Science.gov

Sample records for abeta oligomers show

  1. Alzheimer's-associated Abeta oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal.

    PubMed

    Pitt, Jason; Roth, William; Lacor, Pascale; Smith, Amos B; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul; Klein, William L

    2009-10-15

    It now appears likely that soluble oligomers of amyloid-beta1-42 peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt Abeta oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble Abeta species, when assayed with both sequence- and conformation-specific Abeta antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (Abeta-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.

  2. Alzheimer's-associated A{beta} oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal

    SciTech Connect

    Pitt, Jason Roth, William; Lacor, Pascale; Smith, Amos B.; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul Klein, William L.

    2009-10-15

    It now appears likely that soluble oligomers of amyloid-{beta}{sub 1-42} peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt A{beta} oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble A{beta} species, when assayed with both sequence- and conformation-specific A{beta} antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (A{beta}-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.

  3. Pathogenesis of Abeta oligomers in synaptic failure.

    PubMed

    Sivanesan, Senthilkumar; Tan, Aaron; Rajadas, Jayakumar

    2013-03-01

    The soluble Abeta oligomers in brain are highly correlated with memory related synaptic dysfunctions in Alzheimer's disease (AD). However, more recent studies implicate the involvement of Abeta dimers and trimers in memory related AD pathology. Apparently, Abeta oligomers can bind with cellular prion protein at the membrane receptors, forming annular amyloid pores and membrane ion channels to induce aberrant spine cytoskeletal changes. Hence synapse targeting of Abeta oligomers involves activation of many receptors such as N-Methyl-D-aspartate (NMDA), alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), nicotinic acetylcholine (nAChRs), p75 neurotrophin (p75NTR) following aberrant clustering of metabotropic glutamate receptors (mGluR5) leading to neuronal loss and LTP failure. In particular, NMDA and AMPA receptor activation by soluble amyloid oligomers involves calcium mediated mitochondrial dysfunction, decreased Ca((2+))/calmodulin-dependent protein kinase II (CaMKII) levels at the synapses accompanying dramatic loss of synaptic proteins such as postsynaptic density-95 (PSD-95), dynamin-1 and synaptophysin. This kind of receptor-Abeta oligomer interaction might eventually affect the neuronal membrane integrity by altering dielectric barrier, various synaptic proteins, spine morphology and density and P/Q calcium currents that might provoke a cascade of events leading to neuronal loss and memory failure. In this review, we try to explain in detail the various possible mechanisms that connect Abeta oligomers with synapse damage and memory failure.

  4. High-resolution atomic force microscopy of soluble Abeta42 oligomers.

    PubMed

    Mastrangelo, Iris A; Ahmed, Mahiuddin; Sato, Takeshi; Liu, Wei; Wang, Chengpu; Hough, Paul; Smith, Steven O

    2006-04-21

    Soluble oligomers and protofibrils are widely thought to be the toxic forms of the Abeta42 peptide associated with Alzheimer's disease. We have investigated the structure and formation of these assemblies using a new approach in atomic force microscopy (AFM) that yields high-resolution images of hydrated proteins and allows the structure of the smallest molecular weight (MW) oligomers to be observed and characterized. AFM images of monomers, dimers and other low MW oligomers at early incubation times (< 1h) are consistent with a hairpin structure for the monomeric Abeta42 peptide. The low MW oligomers are relatively compact and have significant order. The most constant dimension of these oligomers is their height (approximately 1-3 nm) above the mica surface; their lateral dimensions (width and length) vary between 5 nm and 10nm. Flat nascent protofibrils with lengths of over 40 nm are observed at short incubation times (< or = 3h); their lateral dimensions of 6-8 nm are consistent with a mass-per-length of 9 kDa/nm previously predicted for the elementary fibril subunit. High MW oligomers with lateral dimensions of 15-25 nm and heights ranging from 2-8 nm are common at high concentrations of Abeta. We show that an inhibitor designed to block the sheet-to-sheet packing in Abeta fibrils is able to cap the heights of these oligomers at approximately 4 nm. The observation of fine structure in the high MW oligomers suggests that they are able to nucleate fibril formation. AFM images obtained as a function of incubation time reveal a sequence of assembly from monomers to soluble oligomers and protofibrils.

  5. Structural differences between Abeta(1-40) intermediate oligomers and fibrils elucidated by proteolytic fragmentation and hydrogen/deuterium exchange.

    PubMed

    Zhang, Aming; Qi, Wei; Good, Theresa A; Fernandez, Erik J

    2009-02-01

    The aggregation of amyloid-beta protein (Abeta) in vivo is a critical pathological event in Alzheimer's disease. Although more and more evidence shows that the intermediate oligomers are the primary neurotoxic species in Alzheimer's disease, the particular structural features responsible for the toxicity of these intermediates are poorly understood. We measured the peptide level solvent accessibility of multiple Abeta(1-40) aggregated states using hydrogen exchange detected by mass spectrometry. A gradual reduction in solvent accessibility, spreading from the C-terminal region to the N-terminal region was observed with ever more aggregated states of Abeta peptide. The observed hydrogen exchange protection begins with reporter peptides 20-34 and 35-40 in low molecular weight oligomers found in fresh samples and culminates with increasing solvent protection of reporter peptide 1-16 in long time aged fibrillar species. The more solvent exposed structure of intermediate oligomers in the N-termini relative to well-developed fibrils provides a novel explanation for the structure-dependent neurotoxicity of soluble oligomers reported previously.

  6. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    PubMed

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  7. Polymorphism of Alzheimer's Abeta17-42 (p3) oligomers: the importance of the turn location and its conformation.

    PubMed

    Miller, Yifat; Ma, Buyong; Nussinov, Ruth

    2009-08-19

    Abeta(17-42) (so-called p3) amyloid is detected in vivo in the brains of individuals with Alzheimer's disease or Down's syndrome. We investigated the polymorphism of Abeta(17-42) oligomers based on experimental data from steady-state NMR measurements, electron microscopy, two-dimensional hydrogen exchange, and mutational studies, using all-atom molecular-dynamics simulation with explicit solvent. We assessed the structural stability and the populations. Our results suggest that conformational differences in the U-turn of Abeta(17-42) lead to polymorphism in beta-sheet registration and retention of an ordered beta-strand organization at the termini. Further, although the parallel Abeta(17-42) oligomer organization is the most stable of the conformers investigated here, different antiparallel Abeta(17-42) organizations are also stable and compete with the parallel architectures, presenting a polymorphic population. In this study we propose that 1), the U-turn conformation is the primary factor leading to polymorphism in the assembly of Abeta(17-42) oligomers, and is also coupled to oligomer growth; and 2), both parallel Abeta(17-42) oligomers and an assembly of Abeta(17-42) oligomers that includes both parallel and antiparallel organizations contribute to amyloid fibril formation. Finally, since a U-turn motif generally appears in amyloids formed by full proteins or long fragments, and since to date these have been shown to exist only in parallel architectures, our results apply to a broad range of oligomers and fibrils.

  8. Combining the rapid MTT formazan exocytosis assay and the MC65 protection assay led to the discovery of carbazole analogs as small molecule inhibitors of Abeta oligomer-induced cytotoxicity.

    PubMed

    Hong, Hyun-Seok; Maezawa, Izumi; Yao, Nianhuan; Xu, Bailing; Diaz-Avalos, Ruben; Rana, Sandeep; Hua, Duy H; Cheng, R Holland; Lam, Kit S; Jin, Lee-Way

    2007-01-26

    The discovery of small molecule inhibitors of cytotoxicity induced by amyloid-beta (Abeta) oligomers, either applied extracellularly or accumulated intraneuronally, is an important goal of drug development for Alzheimer's disease (AD), but has been limited by the lack of efficient screening methods. Here we describe our approach using two cell-based methods. The first method takes advantage of the unique ability of extracellularly applied Abeta oligomers to rapidly induce the exocytosis of formazan formed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). We employed a short protocol to quantify this toxicity, and quickly identified two novel inhibitors, code-named CP2 and A5, from two compound libraries. A second independent screen of the same libraries using our previously published MC65 protection assay, which identifies inhibitors of toxicity related to intracellular Abeta oligomers, also selected the same two leads, suggesting that both assays select for the same anti-Abeta oligomer properties displayed by these compounds. We further demonstrated that A5 attenuated the progressive aggregation of existing Abeta oligomers, reduced the level of intracellular Abeta oligomers, and prevented the Abeta oligomer-induced death of primary cortical neurons, effects similar to those demonstrated by CP2. Our results suggest that, when combined, the two methods would generate fewer false results and give a high likelihood of identifying leads that show promises in ameliorating Abeta oligomer-induced toxicities within both intraneuronal and extracellular sites. Both assays are simple, suitable for rapid screening of a large number of medicinal libraries, and amenable for automation.

  9. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits

    PubMed Central

    Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD

  10. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits.

    PubMed

    Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models

  11. Polyalanine and Abeta Aggregation Kinetics: Probing Intermediate Oligomer Formation and Structure Using Computer Simulations

    NASA Astrophysics Data System (ADS)

    Phelps, Erin Melissa

    2011-12-01

    The aggregation of proteins into stable, well-ordered structures known as amyloid fibrils has been associated with many neurodegenerative diseases. Amyloid fibrils are long straight, and un-branched structures containing several proto-filaments, each of which exhibits "cross beta structure," -- ribbon-like layers of large beta sheets whose strands run perpendicular to the fibril axis. It has been suggested in the literature that the pathway to fibril formation has the following steps: unfolded monomers associate into transient unstable oligomers, the oligomers undergo a rearrangement into the cross-beta structure and form into proto-filaments, these proto-filaments then associate and grow into fully formed fibrils. Recent experimental studies have determined that the unstable intermediate structures are toxic to cells and that their presence may play a key role in the pathogenesis of the amyloid diseases. Many efforts have been made to determine the structure of intermediate oligomer aggregates that form during the fibrillization process. The goal of this work is to provide details about the structure and formation kinetics of the unstable oligomers that appear in the fibril formation pathway. The specific aims of this work are to determine the steps in the fibril formation pathway and how the kinetics of fibrillization changes with variations in temperature and concentration. The method used is the application of discontinuous molecular dynamics to large systems of peptides represented with an intermediate resolution model, PRIME, that was previously developed in our group. Three different peptide sequences are simulated: polyalanine (KA14K), Abeta17-40, and Abeta17-42; the latter two are truncated sequences of the Alzheimer's peptide. We simulate the spontaneous assembly of these peptide chains from a random initial configuration of random coils. We investigate aggregation kinetics and oligomer formation of a system of 192 polyalanine (KA14K) chains over a

  12. Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity

    SciTech Connect

    Feng, Ying; Yang, Shi-gao; Du, Xue-ting; Zhang, Xi; Sun, Xiao-xia; Zhao, Min; Sun, Gui-yuan; Liu, Rui-tian

    2009-12-25

    Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.

  13. Monoclonal antibodies that target pathological assemblies of Abeta.

    PubMed

    Lambert, Mary P; Velasco, Pauline T; Chang, Lei; Viola, Kirsten L; Fernandez, Sara; Lacor, Pascale N; Khuon, Daliya; Gong, Yuesong; Bigio, Eileen H; Shaw, Pamela; De Felice, Fernanda G; Krafft, Grant A; Klein, William L

    2007-01-01

    Amyloid beta (Abeta) immunotherapy for Alzheimer's disease has shown initial success in mouse models of Alzheimer's disease and in human patients. However, because of meningoencephalitis in clinical trials of active vaccination, approaches using therapeutic antibodies may be preferred. As a novel antigen to generate monoclonal antibodies, the current study has used Abeta oligomers (amyloid beta-derived diffusible ligands, ADDLs), pathological assemblies known to accumulate in Alzheimer's disease brain. Clones were selected for the ability to discriminate Alzheimer's disease from control brains in extracts and tissue sections. These antibodies recognized Abeta oligomers and fibrils but not the physiologically prevalent Abeta monomer. Discrimination derived from an epitope found in assemblies of Abeta1-28 and ADDLs but not in other sequences, including Abeta1-40. Immunoneutralization experiments showed that toxicity and attachment of ADDLs to synapses in culture could be prevented. ADDL-induced reactive oxygen species (ROS) generation was also inhibited, establishing this response to be oligomer-dependent. Inhibition occurred whether ADDLs were prepared in vitro or obtained from Alzheimer's disease brain. As conformationally sensitive monoclonal antibodies that selectively immunoneutralize binding and function of pathological Abeta assemblies, these antibodies provide tools by which pathological Abeta assemblies from Alzheimer's disease brain might be isolated and evaluated, as well as offering a valuable prototype for new antibodies useful for Alzheimer's disease therapeutics.

  14. Key residues for the oligomerization of A{beta}42 protein in Alzheimer's disease

    SciTech Connect

    Ngo, Sam; Guo, Zhefeng

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer A{beta} oligomers are neurotoxins and likely the causing agents for Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}42 fusion protein form globular oligomers. Black-Right-Pointing-Pointer A{beta}42 fusion protein oligomers contain SDS-resistant tetramers and hexamers. Black-Right-Pointing-Pointer Cysteine substitutions at residues 31, 32, 34, 39-41 disrupt A{beta}42 oligomerization. -- Abstract: Deposition of amyloid fibrils consisting of amyloid {beta} (A{beta}) protein as senile plaques in the brain is a pathological hallmark of Alzheimer's disease. However, a growing body of evidence shows that soluble A{beta} oligomers correlate better with dementia than fibrils, suggesting that A{beta} oligomers may be the primary toxic species. The structure and oligomerization mechanism of these A{beta} oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of A{beta}42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of A{beta} sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for A{beta}42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that A{beta}42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS-PAGE shows that A{beta}42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, A{beta}40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of A{beta}42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these

  15. Identification of low molecular weight pyroglutamate A{beta} oligomers in Alzheimer disease: a novel tool for therapy and diagnosis.

    PubMed

    Wirths, Oliver; Erck, Christian; Martens, Henrik; Harmeier, Anja; Geumann, Constanze; Jawhar, Sadim; Kumar, Sathish; Multhaup, Gerd; Walter, Jochen; Ingelsson, Martin; Degerman-Gunnarsson, Malin; Kalimo, Hannu; Huitinga, Inge; Lannfelt, Lars; Bayer, Thomas A

    2010-12-31

    N-terminally truncated Aβ peptides starting with pyroglutamate (AβpE3) represent a major fraction of all Aβ peptides in the brain of Alzheimer disease (AD) patients. AβpE3 has a higher aggregation propensity and stability and shows increased toxicity compared with full-length Aβ. In the present work, we generated a novel monoclonal antibody (9D5) that selectively recognizes oligomeric assemblies of AβpE3 and studied the potential involvement of oligomeric AβpE3 in vivo using transgenic mouse models as well as human brains from sporadic and familial AD cases. 9D5 showed an unusual staining pattern with almost nondetectable plaques in sporadic AD patients and non-demented controls. Interestingly, in sporadic and familial AD cases prominent intraneuronal and blood vessel staining was observed. Using a novel sandwich ELISA significantly decreased levels of oligomers in plasma samples from patients with AD compared with healthy controls were identified. Moreover, passive immunization of 5XFAD mice with 9D5 significantly reduced overall Aβ plaque load and AβpE3 levels, and normalized behavioral deficits. These data indicate that 9D5 is a therapeutically and diagnostically effective monoclonal antibody targeting low molecular weight AβpE3 oligomers.

  16. Sedimentation studies on human amylin fail to detect low-molecular-weight oligomers.

    PubMed

    Vaiana, Sara M; Ghirlando, Rodolfo; Yau, Wai-Ming; Eaton, William A; Hofrichter, James

    2008-04-01

    Sedimentation velocity experiments show that only monomers coexist with amyloid fibrils of human islet amyloid-polypeptide. No oligomers containing <100 monomers could be detected, suggesting that the putative toxic oligomers are much larger than those found for the Alzheimer's peptide, Abeta(1-42).

  17. Alternative Abeta immunotherapy approaches for Alzheimer's disease.

    PubMed

    Town, Terrence

    2009-04-01

    In a seminal report in 1999, Schenk and colleagues demonstrated that vaccination of a mouse model of Alzheimer's disease (AD) with amyloid-beta(1-42) peptide (Abeta(1-42)) and adjuvant resulted in striking mitigation of AD-like pathology - giving rise to the field of AD immunotherapy. Later studies confirmed this result in other mouse models of AD and additionally showed cognitive improvement after Abeta vaccination. Based on these results, early developmental clinical trials ensued to immunize AD patients with Abeta(1-42) plus adjuvant (so-called "active" Abeta immunotherapy; trade name AN-1792; Elan Pharmaceuticals, Dublin, Ireland). However, the phase IIa trial was halted after 6 % of patients developed aseptic meningoencephalitis. Despite occurrence of this adverse event, many individuals demonstrated high serum antibody titres to Abeta and histological evidence of clearance of the hallmark AD pathology, beta-amyloid plaques. While raising justifiable safety concerns, these important results nonetheless demonstrated the feasibility of the active Abeta immunotherapy approach. This review focuses on alternative approaches to active Abeta vaccination that are currently in various stages of development - from pre-clinical studies in animal models to current clinical trials. Specifically, the focus is on those strategies that target inflammatory and immune aspects of AD, and can therefore be classified as immunotherapeutic in a broad sense.

  18. Human plasma contains cross-reactive Abeta conformer-specific IgG antibodies.

    PubMed

    O'Nuallain, Brian; Acero, Luis; Williams, Angela D; Koeppen, Helen P McWilliams; Weber, Alfred; Schwarz, Hans P; Wall, Jonathan S; Weiss, Deborah T; Solomon, Alan

    2008-11-25

    Two conformers of aggregated Abeta, i.e., fibrils and oligomers, have been deemed important in the pathogenesis of Alzheimer's disease. We now report that intravenous immune globulin (IVIG) derived from pools of human plasma contains IgGs that recognize conformational epitopes present on fibrils and oligomers, but not their soluble monomeric precursor. We have used affinity chromatography to isolate these antibodies and have shown that they cross-reacted with comparable nanomolar avidity with both types of Abeta aggregates; notably, binding was not inhibited by soluble Abeta monomers. Our studies provide further support for investigating the therapeutic use of IVIG in Alzheimer's disease.

  19. Characterisation of two antibodies to oligomeric Abeta and their use in ELISAs on human brain tissue homogenates.

    PubMed

    van Helmond, Zoë; Heesom, Kate; Love, Seth

    2009-01-30

    Oligomeric forms of Abeta are believed to be the major toxic species of this peptide in Alzheimer's disease (AD). Although the characterisation of oligomer-specific antibodies has been reported, these have not been successfully incorporated into an enzyme-linked immunosorbent assay (ELISA), and measurement of the levels of oligomeric Abeta in brain tissue has remained problematic. We have examined the specificity of two monoclonal antibodies, 7 A1a and 1G5, for synthetic oligomers of Abeta(1-42) and for oligomeric Abeta(1-42) in human brain homogenates, and the utility of these two antibodies for measuring oligomeric Abeta(1-42) by sandwich ELISA. Both antibodies were found to recognise a range of synthetic oligomers of Abeta(1-42) but to cross-react in Western blots with a 34 kDa protein, shown by two-dimensional gel electrophoresis and mass spectrometry to be tropomyosin. However, by using 7A1a and 1 G5 in combination with an Abeta(1-42) capture antibody, we were able specifically to detect and to measure the levels of oligomeric Abeta(1-42) in brain homogenates by ELISA. The development of a simple ELISA for measurement of oligomeric Abeta should facilitate further studies of the role of oligomeric species of Abeta in AD.

  20. Annular structures as intermediates in fibril formation of Alzheimer Abeta17-42.

    PubMed

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Nussinov, Ruth

    2008-06-05

    We report all-atom molecular dynamics simulations of annular beta-amyloid (17-42) structures, single- and double-layered, in solution. We assess the structural stability and association force of Abeta annular oligomers associated through different interfaces, with a mutated sequence (M35A), and with the oxidation state (M35O). Simulation results show that single-layered annular models display inherent structural instability: one is broken down into linear-like oligomers, and the other collapses. On the other hand, a double-layered annular structure where the two layers interact through their C-termini to form an NC-CN interface (where N and C are the N and C termini, respectively) exhibits high structural stability over the simulation time due to strong hydrophobic interactions and geometrical constraints induced by the closed circular shape. The observed dimensions and molecular weight of the oligomers from atomic force microscopy (AFM) experiments are found to correspond well to our stable double-layered model with the NC-CN interface. Comparison with K3 annular structures derived from the beta 2-microglobulin suggests that the driving force for amyloid formation is sequence specific, strongly dependent on side-chain packing arrangements, structural morphologies, sequence composition, and residue positions. Combined with our previous simulations of linear-like Abeta, K3 peptide, and sup35-derived GNNQQNY peptide, the annular structures provide useful insight into oligomeric structures and driving forces that are critical in amyloid fibril formation.

  1. Alzheimer’s-associated Aβ oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal

    PubMed Central

    Pitt, Jason; Roth, William; Lacor, Pascale; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul; Klein, William L.

    2009-01-01

    It now appears likely that soluble oligomers of amyloid-β1-42 peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer’s disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt Aβ oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble Aβ species, when assayed with both sequence- and conformation-specific Aβ antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (Aβ-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics. PMID:19631677

  2. Immunodominant epitope and properties of pyroglutamate-modified Abeta-specific antibodies produced in rabbits.

    PubMed

    Acero, G; Manoutcharian, K; Vasilevko, V; Munguia, M E; Govezensky, T; Coronas, G; Luz-Madrigal, A; Cribbs, D H; Gevorkian, G

    2009-08-18

    N-truncated and N-modified forms of amyloid beta (Abeta) peptide are found in diffused and dense core plaques in Alzheimer's disease (AD) and Down's syndrome patients as well as transgenic mouse models of AD. Although the pathological significance of these shortened forms Abeta is not completely understood, previous studies have demonstrated that these peptides are significantly more resistant to degradation, aggregate more rapidly in vitro and exhibit similar or, in some cases, increased toxicity in hippocampal neuronal cultures compared to the full length peptides. In the present study we further investigated the mechanisms of toxicity of one of the most abundant N-truncated/modified Abeta peptide bearing amino-terminal pyroglutamate at position 3 (AbetaN3(pE)). We demonstrated that AbetaN3(pE) oligomers induce phosphatidyl serine externalization and membrane damage in SH-SY5Y cells. Also, we produced AbetaN3(pE)-specific polyclonal antibodies in rabbit and identified an immunodominant epitope recognized by anti-AbetaN3(pE) antibodies. Our results are important for developing new immunotherapeutic compounds specifically targeting AbetaN3(pE) aggregates since the most commonly used immunogens in the majority of vaccines for AD have been shown to induce antibodies that recognize the N-terminal immunodominant epitope (EFRH) of the full length Abeta, which is absent in N-amino truncated peptides.

  3. Association thermodynamics and conformational stability of beta-sheet amyloid beta(17-42) oligomers: effects of E22Q (Dutch) mutation and charge neutralization.

    PubMed

    Blinov, Nikolay; Dorosh, Lyudmyla; Wishart, David; Kovalenko, Andriy

    2010-01-20

    Amyloid fibrils are associated with many neurodegenerative diseases. It was found that amyloidogenic oligomers, not mature fibrils, are neurotoxic agents related to these diseases. Molecular mechanisms of infectivity, pathways of aggregation, and molecular structure of these oligomers remain elusive. Here, we use all-atom molecular dynamics, molecular mechanics combined with solvation analysis by statistical-mechanical, three-dimensional molecular theory of solvation (also known as 3D-RISM-KH) in a new MM-3D-RISM-KH method to study conformational stability, and association thermodynamics of small wild-type Abeta(17-42) oligomers with different protonation states of Glu(22), as well the E22Q (Dutch) mutants. The association free energy of small beta-sheet oligomers shows near-linear trend with the dimers being thermodynamically more stable relative to the larger constructs. The linear (within statistical uncertainty) dependence of the association free energy on complex size is a consequence of the unilateral stacking of monomers in the beta-sheet oligomers. The charge reduction of the wild-type Abeta(17-42) oligomers upon protonation of the solvent-exposed Glu(22) at acidic conditions results in lowering the association free energy compared to the wild-type oligomers at neutral pH and the E22Q mutants. The neutralization of the peptides because of the E22Q mutation only marginally affects the association free energy, with the reduction of the direct electrostatic interactions mostly compensated by the unfavorable electrostatic solvation effects. For the wild-type oligomers at acidic conditions such compensation is not complete, and the electrostatic interactions, along with the gas-phase nonpolar energetic and the overall entropic effects, contribute to the lowering of the association free energy. The differences in the association thermodynamics between the wild-type Abeta(17-42) oligomers at neutral pH and the Dutch mutants, on the one hand, and the Abeta(17

  4. Prion protein and Abeta-related synaptic toxicity impairment.

    PubMed

    Calella, Anna Maria; Farinelli, Mélissa; Nuvolone, Mario; Mirante, Osvaldo; Moos, Rita; Falsig, Jeppe; Mansuy, Isabelle M; Aguzzi, Adriano

    2010-08-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder, goes along with extracellular amyloid-beta (Abeta) deposits. The cognitive decline observed during AD progression correlates with damaged spines, dendrites and synapses in hippocampus and cortex. Numerous studies have shown that Abeta oligomers, both synthetic and derived from cultures and AD brains, potently impair synaptic structure and functions. The cellular prion protein (PrP(C)) was proposed to mediate this effect. We report that ablation or overexpression of PrP(C) had no effect on the impairment of hippocampal synaptic plasticity in a transgenic model of AD. These findings challenge the role of PrP(C) as a mediator of Abeta toxicity.

  5. Dopamine-induced α-synuclein oligomers show self- and cross-propagation properties.

    PubMed

    Planchard, Matthew S; Exley, Sarah E; Morgan, Sarah E; Rangachari, Vijayaraghavan

    2014-10-01

    Amyloid aggregates of α-synuclein (αS) protein are the predominant species present within the intracellular inclusions called Lewy bodies in Parkinson's disease (PD) patients. Among various aggregates, the low-molecular weight ones broadly ranging between 2 and 30 mers are known to be the primary neurotoxic agents responsible for the impairment of neuronal function. Recent research has indicated that the neurotransmitter dopamine (DA) is one of the key physiological agents promoting and augmenting αS aggregation, which is thought to be a significant event in PD pathologenesis. Specifically, DA is known to induce the formation of soluble oligomers of αS, which in turn are responsible for inducing several important cellular changes leading to cellular toxicity. In this report, we present the generation, isolation, and biophysical characterization of five different dopamine-derived αS oligomers (DSOs) ranging between 3 and 15 mers, corroborating previously published reports. More importantly, we establish that these DSOs are also capable of replication by self-propagation, which leads to the replication of DSOs upon interaction with αS monomers, a process similar to that observed in mammilian prions. In addition, DSOs are also able to cross-propagate amyloid-β (Aβ) aggregates involved in Alzheimer's disease (AD). Interestingly, while self-propagation of DSOs occur with no net gain in protein structure, cross-propagation proceeds with an overall gain in β-sheet conformation. These results implicate the involvement of DSOs in the progression of PD, and, in part, provide a molecular basis for the observed co-existence of AD-like pathology among PD patients.

  6. Dopamine-induced α-synuclein oligomers show self- and cross-propagation properties

    PubMed Central

    Planchard, Matthew S; Exley, Sarah E; Morgan, Sarah E; Rangachari, Vijayaraghavan

    2014-01-01

    Amyloid aggregates of α-synuclein (αS) protein are the predominant species present within the intracellular inclusions called Lewy bodies in Parkinson’s disease (PD) patients. Among various aggregates, the low-molecular weight ones broadly ranging between 2 and 30 mers are known to be the primary neurotoxic agents responsible for the impairment of neuronal function. Recent research has indicated that the neurotransmitter dopamine (DA) is one of the key physiological agents promoting and augmenting αS aggregation, which is thought to be a significant event in PD pathologenesis. Specifically, DA is known to induce the formation of soluble oligomers of αS, which in turn are responsible for inducing several important cellular changes leading to cellular toxicity. In this report, we present the generation, isolation, and biophysical characterization of five different dopamine-derived αS oligomers (DSOs) ranging between 3 and 15 mers, corroborating previously published reports. More importantly, we establish that these DSOs are also capable of replication by self-propagation, which leads to the replication of DSOs upon interaction with αS monomers, a process similar to that observed in mammilian prions. In addition, DSOs are also able to cross-propagate amyloid-β (Aβ) aggregates involved in Alzheimer’s disease (AD). Interestingly, while self-propagation of DSOs occur with no net gain in protein structure, cross-propagation proceeds with an overall gain in β-sheet conformation. These results implicate the involvement of DSOs in the progression of PD, and, in part, provide a molecular basis for the observed co-existence of AD-like pathology among PD patients. PMID:25044276

  7. Oligomerization and toxicity of A{beta} fusion proteins

    SciTech Connect

    Caine, Joanne M.; Bharadwaj, Prashant R.; Sankovich, Sonia E.; Ciccotosto, Giuseppe D.; Streltsov, Victor A.; Varghese, Jose

    2011-06-10

    Highlights: {yields} We expressed amyloid-{beta} (A{beta}) peptide as a soluble maltose binding protein fusion (MBP-A{beta}42 and MBP-A{beta}16). {yields} The full length A{beta} peptide fusion, MBP-A{beta}42, forms oligomeric species as determined by SDS-PAGE gels, gel filtration and DLS. {yields} The MBP-A{beta}42, but not MBP-A{beta}16 or MBP alone, is toxic to both yeast and mammalian cells as determined by toxicity assays. -- Abstract: This study has found that the Maltose binding protein A{beta}42 fusion protein (MBP-A{beta}42) forms soluble oligomers while the shorter MBP-A{beta}16 fusion and control MBP did not. MBP-A{beta}42, but neither MBP-A{beta}16 nor control MBP, was toxic in a dose-dependent manner in both yeast and primary cortical neuronal cells. This study demonstrates the potential utility of MBP-A{beta}42 as a reagent for drug screening assays in yeast and neuronal cell cultures and as a candidate for further A{beta}42 characterization.

  8. Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer's disease cases.

    PubMed

    Wirths, Oliver; Bethge, Tobias; Marcello, Andrea; Harmeier, Anja; Jawhar, Sadim; Lucassen, Paul J; Multhaup, Gerd; Brody, David L; Esparza, Thomas; Ingelsson, Martin; Kalimo, Hannu; Lannfelt, Lars; Bayer, Thomas A

    2010-01-01

    The presence of Abeta(pE3) (N-terminal truncated Abeta starting with pyroglutamate) in Alzheimer's disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Abeta peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down's syndrome postmortem brain tissue. Importantly, Abeta(pE3) has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Abeta. We have recently shown that intraneuronal accumulation of Abeta(pE3) peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in Abeta(pE3), we have generated two novel monoclonal antibodies which were characterized as highly specific for Abeta(pE3) peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for Abeta(pE3) were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in Abeta(pE3) plaque load with increasing age, while the density for Abeta(1-x ) plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Abeta are N-truncated as disease progresses, and that, Abeta(pE3) positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate.

  9. LRP-mediated clearance of Abeta is inhibited by KPI-containing isoforms of APP.

    PubMed

    Moir, Robert D; Tanzi, Rudolph E

    2005-04-01

    The pathogenesis of Alzheimer's disease (AD) involves the abnormal accumulation and deposition of beta-amyloid in cerebral blood vessels and in the brain parenchyma. Critical in modulating beta-amyloid deposition in brain is the flux of Abeta across the blood brain barrier. The low-density lipoprotein receptor-related protein (LRP), is a large endocytic receptor that mediates the efflux of Abeta out of brain and into the periphery. The first step in the LRP-mediated clearance of Abeta involves the formation of a complex between Abeta and the LRP ligands apolipoprotein E (apoE) or alpha(2)-macroglobulin (alpha(2)M). The Abeta/chaperone complexes then bind to LRP via binding sites on apoE or alpha(2)M. The efflux of Abeta/chaperone complexes out of the neuropil and into the periphery may be attenuated by LRP-ligands that compete with apoE or alpha(2)M for LRP binding. LRP is also the cell surface receptor for Kunitz Protease Inhibitor (KPI) containing isoforms of Abeta's parent protein, the amyloid protein precursor (APP). Protein and mRNA levels of KPI-containing APP isoforms (APP-KPI) are elevated in AD brain and are associated with increased Abeta production. In this study we show that soluble non-amyloidogenic APP-KPI can also inhibit the uptake of Abeta/alpha(2)M in a cell culture model of LRP mediated Abeta clearance. Clearance of Abeta/apoE complexes was not inhibited by APP-KPI. Our findings are consistent with studies showing that apoE and alpha(2)M have discrete binding sites on LRP. Most significantly, our data suggests that the elevated levels of APP-KPI in AD brain may attenuate the clearance of Abeta, the proteins own amyloidogenic catabolic product.

  10. AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis.

    PubMed

    Xu, Feng; Previti, Mary Lou; Nieman, Marvin T; Davis, Judianne; Schmaier, Alvin H; Van Nostrand, William E

    2009-04-29

    The amyloid beta-protein precursor (AbetaPP) is best recognized as the precursor to the Abeta peptide that accumulates in the brains of patients with Alzheimer's disease, but less is known about its physiological functions. Isoforms of AbetaPP that contain a Kunitz-type serine proteinase inhibitor (KPI) domain are expressed in brain and, outside the CNS, in circulating blood platelets. Recently, we showed that KPI-containing forms of AbetaPP regulates cerebral thrombosis in vivo (Xu et al., 2005, 2007). Amyloid precursor like protein-2 (APLP2), a closely related homolog to AbetaPP, also possesses a highly conserved KPI domain. Virtually nothing is known of its function. Here, we show that APLP2 also regulates cerebral thrombosis risk. Recombinant purified KPI domains of AbetaPP and APLP2 both inhibit the plasma clotting in vitro. In a carotid artery thrombosis model, both AbetaPP(-/-) and APLP2(-/-) mice exhibit similar significantly shorter times to vessel occlusion compared with wild-type mice indicating a prothrombotic phenotype. Similarly, in an experimental model of intracerebral hemorrhage, both AbetaPP(-/-) and APLP2(-/-) mice produce significantly smaller hematomas with reduced brain hemoglobin content compared with wild-type mice. Together, these results indicate that AbetaPP and APLP2 share overlapping anticoagulant functions with regard to regulating thrombosis after cerebral vascular injury.

  11. Comparative studies on peptides representing the so-called tachykinin-like region of the Alzheimer Abeta peptide [Abeta(25-35)].

    PubMed Central

    El-Agnaf, O M; Irvine, G B; Fitzpatrick, G; Glass, W K; Guthrie, D J

    1998-01-01

    In an attempt to answer the question of whether or not the so-called tachykinin-like region of the Alzheimer beta-amyloid protein [Abeta(25-35)] can act as a tachykinin, the sequences Abeta(25-35), Abeta(25-35)amide and their norleucine-35 and phenylalanine-31 analogues were synthesized. These peptides were examined with ligand binding studies, electron microscopy, CD and NMR. In all cases some differences were found between the Abeta(25-35) analogue and the corresponding Phe31 peptide. In addition, in ligand displacement studies on tachykinin NK1 receptors, only the Phe31 analogue showed activity comparable to that of genuine tachykinins. We conclude that peptides based on Abeta(25-35) but with a Phe residue at position 31 do display properties typical of a tachykinin, but that peptides with Ile at this position do not. PMID:9820820

  12. Physicochemical characteristics of soluble oligomeric Abeta and their pathologic role in Alzheimer's disease.

    PubMed

    Watson, Desiree; Castaño, Eduardo; Kokjohn, Tyler A; Kuo, Yu-Min; Lyubchenko, Yuri; Pinsky, David; Connolly, E Sander; Esh, Chera; Luehrs, Dean C; Stine, W Blaine; Rowse, Linda M; Emmerling, Mark R; Roher, Alex E

    2005-12-01

    Extracellular fibrillar amyloid deposits are prominent and universal Alzheimer's disease (AD) features, but senile plaque abundance does not always correlate directly with the degree of dementia exhibited by AD patients. The mechanism(s) and dynamics of Abeta fibril genesis and deposition remain obscure. Enhanced Abeta synthesis rates coupled with decreased degradative enzyme production and accumulating physical modifications that dampen proteolysis may all enhance amyloid deposit formation. Amyloid accumulation may indirectly exert the greatest pathologic effect on the brain vasculature by destroying smooth muscle cells and creating a cascade of negative impacts on cerebral blood flow. The most visible manifestation of amyloid dis-equilibrium could actually be a defense mechanism employed to avoid serious vascular wall degradation while the major toxic effects to the gray and white matter neurons are mediated by soluble oligomeric Abeta peptides with high beta-sheet content. The recognition that dynamic soluble oligomeric Abeta pools exist in AD and are correlated to disease severity led to neurotoxicity and physical conformation studies. It is now recognized that the most basic soluble Abeta peptides are stable dimers with hydrophobic regions sequestered from the aqueous environment and are capable of higher order aggregations. Time course experiments employing a modified ELISA method able to detect Abeta oligomers revealed dynamic intermolecular interactions and additional experiments physically confirmed the presence of stable amyloid multimers. Amyloid peptides that are rich in beta-sheet structure are capable of creating toxic membrane ion channels and a capacity to self-assemble as annular structures was confirmed in vitro using atomic force microscopy. Biochemical studies have established that soluble Abeta peptides perturb metabolic processes, provoke release of deleterious reactive compounds, reduce blood flow, induce mitochondrial apoptotic toxicity and

  13. Size-dependent neurotoxicity of beta-amyloid oligomers.

    PubMed

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  14. Plasma antibodies to Abeta40 and Abeta42 in patients with Alzheimer's disease and normal controls.

    PubMed

    Xu, Wuhua; Kawarabayashi, Takeshi; Matsubara, Etsuro; Deguchi, Kentaro; Murakami, Tetsuro; Harigaya, Yasuo; Ikeda, Masaki; Amari, Masakuni; Kuwano, Ryozo; Abe, Koji; Shoji, Mikio

    2008-07-11

    Antibodies to amyloid beta protein (Abeta) are present naturally or after Abeta vaccine therapy in human plasma. To clarify their clinical role, we examined plasma samples from 113 patients with Alzheimer's disease (AD) and 205 normal controls using the tissue amyloid plaque immunoreactivity (TAPIR) assay. A high positive rate of TAPIR was revealed in AD (45.1%) and age-matched controls (41.2%), however, no significance was observed. No significant difference was observed in the MMS score or disease duration between TAPIR-positive and negative samples. TAPIR-positive plasma reacted with the Abeta40 monomer and dimer, and the Abeta42 monomer weakly, but not with the Abeta42 dimer. TAPIR was even detected in samples from young normal subjects and young Tg2576 transgenic mice. Although the Abeta40 level and Abeta40/42 ratio increased, and Abeta42 was significantly decreased in plasma from AD groups when compared to controls, no significant correlations were revealed between plasma Abeta levels and TAPIR grading. Thus an immune response to Abeta40 and immune tolerance to Abeta42 occurred naturally in humans without a close relationship to the Abeta burden in the brain. Clarification of the mechanism of the immune response to Abeta42 is necessary for realization of an immunotherapy for AD.

  15. Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation.

    PubMed

    Eisele, Yvonne S; Bolmont, Tristan; Heikenwalder, Mathias; Langer, Franziska; Jacobson, Laura H; Yan, Zheng-Xin; Roth, Klaus; Aguzzi, Adriano; Staufenbiel, Matthias; Walker, Lary C; Jucker, Mathias

    2009-08-04

    Despite the importance of the aberrant polymerization of Abeta in the early pathogenic cascade of Alzheimer's disease, little is known about the induction of Abeta aggregation in vivo. Here we show that induction of cerebral beta-amyloidosis can be achieved in many different brain areas of APP23 transgenic mice through the injection of dilute Abeta-containing brain extracts. Once the amyloidogenic process has been exogenously induced, the nature of the induced Abeta-deposition is determined by the brain region of the host. Because these observations are reminiscent of a prion-like mechanism, we then investigated whether cerebral beta-amyloidosis also can be induced by peripheral and systemic inoculations or by the intracerebral implantation of stainless steel wires previously coated with minute amounts of Abeta-containing brain extract. Results reveal that oral, intravenous, intraocular, and intranasal inoculations yielded no detectable induction of cerebral beta-amyloidosis in APP23 transgenic mice. In contrast, transmission of cerebral beta-amyloidosis through the Abeta-contaminated steel wires was demonstrated. Notably, plasma sterilization, but not boiling of the wires before implantation, prevented the induction of beta-amyloidosis. Our results suggest that minute amounts of Abeta-containing brain material in direct contact with the CNS can induce cerebral beta-amyloidosis, but that systemic cellular mechanisms of prion uptake and transport to the CNS may not apply to Abeta.

  16. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation.

    PubMed

    Benseny-Cases, Núria; Cócera, Mercedes; Cladera, Josep

    2007-10-05

    Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.

  17. Conversion of non-fibrillar {beta}-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation

    SciTech Connect

    Benseny-Cases, Nuria; Cocera, Mercedes; Cladera, Josep

    2007-10-05

    A{beta}(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular {beta}-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the A{beta}(1-40) fibril formation process. A unique sample containing 90 {mu}M peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar {beta}-structures. The number of oligomers and the amount of non-fibrillar {beta}-structures grows throughout the lag phase and during the elongation phase these non-fibrillar {beta}-structures are transformed into fibrillar (amyloid) {beta}-structures, formed by association of high molecular weight intermediates.

  18. Abeta ion channels. Prospects for treating Alzheimer's disease with Abeta channel blockers.

    PubMed

    Arispe, Nelson; Diaz, Juan C; Simakova, Olga

    2007-08-01

    The main pathological features in the Alzheimer's brain are progressive depositions of amyloid protein plaques among nerve cells, and neurofibrillary tangles within the nerve cells. The major components of plaques are Abeta peptides. Numerous reports have provided evidence that Abeta peptides are cytotoxic and may play a role in the pathogenesis of AD. An increasing number of research reports support the concept that the Abeta-membrane interaction event may be followed by the insertion of Abeta into the membrane in a structural configuration which forms an ion channel. This review summarizes experimental procedures which have been designed to test the hypothesis that the interaction of Abeta with a variety of membranes, both artificial and natural, results in the subsequent formation of Abeta ion channels We describe experiments, by ourselves and others, that support the view that Abeta is cytotoxic largely due to the action of Abeta channels in the cell membrane. The interaction of Abeta with the surface of the cell membrane may results in the activation of a chain of processes that, when large enough, become cytotoxic and induce cell death by apoptosis. Remarkably, the blockage of Abeta ion channels at the surface of the cell absolutely prevents the activation of these processes at different intracellular levels, thereby preserving the life of the cells. As a prospect for therapy for Alzheimer's disease, our findings at cellular level may be testable on AD animal models to elucidate the potential role and the magnitude of the contribution of the Abeta channels for induction of the disease.

  19. Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers.

    PubMed

    Wu, Yanjue; Cao, Zhiming; Klein, William L; Luo, Yuan

    2010-06-01

    Heat shock response, mediated by heat shock proteins, is a highly conserved physiological process in multicellular organisms for reestablishment of cellular homeostasis. Expression of heat shock factors and subsequent heat shock protein plays a role in protection against proteotoxicity in invertebrate and vertebrate models. Proteotoxicity due to beta-amyloid peptide (Abeta) oligomerization has been linked to the pathogenesis of Alzheimer's disease. Previously, we demonstrated that progressive paralysis induced by expression of human Abeta(1-42) in transgenic Caenorhabditis elegans was alleviated by Abeta oligomer inhibitors Ginkgo biloba extract and its constituents [Wu, Y., Wu, Z., Butko, P., Christen, Y., Lambert, M.P., Klein, W.L., Link, C.D., Luo, Y., 2006. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J. Neurosci. 26(50): 13102-13113]. In this study, we apply a protective heat shock to the transgenic C. elegans and demonstrate: (1) a delay in paralysis, (2) increased expression of small heat shock protein HSP16.2, and (3) significant reduction of Abeta oligomers in a heat shock time-dependent manner. These results suggest that transient heat shock lessens Abeta toxicity by diminishing Abeta oligomerization, which provides a link between up regulation of endogenous chaperone proteins and protection against Abeta proteotoxicity in vivo.

  20. A[Beta] Deposits in Older Non-Demented Individuals with Cognitive Decline Are Indicative of Preclinical Alzheimer's Disease

    ERIC Educational Resources Information Center

    Villemagne, V. L.; Pike, K. E.; Darby, D.; Maruff, P.; Savage, G.; Ng, S.; Ackermann, U.; Cowie, T. F.; Currie, J.; Chan, S. G.; Jones, G.; Tochon-Danguy, H.; O'Keefe, G.; Masters, C. L.; Rowe, C. C.

    2008-01-01

    Approximately 30% of healthy persons aged over 75 years show A[beta] deposition at autopsy. It is postulated that this represents preclinical Alzheimer's disease (AD). We evaluated the relationship between A[beta] burden as assessed by PiB PET and cognitive decline in a well-characterized, non-demented, elderly cohort. PiB PET studies and…

  1. Abeta-afferents activate neurokinin-1 receptor in dorsal horn neurons after nerve injury.

    PubMed

    Zheng, Ji-Hong; Song, Xue-Jun

    2005-05-12

    We provide new evidence demonstrating that peripheral nerve injury produces profound alterations in synaptic input to dorsal horn neurons mediated by non-nociceptive sensory neurons, and activation of neurokinin-1 receptor may be involved in the enhanced synaptic response and thus contribute to the tactile allodynia. Our results show that Abeta-fiber-evoked field potential significantly increased in the first postoperative week and decreased thereafter while maximal mechanical allodynia was exhibited. The neurokinin-1 receptor antagonist L703,606 significantly reduced Abeta-fiber-evoked field potential in nerve-injured but not in sham-operated animals. The non-N-methyl-D-aspartate receptor antagonist CNQX inhibited Abeta-fiber-evoked field potential in both nerve-injured and sham-operated rats, while the N-methyl-D-aspartate receptor antagonist MK-801 did not affect Abeta-fiber-evoked field potential in either CCI or sham-operated animals.

  2. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Jun; Ho, Lap; Zhao, Wei; Ono, Kenjiro; Rosensweig, Clark; Chen, Linghong; Humala, Nelson; Teplow, David B; Pasinetti, Giulio M

    2008-06-18

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive impairments in memory and cognition. Extracellular accumulation of soluble high-molecular-weight (HMW) Abeta oligomers has been proposed to be largely responsible for AD dementia and memory deficits in the Tg2576 mice, a model of AD. In this study, we found that a naturally derived grape seed polyphenolic extract can significantly inhibit amyloid beta-protein aggregation into high-molecular-weight oligomers in vitro. When orally administered to Tg2576 mice, this polyphenolic preparation significantly attenuates AD-type cognitive deterioration coincidentally with reduced HMW soluble oligomeric Abeta in the brain. Our study suggests that grape seed-derived polyphenolics may be useful agents to prevent or treat AD.

  3. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    SciTech Connect

    Goeransson, Anna-Lena; Nilsson, K. Peter R.; Kagedal, Katarina; Brorsson, Ann-Christin

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity, using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.

  4. Intraneuronal pyroglutamate-Abeta 3-42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model.

    PubMed

    Wirths, Oliver; Breyhan, Henning; Cynis, Holger; Schilling, Stephan; Demuth, Hans-Ulrich; Bayer, Thomas A

    2009-10-01

    It is well established that only a fraction of Abeta peptides in the brain of Alzheimer's disease (AD) patients start with N-terminal aspartate (Abeta(1D)) which is generated by proteolytic processing of amyloid precursor protein (APP) by BACE. N-terminally truncated and pyroglutamate modified Abeta starting at position 3 and ending with amino acid 42 [Abeta(3(pE)-42)] have been previously shown to represent a major species in the brain of AD patients. When compared with Abeta(1-42), this peptide has stronger aggregation propensity and increased toxicity in vitro. Although it is unknown which peptidases remove the first two N-terminal amino acids, the cyclization of Abeta at N-terminal glutamate can be catalyzed in vitro. Here, we show that Abeta(3(pE)-42) induces neurodegeneration and concomitant neurological deficits in a novel mouse model (TBA2 transgenic mice). Although TBA2 transgenic mice exhibit a strong neuronal expression of Abeta(3-42) predominantly in hippocampus and cerebellum, few plaques were found in the cortex, cerebellum, brain stem and thalamus. The levels of converted Abeta(3(pE)-42) in TBA2 mice were comparable to the APP/PS1KI mouse model with robust neuron loss and associated behavioral deficits. Eight weeks after birth TBA2 mice developed massive neurological impairments together with abundant loss of Purkinje cells. Although the TBA2 model lacks important AD-typical neuropathological features like tangles and hippocampal degeneration, it clearly demonstrates that intraneuronal Abeta(3(pE)-42) is neurotoxic in vivo.

  5. Disruption of Amyloid Plaques Integrity Affects the Soluble Oligomers Content from Alzheimer Disease Brains

    PubMed Central

    Moyano, Javier; Sanchez-Mico, María; Torres, Manuel; Davila, Jose Carlos; Vizuete, Marisa; Gutierrez, Antonia; Vitorica, Javier

    2014-01-01

    The implication of soluble Abeta in the Alzheimer’s disease (AD) pathology is currently accepted. In fact, the content of soluble extracellular Abeta species, such as monomeric and/or oligomeric Abeta, seems to correlate with the clinico-pathological dysfunction observed in AD patients. However, the nature (monomeric, dimeric or other oligomers), the relative abundance, and the origin (extra-/intraneuronal or plaque-associated), of these soluble species are actually under debate. In this work we have characterized the soluble (defined as soluble in Tris-buffered saline after ultracentrifugation) Abeta, obtained from hippocampal samples of Braak II, Braak III–IV and Braak V–VI patients. Although the content of both Abeta40 and Abeta42 peptides displayed significant increase with pathology progression, our results demonstrated the presence of low, pg/µg protein, amount of both peptides. This low content could explain the absence (or below detection limits) of soluble Abeta peptides detected by western blots or by immunoprecipitation-western blot analysis. These data were in clear contrast to those published recently by different groups. Aiming to explain the reasons that determine these substantial differences, we also investigated whether the initial homogenization could mobilize Abeta from plaques, using 12-month-old PS1xAPP cortical samples. Our data demonstrated that manual homogenization (using Dounce) preserved the integrity of Abeta plaques whereas strong homogenization procedures (such as sonication) produced a vast redistribution of the Abeta species in all soluble and insoluble fractions. This artifact could explain the dissimilar and somehow controversial data between different groups analyzing human AD samples. PMID:25485545

  6. Energy landscapes of the monomer and dimer of the Alzheimer's peptide Abeta(1-28).

    PubMed

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2008-03-28

    The cytotoxicity of Alzheimer's disease has been linked to the self-assembly of the 4042 amino acid of the amyloid-beta (Abeta) peptide into oligomers. To understand the assembly process, it is important to characterize the very first steps of aggregation at an atomic level of detail. Here, we focus on the N-terminal fragment 1-28, known to form fibrils in vitro. Circular dichroism and NMR experiments indicate that the monomer of Abeta(1-28) is alpha-helical in a membranelike environment and random coil in aqueous solution. Using the activation-relaxation technique coupled with the OPEP coarse grained force field, we determine the structures of the monomer and of the dimer of Abeta(1-28). In agreement with experiments, we find that the monomer is predominantly random coil in character, but displays a non-negligible beta-strand probability in the N-terminal region. Dimerization impacts the structure of each chain and leads to an ensemble of intertwined conformations with little beta-strand content in the region Leu17-Ala21. All these structural characteristics are inconsistent with the amyloid fibril structure and indicate that the dimer has to undergo significant rearrangement en route to fibril formation.

  7. Relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities in the context of therapies for Alzheimer's disease.

    PubMed

    Yanagisawa, Daijiro; Shirai, Nobuaki; Amatsubo, Tomone; Taguchi, Hiroyasu; Hirao, Koichi; Urushitani, Makoto; Morikawa, Shigehiro; Inubushi, Toshiro; Kato, Masanari; Kato, Fuminori; Morino, Kyuya; Kimura, Hirohiko; Nakano, Ichiro; Yoshida, Chikako; Okada, Takashi; Sano, Mitsuo; Wada, Yoshiko; Wada, Ken-nosuke; Yamamoto, Akitsugu; Tooyama, Ikuo

    2010-05-01

    Curcumin, which can exist in an equilibrium between keto and enol tautomers, binds to beta-amyloid (Abeta) fibrils/aggregates. The aim of this study was to assess the relationship between the tautomeric structures of curcumin derivatives and their Abeta-binding activities. Curcumin derivatives with keto-enol tautomerism showed high levels of binding to Abeta aggregates but not to Abeta monomers. The binding activity of the keto form analogue of curcumin to Abeta aggregates was found to be much weaker than that of curcumin derivatives with keto-enol tautomerism. The color of a curcumin derivative with keto-enol tautomerism, which was substituted at the C-4 position, changed from yellow to orange within 30 min of being combined with Abeta aggregates in physiological buffer. This resulted from a remarkable increase in the enol form with extended conjugation of double bonds upon binding. These findings suggest that curcumin derivatives exist predominantly in the enol form during binding to Abeta aggregates, and that the enolization of curcumin derivatives is crucial for binding to Abeta aggregates. The keto-enol tautomerism of curcumin derivatives may be a novel target for the design of amyloid-binding agents that can be used both for therapy and for amyloid detection in Alzheimer's disease.

  8. Long-term soluble Abeta1-40 activates CaM kinase II in organotypic hippocampal cultures.

    PubMed

    Tardito, Daniela; Gennarelli, Massimo; Musazzi, Laura; Gesuete, Raffaella; Chiarini, Stefania; Barbiero, Valentina Sara; Rydel, Russell E; Racagni, Giorgio; Popoli, Maurizio

    2007-09-01

    Recent findings suggested a role for soluble amyloid-beta (Abeta) peptides in Alzheimer's disease associated cognitive decline. We investigated the action of soluble, monomeric Abeta(1-40) on CaM kinase II, a kinase involved in neuroplasticity and cognition. We treated organotypic hippocampal cultures short-term (up to 4h) and long-term (5 days) with Abeta(1-40) (1nM-5microM). Abeta did not induce cell damage, apoptosis or synaptic loss. Short-term treatment down-regulated enzymatic activity of the kinase, by reducing its Thr(286) phosphorylation. In contrast, long-term treatment (1nM-microM) markedly and significantly up-regulated enzymatic activity, with peak stimulation at 10nM (three-fold). Up-regulation of activity was associated with increased expression of the alpha-isoform of CaM kinase II, increased phosphorylation at Thr(286) (activator residue) and decreased phosphorylation at Thr(305-306) (inhibitory residues). We investigated the effect of glutamate on CaM kinase II following exposure to 1 or 10nM Abeta(1-40). As previously reported, glutamate increased CaM kinase II activity. However, the glutamate effect was not altered by pretreatment of slices with Abeta. Short- and long-term Abeta treatment showed opposite effects on CaM kinase II, suggesting that long-term changes are an adaptation to the kinase early down-regulation. The marked effect of Abeta(1-40) on the kinase suggests that semi-physiological and slowly raising peptide concentrations may have a significant impact on synaptic plasticity in the absence of synaptic loss or neuronal cell death.

  9. Phosphate and HEPES buffers potently affect the fibrillation and oligomerization mechanism of Alzheimer's A{beta} peptide

    SciTech Connect

    Garvey, Megan; Tepper, Katharina; Haupt, Caroline; Knuepfer, Uwe; Klement, Karolin; Meinhardt, Jessica; Horn, Uwe; Balbach, Jochen; Faendrich, Marcus

    2011-06-10

    Highlights: {yields} Sodium phosphate buffer accelerated A{beta}(1-40) nucleation relative to HEPES. {yields} A{beta}(1-40) fibrils formed in the two buffers show only minor structural differences. {yields} NMR revealed that A{beta}(1-40) histidine residues mediate buffer dependent changes. -- Abstract: The oligomerization of A{beta} peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Due to its biological relevance, phosphate is the most commonly used buffer system for studying the formation of A{beta} and other amyloid fibrils. Investigation into the characteristics and formation of amyloid fibrils frequently relies upon material formed in vitro, predominantly in phosphate buffers. Herein, we examine the effects on the fibrillation and oligomerization mechanism of A{beta} peptide that occur due solely to the influence of phosphate buffer. We reveal that significant differences in amyloid fibrillation are observed due to fibrillation being initiated in phosphate or HEPES buffer (at physiological pH and temperature). Except for the differing buffer ions, all experimental parameters were kept constant. Fibril formation was assessed using fluorescently monitored kinetic studies, microscopy, X-ray fiber diffraction and infrared and nuclear magnetic resonance spectroscopies. Based on this set up, we herein reveal profound effects on the mechanism and speed of A{beta} fibrillation. The three histidine residues at positions 6, 13 and 14 of A{beta}(1-40) are instrumental in these mechanistic changes. We conclude that buffer plays a more significant role in fibril formation than has been generally acknowledged.

  10. Secondary structure conversions of Alzheimer's Abeta(1-40) peptide induced by membrane-mimicking detergents.

    PubMed

    Wahlström, Anna; Hugonin, Loïc; Perálvarez-Marín, Alex; Jarvet, Jüri; Gräslund, Astrid

    2008-10-01

    The amyloid beta peptide (Abeta) with 39-42 residues is the major component of amyloid plaques found in brains of Alzheimer's disease patients, and soluble oligomeric peptide aggregates mediate toxic effects on neurons. The Abeta aggregation involves a conformational change of the peptide structure to beta-sheet. In the present study, we report on the effect of detergents on the structure transitions of Abeta, to mimic the effects that biomembranes may have. In vitro, monomeric Abeta(1-40) in a dilute aqueous solution is weakly structured. By gradually adding small amounts of sodium dodecyl sulfate (SDS) or lithium dodecyl sulfate to a dilute aqueous solution, Abeta(1-40) is converted to beta-sheet, as observed by CD at 3 degrees C and 20 degrees C. The transition is mainly a two-state process, as revealed by approximately isodichroic points in the titrations. Abeta(1-40) loses almost all NMR signals at dodecyl sulfate concentrations giving rise to the optimal beta-sheet content (approximate detergent/peptide ratio = 20). Under these conditions, thioflavin T fluorescence measurements indicate a maximum of aggregated amyloid-like structures. The loss of NMR signals suggests that these are also involved in intermediate chemical exchange. Transverse relaxation optimized spectroscopy NMR spectra indicate that the C-terminal residues are more dynamic than the others. By further addition of SDS or lithium dodecyl sulfate reaching concentrations close to the critical micellar concentration, CD, NMR and FTIR spectra show that the peptide rearranges to form a micelle-bound structure with alpha-helical segments, similar to the secondary structures formed when a high concentration of detergent is added directly to the peptide solution.

  11. Biophysical analyses of synthetic amyloid-beta(1-42) aggregates before and after covalent cross-linking. Implications for deducing the structure of endogenous amyloid-beta oligomers.

    PubMed

    Moore, Brenda D; Rangachari, Vijayaraghavan; Tay, William M; Milkovic, Nicole M; Rosenberry, Terrone L

    2009-12-15

    A neuropathological hallmark of Alzheimer's disease (AD) is the presence of large numbers of senile plaques in the brain. These deposits are rich in fibrils that are composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that soluble Abeta aggregates as well as fibrils are important in the etiology of AD. Low levels of endogenous soluble Abeta aggregates make them difficult to characterize, but several species in extracts of AD brains have been detected by gel electrophoresis in sodium dodecyl sulfate (SDS) and immunoblotting. Individual Abeta oligomers ranging in size from dimers through dodecamers of 4 kDa monomeric Abeta have been resolved in other laboratories as discrete species by size exclusion chromatography (SEC). In an effort to reconstitute soluble Abeta aggregates in vitro that resemble the endogenous soluble Abeta aggregates, we previously found that monomeric Abeta(1-42) rapidly forms soluble oligomers in the presence of dilute SDS micelles. Here we extend this work in two directions. First, we contrast the size and secondary structure of these oligomers with those of synthetic Abeta(1-42) fibrils. SEC and multiangle light scattering were used to obtain a molecular mass of 150 kDa for the isolated oligomers. The oligomers partially dissociated to monomers through nonamers when incubated with SDS, but in contrast to endogenous oligomers, we saw no evidence of these discrete species prior to SDS treatment. One hypothesis to explain this difference is that endogenous oligomers are stabilized by covalent cross-linking induced by unknown cellular agents. To explore this hypothesis, optimal mass spectrometry (MS) analysis procedures need to be developed for Abeta cross-linked in vitro. In our second series of studies, we began this process by treating monomeric and aggregated Abeta(1-42) with three cross-linking agents: transglutaminase, glutaraldehyde, and Cu(II) with peroxide. We compared the efficiency of

  12. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

    PubMed

    Melchor, Jerry P; Pawlak, Robert; Strickland, Sidney

    2003-10-01

    Accumulation of the amyloid-beta (Abeta) peptide depends on both its generation and clearance. To better define clearance pathways, we have evaluated the role of the tissue plasminogen activator (tPA)-plasmin system in Abeta degradation in vivo. In two different mouse models of Alzheimer's disease, chronically elevated Abeta peptide in the brain correlates with the upregulation of plasminogen activator inhibitor-1 (PAI-1) and inhibition of the tPA-plasmin system. In addition, Abeta injected into the hippocampus of mice lacking either tPA or plasminogen persists, inducing PAI-1 expression and causing activation of microglial cells and neuronal damage. Conversely, Abeta injected into wild-type mice is rapidly cleared and does not cause neuronal degeneration. Thus, the tPA-plasmin proteolytic cascade aids in the clearance of Abeta, and reduced activity of this system may contribute to the progression of Alzheimer's disease.

  13. Amyloid beta oligomers induce impairment of neuronal insulin receptors.

    PubMed

    Zhao, Wei-Qin; De Felice, Fernanda G; Fernandez, Sara; Chen, Hui; Lambert, Mary P; Quon, Michael J; Krafft, Grant A; Klein, William L

    2008-01-01

    Recent studies have indicated an association between Alzheimer's disease (AD) and central nervous system (CNS) insulin resistance. However, the cellular mechanisms underlying the link between these two pathologies have not been elucidated. Here we show that signal transduction by neuronal insulin receptors (IR) is strikingly sensitive to disruption by soluble Abeta oligomers (also known as ADDLs). ADDLs are known to accumulate in AD brain and have recently been implicated as primary candidates for initiating deterioration of synapse function, composition, and structure. Using mature cultures of hippocampal neurons, a preferred model for studies of synaptic cell biology, we found that ADDLs caused a rapid and substantial loss of neuronal surface IRs specifically on dendrites bound by ADDLs. Removal of dendritic IRs was associated with increased receptor immunoreactivity in the cell body, indicating redistribution of the receptors. The neuronal response to insulin, measured by evoked IR tyrosine autophosphorylation, was greatly inhibited by ADDLs. Inhibition also was seen with added glutamate or potassium-induced depolarization. The effects on IR function were completely blocked by NMDA receptor antagonists, tetrodotoxin, and calcium chelator BAPTA-AM. Downstream from the IR, ADDLs induced a phosphorylation of Akt at serine473, a modification associated with neurodegenerative and insulin resistance diseases. These results identify novel factors that affect neuronal IR signaling and suggest that insulin resistance in AD brain is a response to ADDLs, which disrupt insulin signaling and may cause a brain-specific form of diabetes as part of an overall pathogenic impact on CNS synapses.

  14. Moderate consumption of Cabernet Sauvignon attenuates Abeta neuropathology in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Jun; Ho, Lap; Zhao, Zhong; Seror, Ilana; Humala, Nelson; Dickstein, Dara L; Thiyagarajan, Meenakshisundaram; Percival, Susan S; Talcott, Stephen T; Pasinetti, Giulio Maria

    2006-11-01

    Recent studies suggest that moderate red wine consumption reduces the incidence of Alzheimer's disease (AD) clinical dementia. Using Tg2576 mice, which model AD-type amyloid beta-protein (Abeta) neuropathology, we tested whether moderate consumption of the red wine Cabernet Sauvignon modulates AD-type neuropathology and cognitive deterioration. The wine used in the study was generated using Cabernet Sauvignon grapes from Fresno, California, and was delivered to Tg2576 in a final concentration of approximately 6% ethanol. We found that Cabernet Sauvignon significantly attenuated AD-type deterioration of spatial memory function and Abeta neuropathology in Tg2576 mice relative to control Tg2576 mice that were treated with either a comparable amount of ethanol or water alone. Chemical analysis showed the Cabernet Sauvignon used in this study contains a very low content of resveratrol (0.2 mg/L), 10-fold lower than the minimal effective concentration shown to promote Abeta clearance in vitro. Our studies suggest Cabernet Sauvignon exerts a beneficial effect by promoting nonamyloidogenic processing of amyloid precursor protein, which ultimately prevents the generation of Abeta peptides. This study supports epidemiological evidence indicating that moderate wine consumption, within the range recommended by the FDA dietary guidelines of one drink per day for women and two for men, may help reduce the relative risk for AD clinical dementia.

  15. Lipid-induced conformational transition of the amyloid core fragment Abeta(28-35) and its A30G and A30I mutants.

    PubMed

    Nagarajan, Sureshbabu; Ramalingam, Kirubagaran; Neelakanta Reddy, P; Cereghetti, Damiano M; Padma Malar, E J; Rajadas, Jayakumar

    2008-05-01

    The interaction of the beta-amyloid peptide (Abeta) with neuronal membranes could play a key role in the pathogenesis of Alzheimer's disease. Recent studies have focused on the interactions of Abeta oligomers to explain the neuronal toxicity accompanying Alzheimer's disease. In our study, we have investigated the role of lipid interactions with soluble Abeta(28-35) (wild-type) and its mutants A30G and A30I in their aggregation and conformational preferences. CD and Trp fluorescence spectroscopic studies indicated that, immediately on dissolution, these peptides adopted a random coil structure. Upon addition of negatively charged 1,2-dipalmitoyl-syn-glycero-3-phospho-rac-(glycerol) sodium salt (PG) lipid, the wild-type and A30I mutant underwent reorganization into a predominant beta-sheet structure. However, no conformational changes were observed in the A30G mutant on interaction with PG. In contrast, the presence of zwitterionic 1,2-dipalmitoyl-syn-glycero-3-phosphatidylcholine (PC) lipid had no effect on the conformation of these three peptides. These observations were also confirmed with atomic force microscopy and the thioflavin-T assay. In the presence of PG vesicles, both the wild-type and A30I mutant formed fibrillar structures within 2 days of incubation in NaCl/P(i), but not in their absence. Again, no oligomerization was observed with PC vesicles. The Trp studies also revealed that both ends of the three peptides are not buried deep in the vesicle membrane. Furthermore, fluorescence spectroscopy using the environment-sensitive probe 1,6-diphenyl-1,3,5-hexatriene showed an increase in the membrane fluidity upon exposure of the vesicles to the peptides. The latter effect may result from the lipid head group interactions with the peptides. Fluorescence resonance energy transfer experiments revealed that these peptides undergo a random coil-to-sheet conversion in solution on aging and that this process is accelerated by negatively charged lipid vesicles

  16. Phenylethynyl terminated imide oligomers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)

    1995-01-01

    Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.

  17. Microtubular interactions of presenilin direct kinesis of Abeta peptide and its precursors.

    PubMed

    Tezapsidis, Nikolaos; Merz, Patricia A; Merz, George; Hong, Heni

    2003-07-01

    In our previous study we demonstrated that presenilin 1 (PS1) interacts with cytoplasmic linker protein 170/Restin (CLIP-170/Restin). Herein we show that disruption of the interaction of these proteins within neuronal cell-lines (SY5Y and N2a) can be accomplished by the transfection of vectors that drive the expression of peptide fragments corresponding to their binding domains (BDPs). Interestingly, the disruption of the PS1/CLIP-170 complex is associated with both decreased secretion of endogenous Abeta and decreased uptake of exogenous Abeta from the medium. BDP-expressing cells were also more resistant to surges of Abeta secretion induced by thapsigargin and ionomycin (that elevate intracellular calcium concentrations) and mutations in PS1 linked to familial Alzheimer's disease. Uptake of Abeta by SY5Y cells was amplified when preincubated with ApoE and was mediated through lipoprotein receptor-related protein (LRP). BDP-expressing cells or cells treated with PS1 anti-sense oligonucleotides were less capable of taking up Abeta from the medium compared with controls, indicating that the PS1/CLIP-170 interaction is involved and that PS1 cannot be substituted. In this study, we also mapped the minimum binding domains (mBDPs) of PS1 and CLIP-70 to regions corresponding to the N-terminal end of the large cytoplasmic loop of PS1 and the metal binding motif-containing C-terminal end of CLIP-170. Further, our data obtained from experiments involving in vitro taxol-polymerization of tubulin and confocal immunofluorescence suggest that PS1, via CLIP-170, may serve as an anchor to the microtubules for specific subcellular fractions containing amyloidogenic fragments. Interestingly, Notch is absent from this population of microtubule binding subcellular fractions and its cleavage was unaffected in cells transfected with the PS1-based BDP. This raises the possibility that the interaction of PS1 with CLIP-170 could provide the conceptual basis for anti

  18. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  19. Intraneuronal Abeta immunoreactivity is not a predictor of brain amyloidosis-beta or neurofibrillary degeneration.

    PubMed

    Wegiel, Jerzy; Kuchna, Izabela; Nowicki, Krzysztof; Frackowiak, Janusz; Mazur-Kolecka, Bozena; Imaki, Humi; Wegiel, Jarek; Mehta, Pankaj D; Silverman, Wayne P; Reisberg, Barry; Deleon, Mony; Wisniewski, Thomas; Pirttilla, Tuula; Frey, Harry; Lehtimäki, Terho; Kivimäki, Tarmo; Visser, Frank E; Kamphorst, Wouter; Potempska, Anna; Bolton, David; Currie, Julia R; Miller, David L

    2007-04-01

    Amyloid beta (Abeta) immunoreactivity in neurons was examined in brains of 32 control subjects, 31 people with Down syndrome, and 36 patients with sporadic Alzheimer's disease to determine if intraneuronal Abeta immunoreactivity is an early manifestation of Alzheimer-type pathology leading to fibrillar plaque formation and/or neurofibrillary degeneration. The appearance of Abeta immunoreactivity in neurons in infants and stable neuron-type specific Abeta immunoreactivity in a majority of brain structures during late childhood, adulthood, and normal aging does not support this hypothesis. The absence or detection of only traces of reaction with antibodies against 4-13 aa and 8-17 aa of Abeta in neurons indicated that intraneuronal Abeta was mainly a product of alpha- and gamma-secretases (Abeta(17-40/42)). The presence of N-terminally truncated Abeta(17-40) and Abeta(17-42) in the control brains was confirmed by Western blotting and the identity of Abeta(17-40) was confirmed by mass spectrometry. The prevalence of products of alpha- and gamma -secretases in neurons and beta- and gamma-secretases in plaques argues against major contribution of Abeta-immunopositive material detected in neuronal soma to amyloid deposit in plaques. The strongest intraneuronal Abeta(17-42) immunoreactivity was observed in structures with low susceptibility to fibrillar Abeta deposition, neurofibrillary degeneration, and neuronal loss compared to areas more vulnerable to Alzheimer-type pathology. These observations indicate that the intraneuronal Abeta immunoreactivity detected in this study is not a predictor of brain amyloidosis or neurofibrillary degeneration. The constant level of Abeta immunoreactivity in structures free from neuronal pathology during essentially the entire life span suggests that intraneuronal amino-terminally truncated Abeta represents a product of normal neuronal metabolism.

  20. Capping of Aβ42 Oligomers by Small Molecule Inhibitors

    PubMed Central

    2015-01-01

    Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer’s disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1–2 nm and high MW oligomers with heights of 3–5 nm. In both cases, the oligomers are disc-shaped with diameters of ∼10–15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5–20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1–2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation. PMID:25422864

  1. Novel N-terminal cleavage of APP precludes Abeta generation in ACAT-defective AC29 cells.

    PubMed

    Huttunen, Henri J; Puglielli, Luigi; Ellis, Blake C; MacKenzie Ingano, Laura A; Kovacs, Dora M

    2009-01-01

    A common pathogenic event that occurs in all forms of Alzheimer's disease is the progressive accumulation of amyloid beta-peptide (Abeta) in brain regions responsible for higher cognitive functions. Inhibition of acyl-coenzyme A: cholesterol acyltransferase (ACAT), which generates intracellular cholesteryl esters from free cholesterol and fatty acids, reduces the biogenesis of the Abeta from the amyloid precursor protein (APP). Here we have used AC29 cells, defective in ACAT activity, to show that ACAT activity steers APP either toward or away from a novel proteolytic pathway that replaces both alpha and the amyloidogenic beta cleavages of APP. This alternative pathway involves a novel cleavage of APP holoprotein at Glu281, which correlates with reduced ACAT activity and Abeta generation in AC29 cells. This sterol-dependent cleavage of APP occurs in the endosomal compartment after internalization of cell surface APP. The resulting novel C-terminal fragment APP-C470 is destined to proteasomal degradation limiting the availability of APP for the Abeta generating system. The proportion of APP molecules that are directed to the novel cleavage pathway is regulated by the ratio of free cholesterol and cholesteryl esters in cells. These results suggest that subcellular cholesterol distribution may be an important regulator of the cellular fate of APP holoprotein and that there may exist several competing proteolytic systems responsible for APP processing within the endosomal compartment.

  2. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo.

    PubMed

    Crameri, Arames; Biondi, Elisa; Kuehnle, Katrin; Lütjohann, Dieter; Thelen, Karin M; Perga, Simona; Dotti, Carlos G; Nitsch, Roger M; Ledesma, Maria Dolores; Mohajeri, M Hasan

    2006-01-25

    The cholesterol-synthesizing enzyme seladin-1, encoded by the Dhcr24 gene, is a flavin adenine dinucleotide-dependent oxidoreductase and regulates responses to oncogenic and oxidative stimuli. It has a role in neuroprotection and is downregulated in affected neurons in Alzheimer's disease (AD). Here we show that seladin-1-deficient mouse brains had reduced levels of cholesterol and disorganized cholesterol-rich detergent-resistant membrane domains (DRMs). This was associated with inefficient plasminogen binding and plasmin activation, the displacement of beta-secretase (BACE) from DRMs to APP-containing membrane fractions, increased beta-cleavage of APP and high levels of Abeta peptides. In contrast, overexpression of seladin-1 increased both cholesterol and the recruitment of DRM components into DRM fractions, induced plasmin activation and reduced both BACE processing of APP and Abeta formation. These results establish a role of seladin-1 in the formation of DRMs and suggest that seladin-1-dependent cholesterol synthesis is involved in lowering Abeta levels. Pharmacological enhancement of seladin-1 activity may be a novel Abeta-lowering approach for the treatment of AD.

  3. Targeting Cancer with Antisense Oligomers

    SciTech Connect

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  4. The protective role of DL-alpha-lipoic acid in the oxidative vulnerability triggered by Abeta-amyloid vaccination in mice.

    PubMed

    Jesudason, E Philip; Masilamoni, J Gunasingh; Jesudoss, K Samuel; Jayakumar, R

    2005-02-01

    Recent reports indicate that beta-amyloid peptide (Abeta) vaccine based therapy for Alzheimer's disease (AD) may be on the horizon. There are however, concerns about the safety of this approach. Immunization with Abeta has several disadvantages, because it crosses the blood brain barrier and cause inflammation and neurotoxicity. The present work is aimed to study the protective effective of alpha-lipoic acid (LA) in the oxidative vulnerability of beta-amyloid in plasma, liver, spleen and brain, when Abeta fibrils are given intraperitoneally in inflammation induced mice. Result shows that reactive oxygen species (ROS) in the astrocytes of inflammation induced mice along with Abeta (IA) has shown 2.5-fold increase when compared with LA treated mice. The increased level of lipid peroxidase (LPO) (p < 0.05) and decreased antioxidant status (p < 0.05) were observed in the plasma, liver, spleen and brain of LA induced mice when compared with LA treated mice. Data shows that there were no significant changes observed between the control and LA treated mice. Our biochemical and histological results highlight that significant oxidative vulnerability was observed in IA treated mice, which was prevented by LA therapy. Our findings suggest that the antioxidant effect of LA when induced with Abeta may serve as a potent therapeutic tool for inflammatory AD models.

  5. Pathogenesis of A-beta+ ketosis-prone diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A-beta+ ketosis-prone diabetes (KPD) is an emerging syndrome of obesity, unprovoked ketoacidosis, reversible beta-cell dysfunction, and near-normoglycemic remission. We combined metabolomics with targeted kinetic measurements to investigate its pathophysiology. Fasting plasma fatty acids, acylcarnit...

  6. Computational selection of inhibitors of Abeta aggregation and neuronal toxicity.

    PubMed

    Chen, Deliang; Martin, Zane S; Soto, Claudio; Schein, Catherine H

    2009-07-15

    Alzheimer's disease (AD) is characterized by the cerebral accumulation of misfolded and aggregated amyloid-beta protein (Abeta). Disease symptoms can be alleviated, in vitro and in vivo, by 'beta-sheet breaker' pentapeptides that reduce plaque load. However the peptide nature of these compounds, made them biologically unstable and unable to penetrate membranes with high efficiency. The main goal of this study was to use computational methods to identify small molecule mimetics with better drug-like properties. For this purpose, the docked conformations of the active peptides were used to identify compounds with similar activities. A series of related beta-sheet breaker peptides were docked to solid state NMR structures of a fibrillar form of Abeta. The lowest energy conformations of the active peptides were used to design three dimensional (3D)-pharmacophores, suitable for screening the NCI database with Unity. Small molecular weight compounds with physicochemical features and a conformation similar to the active peptides were selected, ranked by docking and biochemical parameters. Of 16 diverse compounds selected for experimental screening, 2 prevented and reversed Abeta aggregation at 2-3microM concentration, as measured by Thioflavin T (ThT) fluorescence and ELISA assays. They also prevented the toxic effects of aggregated Abeta on neuroblastoma cells. Their low molecular weight and aqueous solubility makes them promising lead compounds for treating AD.

  7. Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimer's disease.

    PubMed

    Conti, Elisa; Gregori, Maria; Radice, Isabella; Da Re, Fulvio; Grana, Denise; Re, Francesca; Salvati, Elisa; Masserini, Massimo; Ferrarese, Carlo; Zoia, Chiara Paola; Tremolizzo, Lucio

    2017-02-23

    The accumulation of extracellular amyloid beta (Abeta42) both in brain and in cerebral vessels characterizes Alzheimer's disease (AD) pathogenesis. Recently, the possibility to functionalize nanoparticles (NPs) surface with Abeta42 binding molecules, making them suitable tools for reducing Abeta42 burden has been shown effective in models of AD. Aim of this work consisted in proving that NPs might be effective in sequestering Abeta42 in biological fluids, such as CSF and plasma. This demonstration is extremely important considering that these Abeta42 pools are in continuum with the brain parenchyma with drainage of Abeta from interstitial brain tissue to blood vessel and plasma. In this work, liposomes (LIP) were functionalized as previously shown in order to promote high-affinity Abeta binding, i.e., either with, phosphatidic acid (PA), or a modified Apolipoprotein E-derived peptide (mApo), or with a curcumin derivative (TREG); Abeta42 levels were determined by ELISA in CSF and plasma samples. mApo-PA-LIP (25 and 250 μM) mildly albeit significantly sequestered Abeta42 proteins in CSF samples obtained from healthy subjects (p < 0.01). Analogously a significant binding (∼20%) of Abeta42 (p < 0.001) was demonstrated following exposure to all functionalized liposomes in plasma samples obtained from selected AD or Down's syndrome patients expressing high levels of Abeta42. The same results were obtained by quantifying Abeta42 content after removal of liposome-bound Abeta by using gel filtration chromatography or ultracentrifugation on a discontinuous sucrose density gradient. In conclusion, we demonstrate that functionalized liposomes significantly sequester Abeta42 in human biological fluids. These data may be critical for future in vivo administration tests using NPs for promoting sink effect.

  8. Monofunctional hyperbranched ethylene oligomers.

    PubMed

    Wiedemann, Thomas; Voit, Gregor; Tchernook, Alexandra; Roesle, Philipp; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2014-02-05

    The neutral κ(2)N,O-salicylaldiminato Ni(II) complexes [κ(2)N,O-{(2,6-(3',5'-R2C6H3)2C6H3-N═C(H)-(3,5-I2-2-O-C6H2)}]NiCH3(pyridine)] (1a-pyr, R = Me; 1b-pyr, R = Et; 1c-pyr, R = iPr) convert ethylene to hyperbranched low-molecular-weight oligomers (Mn ca. 1000 g mol(-1)) with high productivities. While all three catalysts are capable of generating hyperbranched structures, branching densities decrease significantly with the nature of the remote substituent along Me > Et > iPr and oligomer molecular weights increase. Consequently, only 1a-pyr forms hyperbranched structures over a wide range of reaction conditions (ethylene pressure 5-30 atm and 20-70 °C). An in situ catalyst system achieves similar activities and identical highly branched oligomer microstructures, eliminating the bottleneck given by the preparation and isolation of Ni-Me catalyst precursor species. Selective introduction of one primary carboxylic acid ester functional group per highly branched oligoethylene molecule was achieved by isomerizing ethoxycarbonylation and alternatively cross metathesis with ethyl acrylate followed by hydrogenation. The latter approach results in complete functionalization and no essential loss of branched oligomer material and molecular weight, as the reacting double bonds are close to a chain end. Reduction yielded a monoalcohol-functionalized oligomer. Introduction of one reactive epoxide group per branched oligomer occurs completely and selectively under mild conditions. All reaction steps involved in oligomerization and monofunctionalization are efficient and readily scalable.

  9. Binding of Abeta to alpha- and beta-synucleins: identification of segments in alpha-synuclein/NAC precursor that bind Abeta and NAC.

    PubMed Central

    Jensen, P H; Hojrup, P; Hager, H; Nielsen, M S; Jacobsen, L; Olesen, O F; Gliemann, J; Jakes, R

    1997-01-01

    NAC, a 35-residue peptide derived from the neuronal protein alpha-synuclein/NAC precursor, is tightly associated with Abeta fibrils in Alzheimer's disease amyloid, and alpha-synuclein has recently been shown to bind Abeta in vitro. We have studied the interaction between Abeta and synucleins, aiming at determining segments in alpha-synuclein that can account for the binding, as well as identifying a possible interaction between Abeta and the beta-type synuclein. We report that Abeta binds to native and recombinant alpha-synuclein, and to beta-synuclein in an SDS-sensitive interaction (IC50 approx. 20 microM), as determined by chemical cross-linking and solid-phase binding assays. alpha-Synuclein and beta-synuclein were found to stimulate Abeta-aggregation in vitro to the same extent. The synucleins also displayed Abeta-inhibitable binding of NAC and they were capable of forming dimers. Using proteolytic fragmentation of alpha-synuclein and cross-linking to 125I-Abeta, we identified two consecutive binding domains (residues 1-56 and 57-97) by Edman degradation and mass spectrometric analysis, and a synthetic peptide comprising residues 32-57 possessed Abeta-binding activity. To test further the possible significance in pathology, alpha-synuclein was biotinylated and shown to bind specifically to amyloid plaques in a brain with Alzheimer's disease. It is proposed that the multiple Abeta-binding sites in alpha-synuclein are involved in the development of amyloid plaques. PMID:9163350

  10. Benzofuran-based hybrid compounds for the inhibition of cholinesterase activity, beta amyloid aggregation, and abeta neurotoxicity.

    PubMed

    Rizzo, Stefano; Rivière, Céline; Piazzi, Lorna; Bisi, Alessandra; Gobbi, Silvia; Bartolini, Manuela; Andrisano, Vincenza; Morroni, Fabiana; Tarozzi, Andrea; Monti, Jean-Pierre; Rampa, Angela

    2008-05-22

    The complex etiology of Alzheimer's disease (AD) prompts scientists to develop multitarget strategies to combat causes and symptoms. We therefore designed, synthesized, and tested new hybrid molecules linking a benzofuran ring to a N-methyl- N-benzylamine through a heptyloxy chain, affording a series of potential multifunctional drugs for AD. The cholinesterase inhibitory activity was extended to the inhibition of Abeta fibril formation for 1, 3, and 5. Compound 3 showed an additional neuroprotective effect.

  11. Mitochondria dysfunction of Alzheimer's disease cybrids enhances Abeta toxicity.

    PubMed

    Cardoso, Sandra M; Santana, Isabel; Swerdlow, Russell H; Oliveira, Catarina R

    2004-06-01

    Alzheimer's disease (AD) brain reveals high rates of oxygen consumption and oxidative stress, altered antioxidant defences, increased oxidized polyunsaturated fatty acids, and elevated transition metal ions. Mitochondrial dysfunction in AD is perhaps relevant to these observations, as such may contribute to neurodegenerative cell death through the formation of reactive oxygen species (ROS) and the release of molecules that initiate programmed cell death pathways. In this study, we analyzed the effects of beta-amyloid peptide (Abeta) on human teratocarcinoma (NT2) cells expressing endogenous mitochondrial DNA (mtDNA), mtDNA from AD subjects (AD cybrids), and mtDNA from age-matched control subjects (control cybrids). In addition to finding reduced cytochrome oxidase activity, elevated ROS, and reduced ATP levels in the AD cybrids, when these cell lines were exposed to Abeta 1-40 we observed excessive mitochondrial membrane potential depolarization, increased cytoplasmic cytochrome c, and elevated caspase-3 activity. When exposed to Abeta, events associated with programmed cell death are activated in AD NT2 cybrids to a greater extent than they are in control cybrids or the native NT2 cell line, suggesting a role for mtDNA-derived mitochondrial dysfunction in AD degeneration.

  12. Short-term treatment with rivastigmine and plasma levels of Abeta peptides in Alzheimer's disease.

    PubMed

    Sobow, Tomasz; Kloszewska, Iwona

    2005-01-01

    Deregulation of APP metabolism is considered to be a key pathogenic event in Alzheimer's disease. Data from cell cultures indicate that the secretion of Abeta1-42 might be inhibited by cholinesterase inhibitors, possibly via M1 receptors stimulation. Treatment with tacrine, a dual acetyl- and butyrylcholinesterase inhibitor, had no significant effect on mean plasma Abeta species concentrations. However, a correlation was observed between higher drug concentrations and lower Abeta levels that might indicate an effect on APP metabolism with an increased alpha-cleavage. Abeta1-40 and Abeta1-42 levels were measured in the plasma of 28 AD subjects by means of a commercially available ELISA before rivastigmine treatment and at week 2 after the first dose of the drug (3 mg/day) had been administered. Treatment with rivastigmine exhibited a significant effect on mean plasma concentrations of Abeta1-42 (mean difference 7.8+/-8.4, t=-4.9, pmean difference 7.8+/-8.4, t=-4.9, p<0.001) with a negative correlation with the patients age (Pearson's R=-0.40, p=0.035). No significant effect on plasma Abeta1-40 was observed. The observed increase of mean levels of plasma Abeta1-42 after rivastigmine treatment might indicate an effect of the drug on Abeta metabolism, mobilization of Abeta1-42 from deposits in the affected brain areas and a consecutive Ab1-42 brain-to-plasma efflux. The negative correlation between Abeta1-42 plasma levels changes and age may be a sign of impairment of this process in the older patients. A large individual variation of the observed response, however, excludes drawing definite conclusions. Whether those subjects who respond to rivastigmine in terms of Abeta1-42 plasma levels changes also respond clinically needs to be established.

  13. Oxidation of cholesterol catalyzed by amyloid beta-peptide (Abeta)-Cu complex on lipid membrane.

    PubMed

    Yoshimoto, Noriko; Tasaki, Makoto; Shimanouchi, Toshinori; Umakoshi, Hiroshi; Kuboi, Ryoichi

    2005-10-01

    A catalytic reaction of H2O2 production by an amyloid beta-peptide (Abeta)-Cu complex with cholesterol incorporated in a liposome was kinetically analyzed. The Michaelis-Menten model was applied to the H2O2 production reaction using cholesterol as the substrate catalyzed by the Abeta-Cu complex. The Km value for the Abeta-Cu complex catalytic reaction with cholesterol-containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes (Km=0.436 microM for Abeta(1-40); Km=0.641 microM for Abeta(1-42)) was found to be smaller than that with cholesterol-containing 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes (Km=0.585 microM for Abeta(1-40), Km=0.890 microM for Abeta(1-42)). The results imply that membrane properties could play an important role in the interactions of the Abeta-Cu complex with cholesterol in these liposomes. Considering the physical states of the cholesterol/POPC (liquid disordered phase) and cholesterol/DPPC (liquid ordered phase) liposomes in the present reaction conditions, the data obtained suggests that the H2O2-generating activity of the Abeta-Cu complex, accompanied by oxidation of membrane-incorporated cholesterol, could be effected by the phase of the liposome membranes.

  14. Counterion condensation on heparin oligomers.

    PubMed

    Minsky, Burcu Baykal; Atmuri, Anand; Kaltashov, Igor A; Dubin, Paul L

    2013-04-08

    The electropherogram of native heparin shows a broad distribution of mobilities μ, which truncates abruptly at a notably high μ = 4.7 × 10(-4) cm(2) V(-1) s(-1). This highly skewed mobility distribution is also found for the 20-saccharide chain, which shows from mass spectrometry a more uniform (symmetrical) with respect to sulfation level. Since a partially degraded heparin exhibits oligomer peaks with μ> 5 × 10(-4) cm(2) V(-1) s(-1) (appearing to escape the limitation of the mobility value for native heparin), we examined the electrophoretic behavior of chain-length monodisperse heparin oligomers. Their mobilities varied inversely with the logarithm of the contour length, L, for L from 3 to 10 nm and reached an asymptotic limit for L > 20 nm. The generality of this effect was indicated by similar behavior for oligomers of poly(styrene sulfonate). A recent theory of polyelectrolyte end effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), in which chain termini exhibit reduced counterion condensation was found to quantitatively account for these results. A qualitative explanation for the anomalously high value of μ of native heparin, 10-20% higher than those seen for synthetic polyelectrolytes of higher linear charge density, is suggested on the basis of similar junction effects (Manning, G. S. Macromolecules2008, 41, 6217-6227), which reduce counterion condensation at the interfaces of regions of high and low sulfation. We suggest that these effects should be considered in models for the biofunctionality of the regulated high and low sulfation (NS/NA) domains of heparan sulfate.

  15. Phenylethynyl terminated reactive oligomer

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor)

    1995-01-01

    A composition of matter having the general structure: ##STR1## (wherein X is F, Cl, or NO.sub.2, and Y is CO, SO.sub.2 or C(CF.sub.3).sub.2) is employed to terminate a nucleophilic reagent, resulting in the exclusive production of phenylethynyl terminated reactive oligomers which display unique thermal characteristics. A reactive diluent having the general structure: ##STR2## (wherein R is any aliphatic or aromatic moiety) is employed to decrease the melt viscosity of a phenylethynyl terminated reactive oligomer and to subsequently react therewith to provide a thermosetting material of enhanced density. These materials have features which make them attractive candidates for use as composite matrices and adhesives.

  16. The iA{beta}5p {beta}-breaker peptide regulates the A{beta}(25-35) interaction with lipid bilayers through a cholesterol-mediated mechanism

    SciTech Connect

    Vitiello, Giuseppe; Grimaldi, Manuela; D'Ursi, Anna Maria; D'Errico, Gerardino

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer iA{beta}5p shows a significant tendency to deeply penetrates the hydrophobic core of lipid membrane. Black-Right-Pointing-Pointer A{beta}(25-35) locates in the external region of the membrane causing a re-positioning of CHOL. Black-Right-Pointing-Pointer iA{beta}5p withholds cholesterol in the inner hydrophobic core of the lipid membrane. Black-Right-Pointing-Pointer iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane. -- Abstract: Alzheimer's disease is characterized by the deposition of aggregates of the {beta}-amyloid peptide (A{beta}) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic {beta}-sheet breaker peptides, which are capable of binding A{beta} but unable to become part of a {beta}-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the A{beta} aggregation; consequently, it is strategic to investigate the interplay between {beta}-sheet breaker peptides and A{beta} in the presence of lipid bilayers. In this work, we focused on the effect of the {beta}-sheet breaker peptide acetyl-LPFFD-amide, iA{beta}5p, on the interaction of the A{beta}(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iA{beta}5p influences the A{beta}(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iA{beta}5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate A{beta}(25-35). As a consequence, iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane, which is the first step of the {beta}-amyloid aggregation process.

  17. Computing highly specific and mismatch tolerant oligomers efficiently.

    PubMed

    Yamada, Tomoyuki; Morishita, Shinichi

    2003-01-01

    The sequencing of the genomes of a variety of species and the growing databases containing expressed sequence tags (ESTs) and complementary DNAs (cDNAs) facilitate the design of highly specific oligomers for use as genomic markers, PCR primers, or DNA oligo microarrays. The first step in evaluating the specificity of short oligomers of about twenty units in length is to determine the frequencies at which the oligomers occur. However, for oligomers longer than about fifty units this is not efficient, as they usually have a frequency of only 1. A more suitable procedure is to consider the mismatch tolerance of an oligomer, that is, the minimum number of mismatches that allows a given oligomer to match a sub-sequence other than the target sequence anywhere in the genome or the EST database. However, calculating the exact value of mismatch tolerance is computationally costly and impractical. Therefore, we studied the problem of checking whether an oligomer meets the constraint that its mismatch tolerance is no less than a given threshold. Here, we present an efficient dynamic programming algorithm solution that utilizes suffix and height arrays. We demonstrated the effectiveness of this algorithm by efficiently computing a dense list of oligo-markers applicable to the human genome. Experimental results show that the algorithm runs faster than well-known Abrahamson's algorithm by orders of magnitude and is able to enumerate 63% to approximately 79% of qualified oligomers.

  18. Computing highly specific and noise-tolerant oligomers efficiently.

    PubMed

    Yamada, Tomoyuki; Morishita, Shinichi

    2004-03-01

    The sequencing of the genomes of a variety of species and the growing databases containing expressed sequence tags (ESTs) and complementary DNAs (cDNAs) facilitate the design of highly specific oligomers for use as genomic markers, PCR primers, or DNA oligo microarrays. The first step in evaluating the specificity of short oligomers of about 20 units in length is to determine the frequencies at which the oligomers occur. However, for oligomers longer than about fifty units this is not efficient, as they usually have a frequency of only 1. A more suitable procedure is to consider the mismatch tolerance of an oligomer, that is, the minimum number of mismatches that allows a given oligomer to match a substring other than the target sequence anywhere in the genome or the EST database. However, calculating the exact value of mismatch tolerance is computationally costly and impractical. Therefore, we studied the problem of checking whether an oligomer meets the constraint that its mismatch tolerance is no less than a given threshold. Here, we present an efficient dynamic programming algorithm solution that utilizes suffix and height arrays. We demonstrated the effectiveness of this algorithm by efficiently computing a dense list of numerous oligo-markers applicable to the human genome. Experimental results show that the algorithm runs faster than well-known Abrahamson's algorithm by orders of magnitude and is able to enumerate 65% approximately 76% of qualified oligomers.

  19. Capping of aβ42 oligomers by small molecule inhibitors.

    PubMed

    Fu, Ziao; Aucoin, Darryl; Ahmed, Mahiuddin; Ziliox, Martine; Van Nostrand, William E; Smith, Steven O

    2014-12-23

    Aβ42 peptides associate into soluble oligomers and protofibrils in the process of forming the amyloid fibrils associated with Alzheimer's disease. The oligomers have been reported to be more toxic to neurons than fibrils, and have been targeted by a wide range of small molecule and peptide inhibitors. With single touch atomic force microscopy (AFM), we show that monomeric Aβ42 forms two distinct types of oligomers, low molecular weight (MW) oligomers with heights of 1-2 nm and high MW oligomers with heights of 3-5 nm. In both cases, the oligomers are disc-shaped with diameters of ~10-15 nm. The similar diameters suggest that the low MW species stack to form the high MW oligomers. The ability of Aβ42 inhibitors to interact with these oligomers is probed using atomic force microscopy and NMR spectroscopy. We show that curcumin and resveratrol bind to the N-terminus (residues 5-20) of Aβ42 monomers and cap the height of the oligomers that are formed at 1-2 nm. A second class of inhibitors, which includes sulindac sulfide and indomethacin, exhibit very weak interactions across the Aβ42 sequence and do not block the formation of the high MW oligomers. The correlation between N-terminal interactions and capping of the height of the Aβ oligomers provides insights into the mechanism of inhibition and the pathway of Aβ aggregation.

  20. Structural and functional properties of prefibrillar α-synuclein oligomers.

    PubMed

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  1. Toxic species in amyloid disorders: Oligomers or mature fibrils

    PubMed Central

    Verma, Meenakshi; Vats, Abhishek; Taneja, Vibha

    2015-01-01

    Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization) disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov) and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer's Disease, Parkinson's Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer's Disease and Parkinson's Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils) in amyloid cascade are also described. PMID:26019408

  2. A Generic Method for Design of Oligomer-Specific Antibodies

    PubMed Central

    Brännström, Kristoffer; Lindhagen-Persson, Malin; Gharibyan, Anna L.; Iakovleva, Irina; Vestling, Monika; Sellin, Mikael E.; Brännström, Thomas; Morozova-Roche, Ludmilla; Forsgren, Lars; Olofsson, Anders

    2014-01-01

    Antibodies that preferentially and specifically target pathological oligomeric protein and peptide assemblies, as opposed to their monomeric and amyloid counterparts, provide therapeutic and diagnostic opportunities for protein misfolding diseases. Unfortunately, the molecular properties associated with oligomer-specific antibodies are not well understood, and this limits targeted design and development. We present here a generic method that enables the design and optimisation of oligomer-specific antibodies. The method takes a two-step approach where discrimination between oligomers and fibrils is first accomplished through identification of cryptic epitopes exclusively buried within the structure of the fibrillar form. The second step discriminates between monomers and oligomers based on differences in avidity. We show here that a simple divalent mode of interaction, as within e.g. the IgG isotype, can increase the binding strength of the antibody up to 1500 times compared to its monovalent counterpart. We expose how the ability to bind oligomers is affected by the monovalent affinity and the turnover rate of the binding and, importantly, also how oligomer specificity is only valid within a specific concentration range. We provide an example of the method by creating and characterising a spectrum of different monoclonal antibodies against both the Aβ peptide and α-synuclein that are associated with Alzheimer's and Parkinson's diseases, respectively. The approach is however generic, does not require identification of oligomer-specific architectures, and is, in essence, applicable to all polypeptides that form oligomeric and fibrillar assemblies. PMID:24618582

  3. Structural and functional properties of prefibrillar α-synuclein oligomers

    PubMed Central

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-01-01

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity. PMID:27075649

  4. Elucidating molecular mass and shape of a neurotoxic Aβ oligomer.

    PubMed

    Sebollela, Adriano; Mustata, Gina-Mirela; Luo, Kevin; Velasco, Pauline T; Viola, Kirsten L; Cline, Erika N; Shekhawat, Gajendra S; Wilcox, Kyle C; Dravid, Vinayak P; Klein, William L

    2014-12-17

    Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid β oligomers (AβOs) in the central nervous system. AβOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AβO monoclonal antibody, to investigate size and shape of a toxic AβO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AβO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AβO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AβOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AβO size and toxicity.

  5. Cholesterol inhibits the insertion of the Alzheimer's peptide Abeta(25-35) in lipid bilayers.

    PubMed

    Dante, Silvia; Hauss, Thomas; Dencher, Norbert A

    2006-08-01

    The physiological relationship between brain cholesterol content and the action of amyloid beta (Abeta) peptide in Alzheimer's disease (AD) is a highly controversially discussed topic. Evidences for modulations of the Abeta/membrane interaction induced by plasma membrane cholesterol have already been observed. We have recently reported that Abeta(25-35) is capable of inserting in lipid membranes and perturbing their structure. Applying neutron diffraction and selective deuteration, we now demonstrate that cholesterol alters, at the molecular level, the capability of Abeta(25-35) to penetrate into the lipid bilayers; in particular, a molar weight content of 20% of cholesterol hinders the intercalation of monomeric Abeta(25-35) completely. At very low cholesterol content (about 1% molar weight) the location of the C-terminal part of Abeta(25-35) has been unequivocally established in the hydrocarbon region of the membrane, in agreement with our previous results on pure phospholipids membrane. These results link a structural property to a physiological and functional behavior and point to a therapeutical approach to prevent the AD by modulation of membrane properties.

  6. Independent effects of intra- and extracellular Abeta on learning-related gene expression.

    PubMed

    Wegenast-Braun, Bettina M; Fulgencio Maisch, Ana; Eicke, Daniel; Radde, Rebecca; Herzig, Martin C; Staufenbiel, Matthias; Jucker, Mathias; Calhoun, Michael E

    2009-07-01

    Alzheimer's disease is characterized by numerous pathological abnormalities, including amyloid beta (Abeta) deposition in the brain parenchyma and vasculature. In addition, intracellular Abeta accumulation may affect neuronal viability and function. In this study, we evaluated the effects of different forms of Abeta on cognitive decline by analyzing the behavioral induction of the learning-related gene Arc/Arg3.1 in three different transgenic mouse models of cerebral amyloidosis (APPPS1, APPDutch, and APP23). Following a controlled spatial exploration paradigm, reductions in both the number of Arc-activated neurons and the levels of Arc mRNA were seen in the neocortices of depositing mice from all transgenic lines (deficits ranging from 14 to 26%), indicating an impairment in neuronal encoding and network activation. Young APPDutch and APP23 mice exhibited intracellular, granular Abeta staining that was most prominent in the large pyramidal cells of cortical layer V; these animals also had reductions in levels of Arc. In the dentate gyrus, striking reductions (up to 58% in aged APPPS1 mice) in the number of Arc-activated cells were found. Single-cell analyses revealed both the proximity to fibrillar amyloid in aged mice, and the transient presence of intracellular granular Abeta in young mice, as independent factors that contribute to reduced Arc levels. These results provide evidence that two independent Abeta pathologies converge in their impact on cognitive function in Alzheimer's disease.

  7. NGF and BDNF signaling control amyloidogenic route and Abeta production in hippocampal neurons.

    PubMed

    Matrone, Carmela; Ciotti, Maria Teresa; Mercanti, Delio; Marolda, Roberta; Calissano, Pietro

    2008-09-02

    Here, we report that interruption of NGF or BDNF signaling in hippocampal neurons rapidly activates the amyloidogenic pathway and causes neuronal apoptotic death. These events are associated with an early intracellular accumulation of PS1 N-terminal catalytic subunits and of APP C-terminal fragments and a progressive accumulation of intra- and extracellular Abeta aggregates partly released into the culture medium. The released pool of Abeta induces an increase of APP and PS1 holoprotein levels, creating a feed-forward toxic loop that might also cause the death of healthy neurons. These events are mimicked by exogenously added Abeta and are prevented by exposure to beta- and gamma-secretase inhibitors and by antibodies directed against Abeta peptides. The same cultured neurons deprived of serum die, but APP and PS1 overexpression does not occur, Abeta production is undetectable, and cell death is not inhibited by anti-Abeta antibodies, suggesting that hippocampal amyloidogenesis is not a simple consequence of an apoptotic trigger but is due to interruption of neurotrophic signaling.

  8. Panaxydol and panaxynol protect cultured cortical neurons against Abeta25-35-induced toxicity.

    PubMed

    Nie, Bao-Ming; Jiang, Xiao-Yan; Cai, Jin-Xian; Fu, Sai-Li; Yang, Li-Min; Lin, Lin; Hang, Qin; Lu, Pei-Lua; Lu, Yang

    2008-04-01

    Amyloid beta protein (Abeta), the central constituent of senile plaques in Alzheimer's disease (AD), is known to exert toxic effects on cultured neurons. In the present study, the protective effect of panaxydol (PND) and panaxynol (PNN) on Abeta25-35-induced neuronal apoptosis and potential mechanisms were investigated in primary cultured rat cortical neurons. Pretreatment of the cells with PND or PNN prior to 10 microM Abeta25-35 exposure resulted significantly in elevation of cell survival determined by MTT assay, TUNEL/Hoechst staining and western blot. Furthermore, a marked increase in calcium influx and intracellular free radical generation was found after Abeta25-35 exposure, which could be almost completely reversed by pretreatment of PND or PNN. PND and PNN could also alleviate Abeta25-35-induced early-stage neuronal degeneration. These results indicated that inhibition of calcium influx and free radical generation is a mechanism of the anti-apoptotic action of PND and PNN. Since Abeta plays critical roles in the pathogenesis of AD, these findings raise the possibility that PND and PNN reduce neurodegeneration in AD.

  9. Interaction of arginine oligomer with model membrane

    SciTech Connect

    Yi, Dandan . E-mail: yi_dandan@yahoo.com.cn; Guoming, Li; Gao, Li; Wei, Liang

    2007-08-10

    Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.

  10. Inhibition of Alzheimer's amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo.

    PubMed

    Hong, Hyun-Seok; Rana, Sandeep; Barrigan, Lydia; Shi, Aibin; Zhang, Yi; Zhou, Feimeng; Jin, Lee-Way; Hua, Duy H

    2009-02-01

    Small beta-amyloid (Abeta) 1-42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer's disease (AD). Methods to reduce the level of Abeta, prevent Abeta aggregation, and eliminate existing Abeta aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Abeta oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Abeta42 oligomer. Circular dichroism spectroscopy reveals monomeric Abeta42 peptide remains as a random coil/alpha-helix structure in the presence of CP2 over 48 h. Atomic force microscopy studies show CP2 exhibits similar ability to inhibit Abeta42 aggregation as that of Congo red and curcumin. Atomic force microscopy closed-fluid cell study demonstrates that CP2 disaggregates Abeta42 oligomers and protofibrils. CP2 also blocks Abeta fibrillations using a protein quantification method. Treatment of 5x familial Alzheimer's disease mice, a robust Abeta42-producing animal model of AD, with a 2-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Abeta species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Abeta aggregation and disaggregating existing Abeta oligomers and protofibrils.

  11. One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules.

    PubMed

    Li, Wei; Wang, Daojuan; Wang, Suhao; Ma, Wei; Hedström, Svante; James, David Ian; Xu, Xiaofeng; Persson, Petter; Fabiano, Simone; Berggren, Magnus; Inganäs, Olle; Huang, Fei; Wang, Ergang

    2015-12-16

    Two series of oligomers TQ and rhodanine end-capped TQ-DR were synthesized using a facile one-step method. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated and compared. The TQ series of oligomers were found to be amorphous, whereas the TQ-DR series are semicrystalline. For the TQ oligomers, the results obtained in solar cells show that as the chain length of the oligomers increases, an increase in power conversion efficiency (PCE) is obtained. However, when introducing 3-ethylrhodanine into the TQ oligomers as end groups, the PCE of the TQ-DR series of oligomers decreases as the chain length increases. Moreover, the TQ-DR series of oligomers give much higher performances compared to the original amorphous TQ series of oligomers owing to the improved extinction coefficient (ε) and crystallinity afforded by the rhodanine. In particular, the highly crystalline oligomer TQ5-DR, which has the shortest conjugation length shows a high hole mobility of 0.034 cm(2) V(-1) s(-1) and a high PCE of 3.14%, which is the highest efficiency out of all of the six oligomers. The structure-property correlations for all of the oligomers and the TQ1 polymer demonstrate that structural control of enhanced intermolecular interactions and crystallinity is a key for small molecules/oligomers to achieve high mobilities, which is an essential requirement for use in OPVs.

  12. Optimized Ultrasonic Irradiation Finds Out Ultrastable Aβ1-40 Oligomers.

    PubMed

    Nakajima, Kichitaro; So, Masatomo; Takahashi, Kazuma; Tagawa, Yoh-Ichi; Hirao, Masahiko; Goto, Yuji; Ogi, Hirotsugu

    2017-03-16

    Oligomer species of amyloid β (Aβ) peptides are intensively investigated because of their relevance to Alzheimer's disease (AD), and a stable oligomer will be a cause of AD. In this article, we investigate the structural stability of two representative Aβ1-40 oligomers, which are with and without the β-sheet structure, denoted by β and non-β oligomers, respectively, using optimized ultrasonic irradiation (OUI). Recent studies reveal that OUI significantly accelerates the fibril formation in Aβ1-40 monomers; it is capable of transforming any unstable oligomers into fibrils (the dead-end products) in a short time. First, we find that β oligomers can be produced under high-speed stirring agitation; their β-sheet structures are evaluated by the circular-dichroism spectrum measurement, by the immunoassay using the fibril-specific OC antibody, and by the seeding experiment, showing identical characteristics to those formed in previous reports. Second, we form non-β oligomers in a high-concentration NaCl solution and confirm that they include no β-sheet structure, and they are recognized by the oligomer-specific A11 antibody. Furthermore, we confirm the neurotoxicity of the two types of oligomers using the neural tissue derived from mouse embryonic stem cells. We apply the OUI agitation to the β and non-β oligomers. The non-β oligomers are transformed into the fibrils, indicating that they are intermediate species in the fibrillation pathway. However, the β oligomers are surprisingly unaffected by OUI, indicating their high thermodynamic stability. We conclude that the β oligomers should be the independent dead-end products of another pathway, different from the fibrillation pathway.

  13. Solid-State Structure of Abeta (Ab) in Alzheimer's Disease.

    PubMed

    Lu, Junxia; Dong, Xing-Qi; Zhang, Jian-Jun

    2017-02-08

    Alzheimer's disease (AD) has become the most common neurodegenerative disease. The deposition of amyloid fibrils in the brain is one of the characteristics of AD. The fibrils are composed of amyloid-b peptide (Ab). Ab is produced through a series event of protease cleavage of a transmembrane protein called β-amyloid precursor protein (APP) which is commonly expressed in the brain. The production of Ab and its propensity to aggregation to form oligomers and fibrils are believed to initiate a sequence of events that lead to AD dementia. The production of Ab is influenced by the transmembrane domain (TM) structure of APP. The structure variety of different Ab assemblies including oligomers and fibrils may result in different neurotoxicity to the brain. Therefore, enormous work has been carried out to study the structure of APP TM and various Ab assemblies. Solid-state NMR has advantages in studying immobile protein structures with large molecular weight. In this review, solid-state NMR structure of APP TM and different Ab assemblies will be discussed, especially various Ab amyloid fibril structures. This structural information greatly enhanced our understanding in AD, providing fundamental knowledge that will help in finding a treatment for AD.

  14. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation

    PubMed Central

    Giehm, Lise; Svergun, Dmitri I.; Otzen, Daniel E.; Vestergaard, Bente

    2011-01-01

    One of the major hallmarks of Parkinson disease is aggregation of the protein α-synuclein (αSN). Aggregate cytotoxicity has been linked to an oligomeric species formed at early stages in the aggregation process. Here we follow the fibrillation process of αSN in solution over time using small angle X-ray scattering and resolve four major coexisting species in the fibrillation process, namely monomer, dimer, fibril and an oligomer. By ab initio modeling to fit the data, we obtain a low-resolution structure of a symmetrical and slender αSN fibril in solution, consisting of a repeating unit with a maximal distance of 900 Å and a diameter of ∼180 Å. The same approach shows the oligomer to be shaped like a wreath, with a central channel and with dimensions corresponding to the width of the fibril. The structure, accumulation and decay of this oligomer is consistent with an on-pathway role for the oligomer in the fibrillation process. We propose an oligomer-driven αSN fibril formation mechanism, where the fibril is built from the oligomers. The wreath-shaped structure of the oligomer highlights its potential cytotoxicity by simple membrane permeabilization. This is confirmed by the ability of the purified oligomer to disrupt liposomes. Our results provide the first structural description in solution of a potentially cytotoxic oligomer, which accumulates during the fibrillation of αSN. PMID:21300904

  15. RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo.

    PubMed

    Désiré, Laurent; Bourdin, Jérôme; Loiseau, Nadia; Peillon, Hélène; Picard, Virginie; De Oliveira, Catherine; Bachelot, Florence; Leblond, Bertrand; Taverne, Thierry; Beausoleil, Eric; Lacombe, Sandrine; Drouin, Dominique; Schweighoffer, Fabien

    2005-11-11

    beta-Amyloid peptides (Abeta) that form the senile plaques of Alzheimer disease consist mainly of 40- and 42-amino acid (Abeta 40 and Abeta 42) peptides generated from the cleavage of the amyloid precursor protein (APP). Generation of Abeta involves beta-secretase and gamma-secretase activities and is regulated by membrane trafficking of the proteins involved in Abeta production. Here we describe a new small molecule, EHT 1864, which blocks the Rac1 signaling pathways. In vitro, EHT 1864 blocks Abeta 40 and Abeta 42 production but does not impact sAPPalpha levels and does not inhibit beta-secretase. Rather, EHT 1864 modulates APP processing at the level of gamma-secretase to prevent Abeta 40 and Abeta 42 generation. This effect does not result from a direct inhibition of the gamma-secretase activity and is specific for APP cleavage, since EHT 1864 does not affect Notch cleavage. In vivo, EHT 1864 significantly reduces Abeta 40 and Abeta 42 levels in guinea pig brains at a threshold that is compatible with delaying plaque accumulation and/or clearing the existing plaque in brain. EHT 1864 is the first derivative of a new chemical series that consists of candidates for inhibiting Abeta formation in the brain of AD patients. Our findings represent the first pharmacological validation of Rac1 signaling as a target for developing novel therapies for Alzheimer disease.

  16. Localization of human serum amyloid P component and heparan sulfate proteoglycan in in vitro-formed Abeta fibrils.

    PubMed

    Holm Nielsen, E; Nybo, M; Junker, K; Toftedal Hansen, P; Rasmussen, I M; Svehag, S E

    2000-08-01

    Ultrastructural studies of the localization of serum amyloid P component (SAP) in amyloid fibrils have given divergent results. We here report for the first time that electron microscopy of SAP coincubated with Abeta1-42 peptides or with mature Abeta1-42 fibrils, revealed SAP molecules coating the surface of the mature fibrils and that protofibrils of Abeta1-42 did not bind SAP. Also when incubated with extracted amyloid light chain (AL)-fibrils the SAP molecules aligned on the fibril surface. Heparan sulfate proteoglycan bound to the surface of the Abeta fibrils with a spacing of about 50 nm. We conclude that SAP does not bind to protofibrils but to the surface of mature Abeta fibrils and that it may stabilize and protect the fibrils.

  17. Macrocyclic 2,7-Anthrylene Oligomers.

    PubMed

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers.

  18. Synaptotoxic amyloid-β oligomers: a molecular basis for the cause, diagnosis, and treatment of Alzheimer's disease?

    PubMed

    Klein, William L

    2013-01-01

    The oligomer hypothesis for Alzheimer's disease (AD)was introduced in 1998. It was based on evidence that oligomers could exist free of amyloid fibrils, that fibril-free oligomer solutions rapidly inhibited long term potentiation, and that oligomers ultimately caused a highly selective nerve cell death. Fibrils no longer were the only toxins made by amyloid-β (Aβ), and likely not the most important ones. Oligomers provided a new basis for instigating AD. Since introduction of the hypothesis, more than 1,500 articles on oligomers have been published. Articles for this review were selected for contributions to oligomer theory at three different levels. The first set demonstrated new aspects of oligomer pathobiology in cell models, showing that exposure of neurons to oligomers is sufficient to cause key features of AD neuropathology. The second set confirmed the relationship between oligomers and salient AD neuropathology in animal models, consistent with other in vivo studies that overall have substantiated cell-based discoveries. The third set developed strategies for therapeutic targeting of oligomers, introducing both small molecule and antibody-based approaches. These and related findings from many groups have helped establish oligomers as central to the mechanism of AD pathogenesis. Comprising a ligand-based attack on specific synapses, the action of toxic oligomers gives a molecular basis to account for key features of AD neuropathology and to explain why early disease targets memory. Although there still is no effective treatment for AD, insights over the past five years raise hopes that new approaches targeting Aβ oligomers could finally bring disease-modifying therapeutics.

  19. Heat Resistant Characteristics of Major Royal Jelly Protein 1 (MRJP1) Oligomer.

    PubMed

    Moriyama, Takanori; Ito, Aimi; Omote, Sumire; Miura, Yuri; Tsumoto, Hiroki

    2015-01-01

    Soluble royal jelly protein is a candidate factor responsible for mammiferous cell proliferation. Major royal jelly protein 1 (MRJP1), which consists of oligomeric and monomeric forms, is an abundant proliferative protein in royal jelly. We previously reported that MRJP1 oligomer has biochemical heat resistance. Therefore, in the present study, we investigated the effects of several heat treatments (56, 65 and 96°C) on the proliferative activity of MRJP1 oligomer. Heat resistance studies showed that the oligomer molecular forms were slightly maintained until 56℃, but the molecular forms were converted to macromolecular heat-aggregated MRJP1 oligomer at 65℃ and 96℃. But, the growth activity of MRJP1 oligomer treated with 96°C was slightly attenuated when compared to unheated MRJP1 oligomer. On the other hand, the cell proliferation activity was preserved until 96℃ by the cell culture analysis of Jurkat cells. In contrast, those of IEC-6 cells were not preserved even at 56°C. The present observations suggest that the bioactive heat-resistance properties were different by the origin of the cells. The cell proliferation analysis showed that MRJP1 oligomer, but not MRJP2 and MRJP3, significantly increased cell numbers, suggesting that MRJP1 oligomer is the predominant proliferation factor for mammiferous cells.

  20. Amyloid-beta oligomers increase the localization of prion protein at the cell surface.

    PubMed

    Caetano, Fabiana A; Beraldo, Flavio H; Hajj, Glaucia N M; Guimaraes, Andre L; Jürgensen, Sofia; Wasilewska-Sampaio, Ana Paula; Hirata, Pedro H F; Souza, Ivana; Machado, Cleiton F; Wong, Daisy Y-L; De Felice, Fernanda G; Ferreira, Sergio T; Prado, Vania F; Rylett, R Jane; Martins, Vilma R; Prado, Marco A M

    2011-05-01

    In Alzheimer's disease, the amyloid-β peptide (Aβ) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aβ. We show here that Aβ oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aβ oligomers use PrP(C) as a receptor. Immunofluorescence, flow cytometry and cell surface protein biotinylation experiments indicated that treatment with Aβ oligomers, but not monomers, increased the localization of PrP(C) at the cell surface in cell lines. These results were reproduced in hippocampal neuronal cultures by labeling cell surface PrP(C). In order to understand possible mechanisms involved with this effect of Aβ oligomers, we used live cell confocal and total internal reflection microscopy in cell lines. Aβ oligomers inhibited the constitutive endocytosis of PrP(C), but we also found that after Aβ oligomer-treatment PrP(C) formed more clusters at the cell surface, suggesting the possibility of multiple effects of Aβ oligomers. Our experiments show for the first time that Aβ oligomers signal in a PrP(C)-dependent way and that they can affect PrP(C) trafficking, increasing its localization at the cell surface.

  1. Acetylpuerarin reduces inflammation and improves memory function in a rat model of Alzheimer's disease induced by Abeta1-42.

    PubMed

    Meng, Q H; Lou, F L; Hou, W X; Liu, M; Guo, H; Zhang, X M

    2013-11-01

    This study was performed to determine if acetylpuerarin (compound N-2211) could reduce amyloid-beta1-42 (Abeta1-42) induced learning and memory deficits and to examine its anti-neuroinflammatory effects in a rat model. Forty Wistar rats were randomly divided into four groups (n = 10 each): control, model (Abeta1-42 injected), low-dose and high-dose acetylpuerarin groups. The acetylpuerarin groups received peritoneal acetylpuerarin every day for 12 days after 2 weeks of Abeta1-42 (5 microg/1 microl) intrahippocampal injections. The Morris water maze (MWM) was used to assess rats' learning and memory abilities. Immunohistochemistry was used to assess expression levels of ionized calcium-binding adaptor molecule (Ibal), protein kinase C delta (PKCdelta), IkappaB kinase beta (IKKbeta), and inducible nitric oxide synthase (iNOS) in hippocampus. After Abeta1-42 injection, the learning and memory abilities of rats were reduced, and acetylpuerarin treatment ameliorated the observed deficits. Abeta1-42 injection resulted in microglia transforming from resting microglia into an activated state, but this was reduced by acetylpuerarin treatment. Furthermore, hippocampal expression of PKCdelta, IKKbeta, and iNOS increased following Abeta1-42 treatment, and acetylpuerarin could suppressed the levels of PKCdelta, iNOS, and IKKbeta. Acetylpuerarin improves learning and memory functions in Abeta1-42 induced rat models. These effects may be due to anti-neuroinflammatory effects.

  2. Direct detection of alpha synuclein oligomers in vivo

    PubMed Central

    2013-01-01

    Background Rat models of Parkinson’s disease are widely used to elucidate the mechanisms underlying disease etiology or to investigate therapeutic approaches. Models were developed using toxins such as MPTP or 6-OHDA to specifically target dopaminergic neurons resulting in acute neuronal loss in the substantia nigra or by using viral vectors to induce the specific and gradual expression of alpha synuclein in the substantia nigra. The detection of alpha- synuclein oligomers, the presumed toxic species, in these models and others has been possible using only indirect biochemical approaches to date. Here we coinjected AAVs encoding alpha-synuclein fused to the N- or C-terminal half of VenusYFP in rat substantia nigra pars compacta and describe for the first time a novel viral vector rodent model with the unique ability to directly detect and track alpha synuclein oligomers ex vivo and in vivo. Results Viral coinjection resulted in widespread VenusYFP signal within the nigrostriatal pathway, including cell bodies in the substantia nigra and synaptic accumulation in striatal terminals, suggestive of in vivo alpha-synuclein oligomers formation. Transduced rats showed alpha-synuclein induced dopaminergic neuron loss in the substantia nigra, the appearance of dystrophic neurites, and gliosis in the striatum. Moreover, we have applied in vivo imaging techniques in the living mouse to directly image alpha-synuclein oligomers in the cortex. Conclusion We have developed a unique animal model that provides a tool for the Parkinson’s disease research community with which to directly detect alpha- synuclein oligomers in vivo and screen therapeutic approaches targeting alpha-synuclein oligomers. PMID:24252244

  3. Alginate gels with a combination of calcium and chitosan oligomer mixtures as crosslinkers.

    PubMed

    Feng, Yiming; Kopplin, Georg; Sato, Kimihiko; Draget, Kurt I; Vårum, Kjell M

    2017-01-20

    Alginates are polysaccharides that are widely used in relation to their ability to form gels. Recently we reported that alginates may also form gels with chitosan oligomers as crosslinkers (Khong, Aarstad, Skjåk-Bræk, Draget, & Vårum, 2013). The purpose of the present study was to characterize alginate gels crosslinked with calcium and chitosan oligomers. Using two different alginates of similar molecular weights but different chemical composition, i.e. guluronic acid content of 46 and 68%, we found that both alginates could form homogeneous gels with calcium and chitosan oligomers separately and without syneresis. Systematic combinations of calcium and chitosan oligomers as crosslinkers were tested, showing that up to 50% of the calcium could be substituted with chitosan oligomers without reduction in gel strength or increased syneresis for the alginate with the lowest guluronic acid content. Furthermore, the kinetics of the combined gels were different from pure calcium alginate gels.

  4. Retromer deficiency observed in Alzheimer's disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation.

    PubMed

    Muhammad, Alim; Flores, Ingrid; Zhang, Hong; Yu, Rui; Staniszewski, Agnieszka; Planel, Emmanuel; Herman, Mathieu; Ho, Lingling; Kreber, Robert; Honig, Lawrence S; Ganetzky, Barry; Duff, Karen; Arancio, Ottavio; Small, Scott A

    2008-05-20

    Although deficiencies in the retromer sorting pathway have been linked to late-onset Alzheimer's disease, whether these deficiencies underlie the disease remains unknown. Here we characterized two genetically modified animal models to test separate but related questions about the effects that retromer deficiency has on the brain. First, testing for cognitive defects, we investigated retromer-deficient mice and found that they develop hippocampal-dependent memory and synaptic dysfunction, which was associated with elevations in endogenous Abeta peptide. Second, testing for neurodegeneration and amyloid deposits, we investigated retromer-deficient flies expressing human wild-type amyloid precursor protein (APP) and human beta-site APP-cleaving enzyme (BACE) and found that they develop neuronal loss and human Abeta aggregates. By recapitulating features of the disease, these animal models suggest that retromer deficiency observed in late-onset Alzheimer's disease can contribute to disease pathogenesis.

  5. Cu(II) coordination structure determinants of the fibrillization switch in Abeta peptides

    NASA Astrophysics Data System (ADS)

    Hernandez-Guzman, Jessica; Sun, Li; Mehta, Anil; Lynn, David; Warncke, Kurt

    2010-03-01

    Alzheimer's Disease (AD) is associated with the aggregation and fibrillization of the beta-amyloid protein (Abeta). The coordination of Cu(II) by peptide histidine imidazole sidechains is proposed to play an important role in determining the fibrillization ``switch'' [1]. We have developed techniques of powder X-band electron spin echo envelope modulation (ESEEM) spectroscopy to determine the 3D molecular structure of the Cu(II)-histidine imidazole coordination in cryotrapped soluble and fibrillar forms of Abeta peptides, in order to gain insight into the factors that govern fibrillization. We use hybrid optimization-based OPTESIM [2] simulation of the double quantum harmonic feature to determine the mutual orientation of the imidazole rings in Cu(II)--bis-imidazole complexes and in Abeta(13-21) peptides. The Cu(II) coordination mode and assembly constraints in fibrils are revealed. [1] Dong , J., et al., Proc. Natl. Acad. Sci., 2007, 104, 13313. [2] Sun, L., et al., J. Magn. Reson. 2009, 200, 21.

  6. Unique Properties of the Rabbit Prion Protein Oligomer

    PubMed Central

    Yu, Ziyao; Huang, Pei; Yu, Yuanhui; Zheng, Zhen; Huang, Zicheng; Guo, Chenyun; Lin, Donghai

    2016-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits. PMID:27529173

  7. Studies on Oligomer Metal Complexes Derived from Bisamic Acid of Pyromellitic Dianhydride and 4-Bromoaniline

    PubMed Central

    Patel, Yogesh S.

    2014-01-01

    Novel oligomer metal complexes (2a–f) of the ligand 2,5-bis((4-bromophenyl)carbamoyl) terephthalic acid (1) were prepared using transition metal salts and characterized by various spectroscopic techniques. The geometry of oligomer metal complexes was carried out by electronic spectral analysis and magnetic measurement studies. Polymeric properties have also been carried out. Ligand was synthesized using pyromellitic dianhydride and 4-bromoaniline. It was duly characterized. All novel synthesized compounds 1 and 2a–f were evaluated for their antibacterial and antifungal activity. The results showed significantly higher antibacterial and antifungal activity of oligomer metal complexes compared to the ligand. PMID:27379295

  8. Studies on Oligomer Metal Complexes Derived from Bisamic Acid of Pyromellitic Dianhydride and 4-Bromoaniline.

    PubMed

    Patel, Yogesh S

    2014-01-01

    Novel oligomer metal complexes (2a-f) of the ligand 2,5-bis((4-bromophenyl)carbamoyl) terephthalic acid (1) were prepared using transition metal salts and characterized by various spectroscopic techniques. The geometry of oligomer metal complexes was carried out by electronic spectral analysis and magnetic measurement studies. Polymeric properties have also been carried out. Ligand was synthesized using pyromellitic dianhydride and 4-bromoaniline. It was duly characterized. All novel synthesized compounds 1 and 2a-f were evaluated for their antibacterial and antifungal activity. The results showed significantly higher antibacterial and antifungal activity of oligomer metal complexes compared to the ligand.

  9. Alzheimer's-related endosome dysfunction in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1 inhibition.

    PubMed

    Jiang, Ying; Mullaney, Kerry A; Peterhoff, Corrinne M; Che, Shaoli; Schmidt, Stephen D; Boyer-Boiteau, Anne; Ginsberg, Stephen D; Cataldo, Anne M; Mathews, Paul M; Nixon, Ralph A

    2010-01-26

    An additional copy of the beta-amyloid precursor protein (APP) gene causes early-onset Alzheimer's disease (AD) in trisomy 21 (DS). Endosome dysfunction develops very early in DS and AD and has been implicated in the mechanism of neurodegeneration. Here, we show that morphological and functional endocytic abnormalities in fibroblasts from individuals with DS are reversed by lowering the expression of APP or beta-APP-cleaving enzyme 1 (BACE-1) using short hairpin RNA constructs. By contrast, endosomal pathology can be induced in normal disomic (2N) fibroblasts by overexpressing APP or the C-terminal APP fragment generated by BACE-1 (betaCTF), all of which elevate the levels of betaCTFs. Expression of a mutant form of APP that cannot undergo beta-cleavage had no effect on endosomes. Pharmacological inhibition of APP gamma-secretase, which markedly reduced Abeta production but raised betaCTF levels, also induced AD-like endosome dysfunction in 2N fibroblasts and worsened this pathology in DS fibroblasts. These findings strongly implicate APP and the betaCTF of APP, and exclude Abeta and the alphaCTF, as the cause of endocytic pathway dysfunction in DS and AD, underscoring the potential multifaceted value of BACE-1 inhibition in AD therapeutics.

  10. Reactive Processing with Difunctional Oligomers to Increase Interfacial Adhesion in Polymer Blends

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles; Rice+, Kevin; Dadmun, Mark

    2000-03-01

    The intoduction of blocky copolymers represents a possible method of compatibilizing two immiscible polymers in a blend. However, copolymers do not diffuse quickly to the interface of a polymer blend system. Therefore, reactive processing is being investigated as a means to form in-situ compatibilizers for polymer blends. A model system composed of poly(bisphenol A-co-epichlorohydrin) blended with poly(ethylene oxide) that is compatibilized with difunctional oligomers that are the same structure as the blend components is currently under investigation. It is expected that the oligomers can undergo an addition copolymerization during processing to create the blocky copolymers at the biphasic interface. Initial tensile measurements show that the addition of the reactive oligomers improves the properties of the blend. Additionally, preliminary results indicate that reactive oligomers may act as plasticizers and continue to polymerize at room temperature after the blend is removed from the melt mixer if insufficiently mixed.

  11. Anticoagulant flavonoid oligomers from the rhizomes of Alpinia platychilus.

    PubMed

    Shen, Chuan-Pu; Luo, Jian-Guang; Yang, Ming-Hua; Kong, Ling-Yi

    2015-10-01

    Two pairs of enantiomers of flavonoid oligomers (1a and 1b, 2a and 2b) along with one known chalcone (3) were isolated from the rhizomes of Alpinia platychilus. Their structures were elucidated on the basis of spectroscopic data (MS and 1D/2D NMR). The absolute configurations of the flavonoid oligomers were established by their ECD spectra. Separation of the enantiomeric mixtures (1a and 1b, 2a and 2b) was achieved on a chiral column using hexane:isopropyl alcohol:ethanol (7:2:1) as eluents. The anticoagulant assay showed that 2a, 2b and 3 exhibited potent activities to prolong the prothrombin times (PT) and the thrombin times (TT).

  12. Phase behavior of a lattice hydrophobic oligomer in explicit water.

    PubMed

    Romero-Vargas Castrillón, Santiago; Matysiak, Silvina; Stillinger, Frank H; Rossky, Peter J; Debenedetti, Pablo G

    2012-08-09

    We investigate the thermodynamics of hydrophobic oligomer collapse using a water-explicit, three-dimensional lattice model. The model captures several aspects of protein thermodynamics, including the emergence of cold- and thermal-unfolding, as well as unfolding at high solvent density (a phenomenon akin to pressure-induced denaturation). We show that over a range of conditions spanning a ≈14% increase in solvent density, the oligomer transforms into a compact, strongly water-penetrated conformation at low temperature. This contrasts with thermal unfolding at high temperature, where the system "denatures" into an extended random coil conformation. We report a phase diagram for hydrophobic collapse that correctly captures qualitative aspects of cold and thermal unfolding at low to intermediate solvent densities.

  13. A HRMS study of oligomer formation through aqueous phase photooxidation of methylvinyl-ketone and methacrolein

    NASA Astrophysics Data System (ADS)

    Salque-moreton, G.; Liu, Y.; Voisin, D.; Siekmann, F.; Renard, P.; Monod, A.; Thissen, R.

    2012-04-01

    Global estimates of secondary organic aerosol (SOA) formation flux show that the current descriptions miss a large fraction of the sources. Aqueous phase photochemistry in cloud droplets and deliquescent aerosol may provide some of this missing flux. Organic reactions in those media, particularly leading to higher molecular weight products thus need better understanding. Here, we investigated the aqueous phase photooxidation of methacrolein (MACR) and methylvinyl-ketone (MVK), which are the two main oxidation products of isoprene, the volatile organic compound (VOC) that is mostly emitted on the global scale. In our experiments, photolysis of H2O2 provided OH radicals whose reaction with MACR or MVK produced oligomers. Firstly, oligomers were analyzed using electrospray ionization coupled with high-resolution linear ion trap Orbitrap™ (Thermo Corp.) mass spectrometer (HRMS). This technique enabled to propose the unambiguous elemental composition of the produced compounds as data were collected for a mass range of m/z 50-2000 amu. The mass of oligomers increased strongly in positive and negative ionization modes when initial concentrations of MACR and MVK were increased from 2 to 20 mM. Typical regular patterns of oligomer formation were observed for both precursors, and extended up to 1400 amu. These patterns were very different from each other for the two precursors although both showed regular mass differences of 70 amu. In addition, we used a Kendrick analysis and identified more than 20 distinct chemical oligomer series produced by photooxidation of both MACR and MVK, some of which reaching more than 1400 amu. The HRMS investigations allowed us to propose a mechanism of production of oligomers. Upon nebulization, both oligomer systems produce SOA with a mass yield of 2-12%. This mass yield increases with reaction time and precursor concentration. Moreover, time evolution of the oligomer systems observed with the Orbitrap will be compared to HR

  14. Absorption enhancing effects of chitosan oligomers on the intestinal absorption of low molecular weight heparin in rats.

    PubMed

    Zhang, Hailong; Mi, Jie; Huo, Yayu; Huang, Xiaoyan; Xing, Jianfeng; Yamamoto, Akira; Gao, Yang

    2014-05-15

    Absorption enhancing effects of chitosan oligomers with different type and varying concentration on the intestinal absorption of low molecular weight heparin (LMWH) were examined by an in situ closed loop method in different intestinal sections of rats. Chitosan hexamer with the optimal concentration of 0.5% (w/v) showed the highest absorption enhancing ability both in the small intestine and large intestine. The membrane toxicities of chitosan oligomers were evaluated by morphological observation and determining the biological markers including amount of protein and activity of lactate dehydrogenase (LDH) released from intestinal epithelium cells. There was no obvious change both in levels of protein and LDH and morphology in the intestinal membrane between control and various chitosan oligomers groups, suggesting that chitosan oligomers did not induce any significant membrane damage to the intestinal epithelium. In addition, zeta potentials became less negative and amount of free LMWH gradually decreased when various chitosan oligomers were added to LMWH solution, revealing that electrostatic interaction between positively charged chitosan oligomers and negative LMWH was included in the absorption enhancing mechanism of chitosan oligomers. In conclusion, chitosan oligomers, especially chitosan hexamer, are safe and efficient absorption enhancers and can be used promisingly to improve oral absorption of LMWH.

  15. Glycosyl-Templated Chiral Helix Stapling of Ethynylpyridine Oligomers by Alkene Metathesis between Inter-Pitch Side Chains.

    PubMed

    Abe, Hajime; Kayamori, Fumihiro; Inouye, Masahiko

    2015-06-22

    Ethynylpyridine polymers and oligomers consisting of 4-substituted pyridine rings linked by acetylene bonds at the 2- and 6-positions have been investigated. Ethynylpyridine oligomers covalently linked with a glycosyl chiral template form chiral helical complexes by intramolecular hydrogen bonding, in which the chirality of the template is translated to the helix. With a view to fixation of the chiral architecture, D/L-galactosyl- and D/L-mannosyl-linked ethynylpyridine oligomers have been developed with 4-(3-butenyloxy)pyridine units having alkene side chains. The helical structures are successfully stapled by alkene metathesis of the side chains. Subsequent removal of the chiral templates by acidolysis produces template-free stapled oligomers. The chiral, template-free, stapled oligomers show chiral helicity, which is resistant to polar solvents and heating.

  16. Soluble Prion Protein Binds Isolated Low Molecular Weight Amyloid-β Oligomers Causing Cytotoxicity Inhibition.

    PubMed

    Williams, Thomas L; Choi, Jin-Kyu; Surewicz, Krystyna; Surewicz, Witold K

    2015-12-16

    A growing number of observations indicate that soluble amyloid-β (Aβ) oligomers play a major role in Alzheimer's disease. Recent studies strongly suggest that at least some of the neurotoxic effects of these oligomers are mediated by cellular, membrane-anchored prion protein and that Aβ neurotoxicity can be inhibited by soluble recombinant prion protein (rPrP) and its fragments. However, the mechanism by which rPrP interacts with Aβ oligomers and prevents their toxicity is largely unknown, and studies in this regard are hindered by the large structural heterogeneity of Aβ oligomers. To overcome this difficulty, here we used photoinduced cross-linking of unmodified proteins (PICUP) to isolate well-defined oligomers of Aβ42 and characterize these species with regard to their cytotoxicity and interaction with rPrP, as well the mechanism by which rPrP inhibits Aβ42 cytotoxicity. Our data shows that the addition of rPrP to the assembling Aβ42 results in a shift in oligomer size distribution, decreasing the population of toxic tetramers and higher order oligomers and increasing the population of nontoxic (and possibly neuroprotective) monomers. Isolated oligomeric species of Aβ42 are cytotoxic to primary neurons and cause permeation of model lipid bilayers. These toxic effects, which are oligomer size-dependent, can be inhibited by the addition of rPrP, and our data suggest potential mechanisms of this inhibitory action. This insight should help in current efforts to develop PrP-based therapeutics for Alzheimer's disease.

  17. KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents.

    PubMed

    Fritzius, Thorsten; Turecek, Rostislav; Seddik, Riad; Kobayashi, Hiroyuki; Tiao, Jim; Rem, Pascal D; Metz, Michaela; Kralikova, Michaela; Bouvier, Michel; Gassmann, Martin; Bettler, Bernhard

    2017-02-01

    GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K(+)-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K(+) currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K(+) current responses in the hippocampus.

  18. pRB is required for interferon-gamma-induction of the MHC class II abeta gene.

    PubMed

    Zhu, X; Pattenden, S; Bremner, R

    1999-09-02

    pRB is required for IFN-gamma-induction of MHC class II in human tumor cell lines, providing a potential link between tumor suppressors and the immune system. However, other genes, such as cyclin D1, show pRB-dependency only in tumor cells, so by analogy, pRB may not be necessary for cII-regulation in normal cells. Here, we demonstrate that induction of the mouse MHC class II I-A heterodimer is normal in RB+/+ mouse embryonic fibroblasts (MEFs), but deficient in RB-/- MEFs. Inducibility is restored in RB-/- MEFs stably transfected with wild type RB cDNA or infected with an adenovirus expressing pRB. Thus, involvement of pRB in MHC class II expression is conserved in the mouse and is not an aberrant feature of tumorigenic, aneuploid, human tumor cells. Although cII genes are generally induced in a coordinate fashion, suggesting a common mechanism, we found that pRB was specifically required for induction of the Abeta, but not Aalpha or other MHC cII genes including Ebeta, Ii and H2-Malpha. Finally, IFN-gamma-induction of class II transactivator (CIITA), was pRB-independent, suggesting that pRB works downstream of this master-regulator of MHC class II expression.

  19. Characterization of reducible peptide oligomers as carriers for gene delivery.

    PubMed

    Kiselev, Anton; Egorova, Anna; Laukkanen, Antti; Baranov, Vladislav; Urtti, Arto

    2013-01-30

    The stability of DNA-polyplexes and intracellular DNA release are important features of gene delivery systems. To study these features, we have evaluated reducible cysteine-flanked linear lysine and arginine-rich peptides, modified with histidine residues. The reducible disulfide bonds in cysteine flanked peptides and histidine residues should augment DNA release from the peptide-DNA complexes upon disintegration of the reducible bonds. Template polymerization and oxidative polycondensation were applied to obtain peptide oligomers used for DNA-polyplex preparation. The peptides and DNA-peptide complexes were investigated with physical, chemical and transfection measurements. Physicochemical and transfection properties of DNA-polyplexes depended on the amino acid sequence of the peptidic polymers and type of the polymerization. MALDI-TOF analysis of oxidatively polycondensed products revealed several forms of peptide oligomers corresponding to 5-8 amino acid monomers. DNA-peptide particles based on template-polymerized complexes were more resistant to relaxation by negatively charged heparan sulfate than polyplexes formed with oxidatively condensed peptides. Complexes of DNA with the polycations prepared by oxidative polycondensation exhibited a 100-1000-fold higher level of gene expression compared to DNA/template-polymerized peptide complexes. The most efficient transgene expression was shown with arginine-rich polyplexes. Transfection efficacy of the arginine-rich polyplexes was even 10-fold better than that of DNA/PEI complexes. On average, polyplexes based on cysteine-flanked peptide oligomers showed lower cytotoxicity than non-reducible high molecular weight polylysine/DNA particles. We conclude that reducible peptide oligomers provide efficient DNA transfection and have the potential as vehicles for gene delivery.

  20. Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors.

    PubMed

    Luan, Chao-Ran; Liu, Yan-Hong; Zhang, Ji; Yu, Qing-Ying; Huang, Zheng; Wang, Bing; Yu, Xiao-Qi

    2016-05-04

    A series of oligomers were synthesized via ring-opening polymerization. Although the molecular weights of these oligomers are only ∼2.5 kDa, they could efficiently bind and condense DNA into nanoparticles. These oligomers gave comparable transfection efficiency (TE) to PEI 25 kDa, while their TE could even increase with the presence of serum, and up to 65 times higher TE than PEI was obtained. The excellent serum tolerance was also confirmed by TEM, flow cytometry, and BSA adsorption assay. Moreover, structure-activity relationship studies revealed some interesting factors. First, oligomers containing aromatic rings in the backbone showed better DNA binding ability. These materials could bring more DNA cargo into the cells, leading to much better TE. Second, the isomerism of the disubstituted phenyl group on the oligomer backbone has large effect on the transfection. The ortho-disubstituted ones gave at least 1 order of magnitude higher TE than meta- or para-disubstituted oligomers. Gel electrophoresis involving DNase and heparin indicated that the difficulty to release DNA might contribute to the lower TE of the latter. Such clues may help us to design novel nonviral gene vectors with high efficiency and biocompatibility.

  1. Development of Tc-99m Imaging Agents for Abeta Plaques

    SciTech Connect

    Zhi-Ping, Zhuang; Mei-Ping Kung; Catherihne Hou; Hank F. Kung

    2008-09-26

    Development of SPECT imaging agents based on Tc-99m targeting Aβ plaques is useful for diagnosis of Alzheimer’s disease (AD). A stilbene derivative, [11C]SB-13, showing promise in detecting senile plaques present in AD patients has been reported previously1,2. Based on the 4’-amino-stilbene core structure we have added substituted groups through which a chelating group, N2S2, was conjugated. We report herein a series of Tc-99m labeled stilbene derivative conjugated with a TcO[N2S2] core. The syntheses of stilbenes containing a N2S2 chelating ligand are achieved by a scheme shown. Lipophilic 99mTc stilbene complexes were successfully prepared and purified through HPLC. Preliminary results of in vitro labeling of brain sections from transgenic mice showed very promising plaque labeling. These 99mTc stilbene derivatives are warranted for further evaluations as potential imaging agents targeting amyloid plaques.

  2. Effect of molecular weight of oligomer on ionic diffusion in oligomer electrolytes and its implication for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Park, Jong Hyuk; Choi, Kyu Jin; Kim, Junkyung; Kang, Yong Soo; Lee, Sang-Soo

    This study measures the diffusion coefficients of I - and I 3 - in oligomer electrolytes as a function of the molecular weight of oligomers and investigates their effect on the performance of dye-sensitized solar cells (DSSCs). The high-diffusion coefficients of ions in an oligomer electrolyte with a lower molecular weight can help to promote the redox mechanism in DSSCs and thereby increase the short-circuit current density. They can also cause a decrease in the open-circuit voltage since a high-diffusion coefficient of I 3 - is capable of reducing the lifetime of electrons in TiO 2 electrodes. To offset these effects, N-methyl-benzimidazole is added to the oligomer electrolytes, thereby improving the open-circuit voltage and fill factor and, consequently, the overall energy-conversion efficiency, which increases to over 5%. A further test involving storage at a high temperature of 75 °C demonstrates that DSSCs employing the oligomer electrolytes show excellent thermal stability over 200 h.

  3. Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate.

    PubMed

    Yang, Ting; Li, Shaomin; Xu, Huixin; Walsh, Dominic M; Selkoe, Dennis J

    2017-01-04

    Soluble oligomers of amyloid β-protein (oAβ) isolated from the brains of Alzheimer's disease (AD) patients have been shown experimentally (in the absence of amyloid plaques) to impair hippocampal synaptic plasticity, decrease synapses, induce tau hyperphosphorylation and neuritic dystrophy, activate microglial inflammation, and impair memory in normal adult rodents. Nevertheless, there has been controversy about what types of oligomers actually confer these AD-like phenotypes. Here, we show that the vast majority of soluble Aβ species obtained from brains of humans who died with confirmed AD elute at high molecular weight (HMW) on nondenaturing size-exclusion chromatography. These species have little or no cytotoxic activity in several bioassays. However, incubation of HMW oAβ in mildly alkaline buffer led to their quantitative dissociation into low molecular weight oligomers (∼8-70 kDa), and these were now far more bioactive: they impaired hippocampal LTP, decreased neuronal levels of β2-adrenergic receptors, and activated microglia in wt mice in vivo Thus, most soluble Aβ assemblies in AD cortex are large and inactive but under certain circumstances can dissociate into smaller, highly bioactive species. Insoluble amyloid plaques likely sequester soluble HMW oligomers, limiting their potential to dissociate. We conclude that conditions that destabilize HMW oligomers or retard the sequestration of their smaller, more bioactive components are important drivers of Aβ toxicity. Selectively targeting these small, cytotoxic forms should be therapeutically beneficial.

  4. Lactic acid oligomers (OLAs) as prodrug moieties.

    PubMed

    Kruse, J; Lachmann, B; Lauer, R; Eppacher, S; Noe, C R

    2013-02-01

    In this paper we propose the use of lactic acid oligomers (OLAs) as prodrug moieties. Two synthetic approaches are presented, on the one hand a non selective oligomerisation of lactic acid and on the other hand a block synthesis to tetramers of lactic acid. Dimers of lactic acid were investigated with respect to their plasma stability and their adsorption to albumine. Ibuprofen was chosen as the first drug for OLAylation. The ester 19 of LA(1)-ibuprofen was evaluated with respect to the degradation to human plasma and the adsorption to albumine. All results indicate that lactic acid oligomers are promising prodrug moieties.

  5. Intracellular soluble α‐synuclein oligomers reduce pyramidal cell excitability

    PubMed Central

    Kaufmann, Timothy J.; Harrison, Paul M.; Richardson, Magnus J. E.; Pinheiro, Teresa J. T.

    2016-01-01

    Key points The presynaptic protein α‐synuclein forms aggregates during Parkinson's disease.Accumulating evidence suggests that the small soluble oligomers of α‐synuclein are more toxic than the larger aggregates appearing later in the disease.The link between oligomer toxicity and structure still remains unclear.In the present study, we have produced two structurally‐defined oligomers that have a similar morphology but differ in secondary structure.These oligomers were introduced into neocortical pyramidal cells during whole‐cell recording and, using a combination of experimentation and modelling, electrophysiological parameters were extracted.Both oligomeric species had similar effects on neuronal properties reducing input resistance, time constant and increasing capacitance. The net effect was a marked reduction in neuronal excitability that could impact on network activity. Abstract The presynaptic protein α‐synuclein (αSyn) aggregates during Parkinson's disease (PD) to form large proteinaceous amyloid plaques, the spread of which throughout the brain clinically defines the severity of the disease. During early stages of aggregation, αSyn forms soluble annular oligomers that show greater toxicity than much larger fibrils. These oligomers produce toxicity via a number of possible mechanisms, including the production of pore‐forming complexes that permeabilize membranes. In the present study, two well‐defined species of soluble αSyn oligomers were produced by different protocols: by polymerization of monomer and by sonication of fibrils. The two oligomeric species produced were morphologically similar, with both having an annular structure and consisting of approximately the same number of monomer subunits, although they differed in their secondary structure. Oligomeric and monomeric αSyn were injected directly into the soma of pyramidal neurons in mouse neocortical brain slices during whole‐cell patch clamp recording. Using a combined

  6. A 3'-UTR polymorphism in the oxidized LDL receptor 1 gene increases Abeta40 load as cerebral amyloid angiopathy in Alzheimer's disease.

    PubMed

    Shi, Jing; Tian, Jinzhou; Pritchard, Antonia; Lendon, Corinne; Lambert, Jean-Charles; Iwatsubo, Takeshi; Mann, David M A

    2006-01-01

    It is presently unclear whether polymorphic variations in the oxidized low-density lipoprotein receptor 1 (OLR1), or low-density lipoprotein receptor-related protein 1 (LRP1), genes act as risk factors for Alzheimer's disease (AD). In the present study, we have investigated the extent of amyloid beta protein (Abeta) deposition as cerebral amyloid angiopathy (CAA) or senile plaques (SP) in relationship to OLR1 +1071 and +1073 polymorphisms and LRP1 C766T polymorphism in patients with AD There was an increased Abeta40 load as CAA, but not as SP, in frontal cortex of AD patients carrying OLR1+1073 CC genotype, compared to those with CT, TT or CT+TT genotypes, but only in those individuals without apolipoprotein (APOE) epsilon4 allele. No differences in total Abeta or Abeta42 load as CAA or SP between OLR1+1073 genotypes was seen, nor were there any differences between OLR1+1071 and LRP1 genotypes for any measure of Abeta. Present data suggests that homozygosity for the C allele for OLR1+1073 polymorphism, selectively in individuals without APOE epsilon4 allele, may impair clearance of Abeta, and particularly Abeta40, from the brain across the blood-brain barrier, leading to its 'diversion' into perivascular drainage channels, thereby increasing the severity of CAA in such persons.

  7. Chronic exposure to sub-lethal beta-amyloid (Abeta) inhibits the import of nuclear-encoded proteins to mitochondria in differentiated PC12 cells.

    PubMed

    Sirk, Daniel; Zhu, Ziping; Wadia, Jehangir S; Shulyakova, Natalya; Phan, Nam; Fong, Jamie; Mills, Linda R

    2007-12-01

    Studies on amyloid beta (Abeta|), the peptide thought to play a crucial role in the pathogenesis of Alzheimer's disease, have implicated mitochondria in Abeta-mediated neurotoxicity. We used differentiated PC12 cells stably transfected with an inducible green fluorescent protein (GFP) fusion protein containing an N'-terminal mitochondrial targeting sequence (mtGFP), to examine the effects of sub-lethal Abeta on the import of nuclear-encoded proteins to mitochondria. Exposure to sub-lethal Abeta(25-35) (10 mumol/L) for 48 h inhibited mtGFP import to mitochondria; average rates decreased by 20 +/- 4%. Concomitant with the decline in mtGFP, cytoplasmic mtGFP increased significantly while mtGFP expression and intramitochondrial mtGFP turnover were unchanged. Sub-lethal Abeta(1-42) inhibited mtGFP import and increased cytoplasmic mtGFP but only after 96 h. The import of two endogenous nuclear-encoded mitochondrial proteins, mortalin/mtHsp70 and Tom20 also declined. Prior to the decline in import, mitochondrial membrane potential (mmp), and reactive oxygen species levels were unchanged in Abeta-treated cells versus reverse phase controls. Sustained periods of decreased import were associated with decreased mmp, increased reactive oxygen species, increased vulnerability to oxygen-glucose deprivation and altered mitochondrial morphology. These findings suggest that an Abeta-mediated inhibition of mitochondrial protein import, and the consequent mitochondrial impairment, may contribute to Alzheimer's disease.

  8. Evidence for the binding of phosphate ion to the C-terminus region in Abeta1-40 using heteronuclear NMR analyses.

    PubMed

    Nagata-Uchiyama, Makiko; Abe, Yoshito; Monji, Akira; Kanba, Shigenobu; Ueda, Tadashi

    2010-02-01

    Amyloid fibril formation of amyloid beta peptide 1-40 (Abeta 1-40) was reported to be retarded in the presence of 150mM phosphate buffer at pH 7 [Monji, Ustumi, Ueda, Imoto, Yoshida, Hashioka, Tashiro and Tashiro, J. Neurochemistry, 77, 1425-1432 (2007)]. In order to elucidate the reason why phosphate ion retards the amyloid fibril formation, we examined the preferential binding sites of phosphate ion to Abeta 1-40 using chemical shift perturbation analysis of heteronuclear NMR. In titration analysis of (15)N-labeled Abeta1-40 in the presence of 150 mM phosphate ion or 150 mM chloride ion, we identified the residues affected by these ions in Abeta 1-40. As a result, we found the tendency that phosphate ion preferentially bound to some residues located on the C-terminus region where the region was reported to be the potential beta-strand region in Abeta1-40. Therefore, we suggested that phosphate ions interacted with the potential beta-strand region in Abeta1-40 to be hard to form beta-sheet in Abeta 1-40, resulting in retardation of the amyloid fibril formation.

  9. Alzheimer therapy with an antibody against N-terminal Abeta 4-X and pyroglutamate Abeta 3-X

    PubMed Central

    Antonios, Gregory; Borgers, Henning; Richard, Bernhard C.; Brauß, Andreas; Meißner, Julius; Weggen, Sascha; Pena, Vladimir; Pillot, Thierry; Davies, Sarah L.; Bakrania, Preeti; Matthews, David; Brownlees, Janet; Bouter, Yvonne; Bayer, Thomas A.

    2015-01-01

    Full-length Aβ1-42 and Aβ1-40, N-truncated pyroglutamate Aβ3-42 and Aβ4-42 are major variants in the Alzheimer brain. Aβ4-42 has not been considered as a therapeutic target yet. We demonstrate that the antibody NT4X and its Fab fragment reacting with both the free N-terminus of Aβ4-x and pyroglutamate Aβ3-X mitigated neuron loss in Tg4-42 mice expressing Aβ4-42 and completely rescued spatial reference memory deficits after passive immunization. NT4X and its Fab fragment also rescued working memory deficits in wild type mice induced by intraventricular injection of Aβ4-42. NT4X reduced pyroglutamate Aβ3-x, Aβx-40 and Thioflavin-S positive plaque load after passive immunization of 5XFAD mice. Aβ1-x and Aβx-42 plaque deposits were unchanged. Importantly, for the first time, we demonstrate that passive immunization using the antibody NT4X is therapeutically beneficial in Alzheimer mouse models showing that N-truncated Aβ starting with position four in addition to pyroglutamate Aβ3-x is a relevant target to fight Alzheimer’s disease. PMID:26626428

  10. Alzheimer therapy with an antibody against N-terminal Abeta 4-X and pyroglutamate Abeta 3-X.

    PubMed

    Antonios, Gregory; Borgers, Henning; Richard, Bernhard C; Brauß, Andreas; Meißner, Julius; Weggen, Sascha; Pena, Vladimir; Pillot, Thierry; Davies, Sarah L; Bakrania, Preeti; Matthews, David; Brownlees, Janet; Bouter, Yvonne; Bayer, Thomas A

    2015-12-02

    Full-length Aβ1-42 and Aβ1-40, N-truncated pyroglutamate Aβ3-42 and Aβ4-42 are major variants in the Alzheimer brain. Aβ4-42 has not been considered as a therapeutic target yet. We demonstrate that the antibody NT4X and its Fab fragment reacting with both the free N-terminus of Aβ4-x and pyroglutamate Aβ3-X mitigated neuron loss in Tg4-42 mice expressing Aβ4-42 and completely rescued spatial reference memory deficits after passive immunization. NT4X and its Fab fragment also rescued working memory deficits in wild type mice induced by intraventricular injection of Aβ4-42. NT4X reduced pyroglutamate Aβ3-x, Aβx-40 and Thioflavin-S positive plaque load after passive immunization of 5XFAD mice. Aβ1-x and Aβx-42 plaque deposits were unchanged. Importantly, for the first time, we demonstrate that passive immunization using the antibody NT4X is therapeutically beneficial in Alzheimer mouse models showing that N-truncated Aβ starting with position four in addition to pyroglutamate Aβ3-x is a relevant target to fight Alzheimer's disease.

  11. Designing Surface-Confined Coordination Oligomers

    SciTech Connect

    Altman, M.; Rachamim, M; Ichiki, T; Iron, M; Evmenenko, G; Dutta, P; van der Boom, M

    2010-01-01

    HOMO-LUMO engineering of coordination-based oligomers covalently bound to silicon or glass has been achieved by the use of a partially fluorinated chromophore (see graphic). The experimental and computationally derived physical chemical properties of these assemblies are compared to their non-fluorinated analogues.

  12. Glucosamine oligomers: 1. Preparation and characterization.

    PubMed

    Domard, A; Cartier, N

    1989-10-01

    Hydrolysis of chitosan in hot concentrated HCl led to chito-oligosaccharides [beta-(1----4) linked 2-amino-2-deoxy-D-glucose]. The time dependence of the distribution was studied. A convenient choice of the conditions for steric exclusion chromatography of these hydrolysates allowed the separation of the first 15 oligomers and of fractions up to DP = 40.

  13. Modulation of the humoral and cellular immune response in Abeta immunotherapy by the adjuvants monophosphoryl lipid A (MPL), cholera toxin B subunit (CTB) and E. coli enterotoxin LT(R192G).

    PubMed

    Maier, Marcel; Seabrook, Timothy J; Lemere, Cynthia A

    2005-10-25

    Abeta vaccination or passive transfer of human-specific anti-Abeta antibodies are approaches under investigation to prevent and/or treat Alzheimer's disease (AD). Successful active Abeta vaccination requires a strong and safe adjuvant to induce anti-Abeta antibody formation. We compared the adjuvants monophosphoryl lipid A (MPL)/trehalose dicorynomycolate (TDM), cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin LT(R192G) for their ability to induce a humoral and cellular immune reaction, using fibrillar Abeta1-40/42 as a common immunogen in wildtype B6D2F1 mice. Subcutaneous (s.c.) administration with MPL/TDM resulted in anti-Abeta antibodies levels up to four times higher compared to s.c. LT(R192G). Using MPL/TDM, the anti-Abeta antibodies induced were mainly IgG2b, IgG1 and lower levels of IgG2a and IgM, with a moderate splenocyte proliferation and IFN-gamma production in vitro upon stimulation with Abeta1-40/42. LT(R192G), previously shown by us to induce robust titers of anti-Abeta antibodies, generated predominantly IgG2b and IgG1 anti-Abeta antibodies with very low splenocyte proliferation and IFN-gamma production. Weekly intranasal (i.n.) administration over 11 weeks of Abeta40/42 with CTB induced only moderate levels of antibodies. All immunogens generated antibodies that recognized mainly the Abeta1-7 epitope and specifically detected amyloid plaques on AD brain sections. In conclusion, MPL/TDM, in addition to LT(R192G), is an effective adjuvant when combined with Abeta40/42 and may aid in the design of Abeta immunotherapy.

  14. Vesicle permeabilization by purified soluble oligomers of prion protein: a comparative study of the interaction of oligomers and monomers with lipid membranes.

    PubMed

    Chich, J-F; Chapuis, C; Henry, C; Vidic, J; Rezaei, H; Noinville, S

    2010-04-09

    The conversion of normal cellular prion protein (PrP) into its pathological isoform, scrapie PrP, may occur at the cell surface or, more probably, in late endosomes. The early events leading to the structural conversion of PrP appear to be related to the presence of more or less stable soluble oligomers, which might mediate neurotoxicity. In the current study, we investigate the interaction of alpha-rich PrP monomers and beta-rich size-exclusion-chromatography-purified PrP oligomers with lipid membranes. We compare their structural properties when associated with lipid bilayers and study their propensities to permeabilize the membrane at physiological pH. We also study the influence of the N-terminal flexible region (residues 24-103) by comparing full-length PrP(24-234) and N-terminally truncated PrP(104-234) oligomers. We showed that both 12-subunit oligomers cause an immediate and large increase in the permeability of the membrane, whereas equivalent amounts of monomeric forms cause no detectable leakage. Although the two monomeric PrP constructs undergo an alpha-to-beta conformational change when bound to the negatively charged membrane, only the full-length form of monomeric PrP has a weak fusogenic effect. Finally, the oligomers affect the integrity of the membrane differently from the monomers, independently of the presence of the N-terminal flexible domain. As for other forms of amyloidogenesis, a reasonable mechanism for the toxicity arising from PrP fibrillization must be associated with low-molecular-weight oligomeric intermediates, rather than with mature fibrils. Knowledge of the mechanism of action of these soluble oligomers would have a high impact on the development of novel therapeutic targets.

  15. Salt anions promote the conversion of HypF-N into amyloid-like oligomers and modulate the structure of the oligomers and the monomeric precursor state.

    PubMed

    Campioni, Silvia; Mannini, Benedetta; López-Alonso, Jorge P; Shalova, Irina N; Penco, Amanda; Mulvihill, Estefania; Laurents, Douglas V; Relini, Annalisa; Chiti, Fabrizio

    2012-12-07

    An understanding of the solution factors contributing to the rate of aggregation of a protein into amyloid oligomers, to the modulation of the conformational state populated prior to aggregation and to the structure/morphology of the resulting oligomers is one of the goals of present research in this field. We have studied the influence of six different salts on the conversion of the N-terminal domain of Escherichiacoli HypF (HypF-N) into amyloid-like oligomers under conditions of acidic pH. Our results show that salts having different anions (NaCl, NaClO(4), NaI, Na(2)SO(4)) accelerate oligomerization with an efficacy that follows the electroselectivity series of the anions (SO(4)(2-)≥ ClO(4)(-)>I(-)>Cl(-)). By contrast, salts with different cations (NaCl, LiCl, KCl) have similar effects. We also investigated the effect of salts on the structure of the final and initial states of HypF-N aggregation. The electroselectivity series does not apply to the effect of anions on the structure of the oligomers. By contrast, it applies to their effect on the content of secondary structure and on the exposure of hydrophobic clusters of the monomeric precursor state. The results therefore indicate that the binding of anions to the positively charged residues of HypF-N at low pH is the mechanism by which salts modulate the rate of oligomerization and the structure of the monomeric precursor state but not the structure of the resulting oligomers. Overall, the data contribute to rationalize the effect of salts on amyloid-like oligomer formation and to explain the role of charged biological macromolecules in protein aggregation processes.

  16. Novel demonstration of amyloid-β oligomers in sporadic inclusion-body myositis muscle fibers.

    PubMed

    Nogalska, Anna; D'Agostino, Carla; Engel, W King; Klein, William L; Askanas, Valerie

    2010-11-01

    Accumulation of amyloid-β (Aβ) within muscle fibers has been considered an upstream step in the development of the s-IBM pathologic phenotype. Aβ42, which is considered more cytotoxic than Aβ40 and has a higher propensity to oligomerize, is preferentially increased in s-IBM muscle fibers. In Alzheimer disease (AD), low-molecular weight Aβ oligomers and toxic oligomers, also referred to as "Aβ-Derived Diffusible Ligands" (ADDLs), are considered strongly cytotoxic and proposed to play an important pathogenic role. ADDLs have been shown to be increased in AD brain. We now report for the first time that in s-IBM muscle biopsies Aβ-dimer, -trimer, and -tetramer are identifiable by immunoblots. While all the s-IBM samples we studied had Aβ-oligomers, their molecular weights and intensity varied between the patient samples. None of the control muscle biopsies had Aβ oligomers. Dot-immunoblots using highly specific anti-ADDL monoclonal antibodies also showed highly increased ADDLs in all s-IBM biopsies studied, while controls were negative. By immunofluorescence, in some of the abnormal s-IBM muscle fibers ADDLs were accumulated in the form of plaque-like inclusions, and were often increased diffusely in very small fibers. Normal and disease-controls were negative. By gold-immuno-electron microscopy, ADDL-immunoreactivities were in close proximity to 6-10 nm amyloid-like fibrils, and also were immunodecorating amorphous and floccular material. In cultured human muscle fibers, we found that inhibition of autophagy led to the accumulation of Aβ oligomers. This novel demonstration of Aβ42 oligomers in s-IBM muscle biopsy provides additional evidence that intra-muscle fiber accumulation of Aβ42 oligomers in s-IBM may contribute importantly to s-IBM pathogenic cascade.

  17. Discrete Molecular Dynamics Study of Oligomer Formation by N-Terminally Truncated Amyloid β-Protein

    PubMed Central

    Meral, Derya; Urbanc, Brigita

    2013-01-01

    In Alzheimer’s disease (AD), amyloid β-protein (Aβ) self–assembles into toxic oligomers. Of the two predominant Aβ alloforms, Aβ1–40 and Aβ1–42, the latter is particularly strongly linked to AD. N-terminally truncated and pyroglutamated Aβ peptides were recently shown to seed Aβ aggregation and contribute significantly to Aβ–mediated toxicity, yet their folding and assembly were not explored computationally. Discrete molecular dynamics (DMD) approach previously captured in vitro–derived distinct Aβ1–40 and Aβ1–42 oligomer size distributions and predicted that the more toxic Aβ1–42 oligomers had more flexible and solvent exposed N-termini than Aβ1–40 oligomers. Here, we examined oligomer formation of Aβ3–40, Aβ3–42, Aβ11–40, and Aβ11–42 by the DMD approach. The four N-terminally truncated peptides showed increased oligomerization propensity relative to the full–length peptides, consistent with in vitro findings. Conformations formed by Aβ3–40/42 had significantly more flexible and solvent–exposed N-termini than Aβ1–40/42 conformations. In contrast, in Aβ11–40/42 conformations the N-termini formed more contacts and were less accessible to the solvent. The compactness of the Aβ11–40/42 conformations was in part facilitated by Val12. Two single amino acid substitutions that reduced and abolished hydrophobicity at position 12, respectively, resulted in a proportionally increased structural variability. Our results suggest that Aβ11–40 and Aβ11–42 oligomers might be less toxic than Aβ1–40 and Aβ1–42 oligomers and offer a plausible explanation for the experimentally–observed increased toxicity of Aβ3–40 and Aβ3–42 and their pyroglutamated forms. PMID:23500806

  18. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    PubMed Central

    Altman, Robin; Ly, Sonny; Hilt, Silvia; Petrlova, Jitka; Maezawa, Izumi; Kálai, Tamás; Hideg, Kálmán; Jin, Lee-Way; Laurence, Ted A.; Voss, John C.

    2015-01-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer’s disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. Furthermore, the circular dichroism (CD) spectrum of untreated Aβ shows a continuous, progressive change over a 24-hour period, while the spectrum of Aβ treated with SLF remains relatively constant following initial incubation. These findings suggest the conformation of Aβ within the oligomer provides a complementary determinant of Aβ toxicity in addition to oligomer growth and size. Although SLF does not produce a dominant state of secondary structure in Aβ, it does induce a net reduction in beta secondary content compared to untreated samples of Aβ. The FCS results, combined with electron paramagnetic resonance spectroscopy and CD spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers, while retaining Aβ as a population of smaller, yet largely disordered oligomers. PMID:26374940

  19. Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: a comparative study on the oral and pulmonary delivery of calcitonin.

    PubMed

    Zhang, Hailong; Huang, Xiaoyan; Sun, Ya; Xing, Jianfeng; Yamamoto, Akira; Gao, Yang

    2016-09-01

    Effects of chitosan oligomers with different types and varying concentrations on the intestinal and pulmonary absorptions of calcitonin were investigated in rats by an in situ closed loop method and an in vivo pulmonary absorption experiment, respectively. Various chitosan oligomers demonstrated different efficiencies in improving the intestinal and pulmonary absorptions of calcitonin, and chitosan hexamer with the optimal concentration of 0.5% (w/v) showed the greatest absorption enhancing effect. Moreover, pharmacodynamic parameters of calcitonin after its coadministration intrapulmonarily with various chitosan oligomers were consistently larger than that in the intestinal delivery, indicating the superior potential of pulmonary administration for systemic delivery of calcitonin. Furthermore, various chitosan oligomers neither obviously increased release amounts of protein nor activities of lactate dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF), revealing the safety of these chitosan oligomers to lung tissue. In addition, bioadhesions of various chitosan oligomers were well consistent with their absorption enhancing effects in the absorption experiment, suggesting the contribution of mucoadhesive properties of chitosan oligomers to their absorption improving effects. Taken together, chitosan oligomers, especially chitosan hexamer, can effectively improve the intestinal and pulmonary absorptions of calcitonin partly due to the mucoadhesion between positive chitosan oligomers and negative mucus in the membrane.

  20. Transient formation of nano-crystalline structures during fibrillation of an Abeta-like peptide.

    PubMed

    Otzen, Daniel E; Oliveberg, Mikael

    2004-05-01

    During the first few minutes of fibrillation of a 14-residue peptide homologous to the hydrophobic C-terminal part of the Abeta-peptide, EM micrographs reveal small crystalline areas (100 to 150 nm, repeating unit 47 A) scattered in more amorphous material. On a longer time scale, these crystalline areas disappear and are replaced by tangled clusters resembling protofilaments (hours), and eventually by more regular amyloid fibrils of 60 A to 120 A diameter (days). The transient population of the crystalline areas indicates the presence of ordered substructures in the early fibrillation process, the diameter of which matches the length of the 14-mer peptide in an extended beta-strand conformation.

  1. The formation of fibrils by intertwining of filaments: model and application to amyloid Abeta protein.

    PubMed

    van Gestel, Jeroen; de Leeuw, Simon W

    2007-02-15

    We outline a model that describes the interaction of rods that form intertwined bundles. In this simple model, we compare the elastic energy penalty that arises due to the deformation of the rods to the gain in binding energy upon intertwining. We find that, for proper values of the bending Young's modulus and the binding energy, a helical pitch may be found for which the energy of intertwining is most favorable. We apply our description to the problem of Alzheimer's Abeta protein fibrillization. If we forbid configurations that exhibit steric overlap between the protofilaments that make up a protein fibril, our model predicts that fibrils consisting of three protofilaments shall form. This agrees well with experimental results. Our model can also provide an estimate for the helical pitch of suitable fibrils.

  2. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42.

    PubMed

    Liu, Ruitian; Barkhordarian, Hedieh; Emadi, Sharareh; Park, Chan Beum; Sierks, Michael R

    2005-10-01

    A key event in Alzheimer's disease (AD) pathogenesis is the conversion of the peptide beta-amyloid (Abeta) from its soluble monomeric form into various aggregated morphologies in the brain. Preventing aggregation of Abeta is being actively pursued as a primary therapeutic strategy for treating AD. Trehalose, a simple disaccharide, has been shown to be effective in preventing the deactivation of numerous proteins and in protecting cells against stress. Here, we show that trehalose is also effective in inhibiting aggregation of Abeta and reducing its cytotoxicity, although it shows differential effects toward Abeta40 and Abeta42. When co-incubated with Abeta40, trehalose inhibits formation of both fibrillar and oligomeric morphologies as determined by fluorescence staining and atomic force microscopy (AFM). However, when co-incubated with Abeta42, trehalose inhibits formation only of the fibrillar morphology, with significant oligomeric formation still present. When aggregated mixtures were incubated with SH-SY5Y cells, trehalose was shown to reduce the toxicity of Abeta40 mixtures, but not Abeta42. These results provide additional evidence that aggregation of Abeta into soluble oligomeric forms is a pathological step in AD and that Abeta42 in particular is more susceptible to forming these toxic oligomers than Abeta40. These results also suggest that the use of trehalose, a highly soluble, low-priced sugar, as part of a potential therapeutic cocktail to control Abeta peptide aggregation and toxicity warrants further study.

  3. Synthesis and G-Quadruplex-Binding Properties of Defined Acridine Oligomers

    PubMed Central

    Ferreira, Rubén; Aviñó, Anna; Pérez-Tomás, Ricardo; Gargallo, Raimundo; Eritja, Ramon

    2010-01-01

    The synthesis of oligomers containing two or three acridine units linked through 2-aminoethylglycine using solid-phase methodology is described. Subsequent studies on cell viability showed that these compounds are not cytotoxic. Binding to several DNA structures was studied by competitive dialysis, which showed a clear affinity for DNA sequences that form G-quadruplexes and parallel triplexes. The fluorescence spectra of acridine oligomers were affected strongly upon binding to DNA. These spectral changes were used to calculate the binding constants (K). Log K were found to be in the order of 4–6. PMID:20725626

  4. Large-scale motif discovery using DNA Gray code and equiprobable oligomers

    PubMed Central

    Ichinose, Natsuhiro; Yada, Tetsushi; Gotoh, Osamu

    2012-01-01

    Motivation: How to find motifs from genome-scale functional sequences, such as all the promoters in a genome, is a challenging problem. Word-based methods count the occurrences of oligomers to detect excessively represented ones. This approach is known to be fast and accurate compared with other methods. However, two problems have hampered the application of such methods to large-scale data. One is the computational cost necessary for clustering similar oligomers, and the other is the bias in the frequency of fixed-length oligomers, which complicates the detection of significant words. Results: We introduce a method that uses a DNA Gray code and equiprobable oligomers, which solve the clustering problem and the oligomer bias, respectively. Our method can analyze 18 000 sequences of ~1 kbp long in 30 s. We also show that the accuracy of our method is superior to that of a leading method, especially for large-scale data and small fractions of motif-containing sequences. Availability: The online and stand-alone versions of the application, named Hegma, are available at our website: http://www.genome.ist.i.kyoto-u.ac.jp/~ichinose/hegma/ Contact: ichinose@i.kyoto-u.ac.jp; o.gotoh@i.kyoto-u.ac.jp PMID:22057160

  5. Saccharide recognition-induced transformation of pyridine-pyridone alternate oligomers from self-dimer to helical complex.

    PubMed

    Abe, Hajime; Machiguchi, Hiroshi; Matsumoto, Shinya; Inouye, Masahiko

    2008-06-20

    Co-oligomers involving (1H)-4-pyridone and 4-alkoxypyridine rings were studied, and it was found that their supramolecular transformation was caused by saccharide recognition. In the co-oligomers, pyridone and pyridine rings are alternately linked at their 2,6-position with an acetylene bond. The pyridine rings behave as a hydrogen bonding acceptor, and the pyridone rings and tautomerized 4-pyridinol work as a donor. Pyridine-pyridone-pyridine 3-mer was found to self-dimerize on the basis of vapor pressure osmometry in CHCl(3), and the association constant was obtained as 2.3 x 10(3) M(-1) by (1)H NMR titration. Longer 5-, 7-, 9-, and 11-mer oligomers showed considerable broadening and anisotropy in the (1)H NMR spectra due to self-association. These longer oligomers recognized octyl beta-D-glucopyranoside and changed their form into a chiral helical complex, showing characteristic circular dichroism.

  6. Monte Carlo Simulation of Endlinking Oligomers

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Young, Jennifer A.

    1998-01-01

    This report describes initial efforts to model the endlinking reaction of phenylethynyl-terminated oligomers. Several different molecular weights were simulated using the Bond Fluctuation Monte Carlo technique on a 20 x 20 x 20 unit lattice with periodic boundary conditions. After a monodisperse "melt" was equilibrated, chain ends were linked whenever they came within the allowed bond distance. Ends remained reactive throughout, so that multiple links were permitted. Even under these very liberal crosslinking assumptions, geometrical factors limited the degree of crosslinking. Average crosslink functionalities were 2.3 to 2.6; surprisingly, they did not depend strongly on the chain length. These results agreed well with the degrees of crosslinking inferred from experiment in a cured phenylethynyl-terminated polyimide oligomer.

  7. Cure Chemistry of Phenylethynyl Terminated Oligomers

    NASA Technical Reports Server (NTRS)

    Wood, Karen H.; Orwoll, Robert A.; Young, Philip R.; Jensen, Brian J.; McNair, Harold M.

    1997-01-01

    The ability to process high performance polymers into quality, void-free composites has been significantly advanced using oligomers terminated with reactive groups which cure or crosslink at elevated temperature without the evolution of volatile byproducts. Several matrix resin systems of considerable interest to the aerospace community utilize phenylethynyl-terminated imide (PETI) technology to achieve this advantage. The present paper addresses the cure chemistry of PETI oligomers. The thermal cure of a low molecular weight model compound was studied using a variety of analytical techniques including differential scanning calorimetry, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectroscopy. The studies indicate an extremely complex cure process. Many stable products were isolated and this paper reports current work on identification of those products. The intent of this research is to provide fundamental insight into the molecular structure of the cured PETI engineering materials so that performance and durability can be more fully assessed.

  8. Oligomer functionalized nanotubes and composites formed therewith

    DOEpatents

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  9. Ethynyl terminated ester oligomers and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); hesives and composite matrices. (Inventor)

    1987-01-01

    A new class of ethynyl-terminated oligomers and the process for preparing same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These improved polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  10. New Acetylene-Terminated Quinoxaline Oligomers

    DTIC Science & Technology

    1982-03-01

    diketone . In this work, we tried other bases, but potassium t-butoxide and lithium t- butoxide gave unsatisfactory results. Synthesis of acetone adduct...the most expensive ingredient. We have previously been able to improve the synthesis of the bisglyoxals needed for these adhesives,2 and are now...general method of synthesis which have been developed is to first condense the quinoxallne oligomer with glyoxal end groups. 2 r ),-CO--CO-Ar--CO--C&O--j

  11. Asymmetric synthesis of vinylogous β-amino acids and their incorporation into mixed backbone oligomers.

    PubMed

    Wu, Hao; An, Hongchan; Mo, Shuting Cynthia; Kodadek, Thomas

    2017-03-27

    Chiral vinylogous β-amino acids (VBAA) were synthesized using enantioselective Mannich reactions of aldehydes with in situ generated N-carbamoyl imines followed by a Horner-Wadsworth-Emmons reaction. The efficiency with which these units could be incorporated into oligomers with different moieties on the C- and N-terminal sides was established, as was the feasibility of sequencing oligomers containing VBAAs by tandem mass spectrometry. The data show that VBAAs will be useful building blocks for the construction of combinatorial libraries of peptidomimetic compounds.

  12. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    PubMed

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  13. Charge transfer interactions in oligomer coated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-05-01

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  14. Genetics and pathology of alpha-secretase site AbetaPP mutations in the understanding of Alzheimer's disease.

    PubMed

    Van Broeckhoven, Christine; Kumar-Singh, Samir

    2006-01-01

    Development of therapeutics begins with delineating the precise disease pathology along with a reasonable understanding of the sequence of events responsible for the development of disease, or disease pathogenesis. For Alzheimer's disease (AD), the classical pathology is now known for quite some time; however, the disease pathogenesis has eluded our understanding for a complete century. This review, in addition to providing a brief overview of all primary events, will highlight those aspects of AD genetics and novel pathological descriptions linked to unique mutations within AbetaPP that have led to our better understanding of the pathogenesis of AD. Specifically, we will discuss how pathologies linked to the Dutch (E693Q) and Flemish AbetaPP (A692G) mutations have helped in understanding the role of CAA in dementia and in the development of dense-core plaques. In addition, this review will also point directions that warrant additional studies.

  15. Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases

    PubMed Central

    Nilson, Ashley N.; English, Kelsey C.; Gerson, Julia E.; Barton Whittle, T.; Nicolas Crain, C.; Xue, Judy; Sengupta, Urmi; Castillo-Carranza, Diana L.; Zhang, Wenbo; Gupta, Praveena; Kayed, Rakez

    2016-01-01

    It is well-established that inflammation plays an important role in Alzheimer’s disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies. PMID:27716675

  16. Structural studies on HCN oligomers. [catalysts for prebiotic processes

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Edelson, E. H.; Auyeung, J. M.; Joshi, P. C.

    1981-01-01

    NMR spectral studies on the HCN oligomers suggest the presence of carboxamide and urea groupings. The release of CO2, H2O, HCN, CH3CN, HCONH2 and pyridine on pyrolysis is consistent with the presence of these groupings as well as carboxylic acid groups. No basic primary amine groupings could be detected with fluorescamine. Hydrazinolysis of the HCN oligomers releases 10% of the amino acids normally released by acid hydrolysis. The oligomers give a positive biuret test but this is not due to the presence of peptide bonds. There is no conclusive evidence for the presence of peptide bonds in the HCN oligomers. No diglycine was detected on partial hydrolysis of the HCN oligomers at pH 8.5 suggesting that HCN oligomers were not a source of prebiotic peptides.

  17. Relative Orientation of Imidazole Ligands in Cu(II) Model and Abeta peptides Complexes revealed by ESEEM Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernandez, Jessica; Sun, Li; Warncke, Kurt

    2009-11-01

    Alzheimer's Disease (AD) is associated with the aggregation and fibrillization of the beta-amyloid protein (Abeta). The coordination of Cu(II) by peptide histidine imidazole sidechains is proposed to play an important role in determining the fibrillization ``switch'' [1]. We have developed techniques of X-band electron spin echo envelope modulation (ESEEM) spectroscopy to determine the molecular structure of the Cu(II)-histidine imidazole coordination in cryotrapped soluble and fibrillar forms of Abeta peptides, in order to gain insight into the factors that govern fibrillization. Focusing on the ESEEM double quantum harmonic feature, we use our hybrid optimization-based OPTESIM simulation software [2] to determine the mutual orientation of the imidazole rings in Cu(II)--bis-imidazole complexes that include cis- versus trans- coordination. The technique has been applied to Abeta(13-21) peptide to reveal the Cu(II) coordination mode in fibrils. [1] Dong , J., et al., Proc. Natl. Acad. Sci., 2007, 104, 13313. [2] Sun, L., et al., J. Magn. Reson. 2009, 200, 21

  18. Omega-3 fatty acid obtained from Nannochloropsis oceanica cultures grown under low urea protect against Abeta-induced neural damage.

    PubMed

    Lai, Ying-Jang

    2015-05-01

    Amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD). Moreover, it has been reported that oxidative stress is involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Recently, docosahexaenoic acid (DHA; C22:6) and eicosapentaenoic acid (EPA; C20:5n-3) have been reported to protect against AD. However, these omega-3 fatty acids are frequently obtained from fish oil and may contain heavy metals. In this study, we utilized Nannochloropsis oceanica to produce omega-3 fatty acid. We observed that when urea levels (nitrogen source) were lowered from 2 to 0.2 g/L in Nannochloropsis oceanica cultures, EPA production increased. Moreover, EPA in Nannochloropsis oceanica effectively promoted antioxidant activity to counter the Abeta-induced oxidative stress in Neuro-2A cells. These results indicate that Nannochloropsis oceanica may be potentially used as a therapeutic agent or as a functional food that promotes protection against AD.

  19. Air-Stable n-channel Diketopyrrolopyrrole-Diketopyrrolopyrrole Oligomers for High Performance Ambipolar Organic Transistors.

    PubMed

    Mukhopadhyay, Tushita; Puttaraju, Boregowda; Senanayak, Satyaprasad P; Sadhanala, Aditya; Friend, Richard; Faber, Hendrik A; Anthopoulos, Thomas D; Salzner, Ulrike; Meyer, Andreas; Patil, Satish

    2016-09-28

    n-channel organic semiconductors are prone to oxidation upon exposed to ambient conditions. Herein, we report design and synthesis of diketopyrrolopyrrole (DPP)-based oligomers for ambipolar organic thin-film transistors (OFETs) with excellent air and bias stability at ambient conditions. The cyclic voltammetry measurements reveal exceptional electrochemical stability during the redox cycle of oligomers. Structural properties including aggregation, crystallinity, and morphology in thin film were investigated by UV-visible spectroscopy, atomic force microscopy (AFM), thin-film X-ray diffraction (XRD), and grazing incidence small-angle X-ray scattering (GISAXS) measurements. AFM reveals morphological changes induced by different processing conditions whereas GISAXS measurements show an increase in the population of face-on oriented crystallites in films subjected to a combination of solvent and thermal treatments. These measurements also highlight the significance of chalcogen atom from sulfur to selenium on the photophysical, optical, electronic, and solid-state properties of DPP-DPP oligomers. Charge carrier mobilities of the oligomers were investigated by fabricating top-gate bottom-contact (TG-BC) thin-film transistors by annealing the thin films under various conditions. Combined solvent and thermal annealing of DPP-DPP oligomer thin films results in consistent electron mobilities as high as ∼0.2 cm(2) V(-1) s(-1) with an on/off ratio exceeding 10(4). Field-effect behavior was retained for up to ∼4 weeks, which illustrates remarkable air and bias stability. This work paves the way toward the development of n-channel DPP-DPP-based oligomers exhibiting retention of field-effect behavior with superior stability at ambient conditions.

  20. DNA sequence similarity recognition by hybridization to short oligomers

    DOEpatents

    Milosavljevic, Aleksandar

    1999-01-01

    Methods are disclosed for the comparison of nucleic acid sequences. Data is generated by hybridizing sets of oligomers with target nucleic acids. The data thus generated is manipulated simultaneously with respect to both (i) matching between oligomers and (ii) matching between oligomers and putative reference sequences available in databases. Using data compression methods to manipulate this mutual information, sequences for the target can be constructed.

  1. Amyloid β-protein oligomers and Alzheimer’s disease

    PubMed Central

    2013-01-01

    The oligomer cascade hypothesis, which states that oligomers are the initiating pathologic agents in Alzheimer’s disease, has all but supplanted the amyloid cascade hypothesis, which suggested that fibers were the key etiologic agents in Alzheimer’s disease. We review here the results of in vivo, in vitro and in silico studies of amyloid β-protein oligomers, and discuss important caveats that should be considered in the evaluation of these results. This article is divided into four sections that mirror the main approaches used in the field to better understand oligomers: (1) attempts to locate and examine oligomers in vivo in situ; that is, without removing these species from their environment; (2) studies involving oligomers extracted from human or animal tissues and the subsequent characterization of their properties ex vivo; (3) studies of oligomers that have been produced synthetically and studied using a reductionist approach in relatively simple in vitro biophysical systems; and (4) computational studies of oligomers in silico. These multiple orthogonal approaches have revealed much about the molecular and cell biology of amyloid β-protein. However, as informative as these approaches have been, the amyloid β-protein oligomer system remains enigmatic. PMID:24289820

  2. Polyetherurethane oligomers with aldehyde groups as additives for lubricating oils

    SciTech Connect

    Nikolaev, V.N.; Abramov, E.G.; Tenyushev, A.I.

    1995-01-01

    Polyetherurethane oligomers with aldehyde groups, which we synthesized from polyoxypropylene diols (molecular weight 500, 1000, 1500, 2000, or 3000) with toluene diisocyanate and salicylaldehyde, are of interest as additives for lubricating oils. The effects of these oligomers on the service properties and physicochemical characteristics of lubricating oils were investigated by methods prreviously described. As the lube base stocks we used castor oil, a polyoxypropylene diol and a polyethoxysiloxane. The oligomers are readily soluble in organic solvents and in the lube base stocks, and their solutions are stable during storage and use. We found that the optimal concentration of oligomers is 5%, providing the best lubricating properties, in particular the best antiwear properties.

  3. Theory of microphase separation in homopolymer oligomer mixtures

    NASA Astrophysics Data System (ADS)

    Olemskoi, Alexander; Savelyev, Alexey

    2005-11-01

    This work starts with the review of theoretical methods proposed, during past decades, for description of phase behavior in different polymer systems, involving variety of linear polymers (regular and polydisperse block (co)polymers, random polymers) and the polymer systems with non-covalent bonds of different strength. Microphase separation (MS) into different ordered mesophases is known to be the principal property of such systems. It is shown that most of the theoretical approaches proposed for description of the MS are based on the simple random phase approximation (RPA). It turns out, however, that mean field RPA method applied to description of the systems with non-covalent bonds does not provide the whole picture of MS. We show that the problem here arises when one treats both Flory-Huggins non-associated interactions and non-covalent bonds (hydrogen, ionic) within the unified RPA scheme, which is obviously rough for description of the latter type of interactions. Such a theory was developed in a few recent papers for the systems involving weak hydrogen bonds between homopolymer chains and the low molecular weight oligomers (surfactants). However, it leaves some experimental data unaccounted. The purpose of this review is to consider more detailed theory which is able to explain not only all the experimental data for the above systems but also to take into account the strength variation of non-bonding interactions. In particular, we consider the strong ionic interactions, weak hydrogen bonding, and the interactions of intermediate strength between polymer chain and short oligomers within our unifying theory. To develop such a description in a self-consistent way we propose to use a general field theory of stochastic systems. The mesoscopic (lamellar) structure of the periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for the systems with both strong (ionic) and weak (hydrogen

  4. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

    NASA Astrophysics Data System (ADS)

    Barucker, Christian; Bittner, Heiko J.; Chang, Philip K.-Y.; Cameron, Scott; Hancock, Mark A.; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M.; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P.; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W.; McKinney, R. Anne; Multhaup, Gerhard

    2015-10-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.

  5. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers

    PubMed Central

    Zhou, Yanli; Zhang, Huanqing; Liu, Lantao; Li, Congming; Chang, Zhu; Zhu, Xu; Ye, Baoxian; Xu, Maotian

    2016-01-01

    Amyloid β-peptide (Aβ) in its oligomeric form is often considered as the most toxic species in Alzheimer’s disease (AD), and thus Aβ oligomer is a potentially promising candidate biomarker for AD diagnosis. The development of a sensitive and reliable method for monitoring the Aβ oligomer levels in body fluids is an urgent requirement in order to predict the severity and progression at early or preclinical stages of AD. Here, we show a proof of concept for a sensitive and specific detection of Aβ oligomers by an antibody-aptamer sandwich assay. The antibodies of Aβ oligomers and a nanocomposite of gold nanoparticles with aptamer and thionine (aptamer-Au-Th) were used as the recognition element and the detection probe for specifically binding to Aβ oligomers, respectively. The electrochemical signal of Th reduction could provide measurable electrochemical signals, and a low limit of detection (100 pM) was achieved due to the signal amplification by high loading of Th on the gold nanoparticles. The feasibility of the assay was verified by test of Aβ oligomers in artificial cerebrospinal fluid. The proposed strategy presents valuable information related to early diagnosis of AD process. PMID:27725775

  6. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments

    PubMed Central

    Serra-Batiste, Montserrat; Ninot-Pedrosa, Martí; Bayoumi, Mariam; Gairí, Margarida; Maglia, Giovanni; Carulla, Natàlia

    2016-01-01

    The formation of amyloid-β peptide (Aβ) oligomers at the cellular membrane is considered to be a crucial process underlying neurotoxicity in Alzheimer’s disease (AD). Therefore, it is critical to characterize the oligomers that form within a membrane environment. To contribute to this characterization, we have applied strategies widely used to examine the structure of membrane proteins to study the two major Aβ variants, Aβ40 and Aβ42. Accordingly, various types of detergent micelles were extensively screened to identify one that preserved the properties of Aβ in lipid environments—namely the formation of oligomers that function as pores. Remarkably, under the optimized detergent micelle conditions, Aβ40 and Aβ42 showed different behavior. Aβ40 aggregated into amyloid fibrils, whereas Aβ42 assembled into oligomers that inserted into lipid bilayers as well-defined pores and adopted a specific structure with characteristics of a β-barrel arrangement that we named β-barrel pore-forming Aβ42 oligomers (βPFOsAβ42). Because Aβ42, relative to Aβ40, has a more prominent role in AD, the higher propensity of Aβ42 to form βPFOs constitutes an indication of their relevance in AD. Moreover, because βPFOsAβ42 adopt a specific structure, this property offers an unprecedented opportunity for testing a hypothesis regarding the involvement of βPFOs and, more generally, membrane-associated Aβ oligomers in AD. PMID:27621459

  7. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function.

    PubMed

    Barucker, Christian; Bittner, Heiko J; Chang, Philip K-Y; Cameron, Scott; Hancock, Mark A; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W; McKinney, R Anne; Multhaup, Gerhard

    2015-10-29

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically "trapping" low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.

  8. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function

    PubMed Central

    Barucker, Christian; Bittner, Heiko J.; Chang, Philip K.-Y.; Cameron, Scott; Hancock, Mark A.; Liebsch, Filip; Hossain, Shireen; Harmeier, Anja; Shaw, Hunter; Charron, François M.; Gensler, Manuel; Dembny, Paul; Zhuang, Wei; Schmitz, Dietmar; Rabe, Jürgen P.; Rao, Yong; Lurz, Rudi; Hildebrand, Peter W.; McKinney, R. Anne; Multhaup, Gerhard

    2015-01-01

    The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically “trapping” low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal. PMID:26510576

  9. Searching for disease modifiers-PKC activation and HDAC inhibition - a dual drug approach to Alzheimer's disease that decreases Abeta production while blocking oxidative stress.

    PubMed

    Kozikowski, Alan P; Chen, Yihua; Subhasish, Tapadar; Lewin, Nancy E; Blumberg, Peter M; Zhong, Zhenyu; D'Annibale, Melissa A; Wang, Weng-Long; Shen, Yong; Langley, Brett

    2009-07-01

    A series of benzolactam compounds were synthesized, some of which caused a concentration-dependent increase in sAPPalpha and decrease in Abeta production in the concentration range of 0.1-10 microM. Moreover, some compounds showed neuroprotective effects in the 10-20 microM range in the HCA cortical neuron model of oxidative stress and no toxicity in measurements of neuron viability by MTT assay, even at the highest concentrations tested (20 microM). Alzheimer's disease (AD) is a well-studied neurodegenerative process characterized by the presence of amyloid plaques and neurofibrillary tangles. In this study, a series of protein kinase C (PKC) activators were investigated, some of which also exhibit histone deacetylase (HDAC) inhibitory activity, under the hypothesis that such compounds might provide a new path forward in the discovery of drugs for the treatment of AD. The PKC-activating properties of these drugs were expected to enhance the alpha-secretase pathway in the processing of amyloid precursor protein (APP), while their HDAC inhibition was anticipated to confer neuroprotective activity. We found that benzolactams 9 and 11-14 caused a concentration-dependent increase in sAPPalpha and decrease in beta-amyloid (Abeta) production in the concentration range of 0.1-10 microM, consistent with a shift of APP metabolism toward the alpha-secretase-processing pathway. Moreover, compounds 9-14 showed neuroprotective effects in the 10-20 microM range in the homocysteate (HCA) cortical neuron model of oxidative stress. In parallel, we found that the most neuroprotective compounds caused increased levels of histone acetylation (H4), thus indicating their likely ability to inhibit HDAC activity. As the majority of the compounds studied also show nanomolar binding affinities for PKC, we conclude that it is possible to design, de novo, agents that combine both PKC-activating properties along with HDAC inhibitory properties. Such agents would be capable of modulating

  10. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota.

    PubMed

    Harach, T; Marungruang, N; Duthilleul, N; Cheatham, V; Mc Coy, K D; Frisoni, G; Neher, J J; Fåk, F; Jucker, M; Lasser, T; Bolmont, T

    2017-02-08

    Alzheimer's disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer's disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aβ precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aβ amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aβ pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aβ levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases.

  11. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota

    PubMed Central

    Harach, T.; Marungruang, N.; Duthilleul, N.; Cheatham, V.; Mc Coy, K. D.; Frisoni, G.; Neher, J. J.; Fåk, F.; Jucker, M.; Lasser, T.; Bolmont, T.

    2017-01-01

    Alzheimer’s disease is the most common form of dementia in the western world, however there is no cure available for this devastating neurodegenerative disorder. Despite clinical and experimental evidence implicating the intestinal microbiota in a number of brain disorders, its impact on Alzheimer’s disease is not known. To this end we sequenced bacterial 16S rRNA from fecal samples of Aβ precursor protein (APP) transgenic mouse model and found a remarkable shift in the gut microbiota as compared to non-transgenic wild-type mice. Subsequently we generated germ-free APP transgenic mice and found a drastic reduction of cerebral Aβ amyloid pathology when compared to control mice with intestinal microbiota. Importantly, colonization of germ-free APP transgenic mice with microbiota from conventionally-raised APP transgenic mice increased cerebral Aβ pathology, while colonization with microbiota from wild-type mice was less effective in increasing cerebral Aβ levels. Our results indicate a microbial involvement in the development of Abeta amyloid pathology, and suggest that microbiota may contribute to the development of neurodegenerative diseases. PMID:28176819

  12. Anharmonic Vibrational Dynamics of DNA Oligomers

    NASA Astrophysics Data System (ADS)

    Kühn, O.; Došlić, N.; Krishnan, G. M.; Fidder, H.; Heyne, K.

    Combining two-color infared pump-probe spectroscopy and anharmonic force field calculations we characterize the anharmonic coupling patterns between fingerprint modes and the hydrogen-bonded symmetric vNH2 stretching vibration in adenine-thymine dA20-dT20 DNA oligomers. Specifically, it is shown that the anharmonic coupling between the δNH2 bending and the vC4=O4 stretching vibration, both absorbing around 1665 cm-1, can be used to assign the vNH2 fundamental transition at 3215 cm-1 despite the broad background absorption of water.

  13. Methyl-esterified 3-hydroxybutyrate oligomers protect bacteria from hydroxyl radicals.

    PubMed

    Koskimäki, Janne J; Kajula, Marena; Hokkanen, Juho; Ihantola, Emmi-Leena; Kim, Jong H; Hautajärvi, Heidi; Hankala, Elina; Suokas, Marko; Pohjanen, Johanna; Podolich, Olga; Kozyrovska, Natalia; Turpeinen, Ari; Pääkkönen, Mirva; Mattila, Sampo; Campbell, Bruce C; Pirttilä, Anna Maria

    2016-05-01

    Bacteria rely mainly on enzymes, glutathione and other low-molecular weight thiols to overcome oxidative stress. However, hydroxyl radicals are the most cytotoxic reactive oxygen species, and no known enzymatic system exists for their detoxification. We now show that methyl-esterified dimers and trimers of 3-hydroxybutyrate (ME-3HB), produced by bacteria capable of polyhydroxybutyrate biosynthesis, have 3-fold greater hydroxyl radical-scavenging activity than glutathione and 11-fold higher activity than vitamin C or the monomer 3-hydroxybutyric acid. We found that ME-3HB oligomers protect hypersensitive yeast deletion mutants lacking oxidative stress-response genes from hydroxyl radical stress. Our results show that phaC and phaZ, encoding polymerase and depolymerase, respectively, are activated and polyhydroxybutyrate reserves are degraded for production of ME-3HB oligomers in bacteria infecting plant cells and exposed to hydroxyl radical stress. We found that ME-3HB oligomer production is widespread, especially in bacteria adapted to stressful environments. We discuss how ME-3HB oligomers could provide opportunities for numerous applications in human health.

  14. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols.

    PubMed

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-13

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  15. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  16. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    PubMed Central

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-01-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks. PMID:27733773

  17. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    NASA Astrophysics Data System (ADS)

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-05-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

  18. Origin and diversification of a metabolic cycle in oligomer world.

    PubMed

    Nishio, Tomoaki; Narikiyo, Osamu

    2013-02-01

    Based on the oligomer-world hypothesis we propose an abstract model where the molecular recognition among oligomers is described in the shape space. The origin of life in the oligomer world is regarded as the establishment of a metabolic cycle in a primitive cell. The cycle is sustained by the molecular recognition. If an original cell acquires the ability of the replication of oligomers, the relationship among oligomers changes due to the poor fidelity of the replication. This change leads to the diversification of metabolic cycles. The selection among diverse cycles is the basis of the evolution. The evolvability is one of the essential characters of life. We demonstrate the origin and diversification of the metabolic cycle by the computer simulation of our model. Such a simulation is expected to be the simplified demonstration of what actually occurred in the primordial soup. Our model describes an analog era preceding the digital era based on the genetic code.

  19. Non-aqueous dispersion coatings based on crystalline oligomers

    SciTech Connect

    Jones, F.N.

    1993-12-31

    Amorphous oligomers and polymers are generally used in coatings; crystalline ones are avoided because of the difficulty of achieving homogeneous, defect-free films. However, dispersions of crystalline oligomers offer potential advantages of stability, useful application rheology, and excellent film properties. The authors describe non-aqueous dispersions of mixtures of crystalline and amorphous oligomers. An example is a dispersion of mixtures of crystalline (at ambient temperature) hydroxyl-functional oligomer of terephthalic acid and 1,6-hexanediol mixed with an amorphous hydroxyl-functional oligomer of terephthalic acid and glycidyl neodecanote. Microscopy, WAXD and DSC indicate that the dispersion particles are crystalline and have a diameter of 5 to 20 {mu}m. The dispersions are stable and are thixotropic. Coatings formulated with melamine and polyisocyanate resin crosslinkers form glossy, transparent film with excellent mechanical properties.

  20. Atomic View of a Toxic Amyloid Small Oligomer

    SciTech Connect

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  1. Glucosamine oligomers: 4. Solid state-crystallization and sustained dissolution.

    PubMed

    Domard, A; Cartier, N

    1992-04-01

    When glucosamine oligomers are stored in the solid state they undergo a process of crystallization. The extent to which this occurs depends on whether the samples are isolated in the -NH3+ or -NH2 form, on the storage time, and on the degree of polymerization of the isolated oligomer. The allomorph obtained by this process seems to correspond to the so-called 'tendon-chitosan'. Dissolution of such aged oligomer samples gives rise to a process of dissociation of the associated chains in the crystal, leading to the establishment of a pseudo-equilibrium between single and associated oligomer chains and hence the simultaneous presence of the 'monomeric', 'dimeric', 'trimeric', etc., forms of the oligomer. The phenomenon cannot be attributed to a process of aggregation in solution. The effects of various parameters on this behaviour have been investigated.

  2. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    PubMed

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  3. Complement Protein C1q Forms a Complex with Cytotoxic Prion Protein Oligomers

    PubMed Central

    Erlich, Paul; Dumestre-Pérard, Chantal; Ling, Wai Li; Lemaire-Vieille, Catherine; Schoehn, Guy; Arlaud, Gérard J.; Thielens, Nicole M.; Gagnon, Jean; Cesbron, Jean-Yves

    2010-01-01

    A growing number of studies have investigated the interaction between C1q and PrP, but the oligomeric form of PrP involved in this interaction remains to be determined. Aggregation of recombinant full-length murine PrP in the presence of 100 mm NaCl allowed us to isolate three different types of oligomers by size-exclusion chromatography. In contrast to PrP monomers and fibrils, these oligomers activate the classical complement pathway, the smallest species containing 8–15 PrP protomers being the most efficient. We used Thioflavine T fluorescence to monitor PrP aggregation and showed that, when added to the reaction, C1q has a cooperative effect on PrP aggregation and leads to the formation of C1q-PrP complexes. In these complexes, C1q interacts through its globular domains preferentially with the smallest oligomers, as shown by electron microscopy, and retains the ability to activate the classical complement pathway. Using two cell lines, we also provide evidence that C1q inhibits the cytotoxicity induced by the smallest PrP oligomers. The cooperative interaction between C1q and PrP could represent an early step in the disease, where it prevents elimination of the prion seed, leading to further aggregation. PMID:20410306

  4. Alzheimer's disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers

    PubMed Central

    De Felice, Fernanda G.; Wu, Diana; Lambert, Mary P.; Fernandez, Sara J.; Velasco, Pauline T.; Lacor, Pascale N.; Bigio, Eileen H.; Jerecic, Jasna; Acton, Paul J.; Shughrue, Paul J.; Chen-Dodson, Elizabeth; Kinney, Gene G.; Klein, William L.

    2008-01-01

    Alzheimer’s disease (AD) is characterized by presence of extracellular fibrillar Aβ in amyloid plaques, intraneuronal neurofibrillary tangles consisting of aggregated hyperphosphorylated tau and elevated brain levels of soluble Aβ oligomers (ADDLs). A major question is how these disparate facets of AD pathology are mechanistically related. Here we show that, independent of the presence of fibrils, ADDLs stimulate tau phosphorylation in mature cultures of hippocampal neurons and in neuroblastoma cells at epitopes characteristically hyperphosphorylated in AD. A monoclonal antibody that targets ADDLs blocked their attachment to synaptic binding sites and prevented tau hyperphosphorylation. Tau phosphorylation was blocked by the Src family tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7(t-butyl)pyrazol(3,4-D)pyramide (PP1), and by the phosphatidylinositol-3-kinase inhibitor LY294002. Significantly, tau hyperphosphorylation was also induced by a soluble aqueous extract containing Aβ oligomers from AD brains, but not by an extract from non-AD brains. Aβ oligomers have been increasingly implicated as the main neurotoxins in AD, and the current results provide a unifying mechanism in which oligomer activity is directly linked to tau hyperphosphorylation in AD pathology. PMID:17403556

  5. Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination.

    PubMed

    Klein, Antonia Nicole; Ziehm, Tamar; Tusche, Markus; Buitenhuis, Johan; Bartnik, Dirk; Boeddrich, Annett; Wiglenda, Thomas; Wanker, Erich; Funke, Susanne Aileen; Brener, Oleksandr; Gremer, Lothar; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    The aggregation of amyloid-β (Aβ) is postulated to be the crucial event in Alzheimer's disease (AD). In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i) inhibit the formation of Thioflavin T-positive fibrils; (ii) bind to Aβ monomers with micromolar affinities; (iii) eliminate Aβ oligomers; (iv) reduce Aβ-induced cytotoxicity; and (v) disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.

  6. The Volumetric Diversity of Misfolded Prion Protein Oligomers Revealed by Pressure Dissociation*

    PubMed Central

    Torrent, Joan; Lange, Reinhard; Rezaei, Human

    2015-01-01

    Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of the prion protein PrP, a protein characterized by a variety of infectious quaternary structures that can propagate stably and faithfully and cause diseases with specific phenotypic traits. We show that pressure induces dissociation of the oligomers and leads to a lower volume monomeric PrP state that refolds into the native conformation after pressure release. By measuring the different pressure and temperature sensitivity of the tested PrP oligomers, we demonstrate significantly different void volumes in their quaternary structure. In addition, by focusing on the kinetic and energetic behavior of the pressure-induced dissociation of one specific PrP oligomer, we reveal a large negative activation volume and an increase in both apparent activation enthalpy and entropy. This suggests a transition state ensemble that is less structured and significantly more hydrated than the oligomeric state. Finally, we found that site-specific fluorescent labeling allows monitoring of the transient population of a kinetic intermediate in the dissociation reaction. Our results indicate that defects in atomic packing may deserve consideration as a new factor that influences differences between PrP assemblies and that could be relevant also for explaining the origin of prion strains. PMID:26126829

  7. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function

    PubMed Central

    Plotegher, N.; Berti, G.; Ferrari, E.; Tessari, I.; Zanetti, M.; Lunelli, L.; Greggio, E.; Bisaglia, M.; Veronesi, M.; Girotto, S.; Dalla Serra, M.; Perego, C.; Casella, L.; Bubacco, L.

    2017-01-01

    Parkinson’s disease is a neurodegenerative disorder characterized by the death of dopaminergic neurons and by accumulation of alpha-synuclein (aS) aggregates in the surviving neurons. The dopamine catabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is a highly reactive and toxic molecule that leads to aS oligomerization by covalent modifications to lysine residues. Here we show that DOPAL-induced aS oligomer formation in neurons is associated with damage of synaptic vesicles, and with alterations in the synaptic vesicles pools. To investigate the molecular mechanism that leads to synaptic impairment, we first aimed to characterize the biochemical and biophysical properties of the aS-DOPAL oligomers; heterogeneous ensembles of macromolecules able to permeabilise cholesterol-containing lipid membranes. aS-DOPAL oligomers can induce dopamine leak in an in vitro model of synaptic vesicles and in cellular models. The dopamine released, after conversion to DOPAL in the cytoplasm, could trigger a noxious cycle that further fuels the formation of aS-DOPAL oligomers, inducing neurodegeneration. PMID:28084443

  8. Synthesis of a new π-conjugated redox oligomer: Electrochemical and optical investigation

    NASA Astrophysics Data System (ADS)

    Blili, Saber; Zaâboub, Zouhour; Maaref, Hassen; Haj Said, Ayoub

    2017-01-01

    A new π-conjugated redox oligomer was prepared according a two-Step Synthesis. Firstly, an oligophenylene (OMPA) was obtained from the anodic oxidation of the (4-methoxyphenyl)acetonitrile. Then, the resulting material was chemically modified by the Knoevenagel condensation with the ferrocenecarboxaldehyde. This reaction led to a redox-conjugated oligomer the Fc-OMPA. The synthesized material was characterized using different spectroscopic techniques: NMR, FTIR, UV-vis and photoluminescence (PL) spectroscopy. The Fc-OMPA was used to modify a platinum electrode surface and the electrochemical response of the ferrocene redox-center was investigated by cyclic voltammetry. Moreover, the room temperature PL spectra of Fc-OMPA revealed that the ferrocene moiety, which acts as an electron donor, can effectively quench the oligomer luminescence. However, when ferrocene was oxidized to ferrocenium ion, the intramolecular charge transfer process was prevented which consequently enhanced the light emission. Thus, the oligomer light-emission can be, chemically or electrochemically tuned. The obtained results showed that the prepared material is a good candidate for the elaboration of electrochemical sensors and for the development of luminescent Redox-switchable devices.

  9. Facile Synthesis of Highly Crystalline and Large Areal Hexagonal Boron Nitride from Borazine Oligomers

    NASA Astrophysics Data System (ADS)

    Park, Sungchan; Seo, Tae Hoon; Cho, Hyunjin; Min, Kyung Hyun; Lee, Dong Su; Won, Dong-Il; Kang, Sang Ook; Kim, Myung Jong

    2017-01-01

    A novel and facile synthetic method for h-BN films from borazine oligomer (B3N3H4)x precursors has been developed. This method only includes spin-coating of borazine oligomer onto nickel catalysts and a subsequent annealing step. Large areal and highly crystalline h-BN films were obtained. The stoichiometric B/N ratio of borazine oligomer precursor was preserved in the final h-BN product such that it was close to 1 as revealed by XPS. Catalytic effect of nickel for h-BN formation was clearly demonstrated by lowering crystallization temperature compared to the growth condition in the absence of catalyst. The graphene field effect transistor (GFET) characterization has proved the high quality synthesis of h-BN films, showing the shift of neutrality point and the increase of the mobility. This method can also provide functional h-BN coating on various surfaces by annealing Ni-coated borazine oligomer films and subsequent removal of Ni catalyst.

  10. High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    PubMed Central

    Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif

    2011-01-01

    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031

  11. Facile Synthesis of Highly Crystalline and Large Areal Hexagonal Boron Nitride from Borazine Oligomers

    PubMed Central

    Park, Sungchan; Seo, Tae Hoon; Cho, Hyunjin; Min, Kyung Hyun; Lee, Dong Su; Won, Dong-Il; Kang, Sang Ook; Kim, Myung Jong

    2017-01-01

    A novel and facile synthetic method for h-BN films from borazine oligomer (B3N3H4)x precursors has been developed. This method only includes spin-coating of borazine oligomer onto nickel catalysts and a subsequent annealing step. Large areal and highly crystalline h-BN films were obtained. The stoichiometric B/N ratio of borazine oligomer precursor was preserved in the final h-BN product such that it was close to 1 as revealed by XPS. Catalytic effect of nickel for h-BN formation was clearly demonstrated by lowering crystallization temperature compared to the growth condition in the absence of catalyst. The graphene field effect transistor (GFET) characterization has proved the high quality synthesis of h-BN films, showing the shift of neutrality point and the increase of the mobility. This method can also provide functional h-BN coating on various surfaces by annealing Ni-coated borazine oligomer films and subsequent removal of Ni catalyst. PMID:28074854

  12. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification

    NASA Astrophysics Data System (ADS)

    Kotler, Samuel A.; Brender, Jeffrey R.; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M. Banaszak; Marsh, E. Neil. G.; Ramamoorthy, Ayyalusamy

    2015-07-01

    Alzheimer’s disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling 1H-1H NMR experiments to overcome many of these limitations. Using 1H-1H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time 1H-1H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  13. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson's disease.

    PubMed

    Wang, Xuemei; Yu, Shun; Li, Fangfei; Feng, Tao

    2015-07-10

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by intracellular α-synuclein (α-syn) deposition. Alterations in α-syn levels in cerebrospinal fluid (CSF) and plasma of PD patients have been thought to be potential PD biomarkers; however, contamination arising from hemolysis often influences the accuracy of detecting α-syn levels in the CSF and plasma. In this study, α-syn oligomer levels in red blood cells (RBCs) obtained from 100 PD patients, 22 MSA patients, and 102 control subjects were measured by enzyme-linked immunosorbent assay. We showed that the ratio of α-syn oligomer/total RBC protein was higher in PD patients than in controls (29.0±19.8 ng/mg vs. 15.4±7.4 ng/mg, P<0.001). The area under the receiver operating characteristic curve (AUC) indicated a sensitivity of 79.0%, specificity of 64.7% and a positive predictive value of 68.7%, with an AUC of 0.76 for increased α-syn oligomer/total RBC protein ratio. However, there was no correlation between RBC α-syn oligomer levels and age at onset, disease duration, age, UPDRS motor scale score or progression of motor degeneration in PD patients. The ratio of RBC α-syn oligomer/total protein was also higher in MSA patients than in controls (22.9±13.9 ng/mg vs. 15.4±7.4 ng/mg, P<0.001). However, no significant difference was found for α-syn oligomer/total protein ratio between PD and MSA (29.0±19.8 ng/mg vs. 22.9±13.9 ng/mg, P>0.05). The present results suggest that the RBC α-syn oligomer/total protein ratio can be a potential diagnostic biomarker for PD.

  14. Soluble Aβ oligomer production and toxicity

    PubMed Central

    Larson, Megan E.; Lesné, Sylvain E.

    2011-01-01

    For nearly 100 years following the first description of this neurological disorder by Dr. Alois Alzheimer, amyloid plaques and neurofibrillary tangles have been hypothesized to cause neuronal loss. With evidence that the extent of insoluble, deposited amyloid poorly correlated with cognitive impairment, research efforts focused on soluble forms of Aβ, also referred as Aβ oligomers. Following a decade of studies, soluble oligomeric forms of Aβ are now believed to induce the deleterious cascade(s) involved in the pathophysiology of Alzheimer’s disease. In this review, we will discuss our current understanding about endogenous oligomeric Aβ production, their relative toxicity in vivo and in vitro, and explore the potential future directions needed for the field. PMID:22121920

  15. Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases.

    PubMed

    Monien, Bernhard H; Henry, Brian L; Raghuraman, Arjun; Hindle, Michael; Desai, Umesh R

    2006-12-01

    Thrombin and factor Xa, two important procoagulant enzymes, have been prime targets for regulation of clotting through the direct and indirect mechanism of inhibition. Our efforts on exploiting the indirect mechanism led us to study a carboxylic acid-based scaffold, which displayed major acceleration in the inhibition of these enzymes [J. Med. Chem.2005, 48, 1269, 5360]. This work advances the study to chemo-enzymatically prepared oligomers of 4-hydroxycinnamic acids, DHPs, which display interesting anticoagulant properties. Oligomers, ranging in size from tetramers to pentadecamers, were prepared through peroxidase-catalyzed oxidative coupling of caffeic, ferulic, and sinapic acids, and sulfated using triethylamine-sulfur trioxide complex. Chromatographic, spectroscopic, and elemental studies suggest that the DHPs are heterogeneous, polydisperse preparations composed of inter-monomer linkages similar to those found in natural lignins. Measurement of activated thromboplastin and prothrombin time indicates that both the sulfated and unsulfated derivatives of the DHPs display anticoagulant activity, which is dramatically higher than that of the reference polyacrylic acids. More interestingly, this activity approaches that of low-molecular-weight heparin with the sulfated derivative showing approximately 2- to 3-fold greater potency than the unsulfated parent. Studies on the inhibition of factor Xa and thrombin indicate that the oligomers exert their anticoagulant effect through both direct and indirect inhibition mechanisms. This dual inhibition property of 4-hydroxycinnamic acid-based DHP oligomers is the first example in inhibitors of coagulation. This work puts forward a novel, non-heparin structure, which may be exploited for the design of potent, dual action inhibitors of coagulation through combinatorial virtual screening on a library of DHP oligomers.

  16. PrPSc-Specific Antibodies with the Ability to Immunodetect Prion Oligomers

    PubMed Central

    Tayebi, Mourad; Jones, Daryl Rhys; Taylor, William Alexander; Stileman, Benjamin Frederick; Chapman, Charlotte; Zhao, Deming; David, Monique

    2011-01-01

    The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc. To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs) derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p0/0 cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids. PMID:21625515

  17. A Rat Model of Alzheimer’s Disease Based on Abeta42 and Pro-oxidative Substances Exhibits Cognitive Deficit and Alterations in Glutamatergic and Cholinergic Neurotransmitter Systems

    PubMed Central

    Petrasek, Tomas; Skurlova, Martina; Maleninska, Kristyna; Vojtechova, Iveta; Kristofikova, Zdena; Matuskova, Hana; Sirova, Jana; Vales, Karel; Ripova, Daniela; Stuchlik, Ales

    2016-01-01

    Alzheimer’s disease (AD) is one of the most serious human, medical, and socioeconomic burdens. Here we tested the hypothesis that a rat model of AD (Samaritan; Taconic Pharmaceuticals, USA) based on the application of amyloid beta42 (Abeta42) and the pro-oxidative substances ferrous sulfate heptahydrate and L-buthionine-(S, R)-sulfoximine, will exhibit cognitive deficits and disruption of the glutamatergic and cholinergic systems in the brain. Behavioral methods included the Morris water maze (MWM; long-term memory version) and the active allothetic place avoidance (AAPA) task (acquisition and reversal), testing spatial memory and different aspects of hippocampal function. Neurochemical methods included testing of the NR1/NR2A/NR2B subunits of NMDA receptors in the frontal cortex and CHT1 transporters in the hippocampus, in both cases in the right and left hemisphere separately. Our results show that Samaritan rats™ exhibit marked impairment in both the MWM and active place avoidance tasks, suggesting a deficit of spatial learning and memory. Moreover, Samaritan rats exhibited significant changes in NR2A expression and CHT1 activity compared to controls rats, mimicking the situation in patients with early stage AD. Taken together, our results corroborate the hypothesis that Samaritan rats are a promising model of AD in its early stages. PMID:27148049

  18. Effect of shear on the desorption of oligomers in nanoscopically confined films

    NASA Astrophysics Data System (ADS)

    Manias, E.; Hadziioannou, G.; ten Brinke, G.

    1994-07-01

    Bitsanis et al. J. Chem. Phys. 99, 5520 (1993) found that in nanoscopically confined films between strongly physisorbing surfaces chains with many contacts with the walls are irreversibly adsorbed. When shear is imposed to these systems molecular dynamics (MD) simulations show that the majority of the adsorbed oligomers adopts flat conformations on top of the walls. Although these conformations are characterized by high molecular adsorption energies, the same MD simulations show that desorption is strongly promoted by shear. The underlying mechanism is discussed.

  19. Pramipexole prevents neurotoxicity induced by oligomers of beta-amyloid.

    PubMed

    Uberti, Daniela; Bianchi, Irene; Olivari, Luca; Ferrari-Toninelli, Giulia; Canonico, PierLuigi; Memo, Maurizio

    2007-08-27

    Here we demonstrate that pramipexole, an antiparkinsonian dopamine receptor agonist drug, exerts neuroprotective effects against beta-amyloid neurotoxicity. Using a specific protocol to test individually oligomers, fibrils, or unaggregated amyloid beta-peptide, we found pramipexole able to protect cells against oligomers and fibrils. Unaggregated amyloid beta-peptide was found unable to cause cell death. Fibrils and oligomers were also found to produce elevated amount of free radicals, and this effect was prevented by pramipexole. We propose pramipexole may become in the future a coadjuvant in the treatment of neuropathologies, besides Parkinson's disease, where amyloid beta-peptide-mediated oxidative injury exerts a relevant role.

  20. General dynamic properties of Abeta12-36 amyloid peptide involved in Alzheimer's disease from unfolding simulation.

    PubMed

    Suzuki, Shinya; Galzitskaya, Oxana V; Mitomo, Daisuke; Higo, Junichi

    2004-11-01

    To study the folding/unfolding properties of a beta-amyloid peptide Abeta(12-36) of Alzheimer's disease, five molecular dynamics simulations of Abeta(12-36) in explicit water were done at 450 K starting from a structure that is stable in trifluoroethanol/water at room temperature with two alpha-helices. Due to high temperature, the initial helical structure unfolded during the simulation. The observed aspects of the unfolding were as follows. 1) One helix (helix 1) had a longer life than the other (helix 2), which correlates well with the theoretically computed Phi values. 2) Temporal prolongation of helix 1 was found before unfolding. 3) Hydrophobic cores formed frequently with rearrangement of amino-acid residues in the hydrophobic cores. The formation and rearrangement of the hydrophobic cores may be a general aspect of this peptide in the unfolded state, and the structural changes accompanied by the hydrophobic-core rearrangement may lead the peptide to the most stable structure. 4) Concerted motions (collective modes) appeared to unfold helix 1. The collective modes were similar with those observed in another simulation at 300 K. The analysis implies that the conformation moves according to the collective modes when the peptide is in the initial stage of protein unfolding and in the final stage of protein folding.

  1. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    PubMed

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease.

  2. Production and magnetic properties of in situ oligomer coated α-Fe nanoparticles in the gas phase

    NASA Astrophysics Data System (ADS)

    Choi, Byeong Ju; Lee, Gang Ho

    2007-11-01

    We report on the production and characterization of the magnetic properties of in situ oligomer coated α-Fe nanoparticles. Although a polymer cannot be used to in situ coat iron nanoparticles in the gas phase due to its low vapor pressure, an oligomer (i.e., a low mass polymer) may be used for this purpose because it has enough vapor pressure. Besides surface protection, functional molecules such as ligands, peptides, antibodies, and DNA can be also easily bound to an oligomer, which will be extremely useful for further advanced applications. We in situ coated α-Fe nanoparticles with a dimethylsilylenesiloxane oligomer in the gas phase by thermally decomposing Fe(CO)5 as a precursor of α-Fe nanoparticles with a resistive heater in the presence of dimethylsilylenesiloxane oligomer vapor. These core-shell nanoparticles ranging from 5 to 15 nm in core α-Fe nanoparticle diameter showed saturation magnetization as high as 68 emu/g and coercivities as large as 1338 and 381 Oe at 10 and 300 K, respectively.

  3. Investigation of intermolecular interactions between single walled nanotubes and conjugated oligomers using the dispersion-corrected DFT methods

    NASA Astrophysics Data System (ADS)

    Lagowski, Jolanta B.; Aljohani, Suad; Khan, M. Zahidul H.; Zhao, Yuming

    The area of carbon nanotubes (CNT)-polymer composites has been progressing rapidly in recent years. Pure CNT and CNT-polymer composites have many useful (industry related) properties: ranging from electronic electrical conductivity to superior strength. However the full potential of using CNTs as reinforcements (in say a polymer matrix) has been severely limited because of complications associated with the dispersion of CNTs. CNTs tend to entangle with each other forming materials that have properties that fall short of the expectations. The goal of this work is to identify the type of conjugated oligomers that are best suited for the dispersion of single walled CNT (SWCNT). For this purpose, various methods of dispersion corrected density functional theory (DFT-D/B97D, /WB97XD, /CAM-B3LYP) have been used to investigate the interaction between the SWCNT and the organic conjugated oligomers with different end groups (aldehyde (ALD) and dithiafulvenyl (DTF)). We investigate the effect of intermolecular interactions on the structure, polarity and energetics of the oligomers and SWCNT combinations. The comparison of results obtained using different DFT approximations is made. Our results show that DFT-endcapped oligomer interact more strongly with CNT than ALD-endcapped oligomer. The financial support from NSERC, SACBC and Memorial University and the computational resources from Compute Canada were received.

  4. T-cell activation by soluble MHC oligomers can be described by a two-parameter binding model.

    PubMed Central

    Stone, J D; Cochran, J R; Stern, L J

    2001-01-01

    T-cell activation is essential for initiation and control of immune system function. T cells are activated by interaction of cell-surface antigen receptors with major histocompatibility complex (MHC) proteins on the surface of other cells. Studies using soluble oligomers of MHC-peptide complexes and other types of receptor cross-linking agents have supported an activation mechanism that involves T cell receptor clustering. Receptor clustering induced by incubation of T cells with MHC-peptide oligomers leads to the induction of T-cell activation processes, including downregulation of engaged receptors and upregulation of the cell-surface proteins CD69 and CD25. Dose-response curves for these T-cell activation markers are bell-shaped, with different maxima and midpoints, depending on the valency of the soluble oligomer used. In this study, we have analyzed the activation behavior using a mathematical model that describes the binding of multivalent ligands to cell-surface receptors. We show that a simple equilibrium binding model accurately describes the activation data for CD4(+) T cells treated with MHC-peptide oligomers of varying valency. The model can be used to predict activation and binding behavior for T cells and MHC oligomers with different properties. PMID:11606269

  5. Oligomer formation in the radiation-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Harayma, Hiroshi; Al-Sheikhly, Mohamad; Silverman, Joseph

    2003-12-01

    Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1'-phenylethyl-(1')]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25-3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.

  6. Biomimetic peptoid oligomers as dual-action antifreeze agents

    PubMed Central

    Huang, Mia L.; Ehre, David; Jiang, Qi; Hu, Chunhua; Kirshenbaum, Kent; Ward, Michael D.

    2012-01-01

    The ability of natural peptides and proteins to influence the formation of inorganic crystalline materials has prompted the design of synthetic compounds for the regulation of crystal growth, including the freezing of water and growth of ice crystals. Despite their versatility and ease of structural modification, peptidomimetic oligomers have not yet been explored extensively as crystallization modulators. This report describes a library of synthetic N-substituted glycine peptoid oligomers that possess “dual-action” antifreeze activity as exemplified by ice crystal growth inhibition concomitant with melting temperature reduction. We investigated the structural features responsible for these phenomena and observed that peptoid antifreeze activities depend both on oligomer backbone structure and side chain chemical composition. These studies reveal the capability of peptoids to act as ice crystallization regulators, enabling the discovery of a unique and diverse family of synthetic oligomers with potential as antifreeze agents in food production and biomedicine. PMID:23169638

  7. DNA-Grafted Supramolecular Polymers: Helical Ribbon Structures Formed by Self-Assembly of Pyrene-DNA Chimeric Oligomers.

    PubMed

    Vyborna, Yuliia; Vybornyi, Mykhailo; Rudnev, Alexander V; Häner, Robert

    2015-06-26

    The controlled arraying of DNA strands on adaptive polymeric platforms remains a challenge. Here, the noncovalent synthesis of DNA-grafted supramolecular polymers from short chimeric oligomers is presented. The oligomers are composed of an oligopyrenotide strand attached to the 5'-end of an oligodeoxynucleotide. The supramolecular polymerization of these oligomers in an aqueous medium leads to the formation of one-dimensional (1D) helical ribbon structures. Atomic force and transmission electron microscopy show rod-like polymers of several hundred nanometers in length. DNA-grafted polymers of the type described herein will serve as models for the development of structurally and functionally diverse supramolecular platforms with applications in materials science and diagnostics.

  8. Influence of Aqueous-Salt Conditions on the Structure and Dynamics of the Monomeric and Novel Dimeric forms of the Alzheimer s ABeta21-30 protein fragment

    NASA Astrophysics Data System (ADS)

    Smith, Micholas Dean

    The behavior of the Alzheimer's related peptide Abeta is the subject of much study. In typical computational studies the environment local to the peptide is assumed to be pure water; however, in vivo the peptide is found in the extracellular space near the plasma membrane which is rich in ionic species. In this thesis, the hypothesis that the presence of group I/IIA salts will result in increased sampling of disordered structures as well as modify the dynamics of meta-stable structural motifs in the small folding nucleus of the Abeta peptide (Abeta21-30) is examined under a variety of ionic environments and was shown that of the tested salts, CaCl2 (and MgCl2, to a much lesser degree) did increase the propensity for disordered states; while, the group IA salts, KCl and NaCl, had little effect on the secondary structure of the peptide. Further, study of three familial mutations of this peptide region is also performed under aqueous salt-environments to elucidate further mechanistic details of how aqueous salts modify the region's behavior. Finally, as experimental results have highlighted that aggregation rates of the full-length peptide are modified by the presence of CaCl2, this work examines novel dimers states of Abeta21-30 and their stabilities when exposed to CaCl2.

  9. Subdiffusion of proteins and oligomers on membranes

    NASA Astrophysics Data System (ADS)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  10. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson's Disease

    PubMed Central

    Deas, Emma; Cremades, Nunilo; Angelova, Plamena R.; Ludtmann, Marthe H.R.; Yao, Zhi; Chen, Serene; Horrocks, Mathew H.; Banushi, Blerida; Little, Daniel; Devine, Michael J.; Gissen, Paul; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.

    2016-01-01

    Abstract Aims: Protein aggregation and oxidative stress are both key pathogenic processes in Parkinson's disease, although the mechanism by which misfolded proteins induce oxidative stress and neuronal death remains unknown. In this study, we describe how aggregation of alpha-synuclein (α-S) from its monomeric form to its soluble oligomeric state results in aberrant free radical production and neuronal toxicity. Results: We first demonstrate excessive free radical production in a human induced pluripotent stem-derived α-S triplication model at basal levels and on application of picomolar doses of β-sheet-rich α-S oligomers. We probed the effects of different structural species of α-S in wild-type rat neuronal cultures and show that both oligomeric and fibrillar forms of α-S are capable of generating free radical production, but that only the oligomeric form results in reduction of endogenous glutathione and subsequent neuronal toxicity. We dissected the mechanism of oligomer-induced free radical production and found that it was interestingly independent of several known cellular enzymatic sources. Innovation: The oligomer-induced reactive oxygen species (ROS) production was entirely dependent on the presence of free metal ions as addition of metal chelators was able to block oligomer-induced ROS production and prevent oligomer-induced neuronal death. Conclusion: Our findings further support the causative role of soluble amyloid oligomers in triggering neurodegeneration and shed light into the mechanisms by which these species cause neuronal damage, which, we show here, can be amenable to modulation through the use of metal chelation. Antioxid. Redox Signal. 24, 376–391. PMID:26564470

  11. Soybean Ferritin Forms an Iron-Containing Oligomer in Tofu Even after Heat Treatment.

    PubMed

    Masuda, Taro

    2015-10-14

    Ferritin, a multimeric iron storage protein distributed in almost all living kingdoms, has been highlighted recently as a nutritional iron source in plant-derived foodstuffs, because ferritin iron is suggested to have high bioavailability. In soybean seeds, ferritin contributes largely to the net iron contents. Here, the oligomeric states and iron contents of soybean ferritin during food processing (especially tofu gel formation) were analyzed. Ferritin was purified from tofu gel as an iron-containing oligomer (approximately 1000 Fe atoms per oligomer), which was composed of two types of subunits similar to the native soybean seed ferritin. Circular dichroism spectra also showed no differences in α-helical structure between native soybean ferritin and tofu ferritin. The present data demonstrate that ferritin was stable during the heat treatment (boiling procedure) in food processing, although partial denaturation was observed at temperatures higher than 80 °C.

  12. Liquid Crystal Ordering and Isotropic Gelation in Solutions of Four-Base-Long DNA Oligomers.

    PubMed

    Fraccia, Tommaso P; Smith, Gregory P; Bethge, Lucas; Zanchetta, Giuliano; Nava, Giovanni; Klussmann, Sven; Clark, Noel A; Bellini, Tommaso

    2016-09-27

    Liquid crystal ordering is reported in aqueous solutions of the oligomer 5'-ATTAp-3' and of the oligomer 5'-GCCGp-3'. In both systems, we quantitatively interpret ordering as stemming from the chaining of molecules via a "running-bond" type of pairing, a self-assembly process distinct from the duplex aggregation previously reported for longer oligonucleotides. While concentrated solutions of 5'-ATTAp-3' show only a columnar liquid crystal phase, solutions of 5'-GCCGp-3' display a rich phase diagram, featuring a chiral nematic phase analogous to those observed in solutions of longer oligonucleotides and two unconventional phases, a columnar crystal and, at high concentration, an isotropic amorphous gel. The appearance of these phases, which can be interpreted on the basis of features of 5'-GCCGp-3'molecular structure, suggests distinctive assembly motifs specific to ultrashort oligonucleotides.

  13. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers.

    PubMed

    Kochs, Georg; Haener, Markus; Aebi, Ueli; Haller, Otto

    2002-04-19

    Human MxA protein is a member of the interferon-induced Mx protein family and an important component of the innate host defense against RNA viruses. The Mx family belongs to a superfamily of large GTPases that also includes the dynamins and the interferon-regulated guanylate-binding proteins. A common feature of these large GTPases is their ability to form high molecular weight oligomers. Here we determined the capacity of MxA to self-assemble into homo-oligomers in vitro. We show that recombinant MxA protein assembles into long filamentous structures with a diameter of about 20 nm at physiological salt concentration as demonstrated by sedimentation assays and electron microscopy. In the presence of guanosine nucleotides the filaments rearranged into rings and more compact helical arrays. Our data indicate that binding and hydrolysis of GTP induce conformational changes in MxA that may be essential for viral target recognition and antiviral activity.

  14. Unique copper-induced oligomers mediate alpha-synuclein toxicity.

    PubMed

    Wright, Josephine A; Wang, Xiaoyan; Brown, David R

    2009-08-01

    Parkinson's disease and a number of other neurodegenerative diseases have been linked to either genetic mutations in the alpha-synuclein gene or show evidence of aggregates of the alpha-synuclein protein, sometimes in the form of Lewy bodies. There currently is no clear evidence of a distinct neurotoxic species of alpha-synuclein to explain the death of neurons in these diseases. We undertook to assess the toxicity of alpha-synuclein via exogenous application in cell culture. Initially, we showed that only aggregated alpha-synuclein is neurotoxic and requires the presence copper but not iron. Other members of the synuclein family showed no toxicity in any form and inherited point mutations did not alter the effective toxic concentration of alpha-synuclein. Through protein fractionation techniques, we were able to isolate an oligomeric species responsible for the toxicity of alpha-synuclein. This oligomeric species has a unique stellate appearance under EM and again, requires association with copper to induce cell death. The results allow us to suggest that the toxic species of alpha-synuclein in vivo could possibly be these stellate oligomers and not fibrils. Our data provide a link between the recently noted association of copper and alpha-synuclein and a potential role for the combination in causing neurodegeneration.

  15. Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms.

    PubMed

    Jang, Bong Geum; In, Sua; Choi, Boyoung; Kim, Min-Ju

    2014-11-12

    Beta-amyloid is a major pathogenic molecule for Alzheimer's disease (AD) and can be aggregated into a soluble oligomer, which is a toxic intermediate, before amyloid fibril formation. Beta-amyloid oligomers are associated closely with early synaptic loss in AD. However, it is still unknown which synaptic proteins are involved in the synaptotoxicity, and a direct comparison among the synaptic proteins should also be addressed. Here, we investigated changes in the expression of several presynaptic and postsynaptic proteins in primary neurons after treatment with a low-molecular weight and a high-molecular weight beta-amyloid oligomer. Both oligomers induced early neuronal dysfunction after 4 h and significantly reduced presynaptic protein (synaptophysin, syntaxin, synapsin, and synaptotagmin) expression. However, the expression of postsynaptic proteins (PSD95, NMDAR2A/B, and GluR2/3), except NMDAR1 was not reduced, and some protein expression levels were increased. Glutamate treatment, which is correlated with postsynaptic activation, showed more postsynaptic-specific protein loss compared with beta-amyloid oligomer treatment. Finally, the caspase inhibitor zVAD and the proteasomal inhibitor MG132 attenuated presynaptic protein loss. Thus, our data showed changes in synaptic proteins by beta-amyloid oligomers, which provides an understanding of early synaptotoxicity and suggests new approaches for AD treatment.

  16. Oligomers modulate interfibril branching and mass transport properties of collagen matrices.

    PubMed

    Whittington, Catherine F; Brandner, Eric; Teo, Ka Yaw; Han, Bumsoo; Nauman, Eric; Voytik-Harbin, Sherry L

    2013-10-01

    Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis, as well as the design of next-generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property–concentration relationships were noted. Diffusivity was not affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared with monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell–matrix signaling, as well as facilitate model-based prediction and design of matrix-based therapeutic strategies.

  17. Induction of Covalently Crosslinked p62 Oligomers with Reduced Binding to Polyubiquitinated Proteins by the Autophagy Inhibitor Verteporfin.

    PubMed

    Donohue, Elizabeth; Balgi, Aruna D; Komatsu, Masaaki; Roberge, Michel

    2014-01-01

    Autophagy is a cellular catabolic process responsible for the degradation of cytoplasmic constituents, including organelles and long-lived proteins, that helps maintain cellular homeostasis and protect against various cellular stresses. Verteporfin is a benzoporphyrin derivative used clinically in photodynamic therapy to treat macular degeneration. Verteporfin was recently found to inhibit autophagosome formation by an unknown mechanism that does not require exposure to light. We report that verteporfin directly targets and modifies p62, a scaffold and adaptor protein that binds both polyubiquitinated proteins destined for degradation and LC3 on autophagosomal membranes. Western blotting experiments revealed that exposure of cells or purified p62 to verteporfin causes the formation of covalently crosslinked p62 oligomers by a mechanism involving low-level singlet oxygen production. Rose bengal, a singlet oxygen producer structurally unrelated to verteporfin, also produced crosslinked p62 oligomers and inhibited autophagosome formation. Co-immunoprecipitation experiments demonstrated that crosslinked p62 oligomers retain their ability to bind to LC3 but show defective binding to polyubiquitinated proteins. Mutations in the p62 PB1 domain that abolish self-oligomerization also abolished crosslinked oligomer formation. Interestingly, small amounts of crosslinked p62 oligomers were detected in untreated cells, and other groups noted the accumulation of p62 forms with reduced SDS-PAGE mobility in cellular and animal models of oxidative stress and aging. These data indicate that p62 is particularly susceptible to oxidative crosslinking and lead us to propose a model whereby oxidized crosslinked p62 oligomers generated rapidly by drugs like verteporfin or over time during the aging process interfere with autophagy.

  18. Functional Diversity of Isoamylase Oligomers: The ISA1 Homo-Oligomer Is Essential for Amylopectin Biosynthesis in Rice Endosperm1[W][OA

    PubMed Central

    Utsumi, Yoshinori; Utsumi, Chikako; Sawada, Takayuki; Fujita, Naoko; Nakamura, Yasunori

    2011-01-01

    Rice (Oryza sativa) endosperm has two isoamylase (ISA) oligomers, ISA1 homo-oligomer and ISA1-ISA2 hetero-oligomer. To examine their contribution to starch synthesis, expression of the ISA1 or ISA2 gene was differently regulated in various transgenic plants. Although suppression of ISA2 gene expression caused the endosperm to have only the homo-oligomer, no significant effects were detected on the starch phenotypes. In contrast, ISA2 overexpression led to endosperm having only the hetero-oligomer, and starch synthesis in the endosperm was drastically impaired, both quantitatively and qualitatively, because the starch was devoid of typical starch features, such as thermal and x-ray diffraction properties, and water-soluble highly branched maltodextrins were accumulated. In the ISA2 overexpressed line, about 60% to 70% of the ISA1-ISA2 hetero-oligomer was bound to starch, while the ISA homo- and hetero-oligomers from the wild type were mostly present in the soluble form at the early milking stage of the endosperm. Detailed analysis of the relative amounts of homo- and hetero-oligomers in various lines also led us to the conclusion that the ISA1 homo-oligomer is essential, but not the ISA1-ISA2 oligomer, for starch production in rice endosperm. The relative amounts of ISA1 and ISA2 proteins were shown to determine the ratio of both oligomers and the stoichiometry of both ISAs in the hetero-oligomer. It was noted when compared with the homo-oligomer that all the hetero-oligomers from rice endosperm and leaf and potato (Solanum tuberosum) tuber were much more stable at 40°C. This study provides substantial data on the structural and functional diversity of ISA oligomers between plant tissues and species. PMID:21436381

  19. Cyclen-based lipidic oligomers as potential gene delivery vehicles.

    PubMed

    Yi, Wen-Jing; Zhang, Qin-Fang; Zhang, Ji; Liu, Qiang; Ren, Laifeng; Chen, Qian-Ming; Guo, Liandi; Yu, Xiao-Qi

    2014-03-01

    A series of cyclen-based linear oligomers bearing hydrophobic long chains (lipopolymers Cy-LC, where Cy and LC represent cyclen-based linear backbone and hydrophobic long chain substituents, respectively) were designed and synthesized. The effects of type and degree of substitution (DS) of hydrophobic long chains on the transfection efficiency were systematically studied. The nitrogen atoms with relatively strong basicity on the cyclen ensure their good DNA binding ability, which was confirmed by gel retardation and ethidium bromide exclusion assays. Lipopolyplexes could be formed as nanoparticles with suitable sizes and zeta potentials for gene transfection. In vitro gene delivery experiments revealed that the linoleic acid (LIN) substituted material Cy-LIN has better transfection efficiency than 25 kDa polyethylenimine in the absence or in the presence of serum. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and hemolysis assays showed low cytotoxicity and good biocompatibility of the lipopolyplexes. Fluorescent labeled DNA was used to study the cellular uptake and intracellular distribution of transfected DNA. Flow cytometry results suggested that a long chain is necessary for efficient cellular uptake, and images from confocal laser scanning microscopy showed that after 4h transfection, most of the fluorescent labeled DNA accumulated in the perinuclear region, which was required for efficient gene expression. Moreover, it was also found that the DS of the hydrophobic moiety can adjust the balance between DNA binding ability and dissociation of polyplexes, significantly affecting the transfection efficiency.

  20. Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications.

    PubMed

    Velasco, D; Réthoré, G; Newland, B; Parra, J; Elvira, C; Pandit, A; Rojo, L; San Román, J

    2012-11-01

    Nonviral methods for gene delivery are becoming ever more prevalent along with the need to design new vectors that are highly effective, stable in biological fluids, inexpensive, and facile to produce. Here, we synthesize our previously reported monomer N-ethyl pyrrolidine methacrylamide (EPA) and evaluate its effectiveness in gene vector applications when copolymerized with 1-vinylimidazole (VI). A range of these novel linear cationic copolymers were synthesized via free radical polymerization with low molecular weights (oligomers) and low polydispersities showing two pK(a) values as the two co-monomers are cationic. DNA-polymer polyplexes had average sizes between 100 and 250nm and zeta-potentials between 10 and 25mV, and a strong dependence of composition on the size on the zeta-potential was observed. The cytotoxicity of the homopolymers, oligomers, and polyplexes toward human fibroblasts and 3T3 mouse fibroblasts was evaluated using the MTT and AlamarBlue™ assays, proving that formulations could be made with toxicity as low as low molecular weight linear poly (dimethylaminoethyl methacrylate) (PDMAEMA). The transfection capability of the polyplexes measured using the G-luciferase marker gene far superseded PDMAEMA when evaluated in biological conditions. Furthermore, blood compatibility studies showed that these new oligomers exhibit no significant hemolysis or platelet activation above PBS controls. These new EPA based oligomers with low toxicity and ease of scalability show high transfection abilities in serum conditions, and blood compatibility showing its potential for systemic gene delivery applications.

  1. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the…

  2. Insulin-degrading enzyme antagonizes insulin-dependent tissue growth and Abeta-induced neurotoxicity in Drosophila.

    PubMed

    Tsuda, Manabu; Kobayashi, Toshikazu; Matsuo, Takashi; Aigaki, Toshiro

    2010-07-02

    Insulin-degrading enzyme (IDE) is implicated in the pathogenesis of type 2 diabetes mellitus (DM2) and Alzheimer's disease (AD). Here we provide genetic evidence that Drosophila Ide (dIde) antagonizes the insulin signaling pathway and human Abeta-induced neurotoxicity in Drosophila. In this study, we also generated a dIde knockout mutant (dIde(KO)) by gene targeting, and found that loss of IDE increases the content of the major insect blood sugar, trehalose, thus suggesting a conserved role of IDE in sugar metabolism. Using dIde(KO) as a model, further investigations into the biological functions of IDE and its role in the pathogenesis of DM2 and AD can be made.

  3. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers.

    PubMed

    Narayanan, Saravanakumar; Walter, Stefan; Reif, Bernd

    2006-05-01

    In analogy to human prions, a domain of the translation-termination protein in Saccharomyces cerevisiae, Sup35, can switch its conformation from a soluble functional state, [psi-], to a conformation, [PSI+], that facilitates aggregation and impairs its native function. Overexpression of the molecular chaperone Hsp104 abolishes the [PSI+] phenotype and restores the normal function of Sup35. We have recently shown that Hsp104 interacts preferably with low oligomeric species of a Sup35 derived peptide, Sup35[5-26]; however, due to possible exchange between different oligomeric states, it was not possible to obtain information on the distribution and stability of the oligomeric state. We show here, that low-molecular-weight oligomers (Sup35[5-26])n (n approximately = 4-6) are indeed important for the fibril formation and disassembly process. We find that Hsp104 is able to disaggregate Sup35[5-26] fibrils by substraction of hexameric to decameric Sup35[5-26] oligomers. This disaggregation effect does not require assistance from other chaperones and is independent of ATP at high Hsp104 concentrations. Furthermore, we demonstrate that critical oligomers have a preference for alpha-helical conformations. The conformational reorganization into beta-sheet structures seems to occur only upon incorporation of these oligomers into fibrillar structures. The results are demonstrated by using an equilibrium dialysis experiment that employed different molecular-weight cut-off membranes. A combination of thioflavin-T (ThT) fluorescence and UV measurements allowed the quantification of fibril formation and the amount of peptide diffusing out of the dialysis bag. CD and NMR spectroscopy data were combined to obtain structural information.

  4. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    NASA Astrophysics Data System (ADS)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  5. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines.

    PubMed

    Thanou, M; Florea, B I; Geldof, M; Junginger, H E; Borchard, G

    2002-01-01

    Quaternized modifications of chitosan present characteristics that might be useful in DNA condensing and efficient gene delivery. Trimethylated chitosan (TMO) was synthesized from oligomeric chitosan (<20 monomer units). TMOs spontaneously formed complexes (chitoplexes) with RSV-alpha3 luciferase plasmid DNA. These complexes were characterized by photon correlation spectroscopy and were investigated for their ability to transfect COS-1 and Caco-2 cell lines in the presence and absence of fetal calf serum and compared with DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium sulphate) lipoplexes. Additionally, their effect on the viability of the respective cell cultures was investigated using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Results showed that quaternized chitosan oligomers were able to condense DNA and form complexes with a size ranging from 200 to 500 nm. Chitoplexes proved to transfect COS-1 cells, however, to a lesser extent than DOTAP-DNA lipoplexes. The quaternized oligomer derivatives appeared to be superior to oligomeric chitosan. The presence of fetal calf serum (FCS) did not affect the transfection efficiency of the chitoplexes, whereas the transfection efficiency of DOTAP DNA complexes was decreased. Cells remained 100% viable in the presence of chitosan oligomers whereas viability of DOTAP treated cells decreased to approximately 50% in both cell lines. Both DOTAP-DNA lipoplexes and chitoplexes resulted in less transfection efficiency in Caco-2 cell cultures than in COS-1 cells; however quaternized chitosan oligomers proved to be superior to DOTAP. Effects on the viability of Caco-2 cells were similar to the effects observed in COS-1 cells. We conclude that trimethylated chitosan-DNA complexes present suitable characteristics and the potential to be used as gene delivery vectors.

  6. The adsorption of short single-stranded DNA oligomers to mineral surfaces.

    PubMed

    Cleaves, H James; Crapster-Pregont, Ellen; Jonsson, Caroline M; Jonsson, Christopher L; Sverjensky, Dimitri A; Hazen, Robert A

    2011-06-01

    We studied the adsorption of short single-stranded deoxyribonucleic acid (ssDNA) oligomers, of approximately 30 nucleotides (nt) in length, of varying sequence, adenine+guanine+cytosine (AGC) content, and propensity to form secondary structure, to equal surface area samples of olivine, pyrite, calcite, hematite, and rutile in 0.1M NaCl, 0.05M pH 8.1 KHCO(3) buffer. Although the mineral surfaces have widely varying points of zero charge, under these conditions they show remarkably similar adsorption of ssDNA regardless of oligomer characteristics. Mineral surfaces appear to accommodate ssDNA comparably, or ssDNA oligomers of this length are able to find binding sites of comparable strength and density due to their flexibility, despite the disparate surface properties of the different minerals. This may partially be due charge shielding by the ionic strength of the solutions tested, which are typical of many natural environments. These results may have some bearing on the adsorption and accumulation of biologically derived nucleic acids in sediments as well as the abiotic synthesis of nucleic acids before the origin of life.

  7. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis.

    PubMed

    Guglielmotto, Michela; Monteleone, Debora; Piras, Antonio; Valsecchi, Valeria; Tropiano, Marta; Ariano, Stefania; Fornaro, Michele; Vercelli, Alessandro; Puyal, Julien; Arancio, Ottavio; Tabaton, Massimo; Tamagno, Elena

    2014-10-01

    The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.

  8. LptA Assembles into Rod-Like Oligomers Involving Disorder-to-Order Transitions

    NASA Astrophysics Data System (ADS)

    Santambrogio, Carlo; Sperandeo, Paola; Villa, Riccardo; Sobott, Frank; Polissi, Alessandra; Grandori, Rita

    2013-10-01

    LptA is a periplasmic protein involved in the transport of lipopolysaccharide (LPS) from the inner membrane (IM) to the outer membrane (OM) of Gram-negative bacteria. Growing evidence supports a model in which LptA assembles into oligomers, forming a physical bridge connecting IM and OM. This work investigates assembly and architecture of LptA oligomers. Circular dichroism and "native" electrospray-ionization ion-mobility mass spectrometry (ESI-IM-MS) are employed to test concentration dependence of LptA structural features and to analyze the morphology of higher-order aggregates. The results show that LptA progressively assembles into rod-like oligomers without fixed stoichiometry, and grows by an n + 1 mechanism up to at least the pentamer. The oligomerization process induces disorder-to-order transitions in the polypeptide chain. Comparison with crystallographic and computational data suggests that these conformational changes likely involve short disordered regions at the N- and C-termini of monomeric LptA. The protein response to thermal denaturation displays strong concentration dependence, indicating that oligomerization increases protein stability. LptA conformational stability can also be enhanced by in vitro LPS binding. The genesis of these fibrillar structures could be relevant for the correct transport of LPS across the bacterial periplasm.

  9. Imide Oligomers Endcapped with Phenylethynl Phthalic Anhydrides and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1998-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N.N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or cheznicauy to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydxide(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  10. Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  11. ortho-Phenylene oligomers with terminal push-pull substitution.

    PubMed

    He, Jian; Mathew, Sanyo M; Cornett, Sarah D; Grundy, Stephan C; Hartley, C Scott

    2012-05-07

    ortho-Phenylenes are an emerging class of helical oligomers and polymers. We have synthesized a series of push-pull-substituted o-phenylene oligomers (dimethylamino/nitro) up to the octamer. Conformational analysis of the hexamer using a combination of low-temperature NMR spectroscopy and ab initio predictions of (1)H NMR chemical shifts indicates that, like other o-phenylenes, they exist as compact helices in solution. However, the substituents are found to have a significant effect on their conformational behavior: the nitro-functionalized terminus is 3-fold more likely to twist out of the helix. Protonation of the dimethylamino group favors the helical conformer. UV/vis spectroscopy indicates that the direct charge-transfer interaction between the push-pull substituents attenuates quickly compared to other conjugated systems, with no significant charge-transfer band for oligomers longer than the trimer. On protonation of the dimethylamino group, significant bathochromic shifts with increasing oligomer length are observed: the effective conjugation length is 9 repeat units, more than twice that of the parent oligomer. This behavior may be rationalized through examination of the frontier molecular orbitals of these compounds, which exhibit greater delocalization after protonation, as shown by DFT calculations.

  12. Synthesis and Characterization of Poly (Arylene Ether Benzimidazole) Oligomers

    NASA Technical Reports Server (NTRS)

    Leonard, Michael J.

    1995-01-01

    Several poly(arylene ether benzimidazole) oligomers were prepared by the nucleophilic aromatic substitution reaction of a bisphenol benzimidazole and various alkyl-substituted aromatic bisphenols with an activated aromatic dihalide in N, N-dimethylacetarnide. Moderate to high molecular weight terpolymers were obtained in all cases, as shown by their inherent viscosities, which ranged from 0.50 to 0.87 dL g(sup -1). Glass transition temperatures (T(sub g)s) of polymer powders ranged from 267-280 C. Air-dried unoriented thin film T(sub g)s were markedly lower than those of the powders, whereas T(sub g)s of films dried in a nitrogen atmosphere were identical to those of the corresponding powders. In addition, air-dried films were dark amber and brittle, whereas nitrogen-dried films were yellow and creasable. Nitrogen-dried films showed slightly higher thin-film tensile properties than the air-dried films, as well.

  13. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    PubMed

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices.

  14. Preparation and applications of a variety of fluoroalkyl end-capped oligomer/hydroxyapatite composites.

    PubMed

    Takashima, Hiroki; Iwaki, Ken-Ichi; Furukuwa, Rika; Takishita, Katsuhisa; Sawada, Hideo

    2008-04-15

    A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.

  15. Single Particle Characterization of Aβ Oligomers in Solution

    PubMed Central

    Yusko, Erik C.; Prangkio, Panchika; Sept, David; Rollings, Ryan C.; Li, Jiali; Mayer, Michael

    2012-01-01

    Determining the pathological role of amyloids in amyloid-associated diseases will require a method for determining the dynamic distributions in size and shape of amyloid oligomers with high resolution. Here, we explored the potential of resistive-pulse sensing through lipid bilayer-coated nanopores to measure the size of individual amyloid-β oligomers directly in solution and without chemical modification. This method classified individual amyloid-β aggregates as spherical oligomers, protofibrils, or mature fibers and made it possible to account for the large heterogeneity of amyloid-β aggregate sizes. The approach revealed the distribution of protofibrillar lengths as well as the average cross-sectional area of protofibrils and fibers. PMID:22686709

  16. Proportion effect in diblock co-oligomer molecular diodes

    NASA Astrophysics Data System (ADS)

    Hu, G. C.; Zhang, G. P.; Li, Y.; Ren, J. F.; Wang, C. K.

    2014-10-01

    Based on ab-initio theory and nonequilibrium Green's function method, the effect of proportion on the rectification in pyrimidinyl-phenyl diblock co-oligomer diodes is investigated in two regimes. For a short co-oligomer diode, it is found that the 1:1 proportion of the two moieties favors the largest rectification ratio. For a long co-oligomer diode, an interesting proportion-dependent variation of the rectifying direction is observed. Furthermore, the optimal proportion for the largest rectification ratio is not 1:1 any longer. A deep understanding can be achieved by analyzing the bias-dependent transmission spectra combined with the evolution of the molecular orbitals.

  17. Aggregation of inorganic nanoparticles mediated by biomimetic oligomers.

    PubMed

    Tigger-Zaborov, Hagar; Maayan, Galia

    2015-09-14

    Assemblies of nanoparticles (NPs) have been broadly used for the construction of materials with unique spectroscopic and chiral properties for applications in various scientific disciplines such as sensing, bio-nanotechnology and medicine. Mediating the aggregation of NPs by synthetic biomimetic oligomers, namely, DNA, PNA, peptides and peptide mimics, rather than by small organic molecules has been shown to produce interesting supramolecular structures and enable the combination of the biocompatibility of the mediators and the spectroscopic properties of the NPs. Yet, the key to using this powerful approach for designing new functional materials is to understand the NPs aggregation patterns induced by biopolymers and biomimetic oligomers. Herein we describe the important developments in this field, from early studies to recent work with an emphasis on synthetic methods and tools for controlled assembly of metal NPs by biomimetic polymers and oligomers.

  18. Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein.

    PubMed

    Sokolowski, Fabian; Modler, Andreas Johannes; Masuch, Ralf; Zirwer, Dietrich; Baier, Michael; Lutsch, Gudrun; Moss, David Alan; Gast, Klaus; Naumann, Dieter

    2003-10-17

    We have investigated the conformational transition and aggregation process of recombinant Syrian hamster prion protein (SHaPrP90-232) by Fourier transform infrared spectroscopy, circular dichroism spectroscopy, light scattering, and electron microscopy under equilibrium and kinetic conditions. SHaPrP90-232 showed an infrared absorbance spectrum typical of proteins with a predominant alpha-helical structure both at pH 7.0 and at pH 4.2 in the absence of guanidine hydrochloride. At pH 4.2 and destabilizing conditions (0.3-2 m guanidine hydrochloride), the secondary structure of SHaPrP90-232 was transformed to a strongly hydrogen-bonded, most probably intermolecularly arranged antiparallel beta-sheet structure as indicated by dominant amide I band components at 1620 and 1691 cm-1. Kinetic analysis of the transition process showed that the decrease in alpha-helical structures and the increase in beta-sheet structures occurred concomitantly according to a bimolecular reaction. However, the concentration dependence of the corresponding rate constant pointed to an apparent third order reaction. No beta-sheet structure was formed within the dead time (190 ms) of the infrared experiments. Light scattering measurements revealed that the structural transition of SHaPrP90-232 was accompanied by formation of oligomers, whose size was linearly dependent on protein concentration. Extrapolation to zero protein concentration yielded octamers as the smallest oligomers, which are considered as "critical oligomers." The small oligomers showed spherical and annular shapes in electron micrographs. Critical oligomers seem to play a key role during the transition and aggregation process of SHaPrP90-232. A new model for the structural transition and aggregation process of the prion protein is described.

  19. Memantine rescues transient cognitive impairment caused by high-molecular-weight aβ oligomers but not the persistent impairment induced by low-molecular-weight oligomers.

    PubMed

    Figueiredo, Cláudia P; Clarke, Julia R; Ledo, José Henrique; Ribeiro, Felipe C; Costa, Carine V; Melo, Helen M; Mota-Sales, Axa P; Saraiva, Leonardo M; Klein, William L; Sebollela, Adriano; De Felice, Fernanda G; Ferreira, Sergio T

    2013-06-05

    Brain accumulation of soluble amyloid-β oligomers (AβOs) has been implicated in synapse failure and cognitive impairment in Alzheimer's disease (AD). However, whether and how oligomers of different sizes induce synapse dysfunction is a matter of controversy. Here, we report that low-molecular-weight (LMW) and high-molecular-weight (HMW) Aβ oligomers differentially impact synapses and memory. A single intracerebroventricular injection of LMW AβOs (10 pmol) induced rapid and persistent cognitive impairment in mice. On the other hand, memory deficit induced by HMW AβOs (10 pmol) was found to be reversible. While memory impairment in LMW oligomer-injected mice was associated with decreased hippocampal synaptophysin and GluN2B immunoreactivities, synaptic pathology was not detected in the hippocampi of HMW oligomer-injected mice. On the other hand, HMW oligomers, but not LMW oligomers, induced oxidative stress in hippocampal neurons. Memantine rescued both neuronal oxidative stress and the transient memory impairment caused by HMW oligomers, but did not prevent the persistent cognitive deficit induced by LMW oligomers. Results establish that different Aβ oligomer assemblies act in an orchestrated manner, inducing different pathologies and leading to synapse dysfunction. Furthermore, results suggest a mechanistic explanation for the limited efficacy of memantine in preventing memory loss in AD.

  20. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases.

    PubMed

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-09-13

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer's disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca(2+) across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane.

  1. Binding affinity of amyloid oligomers to cellular membranes is a generic indicator of cellular dysfunction in protein misfolding diseases

    PubMed Central

    Evangelisti, Elisa; Cascella, Roberta; Becatti, Matteo; Marrazza, Giovanna; Dobson, Christopher M.; Chiti, Fabrizio; Stefani, Massimo; Cecchi, Cristina

    2016-01-01

    The conversion of peptides or proteins from their soluble native states into intractable amyloid deposits is associated with a wide range of human disorders. Misfolded protein oligomers formed during the process of aggregation have been identified as the primary pathogenic agents in many such conditions. Here, we show the existence of a quantitative relationship between the degree of binding to neuronal cells of different types of oligomers formed from a model protein, HypF-N, and the GM1 content of the plasma membranes. In addition, remarkably similar behavior is observed for oligomers of the Aβ42 peptide associated with Alzheimer’s disease. Further analysis has revealed the existence of a linear correlation between the level of the influx of Ca2+ across neuronal membranes that triggers cellular damage, and the fraction of oligomeric species bound to the membrane. Our findings indicate that the susceptibility of neuronal cells to different types of misfolded oligomeric assemblies is directly related to the extent of binding of such oligomers to the cellular membrane. PMID:27619987

  2. Scalable Fabrication of Quasi-Three-Dimensional Chiral Plasmonic Oligomers Based on Stepwise Colloid Sphere Lithography Technology

    NASA Astrophysics Data System (ADS)

    Xie, Shiwei; Yang, Jinzhe; Xiao, Xiao; Hou, Yidong; Du, Jinglei; Pang, Lin; Li, Xie; Gao, Fuhua

    2015-10-01

    We report a simple and scalable method for the fabrication of spiral-type chiral plasmonic oligomers based on the stepwise colloid sphere lithography technology. Through carefully adjusting the azimuthal angle Φ of polystyrene (PS) sphere array monolayer and the deposition thickness k n , the chiral plasmonic oligomers composed of four achiral particles can be successfully fabricated on a desired substrate. And their chiral sign, i.e., left-hand or right-hand, is dependent on the anticlockwise or clockwise deposition sequence of the achiral particles. The measured results show a large chiroptical resonance in the visible region, and this resonance can be easily adjusted by using different sizes of PS spheres. Our in-depth theoretical and experimental researches further reveal that the obtained chiral plasmonic oligomers are indeed a kind of quasi-three-dimensional chiral nanostructures, which own a three-dimensional geometrical morphology, but with nonreciprocity chiroptical effect. The ease and scalability (>1 cm2) of the fabrication method make chiral plasmonic oligomers promising candidates for many applications, such as chiral biosensor and catalysis.

  3. Oligomer Molecules for Efficient Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights <1000) and polymers (generally with molecular weights >10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability

  4. The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces

    NASA Astrophysics Data System (ADS)

    Saifaldeen, Zubayda S.; Khedir, Khedir R.; Camci, Merve T.; Ucar, Ahmet; Suzer, Sefik; Karabacak, Tansel

    2016-08-01

    Rough structures with re-entrant property and their subsequent surface energy reduction with long-chain fluorocarbon oligomers are both critical in developing superamphiphobic (SAP, i.e. both super hydrophobic and superoleophobic) surfaces. However, morphology of the low-surface energy layer on a rough re-entrant substrate can strongly depend on the fluorocarbon oligomers used. In this study, the effect of polar end of different kinds of long-chain fluorocarbon oligomers in promoting a self-assembled monolayer with close packed molecules and robust adhesion on multi-scale rough Al alloy surfaces was investigated. Hierarchical Al alloy surfaces with microgrooves and nanograss structures were developed by a simple combination of one-directional mechanical sanding and post treatment in boiling de-ionized water (DIW). Three types of long-chain fluorocarbon oligomers of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDTS), 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDCS), and perfluorooctanoic acid (PFOA) were chemically vaporized onto these rough Al alloy surfaces. The PFDCS exhibited the lowest surface free energy of less than 10 mN/m. The contact angle and sliding angle measurements for water, ethylene glycol, and peanut oil verified the SAP property of hierarchical rough Al alloy surfaces treated with alkylsilane oligomers (PFDTS, PFDCS). However, the hierarchical surfaces treated with fluorocarbon oligomer with polar acidic tail (PFOA) showed highly amphiphobic properties but could not reach the threshold for SAP. Chemical stability of the hierarchical Al alloy surfaces treated with the fluorocarbon oligomers was tested under the harsh conditions of ultra-sonication in acetone and annealing at high temperature after different treatment times. Contact angle measurements revealed the robustness of the alkylsilane oligomers and deterioration of the PFOA coating particularly for low surface tension liquids. The robust adhesion and close-packing of the alkylsilane

  5. In vivo modification of Abeta plaque toxicity as a novel neuroprotective lithium-mediated therapy for Alzheimer’s disease pathology

    PubMed Central

    2013-01-01

    Background Alzheimer’s disease (AD) is characterized by the abnormal accumulation of extracellular beta-amyloid (Abeta) plaques, intracellular hyperphosphorylated tau, progressive synaptic alterations, axonal dystrophies, neuronal loss and the deterioration of cognitive capabilities of patients. However, no effective disease-modifying treatment has been yet developed. In this work we have evaluated whether chronic lithium treatment could ameliorate the neuropathology evolution of our well characterized PS1M146LxAPPSwe-London mice model. Results Though beneficial effects of lithium have been previously described in different AD models, here we report a novel in vivo action of this compound that efficiently ameliorated AD-like pathology progression and rescued memory impairments by reducing the toxicity of Abeta plaques. Transgenic PS1M146LxAPPSwe-London mice, treated before the pathology onset, developed smaller plaques characterized by higher Abeta compaction, reduced oligomeric-positive halo and therefore with attenuated capacity to induce neuronal damage. Importantly, neuronal loss in hippocampus and entorhinal cortex was fully prevented. Our data also demonstrated that the axonal dystrophic area associated with lithium-modified plaques was highly reduced. Moreover, a significant lower accumulation of phospho-tau, LC3-II and ubiquitinated proteins was detected in treated mice. Our study highlights that this switch of plaque quality by lithium could be mediated by astrocyte activation and the release of heat shock proteins, which concentrate in the core of the plaques. Conclusions Our data demonstrate that the pharmacological in vivo modulation of the extracellular Abeta plaque compaction/toxicity is indeed possible and, in addition, might constitute a novel promising and innovative approach to develop a disease-modifying therapeutic intervention against AD. PMID:24252759

  6. Evidence of molecular links between PKR and mTOR signalling pathways in Abeta neurotoxicity: role of p53, Redd1 and TSC2.

    PubMed

    Morel, Milena; Couturier, Julien; Pontcharraud, Raymond; Gil, Roger; Fauconneau, Bernard; Paccalin, Marc; Page, Guylène

    2009-10-01

    The control of translation is disturbed in Alzheimer's disease (AD). This study analysed the crosslink between the up regulation of double-stranded RNA-dependent-protein kinase (PKR) and the down regulation of mammalian target of rapamycin (mTOR) signalling pathways via p53, the protein Regulated in the Development and DNA damage response 1 (Redd1) and the tuberous sclerosis complex (TSC2) factors in two beta-amyloid peptide (Abeta) neurotoxicity models. In SH-SY5Y cells, Abeta42 induced an increase of P(T451)-PKR and of the ratio p66/(p66+p53) in nuclei and a physical interaction between these proteins. Redd1 gene levels increased and P(T1462)-TSC2 decreased. These disturbances were earlier in rat primary neurons with nuclear co-localization of Redd1 and PKR. The PKR gene silencing in SH-SY5Y cells prevented these alterations. p53, Redd1 and TSC2 could represent the molecular links between PKR and mTOR in Abeta neurotoxicity. PKR could be a critical target in a therapeutic program of AD.

  7. Electronic coherence dynamics in trans-polyacetylene oligomers.

    PubMed

    Franco, Ignacio; Brumer, Paul

    2012-04-14

    Electronic coherence dynamics in trans-polyacetylene oligomers are considered by explicitly computing the time dependent molecular polarization from the coupled dynamics of electronic and vibrational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers are described by the Su-Schrieffer-Heeger Hamiltonian and the effect of decoherence is incorporated by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by sampling the Wigner distribution of the nuclear degrees of freedom. The electronic coherence of superpositions between the ground and excited and between pairs of excited states is examined for chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers the loss of coherence occurs in tens of femtoseconds. This time scale is determined by the decay of population into other electronic states through vibronic interactions, and is relatively insensitive to the type and class of superposition considered. By contrast, for smaller oligomers the decoherence time scale depends strongly on the initially selected superposition, with superpositions that can decay as fast as 50 fs and as slow as 250 fs. The long-lived superpositions are such that little population is transferred to other electronic states and for which the vibronic dynamics is relatively harmonic.

  8. Effect of Synthetic Aβ Peptide Oligomers and Fluorinated Solvents on Kv1.3 Channel Properties and Membrane Conductance

    PubMed Central

    Lioudyno, Maria I.; Broccio, Matteo; Sokolov, Yuri; Rasool, Suhail; Wu, Jessica; Alkire, Michael T.; Liu, Virginia; Kozak, J. Ashot; Dennison, Philip R.; Glabe, Charles G.; Lösche, Mathias; Hall, James E.

    2012-01-01

    The impact of synthetic amyloid β (1–42) (Aβ1–42) oligomers on biophysical properties of voltage-gated potassium channels Kv 1.3 and lipid bilayer membranes (BLMs) was quantified for protocols using hexafluoroisopropanol (HFIP) or sodium hydroxide (NaOH) as solvents prior to initiating the oligomer formation. Regardless of the solvent used Aβ1–42 samples contained oligomers that reacted with the conformation-specific antibodies A11 and OC and had similar size distributions as determined by dynamic light scattering. Patch-clamp recordings of the potassium currents showed that synthetic Aβ1–42 oligomers accelerate the activation and inactivation kinetics of Kv 1.3 current with no significant effect on current amplitude. In contrast to oligomeric samples, freshly prepared, presumably monomeric, Aβ1–42 solutions had no effect on Kv 1.3 channel properties. Aβ1–42 oligomers had no effect on the steady-state current (at −80 mV) recorded from Kv 1.3-expressing cells but increased the conductance of artificial BLMs in a dose-dependent fashion. Formation of amyloid channels, however, was not observed due to conditions of the experiments. To exclude the effects of HFIP (used to dissolve lyophilized Aβ1–42 peptide), and trifluoroacetic acid (TFA) (used during Aβ1–42 synthesis), we determined concentrations of these fluorinated compounds in the stock Aβ1–42 solutions by 19F NMR. After extensive evaporation, the concentration of HFIP in the 100× stock Aβ1–42 solutions was ∼1.7 μM. The concentration of residual TFA in the 70× stock Aβ1–42 solutions was ∼20 μM. Even at the stock concentrations neither HFIP nor TFA alone had any effect on potassium currents or BLMs. The Aβ1–42 oligomers prepared with HFIP as solvent, however, were more potent in the electrophysiological tests, suggesting that fluorinated compounds, such as HFIP or structurally-related inhalational anesthetics, may affect Aβ1–42 aggregation and potentially enhance

  9. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N‑truncated Abeta in sporadic Alzheimer disease cases and mouse models.

    PubMed

    Bouter, Yvonne; Lopez Noguerola, Jose Socrates; Tucholla, Petra; Crespi, Gabriela A N; Parker, Michael W; Wiltfang, Jens; Miles, Luke A; Bayer, Thomas A

    2015-11-01

    Solanezumab and Crenezumab are two humanized antibodies targeting Amyloid-β (Aβ) which are currently tested in multiple clinical trials for the prevention of Alzheimer's disease. However, there is a scientific discussion ongoing about the target engagement of these antibodies. Here, we report the immunohistochemical staining profiles of biosimilar antibodies of Solanezumab, Crenezumab and Bapineuzumab in human formalin-fixed, paraffin-embedded tissue and human fresh frozen tissue. Furthermore, we performed a direct comparative immunohistochemistry analysis of the biosimilar versions of the humanized antibodies in different mouse models including 5XFAD, Tg4-42, TBA42, APP/PS1KI, 3xTg. The staining pattern with these humanized antibodies revealed a surprisingly similar profile. All three antibodies detected plaques, cerebral amyloid angiopathy and intraneuronal Aβ in a similar fashion. Remarkably, Solanezumab showed a strong binding affinity to plaques. We also reaffirmed that Bapineuzumab does not recognize N-truncated or modified Aβ, while Solanezumab and Crenezumab do detect N-terminally modified Aβ peptides Aβ4-42 and pyroglutamate Aβ3-42. In addition, we compared the results with the staining pattern of the mouse NT4X antibody that recognizes specifically Aβ4-42 and pyroglutamate Aβ3-42, but not full-length Aβ1-42. In contrast to the biosimilar antibodies of Solanezumab, Crenezumab and Bapineuzumab, the murine NT4X antibody shows a unique target engagement. NT4X does barely cross-react with amyloid plaques in human tissue. It does, however, detect cerebral amyloid angiopathy in human tissue. In Alzheimer mouse models, NT4X detects intraneuronal Aβ and plaques comparable to the humanized antibodies. In conclusion, the biosimilar antibodies Solanezumab, Crenezumab and Bapineuzumab strongly react with amyloid plaques, which are in contrast to the NT4X antibody that hardly recognizes plaques in human tissue. Therefore, NT4X is the first of a new class of

  10. Imide Oligomers Containing Pendent and Terminal Phenylethynyl Groups-2

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.

    1998-01-01

    As part of a program to develop high-performance/high-temperature structural resins for aeronautical applications, imide oligomers containing pendent and terminal phenylethynyl groups were prepared, characterized and the cured resins evaluated as composite matrices. The oligomers were prepared at a calculated number-average molecular weight of 5000 g/mol and contained 15-20 mol% pendent phenylethynyl groups. In previous work, an oligomer containing pendent and terminal phenylethynyl groups exhibited a high glass transition temperature (approximately 313 C), and laminates therefrom exhibited high compressive properties, but processability, fracture toughness, microcrack resistance and damage tolerance were less than desired. In an attempt to improve these deficiencies, modifications in the oligomeric backbone involving the incorporation of 1,3-bis(3-aminophenoxy)benzene were investigated as a means of improving processability and toughness without detracting from the high glass transition temperature and high compressive properties. The amide acid oligomeric solutions were prepared in N-methyl-2-pyrrolidinone and were subsequently processed into imide powder, thin films, adhesive tape and carbon fiber prepreg. Neat resin plaques were fabricated from imide powder by compression moulding. The maximum processing pressure was 1.4 MPa and the cure temperature ranged from 350 to 371 C for 1 h for the mouldings, adhesives, films and composites. The properties of the 1,3-bis(3-aniinophenoxy)benzene modified cured imide oligomers containing pendent and terminal phenylethynyl groups are compared with those of previously prepared oligomers containing pendent and terminal phenylethynyl groups of similar composition and molecular weight.

  11. A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) Forms Catalytically Active Oligomers*

    PubMed Central

    Kosasih, Hansen J.; Last, Karena; Rogerson, Fraser M.; Golub, Suzanne B.; Gauci, Stephanie J.; Russo, Vincenzo C.; Stanton, Heather; Wilson, Richard; Lamande, Shireen R.; Holden, Paul; Fosang, Amanda J.

    2016-01-01

    The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE373 neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors. PMID:26668318

  12. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    SciTech Connect

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.; Vial, C.; Beauregard, G.; Potier, M.

    1988-06-30

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer.

  13. Static and time-resolved spectroscopy of carbazole-based oligomers with phenylene/thiophene/furan

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangjie; Liu, Yingliang; Meng, Kang; Zeng, Qi; Wang, Shufeng; Gong, Qihuang

    2008-06-01

    Steady-state and picosecond transient spectroscopy measurements are applied to study the photo-physics of three carbazolenevinylene derivatives: alternatively conjugated oligomer of alkylated carbazole and phenylene/thiophene/furan (PBC/PBT/PBF), bridged by vinyl group. Their fluorescence spectra show a bathochromic phenomenon towards solvent polarity. The fluorescence decays of PBF are found to be bi-exponential, while those of PBT and PBC are simple single exponential. It is suggested that PBF is non-planar conformation at ground state and twists to planar conformation after excitation. This chain twisting process of PBF is verified by viscosity dependent fluorescence decay.

  14. Amphiphilic oligomer-based micelles as cisplatin nanocarriers for cancer therapy

    NASA Astrophysics Data System (ADS)

    Qi, Xiuxiu; Li, Najun; Gu, Hongwei; Xu, Yujie; Xu, Ying; Jiao, Yang; Xu, Qingfeng; Li, Hua; Lu, Jianmei

    2013-09-01

    Polymeric micelles (~10 nm) have been prepared from the amphiphilic oligomer comprising oligomeric polystyrene as the hydrophobic inner core and half of EDTA (-N(CH2COOH)2) as the hydrophilic outermost shell. After chelating cisplatin with -N(CH2COOH)2 in water, polymeric micelles containing Pt on the spherical surface have been easily obtained. Since the chelate group is introduced into the amphiphilic oligomer as the terminal group by a RAFT agent, the chelation of cisplatin with PS(COOH)2 is almost stoichiometric. The drug carrier based on PS(COOH)2 showed a high loading efficiency (>70%) towards cisplatin. The release of the therapeutic Pt from the cisplatin-loaded composites (PS(COOH)2-Pt) triggered under weak acidic conditions resulted in good Pt-release and accumulation in tumor cells. Both in vitro and in vivo, the chelated cisplatin inhibited Sk-Br3 cancer more effectively than the intact cisplatin does. Furthermore, neither PS(COOH)2 nor PS(COOH)2-Pt showed obvious systematic toxicity.Polymeric micelles (~10 nm) have been prepared from the amphiphilic oligomer comprising oligomeric polystyrene as the hydrophobic inner core and half of EDTA (-N(CH2COOH)2) as the hydrophilic outermost shell. After chelating cisplatin with -N(CH2COOH)2 in water, polymeric micelles containing Pt on the spherical surface have been easily obtained. Since the chelate group is introduced into the amphiphilic oligomer as the terminal group by a RAFT agent, the chelation of cisplatin with PS(COOH)2 is almost stoichiometric. The drug carrier based on PS(COOH)2 showed a high loading efficiency (>70%) towards cisplatin. The release of the therapeutic Pt from the cisplatin-loaded composites (PS(COOH)2-Pt) triggered under weak acidic conditions resulted in good Pt-release and accumulation in tumor cells. Both in vitro and in vivo, the chelated cisplatin inhibited Sk-Br3 cancer more effectively than the intact cisplatin does. Furthermore, neither PS(COOH)2 nor PS(COOH)2-Pt showed obvious

  15. Following the TRMC Trail: Optimization of Photovoltaic Efficiency and Structure-Property Correlation of Thiophene Oligomers.

    PubMed

    Ghosh, Tanwistha; Gopal, Anesh; Nagasawa, Shinji; Mohan, Nila; Saeki, Akinori; Nair, Vijayakumar C

    2016-09-28

    Semiconducting conjugated oligomers having same end group (N-ethylrhodanine) but different central core (thiophene: OT-T, bithiophene: OT-BT, thienothiophene: OT-TT) connected through thiophene pi-linker (alkylated terthiophene) were synthesized for solution processable bulk-heterojunction solar cells. The effect of the incorporation of an extra thiophene to the central thiophene unit either through C-C bond linkage to form bithiophene or by fusing two thiophenes together to form thienothiophene on the optoelectronic properties and photovoltaic performances of the oligomers were studied in detail. Flash photolysis time-resolved microwave conductivity (FP-TRMC) technique shows OT-TT has significantly higher photoconductivity than OT-T and OT-BT implying that the former can outperform the latter two derivatives by a wide margin under identical conditions in a bulk-heterojunction solar cell device. However, the initial photovoltaic devices fabricated from all three oligomers (with PC71BM as the acceptor) gave power conversion efficiencies (PCEs) of about 0.7%, which was counterintuitive to the TRMC observation. By using TRMC results as a guiding tool, solution engineering was carried out; no remarkable changes were seen in the PCE of OT-T and OT-BT. On the other hand, 5-fold enhancement in the device efficiency was achieved in OT-TT (PCE: 3.52%, VOC: 0.80 V, JSC: 8.74 mA cm(-2), FF: 0.50), which was in correlation with the TRMC results. The structure-property correlation and the fundamental reasons for the improvement in device performance upon solvent engineering were deduced through UV-vis absorption, atomic force microscopy, bright-field transmission electron microscopy, photoluminescence quenching analysis and two-dimensional grazing incidence X-ray diffraction studies.

  16. Interactions between Aβ oligomers and presynaptic cholinergic signaling: age-dependent effects on attentional capacities

    PubMed Central

    Parikh, Vinay; Bernard, Carcha S.; Naughton, Sean X.; Yegla, Brittney

    2014-01-01

    Substantial evidence suggests that cerebral deposition of the neurotoxic fibrillar form of amyloid precursor protein, β-amyloid (Aβ), plays a critical role in the pathogenesis of Alzheimer's disease (AD). Yet, many aspects of AD pathology including the cognitive symptoms and selective vulnerability of cortically-projecting basal forebrain (BF) cholinergic neurons are not well explained by this hypothesis. Specifically, it is not clear why cognitive decline appears early when the loss of BF cholinergic neurons and plaque deposition are manifested late in AD. Soluble oligomeric forms of Aβ are proposed to appear early in the pathology and to be better predictors of synaptic loss and cognitive deficits. The present study was designed to examine the impact of Aβ oligomers on attentional functions and presynaptic cholinergic transmission in young and aged rats. Chronic intracranial infusions of Aβ oligomers produced subtle decrements in the ability of rats to sustain attentional performance with time on task, irrespective of the age of the animals. However, Aβ oligomers produced robust detrimental effects on performance under conditions of enhanced attentional load in aged animals. In vivo electrochemical recordings show reduced depolarization-evoked cholinergic signals in Aβ-infused aged rats. Moreover, soluble Aβ disrupted the capacity of cholinergic synapses to clear exogenous choline from the extracellular space in both young and aged rats, reflecting impairments in the choline transport process that is critical for acetylcholine (ACh) synthesis and release. Although aging per se reduced the cross-sectional area of BF cholinergic neurons and presynaptic cholinergic proteins in the cortex, attentional performance and ACh release remained unaffected in aged rats infused with the control peptide. Taken together, these data suggest that soluble Aβ may marginally influence attentional functions at young ages primarily by interfering with the choline uptake

  17. Phase transition in conjugated oligomers suspended in chloroform

    NASA Astrophysics Data System (ADS)

    Dwivedi, Shikha; Kumar, Anupam; Yadav, S. N. S.; Mishra, Pankaj

    2015-08-01

    Density functional theory (DFT) has been used to investigate the isotropic-nematic (I-N) phase transition in a system of high aspect ratio conjugated oligomers suspended in chloroform. The interaction between the oligomers is modeled using Gay-Berne potential in which effect of solvent is implicit. Percus-Yevick integral equation theory has been used to evaluate the pair correlation functions of the fluid phase at several temperatures and densities. These pair correlation function has been used in the DFT to evaluate the I-N freezing parameters. Highly oriented nematic is found to stabilize at low density. The results obtained are in qualitative agreement with the simulation and are verifiable.

  18. Synthesis of long prebiotic oligomers on mineral surfaces.

    PubMed

    Ferris, J P; Hill, A R; Liu, R; Orgel, L E

    1996-05-02

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers--both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino acids) induces the formation of oligomers up to 55 monomers long. These are formed by successive 'feedings' with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  19. Synthesis of long Prebiotic Oligomers on Mineral Surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hill, Aubrey R., Jr.; Liu, Rihe; Orgel, Leslie E.

    1996-01-01

    Most theories of the origin of biological organization assume that polymers with lengths in the range of 30-60 monomers are needed to make a genetic system viable. But it has not proved possible to synthesize plausibly prebiotic polymers this long by condensation in aqueous solution, because hydrolysis competes with polymerization. The potential of mineral surfaces to facilitate prebiotic polymerization was pointed out long ago. Here we describe a system that models prebiotic polymerization by the oligomerization of activated monomers -both nucleotides and amino acids. We find that whereas the reactions in solution produce only short oligomers (the longest typically being a 10-mer), the presence of mineral surfaces (montmorillonite for nucleotides, illite and hydroxylapatite for amino adds) induces the formation of oligomers up to 55 monomers long. These are formed by successive "feedings" with the monomers; polymerization takes place on the mineral surfaces in a manner akin to solid-phase synthesis of biopolymers.

  20. Production of random DNA oligomers for scalable DNA computing.

    PubMed

    Wang, Sixue S L; Johnson, John J X; Hughes, Bradley S T; Karabay, Dundar A O; Bader, Karson D W; Austin, Allen; Austin, Alan; Habib, Aisha; Hatef, Husnia; Joshi, Megha; Nguyen, Lawrence; Mills, Allen P

    2009-01-01

    While remarkably complex networks of connected DNA molecules can form from a relatively small number of distinct oligomer strands, a large computational space created by DNA reactions would ultimately require the use of many distinct DNA strands. The automatic synthesis of this many distinct strands is economically prohibitive. We present here a new approach to producing distinct DNA oligomers based on the polymerase chain reaction (PCR) amplification of a few random template sequences. As an example, we designed a DNA template sequence consisting of a 50-mer random DNA segment flanked by two 20-mer invariant primer sequences. Amplification of a dilute sample containing about 30 different template molecules allows us to obtain around 10(11) copies of these molecules and their complements. We demonstrate the use of these amplicons to implement some of the vector operations that will be required in a DNA implementation of an analog neural network.

  1. Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers.

    PubMed

    Codocedo, Juan F; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C

    2015-01-01

    Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers.

  2. Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers

    PubMed Central

    Codocedo, Juan F.; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C.

    2015-01-01

    Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers. PMID:26124704

  3. Soluble Amyloid β-Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity

    PubMed Central

    Valincius, Gintaras; Heinrich, Frank; Budvytyte, Rima; Vanderah, David J.; McGillivray, Duncan J.; Sokolov, Yuri; Hall, James E.; Lösche, Mathias

    2008-01-01

    It is well established that Alzheimer's amyloid β-peptides reduce the membrane barrier to ion transport. The prevailing model ascribes the resulting interference with ion homeostasis to the formation of peptide pores across the bilayer. In this work, we examine the interaction of soluble prefibrillar amyloid β (Aβ1–42)-oligomers with bilayer models, observing also dramatic increases in ion current at micromolar peptide concentrations. We demonstrate that the Aβ-induced ion conductances across free-standing membranes and across substrate-supported “tethered” bilayers are quantitatively similar and depend on membrane composition. However, characteristic signatures of the molecular transport mechanism were distinctly different from ion transfer through water-filled pores, as shown by a quantitative comparison of the membrane response to Aβ-oligomers and to the bacterial toxin α-hemolysin. Neutron reflection from tethered membranes showed that Aβ-oligomers insert into the bilayer, affecting both membrane leaflets. By measuring the capacitance of peptide-free membranes, as well as their geometrical thicknesses, the dielectric constants in the aliphatic cores of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-diphytanoyl-sn-glycero-3-phosphocholine bilayers were determined to be ɛ = 2.8 and 2.2, respectively. The magnitude of the Aβ-induced increase in ɛ indicates that Aβ-oligomers affect membranes by inducing lateral heterogeneity in the bilayers, but an increase in the water content of the bilayers was not observed. The activation energy for Aβ-induced ion transport across the membrane is at least three times higher than that measured for membranes reconstituted with α-hemolysin pores, Ea = 36.8 vs. 9.9 kJ/mol, indicating that the molecular mechanisms underlying both transport processes are fundamentally different. The Aβ-induced membrane conductance shows a nonlinear dependence on the peptide concentration in the membrane. Moreover, Ea depends on

  4. Changes of adiponectin oligomer composition by moderate weight reduction.

    PubMed

    Bobbert, Thomas; Rochlitz, Helmut; Wegewitz, Uta; Akpulat, Suzan; Mai, Knut; Weickert, Martin O; Möhlig, Matthias; Pfeiffer, Andreas F H; Spranger, Joachim

    2005-09-01

    Adiponectin affects lipid metabolism and insulin sensitivity. However, adiponectin circulates in three different oligomers that may also have distinct biological functions. We aimed to analyze the role of these oligomers in obesity and lipid metabolism after weight reduction. A total of 17 obese volunteers (15 women and 2 men) participated in a weight reduction program. Individuals were characterized before and after 6 months of a balanced diet. Adiponectin was determined by enzyme-linked immunosorbent assay, and oligomers were detected by nondenaturating Western blot. BMI decreased (35.1 +/- 1.2 to 32.8 +/- 1.1 kg/m(2), P < 0.001), which was associated with an improved metabolite profile. Total adiponectin increased from 5.3 +/- 0.5 to 6.1 +/- 0.6 microg/ml (P = 0.076). High (HMW) and medium molecular weight (MMW) adiponectin oligomers significantly increased during weight reduction (HMW: 0.37 +/- 0.07 to 0.4 +/- 0.08 microg/ml, P = 0.042; MMW: 2.3 +/- 0.2 to 2.9 +/- 0.3 microg/ml, P = 0.007), while low molecular weight (LMW) did not significantly change. Body weight inversely correlated with HMW (r = -0.695, P = 0.002) and positively with LMW (r = 0.579, P = 0.015). Interestingly, HDL cholesterol and HMW were strongly correlated (r = 0.665, P = 0.007). Indeed, HMW and free fatty acids before weight reduction predicted approximately 60% of HDL changes during intervention. In conclusion, weight reduction results in a relative increase of HMW/MMW adiponectin and a reduction of LMW adiponectin. Total adiponectin and especially HMW adiponectin are related to circulating HDL cholesterol.

  5. Ethynyl-terminated ester oligomers and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1986-01-01

    A class of ethynyl terminated oligomers and the process for preparing the same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  6. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  7. Synthesis of soybean oil-based thiol oligomers.

    PubMed

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials.

  8. Molecular modeling of crystalline alkylthiophene oligomers and polymers.

    PubMed

    Moreno, Margherita; Casalegno, Mosè; Raos, Guido; Meille, Stefano V; Po, Riccardo

    2010-02-04

    We present the results of a thorough molecular modeling study of several alkylthiophene-based oligomers and polymers. In particular, we consider two polymers whose limit-ordered crystal structures have been recently reported by our group, on the basis of powder X-ray data analysis: poly(3-(S)-2-methylbutylthiophene) (P3MBT) and form I' of poly(3-butylthiophene) (P3BT). We first describe the development of a series general purpose force fields for the simulation of these and related systems. The force fields incorporate the results of ab initio calculations of the bond torsion energies of selected oligomers and differ in the set of atomic charges used to represent the electrostatic interactions. We then present the results of an extensive validation of these force fields, by means of molecular mechanics (MM) energy minimizations and molecular dynamics (MD) simulations of the crystal structures of these oligomers and polymers. While our "best" force field does not outperform the others on each of the investigated systems, it provides a balanced description of their overall structure and energetics. Finally, our MM minimizations and MD simulations confirm that the reported crystal structures of P3MBT and P3BT are stable and correspond to well-defined energetic minima. The room-temperature MD simulations reveal a certain degree of side-chain disorder, even in our virtually defect-free polymer crystal models.

  9. Deuteration-induced scission of C{sub 58} oligomers

    SciTech Connect

    Loeffler, Daniel; Jester, Stefan-S.; Weis, Patrick; Boettcher, Artur; Kappes, Manfred M.

    2006-12-14

    The reaction of solid C{sub 58} films with atomic deuterium to yield deuterofullerenes, C{sub 58}D{sub x}, has been investigated by thermal desorption spectroscopy coupled with mass spectrometric detection, ultraviolet photoionization spectroscopy (21.2 eV), and atomic force microscopy (AFM). The average composition of the deuterofullerenes created depends on deuterium dose, beam flux, and surface temperature. Low deuterium exposures at room temperature yield predominantly C{sub 58}D{sub 6-8} cages. Saturation exposures at room temperature yield mass spectra peaked at C{sub 58}D{sub 26}. After saturation exposures at elevated surface temperatures ({approx}500 K), the (subsequently) desorbed material reveals a comparatively narrow mass spectral distribution centered at C{sub 58}D{sub 30}. Deuteration is associated with cleavage of covalent cage-cage bonds in the starting C{sub 58} oligomer material, as evidenced by a considerable lowering of the sublimation energies of C{sub 58}D{sub x} compared to desorption of C{sub 58} desorbed from pure oligomer films. Correspondingly, AFM images reveal a D-induced, thermally activated transition from dendritic C{sub 58} oligomer islands into smooth-rimmed islands composed of deuterated cages. Deuterated films exhibit a significantly lower work function than bare C{sub 58} films. Progressing deuteration also gradually raises the surface ionization potential.

  10. α-Synuclein oligomers and clinical implications for Parkinson disease.

    PubMed

    Kalia, Lorraine V; Kalia, Suneil K; McLean, Pamela J; Lozano, Andres M; Lang, Anthony E

    2013-02-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent, suggesting that another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species, with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated, as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications.

  11. Oligomers, organosulfates, and nitroxy organosulfates identified in rainwater

    NASA Astrophysics Data System (ADS)

    Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.

    2008-12-01

    Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50 percent of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We document the presence of 552 unique compounds in the rainwater over a mass range of 50-500 Da, in four compound classes (i.e., CHO, CHOS, CHON, and CHONS). The presence of oligomers, organosulfates, nitroxy organosulfates, organic acids, and linear alkylbenzene sulfonates is reported. Some compounds detected have distinct primary sources; however, the composition of the bulk of this material suggests it is formed in the atmosphere and composed of known contributors to secondary organic aerosol. For example, eight oligomer series known to form through aqueous photooxidation of methylglyoxal and organosulfate compounds known to form from 4 precursors in smog chamber experiments were identified in the rainwater samples. The oligomers, organosulfates, and nitroxy organosulfates detected in the rainwater could all contribute to the HULIS fraction of atmospheric organic matter.

  12. Size-dependent neurotoxicity of β-amyloid oligomers

    PubMed Central

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. Similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1–42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures. PMID:20153288

  13. The Viscoelastic Behavior of Polymer/Oligomer Blends

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; McKenna, Gregory; Simon, Sindee

    2009-03-01

    The dynamics in athermal blends of poly(α-methyl styrene) (PaMS) and its short chain oligomer are investigated using rheometry and differential scanning calorimetry (DSC). Master curves for the dynamic shear responses, G' and G", are successfully constructed for both the pure materials and the blends, indicating the validity of the time-temperature superposition principle. The temperature dependence of the shift factor follows the WLF (Williams-Landel-Ferry) behavior over the temperature range studied, and for the blends, the dependence is dominated by the high mobility oligomer. The discrete relaxation spectra of the materials are calculated and are found to be broader for the blends than for the pure materials. A similar domination of the dynamics by the oligomer is observed in DSC enthalpy recovery studies and in the broadened glass transition from DSC. The ability to predict the dynamic responses of the blends from the responses of the neat materials is examined, and whether this prediction needs to incorporate the self-concentration idea as described in Colmenero's model will be discussed.

  14. Regiocontrolled synthesis of ethene-bridged para-phenylene oligomers based on Pt(II)- and Ru(II)-catalyzed aromatization.

    PubMed

    Chen, Tse-An; Lee, Te-Ju; Lin, Ming-Yuan; Sohel, Shariar M A; Diau, Eric Wei-Guang; Lush, Shie-Fu; Liu, Rai-Shung

    2010-02-08

    We report the regiocontrolled syntheses of ethene-bridged para-phenylene oligomers in three distinct classes by using Pt(II)- and Ru(II)-catalyzed aromatization. This synthetic approach has been developed based on twofold aromatization of the 1-aryl-2-alkynylbenzene functionality, which proceeds by distinct regioselectivity for platinum and ruthenium catalysts. Variable-temperature NMR spectra provide evidence that large arrays of these oligomers are prone to twist from planarity. The UV/Vis and photoluminescence (PL) spectra as well as the band gaps of these regularly growing arrays show a pattern of extensive pi conjugation with increasing array sizes, except for in one instance.

  15. Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling

    NASA Astrophysics Data System (ADS)

    Lemaire, V.; Coll, I.; Couvidat, F.; Mouchel-Vallon, C.; Seigneur, C.; Siour, G.

    2015-10-01

    The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a 1st-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM), to simulate the spatial and temporal distribution of oligomerized SOA over western Europe. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.

  16. The myelin proteolipid plasmolipin forms oligomers and induces liquid-ordered membranes in the Golgi complex.

    PubMed

    Yaffe, Yakey; Hugger, Ilan; Yassaf, Inbar Nevo; Shepshelovitch, Jeanne; Sklan, Ella H; Elkabetz, Yechiel; Yeheskel, Adva; Pasmanik-Chor, Metsada; Benzing, Carola; Macmillan, Alexander; Gaus, Katharina; Eshed-Eisenbach, Yael; Peles, Elior; Hirschberg, Koret

    2015-07-01

    Myelin comprises a compactly stacked massive surface area of protein-poor thick membrane that insulates axons to allow fast signal propagation. Increasing levels of the myelin protein plasmolipin (PLLP) were correlated with post-natal myelination; however, its function is unknown. Here, the intracellular localization and dynamics of PLLP were characterized in primary glial and cultured cells using fluorescently labeled PLLP and antibodies against PLLP. PLLP localized to and recycled between the plasma membrane and the Golgi complex. In the Golgi complex, PLLP forms oligomers based on fluorescence resonance energy transfer (FRET) analyses. PLLP oligomers blocked Golgi to plasma membrane transport of the secretory protein vesicular stomatitis virus G protein (VSVG), but not of a VSVG mutant with an elongated transmembrane domain. Laurdan staining analysis showed that this block is associated with PLLP-induced proliferation of liquid-ordered membranes. These findings show the capacity of PLLP to assemble potential myelin membrane precursor domains at the Golgi complex through its oligomerization and ability to attract liquid-ordered lipids. These data support a model in which PLLP functions in myelin biogenesis through organization of myelin liquid-ordered membranes in the Golgi complex.

  17. Identification of the cleavage sites in the alpha6A integrin subunit: structural requirements for cleavage and functional analysis of the uncleaved alpha6Abeta1 integrin.

    PubMed Central

    Delwel, G O; Kuikman, I; van der Schors, R C; de Melker, A A; Sonnenberg, A

    1997-01-01

    The alpha6A and alpha6B integrin subunits are proteolytically cleaved during biosynthesis into a heavy chain (120 kDa) that is disulphide-linked to one of two light chains (31 or 30 kDa). Analysis of the structure of the alpha6A subunit on the carcinoma cell line T24 and human platelets demonstrated that the two light chains of alpha6 are not differentially glycosylated products of one polypeptide. Rather they possess different polypeptide backbones, which presumably result from proteolytic cleavage at distinct sites in the alpha6 precursor. Mutations were introduced in the codons for the R876KKR879, E883K884, R890K891 and R898K899 sequences, the potential proteolytic cleavage sites, and wild-type and mutant alpha6A cDNAs were transfected into K562 cells. The mutant alpha6A integrin subunits were expressed in association with endogenous beta1 at levels comparable to that of wild-type alpha6Abeta1. A single alpha6 polypeptide chain (150 kDa) was precipitated from transfectants expressing alpha6A with mutations or deletions in the RKKR sequence. Mutations in the EK sequence yielded alpha6A subunits that were cleaved once into a heavy and a light chain, whereas alpha6A subunits with mutations in one of the two RK sequences were, like wild-type alpha6A, cleaved into one heavy and two light chains. Thus a change in the RKKR sequence prevents the cleavage of alpha6. The EK site is the secondary cleavage site, which is used only when the primary site (RKKR) is intact. Microsequencing of the N-termini of the two alpha6A light chains from platelets demonstrated that cleavage occurs after Arg879 and Lys884. Because alpha6(RKKG), alpha6(GKKR) and alpha6(RGGR) subunits were not cleaved it seems that both the arginine residues and the lysine residues are essential for cleavage of RKKR. alpha6A mutants with the RKKR sequence shifted to the EK site, in such a way that the position of the arginine residue after which cleavage occurs corresponds exactly to Lys884, were partly

  18. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions.

    PubMed

    Fan, Hailong; Yu, Xiang; Liu, Yang; Shi, Zujin; Liu, Huihui; Nie, Zongxiu; Wu, Decheng; Jin, Zhaoxia

    2015-06-21

    Recent research has indicated that polydopamine and synthetic eumelanins are optoelectronic biomaterials in which one-dimensional aggregates composed of ordered-stacking oligomers have been proposed as unique organic semiconductors. However, improving the ordered-stacking of oligomers in polydopamine nanostructures is a big challenge. Herein, we first demonstrate how folic acid molecules influence the morphology and nanostructure of polydopamine via tuning the π-π interactions of oligomers. MALDI-TOF mass spectrometry reveals that porphyrin-like tetramers are characteristic of folic acid-polydopamine (FA-PDA) nanofibers. X-ray diffraction combined with simulation studies indicate that these oligomers favour aggregation into graphite-like ordered nanostructures via strong π-π interactions. High-resolution TEM characterization of carbonized FA-PDA hybrids show that in FA-PDA nanofibers the size of the graphite-like domains is over 100 nm. The addition of folic acid in polydopamine enhances the ordered stacking of oligomers in its nanostructure. Our study steps forward to discover the mystery of the structure-property relationship of FA-PDA hybrids. It paves a way to optimize the properties of PDA through the design and selection of oligomer structures.

  19. Precise measurement of the self-diffusion coefficient for poly(ethylene glycol) in aqueous solution using uniform oligomers

    NASA Astrophysics Data System (ADS)

    Shimada, Kayori; Kato, Haruhisa; Saito, Takeshi; Matsuyama, Shigetomo; Kinugasa, Shinichi

    2005-06-01

    Uniform poly(ethylene glycol) (PEG) oligomers, with a degree of polymerization n =1-40, were separated by preparative supercritical fluid chromatography from commercial monodispersed samples. Diffusion coefficients, D, for separated uniform PEG oligomers were measured in dilute solutions of deuterium oxide (D2O) at 30 ° C, using pulsed-field gradient nuclear magnetic resonance. The measured D for each molecular weight was extrapolated to infinite dilution. Diffusion coefficients obtained at infinite dilution follow the scaling behavior of Zimm-type diffusion, even in the lower molecular weight range. Molecular-dynamics simulations for PEG in H2O also showed this scaling behavior, and reproduced close hydrodynamic interactions between PEG and water. These findings suggest that diffusion of PEG in water is dominated by hydrodynamic interaction over a wide molecular weight range, including at low molecular weights around 1000.

  20. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species

    PubMed Central

    González-Lizárraga, Florencia; Socías, Sergio B.; Ávila, César L.; Torres-Bugeau, Clarisa M.; Barbosa, Leandro R. S.; Binolfi, Andres; Sepúlveda-Díaz, Julia E.; Del-Bel, Elaine; Fernandez, Claudio O.; Papy-Garcia, Dulce; Itri, Rosangela; Raisman-Vozari, Rita; Chehín, Rosana N.

    2017-01-01

    Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different β-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug. PMID:28155912

  1. Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel beta-sheet structured species.

    PubMed

    González-Lizárraga, Florencia; Socías, Sergio B; Ávila, César L; Torres-Bugeau, Clarisa M; Barbosa, Leandro R S; Binolfi, Andres; Sepúlveda-Díaz, Julia E; Del-Bel, Elaine; Fernandez, Claudio O; Papy-Garcia, Dulce; Itri, Rosangela; Raisman-Vozari, Rita; Chehín, Rosana N

    2017-02-03

    Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different β-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug.

  2. Synthesis and Optoelectronic Characterization of Some Star-Shaped Oligomers with Benzene and Triphenylamine Cores

    PubMed Central

    Ivan, Teofilia; Vacareanu, Loredana; Grigoras, Mircea

    2012-01-01

    Six star-shaped oligomers containing triphenylamine (D1–D3) and benzene unit (D4–D6) as cores have been synthesized by Wittig condensation or Heck coupling reaction using aromatic aldehydes and triphenylphosphonium salts or aromatic halogenated compounds with vinyl triphenylamine. All oligomers have well-defined molecular structure and high purity. Characterization of the oligomers was made by FT-IR, 1H-NMR spectroscopy, UV-Vis, and fluorescence spectroscopy. The electrochemical behavior was studied by cyclic voltammetry (CV). The cyclic voltammograms have revealed that oligomers undergo quasireversible or irreversible redox processes. The irreversible process is associated with electrochemical polymerization of oligomers by dimerization of unsubstituted triphenylamine groups. Thermal characterization was accomplished by TGA and DSC methods and evidenced that all oligomers were stable materials until 250°C and have formed stable molecular glasses after first heating scan. PMID:24052859

  3. Radiative decay of excitons in model aggregates of {pi}-conjugated oligomers

    SciTech Connect

    Manas, E.S.; Spano, F.C.

    1998-07-01

    Spontaneous emission from exciton states in an aggregate of {pi}-conjugated oligomers is studied theoretically. Each oligomer is taken as a ring of N carbon atoms and is treated using a PPP Hamiltonian. Coulombic interactions between rings are treated to first order. The radiative decay rate {gamma} from an exciton state in an aggregate of M aligned oligomers is superradiant, being M times faster than the decay rate of an isolated oligomer exciton. Inter-oligomer interactions have little effect on the exciton size and energy when the oligomer size N is large compared to the interoligomer spacing. However, when N is small, both the exciton size and energy are strongly affected by these interactions, leading to a markedly different N dependence for {gamma}.

  4. Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration.

    PubMed

    Hauser, Mark A; Schaeuble, Karin; Kindinger, Ilona; Impellizzieri, Daniela; Krueger, Wolfgang A; Hauck, Christof R; Boyman, Onur; Legler, Daniel F

    2016-01-19

    Host defense depends on orchestrated cell migration guided by chemokines that elicit selective but biased signaling pathways to control chemotaxis. Here, we showed that different inflammatory stimuli provoked oligomerization of the chemokine receptor CCR7, enabling human dendritic cells and T cell subpopulations to process guidance cues not only through classical G protein-dependent signaling but also by integrating an oligomer-dependent Src kinase signaling pathway. Efficient CCR7-driven migration depends on a hydrophobic oligomerization interface near the conserved NPXXY motif of G protein-coupled receptors as shown by mutagenesis screen and a CCR7-SNP demonstrating super-oligomer characteristics leading to enhanced Src activity and superior chemotaxis. Furthermore, Src phosphorylates oligomeric CCR7, thereby creating a docking site for SH2-domain-bearing signaling molecules. Finally, we identified CCL21-biased signaling that involved the phosphatase SHP2 to control efficient cell migration. Collectively, our data showed that CCR7 oligomers serve as molecular hubs regulating distinct signaling pathways.

  5. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.

    PubMed

    Jensen, Jill R; Morinelly, Juan E; Gossen, Kelsey R; Brodeur-Campbell, Michael J; Shonnard, David R

    2010-04-01

    The effects of dilute acid hydrolysis conditions were investigated on total sugar (glucose and xylose) yields after enzymatic hydrolysis with additional analyses on glucose and xylose monomer and oligomer yields from the individual hydrolysis steps for aspen (a hardwood), balsam (a softwood), and switchgrass (a herbaceous energy crop). The results of this study, in the form of measured versus theoretical yields and a severity analysis, show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations (0.25-0.75 wt.%) and temperatures (150-175 degrees C) studied as long as reaction time was optimized. Switchgrass shows a relatively stronger dependence on dilute acid hydrolysis acid concentration due to its higher neutralizing mineral content. Maximum total sugar (xylose and glucose; monomer plus oligomer) yields post-enzymatic hydrolysis for aspen, balsam, and switchgrass, were 88.3%, 21.2%, and 97.6%, respectively. In general, highest yields of total sugars (xylose and glucose; monomer plus oligomer) were achieved at combined severity parameter values (log CS) between 2.20 and 2.40 for the biomass species studied.

  6. Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble Aβ(42) oligomers via a metalloproteinase-dependent mechanism.

    PubMed

    Sandoval, Karin E; Farr, Susan A; Banks, William A; Crider, Albert M; Morley, John E; Witt, Ken A

    2013-07-03

    Soluble amyloid-β peptide (Aβ) oligomers have been hypothesized to be primary mediators of Alzheimer's disease progression. In this regard, reduction of soluble Aβ-oligomers levels within the brain may provide a viable means in which to treat the disease. Somatostatin receptor subtype-4 (SSTR4) agonists have been proposed to reduce Aβ levels in the brain via enhancement of enzymatic degradation. Herein we evaluated the effect of selective SSTR4 agonist NNC 26-9100 on the changes in learning and soluble Aβ42 oligomer brain content with and without co-administration of the M13-metalloproteinase family enzyme-inhibitor phosphoramidon, using the senescence-accelerated mouse prone-8 (SAMP8) model. NNC 26-9100 treatment (0.2 µg i.c.v. in 2 µL) improved learning, which was blocked by phosphoramidon (1 and 10mM, respectively). NNC 26-9100 decreased total soluble Aβ42, an effect which was blocked by phosphoramidon (10mM). Extracellular, intracellular, and membrane fractions were then isolated from cortical tissue and assessed for soluble oligomer alterations. NNC 26-9100 decreased the Aβ42 trimeric (12 kDa) form within the extracellular and intracellular fractions, and produced a band-split effect of the Aβ42 hexameric (25 kDa) form within the extracellular fraction. These effects were also blocked by phosphoramdon (1 and 10mM, respectively). Subsequent evaluation of NNC 26-9100 in APPswe Tg2576 transgenic mice showed a similar learning improvement and corresponding reduction in soluble Aβ42 oligomers within extracellular, intracellular, and membrane fractions. These data support the hypothesis that NNC 26-9100 reduces soluble Aβ42 oligomers and enhances learning through a phosphoramidon-sensitive metalloproteinase-dependent mechanism.

  7. The effects of soluble Aβ oligomers on neurodegeneration in Alzheimer's disease.

    PubMed

    Brouillette, Jonathan

    2014-01-01

    The neurodegenerative process that defines Alzheimer''s disease (AD) is initially characterized by synaptic alterations followed by synapse loss and ultimately cell death. Decreased synaptic density that precedes neuronal death is the strongest pathological correlate of cognitive deficits observed in AD. Substantial synapse and neuron loss occur early in disease progression in the entorhinal cortex (EC) and the CA1 region of the hippocampus, when memory deficits become clinically detectable. Mounting evidence suggests that soluble amyloid-β (Aβ) oligomers trigger synapse dysfunction both in vitro and in vivo. However, the neurodegenerative effect of Aβ species observed on neuronal culture or organotypic brain slice culture has been more challenging to mimic in animal models. While most of the transgenic mice that overexpress Aβ show abundant amyloid plaque pathology and early synaptic alterations, these models have been less successful in recapitulating the spatiotemporal pattern of cell loss observed in AD. Recently we developed a novel animal model that revealed the neurodegenerative effect of soluble low-molecular-weight Aβ oligomers in vivo. This new approach may now serve to determine the molecular and cellular mechanisms linking soluble Aβ species to neurodegeneration in animals. In light of the low efficiency of AD therapies based on the amyloid cascade hypothesis, a novel framework, the aging factor cascade hypothesis, is proposed in an attempt to integrate the new data and concepts that emerged from recent research to develop disease modifying therapies.

  8. Ring-like oligomers of Synaptotagmins and related C2 domain proteins

    PubMed Central

    Zanetti, Maria N; Bello, Oscar D; Wang, Jing; Coleman, Jeff; Cai, Yiying; Sindelar, Charles V; Rothman, James E; Krishnakumar, Shyam S

    2016-01-01

    We recently reported that the C2AB portion of Synaptotagmin 1 (Syt1) could self-assemble into Ca2+-sensitive ring-like oligomers on membranes, which could potentially regulate neurotransmitter release. Here we report that analogous ring-like oligomers assemble from the C2AB domains of other Syt isoforms (Syt2, Syt7, Syt9) as well as related C2 domain containing protein, Doc2B and extended Synaptotagmins (E-Syts). Evidently, circular oligomerization is a general and conserved structural aspect of many C2 domain proteins, including Synaptotagmins. Further, using electron microscopy combined with targeted mutations, we show that under physiologically relevant conditions, both the Syt1 ring assembly and its rapid disruption by Ca2+ involve the well-established functional surfaces on the C2B domain that are important for synaptic transmission. Our data suggests that ring formation may be triggered at an early step in synaptic vesicle docking and positions Syt1 to synchronize neurotransmitter release to Ca2+ influx. DOI: http://dx.doi.org/10.7554/eLife.17262.001 PMID:27434670

  9. Anti-tau oligomers passive vaccination for the treatment of Alzheimer disease.

    PubMed

    Kayed, Rakez

    2010-11-01

    The aggregation and accumulation of the microtubule-associated protein (Tau) is a pathological hallmark of Alzheimer's disease (AD) and many neurodegenerative diseases. Despite the poor correlation between neurofirillary tangles (NFTs) and disease progression, and evidence showing, that neuronal loss in AD actually precedes NFTs formation research until recently focused on them and other large meta-stable inclusions composed of aggregated hyperphosphorylated tau protein. Lately, the significance and toxicity of NFTs has been challenged and new aggregated tau entity has emerged as the true pathogenic species in tauopathies and a possible mediator of Aβ toxicity in AD. Tau intermediate aggregate (tau oligomers; aggregates of an intermediate that is between monomers and NFTs in size) can cause neurodegeneration and memory impairment in the absence of Aβ. This exciting body of evidence includes results from human brain samples, transgenic mouse and cell-based studies. Despite extensive efforts to develop a safe and efficacious vaccine for AD using Aβ peptide as an immunogen in active vaccination approaches or anti Aβ antibodies for passive vaccination, success has been modest. Nonetheless, these studies have produced a wealth of fundamental knowledge that has potential to application to the development of a tau-based immunotherapy. Herein, I discuss the evidence supporting the critical role of tau oligomers in AD, the potential and challenges for targeting them by immunotherapy as a novel approach for AD treatment.

  10. Separation and reformation of cell surface dopamine receptor oligomers visualized in cells.

    PubMed

    O'Dowd, Brian F; Ji, Xiaodong; Alijaniaram, Mohammad; Nguyen, Tuan; George, Susan R

    2011-05-11

    We previously showed that dopamine receptors existed as homo- and heterooligomers, in cells and in brain tissue. We developed a method designed to study the formation and regulation of G protein coupled receptor (GPCR) oligomers in cells, using a GPCR into which a nuclear localization sequence (NLS) had been inserted. Unlike wildtype GPCRs, in the presence of agonist/antagonist ligands the GPCR-NLS is retained at the cell surface, and following ligand removal, the GPCR-NLS translocated from the cell surface. The D(1) dopamine receptor expressed with either D(2)-NLS or D(1-)NLS receptors translocated to the nucleus, indicating hetero- or homo-oligomerization with the NLS-containing receptor. Using these tools, we now demonstrate that D(1)-D(2) dopamine heterooligomers can be disrupted and the component receptors separated by dopamine and selective agonists that occupied one or both binding pockets. Subsequent agonist removal allowed the reformation of the heterooligomer. D(1) receptor homooligomers could also be disrupted by agonist, but at higher concentrations than that required for the disruption of the D(1)-D(2) heteromer. Dopamine D(1) or D(2) receptor antagonists had no effect on the integrity of the homo- or heterooligomer. We have also determined that the D(1)-D(2) heterooligomer contains D(1) homooligomers. These studies indicate that the populations of dopamine receptor oligomers at the cell surface are subject to conformational changes following agonist occupancy and are likely dynamically regulated following agonist activation.

  11. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation.

    PubMed

    Cardozo, Thiago M; Aquino, Adélia J A; Barbatti, Mario; Borges, Itamar; Lischka, Hans

    2015-03-05

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

  12. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory.

    PubMed

    Fá, M; Puzzo, D; Piacentini, R; Staniszewski, A; Zhang, H; Baltrons, M A; Li Puma, D D; Chatterjee, I; Li, J; Saeed, F; Berman, H L; Ripoli, C; Gulisano, W; Gonzalez, J; Tian, H; Costa, J A; Lopez, P; Davidowitz, E; Yu, W H; Haroutunian, V; Brown, L M; Palmeri, A; Sigurdsson, E M; Duff, K E; Teich, A F; Honig, L S; Sierks, M; Moe, J G; D'Adamio, L; Grassi, C; Kanaan, N M; Fraser, P E; Arancio, O

    2016-01-20

    Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology.

  13. Annotation of Different Dehydrocatechin Oligomers by MS/MS and Their Occurrence in Black Tea.

    PubMed

    Verloop, Annewieke J W; Gruppen, Harry; Vincken, Jean-Paul

    2016-08-03

    Dehydrocatechins (DhC's), oligomeric oxidation products of (epi)catechins, were formed in model incubations of epicatechin with mushroom tyrosinase. DhC oligomers up to tetramers were detected by reversed-phase ultrahigh-performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Measurements with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) showed formation of oligomers up to at least 15 catechin subunits. Isomeric DhC's were obtained, and a method based on MS(2) fragment ratios was set up to distinguish between the different interflavanic configurations of the isomers. In the model incubation, 8 dehydrodicatechins (DhC2's) and 22 dehydrotricatechins (DhC3's) were tentatively annotated by their MS(2) signature fragments. Three different interflavanic configuration types were determined for the DhC2's. DhC2's and DhC3's were shown to occur in a black tea extract for the first time. For the DhC2's, at least two isomeric types, i.e., DhC β and DhC ε, could be annotated in black tea.

  14. Synthesis of RNA oligomers on heterogeneous templates

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1996-01-01

    The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

  15. [Antibody therapy for Alzheimer's disease].

    PubMed

    Tabira, Takeshi; Matsumoto, Shin-Ei; Jin, Haifeng

    2011-11-01

    In order to avoid Abeta-induced autoimmune encephalitis, several monoclonal and polyclonal antibodies are in clinical trials. These are bapineuzumab, solanezumab, ponezumab, gantenerumab, BAN2401, gammaguard and octagam. Since each antibody has a different antigen epitope of Abeta, anti-amyloid activities are different. It is unknown which antibody is effective for Alzheimer disease, and we must wait for the result of clinical trials. Some patients who developed tissue amyloid plaque immuno-reactive (TAPIR) antibody showed slower decline after AN-1792 vaccination. We developed TAPIR-like monoclonal antibody, which was found to react with Abeta oligomers preferentially.

  16. Prion protein in Alzheimer's pathogenesis: a hot and controversial issue.

    PubMed

    Benilova, Iryna; De Strooper, Bart

    2010-08-01

    The role for cellular prion protein PrP(c) in beta-amyloid (Abeta) oligomer-induced synaptic impairment is a topic of great interest and some controversy. In this issue of EMBO Molecular Medicine Aguzzi and co-workers explore the contribution of PrP(c) to deficient long term potentiation (LTP) and soluble Abeta levels in an Alzheimer's disease mouse model and show that the role of prions in Abeta related toxicity is far from 'black and white' suggesting complex interpretations of the data available thus far.

  17. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    PubMed Central

    Nors Perdersen, Martin; Foderà, Vito; Horvath, Istvan; van Maarschalkerweerd, Andreas; Nørgaard Toft, Katrine; Weise, Christoph; Almqvist, Fredrik; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla; Vestergaard, Bente

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an ‘oligomer stacking model’ for alpha-synuclein fibril elongation. PMID:26020724

  18. Quantitative analysis of co-oligomer formation by amyloid-beta peptide isoforms

    NASA Astrophysics Data System (ADS)

    Iljina, Marija; Garcia, Gonzalo A.; Dear, Alexander J.; Flint, Jennie; Narayan, Priyanka; Michaels, Thomas C. T.; Dobson, Christopher M.; Frenkel, Daan; Knowles, Tuomas P. J.; Klenerman, David

    2016-06-01

    Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer’s disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions. Our model is used to predict the oligomer concentration and size at physiological concentrations of Aβ and suggests the mechanisms by which the ratio of Aβ42 to Aβ40 can affect cell toxicity. An increased ratio of Aβ42 to Aβ40 raises the fraction of oligomers containing Aβ42, which can increase the hydrophobicity of the oligomers and thus promote deleterious binding to the cell membrane and increase neuronal damage. Our results suggest that co-oligomers are a common form of aggregate when Aβ isoforms are present in solution and may potentially play a significant role in Alzheimer’s disease.

  19. Assignment of functional domains involved in ADP-ribosylation and B-oligomer binding within the carboxyl terminus of the S1 subunit of pertussis toxin.

    PubMed Central

    Krueger, K M; Barbieri, J T

    1994-01-01

    The roles of the carboxyl terminus of the S1 subunit (composed of 235 amino acids) of pertussis toxin in the ADP-ribosylation of transducin (Gt) and in B-oligomer binding were defined by analysis of two carboxyl-terminal deletion mutants of the recombinant S1 (rS1) subunit: C204, which is composed of amino acids 1 through 204 of S1, and C219, which is composed of amino acids 1 through 219 of S1. C204 was expressed in Escherichia coli as a stable, soluble peptide that had an apparent molecular mass of 23.4 kDa. In a linear velocity assay, the specific activity of C180 was 2% and that of C204 was 80% of the activity displayed by rS1 in catalyzing the ADP-ribosylation of Gt. In addition, C204 possessed catalytic efficiencies (kcat/Km) that were 110% at variable Gt concentrations and 40% at variable NAD concentrations of those reported for rS1. These data showed that the catalytic activity of C204 approached the activity of S1. C204 and C219 were unable to associate with the B oligomer under conditions which promoted association of rS1 with the B oligomer. Consistent with these results, mixtures of C204 or C219 with the B oligomer did not elicit a clustering phenotype in CHO cells, whereas rS1 which had associated with the B oligomer was as cytotoxic as native pertussis toxin. These data indicate that residues between 219 and 235 are important in the association of the S1 subunit with the B oligomer. These data allow the assignment of functional regions to the carboxyl terminus of S1. Residues 195 to 204 are required for optimal ADP-ribosyltransferase activity, residues 205 to 219 link the catalytic region of S1 and a B-oligomer-binding region of S1, and residues 220 to 235 are required for association of S1 with the B oligomer. Images PMID:8168972

  20. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    SciTech Connect

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  1. Induction of TNF-alpha production from human peripheral blood monocytes with beta-1,3-glucan oligomer prepared from laminarin with beta-1,3-glucanase from Bacillus clausii NM-1.

    PubMed

    Miyanishi, Nobumitsu; Iwamoto, Yoshiko; Watanabe, Etsuo; Odaz, Tatsuya

    2003-01-01

    We prepared a beta-1,3-glucan oligomer (DP> or = 4) from laminarin (DP: 25-30) derived from Laminaria digitata with beta-1,3-glucanase, and examined its effect on human peripheral blood monocytes. Conditioned medium prepared by incubating monocytes (MC-CM) with the beta-1,3-glucan oligomer showed strong inhibitory activity against the proliferation of human leukemic U937 cells. Since the beta-1,3-glucan oligomer had no direct cytotoxic effect on U937 cells up to 1000 microg/ml, the cytotoxicity of the MC-CM may be due to cytotoxic cytokines produced from monocytes stimulated by the beta-1,3-glucan oligomer. On the other hand, the MC-CM prepared with original laminarin had little effect on the growth of U937 cells. The cytotoxicity of the MC-CM prepared with the beta-1,3-glucan oligomer was significantly reduced by an anti-TNF-alpha antibody, but the anti-TNF-beta antibody had no effect. Our results suggest that the enzymatically depolymerized beta-1,3-glucan oligomer induces TNF-alpha production from human monocytes.

  2. Bovine serum albumin oligomers in the E- and B-forms at low protein concentration and ionic strength

    PubMed Central

    Babcock, Jeremiah J.; Brancaleon, Lorenzo

    2013-01-01

    The manuscript describes the study of the oligomerization process of bovine serum albumin (BSA) in two different structural monomeric forms: the extended-form (E) at pH 2.0 and the basic-form (B) at pH 9.0. The study was conducted at low protein concentration (1 mg/ml) and relatively short incubation time (maximum 56 days) in order to investigate early oligomerization events rather than the formation of mature fibrils. The comparison between the two isoforms show that oligomers form much faster (∼6 days) in the E-form than in the B-form where formation of oligomers requires ∼4 weeks. The oligomers appear to be limited to a maximum of tetramers with size <30nm. Hydrophobic interactions from exposed neutral amino acid residues in the elongated E-form are the likely cause for the quick formation of aggregates at acidic pH. We used an array of biophysical techniques for the study and determined that oligomerization occurs without further large changes in the secondary structure of the monomers. Under the conditions adopted in this study, aggregation does not seem to exceed the formation of tetramers, even though a very small amount of much larger aggregates seem to form. PMID:23148944

  3. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein.

    PubMed

    Manassero, Giusi; Guglielmotto, Michela; Zamfir, Raluca; Borghi, Roberta; Colombo, Laura; Salmona, Mario; Perry, George; Odetti, Patrizio; Arancio, Ottavio; Tamagno, Elena; Tabaton, Massimo

    2016-10-01

    The mechanistic relationship between amyloid β1-42 (Aβ1-42) and the alteration of Tau protein are debated. We investigated the effect of Aβ1-42 monomers and oligomers on Tau, using mice expressing wild-type human Tau that do not spontaneously develop Tau pathology. After intraventricular injection of Aβ1-42, mice were sacrificed after 3 h or 4 days. The short-lasting treatment with Aβ monomers, but not oligomers, showed a conformational PHF-like change of Tau, together with hyperphosphorylation. The same treatment induced increase in concentration of GSK3 and MAP kinases. The inhibition of the kinases rescued the Tau changes. Aβ monomers increased the levels of total Tau, through the inhibition of proteasomal degradation. Aβ oligomers reproduced all the aforementioned alterations only after 4 days of treatment. It is known that Aβ1-42 monomers foster synaptic activity. Our results suggest that Aβ monomers physiologically favor Tau activity and dendritic sprouting, whereas their excess causes Tau pathology. Moreover, our study indicates that anti-Aβ therapies should be targeted to Aβ1-42 monomers too.

  4. Concentrations of antibodies against β-amyloid 40/42 monomer and oligomers in Chinese intravenous immunoglobulins.

    PubMed

    Ye, Shengliang; Zeng, Renyong; Jiang, Peng; Hou, Mingxia; Liu, Fengjuan; Wang, Zongkui; Du, Xi; Yuan, Jing; Chen, Yunhua; Cao, Haijun; Ma, Li; Li, Changqing

    2017-02-17

    Intravenous immunoglobulin (IVIg) preparations are being investigated as a potential agent for treatment or prevention of Alzheimer's disease (AD). Antibodies towards soluble β-amyloid (Aβ) contained in IVIg were considered to be the major component contributing to the beneficial effect of the preparations in pilot studies. This study compared the antibody concentrations against Aβ in Octagam(®) IVIg (Octapharma) and 9 IVIg preparations from different Chinese manufacturers by ELISA, using Aβ40 monomer, Aβ40 soluble oligomers, Aβ42 monomer and Aβ42 soluble oligomers as the antigens. The results showed that each preparation contained different antibody levels against the four Aβ forms. The median values of the four antibody concentrations in Chinese IVIg preparations were 16.53, 8.47, 24.36 and 33.25μg/mL, which were remarkably higher than that in Octagam(®) IVIg (1.66, 2.07, 4.61 and 4.64μg/mL). Moreover, the anti-Aβ42 oligomer antibody levels in almost all IVIg preparations were higher than the anti-Aβ42 monomer antibody, and the concentrations of anti-Aβ42 antibodies in most of the IVIg preparations were significantly higher than that of anti-Aβ40 antibodies. These findings will contribute to an increased understanding of the uniqueness of Chinese IVIg preparations, and could provide support for a trial of a Chinese IVIg product in AD patients.

  5. Electrorheology of aniline-oligomer suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Mrlik, M.; Pavlinek, V.; Almajdalawi, S.; Saha, P.; Bober, P.; Stejskal, J.

    2013-02-01

    Preparation of the aniline oligomers by the oxidation of aniline with p-benzoquinone in the solutions of methanesulfonic acid (MSA) and the rheology of their suspensions in silicone oil are presented in this study. This synthesis provides particles of flake-like morphology and various conductivities depending on the molar concentration of MSA. Further, the electrorheological (ER) performance of the particles suspended in the silicone oil was measured as well as dielectric properties of suspensions. Finally, the effect of the temperature on the ER activity was investigated.

  6. Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic Drosophila.

    PubMed

    Caesar, Ina; Jonson, Maria; Nilsson, K Peter R; Thor, Stefan; Hammarström, Per

    2012-01-01

    The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ(1-42) in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ(1-42). Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila.

  7. Aromatic small molecules remodel toxic soluble oligomers of amyloid beta through three independent pathways.

    PubMed

    Ladiwala, Ali Reza A; Dordick, Jonathan S; Tessier, Peter M

    2011-02-04

    In protein conformational disorders ranging from Alzheimer to Parkinson disease, proteins of unrelated sequence misfold into a similar array of aggregated conformers ranging from small oligomers to large amyloid fibrils. Substantial evidence suggests that small, prefibrillar oligomers are the most toxic species, yet to what extent they can be selectively targeted and remodeled into non-toxic conformers using small molecules is poorly understood. We have evaluated the conformational specificity and remodeling pathways of a diverse panel of aromatic small molecules against mature soluble oligomers of the Aβ42 peptide associated with Alzheimer disease. We find that small molecule antagonists can be grouped into three classes, which we herein define as Class I, II, and III molecules, based on the distinct pathways they utilize to remodel soluble oligomers into multiple conformers with reduced toxicity. Class I molecules remodel soluble oligomers into large, off-pathway aggregates that are non-toxic. Moreover, Class IA molecules also remodel amyloid fibrils into the same off-pathway structures, whereas Class IB molecules fail to remodel fibrils but accelerate aggregation of freshly disaggregated Aβ. In contrast, a Class II molecule converts soluble Aβ oligomers into fibrils, but is inactive against disaggregated and fibrillar Aβ. Class III molecules disassemble soluble oligomers (as well as fibrils) into low molecular weight species that are non-toxic. Strikingly, Aβ non-toxic oligomers (which are morphologically indistinguishable from toxic soluble oligomers) are significantly more resistant to being remodeled than Aβ soluble oligomers or amyloid fibrils. Our findings reveal that relatively subtle differences in small molecule structure encipher surprisingly large differences in the pathways they employ to remodel Aβ soluble oligomers and related aggregated conformers.

  8. Temperature, Molecular Weight, and Concentration Dependences of Thermal Diffusion for Ethylene Glycol Oligomers and Crown Ethers

    NASA Astrophysics Data System (ADS)

    Maeda, Kousaku; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin

    The Soret coefficient ST of ethylene glycol oligomers (EGOs) and crown ethers (CEs) in water were obtained by thermal diffusion forced Rayleigh scattering by changing the temperature, molecular weight, and concentration. The effect of a hydroxyl group on the EGOs and the effect of the cyclic structure of CEs on the thermal diffusion were determined systematically by changing the molecular weights of the EGOs and CEs. For dilute aqueous solutions, EGOs and CEs, except EG, show positive ST values that decrease with increasing temperature, which is similar to the results of previous studies on mixtures of water and organic solvents. The temperature dependence of ST changes its behavior from negative to positive with decreasing number of repeating units of EGOs. This behavior is related to the increase in the number density of the hydroxyl group. The ST values of EG show two different concentration regions, namely, the low concentration (0-2 wt %) and high concentration (2-100 wt %) regions.

  9. Oxazoline-based antimicrobial oligomers: synthesis by CROP using supercritical CO2.

    PubMed

    Correia, Vanessa G; Bonifácio, Vasco D B; Raje, Vivek P; Casimiro, Teresa; Moutinho, Guilhermina; da Silva, Cláudia Lobato; Pinho, Mariana G; Aguiar-Ricardo, Ana

    2011-08-11

    A method using supercritical CO(2) to obtain biocompatible 2-oxazoline-based oligomers quaternized with different amines is described. The synthesized oligo(2-oxazoline)s display partial carbamic-acid insertion at one end. The syntheses of quaternary oligo(2-bisoxazoline)s and linear oligoethylenimine hydrochlorides are reported. Oligo(2-methyl-2-oxazoline) and oligo(2-bisoxazoline) quaternized with N,N-dimethyldodecylamine are the most efficient biocidal agents showing fast killing rates against Staphylococcus aureus and Escherichia coli. Linear oligoethylenimine hydrochloride shows the lowest MIC values but higher killing times against both bacteria. Based on the antimicrobial activity studies, a cooperative action of carbamic acid with the ammonium end group is proposed.

  10. Probing the sources of the apparent irreproducibility of amyloid formation: drastic changes in kinetics and a switch in mechanism due to micellelike oligomer formation at critical concentrations of IAPP.

    PubMed

    Brender, Jeffrey R; Krishnamoorthy, Janarthanan; Sciacca, Michele F M; Vivekanandan, Subramanian; D'Urso, Luisa; Chen, Jennifer; La Rosa, Carmelo; Ramamoorthy, Ayyalusamy

    2015-02-19

    The aggregation of amyloidogenic proteins is infamous for being highly chaotic, with small variations in conditions sometimes leading to large changes in aggregation rates. Using the amyloidogenic protein IAPP (islet amyloid polypeptide protein, also known as amylin) as an example, we show that a part of this phenomenon may be related to the formation of micellelike oligomers at specific critical concentrations and temperatures. We show that pyrene fluorescence can sensitively detect micellelike oligomer formation by IAPP and discriminate between micellelike oligomers from fibers and monomers, making pyrene one of the few chemical probes specific to a prefibrillar oligomer. We further show that oligomers of this type reversibly form at critical concentrations in the low micromolar range and at specific critical temperatures. Micellelike oligomer formation has several consequences for amyloid formation by IAPP. First, the kinetics of fiber formation increase substantially as the critical concentration is approached but are nearly independent of concentration below it, suggesting a direct role for the oligomers in fiber formation. Second, the critical concentration is strongly correlated with the propensity to form amyloid: higher critical concentrations are observed for both IAPP variants with lower amyloidogenicity and for native IAPP at acidic pH in which aggregation is greatly slowed. Furthermore, using the DEST NMR technique, we show that the pathway of amyloid formation switches as the critical point is approached, with self-interactions primarily near the N-terminus below the critical temperature and near the central region above the critical temperature, reconciling two apparently conflicting views of the initiation of IAPP aggregation.

  11. A chemical analog of curcumin as an improved inhibitor of amyloid Abeta oligomerization.

    PubMed

    Orlando, Robert A; Gonzales, Amanda M; Royer, Robert E; Deck, Lorraine M; Vander Jagt, David L

    2012-01-01

    Amyloid-like plaques are characteristic lesions defining the neuropathology of Alzheimer's disease (AD). The size and density of these plaques are closely associated with cognitive decline. To combat this disease, the few therapies that are available rely on drugs that increase neurotransmission; however, this approach has had limited success as it has simply slowed an imminent decline and failed to target the root cause of AD. Amyloid-like deposits result from aggregation of the Aβ peptide, and thus, reducing amyloid burden by preventing Aβ aggregation represents an attractive approach to improve the therapeutic arsenal for AD. Recent studies have shown that the natural product curcumin is capable of crossing the blood-brain barrier in the CNS in sufficient quantities so as to reduce amyloid plaque burden. Based upon this bioactivity, we hypothesized that curcumin presents molecular features that make it an excellent lead compound for the development of more effective inhibitors of Aβ aggregation. To explore this hypothesis, we screened a library of curcumin analogs and identified structural features that contribute to the anti-oligomerization activity of curcumin and its analogs. First, at least one enone group in the spacer between aryl rings is necessary for measureable anti-Aβ aggregation activity. Second, an unsaturated carbon spacer between aryl rings is essential for inhibitory activity, as none of the saturated carbon spacers showed any margin of improvement over that of native curcumin. Third, methoxyl and hydroxyl substitutions in the meta- and para-positions on the aryl rings appear necessary for some measure of improved inhibitory activity. The best lead inhibitors have either their meta- and para-substituted methoxyl and hydroxyl groups reversed from that of curcumin or methoxyl or hydroxyl groups placed in both positions. The simple substitution of the para-hydroxy group on curcumin with a methoxy substitution improved inhibitor function by 6

  12. Amyloid oligomer structure characterization from simulations: A general method

    SciTech Connect

    Nguyen, Phuong H.; Li, Mai Suan

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  13. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    NASA Astrophysics Data System (ADS)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  14. Amyloid oligomer structure characterization from simulations: A general method

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong H.; Li, Mai Suan; Derreumaux, Philippe

    2014-03-01

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  15. Amyloid oligomer structure characterization from simulations: a general method.

    PubMed

    Nguyen, Phuong H; Li, Mai Suan; Derreumaux, Philippe

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  16. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology.

    PubMed

    Danzer, Karin M; Krebs, Simon K; Wolff, Michael; Birk, Gerald; Hengerer, Bastian

    2009-10-01

    Lewy bodies, alpha-synuclein (alpha-syn) immunopositive intracellular deposits, are the pathological hallmark of Parkinson's disease (PD). Interestingly, Lewybody-like structures have been identified in fetal tissue grafts about one decade after transplantation into the striatum of PD patients. One possible explanation for the accelerated deposition of alpha-syn in the graft is that the aggregation of alpha-syn from the host tissue to the graft is spread by a prion disease-like mechanism. We discuss here an in vitro model which might recapitulate some aspects of disease propagation in PD. We found here that in vitro-generated alpha-syn oligomers induce transmembrane seeding of alpha-syn aggregation in a dose- and time-dependent manner. This effect was observed in primary neuronal cultures as well as in neuronal cell lines. The seeding oligomers were characterized by a distinctive lithium dodecyl sulfate-stable oligomer pattern and could be generated in a dynamic process out of pore-forming oligomers. We propose that alpha-syn oligomers form as a dynamic mixture of oligomer types with different properties and that alpha-syn oligomers can be converted into different types depending on the brain milieu conditions. Our data indicate that extracellular alpha-syn oligomers can induce intracellular alpha-syn aggregation, therefore we hypothesize that a similar mechanism might lead to alpha-syn pathology propagation.

  17. Wnt-5a occludes Aβ oligomer-induced depression of glutamatergic transmission in hippocampal neurons

    PubMed Central

    2010-01-01

    Background Soluble amyloid-β (Aβ;) oligomers have been recognized to be early and key intermediates in Alzheimer's disease (AD)-related synaptic dysfunction. Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation. Results We report here that the Wnt signaling activation prevents the synaptic damage triggered by Aβ oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Aβ oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Aβ oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Aβ oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Aβ oligomers inversely modulate postsynaptic components. Conclusion These results indicate that post-synaptic damage induced by Aβ oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation. PMID:20205789

  18. X-ray Crystallographic Structure of Oligomers Formed by a Toxic β-Hairpin Derived from α-Synuclein: Trimers and Higher-Order Oligomers.

    PubMed

    Salveson, Patrick J; Spencer, Ryan K; Nowick, James S

    2016-04-06

    Oligomeric assemblies of the protein α-synuclein are thought to cause neurodegeneration in Parkinson's disease and related synucleinopathies. Characterization of α-synuclein oligomers at high resolution is an outstanding challenge in the field of structural biology. The absence of high-resolution structures of oligomers formed by α-synuclein impedes understanding the synucleinopathies at the molecular level. This paper reports the X-ray crystallographic structure of oligomers formed by a peptide derived from residues 36-55 of α-synuclein. The peptide 1a adopts a β-hairpin structure, which assembles in a hierarchical fashion. Three β-hairpins assemble to form a triangular trimer. Three copies of the triangular trimer assemble to form a basket-shaped nonamer. Two nonamers pack to form an octadecamer. Molecular modeling suggests that full-length α-synuclein may also be able to assemble in this fashion. Circular dichroism spectroscopy demonstrates that peptide 1a interacts with anionic lipid bilayer membranes, like oligomers of full-length α-synuclein. LDH and MTT assays demonstrate that peptide 1a is toxic toward SH-SY5Y cells. Comparison of peptide 1a to homologues suggests that this toxicity results from nonspecific interactions with the cell membrane. The oligomers formed by peptide 1a are fundamentally different than the proposed models of the fibrils formed by α-synuclein and suggest that α-Syn36-55, rather than the NAC, may nucleate oligomer formation.

  19. An investigation into the effect of amphiphilic siloxane oligomers on dermal fibroblasts.

    PubMed

    Farrugia, Brooke L; Keddie, Daniel J; George, Graeme A; Lynam, Emily C; Brook, Michael A; Upton, Zee; Dargaville, Tim R

    2012-07-01

    This study investigates the effect of well-defined poly(dimethylsiloxane)-poly(ethylene glycol) (PDMS-PEG) ABA linear block co-oligomers on the proliferation of human dermal fibroblasts. The co-oligomers assessed ranged in molecular weight (MW) from 1335 to 5208 Da and hydrophilic-lipophilic balance (HLB) from 5.9 to 16.6 by varying the number of both PDMS and PEG units. In general, it was found that co-oligomers of low MW or intermediate hydrophilicity significantly reduced fibroblast proliferation. A linear relationship between down-regulation of fibroblast proliferation, and the ratio HLB/MW was observed at concentrations of 0.1 and 1.0 wt % of the oligomers. This enabled the structures with highest efficiency to be determined. These results suggest the possible use of the PEG-PDMS-PEG block co-oligomers as an alternative to silicone gels for hypertrophic scar remediation.

  20. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter

    PubMed Central

    Anderluh, Andreas; Hofmaier, Tina; Klotzsch, Enrico; Kudlacek, Oliver; Stockner, Thomas; Sitte, Harald H.; Schütz, Gerhard J.

    2017-01-01

    The human serotonin transporter (hSERT) mediates uptake of serotonin from the synaptic cleft and thereby terminates serotonergic signalling. We have previously found by single-molecule microscopy that SERT forms stable higher-order oligomers of differing stoichiometry at the plasma membrane of living cells. Here, we report that SERT oligomer assembly at the endoplasmic reticulum (ER) membrane follows a dynamic equilibration process, characterized by rapid exchange of subunits between different oligomers, and by a concentration dependence of the degree of oligomerization. After trafficking to the plasma membrane, however, the SERT stoichiometry is fixed. Stabilization of the oligomeric SERT complexes is mediated by the direct binding to phosphoinositide phosphatidylinositol-4,5-biphosphate (PIP2). The observed spatial decoupling of oligomer formation from the site of oligomer operation provides cells with the ability to define protein quaternary structures independent of protein density at the cell surface. PMID:28102201

  1. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly

    PubMed Central

    Hasegawa, Masashi

    2015-01-01

    Summary The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed. PMID:26664579

  2. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent.

    PubMed

    Ibrahim, Khalid A; El-Eswed, Bassam I; Abu-Sbeih, Khaleel A; Arafat, Tawfeeq A; Al Omari, Mahmoud M H; Darras, Fouad H; Badwan, Adnan A

    2016-07-23

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test.

  3. The Role of Amyloid-β Oligomers in Toxicity, Propagation, and Immunotherapy

    PubMed Central

    Sengupta, Urmi; Nilson, Ashley N.; Kayed, Rakez

    2016-01-01

    The incidence of Alzheimer's disease (AD) is growing every day and finding an effective treatment is becoming more vital. Amyloid-β (Aβ) has been the focus of research for several decades. The recent shift in the Aβ cascade hypothesis from all Aβ to small soluble oligomeric intermediates is directing the search for therapeutics towards the toxic mediators of the disease. Targeting the most toxic oligomers may prove to be an effective treatment by preventing their spread. Specific targeting of oligomers has been shown to protect cognition in rodent models. Additionally, the heterogeneity of research on Aβ oligomers may seem contradictory until size and conformation are taken into account. In this review, we will discuss Aβ oligomers and their toxicity in relation to size and conformation as well as their influence on inflammation and the potential of Aβ oligomer immunotherapy. PMID:27211547

  4. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    PubMed Central

    Ibrahim, Khalid A.; El-Eswed, Bassam I.; Abu-Sbeih, Khaleel A.; Arafat, Tawfeeq A.; Al Omari, Mahmoud M. H.; Darras, Fouad H.; Badwan, Adnan A.

    2016-01-01

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test. PMID:27455287

  5. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  6. Low molecular weight oligomers of amyloid peptides display beta-barrel conformations: a replica exchange molecular dynamics study in explicit solvent.

    PubMed

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-28

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 micros show that low molecular weight oligomers in explicit solvent consist of beta-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient beta-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  7. Single-Molecule Imaging Reveals that Small Amyloid-β1–42 Oligomers Interact with the Cellular Prion Protein (PrPC)

    PubMed Central

    Ganzinger, Kristina A; Narayan, Priyanka; Qamar, Seema S; Weimann, Laura; Ranasinghe, Rohan T; Aguzzi, Adriano; Dobson, Christopher M; McColl, James; St George-Hyslop, Peter; Klenerman, David

    2014-01-01

    Oligomers of the amyloid-β peptide (Aβ) play a central role in the pathogenesis of Alzheimer’s disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrPC) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrPC and that the species bound to PrPC are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAβ-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways. PMID:25294384

  8. Clustering of C-terminal stromal domains of Tha4 homo-oligomers during translocation by the Tat protein transport system.

    PubMed

    Dabney-Smith, Carole; Cline, Kenneth

    2009-04-01

    The chloroplast Twin arginine translocation (Tat) pathway uses three membrane proteins and the proton gradient to transport folded proteins across sealed membranes. Precursor proteins bind to the cpTatC-Hcf106 receptor complex, triggering Tha4 assembly and protein translocation. Tha4 is required only for the translocation step and is thought to be the protein-conducting component. The organization of Tha4 oligomers was examined by substituting pairs of cysteine residues into Tha4 and inducing disulfide cross-links under varying stages of protein translocation. Tha4 formed tetramers via its transmembrane domain in unstimulated membranes and octamers in membranes stimulated by precursor and the proton gradient. Tha4 formed larger oligomers of at least 16 protomers via its carboxy tail, but such C-tail clustering only occurred in stimulated membranes. Mutational studies showed that transmembrane domain directed octamers as well as C-tail clusters require Tha4's transmembrane glutamate residue and its amphipathic helix, both of which are necessary for Tha4 function. A novel double cross-linking strategy demonstrated that both transmembrane domain directed- and C-tail directed oligomerization occur in the translocase. These results support a model in which Tha4 oligomers dock with a precursor-receptor complex and undergo a conformational switch that results in activation for protein transport. This possibly involves accretion of additional Tha4 into a larger transport-active homo-oligomer.

  9. Enhancement of β-amyloid oligomer accumulation after intracerebroventricular injection of streptozotocin, which involves central insulin signaling in a transgenic mouse model.

    PubMed

    Lin, Fangju; Jia, Jianping; Qin, Wei

    2014-11-12

    The β-amyloid (Aβ) oligomer rather than fibrillar Aβ has become the important focus of recent studies on the pathogenesis of Alzheimer's disease (AD). Insulin signaling plays important roles in cognitive disease, such as AD. However, in-vivo evidence for the link between central insulin signaling and the Aβ oligomer are lacking, and the mechanisms underlying the effect of central insulin signaling on AD are still elusive. Our team has established the Presenilin-1 Val97Leu mutant transgenic (PS1V97L) AD mouse model with the intraneuronal Aβ oligomer as the potential initiator for other pathologies, but without extracellular amyloid plaque formation. Using this model, we investigated the roles of disturbed central insulin signaling induced by intracerebroventricular injection of streptozotocin (STZ) in the progression of AD. We observed that PS1V97L mice after intracerebroventricular injection of STZ showed increased Aβ oligomer accumulation and aggravated spatial learning and memory deficit in the absence of diabetes symptoms. Furthermore, STZ administration inhibited the activation of the insulin receptor and enhanced the activation of c-Jun NH2-terminal kinase, which was accompanied by increased production of carboxy-terminal fragments from the amyloid precursor protein, in the brain of PS1V97L mice. Overall, our study provided in-vivo evidence for a role of central insulin signaling in AD progression.

  10. Investigation of ferroelectric domains in thin films of vinylidene fluoride oligomers

    SciTech Connect

    Sharma, Pankaj Poddar, Shashi; Ducharme, Stephen; Gruverman, Alexei; Korlacki, Rafal

    2014-07-14

    High-resolution vector piezoresponse force microscopy (PFM) has been used to investigate ferroelectric domains in thin vinylidene fluoride oligomer films fabricated by the Langmuir-Blodgett deposition technique. Molecular chains are found to be preferentially oriented normal to the substrate, and PFM imaging shows that the films are in ferroelectric β-phase with a predominantly in-plane polarization, in agreement with infrared spectroscopic ellipsometry and X-ray diffraction measurements. The fractal analysis of domain structure has yielded the Hausdorff dimension (D) in the range of ∼1.3–1.5 indicating a random-bond nature of the disorder potential, with domain size exhibiting Landau-Lifshitz-Kittel scaling.

  11. Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers.

    PubMed

    Rivero-Buceta, Eva; Carrero, Paula; Casanova, Elena; Doyagüez, Elisa G; Madrona, Andrés; Quesada, Ernesto; Peréz-Pérez, María Jesús; Mateos, Raquel; Bravo, Laura; Mathys, Leen; Noppen, Sam; Kiselev, Evgeny; Marchand, Christophe; Pommier, Yves; Liekens, Sandra; Balzarini, Jan; Camarasa, María José; San-Félix, Ana

    2015-12-01

    The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly α-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes α-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1.

  12. Synergistic effects of atmospheric pressure plasma-emitted components on DNA oligomers: a Raman spectroscopic study.

    PubMed

    Edengeiser, Eugen; Lackmann, Jan-Wilm; Bründermann, Erik; Schneider, Simon; Benedikt, Jan; Bandow, Julia E; Havenith, Martina

    2015-11-01

    Cold atmospheric-pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi-resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X-jet technology separates plasma-generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro. Schematics of DNA oligomer treatment with cold atmospheric-pressure plasma.

  13. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  14. Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers.

    PubMed

    Verre, R; Yang, Z J; Shegai, T; Käll, M

    2015-03-11

    The possibility of achieving optical magnetism at visible frequencies using plasmonic nanostructures has recently been a subject of great interest. The concept is based on designing structures that support plasmon modes with electron oscillation patterns that imitate current loops, that is, magnetic dipoles. However, the magnetic resonances are typically spectrally narrow, thereby limiting their applicability in, for example, metamaterial designs. We show that a significantly broader magnetic response can be realized in plasmonic pentamers constructed from metal-insulator-metal (MIM) sandwich particles. Each MIM unit acts as a magnetic meta-atom and the optical magnetism is rendered quasi-broadband through hybridization of the in-plane modes. We demonstrate that scattering spectra of individual MIM pentamers exhibit multiple Fano resonances and a broad subradiant spectral window that signals the magnetic interaction and a hierarchy of coupling effects in these intricate three-dimensional nanoparticle oligomers.

  15. Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

    NASA Astrophysics Data System (ADS)

    Bernini, Fabrizio; Malferrari, Daniele; Pignataro, Marcello; Bortolotti, Carlo Augusto; di Rocco, Giulia; Lancellotti, Lidia; Brigatti, Maria Franca; Kayed, Rakez; Borsari, Marco; Del Monte, Federica; Castellini, Elena

    2016-10-01

    The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.

  16. Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein

    SciTech Connect

    Hong, D.-P.; Fink, A.L.; Uversky, V.N.

    2009-05-18

    The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-ray scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.

  17. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.

    PubMed

    Nguyen, Phuong; Derreumaux, Philippe

    2014-02-18

    Evolution has fine-tuned proteins to accomplish a variety of tasks. Yet, with aging, some proteins assemble into harmful amyloid aggregates associated with neurodegenerative diseases, such as Alzheimer's disease (AD), which presents a complex and costly challenge to our society. Thus, far, drug after drug has failed to slow the progression of AD, characterized by the self-assembly of the 39-43 amino acid β-amyloid (Aβ) protein into extracellular senile plaques that form a cross-β structure. While there is experimental evidence that the Aβ small oligomers are the primary toxic species, standard tools of biology have failed to provide structures of these transient, inhomogeneous assemblies. Despite extensive experimental studies, researchers have not successfully characterized the nucleus ensemble, the starting point for rapid fibril formation. Similarly scientists do not have atomic data to show how the compounds that reduce both fibril formation and toxicity in cells bind to Aβ42 oligomers. In this context, computer simulations are important tools for gaining insights into the self-assembly of amyloid peptides and the molecular mechanism of inhibitors. This Account reviews what analytical models and simulations at different time and length scales tell us about the dynamics, kinetics, and thermodynamics of amyloid fibril formation and, notably, the nucleation process. Though coarse-grained and mesoscopic protein models approximate atomistic details by averaging out unimportant degrees of freedom, they provide generic features of amyloid formation and insights into mechanistic details of the self-assembly process. The thermodynamics and kinetics vary from linear peptides adopting straight β-strands in fibrils to longer peptides adopting in parallel U shaped conformations in fibrils. In addition, these properties change with the balance between electrostatic and hydrophobic interactions and the intrinsic disorder of the system. However, simulations suggest that

  18. High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain.

    PubMed

    Upadhaya, Ajeet Rijal; Lungrin, Irina; Yamaguchi, Haruyasu; Fändrich, Marcus; Thal, Dietmar Rudolf

    2012-02-01

    Alzheimer's disease (AD) is characterized by the aggregation and deposition of amyloid β protein (Aβ) in the brain. Soluble Aβ oligomers are thought to be toxic. To investigate the predominant species of Aβ protein that may play a role in AD pathogenesis, we performed biochemical analysis of AD and control brains. Sucrose buffer-soluble brain lysates were characterized in native form using blue native (BN)-PAGE and also in denatured form using SDS-PAGE followed by Western blot analysis. BN-PAGE analysis revealed a high-molecular weight smear (>1000 kD) of Aβ(42) -positive material in the AD brain, whereas low-molecular weight and monomeric Aβ species were not detected. SDS-PAGE analysis, on the other hand, allowed the detection of prominent Aβ monomer and dimer bands in AD cases but not in controls. Immunoelectron microscopy of immunoprecipitated oligomers and protofibrils/fibrils showed spherical and protofibrillar Aβ-positive material, thereby confirming the presence of high-molecular weight Aβ (hiMWAβ) aggregates in the AD brain. In vitro analysis of synthetic Aβ(40) - and Aβ(42) preparations revealed Aβ fibrils, protofibrils, and hiMWAβ oligomers that were detectable at the electron microscopic level and after BN-PAGE. Further, BN-PAGE analysis exhibited a monomer band and less prominent low-molecular weight Aβ (loMWAβ) oligomers. In contrast, SDS-PAGE showed large amounts of loMWAβ but no hiMWAβ(40) and strikingly reduced levels of hiMWAβ(42) . These results indicate that hiMWAβ aggregates, particularly Aβ(42) species, are most prevalent in the soluble fraction of the AD brain. Thus, soluble hiMWAβ aggregates may play an important role in the pathogenesis of AD either independently or as a reservoir for release of loMWAβ oligomers.

  19. Conformation of chromatin oligomers. A new argument for a change with the hexanucleosome.

    PubMed

    Marion, C; Bezot, P; Hesse-Bezot, C; Roux, B; Bernengo, J C

    1981-11-01

    Quasielastic laser light scattering measurements have been made on chromatin oligomers to obtain information on the transition in their electrooptical properties, previously observed for the hexameric structures [Marion, C. and Roux, B. (1978) Nucleic Acids Res. 5, 4431-4449]. Translational diffusion coefficients were determined for mononucleosomes to octanucleosomes containing histone H1 over a range of ionic strength. At high ionic strength, oligomers show a linear dependence of the logarithm of diffusion coefficient upon the logarithm of number of nucleosomes. At low ionic strength a change occurs between hexamer and heptamer. Our results agree well with the recent sedimentation data of Osipova et al. [Eur. J. Biochem. (1980) 113, 183-188] and of Butler and Thomas [J. Mol. Biol. (1980) 140, 505-529] showing a change in stability with hexamer. Various models for the arrangements of nucleosomes in the superstructure of chromatin are discussed. All calculations clearly indicate a conformational change with the hexanucleosome and the results suggest that, at low ionic strength, the chromatin adopts a loosely helical structure of 28-nm diameter and 22-nm pitch. These results are also consistent with a discontinuity every sixth nucleosome, corresponding to a turn of the helix. This discontinuity may explain the recent electric dichroism data of Lee et al. [Biochemistry (1981) 20, 1438-1445]. The hexanucleosome structure which we have previously suggested, with the faces of nucleosomes arranged radially to the helical axis has been recently confirmed by Mc Ghee et al. [Cell (1980) 22, 87-96]. With an increase of ionic strength, the helix becomes more regular and compact with a slightly reduced outer diameter and a decreased pitch, the dimensions resembling those proposed for solenoid models.

  20. Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Coll, Isabelle; Couvidat, Florian; Mouchel-Vallon, Camille; Seigneur, Christian; Siour, Guillaume

    2016-04-01

    The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a first-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM) (www.lmd.polytechnique.fr/chimere), to simulate the spatial and temporal distribution of oligomerized secondary organic aerosol (SOA) over western Europe. We also included a comparison of organic carbon (OC) concentrations at two EMEP (European Monitoring and Evaluation Programme) stations. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.

  1. Brain amyloid-β oligomers in ageing and Alzheimer's disease.

    PubMed

    Lesné, Sylvain E; Sherman, Mathew A; Grant, Marianne; Kuskowski, Michael; Schneider, Julie A; Bennett, David A; Ashe, Karen H

    2013-05-01

    Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic

  2. Effect of synthetic aβ peptide oligomers and fluorinated solvents on Kv1.3 channel properties and membrane conductance.

    PubMed

    Lioudyno, Maria I; Broccio, Matteo; Sokolov, Yuri; Rasool, Suhail; Wu, Jessica; Alkire, Michael T; Liu, Virginia; Kozak, J Ashot; Dennison, Philip R; Glabe, Charles G; Lösche, Mathias; Hall, James E

    2012-01-01

    The impact of synthetic amyloid β (1-42) (Aβ(1-42)) oligomers on biophysical properties of voltage-gated potassium channels Kv 1.3 and lipid bilayer membranes (BLMs) was quantified for protocols using hexafluoroisopropanol (HFIP) or sodium hydroxide (NaOH) as solvents prior to initiating the oligomer formation. Regardless of the solvent used Aβ(1-42) samples contained oligomers that reacted with the conformation-specific antibodies A11 and OC and had similar size distributions as determined by dynamic light scattering. Patch-clamp recordings of the potassium currents showed that synthetic Aβ(1-42) oligomers accelerate the activation and inactivation kinetics of Kv 1.3 current with no significant effect on current amplitude. In contrast to oligomeric samples, freshly prepared, presumably monomeric, Aβ(1-42) solutions had no effect on Kv 1.3 channel properties. Aβ(1-42) oligomers had no effect on the steady-state current (at -80 mV) recorded from Kv 1.3-expressing cells but increased the conductance of artificial BLMs in a dose-dependent fashion. Formation of amyloid channels, however, was not observed due to conditions of the experiments. To exclude the effects of HFIP (used to dissolve lyophilized Aβ(1-42) peptide), and trifluoroacetic acid (TFA) (used during Aβ(1-42) synthesis), we determined concentrations of these fluorinated compounds in the stock Aβ(1-42) solutions by (19)F NMR. After extensive evaporation, the concentration of HFIP in the 100× stock Aβ(1-42) solutions was ∼1.7 μM. The concentration of residual TFA in the 70× stock Aβ(1-42) solutions was ∼20 μM. Even at the stock concentrations neither HFIP nor TFA alone had any effect on potassium currents or BLMs. The Aβ(1-42) oligomers prepared with HFIP as solvent, however, were more potent in the electrophysiological tests, suggesting that fluorinated compounds, such as HFIP or structurally-related inhalational anesthetics, may affect Aβ(1-42) aggregation and potentially enhance

  3. Formation of RNA oligomers on montmorillonite: site of catalysis

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1998-01-01

    Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.

  4. A Kinetic Model for Cell Damage Caused by Oligomer Formation.

    PubMed

    Hong, Liu; Huang, Ya-Jing; Yong, Wen-An

    2015-10-06

    It is well known that the formation of amyloid fiber may cause invertible damage to cells, although the underlying mechanism has not been fully understood. In this article, a microscopic model considering the detailed processes of amyloid formation and cell damage is constructed based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. By taking the maximum entropy principle, this microscopic model in the form of infinite mass-action equations together with two reaction-convection partial differential equations (PDEs) has been greatly coarse-grained into a macroscopic system consisting of only five ordinary differential equations (ODEs). With this simple model, the effects of primary nucleation, elongation, fragmentation, and protein and seeds concentration on amyloid formation and cell damage have been extensively explored and compared with experiments. We hope that our results will provide new insights into the quantitative linkage between amyloid formation and cell damage.

  5. VCD Studies on Chiral Characters of Metal Complex Oligomers

    PubMed Central

    Sato, Hisako; Yamagishi, Akihiko

    2013-01-01

    The present article reviews the results on the application of vibrational circular dichroism (VCD) spectroscopy to the study of stereochemical properties of chiral metal complexes in solution. The chiral characters reflecting on the vibrational properties of metal complexes are revealed by measurements of a series of β-diketonato complexes with the help of theoretical calculation. Attention is paid to the effects of electronic properties of a central metal ion on vibrational energy levels or low-lying electronic states. The investigation is further extended to the oligomers of β-diketonato complex units. The induction of chiral structures is confirmed by the VCD spectra when chiral inert moieties are connected with labile metal ions. These results have demonstrated how VCD spectroscopy is efficient in revealing the static and dynamic properties of mononuclear and multinuclear chiral metal complexes, which are difficult to clarify by means of other spectroscopes. PMID:23296273

  6. VCD studies on chiral characters of metal complex oligomers.

    PubMed

    Sato, Hisako; Yamagishi, Akihiko

    2013-01-07

    The present article reviews the results on the application of vibrational circular dichroism (VCD) spectroscopy to the study of stereochemical properties of chiral metal complexes in solution. The chiral characters reflecting on the vibrational properties of metal complexes are revealed by measurements of a series of β-diketonato complexes with the help of theoretical calculation. Attention is paid to the effects of electronic properties of a central metal ion on vibrational energy levels or low-lying electronic states. The investigation is further extended to the oligomers of β-diketonato complex units. The induction of chiral structures is confirmed by the VCD spectra when chiral inert moieties are connected with labile metal ions. These results have demonstrated how VCD spectroscopy is efficient in revealing the static and dynamic properties of mononuclear and multinuclear chiral metal complexes, which are difficult to clarify by means of other spectroscopes.

  7. Resolution of 8-aminonaphthalene-1,3,6-trisulfonic acid-labeled glucose oligomers in polyacrylamide gel electrophoresis at low gel concentration.

    PubMed

    Cabanes-Macheteau, Marion; Chrambach, Andreas; Taverna, Myriam; Buzás, Zsuzsanna; Berna, Patrick

    2004-01-01

    A discontinuous Tris-Cl/acetate (OAc) buffer system, unprecedently containing OAc as the trailing constituent, and operative in polyacrylamide gel electrophoresis (PAGE) at low polyacrylamide concentration (T = 4.8%) is described in the paper. The characteristics of the electrophoretic system are illustrated by the resolution of fluorescent 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)-labeled malto-oligosaccharides and dextran homopolymers. In this buffer system, the resolving phase is constituted by Tris-OAc behind a moving boundary formed between the leading chloride ion of Tris-HCl gel buffer and the trailing OAc ion provided by a catholyte of NH(4)OAc. In contrast with the results obtained with Tris-CI/glycinate buffer commonly used in electrophoresis, or with Tris-CI/borate, the best resolution of the glucose oligomers containing 1-4 glucose units in Tris-OAc, pH 8.8, ionic strength of 0.08, was obtained at 4.8% polyacrylamide concentration, using 0.5 M NH(4)OAc, pH 9.5 as the catholyte. Under those conditions, the ANTS-glucose oligomers were separated with mobilities decreasing from glucose to maltohexaose. The linear Ferguson plots (log relative mobility, R(f), vs.%T) of the glucose oligomers show that the surface net charge of those oligomers is inversely related to their sizes, given by the slopes, K(R), of the plots. The molecular weight of the oligomers is directly but nonlinearly related to K(R). The novel electrophoretic system illustrated here for separation of short ANTS-saccharides can be potentially applied to the resolution of other biomolecules such as rapidly migrating DNA, peptides or proteins.

  8. EGFP oligomers as natural fluorescence and hydrodynamic standards

    PubMed Central

    Vámosi, György; Mücke, Norbert; Müller, Gabriele; Krieger, Jan Wolfgang; Curth, Ute; Langowski, Jörg; Tóth, Katalin

    2016-01-01

    EGFP oligomers are convenient standards for experiments on fluorescent protein-tagged biomolecules. In this study, we characterized their hydrodynamic and fluorescence properties. Diffusion coefficients D of EGFP1–4 were determined by analytical ultracentrifugation with fluorescence detection and by fluorescence correlation spectroscopy (FCS), yielding 83.4…48.2 μm2/s and 97.3…54.8 μm2/s from monomer to tetramer. A “barrels standing in a row” model agreed best with the sedimentation data. Oligomerization red-shifted EGFP emission spectra without any shift in absorption. Fluorescence anisotropy decreased, indicating homoFRET between the subunits. Fluorescence lifetime decreased only slightly (4%) indicating insignificant quenching by FRET to subunits in non-emitting states. FCS-measured D, particle number and molecular brightness depended on dark states and light-induced processes in distinct subunits, resulting in a dependence on illumination power different for monomers and oligomers. Since subunits may be in “on” (bright) or “off” (dark) states, FCS-determined apparent brightness is not proportional to that of the monomer. From its dependence on the number of subunits, the probability of the “on” state for a subunit was determined to be 96% at pH 8 and 77% at pH 6.38, i.e., protonation increases the dark state. These fluorescence properties of EGFP oligomeric standards can assist interpreting results from oligomerized EGFP fusion proteins of biological interest. PMID:27622431

  9. Plasma Membrane Calcium ATPase Activity Is Regulated by Actin Oligomers through Direct Interaction*

    PubMed Central

    Dalghi, Marianela G.; Fernández, Marisa M.; Ferreira-Gomes, Mariela; Mangialavori, Irene C.; Malchiodi, Emilio L.; Strehler, Emanuel E.; Rossi, Juan Pablo F. C.

    2013-01-01

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca2+ with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[125I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca2+-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca2+-ATPase activity was related to an increase in the apparent affinity for Ca2+ and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca2+ homeostasis. PMID:23803603

  10. Plasma membrane calcium ATPase activity is regulated by actin oligomers through direct interaction.

    PubMed

    Dalghi, Marianela G; Fernández, Marisa M; Ferreira-Gomes, Mariela; Mangialavori, Irene C; Malchiodi, Emilio L; Strehler, Emanuel E; Rossi, Juan Pablo F C

    2013-08-09

    As recently described by our group, plasma membrane calcium ATPase (PMCA) activity can be regulated by the actin cytoskeleton. In this study, we characterize the interaction of purified G-actin with isolated PMCA and examine the effect of G-actin during the first polymerization steps. As measured by surface plasmon resonance, G-actin directly interacts with PMCA with an apparent 1:1 stoichiometry in the presence of Ca(2+) with an apparent affinity in the micromolar range. As assessed by the photoactivatable probe 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine, the association of PMCA to actin produced a shift in the distribution of the conformers of the pump toward a calmodulin-activated conformation. G-actin stimulates Ca(2+)-ATPase activity of the enzyme when incubated under polymerizing conditions, displaying a cooperative behavior. The increase in the Ca(2+)-ATPase activity was related to an increase in the apparent affinity for Ca(2+) and an increase in the phosphoenzyme levels at steady state. Although surface plasmon resonance experiments revealed only one binding site for G-actin, results clearly indicate that more than one molecule of G-actin was needed for a regulatory effect on the pump. Polymerization studies showed that the experimental conditions are compatible with the presence of actin in the first stages of assembly. Altogether, these observations suggest that the stimulatory effect is exerted by short oligomers of actin. The functional interaction between actin oligomers and PMCA represents a novel regulatory pathway by which the cortical actin cytoskeleton participates in the regulation of cytosolic Ca(2+) homeostasis.

  11. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    SciTech Connect

    Kazlauskas, Karolis Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius; Jankauskas, Vygintas

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  12. Crystallization and preliminary X-ray diffraction analysis of the Fab fragment of WO2, an antibody specific for the A[beta] peptides associated with Alzheimer's disease

    SciTech Connect

    Wun, Kwok S.; Miles, Luke A.; Crespi, Gabriela A.N.; Wycherley, Kaye; Ascher, David B.; Barnham, Kevin J.; Cappai, Roberto; Beyreuther, Konrad; Masters, Colin L.; Parker, Michael W.; McKinstry, William J.

    2008-05-28

    The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid {beta} peptide (A{beta}) associated with Alzheimer's disease. This region of A{beta} has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Az{beta} peptides A{beta}{sub 1-16} and A{beta}{sub 1-28} are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO{sub 4}; they belonged to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.6 {angstrom} resolution. The complexes of WO2 Fab with either A{beta}{sub 1-16} or A{beta}{sub 1-28} were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2{sub 1}2{sub 1}2{sub 1}, and diffracted to 1.6 {angstrom} resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble A{beta}{sub 1-42} in PEG 550 MME. This second form belonged to space group P2{sub 1} and diffracted to 1.9 {angstrom} resolution.

  13. Copper inducing Aβ42 rather than Aβ40 nanoscale oligomer formation is the key process for Aβ neurotoxicity

    NASA Astrophysics Data System (ADS)

    Jin, Lu; Wu, Wei-Hui; Li, Qiu-Ye; Zhao, Yu-Fen; Li, Yan-Mei

    2011-11-01

    Copper is known to be a critical factor in Alzheimer's disease (AD) pathogenesis, as it is involved in amyloid-β (Aβ) peptide related toxicity. However, the relationship between neurotoxicity and Aβ peptide in the presence of copper remains unclear. The effect of copper has not been clearly differentiated between Aβ42 and Aβ40, and it is still debated whether copper-mediated neurotoxicity is due to reactive oxygen species (ROS) accumulation or other molecular mechanisms. Here, we describe that copper dramatically affects Aβ42 aggregation and enhances Aβ42 cytotoxicity while it shows no significant effects on Aβ40. These phenomena are mainly because that the strong interactions between copper and Aβ42 lead to great conformation changes, and stabilize Aβ42 aggregates at highly toxic nanoscale oligomer stage, whereas copper shows no similar impact on Aβ40. We also propose a possible molecular mechanism that copper enhances Aβ42 cytotoxicity via perturbing membrane structure. Moreover, we test the effect of an analogue of copper, nickel, on Aβ aggregation and cytotoxicity, finding that nickel also enhances cytotoxicity via Aβ42 nanoscale oligomer formation. These results clarify that the copper-induced Aβ42 nanoscale oligomer formation is the key process for Aβ neurotoxicity, and suggest that disrupting the interactions between copper and Aβ42 peptide to inhibit nanoscale oligomerization process, deserves more attention in AD drug development.Copper is known to be a critical factor in Alzheimer's disease (AD) pathogenesis, as it is involved in amyloid-β (Aβ) peptide related toxicity. However, the relationship between neurotoxicity and Aβ peptide in the presence of copper remains unclear. The effect of copper has not been clearly differentiated between Aβ42 and Aβ40, and it is still debated whether copper-mediated neurotoxicity is due to reactive oxygen species (ROS) accumulation or other molecular mechanisms. Here, we describe that copper

  14. Thermal Reaction of Cinnamate Oligomers and Their Effect on the Orientational Stability of Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Hah, Hyundae; Sung, Shi‑Joon; Park, Jung‑Ki

    2006-08-01

    Cinnamate groups are well-known for a dimerization reaction upon exposure to ultraviolet irradiation and a thermal reaction after being heated. In this study, to verify the thermal reaction of the cinnamate group in detail, we investigated the thermal crosslinking of cinnamate oligomers. The thermal reaction of cinnamate oligomers of low molecular weight is induced more readily by thermal energy compared with that of cinnamate polymers. This reaction is attributed to a radical reaction involving the carbon-carbon double bond in the cinnamate group. The orientation of the liquid crystal depended on the length of the spacers in the cinnamate oligomers.

  15. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis.

    PubMed

    Glabe, Charles G; Kayed, Rakez

    2006-01-24

    Recent findings indicate that soluble amyloid oligomers may represent the primary pathologic species in degenerative diseases. These amyloid oligomers share common structural features and the ability to permeabilize membranes, suggesting that they also share a common primary mechanism of pathogenesis. Membrane permeabilization by amyloid oligomers may initiate a common group of downstream pathologic processes, including intracellular calcium dyshomeostasis, production of reactive oxygen species, altered signaling pathways, and mitochondrial dysfunction that represent key effectors of cellular dysfunction and cell death in amyloid-associated degenerative disease, such as sporadic inclusion-body myositis.

  16. Red-emitting π-conjugated oligomers infused single-wall carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshihiko; Urita, Koki

    2016-04-01

    We demonstrate the one-step thermal fusion and infusion of pyrene molecules inside single-wall carbon nanotubes (SWCNTs). Despite the presence of metallic-SWCNTs, which behave as a quencher due to gapless electronic states, the nanohybrids consisting of pyrene and/or azupyrene oligomers infused SWCNT sheets exhibit red fluorescence by the ultraviolet, blue, and green light excitations. The wavelength-independent light-emitting behavior is explained by (1) infused PAH oligomers inside semiconducting-SWCNTs and (2) the peculiar π-π interaction through mixed π-conjugated state between the π-conjugated oligomers and non-armchair metallic-SWCNTs.

  17. Phenylethynyl Terminated Arylene Ether Oxadiazole and Triazole Oligomers and Their Cured Polymers

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Hergenrother, P. M.

    2001-01-01

    Several novel phenylethynyl terminated arylene ether oligomers containing oxadiazole and triazole rings were prepared as part of an effort to develop high performance polymers with an attractive combination of properties (e.g. processability and mechanical performance) for future NASA applications. The oligomers displayed low melt viscosities and good solubilities. Thin films cast from solutions of the oligomers and cured for one hour at 350 C in air gave good tensile properties. Titanium to titanium (6Al-4V) tensile shear specimens were readily fabricated and provided moderate strengths. The chemistry and properties of these new materials are discussed.

  18. Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1.

    PubMed

    Jiang, Da-Peng; Li, Jin-Hui; Zhang, Jie; Xu, Sheng-Long; Kuang, Fang; Lang, Hai-Yang; Wang, Ya-Feng; An, Guang-Zhou; Li, Jing; Guo, Guo-Zhen

    2016-07-01

    A progressively expanded literature has been devoted in the past years to the noxious or beneficial effects of electromagnetic field (EMF) to Alzheimer׳s disease (AD). This study concerns the relationship between electromagnetic pulse (EMP) exposure and the occurrence of AD in rats and the underlying mechanisms, focusing on the role of oxidative stress (OS). 55 healthy male Sprague Dawley (SD) rats were used and received continuous exposure for 8 months. Morris water maze (MWM) test was conducted to test the ability of cognitive and memory. The level of OS was detected by superoxide dismutase (SOD) activity and glutathione (GSH) content. We found that long-term EMP exposure induced cognitive damage in rats. The content of β-amyloid (Aβ) protein in hippocampus was increased after long-term EMP exposure. OS of hippocampal neuron was detected. Western blotting and immunohistochemistry (IHC) assay showed that the content of Aβ protein and its oligomers in EMP-exposed rats were higher than that of sham-exposed rats. The content of Beta Site App Cleaving Enzyme (BACE1) and microtubule-associated protein 1 light chain 3-II (LC3-II) in EMP-exposed rats hippocampus were also higher than that of sham-exposed rats. SOD activity and GSH content in EMP-exposed rats were lower than sham-exposed rats (p<0.05). Several mechanisms were proposed based on EMP exposure-induced OS, including increased amyloid precursor protein (APP) aberrant cleavage. Although further study is needed, the present results suggest that long-term EMP exposure is harmful to cognitive ability in rats and could induce AD-like pathological manifestation.

  19. Coulombic free energy and salt ion association per phosphate of all-atom models of DNA oligomer: dependence on oligomer size.

    PubMed

    Shkel, Irina A; Record, M Thomas

    2012-08-23

    We investigate how the coulombic Gibbs free energy and salt ion association per phosphate charge of DNA oligomers vary with oligomer size (i.e. number of charged residues ∣ZD∣) at 0.15 M univalent salt by non-linear Poisson Boltzmann (NLPB) analysis of all-atom DNA models. Calculations of these quantities ([Formula: see text], [Formula: see text]) are performed for short and long double-stranded (ds) and single-stranded (ss) DNA oligomers, ranging from 4 to 118 phosphates (ds) and from 2 to 59 phosphates (ss). Behaviors of [Formula: see text] and [Formula: see text] as functions of ∣ZD∣ provide a measure of the range of the coulombic end effect and determine the size of an oligomer at which an interior region with the properties (per charge) of the infinite-length polyelectrolyte first appears. This size (10-11 phosphates at each end for ds DNA and 6-9 for ss DNA at 0.15 M salt) is in close agreement with values obtained previously by Monte Carlo and NLPB calculations for cylindrical models of polyions, and by analysis of binding of oligocations to DNA oligomers. Differences in [Formula: see text] and in [Formula: see text] between ss and ds DNA are used to predict effects of oligomeric size and salt concentration on duplex stability in the vicinity of 0.15 M salt. Results of all-atom calculations are compared with results of less structurally detailed models and with experimental data.

  20. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by β-amyloid 1-42 oligomers in rats.

    PubMed

    Budni, J; Feijó, D P; Batista-Silva, H; Garcez, M L; Mina, F; Belletini-Santos, T; Krasilchik, L R; Luz, A P; Schiavo, G L; Quevedo, J

    2017-03-27

    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. The main hallmarks of this disease include progressive cognitive dysfunction and an accumulation of soluble oligomers of β-amyloid (Aβ) 1-42 peptide. In this research, we show the effects of lithium and memantine on spatial memory and neuroinflammation in an Aβ1-42 oligomers-induced animal model of dementia in rats. Aβ 1-42 oligomers were administered intrahippocampally to male wistar rats to induce dementia. Oral treatments with memantine (5mg/kg), lithium (5mg/kg), or both drugs in combination were performed over a period of 17days. 14days after the administration of the Aβ1-42 oligomers, the radial arm-maze task was performed. At the end of the test period, the animals were euthanized, and the frontal cortex and hippocampus were removed for use in our analysis. Our results showed that alone treatments with lithium or memantine ameliorate the spatial memory damage caused by Aβ1-42. The animals that received combined doses of lithium and memantine showed better cognitive performance in their latency time and total errors to find food when compared to the results from alone treatments. Moreover, in our study, lithium and/or memantine were able to reverse the decreases observed in the levels of interleukin (IL)-4 that were induced by Aβ1-42 in the frontal cortex. In the hippocampus, only memantine and the association of memantine and lithium were able to reverse this effect. Alone doses of lithium and memantine or the association of lithium and memantine caused reductions in the levels of IL-1β in the frontal cortex and hippocampus, and decreased the levels of TNF-α in the hippocampus. Taken together, these data suggest that lithium and memantine might be a potential therapy against cognitive impairment and neuroinflammation induced by Aβ1-42, and their association may be a promising alternative to be investigated in the treatment of AD-like dementia.

  1. Enhanced Emission of Highly Labeled DNA Oligomers near Silver Metallic Surfaces

    PubMed Central

    Malicka, Joanna; Gryczynski, Ignacy; Lakowicz, Joseph R.

    2009-01-01

    Fluorescein is a widely used fluorescent probe in DNA analysis. One difficulty with fluorescein is its self-quenching due to resonance energy transfer between the residues, which results in decreased intensities with increasing labeling density. We examined the emission spectral properties of DNA oligomers labeled with one or five fluorescein residues. The emission intensity of the more highly labeled oligomer was decreased due to self-quenching. The self-quenching was mostly eliminated when this oligomer was held ~90 Å from the surface of metallic silver particles. The intensities increased 7- and 19-fold for the oligomers with one or five fluoresceins, respectively. The increased intensity did not result in increased photobleaching. These results suggest the use of substrates coated with silver particles for increased sensitivity on DNA arrays or for DNA analysis. PMID:14632044

  2. Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances

    NASA Astrophysics Data System (ADS)

    Bathula, Chinna; Buruga, Kezia; Lee, Sang Kyu; Khazi, Imtiyaz Ahmed M.; Kang, Youngjong

    2017-07-01

    In this article we present the synthesis of two novel bithiophene based symmetrical π conjugated oligomers with donor-acceptor-donor (D-A-D) structures by microwave assisted PdCl2(dppf) catalyzed Suzuki coupling reaction. These molecules contain electron rich bithiophene as a donor, dithienothiadiazole[3,4-c]pyridine and phthalic anhydride units as acceptors. The shorter reaction time, excellent yields and easy product isolation are the advantages of this method. The photophysical prerequisites for electronic application such as strong and broad optical absorption, thermal stability, and compatible energy levels were determined for synthesized oligomers. Optical band gap for the oligomers is found to be 1.72-1.90 eV. The results demonstrated the novel oligomers to be promising candidates in organic optoelectronic applications.

  3. The Anti-Prion Antibody 15B3 Detects Toxic Amyloid-β Oligomers

    PubMed Central

    Stravalaci, Matteo; Tapella, Laura; Beeg, Marten; Rossi, Alessandro; Joshi, Pooja; Pizzi, Erika; Mazzanti, Michele; Balducci, Claudia; Forloni, Gianluigi; Biasini, Emiliano; Salmona, Mario; Diomede, Luisa; Chiesa, Roberto; Gobbi, Marco

    2016-01-01

    15B3 is a monoclonal IgM antibody that selectively detects pathological aggregates of the prion protein (PrP). We report the unexpected finding that 15B3 also recognizes oligomeric but not monomeric forms of amyloid-β (Aβ)42, an aggregating peptide implicated in the pathogenesis of Alzheimer’s disease (AD). The 15B3 antibody: i) inhibits the binding of synthetic Aβ42 oligomers to recombinant PrP and neuronal membranes; ii) prevents oligomer-induced membrane depolarization; iii) antagonizes the inhibitory effects of oligomers on the physiological pharyngeal contractions of the nematode Caenorhabditis elegans; and iv) counteracts the memory deficits induced by intracerebroventricular injection of Aβ42 oligomers in mice. Thus this antibody binds to pathologically relevant forms of Aβ, and offers a potential research, diagnostic, and therapeutic tool for AD. PMID:27392850

  4. Bacterial Resistance to Antisense Peptide Phosphorodiamidate Morpholino Oligomers

    PubMed Central

    Puckett, Susan E.; Reese, Kaleb A.; Mitev, Georgi M.; Mullen, Valerie; Johnson, Rudd C.; Pomraning, Kyle R.; Mellbye, Brett L.; Tilley, Lucas D.; Iversen, Patrick L.; Freitag, Michael

    2012-01-01

    Peptide phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA mimics that bind cRNA and inhibit bacterial gene expression. The PPMO (RFF)3RXB-AcpP (where R is arginine, F, phenylalanine, X is 6-aminohexanoic acid, B is β-alanine, and AcpP is acyl carrier protein) is complementary to 11 bases of the essential gene acpP (which encodes acyl carrier protein). The MIC of (RFF)3RXB-AcpP was 2.5 μM (14 μg/ml) in Escherichia coli W3110. The rate of spontaneous resistance of E. coli to (RFF)3RXB-AcpP was 4 × 10−7 mutations/cell division. A spontaneous (RFF)3RXB-AcpP-resistant mutant (PR200.1) was isolated. The MIC of (RFF)3RXB-AcpP was 40 μM (224 μg/ml) for PR200.1. The MICs of standard antibiotics for PR200.1 and W3110 were identical. The sequence of acpP was identical in PR200.1 and W3110. PR200.1 was also resistant to other PPMOs conjugated to (RFF)3RXB or peptides with a similar composition or pattern of cationic and nonpolar residues. Genomic sequencing of PR200.1 identified a mutation in sbmA, which encodes an active transport protein. In separate experiments, a (RFF)3RXB-AcpP-resistant isolate (RR3) was selected from a transposome library, and the insertion was mapped to sbmA. Genetic complementation of PR200.1 or RR3 with sbmA restored susceptibility to (RFF)3RXB-AcpP. Deletion of sbmA caused resistance to (RFF)3RXB-AcpP. We conclude that resistance to (RFF)3RXB-AcpP was linked to the peptide and not the phosphorodiamidate morpholino oligomer, dependent on the composition or repeating pattern of amino acids, and caused by mutations in sbmA. The data further suggest that (RFF)3R-XB PPMOs may be transported across the plasma membrane by SbmA. PMID:22985881

  5. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers.

    PubMed

    Puckett, Susan E; Reese, Kaleb A; Mitev, Georgi M; Mullen, Valerie; Johnson, Rudd C; Pomraning, Kyle R; Mellbye, Brett L; Tilley, Lucas D; Iversen, Patrick L; Freitag, Michael; Geller, Bruce L

    2012-12-01

    Peptide phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA mimics that bind cRNA and inhibit bacterial gene expression. The PPMO (RFF)(3)RXB-AcpP (where R is arginine, F, phenylalanine, X is 6-aminohexanoic acid, B is β-alanine, and AcpP is acyl carrier protein) is complementary to 11 bases of the essential gene acpP (which encodes acyl carrier protein). The MIC of (RFF)(3)RXB-AcpP was 2.5 μM (14 μg/ml) in Escherichia coli W3110. The rate of spontaneous resistance of E. coli to (RFF)(3)RXB-AcpP was 4 × 10(-7) mutations/cell division. A spontaneous (RFF)(3)RXB-AcpP-resistant mutant (PR200.1) was isolated. The MIC of (RFF)(3)RXB-AcpP was 40 μM (224 μg/ml) for PR200.1. The MICs of standard antibiotics for PR200.1 and W3110 were identical. The sequence of acpP was identical in PR200.1 and W3110. PR200.1 was also resistant to other PPMOs conjugated to (RFF)(3)RXB or peptides with a similar composition or pattern of cationic and nonpolar residues. Genomic sequencing of PR200.1 identified a mutation in sbmA, which encodes an active transport protein. In separate experiments, a (RFF)(3)RXB-AcpP-resistant isolate (RR3) was selected from a transposome library, and the insertion was mapped to sbmA. Genetic complementation of PR200.1 or RR3 with sbmA restored susceptibility to (RFF)(3)RXB-AcpP. Deletion of sbmA caused resistance to (RFF)(3)RXB-AcpP. We conclude that resistance to (RFF)(3)RXB-AcpP was linked to the peptide and not the phosphorodiamidate morpholino oligomer, dependent on the composition or repeating pattern of amino acids, and caused by mutations in sbmA. The data further suggest that (RFF)(3)R-XB PPMOs may be transported across the plasma membrane by SbmA.

  6. Optically and redox-active ferroceneacetylene polymers and oligomers

    PubMed

    Plenio; Hermann; Sehring

    2000-05-15

    The palladium-catalyzed Sonogashira reaction can be used to build optically active, oligomeric 1,2,3-substituted ferrocenes up to the tetramer, as well as polymers, by sequential coupling of optically active (ee > 98 %), planar chiral iodoferroceneacetylenes and ferroceneacetylenes. (SFC)-1-Iodoferrocene-2-carbaldehyde (1) was reduced to the alcohol and methylated to give the corresponding methyl ether, which was Sonogashira-coupled with HC(triple bond)CSiEt3, resulting in (RFc)-1-(C(triple bond)CSiEt3)-2-methoxymethylferrocene (4) (79%, three steps). Orthometalation with tBuLi followed by quenching with 1,2-diodoethane gave (RFc)-1-(C(triple bond)CSiEt3)-2-methoxymethyl-3-iodoferrocene (5). Deprotection of the acetylene with nBu4NF resulted in (RFc)-1-ethynyl-2-methoxymethyl-3-iodoferrocene (6), which was Sonogashira-coupled with itself to produce an optically active polymer. Deprotection of 4 with nBu4NF and Sonogashira coupling of the product with 5 resulted in the dinuclear ferrocene 9. Deprotection of 9 and coupling with 5, followed by deprotection of the resulting acetylene 11, gave the trinuclear ferrocene 12. Another such sequence involving 11 and 5 produced a tetranuclear ferrocene 13. To study the electronic communication in such oligomers in more detail, two symmetrical, closely interrelated, trinuclear ferrocenes 18 and 19 were synthesized. The redox potentials of all the ferrocenes and the ferroceneacetylene polymer were determined by cyclic and square-wave voltammetry. All the metallocenes were investigated by UV/Vis spectroscopy. A linear relationship was found between lambdamax and l/n (n=number of ferrocene units in the oligomer). The polymer displayed two redox waves in the cyclic voltammogram, at 0.65 and 0.795 V. The corresponding mixed-valence oligoferrocene cations were synthesized from four ferroceneacetylenes, and their metal-metal charge transfer bands were examined by UV/Vis-NIR. The resonance exchange integrals Had, calculated on the

  7. PET amyloid ligand [11C]PIB uptake shows predominantly striatal increase in variant Alzheimer's disease.

    PubMed

    Koivunen, J; Verkkoniemi, A; Aalto, S; Paetau, A; Ahonen, J-P; Viitanen, M; Någren, K; Rokka, J; Haaparanta, M; Kalimo, H; Rinne, J O

    2008-07-01

    Variant Alzheimer's disease (VarAD) with spastic paraparesis and presenile dementia is associated with certain mutations of the presenilin 1 (PS-1) gene, particularly those leading to deletion of exon 9 (PS-1Delta E9). VarAD is neuropathologically characterized by the presence of unusually large, Abeta42 positive, non-cored 'cotton wool' plaques (CWPs), also devoid of dystrophic neurites. The aim of the present study was to find out whether [(11)C]PIB would show increased uptake and serve as an in vivo biomarker of amyloid accumulation in VarAD. A further aim was to assess the correspondence of the [(11)C]PIB binding to the amount and type of Abeta deposits in another group of deceased VarAD patients' brains. We studied four patients with VarAD and eight healthy controls with PET using [(11)C]PIB as tracer. Parametric images were computed by calculating the region-to-cerebellum and region-to-pons ratio in each voxel over 60-90 min. Group differences in [(11)C]PIB uptake were analysed with automated region-of-interest (ROI) analysis. [(11)C]PIB uptake was compared to the immunohistochemically demonstrated deposition of Abeta in the brains of another group of four deceased VarAD patients. Patients with VarAD had significantly higher [(11)C] PIB uptake than the control group in the striatum (caudate nucleus and putamen), anterior and posterior cingulate gyrus, occipital cortex and thalamus. In the caudate and putamen [(11)C]PIB uptake, expressed as region-to-cerebellum ratio, was on the average 43% greater than the mean of the control group. The increases in the anterior (28%) and posterior (27%) cingulate gyrus, occipital cortex (21%) and thalamus (14%) were smaller. All VarAD patients showed this similar topographical pattern of increased [(11)C]PIB uptake. The results were essentially similar when the uptake was expressed as region-to-pons ratios. [(11)C]PIB imaging shows increased uptake in patients with VarAD especially in the striatum, and it can be used to

  8. Styrene-terminated polysulfone oligomers as matrix material for graphite reinforced composites: An initial study

    NASA Technical Reports Server (NTRS)

    Garcia, Dana; Bowles, Kenneth J.; Vannucci, Raymond D.

    1987-01-01

    Styrene terminated polysulfone oligomers are part of an oligomeric class of compounds with end groups capable of thermal polymerization. These materials can be used as matrices for graphite reinforced composites. The initial evaluation of styrene terminated polysulfone oligomer based composites are summarized in terms of fabrication methods, and mechanical and environmental properties. In addition, a description and evaluation is provided of the NASA/Industry Fellowship Program for Technology Transfer.

  9. Oligomer formation of the gB glycoprotein of herpes simplex virus type 1.

    PubMed Central

    Highlander, S L; Goins, W F; Person, S; Holland, T C; Levine, M; Glorioso, J C

    1991-01-01

    Oligomer formation of the gB glycoprotein of herpes simplex virus type 1 was studied by sedimentation analysis of radioactively labeled infected cell and virion lysates. Fractions from sucrose gradients were precipitated with a pool of gB-specific monoclonal antibodies and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Pulse-labeled gB from infected cell was synthesized as monomers and converted to oligomers posttranslationally. The oligomers from infected cells and from virions sedimented as dimers, and there was no evidence of higher-molecular-weight forms. To identify amino acid sequences of gB that contribute to oligomer formation, pairs of mutant plasmids were transfected into Vero cells and superinfected with a gB-null mutant virus to stimulate plasmid-specified gene expression. Radioactively labeled lysates were precipitated with antibodies and examined by SDS-PAGE. Polypeptides from cotransfections were precipitated with an antibody that recognized amino acid sequences present in only one of the two polypeptides. A coprecipitated polypeptide lacking the antibody target epitope was presumed to contain the sequences necessary for oligomer formation. Using this technique, two noncontiguous sites for oligomer formation were detected. An upstream site was localized between residues 93 and 282, and a downstream site was localized between residues 596 and 711. Oligomer formation resulted from molecular interactions between two upstream sites, between two downstream sites, and between an upstream and a downstream site. A schematic diagram of a gB oligomer is presented that is consistent with these data. Images PMID:1649330

  10. Oligomers of the amyloid-beta protein disrupt working memory: confirmation with two behavioral procedures.

    PubMed

    Poling, Alan; Morgan-Paisley, Kineta; Panos, John J; Kim, Eun-Mee; O'Hare, Eugene; Cleary, James P; Lesné, Sylvain; Ashe, Karen H; Porritt, Matthew; Baker, Lisa E

    2008-11-21

    Converging lines of evidence suggest that oligomers of amyloid-beta play a role in the cognitive impairment characteristic of Alzheimer's disease, but only three studies have provided experimental evidence of such impairment. To provide additional information about the effects of these oligomers on memory, the present study examined the memory of groups of rats exposed to ICV injections of the culture media (CM) of Chinese Hamster Ovary cells that were (7PA2) and were not (CHO-) transfected with a human mutation of amyloid precursor protein that appears to cause early-onset Alzheimer's disease. The 7PA2 CM, which contained concentrations of soluble amyloid-beta oligomers physiologically relevant to those found in human brain, significantly disrupted working memory in rats tested in a radial-arm maze. In contrast, CHO- CM, which did not contain such oligomers, had no effect on memory. The disruptive effects of 7PA2-derived amyloid-beta oligomers, evident 2h after exposure, disappeared within a day. These findings are compared to results from 7PA2 CM tested under a complex procedure thought to measure aspects of executive function. The results confirm the disruptive effects of low-n amyloid-beta oligomers and extend them to a well-established rat model of memory.

  11. Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  12. Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  13. π-Conjugated Discrete Oligomers Containing Planar and Nonplanar Aromatic Motifs.

    PubMed

    Li, Ji; Terec, Anamaria; Wang, Yue; Joshi, Hrishikesh; Lu, Yunpeng; Sun, Handong; Stuparu, Mihaiela C

    2017-03-01

    A new family of π-conjugated oligomers featuring a nonplanar polycyclic aromatic hydrocarbon, corannulene, and a planar aromatic unit, thiophene, is synthesized through an iterative metal-catalyzed coupling protocol. The two structural motifs are connected through an acetylene linkage. In the shorter oligomers, a thiophene unit is attached to one or two corannulenes. In the higher analogues, two, three, and four thiophene units are placed in an alternating fashion with three, four, and five corannulene units, respectively. Photophysical studies reveal extended π-effects that initially increase and then attenuate as a function of the oligomer length. Notably, longer oligomers are found to be highly active for nonlinear absorption and emission properties. The oligomer with three corannulene and two thiophene units exhibits a two-photon absorption cross section of 600 GM and two-photon-excited intense green luminescence. This work, therefore, introduces the concept of combining planar and nonplanar aromatic motifs in the design of π-conjugated discrete oligomers, establishes synthetic feasibility of such hybrid materials, reports on their photophysical properties that is anticipated to have significant implications for future research targets, and features the discovery that corannulene derivatives can exhibit excellent nonlinear optical activity when extended through π-bridges.

  14. α-Synuclein Oligomers Induced by Docosahexaenoic Acid Affect Membrane Integrity

    PubMed Central

    Fecchio, Chiara; De Franceschi, Giorgia; Relini, Annalisa; Greggio, Elisa; Dalla Serra, Mauro; Bubacco, Luigi; Polverino de Laureto, Patrizia

    2013-01-01

    A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability. PMID:24312431

  15. Effect of Zn(2+) ions on the assembly of amylin oligomers: insight into the molecular mechanisms.

    PubMed

    Wineman-Fisher, Vered; Miller, Yifat

    2016-08-03

    Amylin is an endocrine hormone and is a member of the family of amyloid peptides and proteins that emerge as potential scaffolds by self-assembly processes. Zn(2+) ions can bind to amylin peptides to form self-assembled Zn(2+)-amylin oligomers. In the current work the binding sites of Zn(2+) ions in the self-assembled amylin oligomers at various concentrations of zinc have been investigated. Our results yield two conclusions. First, in the absence of Zn(2+) ions polymorphic states (i.e. various classes of amylin oligomers) are obtained, but when Zn(2+) ions bind to amylin peptides to form Zn(2+)-amylin oligomers, the polymorphism is decreased, i.e. Zn(2+) ions bind only to specific classes of amylin. At low concentrations of Zn(2+) ions the polymorphism is smaller than at high concentrations. Second, the structural features of the self-assembled amylin oligomers are not affected by the presence of Zn(2+) ions. This study proposes new molecular mechanisms of the self-assembly of Zn(2+)-amylin oligomers.

  16. Structure and stability of oligomer/α-cyclodextrin inclusion complexes.

    NASA Astrophysics Data System (ADS)

    Hunt, Marcus; Villar, Silvia; Gomez, Marian; Tonelli, Alan; Balik, Maury

    2007-03-01

    Cyclomaltohexaose (α-cyclodextrin, α-CD) can form inclusion complexes (ICs) with polymer molecules in the columnar crystal in which α-CD molecules stack to form a molecular tube. Complementary water vapor sorption and wide-angle X-ray diffractomery (WAXD) were performed on oligomer/α-CD ICs to probe their structures and stabilities. To discern the effect of guest molecule hydrophobicity on water adsorption isotherms, polyethylene glycol (PEG, MW = 600 g/mol) and hexatriacontane (HTC) guests were used. Sorption isotherms for PEG/α-CD IC are similar to those obtained for pure α-CD and PEG, suggesting the presence of dethreaded PEG in the sample. WAXD collected before and after water vapor sorption of PEG/α-CD IC indicated a partial conversion from columnar to cage crystal structure, the thermodynamically preferred structure for pure α-CD, due to dethreading of PEG. This behavior does not occur for HTC/α-CD IC. Sorption isotherms collected at 20, 30, 40 and 50 C allowed the calculation of differential heats of adsorption and integral entropies of adsorbed water, while solid-state ^13C NMR suggested a dramatic increase in HTC and α-CD mobilities upon complexation.

  17. GeneGenie: optimized oligomer design for directed evolution

    PubMed Central

    Swainston, Neil; Currin, Andrew; Day, Philip J.; Kell, Douglas B.

    2014-01-01

    GeneGenie, a new online tool available at http://www.gene-genie.org, is introduced to support the design and self-assembly of synthetic genes and constructs. GeneGenie allows for the design of oligonucleotide cohorts encoding the gene sequence optimized for expression in any suitable host through an intuitive, easy-to-use web interface. The tool ensures consistent oligomer overlapping melting temperatures, minimizes the likelihood of misannealing, optimizes codon usage for expression in a selected host, allows for specification of forward and reverse cloning sequences (for downstream ligation) and also provides support for mutagenesis or directed evolution studies. Directed evolution studies are enabled through the construction of variant libraries via the optional specification of ‘variant codons’, containing mixtures of bases, at any position. For example, specifying the variant codon TNT (where N is any nucleotide) will generate an equimolar mixture of the codons TAT, TCT, TGT and TTT at that position, encoding a mixture of the amino acids Tyr, Ser, Cys and Phe. This facility is demonstrated through the use of GeneGenie to develop and synthesize a library of enhanced green fluorescent protein variants. PMID:24782527

  18. Oligomer Formation of Tau Protein Hyperphosphorylated in Cells*

    PubMed Central

    Tepper, Katharina; Biernat, Jacek; Kumar, Satish; Wegmann, Susanne; Timm, Thomas; Hübschmann, Sabrina; Redecke, Lars; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability. PMID:25339173

  19. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    PubMed

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.

  20. Cloud forming potential of oligomers relevant to secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Guo, Song; Gomez-Hernandez, Mario; Zamora, Misti L.; Secrest, Jeremiah; Marrero-Ortiz, Wilmarie; Zhang, Annie L.; Collins, Don R.; Zhang, Renyi

    2014-09-01

    The hygroscopic growth factor (HGF) and cloud condensation nuclei (CCN) activity are measured for surrogates that mimic atmospherically relevant oligomers, including glyoxal trimer dihydrate, methyl glyoxal trimer dihydrate, sucrose, methyl glyoxal mixtures with sulfuric acid and glycolic acid, and 2,4-hexandienal mixtures with sulfuric acid and glycolic acid. For the single-component aerosols, the measured HGF ranges from 1.3 to 1.4 at a relative humidity of 90%, and the hygroscopicity parameter (κ) is in the range of 0.06 to 0.19 on the basis of the measured CCN activity and 0.13 to 0.22 on the basis of the measured HGF, compared to the calculated values of 0.08 to 0.16. Large differences exist in the κ values derived using the measured HGF and CCN data for the multi-component aerosols. Our results reveal that, in contrast to the oxidation process, oligomerization decreases particle hygroscopicity and CCN activity and provides guidance for analyzing the organic species in ambient aerosols.

  1. 54Mn2+ as a tracer of the polymerization of actin. Intermediate oligomers condense to give F-actin.

    PubMed Central

    Grazi, E

    1984-01-01

    Mg2+, at submicromolar concentrations, is needed for the nucleation of actin [Maruyama (1981) J. Biol. Chem. 256, 1060-1062]. I show here that Mn2+ fulfils the same function. It binds to oligomers present in the ATP-G-actin solutions with a ratio of 2-3 Mn2+ ions per 100 actin monomers and with an association constant of 0.66 X 10(10) M-1 at pH 8.2 at 25 degrees C. The time course of the binding of Mn2+ to polymerizing actin is not affected by the initial concentration of the protein. Analysis of the distribution of the binding shows that, both in the large oligomeric species and in the polymers, 1 Mn2+ ion is bound for every 14-25 actin monomers, whereas in the smaller oligomeric species 1 Mn2+ ion is bound for every 4 actin monomers. The proposal is made that Mn2+ stabilizes actin nuclei and decreases the concentration of the monomers at the steady state. It is also proposed that, at least in some experimental conditions, the direct condensation of oligomers of intermediate length is an effective mechanism of F-actin formation. PMID:6508731

  2. Non-fibrillar beta-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors.

    PubMed

    Shemer, Isaac; Holmgren, Carl; Min, Rogier; Fülöp, Livia; Zilberter, Misha; Sousa, Kyle M; Farkas, Tamás; Härtig, Wolfgang; Penke, Botond; Burnashev, Nail; Tanila, Heikki; Zilberter, Yuri; Harkany, Tibor

    2006-04-01

    Cognitive decline in Alzheimer's disease (AD) stems from the progressive dysfunction of synaptic connections within cortical neuronal microcircuits. Recently, soluble amyloid beta protein oligomers (Abeta(ol)s) have been identified as critical triggers for early synaptic disorganization. However, it remains unknown whether a deficit of Hebbian-related synaptic plasticity occurs during the early phase of AD. Therefore, we studied whether age-dependent Abeta accumulation affects the induction of spike-timing-dependent synaptic potentiation at excitatory synapses on neocortical layer 2/3 (L2/3) pyramidal cells in the APPswe/PS1dE9 transgenic mouse model of AD. Synaptic potentiation at excitatory synapses onto L2/3 pyramidal cells was significantly reduced at the onset of Abeta pathology and was virtually absent in mice with advanced Abeta burden. A decreased alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/N-methyl-D-aspartate (NMDA) receptor-mediated current ratio implicated postsynaptic mechanisms underlying Abeta synaptotoxicity. The integral role of Abeta(ol)s in these processes was verified by showing that pretreatment of cortical slices with Abeta((25-35)ol)s disrupted spike-timing-dependent synaptic potentiation at unitary connections between L2/3 pyramidal cells, and reduced the amplitude of miniature excitatory postsynaptic currents therein. A robust decrement of AMPA, but not NMDA, receptor-mediated currents in nucleated patches from L2/3 pyramidal cells confirmed that Abeta(ol)s perturb basal glutamatergic synaptic transmission by affecting postsynaptic AMPA receptors. Inhibition of AMPA receptor desensitization by cyclothiazide significantly increased the amplitude of excitatory postsynaptic potentials evoked by afferent stimulation, and rescued synaptic plasticity even in mice with pronounced Abeta pathology. We propose that soluble Abeta(ol)s trigger the diminution of synaptic plasticity in neocortical pyramidal cell networks during early

  3. Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: insights from all-atom simulations.

    PubMed

    Nam, Hoang Bao; Kouza, Maksim; Zung, Hoang; Li, Mai Suan

    2010-04-28

    Despite much progress in understanding the aggregation process of biomolecules, the factors that govern its rates have not been fully understood. This problem is of particular importance since many conformational diseases such as Alzheimer, Parkinson, and type-II diabetes are associated with the protein oligomerization. Having performed all-atom simulations with explicit water and various force fields for two short peptides KFFE and NNQQ, we show that their oligomer formation times are strongly correlated with the population of the fibril-prone conformation in the monomeric state. The larger the population the faster the aggregation process. Our result not only suggests that this quantity plays a key role in the self-assembly of polypeptide chains but also opens a new way to understand the fibrillogenesis of biomolecules at the monomeric level. The nature of oligomer ordering of NNQQ is studied in detail.

  4. Evidence that a synthetic amyloid-ß oligomer-binding peptide (ABP) targets amyloid-ß deposits in transgenic mouse brain and human Alzheimer's disease brain.

    PubMed

    Chakravarthy, Balu; Ito, Shingo; Atkinson, Trevor; Gaudet, Chantal; Ménard, Michel; Brown, Leslie; Whitfield, James

    2014-03-14

    The synthetic ~5 kDa ABP (amyloid-ß binding peptide) consists of a region of the 228 kDa human pericentrioloar material-1 (PCM-1) protein that selectively and avidly binds in vitro Aβ1-42 oligomers, believed to be key co-drivers of Alzheimer's disease (AD), but not monomers (Chakravarthy et al., (2013) [3]). ABP also prevents Aß1-42 from triggering the apoptotic death of cultured human SHSY5Y neuroblasts, likely by sequestering Aß oligomers, suggesting that it might be a potential AD therapeutic. Here we support this possibility by showing that ABP also recognizes and binds Aβ1-42 aggregates in sections of cortices and hippocampi from brains of AD transgenic mice and human AD patients. More importantly, ABP targets Aβ1-42 aggregates when microinjected into the hippocampi of the brains of live AD transgenic mice.

  5. Dynamic conformations of nucleophosmin (NPM1) at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    PubMed

    Duan-Porter, Wei D; Woods, Virgil L; Maurer, Kimberly D; Li, Sheng; Rosen, Antony

    2014-01-01

    Nucleophosmin (NPM1) is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM) that shared all these properties. We used deuterium exchange mass spectrometry (DXMS) to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122) in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  6. Guanidine hydrochloride denaturation of dopamine-induced α-synuclein oligomers: a small-angle X-ray scattering study.

    PubMed

    Pham, Chi L L; Kirby, Nigel; Wood, Kathleen; Ryan, Timothy; Roberts, Blaine; Sokolova, Anna; Barnham, Kevin J; Masters, Colin L; Knott, Robert B; Cappai, Roberto; Curtain, Cyril C; Rekas, Agata

    2014-01-01

    Alpha-synuclein (α-syn) forms the amyloid-containing Lewy bodies found in the brain in Parkinson's disease. The neurotransmitter dopamine (DA) reacts with α-syn to form SDS-resistant soluble, non-amyloid, and melanin-containing oligomers. Their toxicity is debated, as is the nature of their structure and their relation to amyloid-forming conformers of α-syn. The small-angle X-ray scattering technique in combination with modeling by the ensemble optimization method showed that the un-reacted native protein populated three broad classes of conformer, while reaction with DA gave a restricted ensemble range suggesting that the rigid melanin molecule played an important part in their structure. We found that 6 M guanidine hydrochloride did not dissociate α-syn DA-reacted dimers and trimers, suggesting covalent linkages. The pathological significance of covalent association is that if they are non-toxic, the oligomers would act as a sink for toxic excess DA and α-syn; if toxic, their stability could enhance their toxicity. We argue it is essential, therefore, to resolve the question of whether they are toxic or not.

  7. Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid

    PubMed Central

    Moreno-del Álamo, María; de la Espina, Susana Moreno-Díaz; Fernández-Tresguerres, M. Elena; Giraldo, Rafael

    2015-01-01

    Upon binding to short specific dsDNA sequences in vitro, the N-terminal WH1 domain of the plasmid DNA replication initiator RepA assembles as amyloid fibres. These are bundles of single or double twisted tubular filaments in which distorted RepA-WH1 monomers are the building blocks. When expressed in Escherichia coli, RepA-WH1 triggers the first synthetic amyloid proteinopathy in bacteria, recapitulating some of the features of mammalian prion diseases: it is vertically transmissible, albeit non-infectious, showing up in at least two phenotypically distinct and interconvertible strains. Here we report B3h7, a monoclonal antibody specific for oligomers of RepA-WH1, but which does not recognize the mature amyloid fibres. Unlike a control polyclonal antibody generated against the soluble protein, B3h7 interferes in vitro with DNA-promoted or amyloid-seeded assembly of RepA-WH1 fibres, thus the targeted oligomers are on-pathway amyloidogenic intermediates. Immuno-electron microscopy with B3h7 on thin sections of E. coli cells expressing RepA-WH1 consistently labels the bacterial nucleoid, but not the large cytoplasmic aggregates of the protein. This observation points to the nucleoid as the place where oligomeric amyloid precursors of RepA-WH1 are generated, and suggests that, once nucleated by DNA, further growth must continue in the cytoplasm due to entropic exclusion. PMID:26423724

  8. Acute effects of vanadate oligomers on heart, kidney, and liver histology in the Lusitanian toadfish (Halobatrachus didactylus).

    PubMed

    Borges, G; Mendonça, P; Joaquim, N; Coucelo, J; Aureliano, M

    2003-10-01

    The contribution of vanadate oligomers to the acute histological effects of vanadium was analyzed in the heart, kidney, and liver of Halobatrachus didactylus (Schneider, 1801). A sublethal vanadium dose (5 mM, 1 mL/kg) in the form of metavanadate (containing ortho and metameric species) or in the form of decavanadate (containing only decameric species) was intraperitoneally administered by injection, and specimens of H. didactylus were sacrificed at one and seven days postinjection. Sections of heart ventricle and renal and hepatic tissue were stained with hematoxylin-eosin and examined by light microscopy to identify vanadium-induced tissue injury. In addition, PicroSirius-stained ventricular sections were analyzed by bipolarized light microscopy to determine the fraction of myocardium occupied by the ventricular wall structural elements (collagen I, collagen III, and cardiac muscle). Both vanadate solutions produced similar effects in the renal tissue. Morphological alterations included damaged renal tubules showing disorganized epithelial cells in different states of necrosis. Reabsorbed renal tubules and hyperchromatic interstitial tissue were also observed. The hepatic tissue presented hyperchromatic and hypertrophied nuclei, along with necrotic and hypertrophied hepatocytes, and more severe changes were observed in the liver with exposure to decavanadate. Vanadate oligomers promoted evident tissue lesions in the kidney and liver, but not in the cardiac tissue. However, cardiac tissue structural changes were produced. For example, decavanadate induced a hypertrophy of the ventricle due to a decrease in the percentage of myocardium occupied by collagen fibers. In general, decavanadate was shown to be more toxic than metavanadate.

  9. Theoretical investigation of second hyperpolarizability of trans-polyacetylene: Comparison between experimental and theoretical results for small oligomers.

    PubMed

    de Andrade, Ageo Meier; Inacio, Patrícia Loren; Camilo, Alexandre

    2015-12-28

    The development of new conductive polymers nowadays is one of the most important technological areas in materials design. Computational investigation of desired properties in conductive polymers could save financial resources and time, but it is important to choose the methodology that produces good results comparing to experimental results. To verify the prediction of second hyperpolarizability (γ) in oligomers of Trans-Polyacetylene (TPA) by theoretical calculations, a series of semi-empirical, Hartree-Fock (HF), and Density Functional Theory (DFT) calculations were performed and analysed through linear fitting statistical analysis to investigate the accuracy of such theoretical predictions in comparison to the experimental ones. The results showed that HF and DFT methodologies do not describe γ with good accuracy, but the use of diffuse and polarizability functions in HF methodology provided better results than 3-21G and 6-31G functions. It was concluded that RM1 methodology better agrees with γ experimental results for TPA oligomers, and linear fitting statistical analysis is a useful tool to compare experimental and theoretical results.

  10. Electron interaction with phosphate cytidine oligomer dCpdC: base-centered radical anions and their electronic spectra.

    PubMed

    Gu, Jiande; Wang, Jing; Leszczynski, Jerzy

    2014-01-30

    Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.

  11. Evidence for DAPI intercalation in CG sites of DNA oligomer [d(CGACGTCG)]2: a 1H NMR study.

    PubMed Central

    Trotta, E; D'Ambrosio, E; Ravagnan, G; Paci, M

    1995-01-01

    The interaction between 4',6-diamidino-2-phenylindole (DAPI) and the DNA oligomer [d(CGACGTCG)]2 has been investigated by proton one- and two-dimensional NMR spectroscopy in solution. Compared with the minor groove binding of the drug to [d(GCGATCGC)]2, previously studied by NMR spectroscopy, the interaction of DAPI with [d(CGACGTCG)]2 appears markedly different and gives results typical of a binding mechanism by intercalation. C:G imino proton signals of the [d(CGACGTCG)]2 oligomer as well as DAPI resonances appear strongly upfield shifted and sequential dipolar connectivities between cytosine and guanine residues show a clear decrease upon binding. Moreover, protons lying in both the minor and major grooves of the DNA double helix appear involved in the interaction, as evidenced principally by intermolecular drug-DNA NOEs. In particular, the results indicate the existence of two stereochemically non-equivalent intercalation binding sites located in the central and terminal adjacent C:G base pairs of the palindromic DNA sequence. Different lifetimes of the complexes were also observed for the two sites of binding. Moreover, due to the fast exchange on the NMR timescale between free and bound species, different interactions in dynamic equilibrium with the observed intercalative bindings were not excluded. PMID:7753623

  12. The Reticulon and Dp1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum*S⃞

    PubMed Central

    Shibata, Yoko; Voss, Christiane; Rist, Julia M.; Hu, Junjie; Rapoport, Tom A.; Prinz, William A.; Voeltz, Gia K.

    2008-01-01

    We recently identified a class of membrane proteins, the reticulons and DP1/Yop1p, which shape the tubular endoplasmic reticulum (ER) in yeast and mammalian cells. These proteins are highly enriched in the tubular portions of the ER and virtually excluded from other regions. To understand how they promote tubule formation, we characterized their behavior in cellular membranes and addressed how their localization in the ER is determined. Using fluorescence recovery after photobleaching, we found that yeast Rtn1p and Yop1p are less mobile in the membrane than normal ER proteins. Sucrose gradient centrifugation and cross-linking analyses show that they form oligomers. Mutants of yeast Rtn1p, which no longer localize exclusively to the tubular ER or are even totally inactive in inducing ER tubules, are more mobile and oligomerize less extensively. The mammalian reticulons and DP1 are also relatively immobile and can form oligomers. The conserved reticulon homology domain that includes the two membrane-embedded segments is sufficient for the localization of the reticulons to the tubular ER, as well as for their diffusional immobility and oligomerization. Finally, ATP depletion in both yeast and mammalian cells further decreases the mobilities of the reticulons and DP1. We propose that oligomerization of the reticulons and DP1/Yop1p is important for both their localization to the tubular domains of the ER and for their ability to form tubules. PMID:18442980

  13. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    NASA Technical Reports Server (NTRS)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  14. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    PubMed

    Kumar, Amit; Pate, Kayla M; Moss, Melissa A; Dean, Dexter N; Rangachari, Vijayaraghavan

    2014-01-01

    The aggregation of amyloid-β (Aβ) peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD). The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers) are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers) in vitro called Large Fatty Acid-derived Oligomers (LFAOs) (Kumar et al., 2012, J. Biol. Chem). In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  15. Humanin Specifically Interacts with Amyloid-β Oligomers and Counteracts Their in vivo Toxicity.

    PubMed

    Romeo, Margherita; Stravalaci, Matteo; Beeg, Marten; Rossi, Alessandro; Fiordaliso, Fabio; Corbelli, Alessandro; Salmona, Mario; Gobbi, Marco; Cagnotto, Alfredo; Diomede, Luisa

    2017-03-06

    The 24-residue peptide humanin (HN) has been proposed as peptide-based inhibitors able to interact directly with amyloid-β (Aβ) oligomers and interfere with the formation and/or biological properties of toxic Aβ species. When administered exogenously HN, or its synthetic S14G-derivative (HNG), exerted multiple cytoprotective effects, counteracting the Aβ-induced toxicity. Whether these peptides interact directly with Aβ, particularly with the soluble oligomeric assemblies, remains largely unknown. We here investigated the ability of HN and HNG to interact directly with highly aggregating Aβ42, and interfere with the formation and toxicity of its oligomers. Experiments were run in cell-free conditions and in vivo in a transgenic C. elegans strain in which the Aβ toxicity was specifically due to oligomeric species. Thioflavin-T assay indicated that both HN and HNG delay the formation and reduce the final amount of Aβ42 fibrils. In vitro surface plasmon resonance studies indicated that they interact with Aβ42 oligomers favoring the formation of amorphous larger assemblies, observed with turbidity and electron microscopy. In vivo studies indicated that both HN and HNG decrease the relative abundance of A11-positive prefibrillar oligomers as well as OC-positive fibrillar oligomers and had similar protective effects. However, while HN possibly decreased the oligomers by promoting their assembly into larger aggregates, the reduction of oligomers caused by HNG can be ascribed to a marked decrease of the total Aβ levels, likely the consequence of the HNG-induced overexpression of the Aβ-degrading enzyme neprilysin. These findings provide information on the mechanisms underlying the anti-oligomeric effects of HN and HNG and illustrate the role of S14G substitution in regulating the in vivo mechanism of action.

  16. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    PubMed

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-07

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of

  17. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation

    PubMed Central

    Clarke, Julia R; Lyra e Silva, Natalia M; Figueiredo, Claudia P; Frozza, Rudimar L; Ledo, Jose H; Beckman, Danielle; Katashima, Carlos K; Razolli, Daniela; Carvalho, Bruno M; Frazão, Renata; Silveira, Marina A; Ribeiro, Felipe C; Bomfim, Theresa R; Neves, Fernanda S; Klein, William L; Medeiros, Rodrigo; LaFerla, Frank M; Carvalheira, Jose B; Saad, Mario J; Munoz, Douglas P; Velloso, Licio A; Ferreira, Sergio T; De Felice, Fernanda G

    2015-01-01

    Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AβOs further induced eIF2α-P and activated pro-inflammatory IKKβ/NF-κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD. PMID:25617315

  18. Assessing the Effects of Acute Amyloid β Oligomer Exposure in the Rat

    PubMed Central

    Wong, Ryan S.; Cechetto, David F.; Whitehead, Shawn N.

    2016-01-01

    Alzheimer’s disease (AD) is the most common form of dementia, yet there are no therapeutic treatments that can either cure or delay its onset. Currently, the pathogenesis of AD is still uncertain, especially with respect to how the disease develops from a normal healthy brain. Amyloid β oligomers (AβO) are highly neurotoxic proteins and are considered potential initiators to the pathogenesis of AD. Rat brains were exposed to AβO via bilateral intracerebroventricular injections. Rats were then euthanized at either 1, 3, 7 or 21-days post surgery. Rat behavioural testing was performed using the Morris water maze and open field tests. Post-mortem brain tissue was immunolabelled for Aβ, microglia, and cholinergic neurons. Rats exposed to AβO showed deficits in spatial learning and anxiety-like behaviour. Acute positive staining for Aβ was only observed in the corpus callosum surrounding the lateral ventricles. AβO exposed rat brains also showed a delayed increase in activated microglia within the corpus callosum and a decreased number of cholinergic neurons within the basal forebrain. Acute exposure to AβO resulted in mild learning and memory impairments with co-concomitant white matter pathology within the corpus callosum and cholinergic cell loss within the basal forebrain. Results suggest that acute exposure to AβO in the rat may be a useful tool in assessing the early phases for the pathogenesis of AD. PMID:27563885

  19. Aromatic oligomers that form hetero duplexes in aqueous solution.

    PubMed

    Gabriel, Gregory J; Iverson, Brent L

    2002-12-25

    The electron-deficient 1,4,5,8-naphthalenetetracarboxylic diimide (Ndi) and electron-rich 1,5-dialkoxynaphthalene (Dan) have been shown to complex strongly with each other in water due to the hydrophobic effect as modulated through the electrostatic complementarity of the stacked dimer. Previously, oligomers of alternating Ndi and Dan units, termed aedamers, were the first foldamers to employ intramolecular aromatic stacking to effect the formation of secondary structure of nonnatural chains in aqueous solution. Described here is the use of this aromatic-aromatic (or pi-pi) interaction, this time in an intermolecular format, to demonstrate the self-assembly of stable hetero duplexes from a set of molecular strands (1a-4a) and (1b-4b) incorporating Ndi and Dan units, respectively. A 1-to-1 binding stoichiometry was determined from NMR and isothermal titration calorimetry (ITC) investigations, and these experiments indicated that association is enthalpically favored with the tetra-Ndi (4a) and tetra-Dan (4b) strands forming hetero duplexes (4a:4b) with a stability constant of 350 000 M-1 at T = 318 K. Polyacrylamide gel electrophoresis (PAGE) also illustrated the strong interaction between 4a and 4b and support a 1-to-1 binding mode even when one component is in slight excess. Overall, this system is the first to utilize complementary aromatic units to drive discrete self-assembly in aqueous solution. This new approach for designing assemblies is encouraging for future development of duplex systems with highly programmable modes of binding in solution or on surfaces.

  20. Computational design of organometallic oligomers featuring 1,3-metal-carbon bonding and planar tetracoordinate carbon atoms.

    PubMed

    Zhao, Xue-Feng; Yuan, Cai-Xia; Wang, Xiang; Li, Jia-Jia; Wu, Yan-Bo; Wang, Xiaotai

    2016-01-15

    Density functional theory computations (B3LYP) have been used to explore the chemistry of titanium-aromatic carbon "edge complexes" with 1,3-metal-carbon (1,3-MC) bonding between Ti and planar tetracoordinate Cβ . The titanium-coordinated, end-capping chlorides are replaced with OH or SH groups to afford two series of difunctional monomers that can undergo condensation to form oxide- and sulfide-bridged oligomers. The sulfide-linked oligomers have less molecular strain and are more exergonic than the corresponding oxide-linked oligomers. The HOMO-LUMO gap of the oligomers varies with their composition and decreases with growing oligomer chain. This theoretical study is intended to enrich 1,3-MC bonding and planar tetracoordinate carbon chemistry and provide interesting ideas to experimentalists. Organometallic complexes with the TiE2 (E = OH and SH) decoration on the edge of aromatic hydrocarbons have been computationally designed, which feature 1,3-metal-carbon (1,3-MC) bonding between titanium and planar tetracoordinate β-carbon. Condensation of these difunctional monomers by eliminating small molecules (H2O and H2S) produce chain-like oligomers. The HOMO-LUMO gaps of the oligomers decreases with growing oligomer chain, a trend that suggests possible semiconductor properties for oligomers with longer chains.

  1. Synthesis of paucidisperse poly(gamma-benzyl-alpha,L-glutamate) oligomers and star polymers with rigid arms.

    PubMed

    Wang, X; Daly, W H; Russo, P; Ngu-Schwemlein, M

    2001-01-01

    The synthesis of highly uniform gamma-benzyl-alpha,L-glutamate (BLG) oligomers via a convergent solution phase approach is reported. BLG oligomers were produced with designed lengths of 4, 8, 12, and 16 as a first step to production of BLG-4-mer and BLG-8-mer rod stars. The star oligomers were purified by size-exclusion chromatography and reversed phase HPLC, and characterized by MALDI-TOF mass spectrometry and reversed phase HPLC. These star-shaped BLG oligomers could be used as initiators for growing larger stars.

  2. Environmental Enrichment Potently Prevents Microglia-Mediated Neuroinflammation by Human Amyloid β-Protein Oligomers

    PubMed Central

    Xu, Huixin; Gelyana, Eilrayna; Rajsombath, Molly; Yang, Ting; Li, Shaomin

    2016-01-01

    Microglial dysfunction is increasingly recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). Environmental enrichment (EE) is well documented to enhance neuronal form and function, but almost nothing is known about whether and how it alters the brain's innate immune system. Here we found that prolonged exposure of naive wild-type mice to EE significantly altered microglial density and branching complexity in the dentate gyrus of hippocampus. In wild-type mice injected intraventricularly with soluble Aβ oligomers (oAβ) from hAPP-expressing cultured cells, EE prevented several morphological features of microglial inflammation and consistently prevented oAβ-mediated mRNA changes in multiple inflammatory genes both in vivo and in primary microglia cultured from the mice. Microdialysis in behaving mice confirmed that EE normalized increases in the extracellular levels of the key cytokines (CCL3, CCL4, TNFα) identified by the mRNA analysis. Moreover, EE prevented the changes in microglial gene expression caused by ventricular injection of oAβ extracted directly from AD cerebral cortex. We conclude that EE potently alters the form and function of microglia in a way that prevents their inflammatory response to human oAβ, suggesting that prolonged environmental enrichment could protect against AD by modulating the brain's innate immune system. SIGNIFICANCE STATEMENT Environmental enrichment (EE) is a potential therapy to delay Alzheimer's disease (AD). Microglial inflammation is associated with the progression of AD, but the influence of EE on microglial inflammation is unclear. Here we systematically applied in vivo methods to show that EE alters microglia in the dentate gyrus under physiological conditions and robustly prevents microglial inflammation induced by human Aβ oligomers, as shown by neutralized microglial inflammatory morphology, mRNA changes, and brain interstitial fluid cytokine levels. Our findings suggest that EE alters the

  3. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins.

    PubMed

    Smith, B L; Agre, P

    1991-04-05

    A novel Mr 28,000 erythrocyte transmembrane protein was recently purified and found to exist in two forms, "28kDa" and "gly28kDa," the latter containing N-linked carbohydrate (Denker, B. M., Smith, B. L., Kuhajda, F. P., and Agre, P. (1988) J. Biol. Chem. 263, 15634-15642). Although 28kDa protein resembles the Rh polypeptides biochemically, structural homologies were not identified by immunoblot or two-dimensional iodopeptide maps. The NH2-terminal amino acid sequence for the first 35 residues of purified 28kDa protein is 37% identical to the 26-kDa major intrinsic protein of lens (Gorin, M. B., Yancey, S. B., Cline, J., Revel, J.-P., and Horwitz, J. Cell 39, 49-59). Antisera to a synthetic peptide corresponding to the NH2-terminus of 28kDa protein gave a single reaction of molecular mass 28kDa on immunoblots of erythrocyte membranes. Selective digestions of intact erythrocytes and inside-out membrane vesicles with carboxypeptidase Y indicated the existence of a 5-kDa COOH-terminal cytoplasmic domain. Multiple studies indicated that 28kDa and gly28kDa proteins exist together as a multisubunit oligomer: 1) similar partial solubilizations in Triton X-100; 2) co-purification during ion exchange and lectin affinity chromatography; 3) cross-linking in low concentrations of glutaraldehyde; and 4) physical analyses of purified proteins and solubilized membranes in 1% (v/v) Triton X-100 showed 28kDa and gly28kDa proteins behave as a large single unit with Stokes radius of 61 A and sedimentation coefficient of 5.7 S. These studies indicate that the 28kDa and gly28kDa proteins are distinct from the Rh polypeptides and exist as a multisubunit oligomer. The 28kDa protein has NH2-terminal amino acid sequence homology and membrane organization similar to major intrinsic protein and other members of a newly recognized family of transmembrane channel proteins.

  4. Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: prevention of Aβ-induced synaptic deficits by calcium channel blockers.

    PubMed

    Hermann, David; Mezler, Mario; Müller, Michaela K; Wicke, Karsten; Gross, Gerhard; Draguhn, Andreas; Bruehl, Claus; Nimmrich, Volker

    2013-02-28

    Alzheimer's disease is accompanied by increased brain levels of soluble amyloid-β (Aβ) oligomers. It has been suggested that oligomers directly impair synaptic function, thereby causing cognitive deficits in Alzheimer's disease patients. Recently, it has been shown that synthetic Aβ oligomers directly modulate P/Q-type calcium channels, possibly leading to excitotoxic cascades and subsequent synaptic decline. Using whole-cell recordings we studied the modulation of recombinant presynaptic calcium channels in HEK293 cells after application of a stable Aβ oligomer preparation (Aβ1-42 globulomer). Aβ globulomer shifted the half-activation voltage of P/Q-type and N-type calcium channels to more hyperpolarized values (by 11.5 and 7.5 mV). Application of non-aggregated Aβ peptides had no effect. We then analyzed the potential of calcium channel blockers to prevent Aβ globulomer-induced synaptic decline in hippocampal slice cultures. Specific block of P/Q-type or N-type calcium channels with peptide toxins completely reversed Aβ globulomer-induced deficits in glutamatergic neurotransmission. Two state-dependent low molecular weight P/Q-type and N-type calcium channel blockers also protected neurons from Aβ-induced alterations. On the contrary, inhibition of L-type calcium channels failed to reverse the deficit. Our data show that Aβ globulomer directly modulates recombinant P/Q-type and N-type calcium channels in HEK293 cells. Block of presynaptic calcium channels with both state-dependent and state-independent modulators can reverse Aβ-induced functional deficits in synaptic transmission. These findings indicate that presynaptic calcium channel blockers may be a therapeutic strategy for the treatment of Alzheimer's disease.

  5. Peripherally administered sera antibodies recognizing amyloid-β oligomers mitigate Alzheimer's disease-like pathology and cognitive decline in aged 3× Tg-AD mice.

    PubMed

    Wang, Hai-Chao; Yu, Yun-Zhou; Liu, Si; Zhao, Meng; Xu, Qing

    2016-04-04

    Active and passive immunotherapy targeting amyloid-β (Aβ) may be the most promising strategy to prevent or treat Alzheimer's disease (AD). Previously, immunization with the recombinant 6Aβ15-T antigen generated robust anti-Aβ serum antibodies that strongly recognized Aβ42 oligomers in different mice, markedly reduced the amyloid burden, and improved behavioral performance of immunized older AD mice. Here, we further determined that these anti-6Aβ15-T serum antibodies from different strains of mice displayed anti-Aβ antibody responses against the same epitopes in the Aβ1-15 region. Peripheral administration of anti-6Aβ15-T serum antibodies was also effective to mitigate AD-like pathology and cognitive decline in aged 3× Tg-AD mice. Specifically, the levels of Aβ and tau in the brains of 3× Tg-AD mice were significantly reduced after passive immunotherapy, which seemed necessary or beneficial to ameliorate memory impairment. In addition, our results showed that this immunotherapy also prevented presynaptic dynamin 1 degradation, which might help to further protect synaptic functions and allow functional recovery of cognition. Moreover, immunization with 6Aβ15-T in rabbits induced a similar antibody response as that in mice, and the rabbit serum antibodies reacted strongly with Aβ42 oligomers and inhibited oligomer-mediated neurotoxicity. We concluded that passive immunization with Aβ42 oligomer conformation-sensitive anti-6Aβ15-T serum antibodies is effective in providing potentially therapeutic effects in aged 3× Tg-AD mice by reducing Aβ and tau.

  6. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers.

    PubMed

    Minsky, Burcu Baykal; Dubin, Paul L; Kaltashov, Igor A

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions. Graphical Abstract ᅟ.

  7. Revealing structural changes of prion protein during conversion from α-helical monomer to β-oligomers by means of ESR and nanochannel encapsulation.

    PubMed

    Yang, Che; Lo, Wei-Lin; Kuo, Yun-Hsuan; Sang, Jason C; Lee, Chung-Yu; Chiang, Yun-Wei; Chen, Rita P-Y

    2015-02-20

    Under nondenaturing neutral pH conditions, full-length mouse recombinant prion protein lacking the only disulfide bridge can spontaneously convert from an α-helical-dominant conformer (α-state) to a β-sheet-rich conformer (β-state), which then associates into β-oligomers, and the kinetics of this spontaneous conversion depends on the properties of the buffer used. The molecular details of this structural conversion have not been reported due to the difficulty of exploring big protein aggregates. We introduced spin probes into different structural segments (three helices and the loop between strand 1 and helix 1), and employed a combined approach of ESR spectroscopy and protein encapsulation in nanochannels to reveal local structural changes during the α-to-β transition. Nanochannels provide an environment in which prion protein molecules are isolated from each other, but the α-to-β transition can still occur. By measuring dipolar interactions between spin probes during the transition, we showed that helix 1 and helix 3 retained their helicity, while helix 2 unfolded to form an extended structure. Moreover, our pulsed ESR results allowed clear discrimination between the intra- and intermolecular distances between spin labeled residues in helix 2 in the β-oligomers, making it possible to demonstrate that the unfolded helix 2 segment lies at the association interface of the β-oligomers to form cross-β structure.

  8. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-02-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  9. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  10. In vitro release of a water-soluble agent from low viscosity biodegradable, injectable oligomers.

    PubMed

    Sharifpoor, Soroor; Amsden, Brian

    2007-03-01

    Low-molecular-weight poly(epsilon-caprolactone-co-1,3-trimethylene carbonate) and poly(1,3-trimethylene carbonate) are potential vehicles for the regio-specific delivery of water-soluble agents. In this paper, the characteristics and the mechanism governing the in vitro release of a model water-soluble drug, vitamin B12, from these polymer vehicles were determined. The loading of vitamin B12 was kept to 1 w/w%. The oligomers examined ranged from amorphous, high viscosity to crystalline but low viscosity. The oligomers did not degrade appreciably in vitro. The total fraction of vitamin B12 released increased as the crystallinity of the oligomers decreased, reaching nearly total release only for the completely amorphous oligomers. The rate of release was fastest for the amorphous oligomers and dependent on their viscosity. Inclusion of a more osmotically active agent, trehalose, into the vitamin B12 particles through co-lyophilization resulted in enhanced total fraction released and a faster release rate. The results are consistent with an osmotically driven release mechanism.

  11. Nitrogen Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene

    SciTech Connect

    Nguyen, Tran B.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-06

    Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NOx conditions. Up to 80-90% of the observed products are oligomers and up to 33% are nitrogen-containing organic compounds (NOC). We observe oligomers with up to 8 monomer units in length. Tandem mass spectrometry (MSn) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C2-C5 monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, glycolaldehyde, and 2-methyltetrols. The majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NOx conditions and 0.83 under the high-NOx conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.

  12. Oligomer and SOA formation through aqueous phase photooxidation of methacrolein and methyl vinyl ketone

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Siekmann, Frank; Renard, Pascal; El Zein, Atallah; Salque, Guillaume; El Haddad, Imad; Temime-Roussel, Brice; Voisin, Didier; Thissen, Roland; Monod, Anne

    2012-03-01

    This work investigates the ability of methacrolein (MACR) and methyl vinyl ketone (MVK) (the two main gas phase atmospheric oxidation products of isoprene) to form oligomers and secondary organic aerosol (SOA) upon aqueous phase OH-oxidation and subsequent water evaporation. For the two precursors, electrospray mass spectrometry (in infusion and coupled to liquid chromatography) analysis of the reacting solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1400 Da. More than 11 series of oligomers were found. For MVK, the intensity and masses of oligomers became increasingly important as MVK initial concentrations increased from 0.2 to 20 mM. For both precursors, the oligomers were responsible for the SOA formation during nebulization experiments. The evaluated SOA mass yield ranged from 3.9 to 9.9% for MVK. These yields were time dependent and were in good agreement with the range (1.6-11.7%) obtained for MACR under the same conditions by El Haddad et al. (2009).

  13. The Effect of Difunctional Oligomer Concentration and Processing Temperature on the Reactive Processing of Polymer Blends

    NASA Astrophysics Data System (ADS)

    O'Brien, Charles; Rice, Kevin; Dadmun, Mark

    2001-03-01

    Reactive processing is an interesting method to form compatibilizers for polymer blends in-situ. A model blend composed of poly(bisphenol A-co-epichlorohydrin) and poly(ethylene oxide) that is compatibilized with difunctional oligomers that are the same structure as the homopolymers is currently under investigation. It is expected that blocky copolymers will form at the bipahasic interface during processing as the difunctional oligomers undergo an addition copolymerization. Previous results have shown that the addition of the reactive oligomers improves the properties of the blend and thus this reactive process scheme is feasible. Additionally, these results indicate that the difunctioanal oligomers may act as plasticizers and continue to polymerize at room temperature after the blend is removed from the melt mixer. In this presentation, we will discuss our research that is focused on optimizing the reactive compatibilization process by controlling the amount of reactive oligomer added and the processing temperature and evaluating the effect of these parameters on the ultimate properties of the blend.

  14. Chain-length and mode-delocalization dependent amide-I anharmonicity in peptide oligomers.

    PubMed

    Zhao, Juan; Wang, Jianping

    2012-06-07

    The diagonal anharmonicities of the amide-I mode in the alanine oligomers are examined in the normal-mode basis by ab initio calculations. The selected oligomers range from dimer to heptamer, in either the α-helical or β-sheet conformations. It is found that the anharmonicity varies from mode to mode within the same oligomer. For a given amide-I mode, the anharmonicity is closely related to the delocalization extent of the mode: the less it delocalizes, the larger the anharmonicity it has. Thus, the single-mode potential energy distribution (PED(max)) can be used as an indicator of the magnitude of the anharmonicity. It is found that as the peptide chain length increases, the averaged diagonal anharmonicity generally decreases; however, the sum of the averaged diagonal and off-diagonal anharmonicities within a peptide roughly remains a constant for all the oligomers examined, indicating the excitonic characteristics of the amide-I modes. Excitonic coupling tends to decrease the diagonal anharmonicities in a coupled system with multiple chromophores, which explains the observed behavior of the anharmonicities. The excitonic nature of the amide-I band in peptide oligomers is thus verified by the anharmonic computations. Isotopic substitution effect on the anharmonicities and mode localizations of the amide-I modes in peptides is also discussed.

  15. Amyloid Oligomers and Mature Fibrils Prepared from an Innocuous Protein Cause Diverging Cellular Death Mechanisms*

    PubMed Central

    Harte, Níal P.; Klyubin, Igor; McCarthy, Eoin K.; Min, Soyoung; Garrahy, Sarah Ann; Xie, Yongjing; Davey, Gavin P.; Boland, John J.; Rowan, Michael J.; Mok, K. Hun

    2015-01-01

    Despite significant advances, the molecular identity of the cytotoxic species populated during in vivo amyloid formation crucial for the understanding of neurodegenerative disorders is yet to be revealed. In this study lysozyme prefibrillar oligomers and fibrils in both mature and sonicated states have been isolated through an optimized ultrafiltration/ultracentrifugation method and characterized with various optical spectroscopic techniques, atomic force microscopy, and transmission electron microscopy. We examined their level and mode of toxicity on rat pheochromocytoma (PC12) cells in both differentiated and undifferentiated states. We find that oligomers and fibrils display cytotoxic capabilities toward cultured cells in vitro, with oligomers producing elevated levels of cellular injury toward undifferentiated PC12 cells (PC12undiff). Furthermore, dual flow cytometry staining experiments demonstrate that the oligomers and mature fibrils induce divergent cellular death pathways (apoptosis and secondary necrosis, respectively) in these PC12 cells. We have also shown that oligomers but not sonicated mature fibrils inhibit hippocampal long term potentiation, a form of synaptic plasticity implicated in learning and memory, in vivo. We conclude that our in vitro and in vivo findings confer a level of resistance toward amyloid fibrils, and that the PC 12-based comparative cytotoxicity assay can provide insights into toxicity differences between differently aggregated protein species. PMID:26221033

  16. Prefibrillar transthyretin oligomers and cold stored native tetrameric transthyretin are cytotoxic in cell culture

    SciTech Connect

    Soergjerd, Karin; Klingstedt, Therese; Lindgren, Mikael; Kagedal, Katarina; Hammarstroem, Per

    2008-12-26

    Recent studies suggest that soluble, oligomeric species, which are intermediates in the fibril formation process in amyloid disease, might be the key species in amyloid pathogenesis. Soluble oligomers of human wild type transthyretin (TTR) were produced to elucidate oligomer properties. Employing ThT fluorescence, time-resolved fluorescence anisotropy of pyrene-labeled TTR, chemical cross-linking, and electron microscopy we demonstrated that early formed soluble oligomers (within minutes) from A-state TTR comprised on the average 20-30 TTR monomers. When administered to neuroblastoma cells these early oligomers proved highly cytotoxic and induced apoptosis after 48 h of incubation. More mature fibrils (>24 h of fibrillation) were non-toxic. Surprisingly, we also found that native tetrameric TTR, when purified and stored under cold conditions (4 deg. C) was highly cytotoxic. The effect could be partially restored by increasing the temperature of the protein. The cytotoxic effects of native tetrameric TTR likely stems from a hitherto unexplored low temperature induced rearrangement of the tetramer conformation that possibly is related to the conformation of misfolded TTR in amyloigogenic oligomers.

  17. Sugar monomer and oligomer solubility: data and predictions for application to biomass hydrolysis.

    PubMed

    Gray, Matthew C; Converse, Alvin O; Wyman, Charles E

    2003-01-01

    Oligomer solubility could potentially play an important role in controlling the rates and yields in the thermochemical hydrolysis of hemicellulose as a pretreatment for subsequent enzymatic conversion of cellulose. However, limited data or models are available to describe the aqueous solubility of sugar monomers and oligomers. In this work, we measured the solubilities of sugars common to many biomass feedstocks in the temperature range of 25-30 degrees C. Then we reviewed solubility models for sugars from the open literature. Finally, we applied models to test their ability to describe this and other data reported in the literature. It was found that the solubility of sugar monomers was not well described by the ideal solubility law or other more complex models. However, with an empirical adjustment to the enthalpy of fusion, the ideal solubility law was able to approximately predict the solubility of cello-oligomers. Based on these results, solubilities for low molecular weight xylo-oligomers are predicted to investigate their possible importance in pretreatment and define further experimental measurements needed to improve our understanding of sugar and oligomer solubility.

  18. Comparison of mass spectrometric techniques for generating molecular weight information on a class of ethoxylated oligomers.

    PubMed

    Parees, D M; Hanton, S D; Clark, P A; Willcox, D A

    1998-04-01

    The results of fast atom bombardment (FAB), time-of-flight secondary ion mass spectrometry (ToF-SIMS), matrix-assisted laser desorption/ionization (MALD/I), electrospray ionization (ESI), and field desorption (FD) analyses of ethoxylated oligomers of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol(®) 104) were compared.Each of these desorption mass spectrometry (MS) techniques can produce spectra of unfragmented cationized oligomers. From the observed ion series we calculate average molecular weight information. We have compared the results of mass spectrometric analyses of a series of ethoxylated Surfynol surfactants. Our data indicate that FAB, ToF-SIMS, MALDI/I, and ESI produce similar results for the lower molecular weight species, but that as the average molecular weight increases FAB and SIMS produce slightly lower results than MALD/I and FD. This could be due to increased fragmentation. ESI produced a result similar to FAB and SIMS for the highest average molecular weight material. Further experiments compare the mass spectral results with gas chromatographic quantitative data. Although gas chromatography is not expected to accurately analyze the higher mass oligomers, we observe significant differences in intensities of the short-chain oligomers (especially the 0- and 1-mers) when compared to the desorption mass spectrometer results. These differences may reflect poor cationization efficiency for very short oligomer chains in the mass spectrometric analyses.

  19. Pre-amyloid oligomers budding:a metastatic mechanism of proteotoxicity

    PubMed Central

    Bernini, Fabrizio; Malferrari, Daniele; Pignataro, Marcello; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Lancellotti, Lidia; Brigatti, Maria Franca; Kayed, Rakez; Borsari, Marco; del Monte, Federica; Castellini, Elena

    2016-01-01

    The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology. PMID:27775057

  20. Xanthine biosensor based on the direct oxidation of xanthine at an electrogenerated oligomer film.

    PubMed

    Mu, Shaolin; Shi, Qiaofang

    2013-09-15

    Poly(o-aminophenol-co-pyrogallol) (PAP) was first synthesized via the electrochemical copolymerization of o-aminophenol and pyrogallol in the acidic solution, using a reduced graphene oxide/glassy carbon (RGO/GC) electrode as a working electrode. Reduced graphene oxide played an important role in increasing PAP amount deposited on the RGO/GC electrode compared to that on the bare GC electrode, which is due to that RGO has the large specific surface area. The results from the spectra of IR, (1)H NMR and ESR and the measurement of molecular weight demonstrated that PAP is an oligomer with the free radicals and exhibited good redox activity in a wide pH range from pH<1-9.0 and can effectively catalyze xanthine oxidation due to the presence of the free radicals and the reversible redox groups in the copolymer chain. On the basis of the direct oxidation of xanthine on PAP, the PAP/RGO/GC electrode was used as a xanthine biosensor. The biosensor showed a linear range from 1.0 to 120μM xanthine at pH 6.0 with a correction coefficient of 0.9965 and fast response to xanthine oxidation. The peak potential of xanthine oxidation shifted from 0.814 to 0.668V as pH increased from 5.0 to 7.5.

  1. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution.

  2. The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA

    SciTech Connect

    Ye, Qiaozhen; Krug, Robert M.; Tao, Yizhi Jane

    2006-12-06

    Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 Angstrom crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighboring molecule. This flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.

  3. Phenylenevinylene oligomers by Mizoroki-Heck cross coupling reaction. Structural and optoelectronic characterization

    NASA Astrophysics Data System (ADS)

    Estrada, Sandra E.; Ochoa-Puentes, Cristian; Sierra, Cesar A.

    2017-04-01

    In order to study the effect of the molecular structure on the optical properties of totally trans-trans phenylenevinylene oligomers (OPVs), sixteen 1,4-distyrylbenzene derivatives (1a-i and 2a-g) functionalized with different electron-donating (ED) and electron-withdrawing (EW) groups were synthesized by the Mizoroki-Heck cross coupling reaction in moderate to good yields (40-95%). The implemented methodology, with a small modification previously reported by our group, allows obtaining the desired vinyl configuration as well as one novel OPV compound (1h). After structural characterization by several techniques (e.g. FTIR, 1H, 13C and Solid-State NMR), particular emphasis was placed upon the investigation of their optical properties by UV-vis and fluorescence spectroscopies. The results showed that, with only one exception, the ED and EW groups at the ends of OPV systems lead to a bathochromic shift. This effect is intensified with the introduction of methoxy groups on the central ring. Consistent with these, the HOMO-LUMO gaps (ΔE) decreases as the strength of ED and EW substituents increases. The ED and EW substituents also lead to a decrease in the Φf values. This contribution in the area of organic electronics can be used as a reference to better select the most appropriate technological application for each OPV and this can be extrapolated to their respective structurally analogous segmented polymer.

  4. [Hyaluronic acid (hyaluronan) levels in pathological human saphenous veins. Effects of procyanidol oligomers].

    PubMed

    Drubaix, I; Maraval, M; Robert, L; Robert, A M

    1997-01-01

    We investigated the hyaluronan content in the pathologic human venous wall using an ELSA assay with hyaluronectin according to the method of Delpech et al. The mean hyaluronan content in the 74 fragments from 12 venous walls studied was 596 +/- 528 ng/mg dry weight. These 12 venous walls could be separated in 3 distinct groups according to their hyaluronan content, low (277 +/- 141 ng/mg dry weight), moderate (552 +/- 361 ng/m dry weight) or high (1299 +/- 568 ng/mg dry weight). The differences between these groups are significant (p < 0.001). The presence of a veino-lymphatic oedema was generally associated with a high hyaluronan level (in 65% of cases). The 3H-glucosamine incorporation in cultured venous wall explants showed a 35% increase (p < 0.002) in varicosis as compared with the non or less modified segments of the vein and a 29% (p < 0.001) increase in presence of a veino-lymphatic oedema. The addition of 1 mg/ml of PCO (Procyanidolic Oligomers) to the culture media induced near to 20% decrease of the 3H-glucosamine incorporation and a 34% decrease of the hyaluronan content. Our results confirm the role of local overproduction of hyaluronan in the establishment of oedema and the potential effect of PCO to counteract it.

  5. Abiotic formation of RNA-like oligomers by montmorillonite catalysis: part II

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Snellinger-O'Brien, Ann M.; Ertem, M. C.; Rogoff, D. A.; Dworkin, Jason P.; Johnston, Murray V.; Hazen, Robert M.

    2008-01-01

    This work is an extension of our previous studies carried out to investigate the possible catalytic role of minerals in the abiotic synthesis of biologically important molecules. In the presence of montmorillonite, a member of the phyllosilicate group minerals that are abundant on Earth and identified on Mars, activated RNA monomers, namely 5‧-phosphorimidazolides of nucleosides (ImpNs), undergo condensation reactions in aqueous electrolyte solution producing oligomers with similar structures to short RNA fragments. Analysis of the linear trimer isomers formed in the reaction of a mixture of activated adenosine and cytidine monomers (ImpA and ImpC, respectively) employing high-performance liquid chromatography, selective enzymatic hydrolysis and matrix-assisted laser desorption/ionization mass spectroscopy molecular weight measurements demonstrate that montmorillonite catalysis facilitates the formation of hetero-isomers containing 56% A- and 44% C-monomer incorporated in their structure. The results also show that 56% of the monomer units are linked together by RNA-like 3‧, 5‧-phosphodiester bonds. These results follow the same trend observed in our most recent work studying the reaction of activated adenosine and uridine monomers, and support Bernal's hypothesis proposing the possible catalytic role of minerals in the abiotic processes in the course of chemical evolution.

  6. Non-Radiative Relaxation of Electronically Excited DNA Oligomers: Proton Coupled Charge Transfer

    NASA Astrophysics Data System (ADS)

    Lange, Adrian W.; Herbert, John M.

    2009-06-01

    We address possible relaxation mechanisms of electronically excited DNA oligomers with a combined quantum mechanics/molecular mechanics (QM/MM) approach. Using long-range corrected density functional theory (LRC-DFT), we show that charge transfer (CT) states between neighboring nucleobases appear at energies just above optically bright ^{1}ππ^{ast} excitonic states in aqueous solution. In double stranded DNA systems, both intrastrand and interstrand CT states are observed. It has been hypothesized that excitonic states may decay via a conical intersection into a CT state on a subpicosecond timescale. The proximity in energy of such states in out calculations appears consistent with this claim. Assuming that such a non-radiative mechanism occurs, we investigate subsequent relaxation of CT states by constructing and optimizing the geometry of model CT systems with constrained density functional theory (CDFT). We find that CT states relax in double stranded DNA through proton transfer across Watson-Crick base pairs with little to no energy barrier. Furthermore, the ground state energy shifts upwards along this reaction coordinate to nearly the same as that of the proton coupled charge transfer state, creating the possibility for a non-radiative pathway to the ground state. Q. Wu and T. Van Voorhis Phys. Rev. A (2005)

  7. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGES

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; ...

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  8. Quantum Molecular Dynamical Calculations of PEDOT 12-Oligomer and its Selenium and Tellurium Derivatives

    NASA Astrophysics Data System (ADS)

    Mirsakiyeva, Amina; Hugosson, Håkan W.; Crispin, Xavier; Delin, Anna

    2016-12-01

    We present simulation results, computed with the Car-Parrinello molecular dynamics method, at zero and ambient temperature (300 K) for poly(3,4-ethylenedioxythiophene) [PEDOT] and its selenium and tellurium derivatives PEDOS and PEDOTe, represented as 12-oligomer chains. In particular, we focus on structural parameters such as the dihedral rotation angle distribution, as well as how the charge distribution is affected by temperature. We find that for PEDOT, the dihedral angle distribution shows two distinct local maxima whereas for PEDOS and PEDOTe, the distributions only have one clear maximum. The twisting stiffness at ambient temperature appears to be larger the lighter the heteroatom (S, Se, Te) is, in contrast to the case at 0 K. As regards point charge distributions, they suggest that aromaticity increases with temperature, and also that aromaticity becomes more pronounced the lighter the heteroatom is, both at 0 K and ambient temperature. Our results agree well with previous results, where available. The bond lengths are consistent with substantial aromatic character both at 0 K and at ambient temperature. Our calculations also reproduce the expected trend of diminishing gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital with increasing atomic number of the heteroatom.

  9. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    SciTech Connect

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  10. Synthesis of carboxylated poly(NIPAAm) oligomers and their application to form thermo-reversible polymer-enzyme conjugates.

    PubMed

    Chen, G; Hoffman, A S

    1994-01-01

    A thermo-reversible poly(N-isopropylacrylamide) poly(NIPAAm) oligomer with a carboxyl functional end group has been synthesized by radical polymerization using beta-mercaptopropionic acid as a chain transfer reagent. This polymer has been conjugated to an enzyme, beta-D-glucosidase, to form a thermo-reversible water soluble-insoluble polymer-enzyme conjugate. This conjugate can be used for separation, recovery and recycle of an enzyme simply by applying small temperature changes to the reaction medium. In contrast to the random polymer-enzyme conjugates reported in the literature, in this study the enzyme is coupled to each polymer chain by a single end attachment. These preliminary studies show that the conjugated enzyme exhibits very high retention of activity (> 90%) compared to the native enzyme and shows improved thermal stability.

  11. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    NASA Astrophysics Data System (ADS)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  12. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis

    PubMed Central

    Jinesh, GG; Molina, JR; Huang, L; Laing, NM; Mills, GB; Bar-Eli, M; Kamat, AM

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  13. Exploring the assembly mechanism of tetrapeptide oligomers using the Activation-Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-03-01

    Alzheimer's disease and Parkinson's disease are associated with formation of amyloid fibrils. All amyloid fibrils seem to share a common cross β-sheet structure. Experimental studies have shown that peptides as short as 4 amino acids can form amyloid fibrils. It has also been shown that the oligomers that form early in the aggregation process of even non-disease-related proteins may be cytotoxic. We report a detailed study of the assembly mechanisms of the tetrapeptides into different size oligomers: trimers, hexamers and more. The assembly of the oligomers, in which the peptides form β-sheets through interpeptide interactions, are studied using the activation-relaxation technique (ART) in combination with a reduced off-lattice energy model (OPEP). We also describe the multiple pathways of oligomerization as well as categorize the various oligomeric intermediates, providing information of the early events of β-sheet formation.

  14. New insight into the dynamical system of αB-crystallin oligomers

    PubMed Central

    Inoue, Rintaro; Takata, Takumi; Fujii, Norihiko; Ishii, Kentaro; Uchiyama, Susumu; Sato, Nobuhiro; Oba, Yojiro; Wood, Kathleen; Kato, Koichi; Fujii, Noriko; Sugiyama, Masaaki

    2016-01-01

    α-Crystallin possesses a dynamic quaternary structure mediated by its subunit dynamics. Elucidation of a mechanism of subunit dynamics in homo-oligomers of αB-crystallin was tackled through deuteration-assisted small-angle neutron scattering (DA-SANS) and electrospray ionization (ESI) native mass spectrometry (nMS). The existence of subunit exchange was confirmed with DA-SANS, and monomers liberated from the oligomers were observed with nMS. With increasing temperature, an increase in both the exchange rate and monomer population was observed despite the absence of oligomer collapse. It is proposed that transiently liberated subunits, namely, “traveling subunits,” play a role in subunit exchange. Moreover, we propose that protein function is regulated by these traveling subunits. PMID:27381175

  15. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    SciTech Connect

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally, tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.

  16. Excitonic Coupling and Femtosecond Relaxation of Zinc Porphyrin Oligomers Linked with Triazole Bridge: Dynamics and Modeling.

    PubMed

    Bukreev, Alexey; Mikhailov, Konstantin; Shelaev, Ivan; Gostev, Fedor; Polevaya, Yuliya; Tyurin, Vladimir; Beletskaya, Irina; Umansky, Stanislav; Nadtochenko, Victor

    2016-03-31

    The synthesis of new zinc porphyrin oligomers linked by a triazole bridge was carried out via "click" reaction. A split in the porphyrin oligomer B-band was observed. It was considered as evidence of exciton-excitonic coupling. The relaxation of excited states in Q-band porphyrin oligomers was studied by the femtosecond laser spectroscopy technique with a 20 fs pump pulse. The transient oscillations of two B-band excitonic peaks have a π-radian shift. For explanation of the coherent oscillation, a theoretical model was developed. The model considered the combination of the exciton-excitonic coupling between porphyrin rings in dimer and weak exciton-vibronic coupling in one porphyrin ring. By varying the values of the structural parameters of porphyrins (the strength values of this couplings and measure of symmetry breaking), we obtained correspondence between the experimental data (phase shift and amplitudes of the spectrum oscillations) and the predictions of the model developed here.

  17. Simple extrapolation method to predict the electronic structure of conjugated polymers from calculations on oligomers

    DOE PAGES

    Larsen, Ross E.

    2016-04-12

    In this study, we introduce two simple tight-binding models, which we call fragment frontier orbital extrapolations (FFOE), to extrapolate important electronic properties to the polymer limit using electronic structure calculations on only a few small oligomers. In particular, we demonstrate by comparison to explicit density functional theory calculations that for long oligomers the energies of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and of the first electronic excited state are accurately described as a function of number of repeat units by a simple effective Hamiltonian parameterized from electronic structure calculations on monomers, dimers and, optionally,more » tetramers. For the alternating copolymer materials that currently comprise some of the most efficient polymer organic photovoltaic devices one can use these simple but rigorous models to extrapolate computed properties to the polymer limit based on calculations on a small number of low-molecular-weight oligomers.« less

  18. Solution state structure determination of silicate oligomers by 29SI NMR spectroscopy and molecular modeling.

    PubMed

    Cho, Herman; Felmy, Andrew R; Craciun, Raluca; Keenum, J Patrick; Shah, Neil; Dixon, David A

    2006-02-22

    Evidence for nine new solution state silicate oligomers has been discovered by (29)Si NMR homonuclear correlation experiments of (29)Si-enriched samples. In addition to enhancing signal sensitivity, the isotopic enrichment increases the probability of the (29)Si-(29)Si two-bond scalar couplings that are necessary for the observation of internuclear correlations in 2-D experiments. The proposed assignments are validated by comparisons of experimental and simulated cross-peaks obtained with high digital resolution. The internuclear connectivity indicated by the NMR data suggests that several of these oligomers can have multiple stereoisomers, including conformers and/or diastereomers. The stabilities of these oligomers and their possible stereoisomers have been investigated by electronic structure calculations.

  19. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  20. Solution State Structure Determination of Silicate Oligomers by 29Si NMR Spectroscopy and Molecular Modeling

    SciTech Connect

    Cho, Herman M.; Felmy, Andrew R.; Craciun, Raluca; Keenum, Johnathan P.; Shah, Neil K.; Dixon, David A.

    2006-02-22

    Evidence for nine new solution state silicate oligomers has been discovered by 29Si NMR homonuclear correlation experiments of 29Si-enriched samples. In addition to enhancing signal sensitivity, the isotopic enrichment increases the probability of the 29Si–29Si two-bond scalar couplings that are necessary for the observation of internuclear correlations in 2-D experiments. The proposed assignments are validated by comparisons of experimental and simulated crosspeaks obtained with high digital resolution. The internuclear connectivity indicated by the NMR data suggests that several of these oligomers can have multiple stereoisomers, including conformers and/or diastereomers. The stability of these oligomers and their possible stereoisomers have been investigated by electronic structure calculations.

  1. Thio-urethane oligomers improve the properties of light-cured resin cements

    PubMed Central

    Bacchi, Ataís; Consani, Rafael L.; Martim, Gedalias C.; Pfeifer, Carmem S.

    2015-01-01

    Thio-urethanes were synthesized by combining 1,6-Hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10–30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10–20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey’s test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by twofold in the experimental groups (from 1.17±0.36 to around 3.23±0.22 MPa.m1/2). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. PMID:25740124

  2. Synthesis and Properties of Phenylethynyl-Terminated, Star-Branched, Phenylquinoxaline Oligomers

    NASA Technical Reports Server (NTRS)

    Ooi, I. H.; Hergenrother, P. M.; Harris, F. W.

    2000-01-01

    The primary objective of this work was to prepare readily melt and solution processable phenylquinoxaline (PQ) oligomers that could be thermally crosslinked to solvent-resistant resins. Thus, a mixture of 2-(4-hydroxyphenyl)-3-phenyl-6-fluoroquinoxaline and 3-(4-hydroxyphenyl)-2-phenyl-6-fluoroquinoxaline (HPFQ) was used to prepare star-branched PQ oligomers end-capped with 4-fluoro-4-phenylethynylbenzophenone (FPEB). 1,1,1-Tris(4-hydroxyphenyl)ethane (THPE) was used as the branching unit. The oligomer number-average molecular weights (M (bar) (sub n) S) as determined by size exclusion chromatography (SEC) were close to the calculated values of 2922, 4698, 6474, and 13,578 g/mol, and their intrinsic viscosities ranged from 0.16 to 0.57 dl/g (m-cresol at 30 C). The oligomers, which were quite soluble in common organic solvents, had glass transition temperatures (T (sub g) S) that ranged from 181 to 233 C (DSC, DELTA T = 20 C/min). They also underwent an exothermic cure with maxima from 377 to 443 C. The T (sub g) S of the cured oligomers ranged from 259 to 284 C depending on the oligomer M (bar) (sub n) and the curing conditions. The oligomers had low melt viscosities, e.g. an oligomer (SPQ-46) with an M (bar) (sub n) of 4816 g/mol (SEC) had a melt viscosity of 150 Pa s at 348 C. A cured thin film of SPQ-46, which was insoluble in common organic solvents, had a room temperature (RT) tensile strength of 100 MPa, a RT modulus of 2358 MPa, and a RT elongation of 5.9%. A cured sample of SPQ-46 displayed a RT titanium-titanium lap shear tensile strength of 35.2 MPa. SPQ-46/carbon fiber(IM-7) composites, were prepared that displayed a RT flexural strength of 1902 MPa, a RT modulus of 1.38 GPa and a RT open hole compressive strength of 433 MPa.

  3. Folding and self-assembly of aromatic and aliphatic urea oligomers: towards connecting structure and function.

    PubMed

    Fischer, Lucile; Guichard, Gilles

    2010-07-21

    Folding and self-assembly of biomacromolecules has inspired the development of discrete, non-natural oligomers that fold and/or self-assemble in a controlled manner. Though aromatic and aliphatic oligoamides remain unmatched for structural diversity and synthetic versatility, oligomers based on amide bond surrogates, such as urea backbones, also demonstrated a propensity for folding and self-assembly. In this Perspective, we review the advances in the design of oligomeric aromatic and aliphatic urea sequences (essentially N,N'-linked) that fold and/or self-assemble. Whenever applicable, the relationship between structure and function will be highlighted.

  4. Synthesis and incorporation of thienylene vinylene oligomers in main-chain copolymers

    SciTech Connect

    Madrigal, L.G.; Elandaloussi, E.H.; Spangler, C.W.

    1998-07-01

    Poly [2,5-thienylene vinylene] (PTV) has been studied extensively over the past decade for both its metallic conductivity behavior upon chemical doping, as well as its interesting third order nonlinear optical properties. PTV oligomers have been synthesized by the group, as well as others, and the formation of polaron-like radical-cations or bipolaron-like dications by oxidative doping has been demonstrated. In this paper the authors describe a general synthetic approach to PTV oligomers functionalized for copolymer formation by step-growth reaction.

  5. Energy Aspects of Thermal Molecular Switching: Molecular Thermal Hysteresis of Helicene Oligomers.

    PubMed

    Shigeno, Masanori; Kushida, Yo; Yamaguchi, Masahiko

    2015-07-20

    Molecular switching is a phenomenon by which a molecule reversibly changes its structure and state in response to external stimuli or energy. Herein, molecular switching is discussed from thermodynamic and kinetic aspects in terms of energy supply with an emphasis on the thermal switching exhibited by helicene oligomers. It includes the inversion of relative thermodynamic stability induced by temperature changes and molecular thermal hysteresis in a closed system. The thermal phenomenon associated with the oligomers involves population/concentration changes between metastable states under nonequilibrium thermodynamic control.

  6. Thermo-reversible gelation of atactic poly(methyl methacrylate) in poly(ethylene glycol) oligomers.

    PubMed

    Gao, Yun; Yu, Chunhong; Chen, Minzhi; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2013-04-01

    The temperature-concentration behavior of physical gel by atactic poly(methyl methacrylate) (aPMMA) in poly(ethylene glycol) oligomer (PEG400) was investigated. A liquid-liquid demixing interferes with a glass transition during cooling. The combination of demixing and T g leads to the formation of amorphous gels at low temperature. We suggest that the gelation of aPMMA/PEG400 is a glassy gel, in which short-range attractive depletion interaction in the polymer/oligomer system was the driving force at molecular level.

  7. Single-Molecule Imaging Reveals Aβ42:Aβ40 Ratio-Dependent Oligomer Growth on Neuronal Processes

    PubMed Central

    Johnson, Robin D.; Schauerte, Joseph A.; Chang, Chun-Chieh; Wisser, Kathleen C.; Althaus, John Christian; Carruthers, Cynthia J.L.; Sutton, Michael A.; Steel, Duncan G.; Gafni, Ari

    2013-01-01

    Soluble oligomers of the amyloid-β peptide have been implicated as proximal neurotoxins in Alzheimer’s disease. However, the identity of the neurotoxic aggregate(s) and the mechanisms by which these species induce neuronal dysfunction remain uncertain. Physiologically relevant experimentation is hindered by the low endogenous concentrations of the peptide, the metastability of Aβ oligomers, and the wide range of observed interactions between Aβ and biological membranes. Single-molecule microscopy represents one avenue for overcoming these challenges. Using this technique, we find that Aβ binds to primary rat hippocampal neurons at physiological concentrations. Although amyloid-β(1–40) as well as amyloid-β(1–42) initially form larger oligomers on neurites than on glass slides, a 1:1 mix of the two peptides result in smaller neurite-bound oligomers than those detected on-slide or for either peptide alone. With 1 nM peptide in solution, Aβ40 oligomers do not grow over the course of 48 h, Aβ42 oligomers grow slightly, and oligomers of a 1:1 mix grow substantially. Evidently, small Aβ oligomers are capable of binding to neurons at physiological concentrations and grow at rates dependent on local Aβ42:Aβ40 ratios. These results are intriguing in light of the increased Aβ42:Aβ40 ratios shown to correlate with familial Alzheimer’s disease mutations. PMID:23442968

  8. The effects of a multifunctional oligomer and its incorporation strategies on the gene delivery efficiency of poly(L-lysine).

    PubMed

    Zhou, Dezhong; Li, Congxin; Hu, Yuling; Zhou, Hao; Chen, Jiatong; Zhang, Zhengpu; Guo, Tianying

    2012-05-14

    A novel multifunctional oligomer is synthesized and incorporated to enhance the gene delivery efficiency of PLL via non-electrostatic assembly and covalent grafting strategies. The improvement of the gene delivery efficiency is dependent on the gene carrying complex properties, and the properties are dependent on the oligomer incorporation strategy.

  9. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    NASA Astrophysics Data System (ADS)

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-03-01

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.

  10. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    PubMed Central

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-01-01

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture. PMID:25732514

  11. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases.

    PubMed

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-03-03

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.

  12. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy.

    PubMed

    Saito, Satoshi; Yamamoto, Yumi; Maki, Takakuni; Hattori, Yorito; Ito, Hideki; Mizuno, Katsuhiko; Harada-Shiba, Mariko; Kalaria, Raj N; Fukushima, Masanori; Takahashi, Ryosuke; Ihara, Masafumi

    2017-04-04

    Cerebral amyloid angiopathy (CAA) induces various forms of cerebral infarcts and hemorrhages from vascular amyloid-β accumulation, resulting in acceleration of cognitive impairment, which is currently untreatable. Soluble amyloid-β protein likely impairs cerebrovascular integrity as well as cognitive function in early stage Alzheimer's disease. Taxifolin, a flavonol with strong anti-oxidative and anti-glycation activities, has been reported to disassemble amyloid-β in vitro but the in vivo relevance remains unknown. Here, we investigated whether taxifolin has therapeutic potential in attenuating CAA, hypothesizing that inhibiting amyloid-β assembly may facilitate its clearance through several elimination pathways. Vehicle- or taxifolin-treated Tg-SwDI mice (commonly used to model CAA) were used in this investigation. Cognitive and cerebrovascular function, as well as the solubility and oligomerization of brain amyloid-β proteins, were investigated. Spatial reference memory was assessed by water maze test. Cerebral blood flow was measured with laser speckle flowmetry and cerebrovascular reactivity evaluated by monitoring cerebral blood flow changes in response to hypercapnia. Significantly reduced cerebrovascular pan-amyloid-β and amyloid-β1-40 accumulation was found in taxifolin-treated Tg-SwDI mice compared to vehicle-treated counterparts (n = 5). Spatial reference memory was severely impaired in vehicle-treated Tg-SwDI mice but normalized after taxifolin treatment, with scoring similar to wild type mice (n = 10-17). Furthermore, taxifolin completely restored decreased cerebral blood flow and cerebrovascular reactivity in Tg-SwDI mice (n = 4-6). An in vitro thioflavin-T assay showed taxifolin treatment resulted in efficient inhibition of amyloid-β1-40 assembly. In addition, a filter trap assay and ELISA showed Tg-SwDI mouse brain homogenates exhibited significantly reduced levels of amyloid-β oligomers in vivo after taxifolin treatment (n

  13. Synthesis of molecular wires of linear and branched bis(terpyridine)-complex oligomers and electrochemical observation of through-bond redox conduction.

    PubMed

    Nishimori, Yoshihiko; Kanaizuka, Katsuhiko; Murata, Masaki; Nishihara, Hiroshi

    2007-03-05

    Films of linear and branched oligomer wires of Fe(tpy)2 (tpy = 2,2':6',2''-terpyridine) were constructed on a gold-electrode surface by the interfacial stepwise coordination method, in which a surface-anchoring ligand, (tpy-C6H4N=NC6H4-S)2 (1), two bridging ligands, 1,4-(tpy)2C6H4 (3) and 1,3,5-(C[triple bond]C-tpy)3C6H3 (4), and metal ions were used. The quantitative complexation of the ligands and Fe(II) ions was monitored by electrochemical measurements in up to eight complexation cycles for linear oligomers of 3 and in up to four cycles for branched oligomers of 4. STM observation of branched oligomers at low surface coverage showed an even distribution of nanodots of uniform size and shape, which suggests the quantitative formation of dendritic structures. The electron-transport mechanism and kinetics for the redox reaction of the films of linear and branched oligomer wires were analyzed by potential-step chronoamperometry (PSCA). The unique current-versus-time behavior observed under all conditions indicates that electron conduction occurs not by diffusional motion but by successive electron hopping between neighboring redox sites within a molecular wire. Redox conduction in a single molecular wire in a redox-polymer film has not been reported previously. The analysis provided the rate constant for electron transfer between the electrode and the nearest redox-complex moiety, k1 (s(-1)), as well as that for intrawire electron transfer between neighboring redox-complex moieties, k2 (cm2 mol(-1) s(-1)). The strong effect of the electrolyte concentration on both k1 and k2 indicates that the counterion motion limits the electron-hopping rate at lower electrolyte concentrations. Analysis of the dependence of k1 and k2 on the potential gave intrinsic kinetic parameters without overpotential effects: (k1(0) = 110 s(-1), k2(0) = 2.6x10(12) cm2 mol(-1) s(-1) for [n Fe3], and k1(0) = 100 s(-1), k2(0) = 4.1x10(11) cm2 mol(-1) s(-1) for [n Fe4] (n = number of complexation

  14. Murine ultrasound-guided transabdominal para-aortic injections of self-assembling type I collagen oligomers.

    PubMed

    Yrineo, Alexa A; Adelsperger, Amelia R; Durkes, Abigail C; Distasi, Matthew R; Voytik-Harbin, Sherry L; Murphy, Michael P; Goergen, Craig J

    2017-03-10

    Abdominal aortic aneurysms (AAAs) represent a potentially life-threatening condition that predominantly affects the infrarenal aorta. Several preclinical murine models that mimic the human condition have been developed and are now widely used to investigate AAA pathogenesis. Cell- or pharmaceutical-based therapeutics designed to prevent AAA expansion are currently being evaluated with these animal models, but more minimally invasive strategies for delivery could improve their clinical translation. The purpose of this study was to investigate the use of self-assembling type I collagen oligomers as an injectable therapeutic delivery vehicle in mice. Here we show the success and reliability of a para-aortic, ultrasound-guided technique for injecting quickly-polymerizing collagen oligomer solutions into mice to form a collagen-fibril matrix at body temperature. A commonly used infrarenal mouse AAA model was used to determine the target location of these collagen injections. Ultrasound-guided, closed-abdominal injections supported consistent delivery of collagen to the area surrounding the infrarenal abdominal aorta halfway between the right renal artery and aortic trifurcation into the iliac and tail arteries. This minimally invasive approach yielded outcomes similar to open-abdominal injections into the same region. Histological analysis on tissue removed on day 14 post-operatively showed minimal in vivo degradation of the self-assembled fibrillar collagen and the majority of implants experienced minimal inflammation and cell invasion, further confirming this material's potential as a method for delivering therapeutics. Finally, we showed that the typical length and position of this infrarenal AAA model was statistically similar to the length and targeted location of the injected collagen, increasing its feasibility as a localized therapeutic delivery vehicle. Future preclinical and clinical studies are needed to determine if specific therapeutics incorporated into

  15. Crystallization and preliminary crystallographic study of oligomers of the haemolytic lectin CEL-III from the sea cucumber Cucumaria echinata.

    PubMed

    Unno, Hideaki; Hisamatsu, Keigo; Nagao, Tomonao; Tateya, Yuki; Matsumoto, Naoki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2013-04-01

    CEL-III is a Ca(2+)-dependent haemolytic lectin isolated from the marine invertebrate Cucumaria echinata. This lectin binds to Gal/GalNAc-containing carbohydrate chains on the cell surface and, after conformational changes, oligomerizes to form ion-permeable pores in cell membranes. CEL-III also forms soluble oligomers similar to those formed in cell membranes upon binding of specific carbohydrates in high-pH and high-salt solutions. These soluble and membrane CEL-III oligomers were crystallized and X-ray diffraction data were collected. Crystals of soluble oligomers and membrane oligomers diffracted X-rays to 3.3 and 4.2 Å resolution, respectively, using synchrotron radiation and the former was found to belong to space group C2. Self-rotation functional analysis of the soluble oligomer crystal suggested that it might be composed of heptameric CEL-III.

  16. Development and characterization of a TAPIR-like mouse monoclonal antibody to amyloid-beta.

    PubMed

    Wang, Jun; Hara, Hideo; Makifuchi, Takao; Tabira, Takeshi

    2008-06-01

    Tissue amyloid plaque immuno-reactive (TAPIR) antibody was better related to the effect of immunotherapy in Alzheimer's disease (AD) than ELISA antibody. Here we used a hybridoma technique to develop a TAPIR-like anti-human amyloid-beta (Abeta) mouse monoclonal antibody. The obtained monoclonal antibody, 3.4A10, was an IgG2b isotype and recognized N-terminal portion of Abeta1-42 without binding denatured or native amyloid-beta protein precursor. It had higher affinity to Abeta1-42 than to Abeta1-40 by Biacore affinity analysis and stained preferably the peripheral part of senile plaques and recognized the plaque core less than 4G8. It inhibited the Abeta1-42 fibril formation as well as degraded pre-aggregated Abeta1-42 peptide in a thioflavin T fluorescence spectrophotometry assay. The in vivo studies showed that 3.4A10 treatment decreased amyloid burden compared to the control group and significantly reduced Abeta42 levels rather than Abeta40 levels in brain lysates as well as the Abeta*56 oligomer (12mer) in TBS fraction of the brain lysates. 3.4A10 entered brain and decorated some plaques, which is surrounded by more Iba1-positive microglia. 3.4A10 therapy did not induce lymphocytic infiltration and obvious increase in microhemorrhage. We conclude that 3.4A10 is a TAPIR-like anti-human amyloid monoclonal antibody, and has a potential of therapeutic application for AD.

  17. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  18. Molecular dipole static polarisabilities and hyperpolarisabilities of conjugated oligomer chains calculated with the local π-electron coupled cluster theory

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir V.; Zakharov, Anton B.; Adamowicz, Ludwik

    2013-12-01

    A new semi-empirical π-electron local coupled cluster theory has been developed to calculate static dipole polarisabilities and hyperpolarisabilities of extended π-conjugated systems. The key idea of the approach is the use of the ethylene molecular orbitals as the orbital basis set for π-conjugated compounds (the method is termed the Covalent Unbonded Molecules of Ethylene method, cue). Test calculations of some small model organic conjugated compounds demonstrate high accuracy of the version of the cue local coupled cluster theory developed in this work in comparison with the π-electron full configuration interaction (FCI) method. Calculations of different conjugated carbon-based oligomer chains (polyenes, polyynes, polyacenes, polybenzocyclobutadiene, etc.) demonstrate fast convergence (per π-electron) of the polarisability and hyperpolarisability values in the calculations when more classes of orbital excitations are included in the coupled cluster single and double (CCSD) excitation operator. The results show qualitatively correct dependence on the system size.

  19. Quaternary chitosan oligomers enhance resistance and biocontrol efficacy of Rhodosporidium paludigenum to green mold in satsuma orange.

    PubMed

    Lu, Laifeng; Liu, Yan; Yang, Jiali; Azat, Ramila; Yu, Ting; Zheng, Xiaodong

    2014-11-26

    This study investigated the capacity of chitosan oligomers (COS), applied before harvest singly or in combination with antagonists, in controlling postharvest green mold caused by Penicillium digitatum in satsuma orange. Oranges treated with COS or Rhodosporidium paludigenum were observed having a delay in onset and progression of disease symptoms relative to wounded controls. Preharvest application of COS at different concentrations achieved similar biocontrol efficiency rates in green mold control after 4 days storage. However, the combination of pre-COS (1%, w/v) and R. paludigenum showed a more effective decay control than any other treatments. COS (1%, w/v) alone did not negatively affect R. paludigenum growth in wounds, but severely inhibited P. digitatum spore germination than lower dose treatments in vitro. The expression levels of the defense-related genes chitinase and phenylalanine ammonia lyase increased with decreased disease symptoms. Moreover, this phenomenon was more prominent in the integrated treatments than in the individual ones.

  20. Significance of branching for transfection: synthesis of highly branched degradable functional poly(dimethylaminoethyl methacrylate) by vinyl oligomer combination.

    PubMed

    Zhao, Tianyu; Zhang, Hong; Newland, Ben; Aied, Ahmed; Zhou, Dezhong; Wang, Wenxin

    2014-06-10

    A series of degradable branched PDMAEMA copolymers were investigated with the linear PDMAEMA counterpart as gene-delivery vectors. The branched PDMAEMA copolymers were synthesized by controlled radical cross-linking copolymerization based on the "vinyl oligomer combination" approach. Efficient degradation properties were observed for all of the copolymers. The degree of branching was found to have a big impact on performance in transfection when tested on different cell types. The product with the highest degree of branching and highest degree of functionality had a superior transfection profile in terms of both transfection capability and the preservation of cell viability. These branched PDMAEMA copolymers show high potential for gene-delivery applications through a combination of the simplicity of their synthesis, their low toxicity, and their high performance.

  1. Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide.

    PubMed

    Ryan, Timothy M; Kirby, Nigel; Mertens, Haydyn D T; Roberts, Blaine; Barnham, Kevin J; Cappai, Roberto; Pham, Chi Le Lan; Masters, Colin L; Curtain, Cyril C

    2015-03-01

    Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ). Here, we have used small angle X-ray scattering (SAXS) to study the effect of the molar ratio, Cu(2+)/Aβ, on the early three-dimensional structures of the Aβ1-40 and Cu(2+)/Aβ1-42 peptides in solution. We found that at molar ratios of 0.5 copper to peptide Aβ1-40 aggregated, while Aβ1-42 adopted a relatively monodisperse cylindrical shape, and at a ratio of 1.5 copper to peptide Aβ1-40 adopted a monodisperse cylindrical shape, while Aβ1-42 adopted the shape of an ellipsoid of rotation. We also found, via in-line rapid mixing SAXS analysis, that both peptides in the absence of copper were monodisperse at very short timeframes (<2 s). Kratky plots of these scattering profiles indicated that immediately after mixing both were intrinsically disordered. Ensemble optimisation modelling reflected this, indicating a wide range of structural conformers. These data reflect the ensembles from which the Cu(2+)-promoted oligomers were derived. Our results are discussed in the light of other studies that have shown that the Cu(2+)/Aβ has a marked effect on fibril and oligomer formation by this peptide, with a higher ratio favouring the formation of cytotoxic non-amyloid oligomers. Our results are relatively consistent with previous two-dimensional studies of the conformations of these Cu(2+)-induced entities, made on a much longer time-scale than SAXS, by transmission electron microscopy and atomic force microscopy, which showed that a range of oligomeric species are formed. We propose that SAXS carried out on a modern synchrotron beamline enables studies on initial events in disordered protein folding on physiologically-relevant time-scales, and will likely provide great insight into the initiating processes of the A

  2. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer’s-Associated Aβ Oligomers

    PubMed Central

    Wilcox, Kyle C.; Marunde, Matthew R.; Das, Aditi; Velasco, Pauline T.; Kuhns, Benjamin D.; Marty, Michael T.; Jiang, Haoming; Luan, Chi-Hao; Sligar, Stephen G.; Klein, William L.

    2015-01-01

    Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS) tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs). AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer’s dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs). This method gives a soluble membrane protein library (SMPL)—a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer’s model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can facilitate drug

  3. The hunt for brain Aβ oligomers by peripherally circulating multi-functional nanoparticles: Potential therapeutic approach for Alzheimer disease.

    PubMed

    Mancini, Simona; Minniti, Stefania; Gregori, Maria; Sancini, Giulio; Cagnotto, Alfredo; Couraud, Pierre-Olivier; Ordóñez-Gutiérrez, Lara; Wandosell, Francisco; Salmona, Mario; Re, Francesca

    2016-01-01

    We previously showed the ability of liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide (mApoE-PA-LIP) to reduce brain Aβ in transgenic Alzheimer mice. Herein we investigated the efficacy of mApoE-PA-LIP to withdraw Aβ peptide in different aggregation forms from the brain, using a transwell cellular model of the blood-brain barrier and APP/PS1 mice. The spontaneous efflux of Aβ oligomers (Aβo), but not of Aβ fibrils, from the 'brain' side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the 'blood' compartment. This effect is due to a withdrawal of Aβo exerted by peripheral mApoE-PA-LIP by sink effect, be