatologic tissue alterations associated with drug abuse has become a very particular interest because skin changes were reported to be the earliest noticeable consequence of drug abuse prompting earlier intervention and treatment. Although hair is an annex of skin, alterations on hair structure due to drug use have not been demonstrated. This study represents the first report on ultra-structural hair alterations of drug abusers. We have investigated ultra-structure of the hair samples obtained from 6 cocaine, 6 heroin, 7 cannabis and 4 lysergic acid diethylamide (LSD) abusers by scanning electron microscope (SEM). SEM analysis of hair samples gave us drug-specific discriminating alterations. We suggest that results of this study will make a noteworthy contribution to cutaneous alterations associated with drug abuse which are regarded as the earliest clinical manifestations, and this SEM approach is a very specific and effective tool in the detection of abuse of respective drugs, leading early treatment. PMID:26309532

  11. Electron microscope histochemical localization of alkaline phosphatase(s) in Bacillus licheniformis.

    PubMed Central

    McNicholas, J M; Hulett, F M

    1977-01-01

    Sites of alkaline phosphatase (APase) activity in a facultative thermophilic strain of Bacillus licheniformis MC14 have been localized by electron microscope histochemistry, using a lead capture method. The effects of 3% glutaraldehyde and 3.0 mM lead on APase activity were investigated, and these compounds were found to significantly inhibit enzyme activity, 68 and 18%, respectively. A number of parameters were varied in studies to localize APase activity, including: growth temperature (55 and 37 degrees C); substrate concentration in the histochemical mixture (0.06, 0.15, 0.30, 1.00 mM); fixatives; protoplast preparations and whole cells; phosphate-repressed and -derepressed cells; and age of vegetative cells (mid-log and late log). These variations affected the number but not the location of lead phosphate deposits, which appeared at discrete sites along the inner side of the cytoplasmic membrane. Control cells incubated in histochemical mixtures lacking substrate, lead, or both exhibited no lead phosphate depositis. The histochemical localization at membrane sites correlated well with biochemical localization data, which indicated that greater than 80% of the APase activity was associated with the membrane fraction in logarithmically growing cells. Images PMID:401501

  12. Electron microscope histochemical localization of alkaline phosphatase(s) in Bacillus licheniformis.

    PubMed

    McNicholas, J M; Hulett, F M

    1977-01-01

    Sites of alkaline phosphatase (APase) activity in a facultative thermophilic strain of Bacillus licheniformis MC14 have been localized by electron microscope histochemistry, using a lead capture method. The effects of 3% glutaraldehyde and 3.0 mM lead on APase activity were investigated, and these compounds were found to significantly inhibit enzyme activity, 68 and 18%, respectively. A number of parameters were varied in studies to localize APase activity, including: growth temperature (55 and 37 degrees C); substrate concentration in the histochemical mixture (0.06, 0.15, 0.30, 1.00 mM); fixatives; protoplast preparations and whole cells; phosphate-repressed and -derepressed cells; and age of vegetative cells (mid-log and late log). These variations affected the number but not the location of lead phosphate deposits, which appeared at discrete sites along the inner side of the cytoplasmic membrane. Control cells incubated in histochemical mixtures lacking substrate, lead, or both exhibited no lead phosphate depositis. The histochemical localization at membrane sites correlated well with biochemical localization data, which indicated that greater than 80% of the APase activity was associated with the membrane fraction in logarithmically growing cells. PMID:401501

  13. Trim simulations and possible studies for edge-on ion irradiation of electron microscope specimens

    SciTech Connect

    Thompson, L.J.; Allen, C.W.; Frischherz, M.C. |; Otero, M.P. |

    1992-12-31

    A TRIM code has been modified to simulate a special technique, first described at the Spring 92 MRS Meeting, for in-situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen without further specimen preparation. Instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in essentially the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction of the irradiation. Results of calculations utilizing the modified TRIM code are presented for cases of 200 and 500 keV Co impinging onto the edge of Si films 200 and 600 nm thick. Limitations of the technique are discussed and feasibility of experiments involving implantation of Co into Si and the formation of CoSi{sub 2}, which employ this technique, are briefly discussed. 10 refs, 3 figs.

  14. Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Yamamoto, R.; Sakai, K.; Maehisa, K.; Nagayoshi, K.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Hidaka, M.; Nagasawa, S.; Maehata, K.; Hara, T.

    2016-07-01

    A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of ˜ 5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are 10^{-7} and 10^{-3}, respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5-15 keV band should be achievable.

  15. Determining Projections of Grain Boundaries from Diffraction Data in Transmission Electron Microscope.

    PubMed

    Kiss, Ákos K; Lábár, János L

    2016-06-01

    Grain boundaries (GB) are characterized by disorientation of the neighboring grains and the direction of the boundary plane between them. A new approach presented here determines the projection of GB that can be used to determine the latter one. The novelty is that an additional parameter of GB is quantified in addition to the ones provided by the orientation maps, namely the width of the projection of the GB is measured from the same set of diffraction patterns that were recorded for the orientation map, without the need to take any additional images. The diffraction patterns are collected in nanobeam diffraction mode in a transmission electron microscope, pixel-by-pixel, from an area containing two neighboring grains and the boundary between them. In our case, the diffraction patterns were recorded using the beam scanning function of a commercially available system (ASTAR). Our method is based on non-negative matrix factorization applied to the mentioned set of diffraction patterns. The method is encoded in a MATLAB environment, making the results easy to interpret and visualize. The measured GB-projection width is used to determine the orientation of the GB-plane, as given in the study by Kiss et al. PMID:27074103

  16. Comprehensive Study of Hydrated IDPs: X-Ray Diffraction, IR Spectroscopy and Electron Microscopic Analysis

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Nozaki, W.; Tomeoka, K.

    2003-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere(1). Although much is known about the mineralogy, chemistry and carbon abundance of hydrated IDPs (2-4) controversies still exist regarding their formation, history, and relationship to other primitive solar system materials. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone some degree of aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels (3,4) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. We report the comprehensive study of individual hydrated IDPs. The strong depletion in Ca (I) has been used as a diagnostic feature of hydrated IDPs. The particles are embedded in elemental sulfur or low viscosity epoxy and ultramicrotomed thin sections are observed using a transmission electron microscope (TEM) equipped with an energy-dispersive X-ray detector (EDX) followed by other measurements including: 1) FTIR microspectroscopy to understand the significant constraints on the organic functionality and the nature of the C-bearing phases and 2) powder X-ray difiaction using a synchrotron X-ray source to understand the bulk mineralogy of the particles.

  17. Study of the thermal degradation mechanism of a composite propellant. [using electron microscopes

    NASA Technical Reports Server (NTRS)

    Schmidt, W. G.

    1975-01-01

    The current experimental program was designed to systematically investigate the role of the oxidizer in the thermal degradation process of composite propellants. The scanning electron microscope (SEM) was used to examine the failure sites in thermally degraded propellant samples. The formulation variables tested were oxidizer purity, oxidizer particle size, and oxidizer to binder bonding agent. The binder, a saturated hydrocarbon, was kept constant throughout the experiments. The oxidizers were: AP, chlorate-doped AP, arsenate-doped AP, and phosphate-doped AP. The oxidizer particle size distribution was 60% of the large fraction and 40% of the small fraction. The bonding agent, when present, was used at the 0.15% level. The data showed that both the oxidizer purity and particle size had an important affect on the thermal degradation process. The affect of the oxidizer particle size was more noticeable at the higher temperature and stress levels. An examination of the failure site, by SEM, of propellants subject to these latter conditions indicated that the fracturing of the large oxidizer particles led to the propellant cracking.

  18. Common Bias Readout for TES Array on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Yamamoto, R.; Sakai, K.; Maehisa, K.; Nagayoshi, K.; Hayashi, T.; Muramatsu, H.; Nakashima, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Hidaka, M.; Nagasawa, S.; Maehata, K.; Hara, T.

    2016-03-01

    A transition edge sensor (TES) microcalorimeter array as an X-ray sensor for a scanning transmission electron microscope system is being developed. The technical challenge of this system is a high count rate of ˜ 5000 counts/second/array. We adopted a 64 pixel array with a parallel readout. Common SQUID bias, and common TES bias are planned to reduce the number of wires and the resources of a room temperature circuit. The reduction rate of wires is 44 % when a 64 pixel array is read out by a common bias of 8 channels. The possible degradation of the energy resolution has been investigated by simulations and experiments. The bias fluctuation effects of a series connection are less than those of a parallel connection. Simple calculations expect that the fluctuations of the common SQUID bias and common TES bias in a series connection are 10^{-7} and 10^{-3} , respectively. We constructed 8 SQUIDs which are connected to 8 TES outputs and a room temperature circuit for common bias readout and evaluated experimentally. Our simulation of crosstalk indicates that at an X-ray event rate of 500 cps/pixel, crosstalk will broaden a monochromatic line by about 0.01 %, or about 1.5 eV at 15 keV. Thus, our design goal of 10 eV energy resolution across the 0.5-15 keV band should be achievable.

  19. Automated defect review of the wafer bevel with a defect review scanning electron microscope

    NASA Astrophysics Data System (ADS)

    McGarvey, Steve; Kanezawa, Masakazu

    2009-03-01

    One of the few remaining bastions of non-regulated Integrated Circuit defectivity is the wafer bevel. Recent internal Integrated Circuit Manufacturing studies have suggested that the edge bevel may be responsible for as much as a two to three percent yield loss during a defect excursion on the manufacturing line and a one to two percent yield loss during ongoing wafer manufacturing. A new generation of defect inspection equipment has been introduced to the Research and Development, Integrated Circuit, MEM's and Si wafer manufacturing markets that has imparted the ability for the end equipment user to detect defects located on the bevel of the wafer. The inherent weakness of the current batch of wafer bevel inspection equipment is the lack of automatic discrete defect classification data into multiple, significant classification bins and the lack of discrete elemental analysis data. Root cause analysis is based on minimal discrete defect analysis as a surrogate for a statistically valid sampling of defects from the bevel. This paper provides a study of the methods employed with a Hitachi RS-5500EQEQ Defect Review Scanning Electron Microscope (DRSEM) to automatically capture high resolution/high magnification images and collect elemental analysis on a statistically valid sample of the discrete defects that were located by a bevel inspection system.

  20. Enabling scanning electron microscope contour-based optical proximity correction models

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Jantzen, Kenneth

    2015-04-01

    A scanning electron microscope (SEM) is the metrology tool used to accurately characterize very fine structures on wafers, usually by extracting one critical dimension (CD) per SEM image. This approach for optical proximity correction (OPC) modeling requires many measurements resulting in a lengthy cycle time for data collection, review, and cleaning, and faces reliability issues when dealing with critical two-dimensional (2-D) structures. An alternative to CD-based metrology is to use SEM image contours for OPC modeling. To calibrate OPC models with contours, reliable contours matched to traditional CD-SEM measurements are required along with a method to choose structure and site selections (number, type, and image space coverage) specific to a contour-based OPC model calibration. The potential of SEM contour model-based calibration is illustrated by comparing two contour-based models to reference models, one empirical model and a second rigorous simulation-based model. The contour-based models are as good as or better than a CD-based model with a significant advantage in the prediction of complex 2-D configurations with a reduced metrology work load.