Science.gov

Sample records for abietic acid inhibits

  1. The bacterial transformation of abietic acid

    PubMed Central

    Cross, B. E.; Myers, P. L.

    1968-01-01

    An Alcaligenes species, which was isolated from soil, can utilize abietic acid as its sole carbon source. During growth, the bacterium transforms abietic acid into 5α-hydroxyabietic acid (I, R=OH), a product considered to be 7β-hydroxy-13-isopropyl-8ξ-podocarp-13-en-15-oic acid (II, R=H) and a compound, C20H28O3, which is believed to be an epoxy-γ-lactone. PMID:5665894

  2. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    PubMed Central

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-01-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers. PMID:26996104

  3. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B.; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N.

    2016-03-01

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial ‘botanical orders’, from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.

  4. The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria.

    PubMed

    Costa, Maria Sofia; Rego, Adriana; Ramos, Vitor; Afonso, Tiago B; Freitas, Sara; Preto, Marco; Lopes, Viviana; Vasconcelos, Vitor; Magalhães, Catarina; Leão, Pedro N

    2016-03-21

    Terpenes, a large family of natural products with important applications, are commonly associated with plants and fungi. The diterpenoids dehydroabietic and abietic acids are defense metabolites abundant in resin, and are used as biomarkers for conifer plants. We report here for the first time that the two diterpenoid acids are produced by members of several genera of cyanobacteria. Dehydroabietic acid was isolated from two cyanobacterial strains and its identity was confirmed spectroscopically. One or both of the diterpenoids were detected in the cells of phylogenetically diverse cyanobacteria belonging to four cyanobacterial 'botanical orders', from marine, estuarine and inland environments. Dehydroabietic acid was additionally found in culture supernatants. We investigated the natural role of the two resin acids in cyanobacteria using ecologically-relevant bioassays and found that the compounds inhibited the growth of a small coccoid cyanobacterium. The unexpected discovery of dehydroabietic and abietic acids in a wide range of cyanobacteria has implications for their use as plant biomarkers.

  5. Abietic acid isolated from pine resin (Resina Pini) enhances angiogenesis in HUVECs and accelerates cutaneous wound healing in mice.

    PubMed

    Park, Jun Yeon; Lee, Yun Kyung; Lee, Dong-Soo; Yoo, Jeong-Eun; Shin, Myoung-Sook; Yamabe, Noriko; Kim, Su-Nam; Lee, Seulah; Kim, Ki Hyun; Lee, Hae-Jeung; Roh, Seok Sun; Kang, Ki Sung

    2017-05-05

    Resin known as Resina Pini is listed in the Korean and Japanese pharmacopoeias and has been used for treating skin wounds and inflammation. Resin is composed of more than 50% abietic acid and 10% neutral substances. In the present study, the wound-healing effects of abietic acid and the possible underlying mechanism of action were investigated in various in vitro and in vivo models. The effects of abietic acid on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVECs). Protein expression of mitogen-activated protein kinase (MAPK) activation was evaluated via Western blotting analysis. The wound-healing effects of abietic acid were assessed using a mouse model of cutaneous wounds. The results showed that abietic acid enhanced cell migration and tube formation in HUVECs. Abietic acid induced significant angiogenic potential, which is associated with upregulation of extracellular signal-regulated kinase (ERK) and p38 expression. Additionally, 0.8μM abietic acid-treated groups showed accelerated wound closure compared to the controls in a mouse model of cutaneous wounds. The current data indicate that abietic acid treatment elevated cell migration and tube formation in HUVECs by the activation of ERK and p38 MAPKs. We suggest that abietic acid can be developed as a wound-healing agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Determination of dehydroabietic acid and abietic acid in aqueous alkali extract of Liquidambaris Resina by HPLC].

    PubMed

    Wang, Ying-Feng; Wei, Xiao-Yan

    2013-01-01

    To develop an HPLC method for content determination of dehydroabietic acid and abietic acid in aqueous alkali extract of Liquidambaris Resina. The determination was carried out on a DIONEX C18 column (4.6 mm x 250 mm, 5 microm) eluted with acetonitrile and water containing 0.1% acetic acid. The flow rate was 1 mL x min(-1), and the detected wavelength was set at 210, 240 nm. The peak areas and the sample quantity of the two components had good linear relationship in the range of 0.4-3.4 microg for dehydroabietic acid, and 0.6-4.8 microg for abietic acid. The average recoveries were 99.53%, 101.9%, respectively. The method was proved to be simple, accurate and used for the quality evaluation of Liquidambaris Resina.

  7. An investigation of the oxidation mechanism of abietic acid using two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ren, Fan; Zheng, Yan-Fei; Liu, Xiong-Min; Yue, Xin-Yin; Ma, Li; Li, Wei-Guang; Lai, Fang; Liu, Jia-Ling; Guan, Wen-Long

    2015-03-01

    The oxidation behavior of abietic acid was monitored by FT-IR and UV spectroscopy, using a novel, self-designed, gas-solid reactor, and the data was analyzed by 2D-IR. The hetero-spectral two-dimensional correlation of the FTIR data allowed the use of well-established band assignments to interpret less clearly assigned spectral features. Characteristic changes in the conjugated bond and the active methylene in abietic acid were revealed, and a mechanism was proposed. We concluded that the methylene at C7 was first transformed to a hydroxyl, thereby inducing the isomerization of the conjugated band. Meanwhile, the methylene at C12 was converted by an oxygen atom to a hydroxyl intermediate. Hydrogen continued to react with oxygen to form Cdbnd O and water. Finally, the conjugated band was converted into a peroxide before transforming into an oxidant.

  8. Preparation and application of abietic acid-derived optically active helical polymers and their chiral hydrogels.

    PubMed

    Yao, Fei; Zhang, Dongyue; Zhang, Chaohong; Yang, Wantai; Deng, Jianping

    2013-02-01

    A novel chiral monomer N-propargyl abietamide, M1, was synthesized from abietic acid and catalytically polymerized with (nbd)Rh+B-(C6H5)4 (nbd=norbornadiene), providing polymer [poly(1)] with a molecular weight of 13,000-36,000 at a yield of 59-84%. Poly(1) did not form stable helices in tetrahydrofuran at room temperature whereas copolymerization of M1 and the achiral N-propargylamide monomer, M2, led to the formation of helical optically active copolymers as indicated by circular dichroism studies, UV-vis spectroscopy, and specific optical rotation measurements. Hydrogels were prepared based on an optically active helical copolymer, poly(M1(0.32)-co-M2(0.68)) that exhibited enantioselective recognition toward l-alanine. The novel chiral polymers derived from abietic acid are expected to find applications in such areas as chiral recognition, chiral resolution, and chiral catalysis.

  9. Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation.

    PubMed

    Abeer, Muhammad Mustafa; Amin, Mohd Cairul Iqbal Mohd; Lazim, Azwan Mat; Pandey, Manisha; Martin, Claire

    2014-09-22

    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Analysis of abietic acid and dehydroabietic acid residues in raw ducks and cooked ducks.

    PubMed

    Zhu, Yongzhi; Zhang, Suzhen; Geng, Zhiming; Wang, Daoying; Liu, Fang; Zhang, Muhan; Bian, Huan; Xu, Weimin

    2014-10-01

    Rosin was once widely used for removal of duck feathers in China and is still being used secretly in some poultry processing enterprises. Abietic acid (AA) and dehydroabietic acid (DHAA) are the major compounds of rosin. In the present study, 90 duck samples were collected for investigation of AA and DHAA residues. Abietic acid and DHAA were simultaneously detected in 13 out 40 raw ducks, 8 out of 26 water-boiled salted ducks, and 7 out of 24 roasted ducks, respectively. In positive samples, averages of AA were significantly higher than those of DHAA in positive samples of the 3 types of ducks (P < 0.05). Averages of AA and DHAA in positive raw ducks were significantly higher than those in positive roasted ducks (P < 0.05). The results indicated that almost one-third of raw ducks were defeathered by means of rosin-containing defeathering agent, and cooking processes could reduce the AA and DHAA residues to some extent, but could not eliminate them completely. ©2014 Poultry Science Association Inc.

  11. Allergenic potential of abietic acid, colophony and pine resin-HA. Clinical and experimental studies.

    PubMed

    Karlberg, A T; Boman, A; Wahlberg, J E

    1980-12-01

    Resin acids are considered to be the main allergens in colophony (rosin). Tall oils also contain resin acids and may then be potential sensitizers. A resin acid concentrate (pine resin-HA) together with Chinese colophony were included in our standard series and applied on 563 patients with contact dermatitis. Fourteen showed an isolated sensitivity to colophony and two to pine resin-HA. Six patients reacted to both test compounds. Guinea pig maximization tests (Magnusson & Kligman 1969) showed that pine resin-HA (2 series) was a grade I allergen, abietic acid a grade III allergen and colophony a grade IV allergen. The risk that the resin acids in tall oils would induce contact sensitivity to workers exposed to tall oil-containing products like cutting fluids and cleansing agents is considered to be minimal.

  12. Terpenoid biotransformation in mammals. IV Biotransformation of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid in rabbits.

    PubMed

    Asakawa, Y; Ishida, T; Toyota, M; Takemoto, T

    1986-08-01

    The metabolism of (+)-longifolene, (-)-caryophyllene, (-)-caryophyllene oxide, (-)-cyclocolorenone, (+)-nootkatone, (-)-elemol, (-)-abietic acid and (+)-dehydroabietic acid was studied in rabbits. Each of these sesquiterpenoids was converted to primary, secondary or tertiary alcohols, among which the primary alcohol was predominant. A vinylic methyl group and an exomethylene group were easily hydroxylated and converted to a glycol via an epoxide in many cases. Eight new metabolites were determined by chemical and spectroscopic methods.

  13. Development of ultrasonic-assisted closed in-syringe extraction and derivatization for the determination of labile abietic acid and dehydroabietic acid in cosmetics.

    PubMed

    Liu, Jianjun; Liu, Mengge; Li, Xiu; Lu, Xiaomin; Chen, Guang; Sun, Zhiwei; Li, Guoliang; Zhao, Xianen; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-12-05

    Two resin acids, abietic acid (AA) and dehydroabietic acid (DHAA), in cosmetics may cause allergy or toxicoderma, but remain inaccurately investigated due to their lability. In this work, an accurate, sensitive, efficient and convenient method, utilizing the ultrasonic-assisted closed in-syringe extraction and derivatization (UCSED) prior to high performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD) and on-line tandem mass spectra (MS/MS), has been developed. Analytes are extracted by acetonitrile (10/1, v/m) in a sealed syringe under safe condition (60°C; 15 min; nitrogen atmosphere) and then in-syringe derivatized by 2-(2-(anthracen-10-yl)-1H-naphtho[2,3-d]imidazol-1-yl) ethyl-p-toluenesulfonate (ANITS) (8-fold, 93°C, 30 min, DMF as co-solvent, K2CO3 as catalyst). In UCSED, derivatization contributes to increase both analytical sensitivity and stability of analytes. Excellent linearity (r2≥0.9991) is achieved in wide range (75-3000 ng/mL (AA); 150-4500 ng/mL (DHAA)). Quite low detection limits (AA: 8.2-10.8 ng/mL; DHAA: 19.4-24.3 ng/mL) and limits of analyte concentration (LOAC) (AA: 30.0-44.5 ng/mL; DHAA: 70.9-86.7 ng/mL) ensure the trace analysis. This method is applied to the analysis of cosmetic samples, including depilatory wax strip, liquid foundation, mascara, eyeliner, eyebrow pencil and lip balm. No additional purification is required and no matrix effect is observed, demonstrating obvious advantages over conventional pretreatment such as solid phase extraction (SPE). Accuracy (RE: -3.2% to 2.51%), precision (RSD: 1.29-2.84%), recovery (95.20-103.63%; 95.51-104.22%) and repeatability (<0.23%; <2.87%) are significantly improved. Furthermore, this work plays a guiding role in developing a reasonable method for labile analytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis of Silver Abietate as an Antibacterial Agent for Textile Applications

    PubMed Central

    Yıldız, A.; Değirmencioğlu, M.

    2015-01-01

    This study explored the potential use of new silver abietate obtained from abietic acid as an antibacterial agent for textile applications. Synthesis, structure, and antibacterial studies of silver abietate compound are reported. Silver complex was obtained reacting abietic acid with silver. The new compounds were characterized by 1H NMR, 13C NMR, DEPT, IR, UV, and ESI-MS techniques which support the proposed structures. The new Ag abietate complex has no environmental hazard, its antibacterial activities were evaluated after being applied to cotton fabric by padding process according to the JIS L 1902-2008 agar diffusion test method and against three Gram-negative and three Gram-positive bacteria, respectively. Stability of antibacterial effect after repeated washings (3, 5, 10, and 20) was also tested which indicated that the synthesized silver abietate compound could be used as a new antibacterial agent in textile industry. In this way, the compound has been synthesized the first time in the literature and the applications have been investigated. PMID:25810694

  15. Regulation of liver cell glucose homeostasis by dehydroabietic acid, abietic acid and squalene isolated from balsam fir (Abies balsamea (L.) Mill.) a plant of the Eastern James Bay Cree traditional pharmacopeia.

    PubMed

    Nachar, Abir; Saleem, Ammar; Arnason, John T; Haddad, Pierre S

    2015-09-01

    In our previous study, Abies balsamea (L.) Mill., a plant used in Cree traditional medicine, had a strong effect on the regulation of glucose homeostasis in liver cells. This study aimed to isolate and identify its active constituents using a bioassay-guided fractionation approach as well as to elucidate their mechanism(s) of action. The effect of the crude extract and its constituents was evaluated on the activity of Glucose-6-Phosphatase (G6Pase) and Glycogen Synthase (GS) and phosphorylation of three kinases, AMP-activated protein kinase (AMPK), Akt and Glycogen Synthase Kinase-3 (GSK-3). Three compounds, abietic acid, dehydroabietic acid and squalene, were isolated from the most active fraction in the bioassays (hexane). The compounds were able to decrease the activity of G6Pase and to stimulate GS. Their effect on G6Pase activity involved both Akt and AMPK phosphorylation with significant correlations between insulin-dependent and -independent pathways and the bioassay. In addition, the compounds were able to stimulate GS through GSK-3 phosphorylation with a significant correlation between the signaling pathway and the bioassay. Dehydroabietic acid stood out for its strongest effect in all the experiments close to that of the crude extract. These compounds may have potential applications in the treatment of type 2 diabetes and insulin resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Self-Assembly Behavior of Pullulan Abietate

    NASA Astrophysics Data System (ADS)

    Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas

    2003-03-01

    Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.

  17. Phosphanilic Acid Inhibits Dihydropteroate Synthase

    DTIC Science & Technology

    1989-11-01

    dihydropteroate synthases of P. aeruginosa and E . coli were about equally susceptible to inhibition by PA. These results suggest that cells of P. aeruginosa...are more permeable to PA than cells of E . coli . Although a weak inhibitor, PA acted on dihydropteroate synthase in the same manner as the sulfonamides...with which PA is structurally related. Inhibition of E . coli by PA in a basal salts-glucose medium was prevented by p-aminobenzoic acid (pABA). However

  18. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  19. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  20. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  1. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  2. Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation

    PubMed Central

    Capozzi, Megan E.; Hammer, Sandra S.; McCollum, Gary W.; Penn, John S.

    2016-01-01

    The objective of the present study was to assess the effect of elevating epoxygenated fatty acids on retinal vascular inflammation. To stimulate inflammation we utilized TNFα, a potent pro-inflammatory mediator that is elevated in the serum and vitreous of diabetic patients. In TNFα-stimulated primary human retinal microvascular endothelial cells, total levels of epoxyeicosatrienoic acids (EETs), but not epoxydocosapentaenoic acids (EDPs), were significantly decreased. Exogenous addition of 11,12-EET or 19,20-EDP when combined with 12-(3-adamantane-1-yl-ureido)-dodecanoic acid (AUDA), an inhibitor of epoxide hydrolysis, inhibited VCAM-1 and ICAM-1 expression and protein levels; conversely the diol product of 19,20-EDP hydrolysis, 19,20-DHDP, induced VCAM1 and ICAM1 expression. 11,12-EET and 19,20-EDP also inhibited leukocyte adherence to human retinal microvascular endothelial cell monolayers and leukostasis in an acute mouse model of retinal inflammation. Our results indicate that this inhibition may be mediated through an indirect effect on NFκB activation. This is the first study demonstrating a direct comparison of EET and EDP on vascular inflammatory endpoints, and we have confirmed a comparable efficacy from each isomer, suggesting a similar mechanism of action. Taken together, these data establish that epoxygenated fatty acid elevation will inhibit early pathology related to TNFα-induced inflammation in retinal vascular diseases. PMID:27966642

  3. Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport

    PubMed Central

    Gowda, Raghavendra; Inamdar, Gajanan S.; Kuzu, Omer; Dinavahi, Saketh S.; Krzeminski, Jacek; Battu, Madhu Babu; Voleti, Sreedhara R.; Amin, Shantu; Robertson, Gavin P.

    2017-01-01

    Leelamine is an anticancer chemotherapeutic agent inhibiting intracellular cholesterol transport. Cell death mediated by leelamine occurs due to the lysosomotropic property of the compound, its accumulation in the lysosome, and inhibition of cholesterol transport leading to lack of availability for key processes required for functioning of cancer cells. The present study dissects the structure-activity-relationship of leelamine using synthesized derivatives of leelamine and abietic acid, a structurally similar compound, to identify the moiety responsible for anti-cancer activity. Similar to leelamine, all active derivatives had an amino group or a similar moiety that confers a lysosomotropic property to the compound enabling its accumulation in the lysosome. Active derivatives inhibited intracellular cholesterol transport and hindered xenografted melanoma tumor development without obvious systemic toxicity. In silico studies suggested that active derivatives accumulating in lysosomes bound to NPC1, a protein responsible for cholesterol export from the lysosome, to inhibit its activity that then caused accumulation, and lack of cholesterol availability for other key cellular activities. Thus, active derivatives of leelamine or abietic acid maintained lysosomotropic properties, bound to NPC1, and disrupted cellular cholesterol transport as well as availability to retard tumor development. PMID:28423677

  4. Phytic acid inhibits lipid peroxidation in vitro.

    PubMed

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  5. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    PubMed Central

    Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10–20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products. PMID:24260736

  6. Understanding biocatalyst inhibition by carboxylic acids

    PubMed Central

    Jarboe, Laura R.; Royce, Liam A.; Liu, Ping

    2013-01-01

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance. PMID:24027566

  7. Understanding biocatalyst inhibition by carboxylic acids.

    PubMed

    Jarboe, Laura R; Royce, Liam A; Liu, Ping

    2013-09-03

    Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.

  8. Inhibition of D-amino acid oxidase by alpha-keto acids analogs of amino acids.

    PubMed

    Moreno, J A; Montes, F J; Catalán, J; Galán, M A

    1996-04-01

    The inhibition of D-amino acid oxidase by certain alpha-keto acids products of the reaction with D-amino acids, in particular alpha-keto acids that are analogs of the amino acids alanine, valine, leucine, phenylanaline, phenylglycine, tyrosine and tryptophan, is reported. All the alpha-keto acids assayed behaved as substrate competitive inhibitors of the enzyme. The relationship between the degree of inhibition and the structure of the inhibitor is discussed.

  9. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic ...

    EPA Pesticide Factsheets

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet established whether increased circulating OA is able to produce the type of adverse cardiovascular effects associated with exposure to air pollution, or the mechanisms involved with such damage. Based on responses observed upon exposure of cultured endothelial cells, we hypothesized that OA and a hydroxylated metabolite (12-OH OA) would increase vascular tissue injury and impair vascular reactivity. Thoracic descending aorta tissue was collected from male Wistar Kyoto rats, aged 13-16 weeks. Prior to reactivity testing, independent LDH assays were performed with aortic rings to establish a subcytotoxic OA dose. To determine changes in vascular reactivity, aortic ring segments (n=3-4) were exposed for 1 hr to 100 µM OA, 12-OH OA, or an equivalent EtOH vehicle, followed by testing using myography and pharmacologic agents. Only 12-OH OA exposure significantly inhibited acetylcholine-induced endothelium-dependent vasorelaxation in aortic ring segments (25-30% reduction relative to EtOH control), based on maximum relaxation and dose-response. No change was seen in smooth muscle sensitivity to an exogenous nitric oxide source, sodium nitroprusside. Maximum aortic contractile force ge

  10. [Inhibition of growth of microscopic fungi with organic acids].

    PubMed

    Conková, E; Para, L; Kocisová, A

    1993-01-01

    Fungicidal effects of five selected organic acids (lactic, acetic, formic, oxalic, and propionic) in concentrations 3, 5, 10, 20 and 50 ml/l on nine selected species of moulds were tested. Lactic and oxalic acids did not prove the satisfactory fungicidal activity in any of the chosen concentrations. The antifungal effect of the other three acids, manifested by the growth inhibition of the tested moulds is shown in Tab. I and it can be expressed by sequence: propionic acid, formic acid, and acetic acid. These acids also had effects only in concentrations 20 ml/l and 50 ml/l. Propionic acid in concentration 20 ml/l inhibited the growth of five moulds (Penicillium glabrum, Aspergillus niger, Fusarium moniliforme, Aspergillus fumigatus, Cladosporium sphaerospermum). In testing of concentration 50 ml/l, the lower fungicidal ability was ascertained only in growth suppression of Aspergillus flavus. The fungicidal activity of formic acid was registered in concentration 20 ml/l in two cases and in concentration 50 ml/l in six cases. Acetic acid inhibited the growth in concentration 50 ml/l only in two cases. Tab. II shows the percentual evaluation of propionic acid and formic acid with regard to their inhibition abilities. The fungicidal efficiency of propionic acid resulting from the experiment is 88.9%.

  11. Inhibition of in vitro cholesterol synthesis by fatty acids.

    PubMed

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  12. Arachidonic acid inhibits glycine transport in cultured glial cells.

    PubMed Central

    Zafra, F; Alcantara, R; Gomeza, J; Aragon, C; Gimenez, C

    1990-01-01

    The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier. PMID:2121132

  13. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  14. Thyroid peroxidase activity is inhibited by amino acids.

    PubMed

    Carvalho, D P; Ferreira, A C; Coelho, S M; Moraes, J M; Camacho, M A; Rosenthal, D

    2000-03-01

    Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 microM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 microM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 microM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 microM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.

  15. Inhibited muscle amino acid uptake in sepsis.

    PubMed Central

    Hasselgren, P O; James, J H; Fischer, J E

    1986-01-01

    Amino acid uptake in vivo was determined in soleus (SOL) muscle, diaphragm, heart, and liver following intravenous injection of [3H]-alpha-amino-isobutyric acid ([3H]-AIB) in rats made septic by cecal ligation and puncture (CLP) and in sham-operated controls. Muscle amino acid transport was also measured in vitro by determining uptake of [3H]-AIB in incubated extensor digitorum longus (EDL) and SOL muscles. Results were expressed as distribution ratio between [3H]-AIB in intracellular and extracellular fluid. AIB uptake in vivo was reduced by 90% in SOL and cardiac muscle and by 45% in diaphragm 16 hours after CLP. In contrast, AIB uptake by liver was almost four times higher in septic than in control animals. AIB uptake in vitro was reduced by 18% in EDL 8 hours after CLP but was not significantly altered in SOL at the same time point. Sixteen hours after CLP, AIB uptake was significantly reduced in both muscles, i.e., by 17% in EDL and by 65% in SOL. When muscles from untreated rats were incubated in the presence of plasma from septic animals (16 hours CLP) or from animals injected with endotoxin (2 mg/kg body weight), AIB uptake was reduced. Addition of endotoxin in vitro (2-200 micrograms/ml) to incubated muscles did not affect AIB uptake. The results suggest that sepsis leads to marked impairment of amino acid transport system A in muscle and that this impairment is mediated by a circulating factor that is not endotoxin. Reduced uptake of amino acids by skeletal muscle during sepsis may divert amino acids to the liver for increased gluconeogenesis and protein synthesis. PMID:3963895

  16. Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids.

    PubMed Central

    Breitenbach, J M; Hausinger, R P

    1988-01-01

    Urease was purified 800-fold and partially characterized from Proteus mirabilis, the predominant microorganism associated with urinary stones. Boric acid is a rapid reversible competitive inhibitor of urease. The pH-dependence of inhibition exhibited pKa values of 6.25 and 9.3, where the latter value is probably due to the inherent pKa of boric acid. Three boronic acids also were shown to inhibit urease competitively. PMID:3291857

  17. Inhibition of noradrenaline release by lysergic acid diethylamide

    PubMed Central

    Hughes, J.

    1973-01-01

    Lysergic acid diethylamide (LSD) inhibits the release of labelled noradrenaline from the guinea-pig vas deferens during intramural nerve stimulation and causes a corresponding reduction in the contractions of the smooth muscle. These effects of LSD are most prominent at low stimulus frequencies and they are prevented by treatment with phentolamine. It is concluded that LSD inhibits noradrenaline release by interacting with presynaptic α-adrenoceptors. PMID:4788042

  18. Proton pump inhibition--the ultimate control of acid secretion

    SciTech Connect

    Zdon, M.J.; Ballantyne, G.H.; Schafer, D.E.; Tyshkov, M.; Cambria, R.P.; Modlin, I.M.

    1986-04-01

    The cellular mechanisms of acid secretion by the parietal cell (PC) include stimulation of membrane receptors, increases in cytosolic cyclic AMP levels, and activation of protein kinase systems. These events culminate in stimulation of a membrane-based proton pump. This consists of a non-electrogenic H+-K+-ATPase which transports H+ ions into the secretory canaliculus of the PC in exchange for the cation K+. It has been proposed that blockade of this proton pump would result in inhibition of acid secretion by all classes of acid secretagogues. Thus, the effects of membrane receptor agonists as well as any agents which augment cellular cAMP levels should be inhibited. Substituted benzimidazoles are weak bases which prevent acid secretion by blocking the H+-K+-ATPase system. In order to test the above hypothesis, we investigated the effects of the substituted benzimidazole H168/68 and cimetidine (C) on histamine (H) and 8B-stimulated acid secretion. The rabbit isolated gastric gland (IGG) model was used and acid secretion assessed by the accumulation of /sup 14/C-labeled weak base aminopyrine (AP) within the IGG in response to secretagogue stimulation. H168/68 and C both inhibited H (5 X 10(-5) M)-stimulated (/sup 14/C)AP accumulation in a concentration-dependent manner (P less than 0.05). H168/68 inhibited both H- and 8B-stimulated (/sup 14/C)AP accumulation (P less than 0.05), while C inhibited only H-stimulated (/sup 14/C)AP accumulation (P less than 0.05). H168/68 suppressed (/sup 14/C)AP below even unstimulated levels of (/sup 14/C)AP accumulation. These results support the hypothesis that H168/68 inhibits the PC distal to cAMP stimulation.

  19. Inhibition of purple acid phosphatase with alpha-alkoxynaphthylmethylphosphonic acids.

    PubMed

    McGeary, Ross P; Vella, Peter; Mak, Jeffrey Y W; Guddat, Luke W; Schenk, Gerhard

    2009-01-01

    Purple acid phosphatases (PAPs) are binuclear hydrolases that catalyse the hydrolysis of a range of phosphorylated substrates. Human PAP is a major histochemical marker for the diagnosis of osteoporosis. In patients suffering from this disorder, PAP activity contributes to increased bone resorption and, therefore, human PAP is a key target for the development of anti-osteoporotic drugs. This manuscript describes the design and synthesis of derivatives of 1-naphthylmethylphosphonic acids as inhibitors of PAP. The K(i) values of these compounds are as low as 4 microM, the lowest reported to date for a PAP inhibitor.

  20. Eskimo plasma constituents, dihomo-gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid inhibit the release of atherogenic mitogens.

    PubMed

    Smith, D L; Willis, A L; Nguyen, N; Conner, D; Zahedi, S; Fulks, J

    1989-01-01

    Studies in man and laboratory animals suggest that omega 3 polyunsaturated fatty acid constituents of fish oils have antiatherosclerotic properties. We have studied the effects of several such polyunsaturated fatty acids for ability to modify the in vitro release of mitogens from human platelets. Such mitogens may produce the fibro-proliferative component of atherosclerotic plaques. Both 5,8,11,14,17-eicosapentaenoic acid (20:5 omega 3) and 4,7,10,13,16,19-docosahexaenoic acid (22:6 omega 3), major constituents of fish oils, inhibited adenosine diphosphate-induced aggregation of platelets and the accompanying release of mitogens. These effects are dose dependent. Linolenic acid (18:3 omega 3), the biosynthetic precursor of eicosapentaenoic acid, also inhibited platelet aggregation and mitogen release. Eicosapentaenoic acid also inhibited mitogen release from human monocyte-derived macrophages, which, in vivo, are an additional source of mitogens during atherogenesis. Potent inhibition of human platelet aggregation and mitogen release was also seen with dihomo-gamma-linolenic acid (8,11,14-eicosatrienoic acid 20:3 omega 6), whose levels are reportedly elevated in Eskimos subsisting on marine diets. We conclude that diets that elevate plasma and/or tissue levels of eicosapentaenoic acid, docosahexaenoic acid and dihomo-gamma-linolenic acid precursor gamma-linolenic acid (18:3 omega 6) may exert antiatherosclerotic effects by inhibiting the release of mitogens from platelets and other cells.

  1. Mechanism of acid corrosion inhibition using magnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Parekh, Kinnari; Jauhari, Smita; Upadhyay, R. V.

    2016-12-01

    The inhibition effect of magnetic nanofluid on carbon steel in acid solutions was investigated using gravimetric, potentiodynamic and SEM measurement. The inhibition efficiency increases up to 95% and 75% for 51.7 mM concentration, respectively, in 1 M HCl and 1 M H2SO4 medium. The adsorption of nanoparticles to the steel surface forms a barrier between the metal and the aggressive environment, which is responsible for observed inhibition action. The adsorption of nanoparticles on steel surface is supported by the Langmuir and Freundlich adsorption isotherm and surface morphology scanned through SEM.

  2. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    USDA-ARS?s Scientific Manuscript database

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  3. Phosphatidic acid inhibits ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ouro, Alberto; Arana, Lide; Rivera, Io-Guané; Ordoñez, Marta; Gomez-Larrauri, Ana; Presa, Natalia; Simón, Jorge; Trueba, Miguel; Gangoiti, Patricia; Bittman, Robert; Gomez-Muñoz, Antonio

    2014-12-15

    Ceramide 1-phosphate (C1P) was recently demonstrated to potently induce cell migration. This action could only be observed when C1P was applied exogenously to cells in culture, and was inhibited by pertussis toxin. However, the mechanisms involved in this process are poorly understood. In this work, we found that phosphatidic acid (PA), which is structurally related to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-stimulated macrophage migration. This effect was independent of the saturated fatty acid chain length or the presence of a double bond in each of the fatty acyl chains of PA. Treatment of RAW264.7 macrophages with exogenous phospholipase D (PLD), an enzyme that produces PA from membrane phospholipids, also inhibited C1P-stimulated cell migration. Likewise, PA or exogenous PLD inhibited C1P-stimulated extracellularly regulated kinases (ERK) 1 and 2 phosphorylation, leading to inhibition of cell migration. However, PA did not inhibit C1P-stimulated Akt phosphorylation. It is concluded that PA is a physiological regulator of C1P-stimulated macrophage migration. These actions of PA may have important implications in the control of pathophysiological functions that are regulated by C1P, including inflammation and various cellular processes associated with cell migration such as organogenesis or tumor metastasis.

  4. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  5. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    PubMed

    Carballeira, Néstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaña-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound.

  6. The inhibition of human platelet function by ganodermic acids.

    PubMed Central

    Wang, C N; Chen, J C; Shiao, M S; Wang, C T

    1991-01-01

    Human gel-filtered platelets aggregate at greater than 20 microM-ganodermic acid S [lanosta-7,9(11),24-triene-3 beta, 15 alpha-diacetoxy-26-oic acid] [Wang, Chen, Shiao & Wang (1989) Biochim. Biophys. Acta 986, 151-160]. This study showed that platelets at less than 20 microM-ganodermic acid S displayed both concentration- and time-dependent inhibition of function, in which the agent potency in response to inducers was ADP-fibrinogen greater than collagen greater than thrombin. The agent caused a biphasic time-dependent effect on platelet phosphoinositide metabolism. The first phase involved the decrease in the pool size of phosphoinositide by 10-20%. The second phase, in which both the resynthesis of phosphatidylinositol 4,5-bisphosphate (PIP2) and the decrease of [32P]phosphatidic acid occurred, took place after 30 min. Scanning electron microscopy also revealed a time-dependent morphological change in platelets in the presence of the agent. The cells initially became spiculate discs, then swelled to a 'potato-like' morphology at 60 min. Further studies on the time-dependent inhibition of thrombin response revealed that: (1) the percentage inhibition of cell aggregation was comparable with that occurring with an increase of cytosolic free Ca2+ concentration [( Ca2+]i) or the phosphorylation of marker proteins; (2) [32P]Pi-labelled platelets showed the time-dependent inhibition of thrombin-stimulated PIP2 resynthesis as indicated by first-2-min time-course studies of phosphoinositide interconversion; (3) scanning electron microscopy revealed that the aged platelet population showed an increase in the percentage of non-responding cells on prolonged incubation. The results, taken together, enabled one to discuss a possible mechanism for the time-dependent inhibition by ganodermic acid S of platelet response to thrombin. Images Fig. 5. Fig. 6. PMID:1649599

  7. Inhibition of neutrophil activation by alpha1-acid glycoprotein.

    PubMed Central

    Costello, M J; Gewurz, H; Siegel, J N

    1984-01-01

    We report that alpha1-acid glycoprotein (AAG), a naturally occurring human plasma protein and acute phase reactant of uncertain biological function, inhibits human neutrophil aggregation and superoxide anion generation induced by a variety of stimuli including zymosan treated serum, formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate. Inhibition was transient, directly proportional to the glycoprotein concentration and inversely proportional to the concentration of the stimulus added. Desialyzation, resulting in the removal of a substantial portion of the molecule's negative charge, did not alter the effectiveness of AAG. Removal of the penultimate galactose residues from desialyzed AAG resulted in a slight but significant reversal of inhibition, suggesting that the heteropolysaccharide units of AAG may be important for inhibition of cellular function. We therefore suggest that the acute phase glycoprotein AAG may be a significant modulator of neutrophil as well as platelet and lymphocyte function during inflammation. PMID:6321072

  8. Monochloramine potently inhibits arachidonic acid metabolism in rat platelets.

    PubMed

    Fujimoto, Yohko; Ikeda, Mai; Sakuma, Satoru

    2006-05-26

    In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.

  9. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation

    PubMed Central

    Fuentes, Eduardo; Caballero, Julio; Alarcón, Marcelo; Rojas, Armando; Palomo, Iván

    2014-01-01

    Background Chlorogenic acid is a potent phenolic antioxidant. However, its effect on platelet aggregation, a critical factor in arterial thrombosis, remains unclear. Consequently, chlorogenic acid-action mechanisms in preventing platelet activation and thrombus formation were examined. Methods and Results Chlorogenic acid in a dose-dependent manner (0.1 to 1 mmol/L) inhibited platelet secretion and aggregation induced by ADP, collagen, arachidonic acid and TRAP-6, and diminished platelet firm adhesion/aggregation and platelet-leukocyte interactions under flow conditions. At these concentrations chlorogenic acid significantly decreased platelet inflammatory mediators (sP-selectin, sCD40L, CCL5 and IL-1β) and increased intraplatelet cAMP levels/PKA activation. Interestingly, SQ22536 (an adenylate cyclase inhibitor) and ZM241385 (a potent A2A receptor antagonist) attenuated the antiplatelet effect of chlorogenic acid. Chlorogenic acid is compatible to the active site of the adenosine A2A receptor as revealed through molecular modeling. In addition, chlorogenic acid had a significantly lower effect on mouse bleeding time when compared to the same dose of aspirin. Conclusions Antiplatelet and antithrombotic effects of chlorogenic acid are associated with the A2A receptor/adenylate cyclase/cAMP/PKA signaling pathway. PMID:24598787

  10. Inhibition of bacterial activity in acid mine drainage

    NASA Astrophysics Data System (ADS)

    Singh, Gurdeep; Bhatnagar, Miss Mridula

    1988-12-01

    Acid mine drainage water give rise to rapid growth and activity of an iron- and sulphur- oxidizing bacterium Thiobacillus ferrooxidians which greatly accelerate acid producing reactions by oxidation of pyrite material associated with coal and adjoining strata. The role of this bacterium in production of acid mine drainage is described. This study presents the data which demonstrate the inhibitory effect of certain organic acids, sodium benzoate, sodium lauryl sulphate, quarternary ammonium compounds on the growth of the acidophilic aerobic autotroph Thiobacillus ferrooxidians. In each experiment, 10 milli-litres of laboratory developed culture of Thiobacillus ferrooxidians was added to 250 milli-litres Erlenmeyer flask containing 90 milli-litres of 9-k media supplemented with FeSO4 7H2O and organic compounds at various concentrations. Control experiments were also carried out. The treated and untreated (control) samples analysed at various time intervals for Ferrous Iron and pH levels. Results from this investigation showed that some organic acids, sodium benzoate, sodium lauryl sulphate and quarternary ammonium compounds at low concentration (10-2 M, 10-50 ppm concentration levels) are effective bactericides and able to inhibit and reduce the Ferrous Iron oxidation and acidity formation by inhibiting the growth of Thiobacillus ferrooxidians is also discussed and presented

  11. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi

    USDA-ARS?s Scientific Manuscript database

    Abietic acid (Aba), dehydroabietic acid (DAba), and 2-hydroxytetradecanoic acid (2-HTDA) were identified by Fourier Transform Ion Cyclotron Mass Spectroscopy and found to be elevated in the exudate of Ri T-DNA transformed carrot roots that were grown in the absence relative to the presence of phosph...

  12. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  13. Inhibition of Deoxyribonucleic Acid Synthesis and Bud Formation by Nalidixic Acid in Hyphomicrobium neptunium

    PubMed Central

    Weiner, Ronald M.; Blackman, Marcia A.

    1973-01-01

    The relationship between chromosome replication and morphogenesis in the budding bacterium Hyphomicrobium neptunium has been investigated. Nalidixic acid was found to completely inhibit deoxyribonucleic acid synthesis, but not ribonucleic acid synthesis. The antibiotic was bacteriostatic to the organism for the initial 5 h of exposure; thereafter it was bacteriocidal. Observation of inhibited cultures revealed cells that had produced abnormally long stalks, but no buds. These results indicate that bud formation is coupled to chromosome replication in H. neptunium. They do not exclude the possibilities that cross wall formation and bud separation may also be coupled to chromosome replication. Images PMID:4127631

  14. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  15. Suaveolic Acid: A Potent Phytotoxic Substance of Hyptis suaveolens

    PubMed Central

    Islam, A. K. M. Mominul; Ohno, Osamu; Suenaga, Kiyotake; Kato-Noguchi, Hisashi

    2014-01-01

    Hyptis suaveolens (Lamiaceae) is an exotic invasive plant in many countries. Earlier studies reported that the aqueous, methanol, and aqueous methanol extract of H. suaveolens and its residues have phytotoxic properties. However, to date, the phytotoxic substances of this plant have not been reported. Therefore, the objectives of this study were isolation and identification of phytotoxic substances of H. suaveolens. Aqueous methanol extract of this plant was purified by several chromatographic runs through bioassay guided fractionation using garden cress (Lepidium sativum) as a test plant. Final purification of a phytotoxic substance was achieved by reverse phase HPLC and characterized as 14α-hydroxy-13β-abiet-8-en-18-oic acid (suaveolic acid) by high-resolution ESI-MS, 1H-,13C-NMR, CD, and specific rotation. Suaveolic acid inhibited the shoot growth of garden cress, lettuce (Lactuca sativa), Italian ryegrass (Lolium multiflorum), and barnyard grass (Echinochloa crus-galli) at concentrations greater than 30 µM. Root growth of all but lettuce was also inhibited at concentrations greater than 30 µM. The inhibitory activities were concentration dependent. Concentrations required for 50% growth inhibition of suaveolic acid for those test plant species were ranged from 76 to 1155 µM. Therefore, suaveolic acid is phytotoxic and may be responsible for the phytotoxicity of H. suaveolens plant extracts. PMID:25405221

  16. Cadmium inhibits acid secretion in stimulated frog gastric mucosa

    SciTech Connect

    Gerbino, Andrea; Debellis, Lucantonio; Caroppo, Rosa; Curci, Silvana; Colella, Matilde

    2010-06-01

    Cadmium, a toxic environmental pollutant, affects the function of different organs such as lungs, liver and kidney. Less is known about its toxic effects on the gastric mucosa. The aim of this study was to investigate the mechanisms by which cadmium impacts on the physiology of gastric mucosa. To this end, intact amphibian mucosae were mounted in Ussing chambers and the rate of acid secretion, short circuit current (I{sub sc}), transepithelial potential (V{sub t}) and resistance (R{sub t}) were recorded in the continuous presence of cadmium. Addition of cadmium (20 {mu}M to 1 mM) on the serosal but not luminal side of the mucosae resulted in inhibition of acid secretion and increase in NPPB-sensitive, chloride-dependent short circuit current. Remarkably, cadmium exerted its effects only on histamine-stimulated tissues. Experiments with TPEN, a cell-permeant chelator for heavy metals, showed that cadmium acts from the intracellular side of the acid secreting cells. Furthermore, cadmium-induced inhibition of acid secretion and increase in I{sub sc} cannot be explained by an action on: 1) H{sub 2} histamine receptor, 2) Ca{sup 2+} signalling 3) adenylyl cyclase or 4) carbonic anhydrase. Conversely, cadmium was ineffective in the presence of the H{sup +}/K{sup +}-ATPase blocker omeprazole suggesting that the two compounds likely act on the same target. Our findings suggest that cadmium affects the functionality of histamine-stimulated gastric mucosa by inhibiting the H{sup +}/K{sup +}-ATPase from the intracellular side. These data shed new light on the toxic effect of this dangerous environmental pollutant and may result in new avenues for therapeutic intervention in acute and chronic intoxication.

  17. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    PubMed

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  18. Inhibition of reticulo-ruminal motility by volatile fatty acids and lactic acid in sheep.

    PubMed Central

    Gregory, P C

    1987-01-01

    1. A study was made of the influence on reticulo-ruminal motility, recorded by electromyography, of ruminal infusions of volatile fatty acids (VFAs) and lactic acid in twenty-four sheep maintained by intragastric infusion of a complete liquid diet, in three sheep fed grass pellets, and in nine chronically vagotomized sheep; abomasal and duodenal infusions of VFA and lactic acid were tested in five sheep fed grass pellets. 2. Ruminal infusions of VFAs and lactic acid progressively inhibited the amplitude of the reticulo-ruminal contractions. In many experiments there was no effect on contraction frequency until the cessation of all reticulo-ruminal contractions at which point the maximal concentration of VFA recorded in the abomasum was 28 mM, and that of lactic acid was 20 mM. 3. The concentrations of undissociated VFAs causing cessation of reticulo-ruminal contractions in the vagus-intact sheep were very similar to the concentrations causing abolition of the organized intrinsic motility of the chronically vagotomized sheep. 4. The inhibition of reticulo-ruminal motility with ruminal infusions of mixtures of VFAs and of lactic acid together with VFAs could largely be explained by the sum of the effects of the individual acids present. 5. Abomasal infusion of VFA or lactic acid inhibited the amplitude of ruminal, especially primary ruminal, contractions at concentrations of undissociated acid of 60 mM and above and increased the frequency of reticulum and primary ruminal contractions at about 80 mM. 6. Duodenal infusion of VFAs and lactic acid (100 mM, 5 ml/min) strongly inhibited abomasal motility without affecting reticulo-ruminal motility, and at a higher rate (100 mM, 10 ml/min) abolished motility and inhibited both the amplitude and frequency of reticulo-ruminal contractions. 7. It is concluded that the initial inhibition of reticulo-ruminal motility in ruminal acidosis is unlikely to involve any significant influence from duodenal, or abomasal receptors. The

  19. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid

    PubMed Central

    Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H.

    2011-01-01

    Introduction Endogenous dentin matrix metalloproteinases (MMPs) contribute to extracellular collagen matrix degradation in hybrid layers following adhesive dentin bonding procedures. Endodontic irrigants, including chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) may help protect the hybrid layer from this process. The objective of the present study was to determine the exposure time necessary for EDTA to inactivate endogenous MMP activity in human dentin. Methods Dentin beams (2×1×3 mm) were prepared from mid-coronal dentin of extracted third molars. The beams were demineralized in 10 wt% phosphoric acid which also activated endogenous MMPs, and were divided into four experimental groups based on exposure time to 17% EDTA (0, 1, 2 or 5 min). A generic colorimetric MMP assay measured MMP activity via absorbance at 412 nm. Data were evaluated by Kruskal Wallis ANOVA, followed by Dunn’s pair-wise comparisons at α = 0.05. Results All exposure times resulted in significant inhibition (P<0.001) compared to unexposed controls. Specifically, percent inhibition for 1-, 2-, and 5-minute exposure times were 55.1±21.5%, 72.8±11.7%, and 74.7±19.7%, respectively. Conclusions 17% EDTA significantly inhibits endogenous MMP activity of human dentin within 1–2 min. This may minimize hybrid layer degradation following resin bonding procedures in the root canal space. PMID:22152622

  20. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides.

    PubMed

    Rees, Martin D; Bottle, Steven E; Fairfull-Smith, Kathryn E; Malle, Ernst; Whitelock, John M; Davies, Michael J

    2009-06-12

    Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 microM respectively. Structure-activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases.

  1. Inhibition of myeloperoxidase-mediated hypochlorous acid production by nitroxides

    PubMed Central

    Rees, Martin D.; Bottle, Steven E.; Fairfull-Smith, Kathryn E.; Malle, Ernst; Whitelock, John M.; Davies, Michael J.

    2014-01-01

    Tissue damage resulting from the extracellular production of HOCl (hypochlorous acid) by the MPO (myeloperoxidase)-hydrogen peroxide-chloride system of activated phagocytes is implicated as a key event in the progression of a number of human inflammatory diseases. Consequently, there is considerable interest in the development of therapeutically useful MPO inhibitors. Nitroxides are well established antioxidant compounds of low toxicity that can attenuate oxidative damage in animal models of inflammatory disease. They are believed to exert protective effects principally by acting as superoxide dismutase mimetics or radical scavengers. However, we show here that nitroxides can also potently inhibit MPO-mediated HOCl production, with the nitroxide 4-aminoTEMPO inhibiting HOCl production by MPO and by neutrophils with IC50 values of approx. 1 and 6 μM respectively. Structure–activity relationships were determined for a range of aliphatic and aromatic nitroxides, and inhibition of oxidative damage to two biologically-important protein targets (albumin and perlecan) are demonstrated. Inhibition was shown to involve one-electron oxidation of the nitroxides by the compound I form of MPO and accumulation of compound II. Haem destruction was also observed with some nitroxides. Inhibition of neutrophil HOCl production by nitroxides was antagonized by neutrophil-derived superoxide, with this attributed to superoxide-mediated reduction of compound II. This effect was marginal with 4-aminoTEMPO, probably due to the efficient superoxide dismutase-mimetic activity of this nitroxide. Overall, these data indicate that nitroxides have considerable promise as therapeutic agents for the inhibition of MPO-mediated damage in inflammatory diseases. PMID:19379130

  2. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  3. Gymnemic Acids Inhibit Hyphal Growth and Virulence in Candida albicans

    PubMed Central

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d’Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine. PMID:24040201

  4. Gymnemic acids inhibit hyphal growth and virulence in Candida albicans.

    PubMed

    Vediyappan, Govindsamy; Dumontet, Vincent; Pelissier, Franck; d'Enfert, Christophe

    2013-01-01

    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine.

  5. Hypothiocyanous acid oxidation of tubulin cysteines inhibits microtubule polymerization

    PubMed Central

    Clark, Hillary M.; Hagedorn, Tara D.; Landino, Lisa M.

    2013-01-01

    Thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. In addition, protein thiol redox reactions are increasingly identified as a mechanism to regulate protein structure and function. We assessed the effect of hypothiocyanous acid on the cytoskeletal protein tubulin. Total cysteine oxidation by hypothiocyanous and hypochlorous acids was monitored by labeling tubulin with 5-iodoacetamidofluorescein and by detecting higher molecular weight inter-chain tubulin disulfides by Western blot under nonreducing conditions. Hypothiocyanous acid induced nearly stoichiometric oxidation of tubulin cysteines (1.9 mol cysteine/mol oxidant) and no methionine oxidation was observed. Because disulfide reducing agents restored all the polymerization activity that was lost due to oxidant treatment, we conclude that cysteine oxidation of tubulin inhibits microtubule polymerization. Hypothiocyanous acid oxidation of tubulin cysteines was markedly decreased in the presence of 4% glycerol, a component of the tubulin purification buffer. Due to its instability and buffer- and pH-dependent reactivity, hypothiocyanous acid studies require careful consideration of reaction conditions. PMID:24215946

  6. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  7. Inhibition of Listeria monocytogenes by fatty acids and monoglycerides.

    PubMed

    Wang, L L; Johnson, E A

    1992-02-01

    Fatty acids and monoglycerides were evaluated in brain heart infusion broth and in milk for antimicrobial activity against the Scott A strain of Listeria monocytogenes. C12:0, C18:3, and glyceryl monolaurate (monolaurin) had the strongest activity in brain heart infusion broth and were bactericidal at 10 to 20 micrograms/ml, whereas potassium (K)-conjugated linoleic acids and C18:2 were bactericidal at 50 to 200 micrograms/ml. C14:0, C16:0, C18:0, C18:1, glyceryl monomyristate, and glyceryl monopalmitate were not inhibitory at 200 micrograms/ml. The bactericidal activity in brain heart infusion broth was higher at pH 5 than at pH 6. In whole milk and skim milk, K-conjugated linoleic acid was bacteriostatic and prolonged the lag phase especially at 4 degrees C. Monolaurin inactivated L. monocytogenes in skim milk at 4 degrees C, but was less inhibitory at 23 degrees C. Monolaurin did not inhibit L. monocytogenes in whole milk because of the higher fat content. Other fatty acids tested were not effective in whole or skim milk. Our results suggest that K-conjugated linoleic acids or monolaurin could be used as an inhibitory agent against L. monocytogenes in dairy foods.

  8. Product Inhibition of the Fermentative Formation of Glutamic Acid

    PubMed Central

    Nunheimer, T. D.; Birnbaum, J.; Ihnen, E. D.; Demain, A. L.

    1970-01-01

    The addition of penicillin to cells of Corynebacterium glutamicum growing in 5-liter fermentors initiated the excretion of glutamic acid. The rate of glutamate production in fermentors declined continuously with time and reached 75% of the initial rate in 24 hr after penicillin had been added. The addition of glutamate to resting cell suspensions had only a slight effect on sugar utilization but caused a marked decrease in glutamate excretion. It is suggested that the high level of glutamate accumulating in the fermentation broth is responsible for inhibiting its own production. PMID:5480097

  9. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  10. Hyperbaric hyperoxia reversibly inhibits erythrocyte phospholipid fatty acid turnover

    NASA Technical Reports Server (NTRS)

    Dise, Craig A.; Clark, James M.; Lambersten, Christian J.; Goodman, David B. P.

    1987-01-01

    The effect of hyperbaric hyperoxia on the acylation of membrane phospholipid was studied by measuring the rates of activation of exogenous tritiated oleic acid to acyl thioester and of transesterification of the thioester into membrane phospholipids in intact human erythrocytes obtained 1 h after an exposure of the subjects to a hyperbaric oxygen atmosphere (3.5 h, 100 pct O2, 3 ATA). Exposure to pure oxygen was found to inhibit both the acylation and transesterification reactions by more than 30 percent, with partial recovery detected 24 h later. On the other hand, no rate changes were observed when isolated membranes from the same batches of cells were used in similar experiments. It is suggested that the decrease in the incorporation of tritiated oleic acid after hyperbaric hyperoxia may reflect an early event in the pathogenesis of oxygen-induced cellular injury and that it may be a useful index for the assessment of the tolerance of tissues to hyperoxia.

  11. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    PubMed

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  12. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites.

    PubMed Central

    Akahane, K; Kimura, Y; Tsutomi, Y; Hayakawa, I

    1994-01-01

    The combination of some new quinolone antibacterial agents with 4-biphenylacetic acid (BPAA), a metabolite of fenbufen, is known to specifically induce functional blockade of the gamma-aminobutyric acid (GABA) receptors. The mechanisms of these drug interactions were further examined. Scatchard analysis of [3H]muscimol binding to rat brain plasma membranes in the presence of enoxacin and BPAA revealed that a significant decrease in the number of muscimol binding sites was produced without affecting the affinity of binding to the receptors. In the presence of norfloxacin, BPAA inhibited muscimol binding the most potently of the six BPAA-related compounds tested. Fenbufen and 9,10-dihydro-gamma-oxo-2-phenanthrenebutyric acid also inhibited the binding, and 4-biphenylcarboxylic acid and methyl 4-biphenylacetate inhibited it slightly, but 3-benzoylpropionic acid exhibited no competitive inhibition. Accordingly, hybrid molecules of norfloxacin and BPAA were synthesized for stereochemical analysis of these drug interactions. A hybrid with a -CONH(CH2)3- chain between norfloxacin and BPAA (flexible structure) inhibited muscimol binding, and intracisternal injection of this hybrid caused clonic convulsions in mice more potently than the combination of norfloxacin and BPAA did. In contrast, a hybrid linked by -CONH- (stretched structure) showed almost no such inhibitory effect. 1H NMR analysis indicated the presence of intramolecular attraction at the quinoline ring of the hybrid exhibiting the antagonistic activity. These results suggest the possibility that quinolones and BPAA interact with the GABA receptor at nearby sites and that the binding affinity of quinolones to the GABA receptors is largely enhanced by the intermolecular interaction with BPAA. PMID:7840564

  13. Asiatic acid inhibits adipogenic differentiation of bone marrow stromal cells.

    PubMed

    Li, Zheng-Wei; Piao, Cheng-dong; Sun, Hong-hui; Ren, Xian-Sheng; Bai, Yun-Shen

    2014-03-01

    Bone marrow mesenchymal stromal cells (BMSCs) are the common precursors for both osteoblasts and adipocytes. With aging, BMSC osteoblast differentiation decreases whereas BMSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. In the present study, we investigated the effect of asiatic acid (AA) on adipocytic differentiation of BMSCs. AA inhibited the adipogenic induction of lipid accumulation, activity of glycerol-3-phosphate dehydrogenase, and expression of marker genes in adipogenesis: peroxisome proliferation-activated receptor (PPAR)γ, adipocyte fatty acid-binding protein (ap) 2, and adipsin. Further, we found that AA did not alter clonal expansion rate and expression of C/EBPβ, upstream key regulator of PPARγ, and binding activity of C/EBPβ to PPARγ promoter was not affected by AA as well. These findings suggest that AA may modulate differentiation of BMSCs to cause a lineage shift away from the adipocytes, and inhibition of PPARγ by AA is through C/EBPβ-independent mechanisms. Thus, AA could be a potential candidate for a novel drug against osteoporosis.

  14. Unusal pattern of product inhibition: batch acetic acid fermentation

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1987-04-20

    The limited tolerance of microorganisms to their metabolic products results in inhibited growth and product formation. The relationship between the specific growth rate, micro, and the concentration of an inhibitory product has been described by a number of mathematical models. In most cases, micro was found to be inversely proportional to the product concentration and invariably the rate of substrate utilization followed the same pattern. In this communication, the authors report a rather unusual case in which the formation rate of a product, acetic acid, increased with a decreasing growth rate of the microorganism, Acetobacter aceti. Apparently, a similar behavior was mentioned in a review report with respect to Clostridium thermocellum in a batch culture but was not published in the freely circulating literature. The fermentation of ethanol to acetic acid, C/sub 2/H/sub 5/OH + O/sub 2/ = CH/sub 3/COOH + H/sub 2/O is clearly one of the oldest known fermentations. Because of its association with the commercial production of vinegar it has been a subject of extensive but rather technically oriented studies. Suprisingly, the uncommon uncoupling between the inhibited microbial growth and the product formation appears to have been unnoticed. 13 references.

  15. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis

    PubMed Central

    Zulet, Amaia; Gil-Monreal, Miriam; Villamor, Joji Grace; Zabalza, Ana; van der Hoorn, Renier A. L.; Royuela, Mercedes

    2013-01-01

    Background The herbicides glyphosate (Gly) and imazamox (Imx) inhibit the biosynthesis of aromatic and branched-chain amino acids, respectively. Although these herbicides inhibit different pathways, they have been reported to show several common physiological effects in their modes of action, such as increasing free amino acid contents and decreasing soluble protein contents. To investigate proteolytic activities upon treatment with Gly and Imx, pea plants grown in hydroponic culture were treated with Imx or Gly, and the proteolytic profile of the roots was evaluated through fluorogenic kinetic assays and activity-based protein profiling. Results Several common changes in proteolytic activity were detected following Gly and Imx treatment. Both herbicides induced the ubiquitin-26 S proteasome system and papain-like cysteine proteases. In contrast, the activities of vacuolar processing enzymes, cysteine proteases and metacaspase 9 were reduced following treatment with both herbicides. Moreover, the activities of several putative serine protease were similarly increased or decreased following treatment with both herbicides. In contrast, an increase in YVADase activity was observed under Imx treatment versus a decrease under Gly treatment. Conclusion These results suggest that several proteolytic pathways are responsible for protein degradation upon herbicide treatment, although the specific role of each proteolytic activity remains to be determined. PMID:24040092

  16. Kinetic-spectrophotometric determination of ascorbic acid by inhibition of the hydrochloric acid-bromate reaction

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Rezaei, B.; Movahedinia, H.

    2002-10-01

    A new analytical method was developed for the determination of ascorbic acid in fruit juice and pharmaceuticals. The method is based on its inhibition effect on the reaction between hydrochloric acid and bromate. The decolourisation of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 510 nm. The linearity range of the calibration graph depends on bromate concentration. The variable affecting the rate of the reaction was investigated. The method is simple, rapid, relatively sensitive and precise. The limit of detection is 7.6×10 -6 M and calibration rang is 8×10 -6-1.2×10 -3 M ascorbic acid. The relative standard deviation of seven replication determinations of 8×10 -6 and 2×10 -5 M ascorbic acid was 2.8 and 1.7%, respectively. The influence of potential interfering substance was studied. The method was successfully applied for the determination of ascorbic acid in pharmaceuticals.

  17. Nicotinic acid inhibits glioma invasion by facilitating Snail1 degradation

    PubMed Central

    Li, Jiejing; Qu, Jiagui; Shi, Yu; Perfetto, Mark; Ping, Zhuxian; Christian, Laura; Niu, Hua; Mei, Shuting; Zhang, Qin; Yang, Xiangcai; Wei, Shuo

    2017-01-01

    Malignant glioma is a formidable disease that commonly leads to death, mainly due to the invasion of tumor cells into neighboring tissues. Therefore, inhibition of tumor cell invasion may provide an effective therapy for malignant glioma. Here we report that nicotinic acid (NA), an essential vitamin, inhibits glioma cell invasion in vitro and in vivo. Treatment of the U251 glioma cells with NA in vitro results in reduced invasion, which is accompanied by a loss of mesenchymal phenotype and an increase in cell-cell adhesion. At the molecular level, transcription of the adherens junction protein E-cadherin is upregulated, leading to accumulation of E-cadherin protein at the cell-cell boundary. This can be attributed to NA’s ability to facilitate the ubiquitination and degradation of Snail1, a transcription factor that represses E-cadherin expression. Similarly, NA transiently inhibits neural crest migration in Xenopus embryos in a Snail1-dependent manner, indicating that the mechanism of action for NA in cell migration is evolutionarily conserved. We further show that NA injection blocks the infiltration of tumor cells into the adjacent brain tissues and improves animal survival in a rat model of glioma. These results suggest that NA treatment may be developed into a potential therapy for malignant glioma. PMID:28256591

  18. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons

    PubMed Central

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug. PMID:25228885

  19. Inhibition of acid sphingomyelinase by tricyclic antidepressants and analogons.

    PubMed

    Beckmann, Nadine; Sharma, Deepa; Gulbins, Erich; Becker, Katrin Anne; Edelmann, Bärbel

    2014-01-01

    Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug.

  20. Inhibition of Ileal Water Absorption by Intraluminal Fatty Acids INFLUENCE OF CHAIN LENGTH, HYDROXYLATION, AND CONJUGATION OF FATTY ACIDS

    PubMed Central

    Ammon, Helmut V.; Phillips, Sidney F.

    1974-01-01

    The influence of fatty acids on ileal absorption of water, electrolytes, glucose, and taurocholate was examined in Thirty-Vella fistulas in five mongrel dogs. Fatty acid absorption also was measured. Segments of terminal ileum were perfused at steady state with isotonic electrolyte solutions containing 11.2 mM glucose, 4.5 mM taurocholate, and 0.1-5.0 mM fatty acid. Three C18 fatty acids, oleic acid, 10(9)-hydroxystearic acid, and ricinoleic acid, completely inhibited water absorption at 5 mM. Sodium, chloride, and potassium absorptions were inhibited in parallel with absorption of water. Differences between the potencies of C18 fatty acids were apparent when lesser concentrations were perfused. Dodecanoic and decanoic acids were as effective as C18 fatty acids at 5 mM but octanoic and hexanoic acids were ineffective. The polar group of C18 fatty acids was modified by conjugating oleic and ricinoleic acids with taurine. When these compounds and a substituted C18 fatty acid, p-n-decylbenzenesulfonate, were perfused, water absorption was also inhibited. Short-chain fatty acids (C3 and C4) and their hydroxylated derivatives were ineffective at 5 mM. When water absorption was inhibited, absorption of glucose and taurocholate was decreased. We speculate that the phenomenon of inhibition of water and electrolyte absorption by fatty acids may be relevant to steatorrhea and diarrhea in man. Images PMID:4808636

  1. Synthesis and cholinesterase inhibition of cativic acid derivatives.

    PubMed

    Alza, Natalia P; Richmond, Victoria; Baier, Carlos J; Freire, Eleonora; Baggio, Ricardo; Murray, Ana Paula

    2014-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder associated with memory impairment and cognitive deficit. Most of the drugs currently available for the treatment of AD are acetylcholinesterase (AChE) inhibitors. In a preliminary study, significant AChE inhibition was observed for the ethanolic extract of Grindelia ventanensis (IC₅₀=0.79 mg/mL). This result prompted us to isolate the active constituent, a normal labdane diterpenoid identified as 17-hydroxycativic acid (1), through a bioassay guided fractionation. Taking into account that 1 showed moderate inhibition of AChE (IC₅₀=21.1 μM), selectivity over butyrylcholinesterase (BChE) (IC₅₀=171.1 μM) and that it was easily obtained from the plant extract in a very good yield (0.15% w/w), we decided to prepare semisynthetic derivatives of this natural diterpenoid through simple structural modifications. A set of twenty new cativic acid derivatives (3-6) was prepared from 1 through transformations on the carboxylic group at C-15, introducing a C2-C6 linker and a tertiary amine group. They were tested for their inhibitory activity against AChE and BChE and some structure-activity relationships were outlined. The most active derivative was compound 3c, with an IC₅₀ value of 3.2 μM for AChE. Enzyme kinetic studies and docking modeling revealed that this inhibitor targeted both the catalytic active site and the peripheral anionic site of this enzyme. Furthermore, 3c showed significant inhibition of AChE activity in SH-SY5Y human neuroblastoma cells, and was non-cytotoxic.

  2. Inhibition of Large Neutral Amino Acid Transporters Suppresses Kynurenic Acid Production Via Inhibition of Kynurenine Uptake in Rodent Brain.

    PubMed

    Sekine, Airi; Kuroki, Yusuke; Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2016-09-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor and N-methyl-D-aspartic acid receptor at endogenous brain concentrations. Recent studies have suggested that increases of brain KYNA levels are involved in psychiatric disorders such as schizophrenia and depression, and regulation of KYNA production has become a new target for treatment of these diseases. Kynurenine (KYN), the immediate precursor of KYNA, is transported into astrocytes via large neutral amino acid transporters (LATs). In the present study, the effect of LATs regulation on KYN uptake and KYNA production was investigated in vitro and in vivo using an LATs inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). In the in vitro study, cortical slices of rat brain were incubated with a physiological concentration of KYN and 3 µmol/L-3 mmol/L BCH. BCH inhibited KYNA production and KYN uptake in a dose-dependent manner, and their IC50 values were 90.7 and 97.4 µmol/L, respectively. In the in vivo study, mice were administered KYN (50 mg/kg BW) orally and BCH (200 mg/kg BW) intravenously. Administration of KYN increased brain KYN and KYNA levels compared with the mice treated with vehicle, whereas additional administration of BCH suppressed KYN-induced elevations in KYN and KYNA levels to 50 and 70 % in the brain. These results suggest that inhibition of LATs prevented the increase of KYNA production via blockade of KYN uptake in the brain in vitro and in vivo. LATs can be a target to modulate brain function by regulation of KYNA production in the brain.

  3. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    SciTech Connect

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena . E-mail: elena.menegola@unimi.it

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor {alpha} = 0.51 and maximum velocity by a factor {beta} = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  4. Boric acid inhibits embryonic histone deacetylases: a suggested mechanism to explain boric acid-related teratogenicity.

    PubMed

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L; Giavini, Erminio; Menegola, Elena

    2007-04-15

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor alpha=0.51 and maximum velocity by a factor beta=0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations.

  5. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi

    PubMed Central

    2013-01-01

    Background Food spoilage caused by molds is a severe problem. In food and feed, e.g. dairy products, sourdough bread and silage, lactic acid bacteria are used as starter cultures. Besides lactic and acetic acid, some strains produce other low molecular weight compounds with antifungal activities. One of these metabolites is phenyllactic acid (PLA), well known for its antifungal effect. The inhibitory effect of PLA has only partially been investigated, and the objective of this study was to elucidate in detail the antifungal properties of PLA. Results We investigated the outgrowth of individual conidia from Aspergillus niger, Cladosporium cladosporioides and Penicillium roqueforti, and observed the morphologies of resulting colonies on solid media using different acid concentrations. We found that PLA inhibits molds similar to weak acid preservatives. Furthermore, it has an additional activity: at sub-inhibitory concentrations, fungal colonies displayed slower radial growth and inhibited sporulation. The L isoform of PLA is a more potent inhibitor than the D form. Increased expression of phiA was observed during PLA treatment. This gene was initially identified as being induced by Streptomyces-produced macrolide antibiotics, and is shown to be a structural protein in developed cells. This suggests that PhiA may act as a general stress protectant in fungi. Conclusion From a food protection perspective, the results of this study support the usage of lactic acid bacteria strains synthesizing PLA as starter cultures in food and feed. Such starter cultures could inhibit spore synthesis, which would be beneficial as many food borne fungi are spread by airborne spores. PMID:24229396

  6. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi.

    PubMed

    Svanström, Åsa; Boveri, Silvio; Boström, Emma; Melin, Petter

    2013-11-14

    Food spoilage caused by molds is a severe problem. In food and feed, e.g. dairy products, sourdough bread and silage, lactic acid bacteria are used as starter cultures. Besides lactic and acetic acid, some strains produce other low molecular weight compounds with antifungal activities. One of these metabolites is phenyllactic acid (PLA), well known for its antifungal effect. The inhibitory effect of PLA has only partially been investigated, and the objective of this study was to elucidate in detail the antifungal properties of PLA. We investigated the outgrowth of individual conidia from Aspergillus niger, Cladosporium cladosporioides and Penicillium roqueforti, and observed the morphologies of resulting colonies on solid media using different acid concentrations. We found that PLA inhibits molds similar to weak acid preservatives. Furthermore, it has an additional activity: at sub-inhibitory concentrations, fungal colonies displayed slower radial growth and inhibited sporulation. The L isoform of PLA is a more potent inhibitor than the D form. Increased expression of phiA was observed during PLA treatment. This gene was initially identified as being induced by Streptomyces-produced macrolide antibiotics, and is shown to be a structural protein in developed cells. This suggests that PhiA may act as a general stress protectant in fungi. From a food protection perspective, the results of this study support the usage of lactic acid bacteria strains synthesizing PLA as starter cultures in food and feed. Such starter cultures could inhibit spore synthesis, which would be beneficial as many food borne fungi are spread by airborne spores.

  7. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  8. Choline inhibition of amino acid transport in preimplantation mouse blastocysts

    SciTech Connect

    Campione, A.L.; Haghighat, N.; Gorman, J.; Van Winkle, L.J.

    1987-05-01

    Addition of 70 mM choline chloride to Brinster's medium (140 mM Na/sup +/) inhibited uptake of approx. 1 ..mu..M (/sup 3/H)glycine, leucine, lysine and alanine in blastocysts by about 50% each during a five-minute incubation period at 37/sup 0/C, whereas 70 mM LiCl, sodium acetate and NaCl or 140 mM mannitol had no effect. They attribute the apparent linear relationship between Gly transport in blastocysts and the square of the (Na/sup +/), observed when choline was substituted for Na/sup +/ in Brinster's medium, to concomitant, concentration-dependent enhancement and inhibition of transport by Na/sup +/ and choline, respectively. As expected, Gly uptake and the (Na/sup +/) were linearly related up to 116 mM Na/sup +/, when Na/sup +/ was replaced with Li/sup +/. The rates of Na/sup +/-independent Gly and Ala uptake were <5% and <2% of the total, respectively, and similar when either Li/sup +/ or choline replaced Na/sup +/. Therefore, neither Li/sup +/ nor choline appears to substitute for Na/sup +/ in supporting Na/sup +/-dependent transport in blastocysts. Na/sup +/-independent Leu uptake was 20 times faster than Gly or Ala uptake and appeared to be inhibited by choline in blastocysts since it was about 37% slower when choline instead of Li/sup +/ was substituted for Na/sup +/. In contrast to blastocysts, choline had no effect on amino acid transport in cleavage-stage mouse embryos. The unexpected sensitivity of transport to choline in blastocysts underscores the importance of testing the effects of this substance when it is used to replace Na/sup +/ in new transport studies.

  9. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    PubMed Central

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  10. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  11. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    PubMed

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  12. Boric acid inhibition of steam generator materials corrosion

    SciTech Connect

    Wootten, M.J.; Wolfe, C.R.; Hermer, R.E.

    1985-01-01

    In 1974, Westinghouse recommended a change from phosphate water chemistry control for nuclear steam generators to one in which no solids are intentionally added, called all volatile treatment (AVT). The reason for the recommended change in water chemistry control was the occurrence of phosphate thinning of the Alloy 600 heat transfer tubes in some operating plants. Since the change over to AVT, other types of corrosion from impurities in the water have been observed of the materials of construction of nuclear steam generators. Initially, several plants observed denting, which is caused by the corrosion of the carbon steel tube support plates. After 8 yr of usage as a denting inhibitor in nuclear plants, no detrimental effects have been identified as due to boric acid. It is believed that boric acid will inhibit denting-type corrosion and caustic attack of Alloy 600; however, it must be stressed that it is not a substitute for good chemistry practices and all levels and disciplines within the operating plant should recognize the importance of rigorous, long-term chemistry control.

  13. Gastric acid inhibition in the treatment of peptic ulcer hemorrhage.

    PubMed

    Ghassemi, Kevin A; Kovacs, Thomas O G; Jensen, Dennis M

    2009-12-01

    Upper gastrointestinal bleeding from peptic ulcer disease is a common clinical event, resulting in considerable patient morbidity and significant health care costs. Inhibiting gastric acid secretion is a key component in improving clinical outcomes, including reducing rebleeding, transfusion requirements, and surgery. Raising intragastric pH promotes clot stability and reduces the influences of gastric acid and pepsin. Patients with high-risk stigmata for ulcer bleeding (arterial bleeding, nonbleeding visible vessels, and adherent clots) benefit significantly from and should receive high-dose intravenous proton pump inhibitors (PPIs) after successful endoscopic hemostasis. For patients with low-risk stigmata (flat spots or clean ulcer base), oral PPI therapy alone is sufficient. For oozing bleeding (an intermediate risk finding), successful endoscopic hemostasis and oral PPI are recommended. Using intravenous PPIs before endoscopy appears to reduce the frequency of finding high-risk stigmata on later endoscopy, but has not been shown to improve clinical outcomes. High-dose oral PPIs may be as effective as intravenous infusion in achieving positive clinical outcomes, but this has not been documented by randomized studies and its cost-effectiveness is unclear.

  14. Growth inhibition of Streptococcus mutans by cellular extracts of human intestinal lactic acid bacteria.

    PubMed Central

    Ishihara, K; Miyakawa, H; Hasegawa, A; Takazoe, I; Kawai, Y

    1985-01-01

    The in vitro growth of Streptococcus mutans was completely inhibited by water-soluble extracts from cells of various intestinal lactic acid bacteria identified as Streptococcus faecium, Streptococcus equinus, Lactobacillus fermentum, and Lactobacillus salivarius. The growth inhibition was dependent on the concentrations of the extracts. In contrast, the extracts did not inhibit the growth of the major indigenous intestinal lactic acid bacteria isolated from humans. These lactic acid bacteria were not acutely toxic in mice. PMID:4030098

  15. Ethacrynic acid inhibits multiple steps in the NF-kappaB signaling pathway.

    PubMed

    Han, Yusheng; Englert, Joshua A; Delude, Russell L; Fink, Mitchell P

    2005-01-01

    Ethacrynic acid has been used as a safe and effective diuretic for more than 30 years. In this study, we tested the hypothesis that ethacrynic acid is also an anti-inflammatory agent that inhibits signaling by the proinflammatory transcription factor NF-kappaB. We showed that ethacrynic acid inhibited luciferase expression in lipopolysaccharide-stimulated macrophage-like RAW 264.7 cells transfected with an NF-kappaB-dependent luciferase reporter vector and also inhibited NF-kappaB DNA binding in lipopolysaccharide-stimulated RAW 264.7 cells (electrophoretic mobility shift assay). Ethacrynic acid inhibited degradation of IkappaBalpha and IkappaBbeta in lipopolysaccharide-stimulated RAW 264.7 cells. Ethacrynic acid impaired DNA binding of wild-type p65 subunits of NF-kappaB in cells. However, DNA binding of a Cys--> Ser p65 mutant was not inhibited by ethacrynic acid, suggesting that ethacrynic acid inhibits DNA binding by alkylating p65 at Cys. In a cell-free system, binding of p50 homodimers to an NF-kappaB consensus sequence was inhibited by ethacrynic acid at concentrations from 10 to 100 microM, indicating that ethacrynic acid probably also covalently modifies the p50 subunit. These data indicate that ethacrynic acid inhibits activation of the NF-kappaB pathway at multiple points and suggest that this well-studied drug warrants further investigation as a potential therapeutic for various conditions that are associated with excessive inflammation.

  16. Characterization of Protein Tyrosine Phosphatase 1B Inhibition by Chlorogenic Acid and Cichoric Acid.

    PubMed

    Lipchock, James M; Hendrickson, Heidi P; Douglas, Bonnie B; Bird, Kelly E; Ginther, Patrick S; Rivalta, Ivan; Ten, Nicholas S; Batista, Victor S; Loria, J Patrick

    2017-01-10

    Protein tyrosine phosphatase 1B (PTP1B) is a known regulator of the insulin and leptin signaling pathways and is an active target for the design of inhibitors for the treatment of type II diabetes and obesity. Recently, cichoric acid (CHA) and chlorogenic acid (CGA) were predicted by docking methods to be allosteric inhibitors that bind distal to the active site. However, using a combination of steady-state inhibition kinetics, solution nuclear magnetic resonance experiments, and molecular dynamics simulations, we show that CHA is a competitive inhibitor that binds in the active site of PTP1B. CGA, while a noncompetitive inhibitor, binds in the second aryl phosphate binding site, rather than the predicted benzfuran binding pocket. The molecular dynamics simulations of the apo enzyme and cysteine-phosphoryl intermediate states with and without bound CGA suggest CGA binding inhibits PTP1B by altering hydrogen bonding patterns at the active site. This study provides a mechanistic understanding of the allosteric inhibition of PTP1B.

  17. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  18. Inhibition of Sporulation by Cerulenin and Its Reversion by Exogenous Fatty Acids in Saccharomyces cerevisiae

    PubMed Central

    Ohno, Tadao; Awaya, Juichi; Ōmura, Satoshi

    1976-01-01

    Sporulation of Saccharomyces cerevisiae G2-2 was inhibited by the antibiotic cerulenin which is known to be a specific inhibitor of fatty acid and sterol synthesis. This inhibition was reversed by various fatty acids, especially by oleic acid (C18:1) and pentadecanoic acid (C15:0). Ergosterol showed only slight reversibility of this inhibition. When cerulenin was added to the sporulation medium later than 12 h after the start of incubation, the marked inhibition disappeared. When the fatty acid fraction extracted from the sporulated yeasts was added to the cells pretreated with cerulenin for more than 6 h, sporulation became evident 6 h after the fatty acid fraction addition. Therefore, sufficient synthesis of fatty acids required for sporulation was assumed to occur during the first 6 h in phase I of yeast sporulation. PMID:769672

  19. Ellagic acid inhibits iron-mediated free radical formation

    NASA Astrophysics Data System (ADS)

    Dalvi, Luana T.; Moreira, Daniel C.; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-01

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50 μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1 min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions.

  20. Mechanism of triclosan inhibition of bacterial fatty acid synthesis.

    PubMed

    Heath, R J; Rubin, J R; Holland, D R; Zhang, E; Snow, M E; Rock, C O

    1999-04-16

    Triclosan is a broad-spectrum antibacterial agent that inhibits bacterial fatty acid synthesis at the enoyl-acyl carrier protein reductase (FabI) step. Resistance to triclosan in Escherichia coli is acquired through a missense mutation in the fabI gene that leads to the expression of FabI[G93V]. The specific activity and substrate affinities of FabI[G93V] are similar to FabI. Two different binding assays establish that triclosan dramatically increases the affinity of FabI for NAD+. In contrast, triclosan does not increase the binding of NAD+ to FabI[G93V]. The x-ray crystal structure of the FabI-NAD+-triclosan complex confirms that hydrogen bonds and hydrophobic interactions between triclosan and both the protein and the NAD+ cofactor contribute to the formation of a stable ternary complex, with the drug binding at the enoyl substrate site. These data show that the formation of a noncovalent "bi-substrate" complex accounts for the effectiveness of triclosan as a FabI inhibitor and illustrates that mutations in the FabI active site that interfere with the formation of a stable FabI-NAD+-triclosan ternary complex acquire resistance to the drug.

  1. Direct inhibition of retinoic acid catabolism by fluoxetine.

    PubMed

    Hellmann-Regen, Julian; Uhlemann, Ria; Regen, Francesca; Heuser, Isabella; Otte, Christian; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2015-09-01

    Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine's neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

  2. Ellagic acid inhibits iron-mediated free radical formation.

    PubMed

    Dalvi, Luana T; Moreira, Daniel C; Andrade, Roberto; Ginani, Janini; Alonso, Antonio; Hermes-Lima, Marcelo

    2017-02-15

    Polyphenols are reported to have some health benefits, which are link to their antioxidant properties. In the case of ellagic acid (EA), there is evidence that it has free radical scavenger properties and that it is able to form complexes with metal ions. However, information on a possible link between the formation of iron-EA complexes and their interference in Haber-Weiss/Fenton reactions was not yet determined. Thus, the present study investigated the in vitro antioxidant mechanism of EA in a system containing ascorbate, Fe(III) and different iron ligands (EDTA, citrate and NTA). Iron-mediated oxidative degradation of 2-deoxyribose was poorly inhibited (by 12%) in the presence of EA (50μM) and EDTA. When citrate or NTA - which form weak iron complexes - were used, the 2-deoxyribose protection increased to 89-97% and 45%, respectively. EA also presented equivalent inhibitory effects on iron-mediated oxygen uptake and ascorbyl radical formation. Spectral analyses of iron-EA complexes show that EA removes Fe(III) from EDTA within hours, and from citrate within 1min. This difference in the rate of iron-EA complex formation may explain the antioxidant effects of EA. Furthermore, the EA antioxidant effectiveness was inversely proportional to the Fe(III) concentration, suggesting a competition with EDTA. In conclusion, the results indicate that EA may prevent in vitro free radical formation when it forms a complex with iron ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Inhibition of oxidative metabolism by propionic acid and its reversal by carnitine in isolated rat hepatocytes.

    PubMed Central

    Brass, E P; Fennessey, P V; Miller, L V

    1986-01-01

    The present study was designed to study the interaction of propionic acid and carnitine on oxidative metabolism by isolated rat hepatocytes. Propionic acid (10 mM) inhibited hepatocyte oxidation of [1-14C]-pyruvate (10 mM) by 60%. This inhibition was not the result of substrate competition, as butyric acid had minimal effects on pyruvate oxidation. Carnitine had a small inhibitory effect on pyruvate oxidation in the hepatocyte system (210 +/- 19 and 184 +/- 18 nmol of pyruvate/60 min per mg of protein in the absence and presence of 10 mM-carnitine respectively; means +/- S.E.M., n = 10). However, in the presence of propionic acid (10 mM), carnitine (10 mM) increased the rate of pyruvate oxidation by 19%. Under conditions where carnitine partially reversed the inhibitory effect of propionic acid on pyruvate oxidation, formation of propionylcarnitine was documented by using fast-atom-bombardment mass spectroscopy. Propionic acid also inhibited oxidation of [1-14C]palmitic acid (0.8 mM) by hepatocytes isolated from fed rats. The degree of inhibition caused by propionic acid was decreased in the presence of 10 mM-carnitine (41% inhibition in the absence of carnitine, 22% inhibition in the presence of carnitine). Propionic acid did not inhibit [1-14C]palmitic acid oxidation by hepatocytes isolated from 48 h-starved rats. These results demonstrate that propionic acid interferes with oxidative metabolism in intact hepatocytes. Carnitine partially reverses the inhibition of pyruvate and palmitic acid oxidation by propionic acid, and this reversal is associated with increased propionylcarnitine formation. The present study provides a metabolic basis for the efficacy of carnitine in patients with abnormal organic acid accumulation, and the observation that such patients appear to have increased carnitine requirements ('carnitine insufficiency'). PMID:3790065

  4. The non-steroidal anti-inflammatory drug niflumic acid inhibits Candida albicans growth.

    PubMed

    Baker, Andrew; Northrop, Frederick D; Miedema, Hendrik; Devine, Gary R; Davies, Julia M

    2002-01-01

    The non-steroidal anti-inflammatory drug niflumic acid was found to inhibit growth of the yeast form of Candida albicans. Niflumic acid inhibited respiratory oxygen uptake and it is hypothesised that this was achieved by cytosolic acidification and block of glycolysis. Inhibitory concentrations are compatible with current practice of topical application.

  5. Tetracycline Inhibits Propagation of Deoxyribonucleic Acid Replication and Alters Membrane Properties

    PubMed Central

    Pato, Martin L.

    1977-01-01

    Tetracycline, at concentrations greater than required for inhibition of protein synthesis, rapidly and completely inhibits replication of deoxyribonucleic acid (DNA) in Escherichia coli and Bacillus subtilis. At these concentrations of tetracycline, synthesis of ribonucleic acid is not appreciably altered. In addition to inhibiting DNA replication, tetracycline causes alterations of the cytoplasmic membrane resulting in leakage of intracellular pools of nucleotides, amino acids, and the non-metabolizable sugar analogue, thiomethylgalactoside. As DNA is synthesized at a site on the membrane, alterations of membrane structure by tetracycline may be responsible for the observed inhibition of DNA replication. PMID:403855

  6. Inhibition of carnitine biosynthesis by valproic acid in rats--the biochemical mechanism of inhibition.

    PubMed

    Farkas, V; Bock, I; Cseko, J; Sandor, A

    1996-11-08

    The anticonvulsive drug, valproic acid (VPA), inhibits the biosynthesis of carnitine, and may contribute in this way to carnitine deficiency associated with VPA therapy. The conversion of [3H]-butyrobetaine into [3H]-carnitine was determined 60 min following a single intraperitoneal (i.p.) dose of 1.2 mmol/kg VPA in rats. The fraction of radioactivity found in [3H]-carnitine in the liver decreased from 63.2 +/- 1.50% to 39.2 +/- 1.11% (mean +/- SEM). Total carnitine in the liver also decreased, whereas the precursor butyrobetaine increased from 5.01 +/- 0.71 nmol/g to 8.22 +/- 0.82 nmol/g (mean +/- SEM). VPA also exhibited a dramatic effect on the conversion of an unlabeled loading amount of butyrobetaine. The increment in total carnitine caused by butyrobetaine in liver was reduced from 161 +/- 15.4 nmol/g to 53.2 +/- 5.11 nmol/g (mean +/- SEM). These data prove that VPA reduces the flux through butyrobetaine hydroxylase (EC 1.14.11.1.). The drug in vitro, however, did not inhibit the enzyme directly. Searching for the mechanism of action, we found that VPA decreased the level of alpha-ketoglutarate (alpha-KG; a cofactor of butyrobetaine hydroxylase) from 73.5 +/- 2.90 nmol/g to 52.9 +/- 2.2 nmol/g (mean +/- SEM) in the liver. The level of 1-glutamate showed a rather dramatic decrease in the liver. Moreover, alpha-KG proved to have a protective role against VPA in the [3H]-butyrobetaine conversion experiment.

  7. Cellobionic acid inhibition of cellobiohydrolase I and cellobiose dehydrogenase

    USDA-ARS?s Scientific Manuscript database

    End-product inhibition by cellobiose and glucose is a rate-limiting factor in cellulose hydrolysis by cellulases. While cellobiose and glucose inhibition have been extensively investigated, cellobionate inhibition has been minimally studied despite the discovery that accessory proteins such as cello...

  8. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    PubMed

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.

  9. 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes.

    PubMed

    Liu, Changlu; Kuei, Chester; Zhu, Jessica; Yu, Jingxue; Zhang, Li; Shih, Amy; Mirzadegan, Taraneh; Shelton, Jonathan; Sutton, Steven; Connelly, Margery A; Lee, Grace; Carruthers, Nicholas; Wu, Jiejun; Lovenberg, Timothy W

    2012-06-01

    Niacin raises high-density lipoprotein and lowers low-density lipoprotein through the activation of the β-hydroxybutyrate receptor hydroxycarboxylic acid 2 (HCA2) (aka GPR109a) but with an unwanted side effect of cutaneous flushing caused by vascular dilation because of the stimulation of HCA2 receptors in Langerhans cells in skin. HCA1 (aka GPR81), predominantly expressed in adipocytes, was recently identified as a receptor for lactate. Activation of HCA1 in adipocytes by lactate results in the inhibition of lipolysis, suggesting that agonists for HCA1 may be useful for the treatment of dyslipidemia. Lactate is a metabolite of glucose, suggesting that HCA1 may also be involved in the regulation of glucose metabolism. The low potency of lactate to activate HCA1, coupled with its fast turnover rate in vivo, render it an inadequate tool for studying the biological role of lactate/HCA1 in vivo. In this article, we demonstrate the identification of 3-hydroxybenzoic acid (3-HBA) as an agonist for both HCA2 and HCA1, whereas 3,5-dihydroxybenzoic acid (3,5-DHBA) is a specific agonist for only HCA1 (EC(50) ∼150 μM). 3,5-DHBA inhibits lipolysis in wild-type mouse adipocytes but not in HCA1-deficient adipocytes. Therefore, 3,5-DHBA is a useful tool for the in vivo study of HCA1 function and offers a base for further HCA1 agonist design. Because 3-HBA and 3,5-DHBA are polyphenolic acids found in many natural products, such as fruits, berries, and coffee, it is intriguing to speculate that other heretofore undiscovered natural substances may have therapeutic benefits.

  10. Inhibition of acid-sensing ion channels by chlorogenic acid in rat dorsal root ganglion neurons.

    PubMed

    Qu, Zu-Wei; Liu, Ting-Ting; Qiu, Chun-Yu; Li, Jia-Da; Hu, Wang-Ping

    2014-05-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, it is demonstrated to have potent antinociceptive effect. However, little is understood about the mechanism underlying CGA analgesia. Here, we have found that CGA can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. First, CGA decreased the peak amplitude of proton-gated currents mediated by ASICs in a concentration-dependent manner. Second, CGA shifted the proton concentration-response curve downward, with a decrease of 41.76 ± 8.65% in the maximum current response to protons but with no significant change in the pH0.5 value. Third, CGA altered acidosis-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral administered CGA attenuated nociceptive response to intraplantar injection of acetic acid in rats. ASICs are distributed in peripheral sensory neurons and participate in nociception. Our findings CGA inhibition of native ASICs indicated that CGA may exert analgesic action by modulating ASICs in the primary afferent neurons, which revealed a novel cellular and molecular mechanism underlying CGA analgesia.

  11. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.

    PubMed

    Clarke, S D; Turini, M; Jump, D B; Abraham, S; Reedy, M

    1998-01-01

    Polyunsaturated fatty acids (PUFA) of the (n-6) and (n-3) families inhibit the rate of gene transcription for a number of hepatic lipogenic and glycolytic genes, e.g., fatty acid synthase (FAS). In contrast, saturated and monounsaturated fatty acids have no inhibitory capability. The suppression of gene transcription resulting from the addition of PUFA to a high carbohydrate diet: occurs quickly (< 3 h) after its addition to a high glucose diet; can be recreated with hepatocytes cultured in a serum-free medium containing insulin and glucocorticoids; can be demonstrated in diabetic rats fed fructose; and is independent of glucagon. While the nature of the intracellular PUFA inhibitor is unclear, it appears that delta-6 desaturation is a required step in the process. Recently, the fatty acid activated nuclear factor, peroxisome-proliferator activated receptor (PPAR) was suggested to be the PUFA-response factor. However, the potent PPAR activators ETYA and Wy-14643 did not suppress hepatic expression of FAS, but did induce the PPAR-responsive gene, acyl-CoA oxidase (AOX). Similarly, treating rat hepatocytes with 20:4 (n-6) suppressed FAS expression but had no effect on AOX. Thus, it appears that the PUFA regulation of gene transcription involves a PUFA-response factor that is independent from PPAR.

  12. Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition.

    PubMed

    Byun, Hyun Jung; Kang, Kyung Jin; Park, Mi Kyung; Lee, Hye Ja; Kang, June Hee; Lee, Eun Ji; Kim, You Ri; Kim, Hyun Ji; Kim, Young Woo; Jung, Kyung Chae; Kim, Soo Youl; Lee, Chang Hoon

    2013-09-30

    Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.

  13. Intracellular dehydroascorbic acid inhibits SVCT2-dependent transport of ascorbic acid in mitochondria.

    PubMed

    Fiorani, Mara; Azzolini, Catia; Guidarelli, Andrea; Cerioni, Liana; Scotti, Maddalena; Cantoni, Orazio

    2015-09-01

    Exposure of U937 cells to low concentrations of L-ascorbic acid (AA) is associated with a prompt cellular uptake and a further mitochondrial accumulation of the vitamin. Under the same conditions, dehydroascorbic acid (DHA) uptake was followed by rapid reduction and accumulation of identical intracellular levels of AA, however, in the absence of significant mitochondrial uptake. This event was instead observed after exposure to remarkably greater concentrations of DHA. Furthermore, experiments performed in isolated mitochondria revealed that DHA transport through hexose transporters and Na(+) -dependent transport of AA were very similar. These results suggest that the different subcellular compartmentalization of the vitamin is mediated by events promoting inhibition of mitochondrial AA transport, possibly triggered by low levels of DHA. We obtained results in line with this notion in intact cells, and more direct evidence in isolated mitochondria. This inhibitory effect was promptly reversible after DHA removal and comparable with that mediated by established inhibitors, as quercetin. The results presented collectively indicate that low intracellular concentrations of DHA, because of its rapid reduction back to AA, are a poor substrate for direct mitochondrial uptake. DHA concentrations, however, appear sufficiently high to mediate inhibition of mitochondrial transport of AA/DHA-derived AA.

  14. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  15. Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling

    SciTech Connect

    Vierstra, R.D.; Poff, K.L.

    1981-05-01

    Using geotropism as a control for phototropism, compounds similar to phenylacetic acid that phototreact with flavins and/or have auxin-like activity were examined for their ability to specifically inhibit phototropism in corn seedlings using geotropism as a control. Results using indole-3-acetic acid, napthalene-1-acetic acid, naphthalene-2-acetic acid, phenylacetic acid, and ..beta..-phenylpyruvic acid suggest that such compounds will specifically inhibit phototropism primarily because of their photoreactivity with flavins and not their auxin activity. In addition, the in vivo concentration of phenylacetic acid required to induce specificity was well below that required to stimulate coleoptile growth. Estimates of the percentage of photoreceptor pigment inactivated by phenylacetic acid (>10%) suggest that phenylacetic acid could be used to photoaffinity label the flavoprotein involved in corn seedling phototropism.

  16. Weak acid inhibition of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae.

    PubMed

    Ferreira, M M; Loureiro-Dias, M C; Loureiro, V

    1997-05-20

    The inhibition kinetics of fermentation by Zygosaccharomyces bailii and Saccharomyces cerevisiae were evaluated for weak carboxylic acids. Several regression equations were tried to fit the experimental data, most cases being best fitted to exponential curves. The following parameters were determined: i) acid concentration responsible for 50% inhibition of fermentation (C50%); ii) area under the regression curve up to that concentration (A50%) and iii) exponential inhibition constant (k(i)). These parameters were compared according to their ability to express the inhibitory effect of each acid. In broad terms, the values of k(i) in association with minimum inhibitory concentrations (x(min)), were found best to express the inhibitory effect of the weak acids. However, C50% values were satisfactorily correlated with k(i). The value of A50% more precisely reflected the occasional stimulatory effect of low concentrations of weak acids. Comparison of inhibition parameters for Z. bailii and for S. cerevisiae revealed a higher resistance of the former to acetic, propionic, butyric and benzoic acids and similar resistance to caproic, caprylic and sorbic acids. Previous cultivation in the presence of acetic, propionic and benzoic acids showed a distinct influence on the resistance of both yeasts, although it did not always induce cellular adaptation. Fermentation inhibition showed a good correlation with the lipid solubility of weak acids suggesting that the acids interact with the hydrophobic regions of cell membranes.

  17. Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition.

    PubMed

    Mithil Kumar, N; Gupta, Sanjay Kumar; Jagadeesh, Dani; Kanny, K; Bux, F

    2015-01-01

    Polyaspartic acid (PSI) is suitable for the inhibition of inorganic scale deposition. To enhance its scale inhibition efficiency, PSI was modified by reacting aspartic acid with malic acid (MA) using thermal polycondensation polymerization. This reaction resulted in poly(aspartic acid-co-malic acid) (PSI-co-MA) dual polymer. The structural, chemical and thermal properties of the dual polymers were analysed by using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and gel permeation chromatography. The effectiveness of six different molar ratios of PSI-co-MA dual polymer for calcium carbonate and calcium sulphate scale inhibition at laboratory scale batch experiments was evaluated with synthetic brine solution at selected doses of polymer at 65-70°C by the static scale test method. The performance of PSI-co-MA dual polymer for the inhibition of calcium carbonate and calcium sulphate precipitation was compared with that of a PSI single polymer. The PSI-co-MA exhibited excellent ability to control inorganic minerals, with approximately 85.36% calcium carbonate inhibition and 100% calcium sulphate inhibition at a level of 10 mg/L PSI-co-MA, respectively. Therefore, it may be reasonably concluded that PSI-co-MA is a highly effective scale inhibitor for cooling water treatment applications.

  18. Bile acid inhibition of taurocholate uptake by rat hepatocytes: role of OH groups

    SciTech Connect

    Bellentani, S.; Hardison, W.G.M.; Marchegiano, P.; Zanasi, G.; Manenti, F.

    1987-03-01

    To define further the structural specificity of the taurocholate uptake site, the authors studied the ability of a variety of taurine-conjugated bile acids with differing hydroxyl substituents on the sterol moiety to inhibit (/sup 14/C) taurocholate uptake. Rat hepatocytes isolated by collagenase perfusion were incubated in a tris (hydroxymethyl) aminomethane-phosphate buffer containing (/sup 14/C)taurocholate in the presence or absence of inhibitor bile acid. Stronger inhibitors were studied at a fixed concentration of 5 ..mu..M, weaker ones at 25 ..mu..M. Initial uptake velocity was measured. Uptake velocity could then be related to taurocholate concentration and a V/sub max/ and K/sub m/ could be determined by applying a nonlinear least squares fit to the data obtained with or without inhibitor. The kinetic parameters allowed the determination of the type of inhibition and of inhibition constants (K/sub i/) of the various test bile acids. The data indicate that bile acids containing a 6- or 7-OH group exhibit competitive inhibition, whereas bile acids with no 6- or 7-OH group exhibit noncompetitive inhibition. Of the compounds exhibiting competitive inhibition, K/sub i/ varied with the number of hydroxyl groups on the sterol moiety. They conclude that the presence of absence of a 6- or 7-OH group dictates the mechanism of inhibition; the number of hydroxyl substituents determines the potency of competitive inhibition.

  19. Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation.

    PubMed

    Castro, Maite A; Angulo, Constanza; Brauchi, Sebastián; Nualart, Francisco; Concha, Ilona I

    2008-11-01

    In this paper, we present a novel function for ascorbic acid. Ascorbic acid is an important water-soluble antioxidant and cofactor in various enzyme systems. We have previously demonstrated that an increase in neuronal intracellular ascorbic acid is able to inhibit glucose transport in cortical and hippocampal neurons. Because of the presence of sodium-dependent vitamin C transporters, ascorbic acid is highly concentrated in brain, testis, lung, and adrenal glands. In this work, we explored how ascorbic acid affects glucose and lactate uptake in neuronal and non-neuronal cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression of glucose and ascorbic acid transporters in non-neuronal cells was studied. Like neurons, HEK293 cells expressed GLUT1, GLUT3, and SVCT2. With radioisotope-based methods, only intracellular ascorbic acid, but not extracellular, inhibits 2-deoxyglucose transport in HEK293 cells. As monocarboxylates such as pyruvate and lactate, are important metabolic sources, we analyzed the ascorbic acid effect on lactate transport in cultured neurons and HEK293 cells. Intracellular ascorbic acid was able to stimulate lactate transport in both cell types. Extracellular ascorbic acid did not affect this transport. Our data show that ascorbic acid inhibits glucose transport and stimulates lactate transport in neuronal and non-neuronal cells. Mammalian cells frequently present functional glucose and monocarboxylate transporters, and we describe here a general effect in which ascorbic acid functions like a glucose/monocarboxylate uptake switch in tissues expressing ascorbic acid transporters.

  20. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli.

    PubMed

    Zimhony, Oren; Vilchèze, Catherine; Arai, Masayoshi; Welch, John T; Jacobs, William R

    2007-02-01

    The activity of different analogs of pyrazinamide on Mycobacterium tuberculosis fatty acid synthase type I (FASI) in replicating bacilli was studied. Palmitic acid biosynthesis was diminished by 96% in bacilli treated with n-propyl pyrazinoate, 94% in bacilli treated with 5-chloro-pyrazinamide, and 97% in bacilli treated with pyrazinoic acid, the pharmacologically active agent of pyrazinamide. We conclude that the minimal structure of pyrazine ring with an acyl group is sufficient for FASI inhibition and antimycobacterial activity.

  1. Inhibition of spoilage mould conidia by acetic acid and sorbic acid involves different modes of action, requiring modification of the classical weak-acid theory.

    PubMed

    Stratford, Malcolm; Plumridge, Andrew; Nebe-von-Caron, Gerhardt; Archer, David B

    2009-11-30

    Fungal spoilage of many foods is prevented by weak-acid preservatives such as sorbic acid or acetic acid. We show that sorbic and acetic acids do not both inhibit cells by lowering of internal pH alone and that the "classical weak-acid theory" must be revised. The "classical weak-acid theory" suggests that all lipophilic acids with identical pK(a) values are equally effective as preservatives, causing inhibition by diffusion of molecular acids into the cell, dissociation, and subsequent acidification of the cytoplasm. Using a number of spoilage fungi from different genera, we have shown that sorbic acid was far more toxic than acetic acid, and no correlation existed between resistance to acetic acid and resistance to sorbic acid. The molar ratio of minimum inhibitory concentrations (MICs) (acetic: sorbic) was 58 for Paecilomyces variotii and 14 for Aspergillus phoenicis. Using flow cytometry on germinating conidia of Aspergillusniger, acetic acid at pH 4.0 caused an immediate decline in the mean cytoplasmic pH (pH(i)) falling from neutrality to approximately pH 4.7 at the MIC (80 mM). Sorbic acid also caused a rapid but far smaller drop in pH(i), at the MIC (4.5 mM); the pH remained above pH 6.3. Over 0-5 mM, a number of other weak acids caused a similar fall in cytoplasmic pH. It was concluded that while acetic acid inhibition of A. niger conidia was due to cytoplasmic acidification, inhibition by sorbic acid was not. A possible membrane-mediated mode of action of sorbic acid is discussed.

  2. Model for capping derived from inhibition of surface receptor capping by free fatty acids.

    PubMed Central

    Klausner, R D; Bhalla, D K; Dragsten, P; Hoover, R L; Karnovsky, M J

    1980-01-01

    When low concentrations (2-5 mole %) of cis unsaturated free fatty acids (group A) are intercalated into lymphocyte plasma membrane, capping is inhibited. No effect is seen with trans unsaturated or saturated fatty acids (group B). The capping inhibition is reversible with increasing doses of extracellular calcium. Fluorescence photobleaching recovery has shown that the group A free fatty acids do not inhibit the receptor immobilization associated with patch formation, but inhibit the final energy-dependent movement of the patched receptors into a cap. We have also shown that the group A free fatty acids cause a shift in membrane-bound calcium to the lipid phase from probable protein-associated sites. We have incorporated these findings into a model for capping and membrane-cytoskeletal interactions. Images PMID:6928636

  3. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase.

    PubMed

    Crans, D C; Simone, C M; Saha, A K; Glew, R H

    1989-11-30

    A combination of enzyme kinetics and 51V NMR spectroscopy was used to identify the species of vanadate that inhibits acid phosphatases. Monomeric vanadate was shown to inhibit wheat germ and potato acid phosphatases. At pH 5.5, the vanadate dimer inhibits the human prostatic acid phosphatase whereas at pH 7.0 it is the vanadate monomer that inhibits this enzyme. The pH-dependent shift in the affinity of the prostatic phosphatase for vanadate is presumably due to deprotonation of an amino acid side chain in or near the binding site resulting in a conformational change in the protein. pH may be a subtle effector of the insulin-like vanadate activity in biological systems and may explain some of the differences in selectivity observed with the protein phosphatases.

  4. Inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA methylation by ellagic acid.

    PubMed Central

    Dixit, R; Gold, B

    1986-01-01

    Ellagic acid, a naturally occurring plant phenol, inhibits the activity of the direct-acting mutagen N-methyl-N-nitrosourea (MeNU) in Salmonella typhimurium TA100. Ellagic acid at 0.10, 0.25, 0.50, and 1.00 mM inhibited the mutagenicity of MeNU (0.40 mM) by 3%, 13%, 45%, and 60%, respectively. Ellagic acid (3 mM) also inhibited the mutagenic activity of N,N-dimethylnitrosamine (25-200 mM) in the presence of pyrazole-induced rat liver fraction S-9. The effect of ellagic acid on DNA methylation was studied by incubating 0, 0.72, 1.32, 2.64, and 6.60 mM ellagic acid with DNA (0.9 mM nucleotide) and [3H]MeNU (0.66 mM). HPLC analysis of DNA hydrolysates showed that ellagic acid caused a dose-dependent 36-84% decrease in O6-methylguanine but only a 20% decrease in the 7-methylguanine adduct. Under conditions where methylation at the O6 position of guanine in double-stranded DNA was inhibited 65% by ellagic acid, no significant inhibition of either O6- or 7-methylguanine formation was detected in single-stranded DNA. Affinity-binding studies revealed that [3H]ellagic acid binds equally to double-stranded or single-stranded DNA but that poly(dA X dT) binds 1.5 times as much ellagic acid as does poly(dG X dC). The binding of ellagic acid to DNA is dependent on the concentration of both ellagic acid and DNA. The specific inhibition of O6-methylguanine formation only in double-stranded DNA and the relatively low inhibition of 7-methylguanine formation rule out the possibility that ellagic acid prevents DNA alkylation by scavenging the electrophilic intermediate generated in the hydrolysis of MeNU. The results suggest that ellagic acid inhibition of MeNU-induced mutagenicity is due to specific inhibition of methylation at the O6 position of guanine through an ellagic acid-duplex DNA affinity-binding mechanism. PMID:3464940

  5. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone.

    PubMed

    Orlando, Benjamin J; Malkowski, Michael G

    2016-07-15

    Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid (AA) and endocannabinoid substrates, placing the enzyme at a unique junction between the eicosanoid and endocannabinoid signaling pathways. COX-2 is a sequence homodimer, but the enzyme displays half-of-site reactivity, such that only one monomer of the dimer is active at a given time. Certain rapid reversible, competitive nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit COX-2 in a substrate-selective manner, with the binding of inhibitor to a single monomer sufficient to inhibit the oxygenation of endocannabinoids but not arachidonic acid. The underlying mechanism responsible for substrate-selective inhibition has remained elusive. We utilized structural and biophysical methods to evaluate flufenamic acid, meclofenamic acid, mefenamic acid, and tolfenamic acid for their ability to act as substrate-selective inhibitors. Crystal structures of each drug in complex with human COX-2 revealed that the inhibitor binds within the cyclooxygenase channel in an inverted orientation, with the carboxylate group interacting with Tyr-385 and Ser-530 at the top of the channel. Tryptophan fluorescence quenching, continuous-wave electron spin resonance, and UV-visible spectroscopy demonstrate that flufenamic acid, mefenamic acid, and tolfenamic acid are substrate-selective inhibitors that bind rapidly to COX-2, quench tyrosyl radicals, and reduce higher oxidation states of the heme moiety. Substrate-selective inhibition was attenuated by the addition of the lipid peroxide 15-hydroperoxyeicosatertaenoic acid. Collectively, these studies implicate peroxide tone as an important mechanistic component of substrate-selective inhibition by flufenamic acid, mefenamic acid, and tolfenamic acid.

  6. Synergistic inhibition of Listeria monocytogenes in vitro through the combination of octanoic acid and acidic calcium sulfate.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, T Matthew

    2011-01-01

    It has been hypothesized that inhibition of foodborne pathogens can be enhanced by using antimicrobials in combination. A broth dilution assay was devised to determine whether inhibition of Listeria monocytogenes exposed to the combination of the fatty acid octanoic acid (OCT) and the organic acid-containing antimicrobial acidic calcium sulfate (ACS) was enhanced compared with the inhibition of the pathogen exposed to either antimicrobial applied singly. MICs for OCT and ACS were 25.00 μg/g and 1.56 ml/liter, respectively, for all strains of the pathogen tested. Fractional inhibitory concentrations (FICs) from the combination exposures were calculated for use in characterizing the antimicrobial interaction as antagonistic, additive indifferent, or synergistic with respect to L. monocytogenes inhibition. Combining OCT and ACS resulted in observed synergistic inhibition of L. monocytogenes; isobolograms for all strains curved toward the origin, and FIC indices (FIC(I)s) were <1.0. Future investigations of the antimicrobial combination should focus on determining the mechanism of action of combined antimicrobials and the levels of antimicrobials required for pathogen inhibition on the surfaces of ready-to-eat meats.

  7. Relieving Mipafox Inhibition in Organophosphorus Acid Anhydrolase by Rational Design

    DTIC Science & Technology

    2013-03-01

    acid anhydrolase (OPAA, EC 3.1.8.2) was purified from halophilic Alteromonas sp. bacteria. OPPA displayed hydrolysis activity against several highly...2010, 49, 547–559. 3. DeFrank, J.J.; Cheng, T.-C. Purification and Properties of Organophosphorus Acid Anhydrolase from a Halophilic Bacterial

  8. Boric acid application guidelines for intergranular corrosion inhibition

    SciTech Connect

    Piskor, S.R. . Nuclear Services Div.)

    1990-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied on line, or by means of crevice flushing, low power soaks, or a combination of these methods. When boric acid is used, it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and its correct application. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. In addition, new information has recently become available. This report has been prepared and revised to be comprehensive treatise on boric acid relevant to its application in nuclear steam generators. Relevant boric acid information from 1987--89 has been added to provide the latest available data from laboratory testing and power plant application. 5 figs.

  9. Inhibition of rat liver microsomal fatty acid chain elongation by gemfibrozil in vitro.

    PubMed

    Sánchez, R M; Viñals, M; Alegret, M; Vázquez, M; Adzet, T; Merlos, M; Laguna, J C

    1992-03-23

    Gemfibrozil, a hypolipidemic drug mainly used in the treatment of hypertriglyceridemic states, strongly inhibits the rat hepatic microsomal fatty acid chain elongation system in vitro. The inhibition is independent on the reducing cofactor used in the assay. Furthermore, gemfibrozil seems to act by inhibiting the rate-limiting step of the elongation process, the condensing reaction, without discriminating among the proposed three different condensing enzymes, devoted to condensation of saturated, mono-unsaturated and polyunsaturated acyl-CoA substrates.

  10. Microencapsulation of tannic acid for oral administration to inhibit carbohydrate digestion in the gastrointestinal tract.

    PubMed

    Zhao, Wei; Iyer, Vidya; Flores, Floirendo P; Donhowe, Erik; Kong, Fanbin

    2013-06-01

    The prevalence of diabetes mellitus and obesity is rapidly rising worldwide. Recently, there is increasing evidence that phytochemicals such as polyphenols in our diet could directly inhibit the activities of key digestive enzymes, representing a novel method of controlling and preventing diabetes mellitus and obesity. More research is required to determine how to effectively utilize phytochemicals within the gastrointestinal (GI) tract to obtain maximum inhibition of digestive enzymes. This study investigated the inhibition efficiency of tannic acid (TA) on α-amylase as compared with other potential inhibitors using an in vitro method. The inhibition mode and kinetics were studied. The results showed that tannic acid (TA) is more effective in inhibiting α-amylase than a commercial starch blocker (Phase 2 Starch Blocker), and some selected flavonoids and polyphenols including quercetin, rutin, and polyphenon from green tea. It is also found that inhibition of α-amylase by TA in the GI tract is difficult if administered orally due to the non-specific and reversible noncompetitive interaction between tannic acid and α-amylase or other proteins. Accordingly, a pH-sensitive delivery system using calcium-alginate microspheres encapsulating tannic acid was successfully developed for oral administration to inhibit carbohydrate digestion in the GI tract. The encapsulated TA in calcium-alginate microspheres could be protected from the proteins in the stomach, and sustain release and inhibit α-amylase activity in the small intestine.

  11. Destabilization, oligomerization and inhibition of the mitogenic activity of acidic fibroblast-growth factor by aurintricarboxylic acid.

    PubMed

    Lozano, R M; Rivas, G; Giménez-Gallego, G

    1997-08-15

    The triphenylmethane derivative aurintricarboxylic acid has been used to inhibit angiogenesis, vascular smooth muscle cell proliferation and cell transformation, an effect that has been attributed to its relatively nonspecific inhibitory activity of protein-nucleic acid interactions. Here, we show that this compound binds to acidic fibroblast growth factor, a prototypic member of a family of protein mitogens activated by heparin, altering its physicochemical properties and decreasing its mitogenic activity. Counteraction of the effects of aurintricarboxylic acid by heparin shows that the two compounds have opposite and reversible effects on acidic fibroblast growth factor structure and biological activity. The studies reported here may contribute to a deeper understanding of the inhibition of fibroblast-growth-factor-dependent mitogenesis of relevance to future pharmacologic developments.

  12. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  13. A ROLE FOR AMPK IN THE INHIBITION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE BY POLYUNSATURATED FATTY ACIDS

    PubMed Central

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-01-01

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as β-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser307 phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids. PMID:19646964

  14. Inhibition of Aspergillus spp. and Penicillium spp. by fatty acids and their monoglycerides.

    PubMed

    Altieri, Clelia; Cardillo, Daniela; Bevilacqua, Antonio; Sinigaglia, Milena

    2007-05-01

    The antifungal activity of three fatty acids (lauric, myristic, and palmitic acids) and their monoglycerides (monolaurin, monomyristic acid, and palmitin, respectively) against Aspergillus and Penicillium species in a model system was investigated. Data were modeled through a reparameterized Gompertz equation. The maximum colony diameter attained within the experimental time (30 days), the maximal radial growth rate, the lag time (i.e., the number of days before the beginning of radial fungal growth), and the minimum detection time (MDT; the number of days needed to attain 1 cm colony diameter) were evaluated. Fatty acids and their monoglycerides inhibited mold growth by increasing MDT and lag times. The effectiveness of the active compounds seemed to be strain and genus dependent. Palmitic acid was the most effective chemical against aspergilli, whereas penicilli were strongly inhibited by myristic acid. Aspergilli also were more susceptible to fatty acids than were penicilli, as indicated by the longer MDT.

  15. Dual mechanisms for telomerase inhibition in DLD-1 human colorectal adenocarcinoma cells by polyunsaturated fatty acids.

    PubMed

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2004-01-01

    Polyunsaturated fatty acids (PUFAs) have been reported to have antitumor activity. In this study, we have tested whether telomerase might be a target for the antitumor effect of fatty acids using DLD-1 colorectal adenocarcinoma cells. In a cell-free approach, fatty acids were added directly to cell lysates, and we confirmed that increasing fatty acid unsaturation correlates with increased inhibition of telomerase activity. Using a cell culture approach, DLD-1 cells were cultured with fatty acids. In a time and dose dependent manner, EPA and DHA suppressed cellular telomerase activity and the mRNAs encoding hTERT (human telomerase reverse transcriptase) and c-myc. Based on these observations, we suggest that PUFAs inhibit telomerase activity through dual mechanisms: direct inhibition of enzymatic activity and down regulation of hTERT, one of the telomerase components.

  16. Oligogalacturonic Acid Inhibits Vascular Calcification by Two Mechanisms: Inhibition of Vascular Smooth Muscle Cell Osteogenic Conversion and Interaction With Collagen.

    PubMed

    Hodroge, Ahmed; Trécherel, Eric; Cornu, Marjorie; Darwiche, Walaa; Mansour, Ali; Ait-Mohand, Katia; Verissimo, Thomas; Gomila, Cathy; Schembri, Carole; Da Nascimento, Sophie; Elboutachfaiti, Redouan; Boullier, Agnès; Lorne, Emmanuel; Courtois, Josiane; Petit, Emmanuel; Toumieux, Sylvestre; Kovensky, José; Sonnet, Pascal; Massy, Ziad A; Kamel, Saïd; Rossi, Claire; Ausseil, Jérôme

    2017-07-01

    Cardiovascular diseases constitute the leading cause of mortality worldwide. Calcification of the vessel wall is associated with cardiovascular morbidity and mortality in patients having many diseases, including diabetes mellitus, atherosclerosis, and chronic kidney disease. Vascular calcification is actively regulated by inductive and inhibitory mechanisms (including vascular smooth muscle cell adaptation) and results from an active osteogenic process. During the calcification process, extracellular vesicles (also known as matrix vesicles) released by vascular smooth muscle cells interact with type I collagen and then act as nucleating foci for calcium crystallization. Our primary objective was to identify new, natural molecules that inhibit the vascular calcification process. We have found that oligogalacturonic acids (obtained by the acid hydrolysis of polygalacturonic acid) reduce in vitro inorganic phosphate-induced calcification of vascular smooth muscle cells by 80% and inorganic phosphate-induced calcification of isolated rat aortic rings by 50%. A specific oligogalacturonic acid with a degree of polymerization of 8 (DP8) was found to inhibit the expression of osteogenic markers and, thus, prevent the conversion of vascular smooth muscle cells into osteoblast-like cells. We also evidenced in biochemical and immunofluorescence assays a direct interaction between matrix vesicles and type I collagen via the GFOGER sequence (where single letter amino acid nomenclature is used, O=hydroxyproline) thought to be involved in interactions with several pairs of integrins. DP8 inhibits vascular calcification development mainly by inhibition of osteogenic marker expression but also partly by masking the GFOGER sequence-thereby, preventing matrix vesicles from binding to type I collagen. © 2017 American Heart Association, Inc.

  17. Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.

    PubMed

    Huisjes, Eline H; de Hulster, Erik; van Dam, Jan C; Pronk, Jack T; van Maris, Antonius J A

    2012-08-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.

  18. Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose

    PubMed Central

    Huisjes, Eline H.; de Hulster, Erik; van Dam, Jan C.; Pronk, Jack T.

    2012-01-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pKa value of galacturonic acid (3.51), the addition of 10 g · liter−1 galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter−1 galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  19. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway*

    PubMed Central

    Shan, Jian-zhen; Xuan, Yan-yan; Zheng, Shu; Dong, Qi; Zhang, Su-zhan

    2009-01-01

    Objective: To investigate the effects of ursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory effects of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 μmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P<0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P<0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer. PMID:19735099

  20. Growth inhibition of Cronobacter spp. strains in reconstituted powdered infant formula acidified with organic acids supported by natural stomach acidity.

    PubMed

    Zhu, S; Schnell, S; Fischer, M

    2013-09-01

    Cronobacter is associated with outbreaks of rare, but life-threatening cases of meningitis, necrotizing enterocolitis, and sepsis in newborns. This study was conducted to determine the effect of organic acids on growth of Cronobacter in laboratory medium and reconstituted powdered infant formula (PIF) as well as the bacteriostatic effect of slightly acidified infant formula when combined with neonatal gastric acidity. Inhibitory effect of seven organic acids on four acid sensitive Cronobacter strains was determined in laboratory medium with broth dilution method at pH 5.0, 5.5 and 6.0. Acetic, butyric and propionic acids were most inhibitive against Cronobacter in the laboratory medium. The killing effect of these three acids was partially buffered in reconstituted PIF. Under neonatal gastric acid condition of pH 5.0, the slightly acidified formula which did not exert inhibition effect solely reduced significantly the Cronobacter populations. A synergistic effect of formula moderately acidified with organic acid combined with the physiological infant gastric acid was visible in preventing the rapid growth of Cronobacter in neonatal stomach. The study contributed to a better understanding of the inhibitory effect of organic acids on Cronobacter growth in different matrixes and provided new ideas in terms of controlling bacteria colonization and translocation by acidified formula. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. MYB76 Inhibits Seed Fatty Acid Accumulation in Arabidopsis

    PubMed Central

    Duan, Shaowei; Jin, Changyu; Li, Dong; Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Hai, Jiangbo; Ma, Haoli; Chen, Mingxun

    2017-01-01

    The MYB family of transcription factors is important in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses in Arabidopsis. However, their role in regulating fatty acid accumulation in seeds is still largely unclear. Here, we found that MYB76, localized in the nucleus, was predominantly expressed in developing seeds during maturation. The myb76 mutation caused a significant increase in the amounts of total fatty acids and several major fatty acid compositions in mature seeds, suggesting that MYB76 functioned as an important repressor during seed oil biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed remarkable alteration of numerous genes involved in photosynthesis, fatty acid biosynthesis, modification, and degradation, and oil body formation in myb76 seeds at 12 days after pollination. These results help us to understand the novel function of MYB76 and provide new insights into the regulatory network of MYB transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:28270825

  2. Boric acid application guidelines for intergranular corrosion inhibition: Topical report

    SciTech Connect

    Hermer, R.E.

    1987-12-01

    A significant fraction of the operating Pressurized Water Reactor steam generators have used or are using boric acid as an inhibitor to control stress corrosion cracking, intergranular attack, or denting. Boric acid is applied via crevice flushing, low power soaks, on-line, or using a combination of these methods. When boric acid is used it is important to have knowledge about its chemical and physical properties, its effect on corrosion, and how it should be correctly applied. The data on these subjects may be found in a diversity of sources, which are often not readily available or convenient to use. This document has been prepared to be a comprehensive treatise on boric acid relevant to its application in nuclear steam generators. 49 refs., 31 figs., 16 tabs.

  3. Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical.

    PubMed Central

    Winterbourn, C C; Stern, A

    1987-01-01

    The ability of intact human red cells to scavenge extracellularly generated H2O2 and O2-, and to prevent formation of hydroxyl radicals and hypochlorous acid has been examined. Red cells inhibited oxidation of ferrocytochrome c by H2O2. Cells treated with aminotriazole no longer inhibited, indicating that protection was almost entirely due to intracellular catalase. Contribution by the GSH system was slight, and apparent only with low H2O2 concentrations when catalase was inhibited by aminotriazole. The cells were about a quarter as efficient at inhibiting cytochrome c oxidation as an equivalent concentration of purified catalase. No inhibition of O2(-)-dependent reduction of ferricytochrome c or nitroblue tetrazolium was observed, although extracted red cell superoxide dismutase inhibited nitroblue tetrazolium reduction at one fortieth the concentration of that in the cells. Red cells efficiently inhibited deoxyribose oxidation by hydroxyl radicals generated from H2O2, O2- and Fe(EDTA), and myeloperoxidase-dependent oxidation of methionine to methionine sulfoxide by stimulated neutrophils. Most of the red cell inhibition of hydroxyl radical production, and all the inhibition of methionine oxidation, was prevented by blocking intracellular catalase with aminotriazole. Thus red cells are able to efficiently scavenge H2O2, but not O2-, produced in their environment, and to inhibit formation of hydroxyl radicals and hypochlorous acid. They may therefore have an important role in extracellular antioxidant defense. PMID:2824562

  4. Photodegradation of lipopolysaccharides and the inhibition of macrophage activation by anthraquinone-boronic acid hybrids.

    PubMed

    Takahashi, Daisuke; Miura, Takuya; Toshima, Kazunobu

    2012-08-07

    Target-selective photodegradation of 3-deoxy-D-manno-2-octulopyranosonic acid (KDO) was achieved without additives and under neutral conditions using a designed anthraquinone-boronic acid hybrid and long wavelength UV light irradiation. The hybrid can photodegrade lipopolysaccharides (LPS) and inhibit macrophage activation induced by LPS.

  5. Inhibition of the β-class carbonic anhydrases from Mycobacterium tuberculosis with carboxylic acids.

    PubMed

    Maresca, Alfonso; Vullo, Daniela; Scozzafava, Andrea; Manole, Gheorghe; Supuran, Claudiu T

    2013-04-01

    The growth of Mycobacterium tuberculosis is strongly inhibited by weak acids although the mechanism by which these compounds act is not completely understood. A series of substituted benzoic acids, nipecotic acid, ortho- and para-coumaric acid, caffeic acid and ferulic acid were investigated as inhibitors of three β-class carbonic anhydrases (CAs, EC 4.2.1.1) from this pathogen, mtCA 1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were inhibited with efficacies between the submicromolar to the micromolar one, depending on the scaffold present in the carboxylic acid. mtCA 3 was the isoform mostly inhibited by these compounds (K(I)s in the range of 0.11-0.97 µM); followed by mtCA 2 (K(I)s in the range of 0.59-8.10 µM), whereas against mtCA 1, these carboxylic acids showed inhibition constants in the range of 2.25-7.13 µM. This class of relatively underexplored β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing antimycobacterial agents with a diverse mechanism of action compared to the clinically used drugs for which many strains exhibit multi-drug or extensive multi-drug resistance.

  6. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    USDA-ARS?s Scientific Manuscript database

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  7. recA gene product is responsible for inhibition of deoxyribonucleic acid synthesis after ultraviolet irradiation.

    PubMed Central

    Trgovcević, Z; Petranović, D; Petranović, M; Salaj-Smic, E

    1980-01-01

    Deoxyribonucleic acid synthesis after ultraviolet irradiation was studied in wild-type, uvrA, recB, recA recB, and recA Escherichia coli strains. Inhibition of deoxyribonucleic acid synthesis, which occurs almost immediately after exposing the cells to ultraviolet radiation, depends on the functional gene recA. PMID:6997276

  8. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  9. Inhibition of hydroxycinnamic acid sulfation by flavonoids and their conjugated metabolites.

    PubMed

    Wong, Chi Chun; Williamson, Gary

    2013-01-01

    Hydroxycinnamic acids and flavonoids are dietary phenolic antioxidants that are abundant in our diet. Hydroxycinnamic acids are highly sulfated in vivo, and sulfotransferases (SULTs), in particular SULT1A1, play a major role in their metabolism. Flavonoids are potent inhibitors of human SULTs. In this study, the potential metabolic interaction between dietary hydroxycinnamic acids and flavonoids was investigated. Flavonoids, such as luteolin, quercetin, daidzein, and genistein, are identified as potent inhibitors of hydroxycinnamic acid sulfation in human liver S9 homogenate with IC50 values <1 µM. The inhibitory activity was less potent in the human intestinal S9 homogenate. We also demonstrate that quercetin conjugates found in vivo (quercetin-3-O-glucuronide, quercetin-7-O-glucuronide, and quercetin-3'-O-sulfate) moderately inhibited the sulfation of hydroxycinnamic acids in human liver S9. In an intact cellular system, human HepG2 cells, caffeic acid and ferulic acid sulfation was inhibited by luteolin and quercetin (IC50 : 1.6-3.9 µM). Quercetin-3'-O-sulfate weakly inhibited sulfation. Quercetin glucuronides, limited by their low cellular uptake, were ineffective. These data suggest that the inhibition of SULTs by flavonoids and in vivo flavonoid conjugates may modify the bioavailability of dietary hydroxycinnamic acids by suppressing their conversion to sulfated metabolites. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  10. Ursodeoxycholic Acid but Not Tauroursodeoxycholic Acid Inhibits Proliferation and Differentiation of Human Subcutaneous Adipocytes

    PubMed Central

    Mališová, Lucia; Kováčová, Zuzana; Koc, Michal; Kračmerová, Jana; Štich, Vladimír; Rossmeislová, Lenka

    2013-01-01

    Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells

  11. Growth inhibition of Erwinia amylovora and related Erwinia species by neutralized short‑chain fatty acids.

    PubMed

    Konecki, Katrin; Gernold, Marina; Wensing, Annette; Geider, Klaus

    2013-11-01

    Short-chain fatty acids (SCFAs) are used to preserve food and could be a tool for control of fire blight caused by Erwinia amylovora on apple, pear and related rosaceous plants. Neutralized acids were added to buffered growth media at 0.5–75 mM and tested at pHs ranging from 6.8 to 5.5. Particularly at low pH, SCFAs with a chain length exceeding that of acetic acid such as propionic acid were effective growth inhibitors of E. amylovora possibly due to uptake of free acid and its intracellular accumulation. We also observed high inhibition with monochloroacetic acid. An E. billingiae strain was as sensitive to the acids as E. amylovora or E. tasmaniensis. Fire blight symptoms on pear slices were reduced when the slices were pretreated with neutralized propionic acid. Propionic acid is well water soluble and could be applied in orchards as a control agent for fire blight.

  12. Salicylic acid inhibits enzymatic browning of fresh-cut Chinese chestnut (Castanea mollissima) by competitively inhibiting polyphenol oxidase.

    PubMed

    Zhou, Dan; Li, Lin; Wu, Yanwen; Fan, Junfeng; Ouyang, Jie

    2015-03-15

    The inhibitory effect and associated mechanisms of salicylic acid (SA) on the browning of fresh-cut Chinese chestnut were investigated. Shelled and sliced chestnuts were immersed in different concentrations of an SA solution, and the browning of the chestnut surface and interior were inhibited. The activities of polyphenol oxidase (PPO) and peroxidase (POD) extracted from chestnuts were measured in the presence and absence of SA. SA at concentrations higher than 0.3g/L delayed chestnut browning by significantly inhibiting the PPO activity (P<0.01), and the POD activity was not significantly affected (P>0.05). The binding and inhibition modes of SA with PPO and POD, determined by AUTODOCK 4.2 and Lineweaver-Burk plots, respectively, established SA as a competitive inhibitor of PPO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Ginkgolic acid inhibits HIV protease activity and HIV infection in vitro

    PubMed Central

    Lü, Jian-Ming; Yan, Shaoyu; Jamaluddin, Saha; Weakley, Sarah M.; Liang, Zhengdong; Siwak, Edward B.; Yao, Qizhi; Chen, Changyi

    2012-01-01

    Summary Background Several HIV protease mutations, which are resistant to clinical HIV protease inhibitors (PIs), have been identified. There is a great need for second-generation PIs with different chemical structures and/or with an alternative mode of inhibition. Ginkgolic acid is a natural herbal substance and a major component of the lipid fraction in the nutshells of the Ginkgo biloba tree. The objective of this study was to determine whether ginkgolic acid could inhibit HIV protease activity in a cell free system and HIV infection in human cells. Material/Methods Purified ginkgolic acid and recombinant HIV-1 HXB2 KIIA protease were used for the HIV protease activity assay. Human peripheral blood mononuclear cells (PBMCs) were used for HIV infection (HIV-1SF162 virus), determined by a p24gag ELISA. Cytotoxicity was also determined. Results Ginkgolic acid (31.2 μg/ml) inhibited HIV protease activity by 60%, compared with the negative control, and the effect was concentration-dependent. In addition, ginkgolic acid treatment (50 and 100 μg/ml) effectively inhibited the HIV infection at day 7 in a concentration-dependent manner. Ginkgolic acid at a concentration of up to 150 μg/ml demonstrated very limited cytotoxicity. Conclusions Ginkgolic acid effectively inhibits HIV protease activity in a cell free system and HIV infection in PBMCs without significant cytotoxicity. Ginkgolic acid may inhibit HIV protease through different mechanisms than current FDA-approved HIV PI drugs. These properties of ginkgolic acid make it a promising therapy for HIV infection, especially as the clinical problem of viral resistance to HIV PIs continues to grow. PMID:22847190

  14. SOLUBLE HEPATIC δ-AMINOLEVULINIC ACID SYNTHETASE: END-PRODUCT INHIBITION OF THE PARTIALLY PURIFIED ENZYME*

    PubMed Central

    Scholnick, Perry L.; Hammaker, Lydia E.; Marver, Harvey S.

    1969-01-01

    The present study confirms the existence of hepatic δ-aminolevulinic acid synthetase in the cytosol of the liver, suggests that this enzyme may be in transit to the mitochondria, and defines some of the characteristics of the partially purified enzyme. The substrate and cofactor requirements are similar to those of mitochondrial δ-aminolevulinic acid synthetase. Heme strongly inhibits the partially purified enzyme. A number of proteins that bind heme block this inhibition, which explains previous failures to demonstrate heme inhibition in crude systems. End-product inhibition of δ-aminolevulinic acid synthetase in the mitochondria may play an important role in the regulation of heme biosynthesis in eukaryotic cells. PMID:5257968

  15. Role of hydroxyl group in the inhibitive action of benzoic acid toward corrosion of aluminum in nitric acid

    SciTech Connect

    Yadav, P.N.S.; Singh, A.K.; Wadhwani, R.

    1999-10-01

    Corrosion inhibition action of benzoic acid, p-hydroxy benzoic acid, 2-4-dihydroxy benzoic acid, and 3-4-5-trihydroxy benzoic acid toward aluminum alloy 3003 (UNS A93003) in 20% (wt%) nitric acid (HNO{sub 3}) using different concentrations of these compounds at 30 C, 40 C, and 50 C has been studied thoroughly. 3-4-5-trihydroxy benzoic acid (inhibition efficiency (IE): 30% and 72%) was the most effective inhibitor followed by 2-4-dihydroxy benzoic acid (IE: 22% to 62%) p-hydroxy benzoic acid (IE: 11% to 52%), and benzoic acid (IE: 2.5% to 15%). IE increased with concentration and its maximum value was observed at 0.5% concentration of all inhibitors used. The percentage of IE of the inhibitors decreased with an increase in temperature from 30 C to 50 C. Values of heat adsorption and activation energy were calculated from weight loss data, which came out in the range for the reaction occurring at the surface. The behavior of inhibitors studied deviated from the Langmuir isotherm. The IE of higher hydroxy species was improved when more hydroxy centers were added. Anodic and cathodic polarization curves were shifted toward lower current density regions in the presence of inhibitors. This revealed that they were mixed inhibitors.

  16. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type1) diabetic rats

    PubMed Central

    Nagai, Ryoji; Nagai, Mime; Shimasaki, Satoko; Baynes, John W.; Fujiwara, Yukio

    2010-01-01

    Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end products (AGEs) such as Nε-(carboxyethyl)lysine (CEL) and Nε-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis . We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes. PMID:20117096

  17. Modified Lactic Acid Bacteria Detect and Inhibit Multiresistant Enterococci

    PubMed Central

    2015-01-01

    We designed Lactococcus lactis to detect Enterococcus faecalis. Upon detection, L. lactis produce and secrete antienterococcal peptides. The peptides inhibit enterococcal growth and reduce viability of enterococci in the vicinity of L. lactis. The enterococcal sex pheromone cCF10 serves as the signal for detection. Expression vectors derived from pCF10, a cCF10-responsive E. faecalis sex-pheromone conjugative plasmid, were engineered in L. lactis for the detection system. Recombinant host strains were engineered to express genes for three bacteriocins, enterocin A, hiracin JM79 and enterocin P, each with potent antimicrobial activity against E. faecalis. Sensitive detection and specific inhibition occur both in agar and liquid media. The engineered L. lactis also inhibited growth of multidrug-resistant E. faecium strains, when induced by cCF10. The presented vectors and strains can be components of a toolbox for the development of alternative antibiotic technologies targeting enterococci at the site of infection. PMID:24896372

  18. Selective inhibition of leukotriene C/sub 4/ synthesis in human neutrophils by ethacrynic acid

    SciTech Connect

    Leung, K.H.

    1986-05-29

    Addition of glutathione S-transferase inhibitors, ethyacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA) to human neutrophils led to inhibition of leukotriene C/sub 4/ (LTC/sub 4/) synthesis induced by calcium ionophore A23187. ET is the most specific of these inhibitors for it had little effect on LTB/sub 4/, PGE/sub 2/, and 5-HETE synthesis. The inhibition of LTC/sub 4/ was irreversible and time dependent. ET also had little effect on /sup 3/H-AA release from A23187-stimulated neutrophils.

  19. The (5Z)-5-Pentacosenoic and 5-Pentacosynoic Acids Inhibit the HIV-1 Reverse Transcriptase.

    PubMed

    Moreira, Lizabeth Giménez; Orellano, Elsie A; Rosado, Karolyna; Guido, Rafael V C; Andricopulo, Adriano D; Soto, Gabriela Ortiz; Rodríguez, José W; Sanabria-Ríos, David J; Carballeira, Néstor M

    2015-10-01

    The natural fatty acids (5Z)-5-pentacosenoic and (9Z)-9-pentacosenoic acids were synthesized for the first time in eight steps starting from either 4-bromo-1-butanol or 8-bromo-1-butanol and in 20-58% overall yields, while the novel fatty acids 5-pentacosynoic and 9-pentacosynoic acids were also synthesized in six steps and in 34-43% overall yields. The ∆(5) acids displayed the best IC50's (24-38 µM) against the HIV-1 reverse transcriptase (RT) enzyme, comparable to nervonic acid (IC50 = 12 µM). The ∆(9) acids were not as effective towards HIV-RT with the (9Z)-9-pentacosenoic acid displaying an IC50 = 54 µM and the 9-pentacosynoic acid not inhibiting the enzyme at all. Fatty acid chain length and position of the unsaturation was important for the observed inhibition. None of the synthesized fatty acids were toxic (IC50 > 500 µM) towards peripheral blood mononuclear cells. Molecular modeling studies indicated the structural determinants underlying the biological activity of the most potent compounds. These results provide new insights into the structural requirements that must be present in fatty acids so as to enhance their inhibitory potential towards HIV-RT.

  20. Zoledronic acid inhibits aromatase activity and phosphorylation: potential mechanism for additive zoledronic acid and letrozole drug interaction.

    PubMed

    Schech, Amanda J; Nemieboka, Brandon E; Brodie, Angela H

    2012-11-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole. This combination significantly increased inhibition of aromatase activity of AC-1 cells when compared to letrozole alone. Treatment of 1 nM letrozole in combination with 1 μM or 10 μM ZA resulted in an additive drug interaction on inhibition of cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine residues. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1 μM and 10 μM ZA on cell viability following treatment for 72 h, as shown by a shift to the right in the estradiol dose-response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability.

  1. Salicylhydroxamic acid (SHAM) inhibition of the dissolved inorganic carbon concentrating process in unicellular green algae

    SciTech Connect

    Goyal, A.; Tolbert, N.E. )

    1990-03-01

    Rates of photosynthetic O{sub 2} evolution, for measuring K{sub 0.5}(CO{sub 2} + HCO{sub 3}{sup {minus}}) at pH 7, upon addition of 50 micromolar HCO{sub 3}{sup {minus}} to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K{sub i}(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO{sub 2} uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O{sub 2} evolution dependent on low levels of dissolved inorganic carbon (50 micromolar NaHCO{sub 3}), and the rate of {sup 14}CO{sub 2} fixation with 100 micromolar ({sup 14}C)HCO{sub 3}{sup {minus}}. Salicylhydroxamic acid inhibition of O{sub 2} evolution and {sup 14}CO{sub 2}-fixation was reversed by higher levels of NaHCO{sub 3}. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO{sub 2} accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.

  2. Diterpene resin acids: Major active principles in tall oil against Variegated cutworm,Peridroma saucia (Lepidoptera: Noctuidae).

    PubMed

    Xie, Y; Isman, M B; Feng, Y; Wong, A

    1993-06-01

    Tall oil, a by-product of the kraft process for pulping softwood, has been shown to have insecticidal properties. In the present study, the active principles in tall oil against the variegated cutworm,Peridroma saucia Hübner, were investigated. GC-MS analysis showed that abietic, dehydroabietic, and isopimaric acids were major resin acid components of crude tall oil and depitched tall oil. When crude tall oil samples of differing resin acid composition were incorporated into artificial diet at a concentration of 2.0% fresh weight, they suppressed larval growth by 45-60% compared to controls. This suppression was significantly (P≤0.05) correlated with the equivalent contents of abietic, dehydroabietic, isopimaric, and total resin acids. These results were also evident from a diet choice test, showing that the second-instar larvae obviously selected diets with low levels of resin acids when different diets were randomly arranged in a Petri dish. Bioassays with pure resin acids (abietic, dehydroabietic, and isopimaric acids) demonstrated that all individual chemicals have similar bioactivity against this insect. Comparison of the bioactivities of depitched tall oil and an equivalent mixture of pure resin acids in thePeridroma chronic growth bioassay indicated that pure resin acids and depitched tall oil share a common mode of action to this insect. This study confirms that resin acids are major active principles in tall oil against the variegated cutworm, but other chemicals likely also contribute to the bioactivity of tall oil.

  3. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  4. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria.

    PubMed

    Furukawa, Soichi; Akiyoshi, Yuko; O'Toole, George A; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-03-31

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001% (w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the S. aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01% (w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1% (w/w)) of the sugar fatty acid esters.

  5. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  6. alpha-Linolenic acid protects renal cells against palmitic acid lipotoxicity via inhibition of endoplasmic reticulum stress.

    PubMed

    Katsoulieris, Elias; Mabley, Jon G; Samai, Mohamed; Green, Irene C; Chatterjee, Prabal K

    2009-11-25

    Unsaturated fatty acids may counteract the lipotoxicity associated with saturated fatty acids. Palmitic acid induced endoplasmic reticulum (ER) stress and caused apoptotic and necrotic cell death in the renal proximal tubular cell line, NRK-52E. We investigated whether alpha-linolenic acid, an unsaturated fatty acid, protected against ER stress and cell death induced by palmitic acid or by other non-nutrient ER stress generators. Incubation of NRK-52E cells for 24h with palmitic acid produced a significant increase in apoptosis and necrosis. Palmitic acid also increased levels of three indicators of ER stress - the phosphorylated form of the eukaryotic initiation factor 2alpha (eIF2alpha), C/EBP homologous protein (CHOP), and glucose regulated protein 78 (GRP78). alpha-Linolenic acid dramatically reduced cell death and levels of all three indicators of ER stress brought about by palmitic acid. Tunicamycin, which induces ER stress by glycosylation of proteins, produced similar effects to those obtained using palmitic acid; its effects were partially reversed by alpha-linolenic acid. Salubrinal (a phosphatase inhibitor) causes increased levels of the phosphorylated form of eIF2alpha - this effect was partially reversed by alpha-linolenic acid. Palmitoleate, a monosaturated fatty acid, had similar effects to those of alpha-linolenic acid. These results suggest that part of the mechanism of protection of the kidney by unsaturated fatty acids is through inhibition of ER stress, eIF2alpha phosphorylation and consequential reduction of CHOP protein expression and apoptotic renal cell death.

  7. Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids.

    PubMed

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; Soda, Midori; El-Kabbani, Ossama; Yashiro, Koji

    2016-11-01

    A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Nitric oxide inhibits prooxidant actions of uric acid during copper-mediated LDL oxidation.

    PubMed

    Sanguinetti, Silvia M; Batthyány, Carlos; Trostchansky, Andrés; Botti, Horacio; López, Graciela I; Wikinski, Regina L W; Rubbo, Homero; Schreier, Laura E

    2004-03-15

    Interactions between uric acid and physiologically relevant fluxes of nitric oxide ((?)NO) during copper-mediated low-density lipoprotein (LDL) oxidation were evaluated. In the absence of (?)NO, a dual pro- and antioxidant action of uric acid was evident: low concentrations of uric acid enhanced lipid oxidation and alpha-tocopherol consumption, while its protective role was observed at higher concentrations. The prooxidant effects of uric acid were mostly related to its copper-reducing ability to form Cu(+), an initiator of lipid oxidation processes. While the prooxidant action of uric acid was completely inhibited by (?)NO, the antioxidant action of (?)NO was slightly counterbalanced by uric acid. Enhancement of alpha-tocopherol consumption by uric acid was inhibited in the presence of (?)NO while additive antioxidant effects between (?)NO and uric acid were observed in conditions where uric acid spared alpha-tocopherol. Altogether, these results suggest that in the artery wall, the (?)NO/uric acid pair may exert antioxidant actions on LDL, even if increased amounts of redox active copper were available at conditions favoring prooxidant activities of uric acid.

  9. Inhibition of tubulin polymerization by hypochlorous acid and chloramines.

    PubMed

    Landino, Lisa M; Hagedorn, Tara D; Kim, Shannon B; Hogan, Katherine M

    2011-04-15

    Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent 5-iodoacetamidofluorescein; by reaction with Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid); and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity, and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor Angeli's salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Inhibition of tubulin polymerization by hypochlorous acid and chloramines

    PubMed Central

    Landino, Lisa M.; Hagedorn, Tara D.; Kim, Shannon B.; Hogan, Katherine M.

    2011-01-01

    Protein thiol oxidation and modification by nitric oxide and glutathione are emerging as common mechanisms to regulate protein function and to modify protein structure. Also, thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. We assessed the effect of the oxidants hypochlorous acid and chloramines on the cytoskeletal protein tubulin. Total cysteine oxidation by the oxidants was monitored by labeling tubulin with the thiol-selective reagent, 5-iodoacetamidofluorescein, by reaction with Ellman’s reagent, 5,5′dithiobis(2-nitrobenzoic acid), and by detecting interchain tubulin disulfides by Western blot under nonreducing conditions. Whereas HOCl induced both cysteine and methionine oxidation of tubulin, chloramines were predominantly cysteine oxidants. Cysteine oxidation of tubulin, rather than methionine oxidation, was associated with loss of microtubule polymerization activity and treatment of oxidized tubulin with disulfide reducing agents restored a considerable portion of the polymerization activity that was lost after oxidation. By comparing the reactivity of hypochlorous acid and chloramines with the previously characterized oxidants, peroxynitrite and the nitroxyl donor, Angeli’s salt, we have identified tubulin thiol oxidation, not methionine oxidation or tyrosine nitration, as a common outcome responsible for decreased polymerization activity. PMID:21256958

  11. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  12. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder

    SciTech Connect

    Schlondorff, D.; Petty, E.; Oates, J.A.; Jacoby, M.; Levine, S.D. Vanderbilt Univ., Nashville, TN )

    1987-09-01

    In addition to cyclooxygenase and lipoxygenase pathways, the kidney can also metabolize arachidonic acid by a NADPH-dependent cytochrome P-450 enzyme to epoxyeicosatrienoic acids (EETs); furthermore, 5,6-EET has been shown to alter electrolyte transport across isolated renal tubules. The authors examined the effects of three ({sup 14}C-labeled)-EETs (5,6-, 11,12-, and 14,15-EET) on osmotic water flow across toad urinary bladder. All three EETs reversibly inhibited vasopressin-stimulated osmotic water flow with 5,6- and 11,12-EET being the most potent. The effects appeared to be independent of prostaglandins EETs inhibited the water flow response to forskolin but not the response to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) or 8-BrcAMP, consistent with an effect on cAMP generation. To determine whether these effects were due to the EETs or to products of their metabolism, they examined the effects of their vicinal diol hydrolysis products, the dihydroxyeicosatrienoic acids. Nonenzymatic conversion of labeled 5,6-EET to its vicinal diol occurred rapidly in the buffer, whereas 11,12-EET was hydrolyzed in a saturable manner only when incubated in the presence of bladder tissue. The dihydroxyeicosatrienoic acids formed inhibited water flow in a manner paralleling that of the EETs. The data support the hypothesis that EETs and their physiologically active dihydroxyeicosatrienoic acid metabolites inhibit vasopressin-stimulated water flow predominantly via inhibition of adenylate cyclase.

  13. Myrsinoic acid B inhibits the production of hydrogen sulfide by periodontal pathogens in vitro.

    PubMed

    Ito, Satomi; Shimura, Susumu; Tanaka, Tomoko; Yaegaki, Ken

    2010-06-01

    Recently, we reported that myrsinoic acid B purified from Myrsine seguinii inhibited methyl mercaptan (CH(3)SH) production by Fusobacterium nucleatum JCM8532. Since hydrogen sulfide (H(2)S) is the main component of physiological halitosis, while CH(3)SH is involved in pathological oral halitosis, the objective of this study is to determine whether myrsinoic acid B inhibits H(2)S production by oral microorganisms. F. nucleatum, Porphyromonas gingivalis and Treponema denticola were incubated with myrsinoic acid B and a substrate such as l-cysteine or l-methionine. H(2)S or CH(3)SH concentration in the headspace air, was determined using a gas chromatograph. The concentration of myrsinoic acid B inhibiting 50% (IC(50)) of H(2)S production by F. nucleatum was 0.142 µg ml(-1), and the IC(50) of P. gingivalis and T. denticola were 2.71 µg ml(-1) and 28.9 µg ml(-1), respectively. The presence of pyruvate, a by-product of H(2)S production, was determined. The IC(50) values of myrsinoic acid B for pyruvate production were 22.9 µg ml(-1) for F. nucleatum, 87.7 µg ml(-1) for P. gingivalis and 165 µg ml(-1) for T. denticola. We concluded that myrsinoic acid B inhibited the production of both H(2)S and pyruvate by periodontal pathogens.

  14. Kinetics of Inhibition of Monoamine Oxidase Using Curcumin and Ellagic Acid

    PubMed Central

    Khatri, Dharmendra Kumar; Juvekar, Archana Ramesh

    2016-01-01

    Background: Curcumin and ellagic are the natural polyphenols having a wide range of pharmacological actions. They have been reported to have their use in various neurological disorders. Objective: This study was aimed to evaluate the effect of curcumin and ellagic acid on the activity of monoamine oxidase (MAO), the enzyme responsible for metabolism of monoamine neurotransmitters which are pivotal for neuronal development and function. Materials and Methods: The in vitro effects of these selected polyphenols on MAO activities in mitochondria isolated from rat brains were examined. Brain mitochondria were assayed for MAO type-B (MAO-B) using benzylamine as substrates. Rat brain mitochondrial MAO preparation was used to study the kinetics of enzyme inhibition using double reciprocal Lineweaver–Burk plot. Results: MAO activity was inhibited by curcumin and ellagic acid; however, higher half maximal inhibitory concentrations of curcumin (500.46 nM) and ellagic acid (412.24 nM) were required compared to the known MAO-B inhibitor selegiline. It is observed that the curcumin and ellagic acid inhibit the MAO activity with both the competitive and noncompetitive type of inhibitions. Conclusions: Curcumin and ellagic acid can be considered a possible source of MAO inhibitor used in the treatment of Parkinson's and other neurological disorders. SUMMARY Monoamine oxidase (MAO) is involved in a variety of neurological disorders including Parkinson's disease (PD)Curcumin and ellagic acid inhibit the monoamine oxidase activityEllagic acid revealed more potent MAO type-B (MAO-B) inhibitory activity than curcuminKinetic studies of MAO inhibition using different concentrations of curcumin and ellagic acid were plotted as double reciprocal Lineweaver–Burk plotThe mode of inhibition of both compounds toward MAO-B is mixed (competitive and uncompetitive) type of inhibition with both the competitive and noncompetitive type of inhibitions. Abbreviations used: MAO: Monoamine oxidase

  15. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  16. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  17. Ellagic acid induces apoptosis through inhibition of nuclear factor κB in pancreatic cancer cells

    PubMed Central

    Edderkaoui, Mouad; Odinokova, Irina; Ohno, Izumi; Gukovsky, Ilya; Go, Vay Liang W; Pandol, Stephen J; Gukovskaya, Anna S

    2008-01-01

    AIM: To determine the effect of ellagic acid on apop-tosis and proliferation in pancreatic cancer cells and to determine the mechanism of the pro-survival effects of ellagic acid. METHODS: The effect of ellagic acid on apoptosis was assessed by measuring Phosphatidylserine externalization, caspase activity, mitochondrial membrane potential and DNA fragmentation; and proliferation by measuring DNA thymidine incorporation. Mitochondrial membrane potential was measured in permeabilized cells, and in isolated mitochondria. Nuclear factor κB (NF-κB) activity was measured by electromobility shift assay (EMSA). RESULTS: We show that ellagic acid, a polyphenolic compound in fruits and berries, at concentrations 10 to 50 mmol/L stimulates apoptosis in human pancreatic adenocarcinoma cells. Further, ellagic acid decreases proliferation by up to 20-fold at 50 mmol/L. Ellagic acid stimulates the mitochondrial pathway of apoptosis associated with mitochondrial depolarization, cytochrome C release, and the downstream caspase activation. Ellagic acid does not directly affect mitochondria. Ellagic acid dose-dependently decreased NF-κB binding activity. Furthermore, inhibition of NF-κB activity using IkB wild type plasmid prevented the effect of ellagic acid on apoptosis. CONCLUSION: Our data indicate that ellagic acid stimulates apoptosis through inhibition of the prosu-rvival transcription factor NF-κB. PMID:18595134

  18. The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation

    SciTech Connect

    Xie, Fan; Li, Pengcheng; Gong, Jianhua; Zhang, Jiahong; Ma, Jingping

    2015-11-27

    Aberrant activation of oncoproteins such as members of the Ras family is common in human lung cancers. The proper function of Ras largely depends on a post-translational modification termed prenylation. Bisphosphonates have been shown to inhibit prenylation in cancer cells. In this study, we show that zoledronic acid, a third generation bisphosphonate, is effective in targeting lung cancer cells. This is achieved by the induction of apoptosis and inhibition of proliferation, through suppressing the activation of downstream Ras and EGFR signalling by zoledronic acid. The combination of zoledronic acid and paclitaxel or cisplatin (commonly used chemotherapeutic drugs for lung cancer) augmented the activity of either drug alone in in vitro lung cancer cellular system and in vivo lung xenograft mouse model. Importantly, zoledronic acid inhibits protein prenylation as shown by the increased levels of unprenylated Ras and Rap1A. In addition, the effects of zoledronic acid were reversed in the presence of geranylgeraniol and farnesol, further confirming that mechanism of zoledroinc acid's action in lung cancer cells is through prenylation inhibition. Since zoledronic acid is already available for clinic use, these results suggest that it may be an effective addition to the armamentarium of drugs for the treatment of lung cancer. - Highlights: • Zoledronic acid (ZA) is effectively against lung cancer cells in vitro and in vivo. • ZA acts on lung cancer cells through inhibition of protein prenylation. • ZA suppresses global downstream phosphorylation of Ras signalling. • ZA enhances the effects of chemotherapeutic drugs in lung cancer cells.

  19. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2

  20. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  1. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  2. Inhibition of hepatic gluconeogenesis by niflumic acid correlates with the concentration of the free form.

    PubMed

    Kelmer-Bracht, A M; Bracht, A

    1993-05-01

    Inhibition of hepatic gluconeogenesis by niflumic acid, a non-steroidal antiinflammatory drug, was measured in order to correlate the effect of the drug with the concentration of the free drug. The concentration of free drug was changed in two ways: (a) by changing the albumin concentration at a fixed total (free+bound) niflumic acid concentration; and, (b) by changing the drug concentration at a fixed albumin concentration. The degree of inhibition of gluconeogenesis by niflumic acid depends strictly on the concentration of the free drug, with half-maximal inhibition at 19.25 microM. This result is consistent with binding equilibrium in the extracellular space and with a flow-limited distribution between the extra- and intracellular spaces as proposed by our previous work.

  3. In vitro inhibition of OATP-mediated uptake of phalloidin using bile acid derivatives

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Vicens, Marta; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Hepatocyte uptake of phalloidin is carried out mainly by OATP1B1. We have used this compound as a prototypic substrate and assayed the ability to inhibit OATP-mediated phalloidin transport of four bile acid derivatives (BALU-1, BALU-2, BALU-3 and BALU-4) that showed positive results in preliminary screening. Using Xenopus laevis oocytes for heterologous expression of transporters, BALUs were found to inhibit taurocholic acid (TCA) transport by OATP1B1 (but not OATP1B3) as well as by rat Oatp1a1, Oatp1a4 and Oatp1b2. The study of their ability to inhibit sodium-dependent bile acid transporters revealed that the four BALUs induced an inhibition of rat Asbt-mediated TCA transport, which was similar to TCA-induced self-inhibition. Regarding human NTCP and rat Ntcp, BALU-1 differs from the other three BALUS in its lack of effect on TCA transport by these proteins. Using HPLC-MS/MS and CHO cells stably expressing OATP1B1 the ability of BALU-1 to inhibit the uptake of phalloidin itself by this transporter was confirmed. Kinetic analysis using X. laevis oocytes revealed that BALU-1-induced inhibition of OATP1B1 was mainly due to a competitive mechanism (Ki = 8 {mu}M). In conclusion, BALU-1 may be useful as a pharmacological tool to inhibit the uptake of compounds mainly taken up by OATP1B1 presumably without impairing bile acid uptake by the major carrier accounting for this process, i.e., NTCP.

  4. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA-dependent manner.

    PubMed

    Payne, David E; Martin, Nicholas R; Parzych, Katherine R; Rickard, Alex H; Underwood, Adam; Boles, Blaise R

    2013-02-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization.

  5. Tannic Acid Inhibits Staphylococcus aureus Surface Colonization in an IsaA-Dependent Manner

    PubMed Central

    Payne, David E.; Martin, Nicholas R.; Parzych, Katherine R.; Rickard, Alex H.; Underwood, Adam

    2013-01-01

    Staphylococcus aureus is a human commensal and pathogen that is capable of forming biofilms on a variety of host tissues and implanted medical devices. Biofilm-associated infections resist antimicrobial chemotherapy and attack from the host immune system, making these infections particularly difficult to treat. In order to gain insight into environmental conditions that influence S. aureus biofilm development, we screened a library of small molecules for the ability to inhibit S. aureus biofilm formation. This led to the finding that the polyphenolic compound tannic acid inhibits S. aureus biofilm formation in multiple biofilm models without inhibiting bacterial growth. We present evidence that tannic acid inhibits S. aureus biofilm formation via a mechanism dependent upon the putative transglycosylase IsaA. Tannic acid did not inhibit biofilm formation of an isaA mutant. Overexpression of wild-type IsaA inhibited biofilm formation, whereas overexpression of a catalytically dead IsaA had no effect. Tannin-containing drinks like tea have been found to reduce methicillin-resistant S. aureus nasal colonization. We found that black tea inhibited S. aureus biofilm development and that an isaA mutant resisted this inhibition. Antibiofilm activity was eliminated from tea when milk was added to precipitate the tannic acid. Finally, we developed a rodent model for S. aureus throat colonization and found that tea consumption reduced S. aureus throat colonization via an isaA-dependent mechanism. These findings provide insight into a molecular mechanism by which commonly consumed polyphenolic compounds, such as tannins, influence S. aureus surface colonization. PMID:23208606

  6. Xenograft Studies of Fatty Acid Synthesis Inhibition as Novel Therapy for Breast Cancer

    DTIC Science & Technology

    1999-08-01

    Research. 56: 1189-1193, 1996. 19. Witters, L . and Kemp, B. Insulin activation of acetyl -CoA carboxylase accompanied by inhibition of the 5’-AMP...substrate for FAS, malonyl-CoA acts at the outer mitochondrial membrane to regulate fatty acid oxidation by inhibition of carnitine palmitoyltransferase 1...compared to the xenograft, it has about 10 fold higher levels of acetyl -CoA, and higher levels of other CoA derivatives. These data indicate significant

  7. Inhibition of bioluminescence in the living gills of the luminous fungus Mycena chlorophos by trans-4-aminocinnamic acid.

    PubMed

    Teranishi, Katsunori

    2017-06-24

    The living gills of the fungus Mycena chlorophos spontaneously emit green light. It was previously reported that trans-4-hydroxycinnamic acid and trans-3,4-dihydroxycinnnamic acid are essential for the bright light production in the living gills. However, the chemical mechanisms underlying their bioluminescence are unknown. In the present study, trans-4-aminocinnamic acid was found to inhibit light production in the living gills. The concentrations of trans-4-aminocinnamic acid that inhibited the bioluminescence intensity by 50% of initial values for immature and mature gills were 0.07 μM and 4 μM, respectively. Approximately 20% of the bioluminescence intensity of the immature and mature gills was not inhibited by a further increase in the concentration of trans-4-aminocinnamic acid. Moreover, the bioluminescence that was activated by trans-4-hydroxycinnamic acid or trans-3,4-dihydroxycinnamic acid (0.01 mM) was completely inhibited by trans-4-aminocinnamic acid. Therefore, trans-4-hydroxycinnamic acid and trans-3,4-dihydroxycinnamic acid functioned for the bioluminescence that was inhibited by trans-4-aminocinnamic acid. trans-4-Aminocinnamic acid strongly bound to the bioluminescence system(s) and withstood rinsing of the gills with 10 mM phosphate buffer (pH = 7), and high concentrations of trans-4-hydroxycinnamic acid (1 mM) and trans-3,4-dihydroxycinnamic acid (0.1 mM) functioned to displace trans-4-aminocinnamic acid from the bioluminescence system(s) and reactivate bioluminescence. Benzenamine, trans-cinnamic acid, trans-2-aminocinnamic acid, and trans-3-aminocinnamic acid did not inhibit bioluminescence. Therefore, the structure-specific inhibition by trans-4-aminocinnamic acid suggested that the 4-hydroxy group in trans-4-hydroxycinnamic acid and trans-3,4-dihydroxycinnamic acid molecules plays a functional role in the bioluminescence reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Inhibition of the Epstein-Barr virus lytic cycle by moronic acid.

    PubMed

    Chang, Fang-Rong; Hsieh, Yi-Chung; Chang, Yung-Fu; Lee, Kuo-Hsiung; Wu, Yang-Chang; Chang, Li-Kwan

    2010-03-01

    Epstein-Barr virus (EBV) expresses two transcription factors, Rta and Zta, during the immediate-early stage of the lytic cycle to activate the transcription of viral lytic genes. Our immunoblotting and flow cytometry analyses find that moronic acid, found in galls of Rhus chinensis and Brazilian propolis, at 10microM inhibits the expression of Rta, Zta, and an EBV early protein, EA-D, after lytic induction with sodium butyrate. This study also finds that moronic acids inhibits the capacity of Rta to activate a promoter that contains an Rta-response element, indicating that moronic acid interferes with the function of Rta. On the other hand, moronic acid does not appear to influence with the transactivation function of Zta. Therefore, the lack of expression of Zta and EA-D after moronic acid treatment is attributable to the inhibition of the transactivation functions of Rta. Because the expression of Zta, EA-D and many EBV lytic genes depends on Rta, the treatment of P3HR1 cells with moronic acid substantially reduces the numbers of EBV particles produced by the cells after lytic induction. This study suggests that moronic acid is a new structural lead for anti-EBV drug development.

  9. Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation

    PubMed Central

    Viegas, Cristina A.; Rosa, M. Fernanda; Sá-Correia, Isabel; Novais, Júlio M.

    1989-01-01

    The inhibition of growth by octanoic or decanoic acids, two subproducts of ethanolic fermentation, was evaluated in Saccharomyces cerevisiae and Kluyveromyces marxianus in association with ethanol, the main product of fermentation. In both strains, octanoic and decanoic acids, at concentrations up to 16 and 8 mg/liter, respectively, decreased the maximum specific growth rate and the biomass yield at 30°C as an exponential function of the fatty acid concentration and increased the duration of growth latency. These toxic effects increased with a decrease in pH in the range of 5.4 to 3.0, indicating that the undissociated form is the toxic molecule. Decanoic acid was more toxic than octanoic acid. The concentrations of octanoic and decanoic acids were determined during the ethanolic fermentation (30°C) of two laboratory media (mineral and complex) by S. cerevisiae and of Jerusalem artichoke juice by K. marxianus. Based on the concentrations detected (0.7 to 23 mg/liter) and the kinetics of growth inhibition, the presence of octanoic and decanoic acids cannot be ignored in the evaluation of the overall inhibition of ethanolic fermentation. PMID:16347826

  10. Effects of Solution Hydrodynamics on Corrosion Inhibition of Steel by Citric Acid in Cooling Water

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Asghari, E.; Mohammadi, M.

    2014-08-01

    Corrosion is a major problem in cooling water systems, which is often controlled using corrosion inhibitors. Solution hydrodynamics is one of the factors affecting corrosion inhibition of metals in these systems. The present work focuses on the study of the combined effects of citric acid concentration (as a green corrosion inhibitor) and fluid flow on corrosion of steel in simulated cooling water. Electrochemical techniques including Tafel polarization and electrochemical impedance spectroscopy were used for corrosion studies. Laminar flow was simulated using a rotating disk electrode. The effects of solution hydrodynamics on inhibition performance of citric acid were discussed. The citric acid showed low inhibition performance in quiescent solution; however, when the electrode rotated at 200 rpm, inhibition efficiency increased remarkably. It was attributed mainly to the acceleration of inhibitor mass transport toward metal surface. The efficiencies were then decreased at higher rotation speeds due to enhanced wall shear stresses on metal surface and separation of adsorbed inhibitor molecules. This article is first part of authors' attempts in designing green inhibitor formulations for industrial cooling water. Citric acid showed acceptable corrosion inhibition in low rotation rates; thus, it can be used as a green additive to the corrosion inhibitor formulations.

  11. Inhibition of Nitrogen Fixation in Alfalfa by Arsenate, Heavy Metals, Fluoride, and Simulated Acid Rain

    PubMed Central

    Porter, John R.; Sheridan, Richard P.

    1981-01-01

    The acute effects of aqueous solutions of As, Cd, Cu, Pb, F, and Zn ions at concentrations from 0.01 to 100 micrograms per milliliter and solutions adjusted to pH 2 to 6 with nitric or sulfuric acid were studied with respect to acetylene reduction, net photosynthesis, respiration rate, and chlorophyll content in Vernal alfalfa (Medicago sativa L. cv. Vernal). The effects of the various treatments on acetylene reduction varied from no demonstrable effect by any concentration of F− and 42% inhibition by 100 micrograms Pb2+ per milliliter, to 100% inhibition by 10 micrograms Cd2+ per milliliter and 100 micrograms per milliliter As, Cu2+, and Zn2+ ions. Zn2+ showed statistically significant inhibition of activity at 0.1 micrograms per milliliter. Acid treatments were not inhibitory above pH 2, at which pH nitric acid inhibited acetylene reduction activity more than did sulfuric acid. The inhibition of acetylene reduction by these ions was Zn2+ > Cd2+ > Cu2+ > AsO3− > Pb2+ > F−. The sensitivity of acetylene reduction to the ions was roughly equal to the sensitivity of photosynthesis, respiration, and chlorophyll content when Pb2+ was applied, but was 1,000 times more sensitive to Zn2+. The relationship of the data to field conditions and industrial pollution is discussed. PMID:16661858

  12. Inhibition of arachidonic acid release as the mechanism by which glucocorticoids inhibit endotoxin-induced diarrhoea.

    PubMed Central

    Doherty, N. S.

    1981-01-01

    1 Dexamethasone blocked endotoxin-induced diarrhoea in mice, but not that induced by arachidonic acid or prostaglandin E2. 2 Indomethacin blocked endotoxin and arachidonic acid-induced diarrhoea, but not that induced by prostaglandin E2. 3 Codeine blocked all three forms of diarrhoea. 4 The above data, when considered in relation to literature reports that endotoxin induces prostaglandin synthesis, suggest that dexamethasone blocks diarrhoea by preventing the release of arachidonic acid, the substrate for prostaglandin biosynthesis. 5 The activities of indomethacin and dexamethasone in castor oil diarrhoea support the above conclusion and their inactivity in 5-hydroxytryptophan-induced diarrhoea confirms the absence of 'codeine-like' direct effects on the gut. 6 Other glucocorticoids (hydrocortisone, prednisolone) were also able to block endotoxin diarrhoea, but oestradiol, testosterone and progesterone did not. 7 The inhibitory action of dexamethasone on endotoxin diarrhoea could not be blocked by the protein synthesis inhibitor, cycloheximide, nor by the glucocorticoid receptor antagonist, progesterone. Thus, involvement of glucocorticoid receptor-mediated gene activation could not be demonstrated. PMID:7237001

  13. External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods.

    PubMed

    Carpenter, C E; Broadbent, J R

    2009-01-01

    Although the mechanisms by which organic acids inhibit growth of bacteria in mildly acidic foods are not fully understood, it is clear that intracellular accumulation of anions is a primary contributor to inhibition of bacterial growth. We hypothesize that intracellular accumulation of anions is driven by 2 factors, external anion concentration and external acidity. This hypothesis follows from basic chemistry principles that heretofore have not been fully applied to studies in the field, and it has led us to develop a novel approach for predicting internal anion concentration by controlling the external concentration of anions and pH. This approach overcomes critical flaws in contemporary experimental design that invariably target concentration of either protonated acid or total acid in the growth media thereby leaving anion concentration to vary depending on the pK(a) of the acids involved. Failure to control external concentration of anions has undoubtedly confounded results, and it has likely led to misleading conclusions regarding the antimicrobial action of organic acids. In summary, we advocate an approach for directing internal anion levels by controlling external concentration of anions and pH because it presents an additional opportunity to study the mechanisms by which organic acids inhibit bacterial growth. Knowledge gained from such studies would have important application in the control of important foodborne pathogens such as Listeria monocytogenes, and may also facilitate efforts to promote the survival in foods or beverages of desirable probiotic bacteria.

  14. Method of Peptide Nucleic Acid (PNA)-Mediated Antisense Inhibition of Gene Expression in Campylobacter jejuni.

    PubMed

    Oh, Euna; Jeon, Byeonghwa

    2017-01-01

    Peptide nucleic acid (PNA) is an oligonucleotide mimic that recognizes and binds to nucleic acids. The strong binding affinity of PNA to mRNA coupled with its high sequence specificity enable antisense PNA to selectively inhibit (i.e., knockdown) the protein synthesis of a target gene. This novel technology provides a powerful tool for Campylobacter studies because molecular techniques have been relatively less well-developed for this bacterium as compared to other pathogens, such as Escherichia coli and Salmonella. This chapter describes a protocol for PNA-mediated antisense inhibition of gene expression in Campylobacter jejuni.

  15. Competitive Inhibition for Amino Acid Uptake by the Indigenous Microflora of Upper Klamath Lake1

    PubMed Central

    Burnison, B. Kent; Morita, Richard Y.

    1973-01-01

    The uptake of a specific 14C-amino acid by the heterotrophic microorganisms in the epilimnion of an eutrophic lake was influenced by the presence of other amino acids. The effect of unlabeled serine on 14C-glycine uptake was shown to be caused by competitive inhibition, which changed the interpretation of the kinetic parameters, the turnover time, Tt, and the sum of a transport constant, (Kt + (Sn), and the natural substrate concentration. The maximum velocity of uptake, Vmax, is unaffected by the competitive inhibition. PMID:4687063

  16. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies.

    PubMed

    Youn, Kumju; Yun, Eun-Young; Lee, Jinhyuk; Kim, Ji-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2014-02-01

    In our ongoing research to find therapeutic compounds for Alzheimer's disease (AD) from natural resources, the inhibitory activity of the BACE1 enzyme by Tenebrio molitor larvae and its major compounds were evaluated. The T. molitor larvae extract and its fractions exhibited strong BACE1 suppression. The major components of hexane fraction possessing both high yield and strong BACE1 inhibition were determined by thin layer chromatography, gas chromatography, and nuclear magnetic resonance analysis. A remarkable composition of unsaturated long chain fatty acids, including oleic acid and linoleic acid, were identified. Oleic acid, in particular, noncompetitively attenuated BACE1 activity with a half-maximal inhibitory concentration (IC₅₀) value of 61.31 μM and Ki value of 34.3 μM. Furthermore, the fatty acids were stably interacted with BACE1 at different allosteric sites of the enzyme bound with the OH of CYS319 and the NH₃ of TYR320 for oleic acid and with the C=O group of GLN304 for linoleic acid. Here, we first revealed novel pharmacophore features of oleic acids and linoleic acid to BACE1 by in silico docking studies. The present findings would clearly suggest potential guidelines for designing novel BACE1 selective inhibitors.

  17. Inhibition of cold insolubility of an IgA cryoglobulin by decanedicarboxylic acid and related compounds.

    PubMed

    Lalezari, P; Kumar, M; Kumar, K M; Lawrence, C

    1983-11-01

    Cold insolubility of a serum IgA cryoimmunoglobulin was found to be inhibited by the addition of 1.5 mM sodium decanedicarboxylate in vitro. The patient with the cryoglobulin had advanced multiple myeloma complicated by severe hyperviscosity that caused lethargy and episodic loss of consciousness. Decanedicarboxylic acid administered orally resulted in transient relief of symptoms and the loss of cryoprecipitability of the paraprotein. Further in vitro studies revealed that sodium salts of long-chain monocarboxylic acids with a minimum of eight carbons, and dicarboxylic acids with a minimum of 12 carbons inhibited cryoprecipitation. Salts of short-chain carboxylic acids, by contrast, enhanced cryoprecipitation. Sodium phenolate and sodium salts of benzoic acid, 2,4-DNP, phenylpropionic acid, and salicylic acid were also inhibitory. These latter compounds, which have a ring structure, did not cause precipitation at any concentration. It was demonstrated that the presence of a free carboxylic group was required for these activities; conversion of carboxylic acid to amide resulted in the loss of both the inhibitory and cryoprecipitation-enhancing effects. Normal plasma, or plasma from five other patients who had IgG, IgM, or mixed-type cryoglobulinemia, were not affected by any of these compounds. It is suggested that in selected cases of hyperviscosity syndrome associated with cryoglobulinemia, some of these compounds, especially monocarboxylic acids with appropriate chain lengths, or those with a ring structure, may have therapeutic applications.

  18. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by orlistat

    SciTech Connect

    Pemble,C.; Johnson, L.; Kridel, S.; Lowther, W.

    2007-01-01

    Human fatty acid synthase (FAS) is uniquely expressed at high levels in many tumor types. Pharmacological inhibition of FAS therefore represents an important therapeutic opportunity. The drug Orlistat, which has been approved by the US Food and Drug Administration, inhibits FAS, induces tumor cell-specific apoptosis and inhibits the growth of prostate tumor xenografts. We determined the 2.3-{angstrom}-resolution crystal structure of the thioesterase domain of FAS inhibited by Orlistat. Orlistat was captured in the active sites of two thioesterase molecules as a stable acyl-enzyme intermediate and as the hydrolyzed product. The details of these interactions reveal the molecular basis for inhibition and suggest a mechanism for acyl-chain length discrimination during the FAS catalytic cycle. Our findings provide a foundation for the development of new cancer drugs that target FAS.

  19. Inhibition of Micrococcus luteus DNA gyrase by norfloxacin and 10 other quinolone carboxylic acids.

    PubMed Central

    Zweerink, M M; Edison, A

    1986-01-01

    The ability of norfloxacin, amifloxacin, cinoxacin, ciprofloxacin, flumequine, nalidixic acid, ofloxacin (OFL), oxolinic acid, perfloxacin, pipemidic acid, and rosoxacin to inhibit the in vitro supercoiling activity of Micrococcus luteus DNA gyrase was compared with the ability of each drug to inhibit the growth of the M. luteus strain from which the gyrase was purified. The potency of the quinolones as DNA gyrase inhibitors did not always correlate with antimicrobial potency. For example, OFL was a less potent inhibitor of gyrase than rosoxacin, yet the MIC of OFL was 16-fold lower than that of rosoxacin. Similarly, the MICs of norfloxacin and ciprofloxacin (the most potent of the antibiotics tested in these assays) were several hundredfold lower than the MIC of nalidixic acid (the least potent of these antibiotics), but the inhibition of purified gyrase by these two quinolones was only 8- to 16-fold lower than that of nalidixic acid. These results suggest that factors in addition to inhibition of gyrase supercoiling activity are important in determining the potency of these drugs. Further studies indicated that the uptake of norfloxacin, OFL, and amifloxacin by M. luteus cells may not account for the large differences in MICs observed for these drugs (MICs of 0.8, 2.0, and 128 micrograms/ml, respectively). Images PMID:3010848

  20. Free fatty acid receptor (FFAR) agonists inhibit proliferation of human ovarian cancer cells.

    PubMed

    Hopkins, Mandi M; Meier, Kathryn E

    2017-07-01

    Many cellular actions of omega-3 fatty acids are mediated by two G protein-coupled receptors, FFA1 and FFA4, free fatty acid receptor (FFAR) family members that are activated by these dietary constituents. FFAR agonists inhibit proliferation of human prostate and breast cancer cells. Since omega-3 fatty acids can inhibit ovarian cancer cell growth, the current study tested the potential role of FFARs in the response. OVCAR3 and SKOV3 human ovarian cancer cell lines express mRNA for FFA1; FFA4 mRNA was detected at low levels in SKOV3 but not OVCAR3. Lysophosphatidic acid (LPA) and epidermal growth factor (EGF) stimulated proliferation of both cell lines; these responses were inhibited by eicosopentaneoic acid (EPA) and by GW9508, a synthetic FFAR agonist. The LPA antagonist Ki16425 also inhibited LPA- and EGF-induced proliferation; FFAR agonists had no further effect when added with Ki16425. The results suggest that FFARs are potential targets for ovarian cancer therapy. Copyright © 2017. Published by Elsevier Ltd.

  1. Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1.

    PubMed

    Zhao, Wei; Cui, Ruina; Wang, Jianshe; Dai, Jiayin

    2017-06-01

    Perfluoroalkyl substances (PFASs) are a class of fluorine substituted carboxylic acid, sulfonic acid and alcohol, structurally similar to their corresponding parent compounds. Previous study demonstrated the potential endocrine disruption and reproductive toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid, two dominant PFASs in animals and humans. We explored the relationship between eleven perfluoroalkyl acids (PFAAs) with different carbon chain length and their ability to inhibit progesterone production in mouse Leydig tumor cells (mLTC-1). We found an obvious dose-response relationship between progesterone inhibition rate and PFAA exposure concentration in mLTC-1. The relative inhibition rate of progesterone by PFAAs was linearly related to the carbon chain length and molar refractivity of PFAAs. Mitochondrial membrane potential (MMP) decreased after PFAA exposure at the half-maximal inhibitory effect concentration (IC50) of progesterone production in mLTC-1, while the reactive oxygen species (ROS) content increased significantly. These results imply that the inhibition effect of PFAAs on progesterone production might be due, in part, to ROS damage and the decrease in MMP in mLTC-1. Copyright © 2016. Published by Elsevier B.V.

  2. Volatile Fatty Acids and the Inhibition of Escherichia coli Growth by Rumen Fluid1

    PubMed Central

    Wolin, Meyer J.

    1969-01-01

    Concentrations of volatile fatty acids (VFA) normally found in bovine rumen fluid inhibited growth of Escherichia coli in Antibiotic Medium 3. Acetic, propionic, and butyric acids each produced growth inhibition which was markedly pH-dependent. Little inhibition was observed at pH 7.0, and inhibition increased with decreasing pH. A combination of 60 μmoles of acetate, 20 μmoles of propionate, and 15 μmoles of butyrate per ml gave 96, 69, and 2% inhibition at pH 6.0, 6.5, and 7.0, respectively. Rumen fluid (50%) gave 89 and 48% inhibition at pH 6.0 and 6.5, respectively, and growth stimulation (22%) at pH 7.0. Rumen fluid inhibitory activity was heat-stable, was not precipitated by 63% ethyl alcohol, and was lost by dialysis and by treatment with anion-exchange resins but not with cation-exchange resins. These results are consistent with the idea that VFA are the inhibitory substances in rumen fluid. Previous results which indicated that rumen fluid VFA did not inhibit E. coli growth were due to lack of careful control of the final pH of the growth medium. The E. coli strain used does not grow in rumen fluid alone at pH 7.0. PMID:4886864

  3. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols.

    PubMed

    Ryckewaert, Lucie; Sacconnay, Lionel; Carrupt, Pierre-Alain; Nurisso, Alessandra; Simões-Pires, Claudia

    2014-09-02

    Ginkgolic acids and urushiols are natural alkylphenols known for their mutagenic, carcinogenic and genotoxic potential. However, the mechanism of toxicity of these compounds has not been thoroughly elucidated so far. Considering that the SIRT inhibitory potential of anacardic acids has been hypothesized by in silico techniques, we herein demonstrated through both in vitro and computational methods that structurally related compounds such as ginkgolic acids and urushiols are able to modulate SIRT activity. Moreover, their SIRT inhibitory profile and cytotoxicity were comparable to sirtinol, a non-specific SIRT inhibitor (SIRT1 and SIRT2), and different from EX-527, a SIRT1 specific inhibitor. This is the first report on the SIRT inhibition of ginkgolic acids and urushiols. The results reported here are in line with previously observed effects on the induction of apoptosis by this class of compounds, and the non-specific SIRT inhibition is suggested as a new mechanism for their in vitro cytotoxicity.

  4. Boric Acid Inhibition of Trichophyton rubrum Growth and Conidia Formation.

    PubMed

    Schmidt, Martin

    2017-04-08

    Trichophyton rubrum is a common human dermatophyte that is the causative agent of 80-93% of fungal infections of the skin and nails. While dermatophyte infections in healthy people are easily treatable with over-the-counter medications, such infections pose a higher risk for patients with compromised immune function and impaired regenerative potential. The efficacy of boric acid (BA) for the treatment of vaginal yeast infections prompted an investigation of the effect of BA on growth and morphology of T. rubrum. This is of particular interest since BA facilitates wound healing, raising the possibility that treating athlete's foot with BA, either alone or in combination with other antifungal drugs, would combine the benefits of antimicrobial activity and tissue regeneration to accelerate healing of infected skin. The data presented here show that BA represses T. rubrum growth at a concentration reported to be beneficial for host tissue regeneration. Oxygen exposure increases BA toxicity, and mycelia growing under BA stress avoid colonizing the surface of the growth surface, which leads to a suppression of aerial mycelium growth and surface conidia formation. BA penetrates into solid agar matrices, but the relative lack of oxygen below the substrate surface limits the effectiveness of BA in suppressing growth of embedded T. rubrum cells.

  5. Retinoic acid inhibits histone methyltransferase Whsc1 during palatogenesis.

    PubMed

    Liu, Shiying; Higashihori, Norihisa; Yahiro, Kohei; Moriyama, Keiji

    2015-03-13

    Cleft lip with or without palate (CL/P) is a common congenital anomaly in humans and is thought to be caused by genetic and environmental factors. However, the epigenetic mechanisms underlying orofacial clefts are not fully understood. Here, we investigate how the overdose of retinoic acid (RA), which can induce cleft palate in mice and humans, regulates histone methyltransferase, Wolf-Hirschhorn syndrome candidate 1 (WHSC1) during palatal development in mice. We treated mouse embryonic fibroblasts (MEFs) with 1 μM all-trans RA and discovered that the global level of H3K36me3 was downregulated and that expression of the H3K36 methyltransferase gene, Whsc1, was reduced. The expression level of WHSC1 in embryonic palatal shelves was reduced during palatogenesis, following maternal administration of 100 mg/kg body weight of RA by gastric intubation. Furthermore, the expression of WHSC1 in palatal shelves was observed in epithelial and mesenchymal cells at all stages, suggesting an important role for palatal development. Our results suggest that the pathogenesis of cleft palate observed after excessive RA exposure is likely to be associated with a reduction in the histone methyltransferase, WHSC1. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Remodeling of ACL Allografts is Inhibited by Peracetic Acid Sterilization

    PubMed Central

    Gonnermann, Johannes; Kamp, Julia; Przybilla, Dorothea; Pruss, Axel

    2008-01-01

    Sterilization of allografts for anterior cruciate ligament (ACL) reconstruction has become an important prerequisite to prevent disease transmission. However, current sterilization techniques impair the biological or mechanical properties of such treated grafts. Peracetic acid (PAA) has been successfully used to sterilize bone allografts without these disadvantages and does not impair the mechanical properties of soft tissue grafts in vitro. We asked whether PAA sterilization would influence recellularization, restoration of crimp length and pattern, and revascularization of ACL grafts during early healing. We used an in vivo sheep model for open ACL reconstruction. We also correlated the histologic findings with the restoration of anteroposterior stability and structural properties during load-to-failure testing. PAA slowed remodeling activity at 6 and 12 weeks compared to nonsterilized allografts and autografts. The mechanical properties of PAA grafts were also reduced compared to these control groups at both time points. We conclude PAA sterilization currently should not be used to sterilize soft tissue grafts typically used in ACL reconstruction. PMID:18491201

  7. Inhibition of aconitase in citrus fruit callus results in a metabolic shift towards amino acid biosynthesis.

    PubMed

    Degu, Asfaw; Hatew, Bayissa; Nunes-Nesi, Adriano; Shlizerman, Ludmila; Zur, Naftali; Katz, Ehud; Fernie, Alisdair R; Blumwald, Eduardo; Sadka, Avi

    2011-09-01

    Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline. It was previously hypothesized that the block in mitochondrial aconitase activity, inducing acid accumulation, is caused by citramalate. Here, we investigated the effect of citramalate and of another aconitase inhibitor, oxalomalate, on aconitase activity and regulation in callus originated from juice sacs. These compounds significantly increased citrate content and reduced the enzyme's activity, while slightly inducing its protein level. Citramalate inhibited the mitochondrial, but not cytosolic form of the enzyme. Its external application to mandarin fruits resulted in inhibition of aconitase activity, with a transient increase in fruit acidity detected a few weeks later. The endogenous level of citramalate was analyzed in five citrus varieties: its pattern of accumulation challenged the notion of its action as an endogenous inhibitor of mitochondrial aconitase. Metabolite profiling of oxalomalate-treated cells showed significant increases in a few amino acids and organic acids. The activities of alanine transaminase, aspartate transaminase and aspartate kinase, as well as these of two γ-aminobutyrate (GABA)-shunt enzymes, succinic semialdehyde reductase (SSAR) and succinic semialdehyde dehydrogenase (SSAD) were significantly induced in oxalomalate-treated cells. It is suggested that the increase in citrate, caused by aconitase inhibition, induces amino acid synthesis and the GABA shunt, in accordance with the suggested fate of citrate during the acid decline stage in citrus fruit.

  8. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  9. Inhibition of human leucocyte elastase by ursolic acid. Evidence for a binding site for pentacyclic triterpenes.

    PubMed Central

    Ying, Q L; Rinehart, A R; Simon, S R; Cheronis, J C

    1991-01-01

    Several pentacyclic triterpenoid metabolites of plant origin are inhibitors of hydrolysis of both synthetic peptide substrates and elastin by human leucocyte elastase (HLE). Ursolic acid, the most potent of these compounds, has an inhibition constant of 4-6 microM for hydrolysis of peptide substrates in phosphate-buffered saline. With tripeptide and tetrapeptide substrates, the inhibition is purely competitive, whereas with a shorter dipeptide substrate the inhibition is non-competitive, suggesting that ursolic acid interacts with subsite S3 of the extended substrate-binding domain in HLE, but not with subsites S1 and S2. The carboxy group at position 28 in the pentacyclic-ring system of the triterpenes contributes to binding to HLE, since replacement of this group with a hydroxy group, as in uvaol, the alcohol analogue of ursolic acid, reduces the potency of inhibition. The inhibitory potency of ursolic acid is also reduced by addition of 1 M-NaCl, further supporting a postulated electrostatic interaction between the negative charge on the triterpene and a positively charged residue on the enzyme, which we assign to the side chain of Arg-217, located in the vicinity of subsites S4 and S5 in HLE. These observations are consistent with a binding site for ursolic acid which extends from S3 towards S4 and S5 on the enzyme. Other triterpenes, including oleanolic acid, erythrodiol, hederagenin and 18 beta-glycyrrhetic acid, can also interact with this binding site. On the basis of these results we conclude that the extended substrate-binding domain of HLE can accommodate a variety of hydrophobic ligands, including not only such molecules as fatty acids [Ashe & Zimmerman (1977) Biochem. Biophys. Res. Commun. 75, 194-199; Cook & Ternai (1988) Biol. Chem. Hoppe-Seyler 369, 629-637], but also polycyclic molecules such as the pentacyclic triterpenoids. PMID:1859379

  10. Bacteria and acid drainage from coal refuse: inhibition by sodium lauryl sulphate and sodium benzoate

    SciTech Connect

    Dugan, P.R.; Apel, W.A.

    1983-01-01

    Studies have shown that the application of an aqueous solution of sodium lauryl sulphate and sodium benzoate to the surface of high-sulphur coal refuse inhibits the activity of iron- and sulphur-oxidising chemo-autotrophic bacteria and reduces the amount of acid drainage from the refuse. Further studies are recommended to assess the usefulness of this method for controlling formation of acid mine drainage in the field.

  11. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity

    PubMed Central

    Van heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-01-01

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC50-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg−1. In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action. British Journal of Cancer (2002) 86, 605–611. DOI: 10.1038/sj/bjc/6600056 www.bjcancer.com © 2002 Cancer Research UK PMID:11870544

  12. Inhibition of all-TRANS-retinoic acid metabolism by R116010 induces antitumour activity.

    PubMed

    Van Heusden, J; Van Ginckel, R; Bruwiere, H; Moelans, P; Janssen, B; Floren, W; van der Leede, B J; van Dun, J; Sanz, G; Venet, M; Dillen, L; Van Hove, C; Willemsens, G; Janicot, M; Wouters, W

    2002-02-12

    All-trans-retinoic acid is a potent inhibitor of cell proliferation and inducer of differentiation. However, the clinical use of all-trans-retinoic acid in the treatment of cancer is significantly hampered by its toxicity and the prompt emergence of resistance, believed to be caused by increased all-trans-retinoic acid metabolism. Inhibitors of all-trans-retinoic acid metabolism may therefore prove valuable in the treatment of cancer. In this study, we characterize R116010 as a new anticancer drug that is a potent inhibitor of all-trans-retinoic acid metabolism. In vitro, R116010 potently inhibits all-trans-retinoic acid metabolism in intact T47D cells with an IC(50)-value of 8.7 nM. In addition, R116010 is a selective inhibitor as indicated by its inhibition profile for several other cytochrome P450-mediated reactions. In T47D cell proliferation assays, R116010 by itself has no effect on cell proliferation. However, in combination with all-trans-retinoic acid, R116010 enhances the all-trans-retinoic acid-mediated antiproliferative activity in a concentration-dependent manner. In vivo, the growth of murine oestrogen-independent TA3-Ha mammary tumours is significantly inhibited by R116010 at doses as low as 0.16 mg kg(-1). In conclusion, R116010 is a highly potent and selective inhibitor of all-trans-retinoic acid metabolism, which is able to enhance the biological activity of all-trans-retinoic acid, thereby exhibiting antitumour activity. R116010 represents a novel and promising anticancer drug with an unique mechanism of action.

  13. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine.

    PubMed

    Edelsbrunner, Martin E; Nakano, Motoko; Holzer, Peter

    2009-06-02

    Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg) modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Adult rats were treated with vehicle, lafutidine (10 - 30 mg/kg) or cimetidine (10 mg/kg), and 30 min later their stomachs were exposed to exogenous HCl (0.25 M). During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect the gastric mucosa from acid injury independently of their

  14. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  15. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    USGS Publications Warehouse

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  16. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    PubMed Central

    Azman, Samet; Khadem, Ahmad F.; Zeeman, Grietje; van Lier, Jules B.; Plugge, Caroline M.

    2015-01-01

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid. PMID:28955013

  17. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts.

    PubMed

    Azman, Samet; Khadem, Ahmad F; Zeeman, Grietje; van Lier, Jules B; Plugge, Caroline M

    2015-03-25

    Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C) and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  18. Autoxidated linolenic acid inhibits aflatoxin biosynthesis in Aspergillus flavus via oxylipin species.

    PubMed

    Yan, Shijuan; Liang, Yating; Zhang, Jindan; Chen, Zhuang; Liu, Chun-Ming

    2015-08-01

    Aflatoxins produced by Aspergillus species are among the most toxic and carcinogenic compounds in nature. Although it has been known for a long time that seeds with high oil content are more susceptible to aflatoxin contamination, the role of fatty acids in aflatoxin biosynthesis remains controversial. Here we demonstrate in A. flavus that both the saturated stearic acid (C18:0) and the polyunsaturated linolenic acid (C18:3) promoted aflatoxin production, while C18:3, but not C18:0, inhibited aflatoxin biosynthesis after exposure to air for several hours. Further experiments showed that autoxidated C18:3 promoted mycelial growth, sporulation, and kojic acid production, but inhibited the expression of genes in the AF biosynthetic gene cluster. Mass spectrometry analyses of autoxidated C18:3 fractions that were able to inhibit aflatoxin biosynthesis led to the identification of multiple oxylipin species. These results may help to clarify the role of fatty acids in aflatoxin biosynthesis, and may explain why controversial results have been obtained for fatty acids in the past.

  19. Continuous or discontinuous tranexamic acid effectively inhibits fibrinolysis in children undergoing cardiac surgery with cardiopulmonary bypass.

    PubMed

    Couturier, Roland; Rubatti, Marina; Credico, Carmen; Louvain-Quintard, Virginie; Anerkian, Vregina; Doubine, Sylvie; Vasse, Marc; Grassin-Delyle, Stanislas

    2014-04-01

    Tranexamic acid is given continuously or discontinuously as an anti-fibrinolytic therapy during cardiac surgery, but the effects on fibrinolysis parameters remain poorly investigated. We sought to assess the effects of continuous and discontinuous tranexamic acid on fibrinolysis parameters in children undergoing cardiac surgery with cardiopulmonary bypass (CPB). Children requiring cardiac surgery or repeat surgery by sternotomy with CPB for congenital heart disease were randomized to receive either continuous or discontinuous tranexamic acid. Blood tranexamic acid, D-dimers, tissue plasminogen activator (tPA), tPA-plasminogen activator inhibitor 1 (tPA-PAI1) complexes, fibrinogen and fibrin monomers were measured and compared to values obtained from children who did not receive tranexamic acid. Tranexamic acid inhibited the CPB-induced increase in D-dimers, with a similar potency between continuous and discontinuous regimens. Time courses for tPA, fibrin monomers, and fibrinogen were also similar for both regimen, and there was a significant difference in tPA-PAI1 complex concentrations at the end of surgery, which may be related to a significantly higher tranexamic acid concentration. Continuous and discontinuous regimen are suitable for an effective inhibition of fibrinolysis in children undergoing cardiac surgery with CPB, but the continuous regimen was previously shown to be more effective to maintain stable tranexamic acid concentrations.

  20. Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons.

    PubMed

    Szulczyk, Bartlomiej; Nurowska, Ewa

    2017-09-16

    Valproic acid is frequently prescribed and used to treat epilepsy, bipolar disorder and other conditions. However, the mechanism of action of valproic acid has not been fully elucidated. The aim of this study was to assess the influence of valproic acid (200 μM) on TTX-resistant sodium currents in mPFC pyramidal neurons. Valproic acid inhibited the maximal amplitude and did not change the activation parameters of TTX-resistant sodium currents. Moreover, valproic acid (2 μM and 200 μM) shifted the TTX-resistant sodium channel inactivation curve towards hyperpolarisation. In the presence of valproic acid, TTX-resistant sodium currents recovered from inactivation more slowly. Valproic acid did not influence the use-dependent blockade of TTX-resistant sodium currents. This study suggests that a potential new mechanism of the antiepileptic action of valproic acid is, among others, inhibition of TTX-resistant sodium currents. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  2. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX.

  3. Inhibition of Cervical Cancer by Promoting IGFBP7 Expression Using Ellagic Acid from Pomegranate Peel

    PubMed Central

    Guo, Hongjun; Zhang, Dongya; Fu, Qingrui

    2016-01-01

    Background The aim of this study was to explore the mechanism by which cervical cancer is inhibited by promoting IGFBP7 expression using ellagic acid from pomegranate peel extract. Material/Methods HeLa cells were divided into 6 groups: control group (NC), blank control group (BL), and IGFBP7 overexpression group (IGFBP7), and 2.5 uM, 5. 0 uM, and 10.0 uM ellagic acid-treated groups. The cell proliferation ability was detected and the degree of invasion in the 6 groups was measured by Transwell assay. The expression levels of IGFBP7 and AKT/mTOR in the 6 groups of cells were detected by RT-PCR technique. Results Compared with NC and BL groups, The IGFBP7 gene expressions of the IGFPB7 and ellagic acid-treated groups were significantly increased (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. The invasion ability of the IGFBP7 group and ellagic acid-treated groups was significantly lower than that of NC and BL groups in HeLa cells (P<0.05). The apoptosis rate of the IGFBP7 group and ellagic acid-treated groups was significantly higher than that of the NC and BL groups in HeLa cells (P<0.05). AKT and mTOR mRNA and protein expressions of the IGFBP7 group and ellagic acid-treated groups were significantly lower than that of the NC and BL groups (P<0.05). There was a dose-effect dependence in the ellagic acid-treated groups. Conclusions The ellagic acid in pomegranate peel extract can inhibit the AKT/mTOR signaling pathway by enhancing the expression level of IGFBP7, which can inhibit the HeLa cells in cervical cancer. PMID:27941714

  4. Quantitative Analysis of the Modes of Growth Inhibition by Weak Organic Acids in Saccharomyces cerevisiae

    PubMed Central

    Ullah, Azmat; Orij, Rick; Brul, Stanley

    2012-01-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributions of various mechanisms of antifungal activity of these weak acids, as well as the mechanisms that yeast uses to counteract their effects. We analyzed the effects of four weak organic acids differing in lipophilicity (sorbic, benzoic, propionic, and acetic acids) on growth and intracellular pH (pHi) in Saccharomyces cerevisiae. Although lipophilicity of the acids correlated with the rate of acidification of the cytosol, our data confirmed that not initial acidification, but rather the cell's ability to restore pHi, was a determinant for growth inhibition. This pHi recovery in turn depended on the nature of the organic anion. We identified long-term acidification as the major cause of growth inhibition under acetic acid stress. Restoration of pHi, and consequently growth rate, in the presence of this weak acid required the full activity of the plasma membrane ATPase Pma1p. Surprisingly, the proposed anion export pump Pdr12p was shown to play an important role in the ability of yeast cells to restore the pHi upon lipophilic (sorbic and benzoic) acid stress, probably through a charge interaction of anion and proton transport. PMID:23001666

  5. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae.

    PubMed

    Ullah, Azmat; Orij, Rick; Brul, Stanley; Smits, Gertien J

    2012-12-01

    Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributions of various mechanisms of antifungal activity of these weak acids, as well as the mechanisms that yeast uses to counteract their effects. We analyzed the effects of four weak organic acids differing in lipophilicity (sorbic, benzoic, propionic, and acetic acids) on growth and intracellular pH (pH(i)) in Saccharomyces cerevisiae. Although lipophilicity of the acids correlated with the rate of acidification of the cytosol, our data confirmed that not initial acidification, but rather the cell's ability to restore pH(i), was a determinant for growth inhibition. This pH(i) recovery in turn depended on the nature of the organic anion. We identified long-term acidification as the major cause of growth inhibition under acetic acid stress. Restoration of pH(i), and consequently growth rate, in the presence of this weak acid required the full activity of the plasma membrane ATPase Pma1p. Surprisingly, the proposed anion export pump Pdr12p was shown to play an important role in the ability of yeast cells to restore the pH(i) upon lipophilic (sorbic and benzoic) acid stress, probably through a charge interaction of anion and proton transport.

  6. D-amino acids do not inhibit Pseudomonas aeruginosa biofilm formation.

    PubMed

    Kao, Wee Tin K; Frye, Mitchell; Gagnon, Patricia; Vogel, Joseph P; Chole, Richard

    2017-02-01

    Pseudomonas aeruginosa, a known biofilm-forming organism, is an opportunistic pathogen that plays an important role in chronic otitis media, tracheitis, cholesteatoma, chronic wounds, and implant infections. Eradication of biofilm infections has been a challenge because the biofilm phenotype provides bacteria with a protective environment from the immune system and antibiotics; thus, there has been great interest in adjunctive molecules that may inhibit biofilm formation or cause biofilm dispersal. There are reports that D-amino acids may inhibit biofilms. In this study, we test the ability of various D-amino acids to inhibit P. aeruginosa biofilm formation in vitro. We evaluated the effect of D-alanine (10 mM), D-leucine (10 mM), D-methionine (10 mM), D-tryptophan (10 mM), and D-tyrosine (10 uM and 1 mM) on biofilm formation in two commonly studied laboratory strains of P. aeruginosa: PAO1 and PA14. Biofilms were grown in 24-well and 96-well tissue culture plates, documented photographically and stained with 0.1% crystal violet and solubilized in 33% glacial acetic acid for quantification. In strains PAO1 and PA14, the addition of D-amino acids did not result in an inhibitory effect on biofilm growth in 24-well plates. Repeating the study in 96-well plates confirmed our findings that D-amino acids do not inhibit biofilm formation of P. aeruginosa. We conclude that D-amino acids only slow the production of biofilms rather than completely prevent biofilm formation; therefore, D-amino acids represent a poor option for potential clinically therapeutic interventions. N/A.

  7. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells.

    PubMed

    Liu, Shuanghu; Chen, Ren; Hagedorn, Curt H

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid's structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation.

  8. D‐amino acids do not inhibit Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Frye, Mitchell; Gagnon, Patricia; Vogel, Joseph P.; Chole, Richard

    2016-01-01

    Objective Pseudomonas aeruginosa, a known biofilm‐forming organism, is an opportunistic pathogen that plays an important role in chronic otitis media, tracheitis, cholesteatoma, chronic wounds, and implant infections. Eradication of biofilm infections has been a challenge because the biofilm phenotype provides bacteria with a protective environment from the immune system and antibiotics; thus, there has been great interest in adjunctive molecules that may inhibit biofilm formation or cause biofilm dispersal. There are reports that D‐amino acids may inhibit biofilms. In this study, we test the ability of various D‐amino acids to inhibit P. aeruginosa biofilm formation in vitro. Study Design We evaluated the effect of D‐alanine (10 mM), D‐leucine (10 mM), D‐methionine (10 mM), D‐tryptophan (10 mM), and D‐tyrosine (10 uM and 1 mM) on biofilm formation in two commonly studied laboratory strains of P. aeruginosa: PAO1 and PA14. Methods Biofilms were grown in 24‐well and 96‐well tissue culture plates, documented photographically and stained with 0.1% crystal violet and solubilized in 33% glacial acetic acid for quantification. Results In strains PAO1 and PA14, the addition of D‐amino acids did not result in an inhibitory effect on biofilm growth in 24‐well plates. Repeating the study in 96‐well plates confirmed our findings that D‐amino acids do not inhibit biofilm formation of P. aeruginosa. Conclusion We conclude that D‐amino acids only slow the production of biofilms rather than completely prevent biofilm formation; therefore, D‐amino acids represent a poor option for potential clinically therapeutic interventions. Level of Evidence N/A. PMID:28286870

  9. [Inhibition of hydrogen peroxide production on chondrocytes induced by fulvic acid by ginger volatile oil].

    PubMed

    Guo, P; Xu, J; Xu, S; Wang, K

    1997-09-01

    In order to investigate the effect of ginger on Kashin-Beck disease (KBD), the ginger volatile oil was taken as a scavenger and proved effective in inhibiting the production of hydrogen peroxide in chondrocytes induced by fulvic acid from KBD area.

  10. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  11. Differential Gene Expression for Investigation of Escherichia coli Biofilm Inhibition by Plant Extract Ursolic Acid

    PubMed Central

    Ren, Dacheng; Zuo, Rongjun; González Barrios, Andrés F.; Bedzyk, Laura A.; Eldridge, Gary R.; Pasmore, Mark E.; Wood, Thomas K.

    2005-01-01

    After 13,000 samples of compounds purified from plants were screened, a new biofilm inhibitor, ursolic acid, has been discovered and identified. Using both 96-well microtiter plates and a continuous flow chamber with COMSTAT analysis, 10 μg of ursolic acid/ml inhibited Escherichia coli biofilm formation 6- to 20-fold when added upon inoculation and when added to a 24-h biofilm; however, ursolic acid was not toxic to E. coli, Pseudomonas aeruginosa, Vibrio harveyi, and hepatocytes. Similarly, 10 μg of ursolic acid/ml inhibited biofilm formation by >87% for P. aeruginosa in both complex and minimal medium and by 57% for V. harveyi in minimal medium. To investigate the mechanism of this nontoxic inhibition on a global genetic basis, DNA microarrays were used to study the gene expression profiles of E. coli K-12 grown with or without ursolic acid. Ursolic acid at 10 and 30 μg/ml induced significantly (P < 0.05) 32 and 61 genes, respectively, and 19 genes were consistently induced. The consistently induced genes have functions for chemotaxis and mobility (cheA, tap, tar, and motAB), heat shock response (hslSTV and mopAB), and unknown functions (such as b1566 and yrfHI). There were 31 and 17 genes repressed by 10 and 30 μg of ursolic acid/ml, respectively, and 12 genes were consistently repressed that have functions in cysteine synthesis (cysK) and sulfur metabolism (cysD), as well as unknown functions (such as hdeAB and yhaDFG). Ursolic acid inhibited biofilms without interfering with quorum sensing, as shown with the V. harveyi AI-1 and AI-2 reporter systems. As predicted by the differential gene expression, deleting motAB counteracts ursolic acid inhibition (the paralyzed cells no longer become too motile). Based on the differential gene expression, it was also discovered that sulfur metabolism (through cysB) affects biofilm formation (in the absence of ursolic acid). PMID:16000817

  12. Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction.

    PubMed

    Wang, Shaoguang; Meng, Xiaomei; Dong, Yaozhong

    2017-04-01

    Cervical cancer is a cause of cancer death, making it one of the most common causes of death among women globally. Previously, a variety of studies have revealed the molecular mechanisms by which cervical cancer develops. However, there are still limitations in treatment for cervical cancer. Ursolic acid is a naturally derived pentacyclic triterpene acid, exhibiting broad anticancer effects. Nanoparticulate drug delivery systems have been known to better the bioavailability of drugs on intranasal administration compared with only drug solutions. Administration of ursolic acid nanoparticles is thought to be sufficient to lead to considerable suppression of cervical cancer progression. We loaded gold-ursolic acid into poly(DL-lactide-co-glycolide) nanoparticles to cervical cancer cell lines due to the properties of ursolic acid in altering cellular processes and the easier absorbance of nanoparticles. In addition, in this study, ursolic acid nanoparticles were administered to cervical cancer cells to find effective treatments for cervical cancer inhibition. In the present study, ELISA, western blotting, flow cytometry and immunohistochemistry assays were carried out to calculate the molecular mechanism by which ursolic acid nanoparticles modulated cervical cancer progression. Data indicated that ursolic acid nanoparticles, indeed, significantly suppress cervial cancer cell proliferation, invasion and migration compared to the control group, and apoptosis was induced by ursolic acid nanoparticles in cervical cancer cells through activating caspases, p53 and suppressing anti-apoptosis-related signals. Furthermore, tumor size was reduced by treatment of ursolic acid nanoparticles in in vivo experiments. In conclusion, this study suggests that ursolic acid nanoparticles inhibited cervical cancer cell proliferation via apoptosis induction, which could be a potential target for future therapeutic strategy clinically.

  13. Inhibition effects of chlorogenic acid on benign prostatic hyperplasia in mice.

    PubMed

    Huang, Ya; Chen, Huaguo; Zhou, Xin; Wu, Xingdong; Hu, Enming; Jiang, Zhengmeng

    2017-08-15

    This study aimed to evaluate the inhibitory effects and explore mechanisms of chlorogenic acid against testosterone-induced benign prostatic hyperplasia (BPH) in mice. Benign prostatic hyperplasia model was induced in experimental groups by daily subcutaneous injections of testosterone propionate (7.5mg/kg/d) consecutively for 14 d. A total of 60 mice were randomly divided into six groups: (Group 1) normal control group, (Group 2) benign prostatic hyperplasia model control group, (Group 3) benign prostatic hyperplasia mice treated with finasteride at a dose of 1mg/kg, (Group 4) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 0.8mg/kg (low dose group), (Group 5) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 1.6mg/kg (medium dose group) and (Group 6) benign prostatic hyperplasia mice treated with chlorogenic acid at dose levels of 3.2mg/kg (high dose group). Animals were sacrificed on the scheduled termination, pick out the eyeball to get blood, then prostates were weighed and prostatic index were determined. Then the serum acid phosphatase (ACP), prostatic acid phosphatase (PACP) and typeⅡ5-alpha-reductase (SRD5A2) levels were measured and observed morphological changes of the prostate. Comparing with benign prostatic hyperplasia model group, the high and medium dose of chlorogenic acid could significantly reduce prostate index and levels of acid phosphatase, prostatic acid phosphatase and typeⅡ5-alpha-reductase (P<0.05 or P<0.01). These findings were supported by histopathological observations of prostate tissues. Histopathological examination also indicated that chlorogenic acid treatment at the high and medium doses inhibited testosterone-induced prostatic hyperplasia. The results indicated that chlorogenic acid exhibited restraining effect on benign prostatic hyperplasia model animals, and its mechanism might be related to inhibit typeⅡ5-alpha reductase activity. Copyright © 2017

  14. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds.

    PubMed

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-03-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.

  15. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    PubMed Central

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664

  16. Carnosic acid and fisetin combination therapy enhances inhibition of lung cancer through apoptosis induction.

    PubMed

    Shi, Bin; Wang, Li-Fang; Meng, Wen-Shu; Chen, Liang; Meng, Zi-Li

    2017-06-01

    Carnosic acid is a phenolic diterpene with anti-inflammation, anticancer, anti-bacterial, anti-diabetic, as well as neuroprotective properties, which is generated by many species from Lamiaceae family. Fisetin (3,3',4',7-tetrahydroxyflavone), a naturally flavonoid is abundantly produced in different vegetables and fruits. Fisetin has been reported to have various positive biological effects, including anti-proliferative, anticancer, anti-oxidative and neuroprotective effects. Lung cancer is reported as the most common neoplasm in human world-wide. In the present study, the possible benefits of carnosic acid combined with fisetin on lung cancer in vitro and in vivo was explored. Carnosic acid and fisetin combination led to apoptosis in lung cancer cells. Caspase-3 signaling pathway was promoted in carnosic acid and fisetin co-treatment, which was accompanied by anti-apoptotic proteins of Bcl-2 and Bcl-xl decreasing and pro-apoptotic signals of Bax and Bad increasing. The death receptor (DR) of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was enhanced in carnosic acid and fisetin combined treatment. Furthermore, the mouse xenograft model in vivo suggested that carnosic acid and fisetin combined treatment inhibited lung cancer growth in comparison to the carnosic acid or fisetin monotherapy. This study supplies a novel therapy to induce apoptosis to inhibit lung cancer through caspase-3 activation.

  17. Comparison of inhibition effects of some benzoic acid derivatives on sheep heart carbonic anhydrase

    NASA Astrophysics Data System (ADS)

    Kiliç, Deryanur; Yildiz, Melike; Şentürk, Murat; Erdoǧan, Orhan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Carbonic anhydrase (CA) is a family of metalloenzymes that requires Zn as a cofactor and catalyze the quick conversion of CO2 to HCO3- and H+. Inhibitors of the carbonic anhydrases (CAs) have medical usage of significant diseases such as glaucoma, epilepsy, gastroduodenal ulcers, acid-base disequilibria and neurological disorders. In the present study, inhibition of CA with some benzoic derivatives (1-6) were investigated. Sheep heart CA (shCA) enzyme was isolated by means of designed affinity chromatography gel (cellulose-benzyl-sulfanylamide) 42.45-fold in a yield of 44 % with 564.65 EU/mg. Purified shCA enzyme was used in vitro studies. In the studies, IC50 values were calculated for 3-aminobenzoic acid (1), 4-aminobenzoic acid (2), 2-hydroxybenzoic acid (3), 2-benzoylbenzoic acid (4), 2,3-dimethoxybenzoic acid (5), and 3,4,5-trimethoxybenzoic acid (6), showing the inhibition effects on the purified enzyme. Such molecules can be used as pioneer for discovery of novel effective CA inhibitors for medicinal chemistry applications.

  18. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  19. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives - potential antivirals from dietary sources.

    PubMed

    Gamaleldin Elsadig Karar, Mohamed; Matei, Marius-Febi; Jaiswal, Rakesh; Illenberger, Susanne; Kuhnert, Nikolai

    2016-04-01

    Plants rich in chlorogenic acids (CGAs), caffeic acids and their derivatives have been found to exert antiviral effects against influenza virus neuroaminidase. In this study several dietary naturally occurring chlorogenic acids, phenolic acids and derivatives were screened for their inhibitory activity against neuroaminidases (NAs) from C. perfringens, H5N1 and recombinant H5N1 (N-His)-Tag using a fluorometric assay. There was no significant difference in inhibition between the different NA enzymes. The enzyme inhibition results indicated that chlorogenic acids and selected derivatives, exhibited high activities against NAs. It seems that the catechol group from caffeic acid was important for the activity. Dietary CGA therefore show promise as potential antiviral agents. However, caffeoyl quinic acids show low bioavailibility and are intensly metabolized by the gut micro flora, only low nM concentrations are observed in plasma and urine, therefore a systemic antiviral effect of these compounds is unlikely. Nevertheless, gut floral metabolites with a catechol moiety or structurally related dietary phenolics with a catechol moiety might serve as interesting compounds for future investigations.

  20. Uricase Inhibits Nitrogen Dioxide-Promoted Allergic Sensitization to Inhaled Ovalbumin Independent of Uric Acid Catabolism

    PubMed Central

    Ather, Jennifer L.; Burgess, Edward J.; Hoyt, Laura R.; Randall, Matthew J.; Mandal, Mridul K.; Matthews, Dwight E.; Boyson, Jonathan E.; Poynter, Matthew E.

    2016-01-01

    Nitrogen dioxide (NO2) is an environmental air pollutant and endogenously-generated oxidant that contributes to the exacerbation of respiratory disease and can function as an adjuvant to allergically sensitize to an innocuous inhaled antigen. Since uric acid has been implicated as a mediator of adjuvant activity, we sought to determine whether uric acid was elevated and participated in a mouse model of NO2-promoted allergic sensitization. We found that uric acid was increased in the airways of mice exposed to NO2 and that administration of uricase inhibited the development of ovalbumin (OVA)-driven allergic airway disease subsequent to OVA challenge as well as the generation of OVA-specific antibodies. However, uricase was itself immunogenic, inducing a uricase-specific adaptive immune response that occurred even when the enzymatic activity of uricase had been inactivated. Inhibition of the OVA-specific response was not due to the capacity of uricase to inhibit OVA uptake or processing and presentation by dendritic cells, but at a later step that inhibited OVA-specific CD4+ T cell proliferation and cytokine production. Whereas blocking uric acid formation by allopurinol did not affect outcomes, administration of ultra-clean human serum albumin at protein concentrations equivalent to that of uricase inhibited NO2-promoted allergic airway disease. These results implicate that whereas uric acid levels are elevated in the airways of NO2-exposed mice, the powerful inhibitory effect of uricase administration on allergic sensitization is mediated more through antigen-specific immune deviation than on suppression of allergic sensitization, a mechanism to be considered in the interpretation of results from other experimental systems. PMID:27465529

  1. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds.

    PubMed

    Sierra-Alvarez, Reyes; Cortinas, Irail; Field, Jim A

    2010-03-15

    Roxarsone (4-hydroxy-3-nitro-phenylarsonic acid) and p-arsanilic acid (4-aminophenylarsonic acid) are feed additives widely used in the broiler and swine industry. This study evaluated the inhibitory effect of roxarsone, p-arsanilic, and other phenylarsonic compounds on the activity of acetate- and H(2)-utilizing methanogenic microorganisms. Roxarsone, p-arsanilic, and 4-hydroxy-3-aminophenylarsonic acid (HAPA) inhibited acetoclastic and hydrogenotrophic methanogens when supplemented at concentrations of 1mM, and their inhibitory effect increased sharply with incubation time. Phenylarsonic acid (1mM) inhibited acetoclastic but not H(2)-utilizing methanogens. HAPA, a metabolite from the anaerobic biodegradation of roxarsone, was found to be sensitive to autooxidation by oxygen. The compound (2.6mM) caused low methanogenic inhibition (only 14.2%) in short-term assays of 12h when autooxidation was prevented by supplementing HAPA solutions with ascorbate. However, ascorbate-free HAPA solutions underwent spontaneous autooxidation in the presence of oxygen, leading to the formation of highly inhibitory compounds. These results confirm the microbial toxicity of organoarsenic compounds, and they indicate that biotic as well as abiotic transformations can potentially impact the fate and microbial toxicity of these contaminants in the environment. (c) 2009 Elsevier B.V. All rights reserved.

  2. Localization of gastric peroxidase and its inhibition by mercaptomethylimidazole, an inducer of gastric acid secretion.

    PubMed Central

    Bandyopadhyay, U; Bhattacharyya, D K; Chatterjee, R; Banerjee, R K

    1992-01-01

    Mercaptomethylimidazole (MMI) is a potent inducer of gastric acid secretion which is associated with significant inhibition of peroxidase activity of rat gastric mucosa in vivo. A time-dependent increase in acid secretion correlates well with time-dependent decrease in the peroxidase activity. In a chamber experiment in vitro using isolated gastric mucosa, MMI stimulates acid secretion, showing an almost linear response up to 600 microM. The time-dependent increase in acid secretion is also correlated with time-dependent inhibition of the peroxidase activity. This effect is not mediated through oxidation of MMI by flavin-containing mono-oxygenase, which is absent from gastric mucosa. The peroxidase has been localized mainly in parietal cells isolated and purified from gastric mucosa by controlled digestion with collagenase followed by Percoll-density-gradient centrifugation. Peroxidase activity was further localized in the outer membrane of the purified mitochondria of the parietal cell by some membrane-impermeant reagents, indicating outward orientation of the enzyme. MMI can inhibit the peroxidase activity of both the parietal cell and its mitochondria in a concentration-dependent manner. The possible involvement of the parietal-cell peroxidase-H2O2 system in MMI-induced acid secretion may be suggested. PMID:1318028

  3. Hydroxy-oleic acid, but not oleic acid, inhibits vascular responsiveness in isolated aortic tissue

    EPA Science Inventory

    Oleic acid (OA) and other fatty acids can become abundant in circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet estab...

  4. Hydroxy-oleic acid, but not oleic acid, inhibits vascular responsiveness in isolated aortic tissue

    EPA Science Inventory

    Oleic acid (OA) and other fatty acids can become abundant in circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet estab...

  5. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic vascular responsiveness in isolated aortic tissue

    EPA Science Inventory

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is ...

  6. Use of jasmonic acid and salicylic acid to inhibit growth of sugarbeet storage rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Jasmonic acid (JA) and salicylic acid (SA) are endogenous plant hormones that induce native plant defense responses and provide protection against a wide range of diseases. Previously, JA, applied after harvest, was shown to protect sugarbeet roots against the storage pathogens, Botrytis cinerea, P...

  7. Corrosion Inhibition of Carbon Steel by New Thiophene Azo Dye Derivatives in Acidic Solution

    NASA Astrophysics Data System (ADS)

    El-Haddad, Mahmoud N.; Fouda, A. S.; Mostafa, H. A.

    2013-08-01

    Inhibition of carbon steel corrosion in 2 M hydrochloric acid (HCl) solution by thiophene azo dye derivatives were studied using weight loss, electrochemical frequency modulation (EFM), and atomic absorption techniques. The experimental data suggest that the inhibition efficiency increases with increasing inhibitors concentration in presence of 103 μM potassium iodide (KI). This is due to synergistic effect. Thus, the experimental results suggested that the presence of these anions in the solution stabilized the adsorption of inhibitors molecules on the metal surface and improved the inhibition efficiency. The results of EFM experiments are a spectrum of current response as a function of frequency. The corrosion rate and Tafel parameters can be obtained with measurement by analyzing the harmonic frequencies. The adsorption of the inhibitors on metal surface obeys the Langmuir adsorption isotherm. The surface of metal examined using Fourier transform infrared and ultraviolet spectroscopy. Quantum chemical calculations were carried out and relations between computed parameters and experimental inhibition efficiency were discussed.

  8. Time dependent inhibition of xanthine oxidase in irradiated solutions of folic acid, aminopterin and methotrexate

    SciTech Connect

    Robinson, K.; Pilot, T.F.; Meany, J.E. )

    1990-01-01

    The xanthine oxidase catalyzed oxidation of hypoxanthine was followed by monitoring the formation of uric acid at 290 nm. Inhibition of xanthine oxidase occurs in aqueous solutions of folic acid methotrexate and aminopterin. These compounds are known to dissociate upon exposure to ultraviolet light resulting in the formation of their respective 6-formylpteridine derivatives. The relative rates of dissociation were monitored spectrophotometrically by determining the absorbance of their 2,4-dinitrophenylhydrazine derivatives at 500 nm. When aqueous solutions of folic acid, aminopterin and methotrexate were exposed to uv light, a direct correlation was observed between the concentrations of the 6-formylpteridine derivatives existing in solution and the ability of these solutions to inhibit xanthine oxidase. The relative potency of the respective photolysis products were estimated.

  9. Uric Acid Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Bone Mesenchymal Stem Cells.

    PubMed

    Li, Hui-Zhang; Chen, Zhi; Hou, Cang-Long; Tang, Yi-Xing; Wang, Fei; Fu, Qing-Ge

    2015-08-01

    To investigate the effect of uric acid on the osteogenic and adipogenic differentiation of human bone mesenchymal stem cells (hBMSCs). The hBMSCs were isolated from bone marrow of six healthy donors. Cell morphology was observed by microscopy and cell surface markers (CD44 and CD34) of hBMSCs were analyzed by immunofluorescence. Cell morphology and immunofluorescence analysis showed that hBMSCs were successfully isolated from bone marrow. The number of hBMSCs in uric acid groups was higher than that in the control group on day 3, 4, and 5. Alizarin red staining showed that number of calcium nodules in uric acid groups was more than that of the control group. Oil red-O staining showed that the number of red fat vacuoles decreased with the increased concentration of uric acid. In summary, uric acid could promote the proliferation and osteogenic differentiation of hBMSCs while inhibit adipogenic differentiation of hBMSCs.

  10. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids.

    PubMed

    King, C Andy; Purcell, Larry C

    2005-04-01

    Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.

  11. Inhibition of N2 Fixation in Soybean Is Associated with Elevated Ureides and Amino Acids1

    PubMed Central

    King, C. Andy; Purcell, Larry C.

    2005-01-01

    Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation. PMID:15778462

  12. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder

    PubMed Central

    Modi, Hiren R.; Basselin, Mireille; Taha, Ameer Y.; Li, Lei O.; Coleman, Rosalind A.; Bialer, Meir; Rapoport, Stanley I.

    2013-01-01

    Background Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain acyl-CoA synthetase (Acsl)-4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl-4 catalyzed acylation, and thus have potential anti-BD action. Methods Rat Acsl4-flag protein was expressed in E. coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics. Results Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect. Conclusions PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients. PMID:23354024

  13. Propylisopropylacetic acid (PIA), a constitutional isomer of valproic acid, uncompetitively inhibits arachidonic acid acylation by rat acyl-CoA synthetase 4: a potential drug for bipolar disorder.

    PubMed

    Modi, Hiren R; Basselin, Mireille; Taha, Ameer Y; Li, Lei O; Coleman, Rosalind A; Bialer, Meir; Rapoport, Stanley I

    2013-04-01

    Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation-reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action. Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis-Menten kinetics. Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4mM compared to a published Ki of 25mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect. PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients. Published by Elsevier B.V.

  14. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  15. Diuresis by intravenous administration of xanthurenic acid in rats, and inhibition by probenecid.

    PubMed

    Uwai, Yuichi; Nakashima, Yuta; Honjo, Emi; Kawasaki, Tatsuya; Nabekura, Tomohiro

    2014-01-01

    The conjugates with sulfate and glucoside of xanthurenic acid, a tryptophan metabolite, were reported to show natriuresis. Sulfotransferase for xanthurenic acid works in the renal proximal tubule to produce the sulfate of xanthurenic acid as well as the liver, and we recently found that xanthurenic acid is a substrate of renal organic anion transporter OAT1. The purpose of this study was to examine relationship between the transport by OAT1 and diuresis related with xanthurenic acid. Drug transport experiment using Xenopus laevis oocytes represented that probenecid inhibited xanthurenic acid uptake by rat OAT1 (rOAT1). Although no diuresis was recognized by the intravenous injection of xanthurenic acid as a bolus in rats, the addition of its infusion exhibited natriuresis. Simultaneous administration of probenecid significantly decreased the urine volume and excreted amounts of sodium into urine. These findings showed the diuresis by the xanthurenic acid administration, and it was probenecid-sensitive. The rOAT1-mediated transport of xanthurenic acid might, at least in part, contribute to its diuretic effect.

  16. Ursolic acid inhibits the invasive phenotype of SNU-484 human gastric cancer cells

    PubMed Central

    KIM, EUN-SOOK; MOON, AREE

    2015-01-01

    Metastasis is a major cause of cancer-related mortality in patients with gastric cancer. Ursolic acid, a pentacyclic triterpenoid compound derived from medicinal herbs, has been demonstrated to exert anticancer effects in various cancer cell systems. However, to the best of our knowledge, the inhibitory effect of ursolic acid on the invasive phenotype of gastric cancer cells has yet to be reported. Therefore, the aim of the present study was to investigate the effect of ursolic acid on the invasiveness of SNU-484 human gastric cancer cells. Ursolic acid efficiently induced apoptosis, possibly via the downregulation of B-cell lymphoma 2 (Bcl-2), the upregulation of Bcl-2-associated X protein and the proteolytic activation of caspase-3. Furthermore, the activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was increased by the administration of ursolic acid. In addition, ursolic acid significantly suppressed the invasive phenotype of the SNU-484 cells and significantly decreased the expression of matrix metalloproteinase (MMP)-2, indicating that MMP-2 may be responsible for the anti-invasive activity of ursolic acid. Taken together, the results of the present study demonstrate that ursolic acid induces apoptosis and inhibits the invasive phenotype of gastric cancer cells; therefore, ursolic acid may have a potential application as a chemopreventive agent to prevent the metastasis of gastric cancer or to alleviate the process of metastasis. PMID:25621065

  17. Amelioration of bleomycin-induced pulmonary fibrosis by chlorogenic acid through endoplasmic reticulum stress inhibition.

    PubMed

    Wang, Yi-Chun; Dong, Jing; Nie, Jing; Zhu, Ji-Xiang; Wang, Hui; Chen, Qiong; Chen, Jun-Yi; Xia, Jia-Mei; Shuai, Wei

    2017-07-04

    To investigate the inhibitory effects of chlorogenic acid on pulmonary fibrosis and the internal mechanisms in vivo and in vitro. 30 male BALB/C mice were randomized into 5 groups: control group, pulmonary fibrosis model group, low, middle and high dose of chlorogenic acid groups. Mice in pulmonary fibrosis model group were administered 5.0 mg/kg bleomycin with intracheal instillation and mice in 3 chlorogenic acid groups were treated with chlorogenic acid every day for 28 days after bleomycin administration. Lung tissue histology was observed using HE staining. Primary pulmonary fibroblasts were isolated and cultured. The expressions of fibrosis related factors (α-SMA and collagen I), as well as ER stress markers (CHOP and GRP78) were determined by both real-time PCR assay and Western blotting, while the expressions of other ER stress signaling pathway factors PERK, IRE-1, ATF-6 and protein levels of caspase-12, caspase-9, caspase-3, PARP were determined by Western blotting. RLE-6TN cell line induced by TGF-β1 was also used to verify the amelioration effects in vitro study. In both in vivo and in vitro studies, TUNEL staining was used to evaluate cell apoptosis. Expressions of collagen I, α-SMA, GRP78, and CHOP were significantly inhibited by chlorogenic acid in dose-dependent manner. Similarly, decreasing levels of cleaved caspase-12, caspase-9, caspase-3 and increasing level of uncleaved PARP were observed in chlorogenic acid groups compared with those in the fibrosis group both in vivo and in vitro. Chlorogenic acid could also significantly down-regulate the level of phosphorylation of PERK and cleaved ATF-6 in vivo study. Moreover, MTT assay demonstrated chlorogenic acid could enhance proliferation of RLE-6TN cells induced by TGFβ1 in vitro. And the apoptosis assays indicated that chlorogenic acid could significantly inhibit cell apoptosis both in vivo and in vitro studies. Chlorogenic acid could inhibit the pulmonary fibrosis through endoplasmic

  18. Inhibition of stromelysin-1 by caffeic acid derivatives from a propolis sample from Algeria.

    PubMed

    Segueni, Narimane; Magid, Abdulmagid Alabdul; Decarme, Martine; Rhouati, Salah; Lahouel, Mesbah; Antonicelli, Frank; Lavaud, Catherine; Hornebeck, William

    2011-07-01

    Stromelysin-1 (matrix metalloproteinase-3: MMP-3) occupies a central position in collagenolytic and elastolytic cascades, leading to cutaneous intrinsic and extrinsic aging. We screened extracts of a propolis sample from Algeria with the aim to isolate compounds able to selectively inhibit this enzyme. A butanolic extract (B (3)) of the investigated propolis sample was found to potently inhibit MMP-3 activity (IC (50) = 0.15 ± 0.03 µg/mL), with no or only weak activity on other MMPs. This fraction also inhibited plasmin amidolytic activity (IC (50) = 0.05 µg/mL) and impeded plasmin-mediated proMMP-3 activation. B (3) was fractionated by HPLC, and one compound, characterized by NMR and mass spectroscopy and not previously identified in propolis, i.e., (+)-chicoric acid, displayed potent IN VITRO MMP-3 inhibitory activity (IC (50) = 6.3 × 10 (-7) M). In addition, both caffeic acid and (+)-chicoric acid methyl ester present in fraction B (3) significantly inhibited UVA-mediated MMP-3 upregulation by fibroblasts.

  19. Inhibition of acid-sensing ion channel currents by propofol in rat dorsal root ganglion neurons.

    PubMed

    Lei, Zhen; Li, Xiaoyu; Wang, Guizhi; Fei, Jianchun; Meng, Tao; Zhang, Xinyu; Yu, Jingya; Yu, Jingui; Li, Jingxin

    2014-04-01

    Acid-sensing ion channels (ASICs), part of the epithelial sodium channel/degenerin family, are activated by extracellular protons. The ASICs play a significant role in the acidosis-mediated perception of pain. The anaesthetic agent propofol also exerts antinociceptive effects, but the underlying mechanisms for this effect are not clear. We used whole-cell patch clamping to investigate the effect of propofol on proton-gated currents in: (i) rat dorsal root ganglion (DRG) neurons; and (ii) HEK293 cells transfected with either ASIC1a or ASIC3. Propofol inhibited the amplitude of proton-gated currents in DRG neurons, but did not change the sensitivity of ASICs to H(+). Notably, propofol altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. In addition, we demonstrated that propofol inhibited ASICs by directly binding with these channels in HEK293 cells. These results suggest that propofol inhibits proton-gated currents in DRG neurons and that inhibition of proton-gated currents explains, in part, the antinociceptive effects of propofol in primary afferent neurons.

  20. Gallic acid is the major component of grape seed extract that inhibits amyloid fibril formation.

    PubMed

    Liu, Yanqin; Pukala, Tara L; Musgrave, Ian F; Williams, Danielle M; Dehle, Francis C; Carver, John A

    2013-12-01

    Many protein misfolding diseases, for example, Alzheimer's, Parkinson's and Huntington's, are characterised by the accumulation of protein aggregates in an amyloid fibrillar form. Natural products which inhibit fibril formation are a promising avenue to explore as therapeutics for the treatment of these diseases. In this study we have shown, using in vitro thioflavin T assays and transmission electron microscopy, that grape seed extract inhibits fibril formation of kappa-casein (κ-CN), a milk protein which forms amyloid fibrils spontaneously under physiological conditions. Among the components of grape seed extract, gallic acid was the most active component at inhibiting κ-CN fibril formation, by stabilizing κ-CN to prevent its aggregation. Concomitantly, gallic acid significantly reduced the toxicity of κ-CN to pheochromocytoma12 cells. Furthermore, gallic acid effectively inhibited fibril formation by the amyloid-beta peptide, the putative causative agent in Alzheimer's disease. It is concluded that the gallate moiety has the fibril-inhibitory activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Fatty Acid Biosynthesis Inhibition Increases Reduction Potential in Neuronal Cells under Hypoxia

    PubMed Central

    Brose, Stephen A.; Golovko, Svetlana A.; Golovko, Mikhail Y.

    2016-01-01

    Recently, we have reported a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid (FA) biosynthesis followed by esterification into lipids. However, the biological role of this pathway under hypoxia remains to be elucidated. In the presented study, we have tested our hypothesis that activation of FA synthesis maintains reduction potential and reduces lactoacidosis in neuronal cells under hypoxia. To address this hypothesis, we measured the effect of FA synthesis inhibition on NADH2+/NAD+ and NADPH2+/NADP+ ratios, and lactic acid levels in neuronal SH-SY5Y cells exposed to normoxic and hypoxic conditions. FA synthesis inhibitors, TOFA (inhibits Acetyl-CoA carboxylase) and cerulenin (inhibits FA synthase), increased NADH2+/NAD+ and NADPH2+/NADP+ ratios under hypoxia. Further, FA synthesis inhibition increased lactic acid under both normoxic and hypoxic conditions, and caused cytotoxicity under hypoxia but not normoxia. These results indicate that FA may serve as hydrogen acceptors under hypoxia, thus supporting oxidation reactions including anaerobic glycolysis. These findings may help to identify a radically different approach to attenuate hypoxia related pathophysiology in the nervous system including stroke. PMID:27965531

  2. Hop bitter acids inhibit tumorigenicity of hepatocellular carcinoma cells in vitro.

    PubMed

    Saugspier, Michael; Dorn, Christoph; Czech, Barbara; Gehrig, Manfred; Heilmann, Jörg; Hellerbrand, Claus

    2012-10-01

    Bitter acids (BAs) from the hop plant Humulus lupulus L. exhibit multiple beneficial biological properties with promising effects in cancer therapy and prevention, but information regarding the effects on hepatocellular carcinoma (HCC) is missing. Here, we used two different hop bitter acid extracts enriched for either α-acids or β-acids to obtain insight into whether biological activity varies between these two groups of BAs. At a concentration of 25 µg/ml, only the β-acid rich started to induce aspartate transaminase (AST) release, and a significant increase was detected with 50 µg/ml of both extracts. Already at lower concentrations both extracts led to a dose-dependent inhibition of proliferation, and migration was suppressed at a concentration as low as 5 µg/ml in HCC cells. The focus on different signaling pathways revealed an inhibition of ERK1/2 phosphorylation, downregulation of AP-1 activity and an alleviation of nuclear factor κB (NFκB) activity in HepG2 cells incubated with 5 µg/ml of both extracts, whereby the β-acid rich extract showed more pronounced effects. In conclusion, we identified ERK1/2, AP-1 and NFκB, which are important factors in tumor development and progression, as targets of hop BAs. Thus, these data suggest the potential use of BAs as functional nutrients for both prevention and treatment of HCC.

  3. Triterpene acids from apple peel inhibit lepidopteran larval midgut lipases and larval growth.

    PubMed

    Christeller, John T; McGhie, Tony K; Poulton, Joanne; Markwick, Ngaire P

    2014-07-01

    Fruit extracts from apple, kiwifruit, feijoa, boysenberry, and blueberry were screened for the presence of lipase inhibitory compounds against lepidopteran larval midgut crude extracts. From 120 extracts, six showed significant inhibition with an extract from the peel of Malus × domestica cv. "Big Red" showing highest levels of inhibition. Because this sample was the only apple peel sample in the initial screen, a survey of peels from seven apple cultivars was undertaken and showed that, despite considerable variation, all had inhibitory activity. Successive solvent fractionation and LC-MS of cv. "Big Red" apple peel extract identified triterpene acids as the most important inhibitory compounds, of which ursolic acid and oleanolic acid were the major components and oxo- and hydroxyl-triterpene acids were minor components. When ursolic acid was incorporated into artificial diet and fed to Epiphyas postvittana Walker (Tortricidae: Lepidoptera) larvae at 0.16% w/v, a significant decrease in larval weight was observed after 21 days. This concentration of ursolic acid is less than half the concentration reported in the skin of some apple cultivars. © 2014 Wiley Periodicals, Inc.

  4. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  5. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death

    PubMed Central

    Ahowesso, Constance; Black, Paul N.; Saini, Nipun; Montefusco, David; Chekal, Jessica; Malosh, Chrysa; Lindsley, Craig W.; Stauffer, Shaun R.; DiRusso, Concetta C.

    2015-01-01

    Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6 µM for all cell lines except human adipocytes (39 µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb 13C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut. PMID:26394026

  6. Carnosol and carnosic acids from Salvia officinalis inhibit microsomal prostaglandin E2 synthase-1.

    PubMed

    Bauer, Julia; Kuehnl, Susanne; Rollinger, Judith M; Scherer, Olga; Northoff, Hinnak; Stuppner, Hermann; Werz, Oliver; Koeberle, Andreas

    2012-07-01

    Prostaglandin E(2) (PGE(2)), the most relevant eicosanoid promoting inflammation and tumorigenesis, is formed by cyclooxygenases (COXs) and PGE(2) synthases from free arachidonic acid. Preparations of the leaves of Salvia officinalis are commonly used in folk medicine as an effective antiseptic and anti-inflammatory remedy and possess anticancer activity. Here, we demonstrate that a standard ethyl acetate extract of S. officinalis efficiently suppresses the formation of PGE(2) in a cell-free assay by direct interference with microsomal PGE(2) synthase (mPGES)-1. Bioactivity-guided fractionation of the extract yielded closely related fractions that potently suppressed mPGES-1 with IC(50) values between 1.9 and 3.5 μg/ml. Component analysis of these fractions revealed the diterpenes carnosol and carnosic acid as potential bioactive principles inhibiting mPGES-1 activity with IC(50) values of 5.0 μM. Using a human whole-blood assay as a robust cell-based model, carnosic acid, but not carnosol, blocked PGE(2) generation upon stimulation with lipopolysaccharide (IC(50) = 9.3 μM). Carnosic acid neither inhibited the concomitant biosynthesis of other prostanoids [6-keto PGF(1α), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid, and thromboxane B(2)] in human whole blood nor affected the activities of COX-1/2 in a cell-free assay. Together, S. officinalis extracts and its ingredients carnosol and carnosic acid inhibit PGE(2) formation by selectively targeting mPGES-1. We conclude that the inhibitory effect of carnosic acid on PGE(2) formation, observed in the physiologically relevant whole-blood model, may critically contribute to the anti-inflammatory and anticarcinogenic properties of S. officinalis.

  7. Fat transforms ascorbic acid from inhibiting to promoting acid‐catalysed N‐nitrosation

    PubMed Central

    Combet, E; Paterson, S; Iijima, K; Winter, J; Mullen, W; Crozier, A; Preston, T; McColl, K E L

    2007-01-01

    Background The major potential site of acid nitrosation is the proximal stomach, an anatomical site prone to a rising incidence of metaplasia and adenocarcinoma. Nitrite, a pre‐carcinogen present in saliva, can be converted to nitrosating species and N‐nitroso compounds by acidification at low gastric pH in the presence of thiocyanate. Aims To assess the effect of lipid and ascorbic acid on the nitrosative chemistry under conditions simulating the human proximal stomach. Methods The nitrosative chemistry was modelled in vitro by measuring the nitrosation of four secondary amines under conditions simulating the proximal stomach. The N‐nitrosamines formed were measured by gas chromatography–ion‐trap tandem mass spectrometry, while nitric oxide and oxygen levels were measured amperometrically. Results In absence of lipid, nitrosative stress was inhibited by ascorbic acid through conversion of nitrosating species to nitric oxide. Addition of ascorbic acid reduced the amount of N‐nitrosodimethylamine formed by fivefold, N‐nitrosomorpholine by >1000‐fold, and totally prevented the formation of N‐nitrosodiethylamine and N‐nitrosopiperidine. In contrast, when 10% lipid was present, ascorbic acid increased the amount of N‐nitrosodimethylamine, N‐nitrosodiethylamine and N‐nitrosopiperidine formed by approximately 8‐, 60‐ and 140‐fold, respectively, compared with absence of ascorbic acid. Conclusion The presence of lipid converts ascorbic acid from inhibiting to promoting acid nitrosation. This may be explained by nitric oxide, formed by ascorbic acid in the aqueous phase, being able to regenerate nitrosating species by reacting with oxygen in the lipid phase. PMID:17785370

  8. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation

    PubMed Central

    Hanse, Eric A.; Mashek, Douglas G.; Mashek, Mara T.; Hendrickson, Anna M.; Mullany, Lisa K.; Albrecht, Jeffrey H.

    2016-01-01

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation. PMID:27351284

  9. Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation.

    PubMed

    Kamarajugadda, Sushama; Becker, Jennifer R; Hanse, Eric A; Mashek, Douglas G; Mashek, Mara T; Hendrickson, Anna M; Mullany, Lisa K; Albrecht, Jeffrey H

    2016-07-26

    Cyclin D1 is a cell cycle protein that promotes proliferation by mediating progression through key checkpoints in G1 phase. It is also a proto-oncogene that is commonly overexpressed in human cancers. In addition to its canonical role in controlling cell cycle progression, cyclin D1 affects other aspects of cell physiology, in part through transcriptional regulation. In this study, we find that cyclin D1 inhibits the activity of a key metabolic transcription factor, peroxisome proliferator-activated receptor α (PPARα), a member of nuclear receptor family that induces fatty acid oxidation and may play an anti-neoplastic role. In primary hepatocytes, cyclin D1 inhibits PPARα transcriptional activity and target gene expression in a cdk4-independent manner. In liver and breast cancer cells, knockdown of cyclin D1 leads to increased PPARα transcriptional activity, expression of PPARα target genes, and fatty acid oxidation. Similarly, cyclin D1 depletion enhances binding of PPARα to target sequences by chromatin immunoprecipitation. In proliferating hepatocytes and regenerating liver in vivo, induction of endogenous cyclin D1 is associated with diminished PPARα activity. Cyclin D1 expression is both necessary and sufficient for growth factor-mediated repression of fatty acid oxidation in proliferating hepatocytes. These studies indicate that in addition to playing a pivotal role in cell cycle progression, cyclin D1 represses PPARα activity and inhibits fatty acid oxidation. Our findings establish a new link between cyclin D1 and metabolism in both tumor cells and physiologic hepatocyte proliferation.

  10. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons.

    PubMed

    Qiu, Fang; Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Yang, Zhifan; Hu, Wang-Ping

    2014-05-15

    Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are believed to mediate pain caused by extracellular acidification. Gastrodin is a main bioactive constituent of the traditional herbal Gastrodia elata Blume, which has been widely used in Oriental countries for centuries. As an analgesic, gastrodin has been used clinically to treat pain such as migraine and headache. However, the mechanisms underlying analgesic action of gastrodin are still poorly understood. Here, we have found that gastrodin inhibited the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Gastrodin dose-dependently inhibited proton-gated currents mediated by ASICs. Gastrodin shifted the proton concentration-response curve downwards, with a decrease of 36.92 ± 6.23% in the maximum current response but with no significant change in the pH0.5 value. Moreover, gastrodin altered acid-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral applied gastrodin relieved pain evoked by intraplantar injection of acetic acid in rats. Our results indicate that gastrodin can inhibit the activity of ASICs in the primary sensory neurons, which provided a novel mechanism underlying analgesic action of gastrodin.

  11. Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria.

    PubMed

    Nakayama, Jiro; Uemura, Yumi; Nishiguchi, Kenzo; Yoshimura, Norito; Igarashi, Yasuhiro; Sonomoto, Kenji

    2009-02-01

    Quorum sensing is a cell-density-dependent regulatory system in gram-positive bacteria and is often regulated by cyclic peptides called "quormones," which function as extracellular communication signals. With an aim to discover an antipathogenic agent targeting quorum sensing in gram-positive bacteria, we screened 153 samples of fungal butanol extracts with the guidance of the inhibition of quorum-sensing-mediated gelatinase production in Enterococcus faecalis. Following the screenings, we found that ambuic acid, a known secondary fungal metabolite, inhibited the quorum-sensing-mediated gelatinase production without influencing the growth of E. faecalis. We further demonstrated that ambuic acid targeted the biosynthesis of a cyclic peptide quormone called gelatinase biosynthesis-activating pheromone. Furthermore, ambuic acid also inhibited the biosynthesis of the cyclic peptide quormones of Staphylococcus aureus and Listeria innocua. These results suggest the potential use of ambuic acid as a lead compound of antipathogenic drugs that target the quorum-sensing-mediated virulence expression of gram-positive bacteria.

  12. Monomethylarsonous acid (MMA+3) Inhibits IL-7 Signaling in Mouse Pre-B Cells.

    PubMed

    Ezeh, Peace C; Xu, Huan; Lauer, Fredine T; Liu, Ke Jian; Hudson, Laurie G; Burchiel, Scott W

    2016-02-01

    Our previously published data show that As(+3) in vivo and in vitro, at very low concentrations, inhibits lymphoid, but not myeloid stem cell development in mouse bone marrow. We also showed that the As(+3) metabolite, monomethylarsonous acid (MMA(+3)), was responsible for the observed pre-B cell toxicity caused by As(+3). Interleukin-7 (IL-7) is the primary growth factor responsible for pre-lymphoid development in mouse and human bone marrow, and Signal Transducer and Activator of Transcription 5 (STAT5) is a transcriptional factor in the IL-7 signaling pathway. We found that MMA(+3) inhibited STAT5 phosphorylation at a concentration as low as 50 nM in mouse bone marrow pre-B cells. Inhibition of STAT5 phosphorylation by As(+3) occurred only at a concentration of 500 nM. In the IL-7 dependent mouse pre-B 2E8 cell line, we also found selective inhibition of STAT5 phosphorylation by MMA(+3), and this inhibition was dependent on effects on JAK3 phosphorylation. IL-7 receptor expression on 2E8 cell surface was also suppressed by 50 nM MMA(+3) at 18 h. As further evidence for the inhibition of STAT5, we found that the induction of several genes required in B cell development, cyclin D1, E2A, EBF1, and PAX5, were selectively inhibited by MMA(+3). Since 2E8 cells lack the enzymes responsible for the conversion of As(+3) to MMA(+3) in vitro, the results of these studies suggest that As(+3) induced inhibition of pre-B cell formation in vivo is likely dependent on the formation of MMA(+3) which in turn inhibits IL-7 signaling at several steps in mouse pre-B cells.

  13. Omeprazole and SCH 28080 inhibit acid secretion by the turtle urinary bladder.

    PubMed

    Graber, M L; Devine, P

    1993-01-01

    There is now convincing evidence that in addition to the vacuolar-type H(+)-ATPase, a gastric-type H+/K(+)-ATPase participates in acidification by the distal nephron. To determine whether a similar pump exists in the turtle bladder, we examined the dependence of acid secretion on mucosal K+, and the effects of supposedly specific inhibitors of the gastric H+/K(+)-ATPase, omeprazole and SCH 28080. In CO2-stimulated bladders both drugs produced dose-dependent inhibition of electrogenic H+ secretion measured as the reverse short-circuit current (RSCC). At the highest concentrations tested, H+ secretion decreased 45 +/- 16% with mucosal and 20 +/- 7% with serosal omeprazole (P < 0.01). SCH 28080 at 400 microM produced essentially complete inhibition of H+ secretion with either mucosal or serosal application. When H+ secretion was purposefully inhibited by DIDS or an adverse mucosal pH gradient, SCH 28080 had no effect on RSCC. Removing mucosal K+ (measured K+ < 50 microM), with or without mucosal barium, had no effect on RSCC. The inhibition of RSCC by omeprazole was reversed by mercaptoethanol. Finally, HCO3 secretion, as measured by either RSCC or pH-stat titration, increased significantly in response to 400 microM SCH 28080. The results demonstrate that these compounds inhibit acid secretion by the turtle bladder but stimulate the secretion of base. In view of the total independence of acid secretion on potassium, it is unlikely that any of the bladder's acid secretion is mediated by an H+/K(+)-ATPase. The most reasonable interpretation of the data is that omeprazole and SCH 28080, previously thought to be specific inhibitors of the H+/K(+)-ATPase, also inhibit the vacuolar H(+)-ATPase of the turtle bladder. The results also indicate that HCO3 secretion by the bladder employ a different mechanism of H+ transport than is used for acid secretion; there is no simple reversal of polarity in the acid- versus base-secreting cells.

  14. Inhibition of polyunsaturated fatty acid accumulation in plants expressing a fatty acid epoxygenase.

    PubMed

    Singh, S; Thomaeus, S; Lee, M; Green, A; Stymne, S

    2000-12-01

    Earlier, we described the isolation of a Crepis palaestina cDNA (Cpal2) which encoded a Delta12-epoxygenase that could catalyse the synthesis of 12,13-epoxy-cis-9-octadecenoic acid (18:1E) from linoleic acid (18:2). When the Cpal2 gene was expressed under the control of a seed-specific promoter in Arabidopsis, plants were able to accumulate small amounts 18:1E and 12,13-epoxy-cis-9,15-octadec-2-enoic acid in their seed lipids. In this report we give results obtained from a detailed analysis of transgenic Arabidopsis plants containing the Cpal2 gene. The seeds from these plants accumulate varying levels of 18:1E, but show a marked increase in 18:1 and equivalent decrease in 18:2 and 18:3. We further observed that the co-expression of a C. palaestina Delta12-desaturase in Arabidopsis appears to return the relative proportions of the C(18) seed fatty acids to normal levels and results in a 2-fold increase in total epoxy fatty acids.

  15. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  16. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  17. The omega-3 polyunsaturated fatty acid eicosapentaenoic acid inhibits mouse MC-26 colorectal cancer cell liver metastasis via inhibition of PGE2-dependent cell motility

    PubMed Central

    Hawcroft, G; Volpato, M; Marston, G; Ingram, N; Perry, SL; Cockbain, AJ; Race, AD; Munarini, A; Belluzzi, A; Loadman, PM; Coletta, PL; Hull, MA

    2012-01-01

    BACKGROUND AND PURPOSE The omega-3 polyunsaturated fatty acid (PUFA) eicosapentaenoic acid (EPA) has antineoplastic activity at early stages of colorectal carcinogenesis, relevant to chemoprevention of colorectal cancer (CRC). We tested the hypothesis that EPA also has anti-CRC activity at later stages of colorectal carcinogenesis, relevant to treatment of metastatic CRC, via modulation of E-type PG synthesis. EXPERIMENTAL APPROACH A BALB/c mouse model, in which intrasplenic injection of syngeneic MC-26 mouse CRC cells leads to development of liver metastases, was used. Dietary EPA was administered in the free fatty acid (FFA) form for 2 weeks before and after ultrasound-guided intrasplenic injection of 1 × 106 MC-26 cells (n= 16 each group). KEY RESULTS Treatment with 5% (w w-1) EPA-FFA was associated with a reduced MC-26 mouse CRC cell liver tumour burden compared with control animals (median liver weight 1.03 g vs. 1.62 g; P < 0.034). Administration of 5% EPA-FFA was also linked to a significant increase in tumour EPA incorporation and lower intratumoural PGE2 levels (with concomitant increased production of PGE3). Liver tumours from 5% EPA-FFA- treated mice demonstrated decreased 5-bromo-2-deoxyuridine-positive CRC cell proliferation and reduced phosphorylated ERK 1/2 expression at the invasive edge of tumours. A concentration-dependent reduction in MC-26 CRC cell Transwell® migration following EPA-FFA treatment (50–200 µM) in vitro was rescued by exogenous PGE2 (10 µM) and PGE1-alcohol (1 µM). CONCLUSIONS AND IMPLICATIONS EPA-FFA inhibits MC-26 CRC cell liver metastasis. EPA incorporation is associated with a ‘PGE2 to PGE3 switch’ in liver tumours. Inhibition of PGE2-EP4 receptor-dependent CRC cell motility probably contributes to the antineoplastic activity of EPA. PMID:22300262

  18. Acetylsalicylic acid inhibits cell proliferation by involving transforming growth factor-beta.

    PubMed

    Redondo, Santiago; Santos-Gallego, Carlos G; Ganado, Patricia; García, Marta; Rico, Laura; Del Rio, Marcela; Tejerina, Teresa

    2003-02-04

    Acetylsalicylic acid (ASA) inhibits cell proliferation. This may be mediated by transforming growth factor-beta (TGF-beta). TGF-beta directly stops cell proliferation, restrains cells in G(0), and inhibits the uptake of platelet-derived growth factor and insulin-like growth factor. These effects are identical to those observed with ASA treatment. We cultured rat thoracic aorta vascular smooth muscle cells and measured cytotoxicity, cell proliferation, cell cycle, transcription of TGF-beta1, and concentration of TGF-beta1 in supernatant medium. ASA dose-dependently restrained cells in G(0) phase with no cytotoxic effect and inhibited cell proliferation by 30.86%. Anti-TGF-beta1 reversed this inhibition by 30.21%. However, ASA treatment decreased TGF-beta1 transcription and had no significant effect on TGF-beta1 concentration. TGF-beta seems to play an important role in ASA-mediated inhibition of cell proliferation. Therefore, treatment with ASA prevents coronary disease not only by means of its antiplatelet properties but also by an important inhibition of plaque growth. This relationship between ASA and TGF-beta explains many other effects, such as cancer chemoprevention, immunomodulation, and wound healing. The aim of this study was to demonstrate this link.

  19. Ascorbic acid ameliorates seizures and brain damage in rats through inhibiting autophagy.

    PubMed

    Dong, Yan; Wang, Shengjun; Zhang, Tongxia; Zhao, Xiuhe; Liu, Xuewu; Cao, Lili; Chi, Zhaofu

    2013-10-16

    Oxidative stress is a mechanism of cell death induced by seizures. Antioxidant compounds have neuroprotective effects due to their ability to inhibit free radical production. Autophagy is a process in which cytoplasmic components such as organelles and proteins are delivered to the lysosomal compartment for degradation, and plays an essential role in the maintenance of cellular homeostasis. The activity of autophagy is enhanced during oxidative stress. The objectives of this work were first to study the inhibitory action of antioxidant ascorbic acid on behavioral changes and brain damage induced by high doses of pilocarpine, then to study the effect of ascorbic acid on oxidative stress (MDA and SOD were used to estimate oxidative stress) and activated autophagy (beclin 1 was used to estimate autophagy) induced by seizures, aiming to further clarify the mechanism of action of this antioxidant compound. In order to determinate neuroprotective effects, we studied the effects of ascorbic acid (500 mg/kg, i.p.) on the behavior and brain lesions observed after seizures induced by pilocarpine (340 mg/kg, i.p., P340 model) in rats. Ascorbic acid injections prior to pilocarpine suppressed behavioral seizure episodes by increasing the latency to the first myoclonic, clonic and tonic seizure and decreasing the percentage of incidence of clonic and tonic seizures as well as the mortality rate. These findings suggested that oxidative stress can be produced and autophagy is increased during brain damage induced by seizures. In the P340 model, ascorbic acid significantly decreased cerebral damage, reduced oxidative stress and inhibited autophagy by reducing de novo synthesis of beclin 1. Antioxidant compound can exert neuroprotective effects associated with inhibition of free radical production and autophagy. These results highlighted the promising therapeutic potential of ascorbic acid in treatment for seizures.

  20. Bezafibrate lowers very long-chain fatty acids in X-linked adrenoleukodystrophy fibroblasts by inhibiting fatty acid elongation.

    PubMed

    Engelen, Marc; Schackmann, Martin J A; Ofman, Rob; Sanders, Robert-Jan; Dijkstra, Inge M E; Houten, Sander M; Fourcade, Stéphane; Pujol, Aurora; Poll-The, Bwee Tien; Wanders, Ronald J A; Kemp, Stephan

    2012-11-01

    X-linked adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene encoding ALDP, an ATP-binding-cassette (ABC) transporter located in the peroxisomal membrane. ALDP deficiency results in impaired peroxisomal β-oxidation and the subsequent accumulation of very long-chain fatty acids (VLCFA; > C22:0) in plasma and tissues. VLCFA are primarily derived from endogenous synthesis by ELOVL1. Therefore inhibiting this enzyme might constitute a feasible therapeutic approach. In this paper we demonstrate that bezafibrate, a PPAR pan agonist used for the treatment of patients with hyperlipidaemia reduces VLCFA levels in X-ALD fibroblasts. Surprisingly, the VLCFA-lowering effect was independent of PPAR activation and not caused by the increase in either mitochondrial or peroxisomal fatty acid β-oxidation capacity. In fact, our results show that bezafibrate reduces VLCFA synthesis by decreasing the synthesis of C26:0 through a direct inhibition of fatty acid elongation activity. Taken together, our data indicate bezafibrate as a potential pharmacotherapeutic treatment for X-ALD. A clinical trial is currently ongoing to evaluate the effect in patients with X-ALD.

  1. Inhibition by all-trans retinoic acid of collagen degradation mediated by corneal fibroblasts.

    PubMed

    Kimura, Kazuhiro; Zhou, Hongyan; Orita, Tomoko; Kobayashi, Shinya; Wada, Tomoyuki; Nakamura, Yoshikuni; Nishida, Teruo; Sonoda, Koh-Hei

    2016-08-01

    We examined the effect of all-trans retinoic acid on collagen degradation mediated by corneal fibroblasts. Rabbit corneal fibroblasts were cultured with or without all-trans retinoic acid in a three-dimensional collagen gel, and the extent of collagen degradation was determined by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Matrix metalloproteinase expression was examined by immunoblot analysis and gelatin zymography. The abundance and phosphorylation state of the endogenous nuclear factor-kappaB inhibitor IκB-α were examined by immunoblot analysis. Corneal ulceration was induced by injection of lipopolysaccharide into the central corneal stroma of rabbits and was assessed by observation with a slitlamp microscope. All-trans retinoic acid inhibited interleukin-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. It also attenuated the release and activation of matrix metalloproteinases as well as the phosphorylation and degradation of IκB-α induced by interleukin-1β in these cells. Topical application of all-trans retinoic acid suppressed corneal ulceration induced by injection of lipopolysaccharide into the corneal stroma. All-trans retinoic acid inhibited collagen degradation mediated by corneal fibroblasts exposed to interleukin-1β, with this effect being accompanied by suppression of nuclear factor-kappaB signalling as well as of matrix metalloproteinase release and activation in these cells. All-trans retinoic acid also attenuated lipopolysaccharide-induced corneal ulceration in vivo. Our results therefore suggest that all-trans retinoic acid might prove effective for the treatment of patients with corneal ulceration. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  2. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer's disease.

    PubMed

    Cornejo, Alberto; Jiménez, José M; Caballero, Leonardo; Melo, Francisco; Maccioni, Ricardo B

    2011-01-01

    Alzheimer's disease is a neurodegenerative disorder involving extracellular plaques (amyloid-β) and intracellular tangles of tau protein. Recently, tangle formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. At present, the current therapeutic strategies are aimed at natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. However, only a few polyphenolic molecules have emerged to prevent tau aggregation, and natural drugs targeting tau have not been approved yet. Fulvic acid, a humic substance, has several nutraceutical properties with potential activity to protect cognitive impairment. In this work we provide evidence to show that the aggregation process of tau protein, forming paired helical filaments (PHFs) in vitro, is inhibited by fulvic acid affecting the length of fibrils and their morphology. In addition, we investigated whether fulvic acid is capable of disassembling preformed PHFs. We show that the fulvic acid is an active compound against preformed fibrils affecting the whole structure by diminishing length of PHFs and probably acting at the hydrophobic level, as we observed by atomic force techniques. Thus, fulvic acid is likely to provide new insights in the development of potential treatments for Alzheimer's disease using natural products.

  3. Theoretical study of inhibition efficiencies of some amino acids on corrosion of carbon steel in acidic media: green corrosion inhibitors.

    PubMed

    Dehdab, Maryam; Shahraki, Mehdi; Habibi-Khorassani, Sayyed Mostafa

    2016-01-01

    Inhibition efficiencies of three amino acids [tryptophan (B), tyrosine (c), and serine (A)] have been studied as green corrosion inhibitors on corrosion of carbon steel using density functional theory (DFT) method in gas and aqueous phases. Quantum chemical parameters such as EH OMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), hardness (η), polarizability ([Formula: see text]), total negative charges on atoms (TNC), molecular volume (MV) and total energy (TE) have been calculated at the B3LYP level of theory with 6-311++G** basis set. Consistent with experimental data, theoretical results showed that the order of inhibition efficiency is tryptophan (B) > tyrosine (C) > serine (A). In order to determine the possible sites of nucleophilic and electrophilic attacks, local reactivity has been evaluated through Fukui indices.

  4. Glycyrrhizic acid nanoparticles inhibit LPS-induced inflammatory mediators in 264.7 mouse macrophages compared with unprocessed glycyrrhizic acid.

    PubMed

    Wang, Wei; Luo, Meng; Fu, Yujie; Wang, Song; Efferth, Thomas; Zu, Yuangang

    2013-01-01

    Glycyrrhizic acid (GA), the main component of radix glycyrrhizae, has a variety of pharmacological activities. In the present study, suspensions of GA nanoparticles with the average particle size about 200 nm were prepared by a supercritical antisolvent (SAS) process. Comparative studies were undertaken using lipopolysaccardide (LPS)-stimulated mouse macrophages RAW 264.7 as in vitro inflammatory model. Several important inflammation mediators such as NO, PGE2, TNF-α and IL-6 were examined. These markers were highly stimulated by LPS and were inhibited both by nano-GA and unprocessed GA in a dose-dependent manner, especially PGE2 and TNF-α. However nano-GA and unprocessed GA inhibited NO only at a high concentration. In general, we found that GA nanoparticle suspensions exhibited much better anti-inflammatory activities compared to unprocessed GA.

  5. Glycyrrhizic acid nanoparticles inhibit LPS-induced inflammatory mediators in 264.7 mouse macrophages compared with unprocessed glycyrrhizic acid

    PubMed Central

    Wang, Wei; Luo, Meng; Fu, Yujie; Wang, Song; Efferth, Thomas; Zu, Yuangang

    2013-01-01

    Glycyrrhizic acid (GA), the main component of radix glycyrrhizae, has a variety of pharmacological activities. In the present study, suspensions of GA nanoparticles with the average particle size about 200nm were prepared by a supercritical antisolvent (SAS) process. Comparative studies were undertaken using lipopolysaccardide(LPS)-stimulated mouse macrophages RAW 264.7 as in vitro inflammatory model. Several important inflammation mediators such as NO, PGE2, TNF-α and IL-6 were examined. These markers were highly stimulated by LPS and were inhibited both by nano-GA and unprocessed GA in a dose-dependent manner, especially PGE2 and TNF-α. However nano-GA and unprocessed GA inhibited NO only at a high concentration. In general, we found that GA nanoparticle suspensions exhibited much better anti-inflammatory activities compared to unprocessed GA. PMID:23610519

  6. Inhibition of Listeria monocytogenes in Fresh Cheese Using Chitosan-Grafted Lactic Acid Packaging.

    PubMed

    Sandoval, Laura N; López, Monserrat; Montes-Díaz, Elizabeth; Espadín, Andres; Tecante, Alberto; Gimeno, Miquel; Shirai, Keiko

    2016-04-08

    A chitosan from biologically obtained chitin was successfully grafted with d,l-lactic acid (LA) in aqueous media using p-toluenesulfonic acid as catalyst to obtain a non-toxic, biodegradable packaging material that was characterized using scanning electron microscopy, water vapor permeability, and relative humidity (RH) losses. Additionally, the grafting in chitosan with LA produced films with improved mechanical properties. This material successfully extended the shelf life of fresh cheese and inhibited the growth of Listeria monocytogenes during 14 days at 4 °C and 22% RH, whereby inoculated samples with chitosan-g-LA packaging presented full bacterial inhibition. The results were compared to control samples and commercial low-density polyethylene packaging.

  7. Complete inhibition of food-stimulated gastric acid secretion by combined application of pirenzepine and ranitidine.

    PubMed Central

    Londong, W; Londong, V; Ruthe, C; Weizert, P

    1981-01-01

    In a double-blind, placebo controlled and randomised secretory study the effectiveness of pirenzepine, ranitidine, and their combination was compared intraindividually in eight healthy subjects receiving intravenous bolus injections. Pirenzepine (0.15 mg/kg) plus ranitidine (0.6 mg/kg) suppressed peptone-stimulated gastric acid secretion from 69 +/- 11 to 2 +/- 0.4 mmol H+/3 h; the mean percentage inhibition was 97%. Postprandial gastrin was unaffected. There were only minor side-effects in a few experiments (reduction of salivation, brief blurring of vision), but no prolactin stimulation after ranitidine or ranitidine plus pirenzepine. The combined application of ranitidine and pirenzepine inhibited meal-stimulated acid secretion more effectively and produced fewer side-effects than the combination of cimetidine plus pirenzepine studied previously. PMID:6114900

  8. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability.

    PubMed

    Bradke, Tiffany M; Hall, Casey; Carper, Stephen W; Plopper, George E

    2008-01-01

    We compared the in vitro effect of boric acid (BA) versus phenylboronic acid (PBA) on the migration of prostate and breast cancer cell lines and non-tumorigenic cells from the same tissues. Treatment at 24 hours with BA (< or =500 microM) did not inhibit chemotaxis on fibronectin in any cell line. However, treatment over the same time course with concentrations of PBA as low as 1 muM significantly inhibited cancer cell migration without effecting non-tumorigenic cell lines. The compounds did not affect cell adhesion or viability at 24 hours but did alter morphology; both decreased cancer cell viability at eight days. These results suggest that PBA is more potent than BA in targeting the metastatic and proliferative properties of cancer cells.

  9. Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway

    SciTech Connect

    Chan, Tom S. Wilson, John X.; Selliah, Subajini; Bilodeau, Marc; Zwingmann, Claudia; Poon, Raymond; O'Brien, Peter J.

    2008-11-01

    Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the

  10. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors.

  11. Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells.

    PubMed

    Barranco, Wade T; Kim, Danny H; Stella, Salvatore L; Eckhert, Curtis D

    2009-08-01

    Boron (B) is a developmental and reproductive toxin. It is also essential for some organisms. Plants use uptake and efflux transport proteins to maintain homeostasis, and in humans, boron has been reported to reduce prostate cancer. Ca2+ signaling is one of the primary mechanisms used by cells to respond to their environment. In this paper, we report that boric acid (BA) inhibits NAD+ and NADP+ as well as mechanically induced release of stored Ca2+ in growing DU-145 prostate cancer cells. Cell proliferation was inhibited by 30% at 100 microM, 60% at 250 microM, and 97% at 1,000 microM BA. NAD+-induced Ca2+ transients were partly inhibited at 250 microM BA and completely at 1,000 microM BA, whereas both NADP+ and mechanically induced transients were inhibited by 1,000 microM BA. Expression of CD38 protein increased in proportion to BA exposure (0-1,000 microM). In vitro mass spectrometry analysis showed that BA formed adducts with the CD38 products and Ca2+ channel agonists cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). Vesicles positive for the Ca2+ fluorophore fluo-3 acetoxymethyl ester accumulated in cells exposed to 250 and 1,000 microM BA. The BA analog, methylboronic acid (MBA; 250 and 1,000 microM), did not inhibit cell proliferation or NAD+, NADP+, or mechanically stimulated Ca2+ store release. Nor did MBA increase CD38 expression or cause the formation of intracellular vesicles. Thus, mammalian cells can distinguish between BA and its synthetic analog MBA and exhibit graded concentration-dependent responses. Based on these observations, we hypothesize that toxicity of BA stems from the ability of high concentrations to impair Ca2+ signaling.

  12. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  13. Dopaminergic inhibition involved in the alpha-naphthoxyacetic acid-induced jumping behavior in mice.

    PubMed

    Yamada, K; Furukawa, T

    1980-05-16

    alpha-Naphthoxyacetic acid (alpha-NOAA), one of the retching-inducers, elicited a dose-dependent jumping behavior shortly after i.p. administration in doses ranging from 250 to 700 mg/kg in ddY mice, the incidence of jumping being 97% at a dose of 700 mg/kg. alpha-NOAA also induced hypothermia, retching, head shaking, salivation and lacrimation. Phentolamine, reserpine, disulfiram, tranylcypromine, haloperidol, scopolamine, bicuculline, diazepam and lithium among the drugs tested inhibited to a certain degree but not markedly the alpha-NOAA-induced jumping behavior. However, the behavior was markedly inhibited by a dopaminergic agonist, apomorphine (1 mg/kg, i.p.), and this inhibitory effect was significantly antagonized by a dopaminergic antagonist, haloperidol (2 mg/kg, i.p.). These findings suggest that the jumping behavior elicited by alpha-NOAA may be due to the inhibition of dopaminergic neuron activity.

  14. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids.

    PubMed

    Busi, Roberto

    2014-09-01

    Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.

  15. Possible involvement of calcineurin in retinoic acid-induced inhibition of leukemic HL-60 cell proliferation.

    PubMed

    Kihira, H; Hiasa, A; Yamamoto, M; Katayama, N; Kuno, T; Ohtsuka, K; Shiku, H; Nishikawa, M

    1998-03-01

    Differentiation of leukemic HL-60 cells by all transretinoic acid (ATRA) resulted in a reduced rate of growth. Cyclosporin A and FK506, at concentrations that inhibited calcineurin activity, abrogated the ATRA-induced inhibition of HL-60 cell growth but these immunosuppressants had no effect on the ATRA-induced granulocytic differentiation. Treatment with 1 microM ATRA led to a progressive increase in calcineurin phosphatase activity of HL-60 cells; the increase in this activity appeared to parallel the functional change of HL-60 cells during granulocytic differentiation. Increase in calcineurin activity was concordant with the increased expressions of calcineurin A and calcineurin B subunit proteins. The FKBP12 expression increased during ATRA-induced differentiation and expression of cyclophilin A remained unchanged. We propose that the increased expression of calcineurin is involved in the ATRA-induced inhibition of HL-60 cell proliferation, as in the case with 1,25alpha-dihydroxy-vitamin D3.

  16. Anti-Cancer Effect of Lambertianic Acid by Inhibiting the AR in LNCaP Cells

    PubMed Central

    Lee, Myoung-Sun; Lee, Seon-Ok; Kim, Sung-Hoon; Lee, Eun-Ok; Lee, Hyo-Jeong

    2016-01-01

    Lambertianic acid (LA) is known to have anti-allergic and antibacterial effects. However, the anticancer activities and mechanism of action of LA have not been investigated. Therefore, the anticancer effects and mechanism of LA are investigated in this study. LA decreased not only AR protein levels, but also cellular and secretory levels of PSA. Furthermore, LA inhibited nuclear translocation of the AR induced by mibolerone. LA suppressed cell proliferation by inducing G1 arrest, downregulating CDK4/6 and cyclin D1 and activating p53 and its downstream molecules, p21 and p27. LA induced apoptosis and the expression of related proteins, including cleaved caspase-9 and -3, c-PARP and BAX, and inhibited BCl-2. The role of AR in LA-induced apoptosis was assessed by using siRNA. Collectively, these findings suggest that LA exerts the anticancer effect by inhibiting AR and is a valuable therapeutic agent in prostate cancer treatment. PMID:27399684

  17. Lipoxygenase inhibition by novel fatty acid ester from Annona squamosa seeds.

    PubMed

    Sultana, Nighat

    2008-12-01

    Studies on the seeds of Annona squamosa yielded a novel lipoxygenase inhibitor fatty acid ester, (+) - annonlipoxy (1). Compound 1 was screened for its enzyme inhibitory activity against lipoxygenase (E.C.1.14.18.1), exhibiting activity with IC(50) 69.05 +/- 5.06 microm. Baicalein (IC(50) 22.6 +/- 0.5 microm) was used as a positive control. Crude extracts of Annona squamosa fruit pulp and seeds were screened for its enzyme inhibitory activity against lipoxygenase and acetylcholinesterase. The crude ethanolic extract of fruit pulp and seeds of Annona squamosa also exhibited lipoxygenase activity with 22.2 and 26.7% inhibition, while the pet.ether extract of seeds of A. squamosa exhibited 52.7% inhibition at a concentration of 40 microg/200 ml. The crude ethanolic extract of seeds of Annona squamosa was also bioassayed for acetylcholinesterase inhibition and it was found inactive.

  18. Inhibition of mycotoxin-producing Aspergillus nomius vsc 23 by lactic acid bacteria and Saccharomyces cerevisiae

    PubMed Central

    Muñoz, R; Arena, M.E.; Silva, J.; González, S.N.

    2010-01-01

    The effect of different fermenting microorganisms on growth of a mycotoxin- producing Aspergillus nomius was assayed. Two lactic acid bacteria, Lactobacillus fermentum and Lactobacillus rhamnosus, and Saccharomyces cerevisiae, all of which are widely used in fermentation and preservation of food, were assayed on their fungus inhibitory properties. Assays were carried out by simultaneous inoculation of one of the possible inhibiting microorganisms and the fungus or subsequent inoculation of one of the microorganisms followed by the fungus. All three microorganisms assayed showed growth inhibition of the mycotoxin-producing Aspergillus strain. L. rhamnosus O236, isolated from sheep milk and selected for its technological properties, showed highest fungal inhibition of the microorganisms assayed. The use of antifungal LAB with excellent technological properties rather than chemical preservatives would enable the food industry to produce organic food without addition of chemical substances. PMID:24031582

  19. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).

  20. Morphine inhibits acid-sensing ion channel currents in rat dorsal root ganglion neurons.

    PubMed

    Cai, Qi; Qiu, Chun-Yu; Qiu, Fang; Liu, Ting-Ting; Qu, Zu-Wei; Liu, Yu-Min; Hu, Wang-Ping

    2014-03-20

    Extracellular acidosis is a common feature in pain-generating pathological conditions. Acid-sensing ion channels (ASICs), pH sensors, are distributed in peripheral sensory neurons and participate in nociception. Morphine exerts potent analgesic effects through the activation of opioid receptors for various pain conditions. A cross-talk between ASICs and opioid receptors in peripheral sensory neurons has not been shown so far. Here, we have found that morphine inhibits the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Morphine dose-dependently inhibited proton-gated currents mediated by ASICs in the presence of the TRPV1 inhibitor capsazepine. Morphine shifted the proton concentration-response curve downwards, with a decrease of 51.4±3.8% in the maximum current response but with no significant change in the pH0.5 value. Another μ-opioid receptor agonist DAMGO induced a similar decrease in ASIC currents compared with morphine. The morphine inhibition of ASIC currents was blocked by naloxone, a specific opioid receptor antagonist. Pretreatment of forskolin, an adenylyl cyclase activator, or the addition of cAMP reversed the inhibitory effect of morphine. Moreover, morphine altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, peripheral applied morphine relieved pain evoked by intraplantar of acetic acid in rats. Our results indicate that morphine can inhibit the activity of ASICs via μ-opioid receptor and cAMP dependent signal pathway. These observations demonstrate a cross-talk between ASICs and opioid receptors in peripheral sensory neurons, which was a novel analgesic mechanism of morphine.

  1. Growth inhibitive effect of betulinic acid combined with tripterine on MSB-1 cells and its mechanism.

    PubMed

    An, N; Li, H Y; Zhang, X M

    2015-12-01

    Marek's disease (MD), a highly infectious lymphoproliferative disease in chickens, is caused by a cell-associated oncogenic herpesvirus, Marek's disease virus (MDV). MSB-1 is a MD-derived lymphoblastoid cell line and can induce tumors when inoculated into susceptible chickens. Betulinic acid, which is present as one of the major effective components in many traditional Chinese medicines, has recently been reported to inhibit growth of cancer cells and employed as a potential anticancer agent. Tripterine, a major active compound extracted from the Chinese herb Tripterygium wilfordii Hook F, has now also shown anti-tumor activities in various cancers. The aim of this study was to investigate the synergistic growth-inhibitive effect of betulinic acid combined with tripterine on MSB-1 cells and its mechanism. Viability of MSB-1 cells was assessed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide (MTT) method. Cell apoptotic analysis was performed by fluorescence detection. NF-κB transcription activity was detected by measuring luciferase activity. Western blotting was used to analyze the expression of p65, IκB and Meq. Our results showed that the proliferation in the combination group was significantly decreased as compared with that of monotherapy using betulinic acid or tripterine, accompanied by an induction of apoptosis, inhibition of NF-κB transcriptional activity and its targeting oncogenic gene Meq. The results suggest that the combination of betulinic acid and tripterine at lower concentration may produce a synergistic inhibitive effect on MSB-1 cells that warrants further investigation for its potential clinical applications.

  2. Inhibition of tumor-stromal interaction through HGF/Met signaling by valproic acid

    SciTech Connect

    Matsumoto, Yohsuke; Motoki, Takahiro; Kubota, Satoshi; Takigawa, Masaharu; Tsubouchi, Hirohito; Gohda, Eiichi

    2008-02-01

    Hepatocyte growth factor (HGF), which is produced by surrounding stromal cells, including fibroblasts and endothelial cells, has been shown to be a significant factor responsible for cancer cell invasion mediated by tumor-stromal interactions. We found in this study that the anti-tumor agent valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, strongly inhibited tumor-stromal interaction. VPA inhibited HGF production in fibroblasts induced by epidermal growth factor (EGF), platelet-derived growth factor, basic fibroblast growth factor, phorbol 12-myristate 13-acetate (PMA) and prostaglandin E{sub 2} without any appreciable cytotoxic effect. Other HDAC inhibitors, including butyric acid and trichostatin A (TSA), showed similar inhibitory effects on HGF production stimulated by various inducers. Up-regulations of HGF gene expression induced by PMA and EGF were also suppressed by VPA and TSA. Furthermore, VPA significantly inhibited HGF-induced invasion of HepG2 hepatocellular carcinoma cells. VPA, however, did not affect the increases in phosphorylation of MAPK and Akt in HGF-treated HepG2 cells. These results demonstrated that VPA inhibited two critical processes of tumor-stromal interaction, induction of fibroblastic HGF production and HGF-induced invasion of HepG2 cells, and suggest that those activities serve for other anti-tumor mechanisms of VPA besides causing proliferation arrest, differentiation, and/or apoptosis of tumor cells.

  3. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings.

    PubMed

    Edwards, J Vincent; Howley, Phyllis; Cohen, I Kelman

    2004-10-13

    Human neutrophil elastase (HNE) is elevated in chronic wounds. Oleic acid albumin formulations that inhibit HNE may be applicable to treatment modalities for chronic wounds. Oleic acid/albumin formulations with mole ratios of 100:1, 50:1, and 25:1 (oleic acid to albumin) were prepared and found to have dose response inhibition properties against HNE. The IC50 values for inhibition of HNE with oleic acid/albumin formulations were 0.029-0.049 microM. Oleic acid/albumin (BSA) formulations were bound to positively and negatively charged cotton wound dressings and assessed for elastase inhibition using a fiber bound formulation in an assay designed to mimic HNE inhibition in the wound. Cotton derivatized with both carboxylate and amine functional groups were combined with oleic acid/albumin formulations at a maximum loading of 0.030 mg oleic acid + 0.14 mg BSA/mg fiber. The IC50 values for inhibition of HNE with oleic acid/albumin formulations bound to derivatized cotton were 0.26-0.42 microM. Release of the oleic acid/albumin formulation from the fiber was measured by measuring oleic acid levels with quantitative GC analysis. Approximately, 35-50% of the fiber bound formulation was released into solution within the first 15 min of incubation. Albumin was found to enhance the rate of elastase hydrolysis of the substrate within a concentration range of 0.3-50 g/L. The acceleration of HNE substrate hydrolysis by albumin required increased concentration of inhibitor in the formulation to obtain complete inhibition of HNE. Oleic acid formulations prepared with albumin enable transport, solubility and promote dose response inhibition of HNE from derivatized cotton fibers under aqueous conditions mimicking the chronic wound.

  4. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production.

    PubMed

    Rodrigues, C M; Fan, G; Wong, P Y; Kren, B T; Steer, C J

    1998-03-01

    The hydrophilic bile salt ursodeoxycholate (UDCA) inhibits injury by hydrophobic bile acids and is used to treat cholestatic liver diseases. Interestingly, hepatocyte cell death from bile acid-induced toxicity occurs more frequently from apoptosis than from necrosis. However, both processes appear to involve the mitochondrial membrane permeability transition (MPT). In this study, we determined the inhibitory effect of UDCA on deoxycholic acid (DCA)-induced MPT in isolated mitochondria by measuring changes in transmembrane potential (delta psi m) and production of reactive oxygen species (ROS). In addition, we examined the expression of apoptosis-associated proteins in mitochondria isolated from livers of bile acid-fed animals. Adult male rats were maintained on standard diet supplemented with DCA and/or UDCA for 10 days. Mitochondria were isolated from livers by sucrose/percoll gradient centrifugation and MPT was measured using spectrophotometric and fluorimetric assays. delta psi m and ROS generation were determined by FACScan analysis. Cytoplasmic and mitochondrial protein abundance were determined by Western blot analysis. DCA increased mitochondrial swelling 25-fold over controls (p < 0.001); UDCA reduced the swelling by > 40% (p < 0.001). Similarly, UDCA inhibited DCA-mediated release of calcein-loaded mitochondria by 50% (p < 0.001). delta psi m was significantly decreased in mitochondria incubated with DCA but not with UDCA. delta psi m disruption was followed closely by increased superoxide anion and peroxides production (p < 0.01). Coincubation of mitochondria with UDCA significantly inhibited the changes associated with DCA (p < 0.05). In vivo, DCA feeding was associated with a 4.5-fold increase in mitochondria-associated Bax protein levels (p < 0.001); combination feeding with UDCA almost totally inhibited this increase (p < 0.001). UDCA significantly reduces DCA-induced disruption of delta psi m, ROS production, and Bax protein abundance in mitochondria

  5. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction

    PubMed Central

    Samudio, Ismael; Harmancey, Romain; Fiegl, Michael; Kantarjian, Hagop; Konopleva, Marina; Korchin, Borys; Kaluarachchi, Kumar; Bornmann, William; Duvvuri, Seshagiri; Taegtmeyer, Heinrich; Andreeff, Michael

    2009-01-01

    The traditional view is that cancer cells predominately produce ATP by glycolysis, rather than by oxidation of energy-providing substrates. Mitochondrial uncoupling — the continuing reduction of oxygen without ATP synthesis — has recently been shown in leukemia cells to circumvent the ability of oxygen to inhibit glycolysis, and may promote the metabolic preference for glycolysis by shifting from pyruvate oxidation to fatty acid oxidation (FAO). Here we have demonstrated that pharmacologic inhibition of FAO with etomoxir or ranolazine inhibited proliferation and sensitized human leukemia cells — cultured alone or on bone marrow stromal cells — to apoptosis induction by ABT-737, a molecule that releases proapoptotic Bcl-2 proteins such as Bak from antiapoptotic family members. Likewise, treatment with the fatty acid synthase/lipolysis inhibitor orlistat also sensitized leukemia cells to ABT-737, which supports the notion that fatty acids promote cell survival. Mechanistically, we generated evidence suggesting that FAO regulates the activity of Bak-dependent mitochondrial permeability transition. Importantly, etomoxir decreased the number of quiescent leukemia progenitor cells in approximately 50% of primary human acute myeloid leukemia samples and, when combined with either ABT-737 or cytosine arabinoside, provided substantial therapeutic benefit in a murine model of leukemia. The results support the concept of FAO inhibitors as a therapeutic strategy in hematological malignancies. PMID:20038799

  7. Stilbene Boronic Acids Form a Covalent Bond with Human Transthyretin and Inhibit Its Aggregation.

    PubMed

    Smith, Thomas P; Windsor, Ian W; Forest, Katrina T; Raines, Ronald T

    2017-09-28

    Transthyretin (TTR) is a homotetrameric protein. Its dissociation into monomers leads to the formation of fibrils that underlie human amyloidogenic diseases. The binding of small molecules to the thyroxin-binding sites in TTR stabilizes the homotetramer and attenuates TTR amyloidosis. Herein, we report on boronic acid-substituted stilbenes that limit TTR amyloidosis in vitro. Assays of affinity for TTR and inhibition of its tendency to form fibrils were coupled with X-ray crystallographic analysis of nine TTR·ligand complexes. The ensuing structure-function data led to a symmetrical diboronic acid that forms a boronic ester reversibly with serine 117. This diboronic acid inhibits fibril formation by both wild-type TTR and a common disease-related variant, V30M TTR, as effectively as does tafamidis, a small-molecule drug used to treat TTR-related amyloidosis in the clinic. These findings establish a new modality for covalent inhibition of fibril formation and illuminate a path for future optimization.

  8. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    PubMed

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-04

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  9. Oleyl alcohol inhibits intestinal long-chain fatty acid absorption in rats.

    PubMed

    Murota, K; Kawada, T; Matsui, N; Sakakibara, M; Takahashi, N; Fushiki, T

    2000-12-01

    Long-chain fatty acids are important nutrients, but obesity is the most common nutritional disorder in humans. In this study we investigated the effect of oleyl alcohol on the intestinal long-chain fatty acid absorption in rats. We administered [14C]oleic acid and oleyl alcohol as lipid emulsion intraduodenally in unanesthetized lymph-cannulated rats and measured the lymphatic output of oleic acid. Second, we orally administered lipid emulsion with a stomach tube and measured the luminal and mucosal oleic acid residues. Furthermore, rats were fed oleyl alcohol as a dietary component for 20 days, and fecal lipid and the weight of adipose tissues were measured. In lymph-cannulated rats, triglyceride and [14C]oleic acid output in the lymph were significantly lower in the presence of oleyl alcohol when compared with the absence of oleyl alcohol in a dose-dependent manner. The radioactivity remaining in the intestinal lumen was more strongly detected in rats that had been orally administered oleyl alcohol than in the controls. The feces of rats fed an oleyl-alcohol-added diet contained much higher amounts of lipids, and the weights of their adipose tissues were significantly lower than in the control group. These results suggest that oleyl alcohol inhibits the rat gastrointestinal absorption of long-chain fatty acids in vivo.

  10. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    PubMed

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe(2+) reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A420 . The A420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe(2+) reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  11. Inhibition of succinate dehydrogenase by malonic acid produces an "excitotoxic" lesion in rat striatum.

    PubMed

    Greene, J G; Porter, R H; Eller, R V; Greenamyre, J T

    1993-09-01

    Excitotoxicity and defects in neuronal energy metabolism have both been implicated in the pathogenesis of neurodegenerative disease. These two mechanisms may be linked through the NMDA receptor, activation of which is dependent on neuronal membrane potential. Because the ability to maintain membrane potential is dependent on neuronal energy metabolism, bioenergetic defects may affect NMDA receptor-mediated excitotoxicity. We now report that reversible inhibition of succinate dehydrogenase (SDH), an enzyme central to both the tricarboxylic acid cycle and the electron transport chain, produces an "excitotoxic" lesion in rat striatum that can be blocked by the NMDA antagonist MK-801. Male Sprague-Dawley rats received intrastriatal stereotaxic injections of the SDH inhibitor malonic acid (1 or 2 mumol) in combination with intraperitoneal injections of vehicle or MK-801 (5 mg/kg) 30 min before and 210 min after malonic acid. Animals were killed 72 h after surgery, and brains were processed for histology, cytochrome oxidase activity, and [3H]MK-801 and [3H]AMPA autoradiography. The higher dose of malonic acid (2 mumol) produced large lesions that were markedly attenuated by treatment with MK-801 (28.1 +/- 3.6 vs. 4.7 +/- 2.6 mm3; p < 0.001). [3H]MK-801 and [3H]AMPA binding were reduced in the lesions by 60 and 63%, respectively. One micromole of malonic acid produced smaller lesions that were almost completely blocked by MK-801 treatment (9.6 +/- 1.3 vs. 0.06 +/- 0.04 mm3; p < 0.0001). The toxic effects of malonic acid were due specifically to inhibition of SDH inasmuch as coinjection of a threefold excess of succinate with the malonic acid blocked the striatal lesions (p < 0.002).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Quercetin inhibits fatty acid and triacylglycerol synthesis in rat-liver cells.

    PubMed

    Gnoni, G V; Paglialonga, G; Siculella, L

    2009-09-01

    Quercetin plays a cardiovascular protective role because of its antioxidant capacity and ability to modulate dyslipidemia. As alterations in hepatic lipid synthesis are crucial to the regulation of serum lipid levels, we investigated the quercetin effect on lipogenesis in rat liver cells. The effect of quercetin on the rate of synthesis of fatty acids, cholesterol, neutral lipids, phospholipids and very-low-density lipoproteins (VLDL) was investigated in rat hepatocyte suspensions following [1-(14)C]acetate incorporation into these lipid fractions. Enzyme activities of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) as well as diacylglycerol acyltransferase (DGAT) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA-R), pace-setting steps of de novo fatty acid, triacylglycerol (TAG) and cholesterol synthesis respectively were assayed in digitonin-permeabilized hepatocytes. Within 30 min of quercetin addition to the hepatocytes, inhibition (IC50 approximately 25 microM) of fatty acid synthesis occurred. A reduction in label incorporation mainly into TAG was observed. Among neosynthesized fatty acids, palmitic acid formation was greatly reduced, suggesting that enzymatic step(s) of de novo fatty synthesis was affected. Only ACC activity was noticeably reduced, but no change in FAS activity was observed. DGAT activity was also inhibited. The decreased intracellular TAG content was paralleled by a reduction in acetate incorporation into VLDL-TAG. Conversely, cholesterol synthesis and HMG-CoA-R were not significantly affected by quercetin. In hepatocytes from normal rats, the quercetin-induced decrease in both de novo fatty acid and TAG synthesis, with a consequent reduction in VLDL-TAG formation, may represent a potential mechanism contributing to the reported hypotriacylglycerolemic effect of quercetin.

  13. Signal Biosynthesis Inhibition with Ambuic Acid as a Strategy To Target Antibiotic-Resistant Infections.

    PubMed

    Todd, Daniel A; Parlet, Corey P; Crosby, Heidi A; Malone, Cheryl L; Heilmann, Kristopher P; Horswill, Alexander R; Cech, Nadja B

    2017-08-01

    There has been major interest by the scientific community in antivirulence approaches against bacterial infections. However, partly due to a lack of viable lead compounds, antivirulence therapeutics have yet to reach the clinic. Here we investigate the development of an antivirulence lead targeting quorum sensing signal biosynthesis, a process that is conserved in Gram-positive bacterial pathogens. Some preliminary studies suggest that the small molecule ambuic acid is a signal biosynthesis inhibitor. To confirm this, we constructed a methicillin-resistant Staphylococcus aureus (MRSA) strain that decouples autoinducing peptide (AIP) production from regulation and demonstrate that AIP production is inhibited in this mutant. Quantitative mass spectrometric measurements show that ambuic acid inhibits signal biosynthesis (50% inhibitory concentration [IC50] of 2.5 ± 0.1 μM) against a clinically relevant USA300 MRSA strain. Quantitative real-time PCR confirms that this compound selectively targets the quorum sensing regulon. We show that a 5-μg dose of ambuic acid reduces MRSA-induced abscess formation in a mouse model and verify its quorum sensing inhibitory activity in vivo Finally, we employed mass spectrometry to identify or confirm the structure of quorum sensing signaling peptides in three strains each of S. aureus and Staphylococcus epidermidis and single strains of Enterococcus faecalis, Listeria monocytogenes, Staphylococcus saprophyticus, and Staphylococcus lugdunensis By measuring AIP production by these strains, we show that ambuic acid possesses broad-spectrum efficacy against multiple Gram-positive bacterial pathogens but does not inhibit quorum sensing in some commensal bacteria. Collectively, these findings demonstrate the promise of ambuic acid as a lead for the development of antivirulence therapeutics. Copyright © 2017 American Society for Microbiology.

  14. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  15. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections.

    PubMed

    Ramón-Peréz, Miriam L; Diaz-Cedillo, Francisco; Ibarra, J Antonio; Torales-Cardeña, Azael; Rodríguez-Martínez, Sandra; Jan-Roblero, Janet; Cancino-Diaz, Mario E; Cancino-Diaz, Juan C

    2014-10-01

    Biofilm formation on medical and surgical devices is a major virulence determinant for Staphylococcus epidermidis. The bacterium S. epidermidis is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that d-amino acids inhibit and disrupt biofilm formation in the prototype strains Bacillus subtilis NCBI3610 and Staphylococcus aureus SCO1. The effect of d-amino acids on S. epidermidis biofilm formation has yet to be tested for clinical or commensal isolates. S. epidermidis strains isolated from healthy skin (n = 3), conjunctiva (n = 9) and OI (n = 19) were treated with d-Leu, d-Tyr, d-Pro, d-Phe, d-Met or d-Ala and tested for biofilm formation. The presence of d-amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way d-Met inhibited most of the strains (26/31), followed by d-Phe (21/31). Additionally, the use of d-Met inhibited biofilm formation on a contact lens. The use of l-isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed d-Met, d-Phe and d-Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of d-amino acids on biofilm formation in S. epidermidis. Moreover, we showed, for the first time, that S. epidermidis clinical strains have a different sensitivity to these compounds during biofilm formation. © 2014 The Authors.

  16. Tachykinin inhibition of acid-induced gastric hyperaemia in the rat.

    PubMed Central

    Heinemann, A.; Jocic, M.; Herzeg, G.; Holzer, P.

    1996-01-01

    1. Primary afferent neurones releasing the vasodilator, calcitonin gene-related peptide, mediate the gastric hyperaemic response to acid back-diffusion. The tachykinins neurokinin A (NKA) and substance P (SP) are located in the same neurones and are co-released with calcitonin gene-related peptide. In this study we investigated the effect and possible role of tachykinins in the acid-evoked gastric vasodilatation in urethane-anaesthetized rats. 2. Gastric acid back-diffusion, induced by perfusing the stomach with 15% ethanol in the presence of 0.05 M HCl, increased gastric mucosal blood flow by 60-90%, as determined by the hydrogen clearance technique. NKA and SP (0.14-3.78 nmol min-1 kg-1, infused intra-aortically) inhibited the gastric mucosal hyperaemic response to acid back-diffusion in a dose-dependent manner, an effect that was accompanied by aggravation of ethanol/acid-induced macroscopic haemorrhagic lesions. 3. The inhibitory effect of NKA (1.26 nmol min-1 kg-1) on the acid-induced gastric mucosal vasodilatation was prevented by the tachykinin NK2 receptor antagonists, MEN 10,627 (200 nmol kg-1) but left unaltered by the NK1 receptor antagonist, SR 140,333 (300 nmol kg-1) and the mast-cell stabilizer, ketotifen (4.6 mumol kg-1). 4. Under basal conditions, with 0.05 M HCl being perfused through the stomach, NKA (1.26 nmol min-1 kg-1) reduced gastric mucosal blood flow by about 25%, an effect that was abolished by SR 140,333 but not MEN 10,627 or ketotifen. 5. SR 140,333, MEN 10,627 or ketotifen had no significant effect on basal gastric mucosal blood flow nor did they modify the gastric mucosal hyperaemic reaction to acid back-diffusion. 6. The effect of NKA (1.26 nmol min-1 kg-1) in causing vasoconstriction and inhibiting the vasodilator response to acid back-diffusion was also seen when blood flow in the left gastric artery was measured with the ultrasonic transit time shift technique. 7. Arginine vasopressin (AVP, 0.1 nmol min-1 kg-1) induced gastric

  17. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs

    PubMed Central

    Eisses, John F.; Criscimanna, Angela; Dionise, Zachary R.; Orabi, Abrahim I.; Javed, Tanveer A.; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W.; Tosun, Akif Burak; Ozolek, John A.; Lowe, Mark E.; Monga, Satdarshan P.; Rohde, Gustavo K.; Esni, Farzad; Husain, Sohail Z.

    2016-01-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations—that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury—we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury. PMID:26476347

  18. 5-Aminosalicylic Acid Inhibits Acute Clostridium difficile Toxin A-Induced Colitis in Rats.

    PubMed

    Vigna, Steven R

    2014-01-01

    We tested the hypothesis that 5-aminosalicylic acid (5-ASA) inhibits toxin A-induced generation of colonic leukotriene B4 (LTB4) and toxin A colitis in rats. Isolated colonic segments in anesthetized rats were treated intraluminally with toxin A for 3 hours with or without 30 minutes of pretreatment with either 5-ASA or sulfapyridine and then colonic tissue levels of LTB4 were measured and inflammation was assessed. Separately, sulfasalazine was administered to rats in their drinking water for 5 days, isolated colonic segments were then prepared, toxin A was administered, and inflammation was assessed as before. Pretreatment with 5-ASA inhibited toxin A-induced increased tissue LTB4 concentration in the colon. Sulfasalazine and 5-ASA but not sulfapyridine significantly inhibited toxin A colitis. However, pretreatment with 5-ASA did not protect against direct TRPV1-mediated colitis caused by capsaicin. Toxin A stimulated the release of substance P (SP), and this effect was also inhibited by sulfasalazine and 5-ASA but not by sulfapyridine. Thus, toxin A stimulates colonic LTB4 resulting in activation of TRPV1, release of SP, and colitis. Inhibition of 5-LO by 5-ASA disrupts this pathway and supports the concept that LTB4 activation of TRPV1 plays a role in toxin A colitis.

  19. 5-Aminosalicylic Acid Inhibits Acute Clostridium difficile Toxin A-Induced Colitis in Rats

    PubMed Central

    Vigna, Steven R.

    2014-01-01

    We tested the hypothesis that 5-aminosalicylic acid (5-ASA) inhibits toxin A-induced generation of colonic leukotriene B4 (LTB4) and toxin A colitis in rats. Isolated colonic segments in anesthetized rats were treated intraluminally with toxin A for 3 hours with or without 30 minutes of pretreatment with either 5-ASA or sulfapyridine and then colonic tissue levels of LTB4 were measured and inflammation was assessed. Separately, sulfasalazine was administered to rats in their drinking water for 5 days, isolated colonic segments were then prepared, toxin A was administered, and inflammation was assessed as before. Pretreatment with 5-ASA inhibited toxin A-induced increased tissue LTB4 concentration in the colon. Sulfasalazine and 5-ASA but not sulfapyridine significantly inhibited toxin A colitis. However, pretreatment with 5-ASA did not protect against direct TRPV1-mediated colitis caused by capsaicin. Toxin A stimulated the release of substance P (SP), and this effect was also inhibited by sulfasalazine and 5-ASA but not by sulfapyridine. Thus, toxin A stimulates colonic LTB4 resulting in activation of TRPV1, release of SP, and colitis. Inhibition of 5-LO by 5-ASA disrupts this pathway and supports the concept that LTB4 activation of TRPV1 plays a role in toxin A colitis. PMID:25045574

  20. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    SciTech Connect

    Cao, Xueming; Chen, Aihua Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  1. Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs.

    PubMed

    Eisses, John F; Criscimanna, Angela; Dionise, Zachary R; Orabi, Abrahim I; Javed, Tanveer A; Sarwar, Sheharyar; Jin, Shunqian; Zhou, Lili; Singh, Sucha; Poddar, Minakshi; Davis, Amy W; Tosun, Akif Burak; Ozolek, John A; Lowe, Mark E; Monga, Satdarshan P; Rohde, Gustavo K; Esni, Farzad; Husain, Sohail Z

    2015-12-01

    The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained β-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.

  2. Arachidonic Acid Inhibits Epithelial Na Channel Via Cytochrome P450 (CYP) Epoxygenase-dependent Metabolic Pathways

    PubMed Central

    Wei, Yuan; Lin, Dao-Hong; Kemp, Rowena; Yaddanapudi, Ganesh S.S.; Nasjletti, Alberto; Falck, John R.; Wang, Wen-Hui

    2004-01-01

    We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 μM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose–response curve of the AA effect on ENaC shows that 2 μM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) ω-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase–dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase–dependent metabolite, 11,12-EET. PMID:15545402

  3. Inhibition of protein synthesis may explain the bactericidal properties of hypochlorous acid produced by phagocytic cells

    SciTech Connect

    McKenna, S.M.; Davies, K.J.A.

    1986-05-01

    The authors find that hypochlorous acid (HOCl) and hydrogen peroxide (H/sub 2/O/sub 2/) inhibit protein synthesis in E. coli: HOCl is similarly ordered 10x more efficient than H/sub 2/O/sub 2/. This result may underlie the mechanism of bacterial killing by phagocytes, which use H/sub 2/O/sub 2/ and myeloperoxidase (MPO) to oxidize Cl/sup -/ to HOCl. Protein synthesis (/sup 3/H-leu incorporation) was completely inhibited by 50..mu..M HOCl, whereas 50..mu..M H/sub 2/O/sub 2/ only gave similarly ordered 10% inhibition. Complete inhibition by H/sub 2/O/sub 2/ was only observed at concentrations < 0.5 mM. HOCl was also a more potent inhibitor of cell growth (cultured in M9 medium + glucose) than was H/sub 2/O/sub 2/. No growth occurred at 50..mu..M HOCl: in contrast 0.5 mM H/sub 2/O/sub 2/ was required for similar results. During time-course experiments it was found that the inhibition of cell growth by both HOCl and H/sub 2/O/sub 2/ reached a maximum within 30 min (at any concentration used). HOCl reacts avidly with amino groups to form N-chloroamines but H/sub 2/O/sub 2/ is unreactive. Amino acids (ala, lys, met, trp) or taurine (all at 10 mM) prevented the effects of HOCl but did not affect H/sub 2/O/sub 2/ results. There was an excellent correlation between decreased protein synthesis and diminished cell growth. Inhibition of cell growth was not explained by proteolysis (release of acid-soluble counts), or by loss of membrane integrity. They propose that inhibition of protein synthesis may be a fundamental aspect of the bactericidal functions of phagocytes, and that the production of HOCl by MPO represents a quantitative advantage over H/sub 2/O/sub 2/.

  4. Caffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad.

    PubMed

    Hu, Bing; Cui, Fengchao; Yin, Fangping; Zeng, Xiaoxiong; Sun, Yi; Li, Yunqi

    2015-09-01

    Caffeoylquinic acid and its isomers inhibited porcine Pancreatic Lipase (PL) activity according to a competitive mode where binding and interaction with the catalytic triad of Ser153, His264 and Asp177 simultaneously occurred. The IC50 values under which 3-caffeoylquinic acid (CQA) and its isomers 4-, 5-CQA, 3,4-, 3,5- and 4,5-diCQA inhibited half of the porcine PL activity were 1.10, 1.23, 1.24, 0.252, 0.591 and 0.502 mM, respectively. The binding affinities in the range from -8.4 to -9.5 kCal/mol were well predicted from docking, which showed a high linear correlation coefficient of 0.893 and Spearman correlation of 1.0 with log(IC50) values. Caffeoylquinic acid and its isomers were stabilized by hydrogen bond and hydrophobic interaction in the binding pocket. This finding provided molecular mechanism of coffee and other natural food or drink containing caffeoylquinic acid and its isomers against lipase activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nicotinic acid inhibits enterotoxin-induced jejunal secretion in the pig.

    PubMed Central

    Forsyth, G W; Kapitany, R A; Scoot, A

    1981-01-01

    The use of nicotinic acid for preventing intestinal secretion caused by cholera toxin and by the heat-stable enterotoxin of Escherichia coli has been investigated in the weanling pig. Secretory effects were measured in ligated jejunal loops of halothane-anesthetized pigs by dilution of a nonabsorbable marker added to the loop fluid. Different routes of administration and different initial pH values for nicotinate solutions were studied to determine optimal conditions for secretory inhibition. The neutral sodium salt of nicotinic acid had no significant antisecretory activity under any conditions used in these trials. Inhibition of secretion was most effective with partly neutralized nicotinic acid at pH 4.5 added directly to loops containing enterotoxin. Net fluid secretion induced by cholera toxin or heat-stable enterotoxin of E. coli was prevented by this treatment. Reversal of secretion was not accompanied by any measurable changes in cyclic nucleotide concentration in intestinal mucosa. Nicotinic acid antagonism of a secretory step common to cholera toxin and heat-stable enterotoxin of E. coli but subsequent to cyclic nucleotide involvement is indicated by these data. PMID:7020893

  6. Clavulanic Acid: a Beta-Lactamase-Inhibiting Beta-Lactam from Streptomyces clavuligerus

    PubMed Central

    Reading, C.; Cole, M.

    1977-01-01

    A novel β-lactamase inhibitor has been isolated from Streptomyces clavuligerus ATCC 27064 and given the name clavulanic acid. Conditions for the cultivation of the organism and detection and isolation of clavulanic acid are described. This compound resembles the nucleus of a penicillin but differs in having no acylamino side chain, having oxygen instead of sulfur, and containing a β-hydroxyethylidine substituent in the oxazolidine ring. Clavulanic acid is a potent inhibitor of many β-lactamases, including those found in Escherichia coli (plasmid mediated), Klebsiella aerogenes, Proteus mirabilis, and Staphylococcus aureus, the inhibition being of a progressive type. The cephalosporinase type of β-lactamase found in Pseudomonas aeruginosa and Enterobacter cloacae P99 and the chromosomally mediated β-lactamase of E. coli are less well inhibited. The minimum inhibitory concentrations of ampicillin and cephaloridine against β-lactamase-producing, penicillin-resistant strains of S. aureus, K. aerogenes, P. mirabilis, and E. coli have been shown to be considerably reduced by the addition of low concentrations of clavulanic acid. Images PMID:879738

  7. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  8. Inhibition of alpha-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds.

    PubMed

    Gowri, P Mangala; Tiwari, Ashok K; Ali, A Zehra; Rao, J Madhusudana

    2007-08-01

    Barringtonia racemosa presents a wide range of therapeutic applications. In the course of identifying bioactives from Indian medicinal plants it was observed that the hexane, ethanol and methanol extracts of B. racemosa seeds displayed potent yeast and intestinal alpha-glucosidase inhibitory activities. The methanol extract was found to be superior among them. However, none of the extracts exhibited pancreatic alpha-amylase inhibitory activity, rather the ethanol and methanol extracts accelerated the alpha-amylase enzyme activity. Interestingly, however, bartogenic acid isolated from the methanol extract inhibited alpha-amylase also. This is the first report identifying alpha-glucosidase inhibitory activity in B. racemosa seed extracts and assigning to bartogenic acid an alpha-glucosidase and amylase inhibitory property. The presence of bartogenic acid in B. racemosa seeds as a major compound is also reported for the first time in this communication. (c) 2007 John Wiley & Sons, Ltd.

  9. Selective growth inhibition of human malignant melanoma cells by syringic acid-derived proteasome inhibitors

    PubMed Central

    2013-01-01

    Background It has been shown that proteasome inhibition leads to growth arrest in the G1 phase of the cell cycle and/or induction of apoptosis. However, it was found that some of these inhibitors do not induce apoptosis in several human normal cell lines. This selective activity makes proteasome inhibition a promising target for new generation of anticancer drugs. Clinical validation of the proteasome, as a therapeutic target in oncology, has been provided by the dipeptide boronic acid derivative; bortezomib. Bortezomib has proven to be effective as a single agent in multiple myeloma and some forms of non-Hodgkin’s lymphoma. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid, 1), a known phenolic acid, was isolated from the methanol extract of Tamarix aucheriana and was shown to possess proteasome inhibitory activity. Methods Using Surflex-Dock program interfaced with SYBYL, the docking affinities of syringic acid and its proposed derivatives to 20S proteasome were studied. Several derivatives were virtually proposed, however, five derivatives: benzyl 4-hydroxy-3,5-dimethoxybenzoate (2), benzyl 4-(benzyloxy)-3,5-dimethoxybenzoate (3), 3'-methoxybenzyl 3,5-dimethoxy-4-(3'-methoxybenzyloxy)benzoate (4), 3'-methoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (5) and 3',5'-dimethoxybenzyl 4-hydroxy-3,5-dimethoxybenzoate (6), were selected based on high docking scores, synthesized, and tested for their anti-mitogenic activity against human colorectal, breast and malignant melanoma cells as well as normal human fibroblast cells. Results Derivatives 2, 5, and 6 showed selective dose-dependent anti-mitogenic effect against human malignant melanoma cell lines HTB66 and HTB68 with minimal cytotoxicity on colorectal and breast cancer cells as well as normal human fibroblast cells. Derivatives 2, 5 and 6 significantly (p ≤ 0.0001) inhibited the various proteasomal chymotrypsin, PGPH, and trypsin like activities. They growth arrested the growth of HTB66 cells at G1 and G2

  10. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study.

    PubMed

    Oboh, Ganiyu; Agunloye, Odunayo M; Adefegha, Stephen A; Akinyemi, Ayodele J; Ademiluyi, Adedayo O

    2015-03-01

    Chlorogenic acid is a major phenolic compound that forms a substantial part of plant foods and is an ester of caffeic acid and quinic acid. However, the effect of the structures of both chlorogenic and caffeic acids on their antioxidant and antidiabetic potentials have not been fully understood. Thus, this study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid with α-amylase and α-glucosidase (key enzymes linked to type 2 diabetes) activities in vitro. The inhibitory effect of the phenolic acids on α-amylase and α-glucosidase activities was evaluated. Thereafter, their antioxidant activities as typified by their 1,1-diphenyl-2 picrylhydrazyl radical scavenging ability and ferric reducing antioxidant properties were determined. The results revealed that both phenolic acids inhibited α-amylase and α-glucosidase activities in a dose-dependent manner (2-8 μg/mL). However, caffeic acid had a significantly (p<0.05) higher inhibitory effect on α-amylase [IC50 (concentration of sample causing 50% enzyme inhibition)=3.68 μg/mL] and α-glucosidase (IC50=4.98 μg/mL) activities than chlorogenic acid (α-amylase IC50=9.10 μg/mL and α-glucosidase IC50=9.24 μg/mL). Furthermore, both phenolic acids exhibited high antioxidant properties, with caffeic acid showing higher effects. The esterification of caffeic acid with quinic acid, producing chlorogenic acid, reduces their ability to inhibit α-amylase and α-glucosidase activities. Thus, the inhibition of α-amylase and α-glucosidase activities by the phenolic acids could be part of the possible mechanism by which the phenolic acids exert their antidiabetic effects.

  11. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    SciTech Connect

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J.

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  12. Inhibition and biotransformation potential of naphthenic acids under different electron accepting conditions.

    PubMed

    Misiti, Teresa; Tandukar, Madan; Tezel, Ulas; Pavlostathis, Spyros G

    2013-01-01

    Naphthenic acids (NAs) are a complex group of alkyl-substituted acyclic, monocyclic and polycyclic carboxylic acids present in crude oil, oil sands process water and tailings ponds, as well as in refinery wastewater. Bioassays were performed to investigate the biotransformation potential and inhibitory effect of a commercial NA mixture to nitrification, denitrification and fermentation/methanogenesis using mixed cultures not previously exposed to NAs. NAs inhibited nitrification in a mixed aerobic heterotrophic/nitrifying culture at concentrations as low as 80 mg NA/L, whereas, an enriched nitrifying culture was only affected at 400 mg NA/L. The lower nitrification inhibition in the latter assay is attributed to the higher population size of nitrosofying and nitrifying bacteria compared to the mixed heterotrophic/nitrifying culture. The NA mixture was not inhibitory to denitrifiers up to 400 mg/L. At higher NA concentrations, cell lysis was pronounced and lysis products were the main source of degradable carbon driving denitrification in culture series prepared without an external carbon source. In the presence of a degradable external carbon source, no difference was observed in nitrate reduction rates or nitrogen gas production at all NA concentrations tested. Methanogenesis was completely inhibited at NA concentrations equal to or higher than 200 mg/L. Methanogenic culture series amended with 80 mg NA/L were transiently inhibited and methane production in culture series prepared with NAs and an external carbon source or NAs only recovered in 136 and 41 days, respectively. Accumulation of volatile fatty acids was observed at inhibitory NA concentrations; however, carbon dioxide production was not affected by NAs, indicating that fermentation and acidogenesis were not affected by NAs. NAs were not degraded under nitrate-reducing or fermentative/methanogenic conditions used in the present study, regardless of the presence or not of another, degradable carbon

  13. Suberization: inhibition by washing and stimulation by abscisic Acid in potato disks and tissue culture.

    PubMed

    Soliday, C L; Dean, B B; Kolattukudy, P E

    1978-02-01

    Wounding of potato (Solanum tuberosum L.) tubers results in suberization, apparently triggered by the release of some chemical factor(s) at the cut surface. Suberization, as measured by diffusion resistance of the tissue surface to water vapor, was inhibited by mm concentrations of indoleacetic acid, unaffected by mm concentrations of traumatic acid, severely inhibited at mum concentrations of cytokinin, but stimulated by abscisic acid (ABA) at 10(-4)m. Thorough washing of potato disks up to 3 to 4 days after cutting resulted in severe inhibition of suberization as measured both by diffusion resistance and by the amount of the octadecene diol generated by hydrogenolysis (LiAlH(4)) of the tissue. Disks washed after 4 days did not show any inhibition of suberization. High performance liquid chromatographic analysis of the wash from fresh potato disks showed that about 14 ng of ABA was released into the wash per g of tissue. The amount of ABA released increased with time up to 4 to 6 hours of washing. The maximal amount of ABA was washed out after aging for 24 hours and after 2 days of aging ABA could no longer be found in the surface wash of the disks. Addition of ABA to the media of potato tissue cultures resulted in suberin formation whereas control cultures contained little suberin. The effect of ABA on suberization in the tissue cultures was shown to be linearly concentration-dependent up to 10(-4)m and a linear increase in suberin formation was seen up to about 8 days of culture growth on the media containing 10(-4)m ABA. From these results it is proposed that during the early phase of wound-healing ABA plays a role in triggering a chain of biochemical processes which eventually (in about 3 to 4 days) result in the formation of a suberization-inducing factor, responsible for the induction of the enzymes involved in suberin biosynthesis.

  14. Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters.

    PubMed

    Morita, T A; Silva, S S

    2000-01-01

    Precipitated sugarcane bagasse hemicellulosic hydrolysate containing acetic acid was fermented by Candida guilliermondii FTI20037 under different operational conditions (pH 4.0 and 7.0, three aeration rates). At pH 7.0 and kLa of 10 (0.75 vvm) and 22.5/h (3.0 vvm) the acetic acid had not been consumed until the end of the fermentations, whereas at the same pH and kLa of 35/h (4.5 vvm) the acid was rapidly consumed and acetic acid inhibition was not important. On the other hand, fermentations at an initial pH of 4.0 and kLa of 22.5 and 35/h required less time for the acid uptake than fermentations at kLa of 10/h. The acetic acid assimilation by the yeast indicates the ability of this strain to ferment in partially detoxified medium, making possible the utilization of the sugarcane bagasse hydrolysate in this bio-process. The effects on xylitol yield and production are reported.

  15. C. butyricum lipoteichoic acid inhibits the inflammatory response and apoptosis in HT-29 cells induced by S. aureus lipoteichoic acid.

    PubMed

    Wang, Jinbo; Qi, Lili; Mei, Lehe; Wu, Zhige; Wang, Hengzheng

    2016-07-01

    Lipoteichoic acid (LTA) is one of microbe-associated molecular pattern (MAMP) molecules of gram-positive bacteria. In this study, we demonstrated that Clostridium butyricum LTA (bLTA) significantly inhibited the inflammatory response and apoptosis induced by Staphylococcus aureus LTA (aLTA) in HT-29 cells. aLTA stimulated the inflammatory responses by activating a strong signal transduction cascade through NF-κB and ERK, but bLTA did not activate the signaling pathway. bLTA pretreatment inhibited the activation of the NF-κB and ERK signaling pathway induced by aLTA. The expression and release of cytokines such as IL-8 and TNF-α were also suppressed by bLTA pretreatment. aLTA treatment induced apoptosis in HT-29 cells, but bLTA did not affect the viability of the cells. Further study indicated that bLTA inhibited apoptosis in HT-29 cells induced by aLTA. These results suggest that bLTA may act as an aLTA antagonist and that an antagonistic bLTA may be a useful agent for suppressing the pro-inflammatory activities of gram-positive pathogenic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Capric Acid Secreted by S. boulardii Inhibits C. albicans Filamentous Growth, Adhesion and Biofilm Formation

    PubMed Central

    Murzyn, Anna; Krasowska, Anna; Stefanowicz, Piotr; Dziadkowiec, Dorota; Łukaszewicz, Marcin

    2010-01-01

    Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation. PMID

  17. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.

    PubMed

    Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Chen, Hsi-Chuan; Liu, Jie; Loziuk, Philip; Song, Jina; Williams, Cranos; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2015-01-01

    Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.

  18. New substrates of the multispecific bile acid transporter in liver cells: interference of some linear renin inhibiting peptides with transport protein(s) for bile acids.

    PubMed

    Bertrams, A A; Ziegler, K

    1991-01-23

    Interactions between some stable linear peptides with renin inhibitory activity and a multispecific transport system in the basolateral plasma membrane of liver cells was studied on cell suspensions. The peptides used in our experiments were taken up by liver cells and subsequently eliminated without any biotransformation (e.g., proteolysis). No degradation products could be detected in the extracellular medium by thin-layer chromatography. All peptides tested inhibited the uptake of physiological and of some foreign substrates of the multispecific bile acid transporter (MT). The phalloidin response of liver cells was also inhibited to a similar degree in a concentration-dependent manner. The potency of inhibition did not correlate with the lipophilic properties of the peptides. On the other hand a tight correlation could be documented between the inhibition of cholate transport and that of the phalloidin response. Transport inhibition of typical substrates of the MT by the above renin inhibitors was competitive. In contrast, the transport of a typical substrate of the bilirubin carrier (rifampicin), of amino acids (alpha-aminoisobutyric acid), long chain fatty acids (oleic acid) and cationic compounds (thiamin hydrochloride) was not inhibited by the same renin inhibitors. These results indicate that linear renin inhibiting peptides are taken up into liver cells by carrier proteins related to the MT.

  19. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes.

    PubMed

    Calder, Beth L; Kash, Emily A; Davis-Dentici, Katherine; Bushway, Alfred A

    2011-04-01

    Sodium acid sulfate (SAS) dip treatments were evaluated against a distilled water control and citric acid (CA) to compare its effectiveness in reducing enzymatic browning of raw, French-fry cut potatoes. Two separate studies were conducted with dip concentrations ranging from 0%, 1%, and 3% in experiment 1 to 0%, 2%, and 2.5% in experiment 2 to determine optimal dip concentrations. Russet Burbank potatoes were peeled, sliced, and dipped for 1 min and stored at 3 °C. Color, texture, fry surface pH, and microbiological analyses were conducted on days 0, 7, and 14. The 3% SAS- and CA-treated samples had significantly (p<0.0001) lower pH levels on fry surfaces than all other treatments. Both acidulants had significantly (p≤0.05) lower aerobic plate counts compared to controls in both studies by day 7. However, SAS appeared to be the most effective at the 3% level in maintaining a light fry color up to day 14 and had the highest L-values than all other treatments. The 3% SAS-treated fry slices appeared to have the least change in textural properties over storage time, having a significantly (p=0.0002) higher force value (kg force [kgf]) than the other treatments during experiment 1, without any signs of case-hardening that appeared in the control and CA-treated samples. SAS was just as comparable to CA in reducing surface fry pH and also lowering microbial counts over storage time. According to the results, SAS may be another viable acidulant to be utilized in the fresh-cut fruit and vegetable industry.

  20. Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria.

    PubMed

    Wong, C-B; Khoo, B-Y; Sasidharan, S; Piyawattanametha, W; Kim, S H; Khemthongcharoen, N; Ang, M-Y; Chuah, L-O; Liong, M-T

    2015-03-01

    Increasing levels of antibiotic resistance by Staphylococcus aureus have posed a need to search for non-antibiotic alternatives. This study aimed to assess the inhibitory effects of crude and fractionated cell-free supernatants (CFS) of locally isolated lactic acid bacteria (LAB) against a clinical strain of S. aureus. A total of 42 LAB strains were isolated and identified from fresh vegetables, fresh fruits and fermented products prior to evaluation of inhibitory activities. CFS of LAB strains exhibiting a stronger inhibitive effect against S. aureus were fractionated into crude protein, polysaccharide and lipid fractions. Crude protein fractions showed greater inhibition against S. aureus compared to polysaccharide and lipid fractions, with a more prevalent effect from Lactobacillus plantarum 8513 and L. plantarum BT8513. Crude protein, polysaccharide and lipid fractions were also characterised with glycine, mannose and oleic acid being detected as the major component of each fraction, respectively. Scanning electron microscopy revealed roughed and wrinkled membrane morphology of S. aureus upon treatment with crude protein fractions of LAB, suggesting an inhibitory effect via the destruction of cellular membrane. This research illustrated the potential application of fractionated extracts from LAB to inhibit S. aureus for use in the food and health industry.

  1. Inhibition of N-nitrosamine carcinogenesis and aflatoxin DNA damage by ellagic acid

    SciTech Connect

    Mandal-Chaudhuri, S.

    1988-01-01

    The effect of ellagic acid (EA), on the tumorigenicity of N-nitrosobenzylmethylamine (NBMA) in the rat esophagus was investigated. Groups of 30 male F-344 rats were fed a semipurified diet containing EA for 27 weeks. N-nitrosobenzylmethylamine was administered subcutaneously, once a week for 18 weeks. Ellagic acid produced a significant inhibition in the average number of esophageal tumors at both 20 weeks and 27 weeks. To investigate the mechanism(s) of this inhibition, EA was tested for its effect on the metabolism, DNA-binding and DNA-adduct formation of NBMA in cultured explants of rat esophagus. Explants were incubated in medium containing EA at concentrations of 10, 50, and 100 {mu}M for 16 hours, followed by the addition of 1{mu}M ({sup 3}H)NBMA and EA for 12 hours. Explant DNA was isolated by phenol extraction and hydroxylapatite chromatography, and benzaldehyde formation was determined by h.p.l.c. analysis of the culture medium. Finally, EA was examined for its ability to inhibit DNA damage induced by aflatoxin B{sub 1} (AFB{sub 1}) in cultured explants of rat trachea and esophagus, and human tracheobronchus.

  2. Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc.

    PubMed

    Kothari, Urvi D; Lee, Yoon Y

    2011-11-01

    Dilute-acid pretreatment liquor (PL) produced at NREL through a continuous screw-driven reactor was analyzed for sugars and other potential inhibitory components. Their inhibitory effects on enzymatic hydrolysis of Solka Floc were investigated. When the PL was mixed into the enzymatic hydrolysis reactor at 1:1 volume ratio, the glucan and xylan digestibility decreased by 63% and 90%, respectively. The tolerance level of the enzyme for each inhibitor was determined. Of the identified degradation components, acetic acid was found to be the strongest inhibitor for cellulase activity, as it decreased the glucan yield by 10% at 1 g/L. Among the sugars, cellobiose and glucose were found to be strong inhibitors to glucan hydrolysis, whereas xylose is a strong inhibitor to xylan hydrolysis. Xylo-oligomers inhibit xylan digestibility more strongly than the glucan digestibility. Inhibition by the PL was higher than that of the simulated mixture of the identifiable components. This indicates that some of the unidentified degradation components, originated mostly from lignin, are potent inhibitors to the cellulase enzyme. When the PL was added to a simultaneous saccharification and co-fermentation using Escherichia coli KO11, the bioprocess was severely inhibited showing no ethanol formation or cell growth.

  3. The very-long-chain fatty acid synthase is inhibited by chloroacetamides.

    PubMed

    Götz, Thomas; Böger, Peter

    2004-01-01

    The first elongation step to form very-long-chain fatty acids (VLCFAs) is catalyzed by the VLCFA-synthase. CoA-activated fatty acids react with malonyl-CoA to condense a C2-unit. As shown with recombinant enzyme this reaction is specifically inhibited by chloroacetamide herbicides. The inhibition is alleviated when the inhibitor (e.g. metazachlor) is incubated together with adequate concentrations of the substrate (e.g. oleoyl-CoA). Malonyl-CoA has no influence. However, once a chloroacetamide has been tightly bound to the synthase after an appropriate time it cannot be displaced anymore by the substrate. In contrast, oleoyl-CoA, is easily removed from the synthase by metazachlor. The irreversible binding of the chloroacetamides and their competition with the substrate explains the very low half-inhibition values of 10(-8) M and below. Chiral chloroacetamides like metolachlor or dimethenamid give identical results. However, only the (S)-enantiomers are active.

  4. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis.

    PubMed

    Chung, Jihwa; An, Shung Hyun; Kang, Sang Won; Kwon, Kihwan

    2016-01-01

    A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and "receptor for advanced glycation endproduct" (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis.

  6. Carnosic acid inhibits the proliferation and migration capacity of human colorectal cancer cells

    PubMed Central

    BARNI, M.V.; CARLINI, M.J.; CAFFERATA, E.G.; PURICELLI, L.; MORENO, S.

    2012-01-01

    Colorectal cancer (CRC) is the third most common malignant neoplasm worldwide. The objective of this study was to examine whether carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., would inhibit the cell viability of three CRC cell lines: Caco-2, HT29 and LoVo in a dose-dependent manner, with IC50 values in the range of 24–96 μM. CA induced cell death by apoptosis in Caco-2 line after 24 h of treatment and inhibited cell adhesion and migration, possibly by reducing the activity of secreted proteases such as urokinase plasminogen activator (uPA) and metalloproteinases (MMPs). These effects may be associated through a mechanism involving the inhibition of the COX-2 pathway, because we have determined that CA downregulates the expression of COX-2 in Caco-2 cells at both the mRNA and protein levels. Therefore, CA modulates different targets involved in the development of CRC. These findings indicate that carnosic acid may have anticancer activity and may be useful as a novel chemotherapeutic agent. PMID:22246562

  7. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting RAGE Signaling in Diabetic Atherosclerosis

    PubMed Central

    Chung, Jihwa; An, Shung Hyun; Kang, Sang Won; Kwon, Kihwan

    2016-01-01

    A naturally occurring bile acid, ursodeoxycholic acid (UDCA), is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, the detailed action mechanisms of UDCA in atherosclerosis are not fully understood. In this study, we demonstrated whether UDCA exerts anti-atherogenic activity in diabetic atherosclerosis by targeting ER stress and “receptor for advanced glycation endproduct” (RAGE) signaling. UDCA markedly reduced ER stress, RAGE expression, and pro-inflammatory responses [including NF-κB activation and reactive oxygen species (ROS) production] induced in endothelial cells (ECs) by high glucose (HG). In particular, UDCA inhibited HG-induced ROS production by increasing the Nrf2 level. In macrophages, UDCA also blocked HG-induced RAGE and pro-inflammatory cytokine expression and inhibited foam cell formation via upregulation of the ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1. In the diabetic mouse model, UDCA inhibited atheromatous plaque formation by decreasing ER stress, and the levels of RAGE and adhesion molecules. In conclusion, UDCA exerts an anti-atherogenic activity in diabetic atherosclerosis by targeting both ER stress and RAGE signaling. Our work implicates UDCA as a potential therapeutic agent for prevention or treatment of diabetic atherosclerosis. PMID:26807573

  8. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase.

    PubMed

    Henin, N; Vincent, M F; Gruber, H E; Van den Berghe, G

    1995-04-01

    AMP-activated protein kinase is a multisubstrate protein kinase that, in liver, inactivates both acetyl-CoA carboxylase, the rate-limiting enzyme of fatty acid synthesis, and 3-hydroxy-3-methyl-glutaryl-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. AICAR (5-amino 4-imidazolecarboxamide ribotide, ZMP) was found to stimulate up to 10-fold rat liver AMP-activated protein kinase, with a half-maximal effect at approximately 5 mM. In accordance with previous observations, addition to suspensions of isolated rat hepatocytes of 50-500 microM AICAriboside, the nucleoside corresponding to ZMP, resulted in the accumulation of millimolar concentrations of the latter. This was accompanied by a dose-dependent inactivation of both acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase. Addition of 50-500 microM AICAriboside to hepatocyte suspensions incubated in the presence of various substrates, including glucose and lactate/pyruvate, caused a parallel inhibition of both fatty acid and cholesterol synthesis. With lactate/pyruvate (10/1 mM), half-maximal inhibition was obtained at approximately 100 microM, and near-complete inhibition at 500 microM AICAriboside. These findings open new perspectives for the simultaneous control of triglyceride and cholesterol synthesis by pharmacological stimulators of AMP-activated protein kinase.

  9. Vitamin C is a kinase inhibitor: dehydroascorbic acid inhibits IkappaBalpha kinase beta.

    PubMed

    Cárcamo, Juan M; Pedraza, Alicia; Bórquez-Ojeda, Oriana; Zhang, Bing; Sanchez, Roberto; Golde, David W

    2004-08-01

    Reactive oxygen species (ROS) are key intermediates in cellular signal transduction pathways whose function may be counterbalanced by antioxidants. Acting as an antioxidant, ascorbic acid (AA) donates two electrons and becomes oxidized to dehydroascorbic acid (DHA). We discovered that DHA directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas AA did not have this effect. When cells were loaded with AA and induced to generate DHA by oxidative stress in cells expressing a constitutive active IKKbeta, NF-kappaB activation was inhibited. Our results identify a dual molecular action of vitamin C in signal transduction and provide a direct linkage between the redox state of vitamin C and NF-kappaB signaling events. AA quenches ROS intermediates involved in the activation of NF-kappaB and is oxidized to DHA, which directly inhibits IKKbeta and IKKalpha enzymatic activity. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling.

  10. Potentiation of vasoconstrictor response and inhibition of endothelium-dependent vasorelaxation by gallic acid in rat aorta.

    PubMed

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2002-08-01

    In the isolated rat thoracic aorta, gallic acid potentiated the vasoconstrictor response to phenylephrine. The potentiation produced by gallic acid was absent in endothelium-denuded arteries. The potentiation was abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, and slightly attenuated by an addition of L-arginine, while indomethacin or BQ610 had no effect. The potentiation of response to phenylephrine was not found for structural modifications of gallic acid, except for caffeic acid. Gallic acid also inhibited vasorelaxation induced by acetylcholine, sodium nitroprusside or prostacyclin, especially that by acetylcholine. The effect on vasorelaxation induced by acetylcholine was decreased by esterification of the carboxy group of gallic acid, and in the absence or by the methylation of the o-dihydroxy group. Caffeic acid inhibited the vasorelaxation, though the effect was smaller than that of gallic acid. These findings indicate that gallic acid produces a potentiation of contractile response and inhibition of vasorelaxant responses, probably through inactivation of nitric oxide (NO), in which endothelially produced NO is principally involved, and that the modification of functional groups of the gallic acid molecule abolishes the potentiation of contractile response and attenuates the inhibition of vasorelaxant responses.

  11. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  12. Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid.

    PubMed

    Choi, Seong-Kyoon; Kim, Jung-Hee; Park, Jin-Kyu; Lee, Kyeong-Min; Kim, Eunjoo; Jeon, Won Bae

    2013-10-01

    Effects of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) on the neuronal lineage marker expression, cell-cell interaction, caspase-3 mRNA transcription and reactive oxygen species production by N2a neuronal cells were assesses in 3-dimensional (3D) spheroid cultures, and the cytotoxicity were thoroughly compared with those of a conventional 2D monolayer-based toxicity assay. Increasing concentrations of PFOA or PFOS resulted in an increase in cell death. The half maximal inhibitory concentrations measured with spheroids were approximately one and a half times greater than the respective values for monolayer cells. Necrosis was prevalent in spheroids regardless of the dose, whereas the major injury mechanism in monolayers was dependent on compound concentration. Both PFOA and PFOS inhibited neuronal, astrocyte and oligodendrocyte marker gene expression by monolayers and spheroids grown under undifferentiated and all-trans-retinoic acid-induced differentiating conditions. In the presence of PFOA or PFOS, expression levels of E-cadherin and connexin-43 mRNAs were significantly downregulated, and spheroids were dissociated into single cell populations, indicating that the compounds affect the synthesis of E-cadherin and connexin-43 at the transcriptional level. Results from 3D cultures may provide an insight into potential inhibitory mode of action on gap junctional intercellular communication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  14. Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication.

    PubMed

    Wilsky, Steffi; Sobotta, Katharina; Wiesener, Nadine; Pilas, Johanna; Althof, Nadine; Munder, Thomas; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Coxsackievirus B3 (CVB3) is a human pathogen that causes acute and chronic infections, but an antiviral drug to treat these diseases has not yet been developed for clinical use. Several intracellular pathways are altered to assist viral transcription, RNA replication, and progeny release. Among these, fatty acid synthase (FAS) expression is increased. In order to test the potential of FAS inhibition as an anti-CVB3 strategy, several experiments were performed, including studies on the correlation of CVB3 replication and FAS expression in human Raji cells and an analysis of the time and dose dependence of the antiviral effect of FAS inhibition due to treatment with amentoflavone. The results demonstrate that CVB3 infection induces an up-regulation of FAS expression already at 1 h postinfection (p.i.). Incubation with increasing concentrations of amentoflavone inhibited CVB3 replication significantly up to 8 h p.i. In addition, suppression of p38 MAP kinase activity by treatment with SB239063 decreased FAS expression as well as viral replication. These data provide evidence that FAS inhibition via amentoflavone administration might present a target for anti-CVB3 therapy.

  15. Differential Inhibition by Ferulic Acid of Nitrate and Ammonium Uptake in Zea mays L. 1

    PubMed Central

    Bergmark, Christine L.; Jackson, William A.; Volk, Richard J.; Blum, Udo

    1992-01-01

    The influence of the allelopathic compound ferulic acid (FA) on nitrogen uptake from solutions containing both NO3− and NH4+ was examined in 8-day-old nitrogen-depleted corn (Zea mays L.) seedlings. Concurrent effects on uptake of Cl− and K+ also were assessed. The presence of 250 micromolar FA inhibited the initial (0-1 hours) rate of NO3− uptake and also prevented development of the NO3−-inducible accelerated rate. The pattern of recovery when FA was removed was interpreted as indicating a rapid relief of FA-restricted NO3− uptake activity, followed by a reinitiation of the induction of that activity. No inhibition of NO3− reduction was detected. Ammonium uptake was less sensitive than NO3− uptake to inhibition by FA. An inhibition of Cl− uptake occurred as induction of the NO3− transport system developed in the absence of FA. Alterations of Cl− uptake in the presence of FA were, therefore, a result of a beneficial effect, because NO3− uptake was restricted, and a direct inhibitory effect. The presence of FA increased the initial net K+ loss from the roots during exposure to the low K, ammonium nitrate uptake solution and delayed the recovery to positive net uptake, but it did not alter the general pattern of the response. The implications of the observations are discussed for growth of plants under natural conditions and cultural practices that foster periodic accumulation of allelopathic substances. PMID:16668689

  16. Methylseleninic acid inhibits HDAC activity in diffuse large B-cell lymphoma cell lines.

    PubMed

    Kassam, Shireen; Goenaga-Infante, Heidi; Maharaj, Lenushka; Hiley, Crispin T; Juliger, Simone; Joel, Simon P

    2011-09-01

    Selenium is a trace element that is fundamental to human health. Research has mainly focussed on its role in cancer prevention, but recent evidence supports its role in established cancer, with high concentrations inducing tumour cell death and non-toxic concentrations sensitising cells to chemotherapy. However, the precise mechanism of selenium action is not clear. The effect of methylseleninic acid (MSA), an organic selenium compound, on histone deacetylase (HDAC) activity in diffuse large B-cell lymphoma cell lines is reported here. Lymphoma cell lines were exposed to MSA under normoxic and hypoxic conditions. Protein expression was determined by western blotting, HDAC activity and VEGF concentration by fluorimetric and electrochemiluminescence assays, respectively, and intracellular selenium metabolites quantified by mass spectrometry. MSA inhibited HDAC activity, which resulted in the acetylation of histone H3 and α-tubulin. However, cellular metabolism of MSA to methylselenol was required for this effect. Dimethylselenide, the methylation product of methylselenol, was found to be the major intracellular metabolite. MSA also inhibited HIF-1α expression and VEGF secretion, a possible consequence of HDAC inhibition. The ability of methylselenol to inhibit HDAC activity has not been previously reported, thus providing a novel mechanism of selenium action.

  17. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage

    PubMed Central

    Li, Xiao-Qiang; Tian, Wen; Liu, Xiao-Xiao; Zhang, Kai; Huo, Jun-Cheng; Liu, Wen-Juan; Li, Ping; Xiao, Xiong; Zhao, Ming-Gao; Cao, Wei

    2016-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM). This study aimed to explore the effects of corosolic acid (CA) on the renal damage of DM and the mechanisms behind these effects. The renoprotective effect of CA was investigated in type 1 diabetic rats and db/db mice. The kidneys and glomerular mesangial cells (GMCs) were used to study the proliferation of GMCs by immunostaining and MTT assay. Further immunoblotting, siRNA, qPCR analysis, and detecting of NADPH oxidase activity and reactive oxygen species (ROS) generation were performed to explore relevant molecular mechanisms. In CA-treated diabetic animals, diabetes-induced albuminuria, increased serum creatinine and blood urea nitrogen were significantly attenuated, and glomerular hypertrophy, mesangial expansion and fibrosis were ameliorated. Furthermore, CA significantly inhibited proliferation of GMCs and phosphorylation of ERK1/2 and p38 MAPK in both diabetic animals and high glucose (HG)-induced GMCs. CA also normalized Δψm and inhibited HG-induced NADPH oxidase activity, ROS generation and NOX4, NOX2, p22phox and p47phox expression. More importantly, CA inhibited GMC proliferation mediated by NADPH/ERK1/2 and p38 MAPK signaling pathways. These findings suggest that CA exert the protective effect on DN by anti-proliferation resulted from inhibition of p38 MAPK- and NADPH-mediated inactivation of ERK1/2. PMID:27229751

  18. Suppression of autophagy by mycophenolic acid contributes to inhibition of HCV replication in human hepatoma cells

    PubMed Central

    Fang, Shoucai; Su, Jinming; Liang, Bingyu; Li, Xu; Li, Yu; Jiang, Junjun; Huang, Jiegang; Zhou, Bo; Ning, Chuanyi; Li, Jieliang; Ho, Wenzhe; Li, Yiping; Chen, Hui; Liang, Hao; Ye, Li

    2017-01-01

    Previous studies have shown that mycophenolic acid (MPA) has an anti-HCV activity. However, the mechanism of MPA-mediated inhibition of HCV replication remains to be determined. This study investigated whether MPA has an effect on autophagy, a cellular machinery required for HCV replication, thereby, inhibits HCV replication in Huh7 cells. MPA treatment of Huh7 cells could suppress autophagy, evidenced by decreased LC3B-II level and conversion of LC3B-I to LC3B-II, decreased autophagosome formation, and increased p62 level compared to MPA-untreated cells. Tunicamycin treatment or HCV infection could induce cellular autophagy, however, MPA also exhibited its inhibitory effect on tunicamycin- or HCV infection-induced autophagy. The expression of three autophagy-related genes, Atg3, Atg5, and Atg7 were identified to be inhibited by MPA treatment. Over-expression of these genes could partly recover HCV replication inhibited by MPA; however, silencing their expression by siRNAs could enhance the inhibitory effect of MPA on HCV. Collectively, these results reveal that suppression of autophagy by MPA plays a role in its anti-HCV activity. Down-regulating the expression of three autophagy-related genes by MPA involves in its antiviral mechanism. PMID:28276509

  19. Retinoic-acid-orphan-receptor-C inhibition suppresses Th17 cells and induces thymic aberrations

    PubMed Central

    Guntermann, Christine; Piaia, Alessandro; Hamel, Marie-Laure; Theil, Diethilde; Rubic-Schneider, Tina; del Rio-Espinola, Alberto; Dong, Linda; Billich, Andreas; Kaupmann, Klemens; Dawson, Janet; Hoegenauer, Klemens; Orain, David; Hintermann, Samuel; Stringer, Rowan; Patel, Dhavalkumar D.; Doelemeyer, Arno; Deurinck, Mark

    2017-01-01

    Retinoic-acid-orphan-receptor-C (RORC) is a master regulator of Th17 cells, which are pathogenic in several autoimmune diseases. Genetic Rorc deficiency in mice, while preventing autoimmunity, causes early lethality due to metastatic thymic T cell lymphomas. We sought to determine whether pharmacological RORC inhibition could be an effective and safe therapy for autoimmune diseases by evaluating its effects on Th17 cell functions and intrathymic T cell development. RORC inhibitors effectively inhibited Th17 differentiation and IL-17A production, and delayed-type hypersensitivity reactions. In vitro, RORC inhibitors induced apoptosis, as well as Bcl2l1 and BCL2L1 mRNA downregulation, in mouse and nonhuman primate thymocytes, respectively. Chronic, 13-week RORC inhibitor treatment in rats caused progressive thymic alterations in all analyzed rats similar to those in Rorc-deficient mice prior to T cell lymphoma development. One rat developed thymic cortical hyperplasia with neoplastic features, including increased mitosis and reduced IKAROS expression, albeit without skewed T cell clonality. In summary, pharmacological inhibition of RORC not only blocks Th17 cell development and related cytokine production, but also recapitulates thymic aberrations seen in Rorc-deficient mice. While RORC inhibition may offer an effective therapeutic principle for Th17-mediated diseases, T cell lymphoma with chronic therapy remains an apparent risk. PMID:28289717

  20. Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis.

    PubMed

    Nishio, Takashi; Usami, Mai; Awaji, Mizuki; Shinohara, Sumire; Sato, Kazuomi

    2016-01-01

    Acetylsalicylic acid (ASA) is widely used as an analgesic/antipyretic drug. It exhibits a wide range of biological effects, including preventative effects against heart attack and stroke, and the induction of apoptosis in various cancer cells. We previously found that ASA inhibits melanogenesis in B16 melanoma cells. However, the mechanisms of how ASA down-regulates melanin synthesis remain unclear. Here, we investigated the effect of ASA on melanogenic pathways, such as extracellular signal-regulated kinase (ERK) and microphthalmia-associated transcription factor (Mitf) transcription. ASA significantly inhibited melanin synthesis in a dose-dependent manner without oxidative stress and cell death. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that the inhibitory effect of ASA might be due to the inhibition of Mitf gene transcription. Interestingly, ASA also induced ERK phosphorylation. Additionally, treatment with PD98059, a specific ERK phosphorylation inhibitor, abolished the anti-melanogenic effect of ASA. These results suggest that the depigmenting effect of ASA results from down-regulation of Mitf, which is induced by both the induction of ERK phosphorylation and the inhibition of Mitf transcription.

  1. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    PubMed

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-06-09

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis.

  2. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  3. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer.

  4. Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro.

    PubMed

    da Silva, Cleide G; Bueno, Ana Rúbia F; Schuck, Patrícia F; Leipnitz, Guilhian; Ribeiro, César A J; Rosa, Rafael B; Dutra Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir

    2004-01-01

    D-2-Hydroxyglutaric acid (DGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as D-2-hydroxyglutaric aciduria (DHGA). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of DGA on total, cytosolic, and mitochondrial creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas cytosolic and mitochondrial activities were measured in the cytosolic and mitochondrial preparations from cerebral cortex. We verified that CK activities were significantly inhibited by DGA (11-34% inhibition) at concentrations as low as 0.25 mM, being the mitochondrial fraction the most affected activity. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of DGA on tCK activity is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK activity for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA may be related to the neurodegeneration of patients affected by DHGA.

  5. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis.

    PubMed

    Zimhony, O; Cox, J S; Welch, J T; Vilchèze, C; Jacobs, W R

    2000-09-01

    Tuberculosis treatment is shortened to six months by the indispensable addition of pyrazinamide (PZA) to the drug regimen that includes isoniazid and rifampin. PZA is a pro-drug of pyrazinoic acid (POA) (ref. 3), whose target of action has never been identified. Although PZA is active only against Mycobacterium tuberculosis, the PZA analog 5-chloro-pyrazinamide (5-Cl-PZA) displays a broader range of anti-mycobacterial activity. We have found that the eukaryotic-like fas1 gene (encoding fatty acid synthetase I, FASI) from M. avium, M. bovis BCG or M. tuberculosis confers resistance to 5-Cl-PZA when present on multi-copy vectors in M. smegmatis. 5-Cl-PZA and PZA markedly inhibited the activity of M. tuberculosis FASI, the biosynthesis of C16 to C24/C26 fatty acids from acetyl-CoA (ref. 6). Importantly, PZA inhibited FASI in M. tuberculosis in correlation with PZA susceptibility. These results indicate that FASI is a primary target of action for PZA in M. tuberculosis. Further characterization of FASI as a drug target for PZA may allow the development of new drugs to shorten the therapy against M. tuberculosis and may provide more options for treatment against M. bovis, M. avium and drug resistant M. tuberculosis.

  6. Food Polyphenol Apigenin Inhibits the Cytochrome P450 Monoxygenase Branch of the Arachidonic Acid Cascade.

    PubMed

    Steuck, Maryvonne; Hellhake, Stefan; Schebb, Nils Helge

    2016-11-30

    The product of cytochrome P450 monooxygenase (P450) ω-hydroxylation of arachidonic acid (AA), 20- hydroxyeicosatetraenoic acid (HETE), is a potent vasoconstrictor. Utilizing microsomes as well as individual CYP4 isoforms we demonstrate here that flavonoids can block 20-HETE formation. Apigenin inhibits CYP4F2 with an IC50 value of 4.6 μM and 20-HETE formation in human liver and kidney microsomes at 2.4-9.8 μM. Interestingly, the structurally similar naringenin shows no relevant effect on the formation of 20-HETE. Based on these in vitro data, it is impossible to evaluate if a relevant blockade of 20-HETE formation can result in humans from intake of polyphenols with the diet. However, the potency of apigenin is comparable to those of P450 inhibitors such as ketoconazole. Moreover, an IC50 value in the micromolar range is also described for the inhibition of CYP-mediated drug metabolism leading to food-drug interactions. The modulation of the arachidonic acid cascade by food polyphenols therefore warrants further investigation.

  7. Inhibition of nocturnal acidity is important but not essential for duodenal ulcer healing.

    PubMed Central

    Bianchi Porro, G; Parente, F; Sangaletti, O

    1990-01-01

    We have determined the relative importance of day and night time gastric acid inhibition for duodenal ulcer healing by comparing the anti-ulcer efficacy of a single morning with that of a single bedtime dose of ranitidine. One hundred and thirty patients with active duodenal ulcer were randomly assigned to a double-blind therapy with ranitidine 300 mg at 8 am or the same dose at 10 pm for up to eight weeks. The antisecretory effects of these regimens were also assessed by 24 h intragastric pH monitoring in 18 of these patients. At four weeks ulcers had healed in 41/61 (67%) of patients taking the morning dose and in 47/63 (75%) of those receiving the nocturnal dose (95% CI for the difference -0.09 +0.25; p ns). At eight weeks, the corresponding healing rates were 82% and 85.5%, respectively (95% CI for the difference -0.11 +0.17; p ns). Both treatments were significantly superior to placebo in raising 24 h intragastric pH, although the effects of the morning dose were of shorter duration than those of the nocturnal dose. These findings suggest that suppression of nocturnal acidity is important but not essential to promote healing of duodenal ulcers; a prolonged period of acid inhibition during the day (as obtained with a single large morning dose of H2-blockers) may be equally effective. PMID:2186980

  8. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters.

    PubMed

    Lin, Yuguang; Vermeer, Mario A; Trautwein, Elke A

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols.

  9. Inhibition of Fatty Acid Synthase Reduces Blastocyst Hatching through Regulation of the AKT Pathway in Pigs

    PubMed Central

    Guo, Jing; Kim, Nam-Hyung; Cui, Xiang-Shun

    2017-01-01

    Fatty acid synthase (FASN) is an enzyme responsible for the de novo synthesis of long-chain fatty acids. During oncogenesis, FASN plays a role in growth and survival rather than acting within the energy storage pathways. Here, the function of FASN during early embryonic development was studied using its specific inhibitor, C75. We found that the presence of the inhibitor reduced blastocyst hatching. FASN inhibition decreased Cpt1 expression, leading to a reduction in mitochondria numbers and ATP content. This inhibition of FASN resulted in the down-regulation of the AKT pathway, thereby triggering apoptosis through the activation of the p53 pathway. Activation of the apoptotic pathway also leads to increased accumulation of reactive oxygen species and autophagy. In addition, the FASN inhibitor impaired cell proliferation, a parameter of blastocyst quality for outgrowth. The level of OCT4, an important factor in embryonic development, decreased after treatment with the FASN inhibitor. These results show that FASN exerts an effect on early embryonic development by regulating both fatty acid oxidation and the AKT pathway in pigs. PMID:28107461

  10. myo-Inositol 1-Phosphate Synthase Inhibition and Control of Uridine Diphosphate-d-glucuronic Acid Biosynthesis in Plants 12

    PubMed Central

    Loewus, Mary W.; Loewus, Frank

    1974-01-01

    Of the eight intermediates associated with the two pathways of UDP-d-glucuronic acid biosynthesis found in plants, only d-glucuronic acid inhibited myo-inositol 1-phosphate synthase (EC 5.5.1.4), formerly referred to as d-glucose 6-phosphate cycloaldolase. Inhibition was competitive. An attempt to demonstrate over-all reversibility of the synthase indicated that it was less than 5% reversible, if at all. PMID:16658890

  11. Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley.

    PubMed

    Gamble, P E; Mullet, J E

    1986-10-01

    Treatment of dark-grown barley with 0.1 mM fluridone inhibited carotenoid accumulation but did not alter plastid biogenesis. Plastids isolated from dark-grown control and dark-grown fluridone-treated plants were similar in size and protein compositions. Dehydration of dark-grown control barley caused abscisic acid levels to increase 30-40-fold in 4 h, while plants treated with 0.1 mM fluridone accumulated very little abscisic acid in response to dehydration. These results suggest that fluridone-treated plants do not accumulate abscisic acid because of carotenoid deficiency rather than plastid dysfunction. Dark-grown barley plants treated with 0.31 microM fluridone accumulated low levels of carotenoids. Dehydration of these plants resulted in a 4-8-fold increase in abscisic acid and a decrease in antheraxanthin, violaxanthin and neoxanthin, but no change in beta-carotene or lutein plus zeaxanthin levels. This result is consistent with the suggestion that xanthophylls are precursors to abscisic acid in dehydrated plants.

  12. Inhibition of acid formation by epidermal growth factor in the isolated rabbit gastric glands.

    PubMed Central

    Dembiński, A; Drozdowicz, D; Gregory, H; Konturek, S J; Warzecha, Z

    1986-01-01

    The effects of epidermal growth factor (EGF) on basal and stimulated (with histamine, dibutyryl cyclic AMP, and high concentrations of K+) acid formation have been studied in isolated glands from the rabbit gastric mucosa. The changes in the accumulation of [14C]aminopyrine [14C]AP have been used as an indirect measurement of acid production in the glands. Unstimulated gastric glands accumulated [14C]AP indicating the existence of basal acid production in these glands, and EGF caused a small but significant reduction in basal [14C]AP uptake. A similar reduction of basal [14C]AP uptake was observed after exposure to omeprazole but not after ranitidine or prostaglandin E2 (PGE2). Histamine, dibutyryl cyclic AMP and K+ caused a strong and dose-dependent stimulation of acid formation by the glands. EGF, like omeprazole, reduced dose-dependently the [14C]AP accumulation stimulated by both histamine and dibutyryl cyclic AMP, while ranitidine and PGE2 reduced histamine- but not dibutyryl-cyclic-AMP-stimulated accumulation of [14C]AP. In the absence of other external stimuli, an increased K+ concentration enhanced [14C]AP accumulation to levels similar to those produced by histamine and this effect was not changed by EGF, ranitidine or PGE2 but was inhibited by omeprazole. We conclude that EGF interferes with the final steps of acid production between cyclic nucleotides and proton pump of the parietal cells. PMID:3025433

  13. INHIBITION OF FATTY ACID DESATURASES IN Drosophila melanogaster LARVAE BLOCKS FEEDING AND DEVELOPMENTAL PROGRESSION.

    PubMed

    Wang, Yiwen; da Cruz, Tina Correia; Pulfemuller, Alicia; Grégoire, Stéphane; Ferveur, Jean-François; Moussian, Bernard

    2016-05-01

    Fatty acid desaturases are metabolic setscrews. To study their systemic impact on growth in Drosophila melanogaster, we inhibited fatty acid desaturases using the inhibitor CAY10566. As expected, the amount of desaturated lipids is reduced in larvae fed with CAY10566. These animals cease feeding soon after hatching, and their growth is strongly attenuated. A starvation program is not launched, but the expression of distinct metabolic genes is activated, possibly to mobilize storage material. Without attaining the normal size, inhibitor-fed larvae molt to the next stage indicating that the steroid hormone ecdysone triggers molting correctly. Nevertheless, after molting, expression of ecdysone-dependent regulators is not induced. While control larvae molt a second time, these larvae fail to do so and die after few days of straying. These effects are similar to those observed in experiments using larvae deficient for the fatty acid desaturase1 gene. Based on these data, we propose that the ratio of saturated to unsaturated fatty acids adjusts a sensor system that directs feeding behavior. We also hypothesize that loss of fatty acid desaturase activity leads to a block of the genetic program of development progression indirectly by switching on a metabolic compensation program. © 2016 Wiley Periodicals, Inc.

  14. Boric acid inhibits germination and colonization of Saprolegnia spores in vitro and in vivo.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2-1.4 g/L during continuous exposure, and at 1.0-4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis.

  15. Boric Acid Inhibits Germination and Colonization of Saprolegnia Spores In Vitro and In Vivo

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Skaar, Ida

    2014-01-01

    Saprolegnia infections cause severe economic losses among freshwater fish and their eggs. The banning of malachite green increased the demand for finding effective alternative treatments to control the disease. In the present study, we investigated the ability of boric acid to control saprolegniosis in salmon eggs and yolk sac fry. Under in vitro conditions, boric acid was able to decrease Saprolegnia spore activity and mycelial growth in all tested concentrations above 0.2 g/L, while complete inhibition of germination and growth was observed at a concentration of 0.8 g/L. In in vivo experiments using Atlantic salmon eyed eggs, saprolegniosis was controlled by boric acid at concentrations ranging from 0.2–1.4 g/L during continuous exposure, and at 1.0–4.0 g/L during intermittent exposure. The same effect was observed on salmon yolk sac fry exposed continuously to 0.5 g/L boric acid during the natural outbreak of saprolegniosis. During the experiments no negative impact with regard to hatchability and viability was observed in either eggs or fry, which indicate safety of use at all tested concentrations. The high hatchability and survival rates recorded following the in vivo testing suggest that boric acid is a candidate for prophylaxis and control of saprolegniosis. PMID:24699283

  16. Polypodium leucotomos extract inhibits trans-urocanic acid photoisomerization and photodecomposition.

    PubMed

    Capote, R; Alonso-Lebrero, J L; García, F; Brieva, A; Pivel, J P; González, S

    2006-03-01

    In this report, we demonstrate a possible molecular mechanism by which a hydrophilic extract of the leaves of the fern Polypodium leucotomos (Fernblock, PL) blocks ultraviolet (UV)-induced skin photodamage. The extract inhibits UVA and UVB light induced photoisomerization of trans-urocanic acid (t-UCA), a common photoreceptor located in the stratum corneum, and also blocks its photodecomposition in the presence of oxidizing reagents such as H2O2, and titanium dioxide (TiO2). PL protects in vitro human fibroblasts from UV-induced death as well. These results suggest the potential of employing the PL extract as a component of sunscreen moistures in order to prevent photodecomposition of t-UCA, to inhibit UV-induced deleterious effects of TiO2 and to protect skin cells and endogenous molecules directly involved in skin immunosurveillance.

  17. Inhibition of natural killer cell activity by eicosapentaenoic acid in vivo and in vitro

    SciTech Connect

    Yamashita, N.; Sugiyama, E.; Hamazaki, T.; Yano, S.

    1988-01-15

    To examine the effects of in vivo eicosapentaenoic acid (EPA) on natural killer (NK) cell activity, C3H/He mice each received a single intraperitoneal bolus of an emulsion of trieicosapentaenoyl-glycerol (EPA-TG). Spleen cells were tested for NK activity using /sup 51/Chromium-release assays against YAC-1 target cells. Forty eight hours after injection, NK activity was inhibited in a dose-dependent manner. EPA-TG emulsion also inhibited the NK activity of NK-enriched effector cells. Decreased cytotoxicity was first noted 24 hr after injection; it resumed the baseline by 7 days. The addition of EPA-TG emulsion to a cytotoxicity assay system resulted in moderate depression of NK activity. These results demonstrate that EPA has significant immunomodulatory effects on NK activity.

  18. Inhibition of melanogenesis and oxidation by protocatechuic acid from Origanum vulgare (oregano).

    PubMed

    Chou, Tzung-Han; Ding, Hsiou-Yu; Lin, Rong-Jyh; Liang, Jing-Yao; Liang, Chia-Hua

    2010-11-29

    Antioxidant and antimelanogenesis activities of protocatechuic acid (1) from Origanum vulgare (oregano) were investigated. The antioxidative capacity of 1 was confirmed from its free-radical-scavenging activities, inhibition of lipid peroxidation, and suppression of reactive oxygen species in H(2)O(2)-induced BNLCL2 cells. The inhibition by 1 of tyrosinase and DOPA oxidase activity and melanin production was possibly related to the down-regulation of melanocortin-1 receptor, microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related proteins-2, and tyrosinase-related proteins-1 expression in α-melanocyte-stimulating hormone-induced B16 cells. After a gel containing 1 was applied to mice, the values of L* slightly increased, and a* and erythema-melanin levels of skin were reduced by comparing the values of untreated control groups, indicating 1 can reduce melanin production. These results suggest that 1 may act as an effective quencher of oxidative attackers with antimelanogenesis properties.

  19. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides.

    PubMed

    El-Aswad, Ahmed F; Badawy, Mohamed E I

    2015-01-01

    The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively.

  20. The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid.

    PubMed

    Wilson, Christopher Allen; Novak, John; Takacs, Imre; Wett, Bernhard; Murthy, Sudhir

    2012-12-01

    Advanced anaerobic digestion processes aimed at improving the methanization of sewage sludge may be potentially impaired by the production of inhibitory compounds (e.g. free ammonia). The result of methanogenic inhibition is relatively high effluent concentrations of acetic acid and other soluble organics, as well as reduced methane yields. An extreme example of such an advanced process is the thermal hydrolytic pretreatment of sludge prior to high solids digestion (THD). Compared to a conventional mesophilic anaerobic digestion process (MAD), THD operates in a state of constant inhibition driven by high free ammonia concentrations, and elevated pH values. As such, previous investigations of the kinetics of methanogenesis from acetic acid under uninhibited conditions do not necessarily apply well to the modeling of extreme processes such as THD. By conducting batch ammonia toxicity assays using biomass from THD and MAD reactors, we compared the response of these communities over a broad range of ammonia inhibition. For both processes, increased inhibitor concentrations resulted in a reduction of biomass growth rate (r(max) = μ(max)∙X) and a resulting decrease in the substrate half saturation coefficient (K(S)). These two parameters exhibited a high degree of correlation, suggesting that for a constant transport limited system, the K(S) was mostly a linear function of the growth rate. After correcting for reactor pH and temperature, we found that the THD and MAD biomass were both able to perform methanogenesis from acetate at high free ammonia concentrations (equivalent to 3-5 g/L total ammonia nitrogen), albeit at less than 30% of their respective maximum rates. The reduction in methane production was slightly less pronounced for the THD biomass than for MAD, suggesting that the long term exposure to ammonia had selected for a methanogenic pathway less dependent on those organisms most sensitive to ammonia inhibition (i.e. aceticlastic methanogens).

  1. Inhibition of Listeria monocytogenes and Salmonella by combinations of oriental mustard, malic acid, and EDTA.

    PubMed

    Olaimat, Amin N; Holley, Richard A

    2014-04-01

    The antimicrobial activities of oriental mustard extract alone or combined with malic acid and EDTA were investigated against Salmonella spp. or Listeria monocytogenes at different temperatures. Five strain Salmonella or L. monocytogenes cocktails were separately inoculated in Brain Heart Infusion broth containing 0.5% (w/v) aqueous oriental mustard extract and incubated at 4 °C to 21 °C for 21 d. For inhibitor combination tests, Salmonella Typhimurium 02:8423 and L. monocytogenes 2-243 were individually inoculated in Mueller Hinton broth containing the mustard extract with either or both 0.2% (w/v) malic acid and 0.2% (w/v) EDTA and incubated at 10 °C or 21 °C for 10 to 14 d. Mustard extract inhibited growth of the L. monocytogenes cocktail at 4 °C up to 21 d (2.3 log10 CFU/mL inhibition) or at 10 °C for 7 d (2.4 log10 CFU/mL inhibition). Salmonella spp. viability was slightly, but significantly reduced by mustard extract at 4 °C by 21 d. Although hydrolysis of sinigrin in mustard extract by both pathogens was 2 to 6 times higher at 21 °C than at 4 °C to 10 °C, mustard was not inhibitory at 21 °C, perhaps because of the instability of its hydrolysis product (allyl isothiocyanate). At 21 °C, additive inhibitory effects of mustard extract with EDTA or malic acid led to undetectable levels of S. Typhimurium and L. monocytogenes by 7 d and 10 d, respectively. At 10 °C, S. Typhimurium was similarly susceptible, but combinations of antimicrobials were not more inhibitory to L. monocytogenes than the individual agents.

  2. Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils.

    PubMed Central

    Sperling, R I; Benincaso, A I; Knoell, C T; Larkin, J K; Austen, K F; Robinson, D R

    1993-01-01

    Earlier studies demonstrated that dietary omega-3 polyunsaturated fatty acid (PUFA) supplementation attenuates the chemotactic response of neutrophils and the generation of leukotriene (LT) B4 by neutrophils stimulated with calcium ionophore; however, the mechanisms and relationship of these effects were not examined. Neutrophils and monocytes from eight healthy individuals were examined before and after 3 and 10 wk of dietary supplementation with 20 g SuperEPA daily, which provides 9.4 g eicosapentaenoic acid (EPA) and 5 g docosahexaenoic acid. The maximal neutrophil chemotactic response to LTB4, assessed in Boyden microchambers, decreased by 69% after 3 wk and by 93% after 10 wk from prediet values. The formation of [3H]inositol tris-phosphate (IP3) by [3H]inositol-labeled neutrophils stimulated by LTB4 decreased by 71% after 3 wk (0.033 +/- 0.013% [3H] release, mean +/- SEM) and by 90% after 10 wk (0.011 +/- 0.011%) from predict values (0.114 +/- 0.030%) as quantitated by beta-scintillation counting after resolution on HPLC. LTB4-stimulated neutrophil chemotaxis and IP3 formation correlated significantly (P < 0.0001); each response correlated closely and negatively with the EPA content of the neutrophil phosphatidylinositol (PI) pool (P = 0.0003 and P = 0.0005, respectively). Neither the affinities and densities of the high and low affinity LTB4 receptors on neutrophils nor LTB4-mediated diglyceride formation changed appreciably during the study. Similar results were observed in neutrophils activated with platelet-activating factor (PAF). The summed formation of LTB4 plus LTB5 was selectively inhibited in calcium ionophore-stimulated neutrophils and was also inhibited in zymosan-stimulated neutrophils. The inhibition of the summed formation of LTB4 plus LTB5 in calcium ionophore-stimulated neutrophils and in zymosan-stimulated neutrophils did not correlate significantly with the EPA content of the PI pool. The data indicate that dietary omega-3 PUFA

  3. Mechanisms of Inhibition of Pyrimidine Dimer Formation in Deoxyribonucleic Acid by Acridine Dyes

    PubMed Central

    Sutherland, B. M.; Sutherland, J. C.

    1969-01-01

    The ultraviolet (UV)-induced formation of cyclobutyl pyrimidine dimers in Escherichia coli deoxyribonucleic acid (DNA) in vitro has been investigated in terms of the mechanism of inhibition by acridine dyes, the effect on dimer yield of specific singlet and triplet quenchers, and the mechanism of dimer formation. Our results indicate that (a) energy transfer is important in dimer reduction by acridines, (b) this transfer occurs from the singlet (S1) of DNA, and (c) at room temperature triplet quenchers do not reduce dimer yield in DNA. PMID:4888976

  4. Effects of inhibition gastric acid secretion on arterial acid-base status during digestion in the toad Bufo marinus.

    PubMed

    Andersen, Johnnie B; Andrade, Denis V; Wang, Tobias

    2003-07-01

    Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3(-) levels in both extra- and intracellular compartments. The increase in plasma [HCO3(-)], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial PCO2 caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in PaCO2 of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3(-)] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3(-)] and the rise in arterial PCO2 that normally peaks 48 h into the digestive period. Vascular infusion of HCO3(-), that mimicked the postprandial rise in plasma [HCO3(-)], led to a progressive respiratory compensation of arterial pH through increased arterial PCO2. Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial PCO2. It seems, therefore, that the elevated PCO2, occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control.

  5. Perturbation of Anion Balance during Inhibition of Growth of Escherichia coli by Weak Acids

    PubMed Central

    Roe, Andrew J.; McLaggan, Debra; Davidson, Ian; O’Byrne, Conor; Booth, Ian R.

    1998-01-01

    During inhibition of cell growth by weak acids, there is substantial accumulation of the weak acid anions in the cytoplasm. This study was undertaken to determine the impact of anion accumulation on cellular pools. At pH 6, growth in the presence of 8 mM acetate led to an internal pool of greater than 240 mM acetate anion and resulted in reduced levels of glutamate in the cell, but there were no significant changes in K+ and Na+ levels. At low osmolarity, the change in the glutamate pool compensated for only a small fraction of the accumulated acetate anion. However, at high osmolarity, glutamate compensated for over half of the accumulated acetate. Recovery of the normal cytoplasmic pH after the removal of acetate was dependent on the synthesis of glutamate. PMID:9473028

  6. Messenger Ribonucleic Acid Synthesis and Degradation in Escherichia coli During Inhibition of Translation

    PubMed Central

    Pato, Martin L.; Bennett, Peter M.; Von Meyenburg, Kaspar

    1973-01-01

    Various aspects of the coupling between the movement of ribosomes along messenger ribonucleic acids (mRNA) and the synthesis and degradation of mRNA have been investigated. Decreasing the rate of movement of ribosomes along an mRNA does not affect the rate of movement of some, and possibly most, of the RNA polymerases transcribing the gene coding for that mRNA. Inhibiting translation with antibiotics such as chloramphenicol, tetracycline, or fusidic acid protects extant mRNA from degradation, presumably by immobilizing ribosomes, whereas puromycin exposes mRNA to more rapid degradation than normal. The promoter distal (3′) portion of mRNA, synthesized after ribosomes have been immobilized by chloramphenicol on the promoter proximal (5′) portion of the mRNA, is subsequently degraded. PMID:4583248

  7. Inhibition of enveloped virus infection of cultured cells by valproic acid.

    PubMed

    Vázquez-Calvo, Angela; Saiz, Juan-Carlos; Sobrino, Francisco; Martín-Acebes, Miguel A

    2011-02-01

    Valproic acid (VPA) is a short-chain fatty acid commonly used for treatment of neurological disorders. As VPA can interfere with cellular lipid metabolism, its effect on the infection of cultured cells by viruses of seven viral families relevant to human and animal health, including eight enveloped and four nonenveloped viruses, was analyzed. VPA drastically inhibited multiplication of all the enveloped viruses tested, including the zoonotic lymphocytic choriomeningitis virus and West Nile virus (WNV), while it did not affect infection by the nonenveloped viruses assayed. VPA reduced vesicular stomatitis virus infection yield without causing a major blockage of either viral RNA or protein synthesis. In contrast, VPA drastically abolished WNV RNA and protein synthesis, indicating that this drug can interfere the viral cycle at different steps of enveloped virus infection. Thus, VPA can contribute to an understanding of the crucial steps of viral maturation and to the development of future strategies against infections associated with enveloped viruses.

  8. Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linoleic acid hydroperoxide with ferrous ions.

    PubMed Central

    Iwahashi, H

    2000-01-01

    Effects of some polyphenols and their related compounds (chlorogenic acid, caffeic acid, quinic acid, ferulic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, 4-hydroxy-3-methoxybenzoic acid, salicylic acid, L-dopa, dopamine, L-adrenaline, L-noradrenaline, o-dihydroxybenzene, m-dihydroxybenzene, and p-dihydroxybenzene) on the formation of 13-hydroperoxide octadecadienoic (13-HPODE) acid-derived radicals (pentyl radical and octanoic acid radical) were examined. The ESR spin trapping showed that chlorogenic acid, caffeic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, L-dopa, dopamine, L-adrenaline, L-noradrenaline, and o-dihydroxybenzene inhibited the overall formation of 13-HPODE acid-derived radicals in the reaction mixture of 13-HPODE with ferrous ions. The ESR peak heights of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN)/13-HPODE-derived radical adducts decreased to 46+/-4% (chlorogenic acid), 54+/-2% (caffeic acid), 49+/-2% (gallic acid), 55+/-1% [D-(+)-catechin], 60+/-3% [D-(-)-catechin], 42+/-1% (L-dopa), 30+/-2% (dopamine), 49+/-2% (L-adrenaline), 24+/-2% (L-noradrenaline), and 54+/-5% (o-dihydroxybenzene) of the control, respectively. The high performance liquid chromatography-electron spin resonance (HPLC-ESR) and high performance liquid chromatography-electron spin resonance-mass spectrometries (HPLC-ESR-MS) showed that caffeic acid inhibited the formation of octanoic acid radical and pentyl radical to 42+/-2% and 52+/-7% of the control, respectively. On the other hand, the polyphenols and their related compounds had few inhibitory effects on the radical formation in the presence of EDTA. Visible absorbance measurement revealed that all the polyphenols exhibiting the inhibitory effect chelate ferrous ions. Above results indicated that the chelation of ferrous ion is essential to the inhibitory effects of the polyphenols. PMID:10677343

  9. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    PubMed Central

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  10. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi

    PubMed Central

    Reigada, Chantal; Valera-Vera, Edward A.; Sayé, Melisa; Errasti, Andrea E.; Avila, Carla C.; Miranda, Mariana R.; Pereira, Claudio A.

    2017-01-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6–10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  11. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi.

    PubMed

    Reigada, Chantal; Valera-Vera, Edward A; Sayé, Melisa; Errasti, Andrea E; Avila, Carla C; Miranda, Mariana R; Pereira, Claudio A

    2017-03-01

    Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP), with calculated IC50 values in the range of 4.6-10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920) being significantly less effective on the epimastigote stage (IC50 = 30.6 μM). The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the treatment of

  12. Inhibition of the hyperpolarization-activated current (if) of rabbit SA node myocytes by niflumic acid.

    PubMed

    Accili, E A; DiFrancesco, D

    1996-03-01

    The effects of the amphiphilic substance niflumic acid (NFA) were examined in myocytes isolated from the sino-atrial node of the rabbit heart. NFA (50 and 500 microM), for 30-60 s, produced a reversible negative chronotropic effect by reducing the rate of diastolic depolarization, suggesting an inhibitory effect on the hyperpolarization-activated pacemaker current (if). NFA (from 0.05 to 500 microM) inhibited if by modifying the current kinetics, without alteration of the conductance. This was shown by evidence indicating that: (1) NFA inhibited if during hyperpolarizing pulses to the mid-point of if activation but not at fully activating voltages; (2) the slope and reversal potential of the fully activated current/voltage (I/V) relation were not altered by NFA, indicating no change in slope conductance or ion selectivity; and (3) hyperpolarizing ramp protocols confirmed the lack of action of 50 microM NFA on the fully activated current and a shift of approximately -8 mV. Although similar to inhibition by acetylcholine (ACh), inhibition by NFA was only partly additive with the action of ACh and was not altered by atropine or pertussis toxin, both of which eliminated the action of ACh. The effect of NFA was present after stimulation of adenylate cyclase by forskolin and after inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX). In cell-attached patch measurements, NFA applied externally did not affect if measured in the patch. Finally, application of NFA to the cytoplasmic side of excised patches did not alter the current in the absence or presence of adenosine 3',5'-cyclic monophosphate (cAMP). These results suggest an external, membrane-delimited action of NFA on if.

  13. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Experimental and theoretical study for corrosion inhibition of mild steel in hydrochloric acid solution by some new hydrazine carbodithioic acid derivatives

    NASA Astrophysics Data System (ADS)

    Khaled, K. F.

    2006-04-01

    The corrosion inhibition of mild steel in 0.5 M hydrochloric acid solutions by some new hydrazine carbodithioic acid derivatives namely N'-furan-2-yl-methylene-hydrazine carbodithioic acid (A), N'-(4-dimethylamino-benzylidene)-hydrazine carbodithioic acid (B) and N'-(3-nitro-benzylidene)-hydrazine carbodithioic (C) was studied using chemical (weight loss) and electrochemical (potentiodynamic and electrochemical impedance spectroscopy, EIS) measurements. These measurements show that the inhibition efficiency obtained by these compounds increased by increasing their concentration. The inhibition efficiency follow the order C > B > A. Polarization studies show that these compounds act as mixed type inhibitors in 0.5 M HCl solutions. These inhibitors function through adsorption following Langmuir isotherm. The electronic properties of these inhibitors, obtained using PM3 semi-empirical self-consistence field method, have been correlated with their experimental efficiencies using non-linear regression method.

  15. Ethacrynic acid and 1 alpha,25-dihydroxyvitamin D3 cooperatively inhibit proliferation and induce differentiation of human myeloid leukemia cells.

    PubMed

    Makishima, M; Honma, Y

    1996-09-01

    The active form of vitamin D, 1 alpha,25-dihydroxyvitamin D3 (VD3), inhibits proliferation and induces differentiation of leukemia cells, but its clinical use is limited by the adverse effect of hypercalcemia. In this study we found that the loop diuretic ethacrynic acid, which is used to treat hypercalcemia, enhanced the differentiation of human leukemia cells induced by VD3. Ethacrynic acid alone inhibited the proliferation of human promyelocytic HL-60 cells while only slightly increasing differentiation markers such as nitroblue tetrazolium (NBT)-reducing and lysozyme activities. Ethacrynic acid effectively enhanced the growth-inhibiting action of VD3. In the presence of ethacrynic acid, VD3 increased the NBT-reducing and lysozyme activities and the CD11b expression of HL-60 cells more effectively than VD3 alone. Other loop diuretics, furosemide and bumetanide, also enhanced the differentiation of HL-60 cells induced by VD3, but to a lesser extent than ethacrynic acid. The differentiation of HL-60 cells induced by all-trans retinoic acid, dimethyl sulfoxide or phorbol-12-myristate 13-acetate was also enhanced by ethacrynic acid with increasing NBT-reducing and lysozyme activities and the expression of CD11b or CD14 surface antigen. Morphologically, ethacrynic acid enhanced the monocytic differentiation of HL-60 cells induced by VD3 and phorbol ester and the granulocytic differentiation by retinoic acid and dimethyl sulfoxide. Other human myelomonocytic leukemia ML-1, U937, P39/TSU and P31/FUJ cells were induced to differentiate by VD3 and this was also enhanced by ethacrynic acid. The long-term culture of HL-60 cells showed that ethacrynic acid plus VD3 induced the complete growth arrest of HL-60 cells. Therefore ethacrynic acid, which is used to treat hypercalcemia, enhanced the proliferation-inhibiting and differentiation-inducing activities of VD3 and the combination of ethacrynic acid and VD3 may be useful in therapy for myeloid leukemia.

  16. Betulinic acid protects against ischemia/reperfusion-induced renal damage and inhibits leukocyte apoptosis.

    PubMed

    Ekşioğlu-Demiralp, Emel; Kardaş, E Riza; Ozgül, Seçkin; Yağci, Tayfur; Bilgin, Hüseyin; Sehirli, Ozer; Ercan, Feriha; Sener, Göksel

    2010-03-01

    The possible protective effect of betulinic acid on renal ischemia/reperfusion (I/R) injury was studied. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. Betulinic acid (250 mg/kg, i.p.) or saline was administered at 30 min prior to ischemia and immediately before the reperfusion. Creatinine, blood urea nitrogen (BUN), lactate dehydrogenase (LDH) and TNF-alpha as well as the oxidative burst of neutrophil and leukocyte apoptosis were assayed in blood samples. Malondialdehyde (MDA), glutathione (GSH) levels, Na(+), K(+)-ATPase and myeloperoxidase (MPO) activities were determined in kidney tissue which was also analysed microscopically. I/R caused significant increases in blood creatinine, BUN, LDH and TNF-alpha. In the kidney samples of the I/R group, MDA levels and MPO activity were increased significantly, however, GSH levels and Na(+), K(+)-ATPase activity were decreased. Betulinic acid ameliorated the oxidative burst response to both formyl-methionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA) stimuli, normalized the apoptotic response and most of the biochemical indices as well as histopathological alterations induced by I/R. In conclusion, these data suggest that betulinic acid attenuates I/R-induced oxidant responses, improved microscopic damage and renal function by regulating the apoptotic function of leukocytes and inhibiting neutrophil infiltration.

  17. Omega-3 Fatty Acids Inhibit Tumor Growth in a Rat Model of Bladder Cancer

    PubMed Central

    Parada, Belmiro; Reis, Flávio; Cerejo, Raquel; Garrido, Patrícia; Sereno, José; Xavier-Cunha, Maria; Neto, Paula; Mota, Alfredo; Figueiredo, Arnaldo; Teixeira, Frederico

    2013-01-01

    Omega-3 (ω-3) fatty acids have been tested on prevention and treatment of several cancer types, but the efficacy on “in vivo” bladder cancer has not been analyzed yet. This study aimed at evaluating the chemopreventive efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) mixture in an animal model of bladder cancer. Forty-four male Wistar rats were divided into 4 groups during a 20-week protocol: control; carcinogen—N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN); ω-3 (DHA + EPA); and ω-3 + BBN. BBN and ω-3 were given during the initial 8 weeks. At week 20 blood and bladder were collected and checked for the presence of urothelium lesions and tumors, markers of inflammation, proliferation, and redox status. Incidence of bladder carcinoma was, control (0%), ω-3 (0%), BBN (65%), and ω-3 + BBN (62.5%). The ω-3 + BBN group had no infiltrative tumors or carcinoma in situ, and tumor volume was significantly reduced compared to the BBN (0.9 ± 0.1 mm3 versus 112.5 ± 6.4 mm3). Also, it showed a reduced MDA/TAS ratio and BBN-induced serum CRP, TGF-β1, and CD31 were prevented. In conclusion, omega-3 fatty acids inhibit the development of premalignant and malignant lesions in a rat model of bladder cancer, which might be due to anti-inflammatory, antioxidant, anti-proliferative, and anti-angiogenic properties. PMID:23865049

  18. Oxygen-dependent chemical tumorigenesis in a Nicotiana hybrid: inhibition by ascorbic acid and dinitrophenol.

    PubMed

    Andersen, R A; Linney, T L

    1977-12-01

    Aqueous solutions of molecular oxygen, per se, or in combination with either pyrogallol or 6-azauracil increased tumorigenesis in Nicotiana suaveolens X Nicotiana langsdorffii seedlings relative to control seedlings. The biological activities of the organic chemicals were O2-dependent, because the substitution of N2 or O2 or the degassing of 0.1-1 mM solutions of the compounds eliminated or greatly reduced their tumorigenic effects. Rates of tumorigenesis exceeded 95% for 0.5 mM solutions of either pyrogallol or 6-azauracil solutions in the presence of l mM O2. Although tumors developed in 20% of seedlings in the presence of 1 mM O2, alone, 4-5 times more tumors were induced by the organic chemical--O2-H2O systems. Dinitrophenol and ascorbic acid, compounds which affect cellular respiration or redox systems, strongly inhibited the chemically-mediated tumorigenesis. Dinitrophenol was equally effective at one-tenth of the molar concentrations of ascorbic acid that were required for the suppressions of oncogenesis. Dehydroascorbic acid was much less inhibitory than ascorbic acid.

  19. Evaluation of human D-amino acid oxidase inhibition by anti-psychotic drugs in vitro.

    PubMed

    Shishikura, Miho; Hakariya, Hitomi; Iwasa, Sumiko; Yoshio, Takashi; Ichiba, Hideaki; Yorita, Kazuko; Fukui, Kiyoshi; Fukushima, Takeshi

    2014-06-01

    It is of importance to determine whether antipsychotic drugs currently prescribed for schizophrenia exert D-amino acid oxidase (DAO)-inhibitory effects. We first investigated whether human (h)DAO can metabolize D-kynurenine (D-KYN) to produce the fluorescent compound kynurenic acid (KYNA) by using high-performance liquid chromatography with mass spectrometry, and fluorescence spectrometry. After confirmation of KYNA production from D-KYN by hDAO, 8 first- and second-generation antipsychotic drugs, and 6 drugs often prescribed concomitantly, were assayed for hDAO-inhibitory effects by using in vitro fluorometric methods with D-KYN as the substrate. DAO inhibitors 3-methylpyrazole-5-carboxylic acid and 4H-thieno[3,2-b]pyrrole-5-carboxylic acid inhibited KYNA production in a dose-dependent manner. Similarly, the second-generation antipsychotics blonanserin and risperidone were found to possess relatively strong hDAO-inhibitory effects in vitro (5.29 ± 0.47 μM and 4.70 ± 0.17 μM, respectively). With regard to blonanserin and risperidone, DAO-inhibitory effects should be taken into consideration in the context of their in vivo pharmacotherapeutic efficacy.

  20. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  1. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    PubMed Central

    Çevik, Kübra; Ulusoy, Seyhan

    2015-01-01

    Objective(s): The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods: The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acid on biofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa PAK01, P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test. Results: The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation. PMID:26557964

  2. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders[S

    PubMed Central

    Fang, Zhong-Ze; He, Rong-Rong; Cao, Yun-Feng; Tanaka, Naoki; Jiang, Changtao; Krausz, Kristopher W.; Qi, Yunpeng; Dong, Pei-Pei; Ai, Chun-Zhi; Sun, Xiao-Yu; Hong, Mo; Ge, Guang-Bo; Gonzalez, Frank J.; Ma, Xiao-Chi; Sun, Hong-Zhi

    2013-01-01

    Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes. PMID:24115227

  3. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression.

    PubMed

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S

    2015-08-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20-200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K-AKT-mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive

  4. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    PubMed Central

    Ventura, Richard; Mordec, Kasia; Waszczuk, Joanna; Wang, Zhaoti; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George; Heuer, Timothy S.

    2015-01-01

    Inhibition of de novo palmitate synthesis via fatty acid synthase (FASN) inhibition provides an unproven approach to cancer therapy with a strong biological rationale. FASN expression increases with tumor progression and associates with chemoresistance, tumor metastasis, and diminished patient survival in numerous tumor types. TVB-3166, an orally-available, reversible, potent, and selective FASN inhibitor induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in-vivo xenograft tumor growth. Dose-dependent effects are observed between 20–200 nM TVB-3166, which agrees with the IC50 in biochemical FASN and cellular palmitate synthesis assays. Mechanistic studies show that FASN inhibition disrupts lipid raft architecture, inhibits biological pathways such as lipid biosynthesis, PI3K–AKT–mTOR and β-catenin signal transduction, and inhibits expression of oncogenic effectors such as c-Myc; effects that are tumor-cell specific. Our results demonstrate that FASN inhibition has anti-tumor activities in biologically diverse preclinical tumor models and provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers, including those expressing mutant K-Ras, ErbB2, c-Met, and PTEN. The reported findings inform ongoing studies to link mechanisms of action with defined tumor types and advance the discovery of biomarkers supporting development of FASN inhibitors as cancer therapeutics. Research in context Fatty acid synthase (FASN) is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for

  5. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis.

    PubMed

    Maciąg-Dorszyńska, Monika; Węgrzyn, Grzegorz; Guzow-Krzemińska, Beata

    2014-04-01

    Usnic acid, a compound produced by various lichen species, has been demonstrated previously to inhibit growth of different bacteria and fungi; however, mechanism of its antimicrobial activity remained unknown. In this report, we demonstrate that usnic acid causes rapid and strong inhibition of RNA and DNA synthesis in Gram-positive bacteria, represented by Bacillus subtilis and Staphylococcus aureus, while it does not inhibit production of macromolecules (DNA, RNA, and proteins) in Escherichia coli, which is resistant to even high doses of this compound. However, we also observed slight inhibition of RNA synthesis in a Gram-negative bacterium, Vibrio harveyi. Inhibition of protein synthesis in B. subtilis and S. aureus was delayed, which suggest indirect action (possibly through impairment of transcription) of usnic acid on translation. Interestingly, DNA synthesis was halted rapidly in B. subtilis and S. aureus, suggesting interference of usnic acid with elongation of DNA replication. We propose that inhibition of RNA synthesis may be a general mechanism of antibacterial action of usnic acid, with additional direct mechanisms, such as impairment of DNA replication in B. subtilis and S. aureus.

  6. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells.

    PubMed

    Omori, Akina; Yoshimura, Yoshitaka; Deyama, Yoshiaki; Suzuki, Kuniaki

    2015-07-01

    The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1.

  7. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells

    PubMed Central

    OMORI, AKINA; YOSHIMURA, YOSHITAKA; DEYAMA, YOSHIAKI; SUZUKI, KUNIAKI

    2015-01-01

    The present study investigated the effect of the natural polyphenols, rosmarinic acid and arbutin, on osteoclast differentiation in RAW 264.7 cells. Rosmarinic acid and arbutin suppressed osteoclast differentiation and had no cytotoxic effect on osteoclast precursor cells. Rosmarinic acid and arbutin inhibited superoxide production in a dose-dependent manner. mRNA expression of the master regulator of osteoclastogenesis, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and the osteoclast marker genes, matrix metalloproteinase-9, tartrate-resistant acid phosphatase and cathepsin-K, decreased following treatments with rosmarinic acid and arbutin. Furthermore, resorption activity decreased with the number of osteoclasts. These results suggest that rosmarinic acid and arbutin may be useful for the prevention and treatment of bone diseases, such as osteoporosis, through mechanisms involving inhibition of superoxide and downregulation of NFATc1. PMID:26171153

  8. The effect of proanthocyanidin-containing 10% phosphoric acid on bonding properties and MMP inhibition.

    PubMed

    Hass, Viviane; Luque-Martinez, Issis; Muñoz, Miguel Angel; Reyes, Mario Felipe Gutierrez; Abuna, Gabriel; Sinhoreti, Mario Alexandre Coelho; Liu, Alex Yi; Loguercio, Alessandro D; Wang, Yong; Reis, Alessandra

    2016-03-01

    This study evaluated the effect of etching using 2% proanthocynidin-containing 10% phosphoric acid 2% PA/10% PhA vs. 35% phosphoric acid 35% PhA on immediate (IM) and 6-months (6M) resin-enamel microshear bond strength (μSBS), resin-dentin microtensile bond strength (μTBS), nanoleakage (NL) and as well as in situ MMP inhibition potential. The dentin surface of human were exposed and then etched using 35% phosphoric acid for 15s or 2% PA/10% phosphoric acid for 30s. After rinsing with water, the dentin was bonded with Single Bond Plus (3M ESPE) and composite build-ups were constructed, followed by polymerization. The teeth were sectioned and the bonds were testing for microtensile bond strength (μTBS) and by SEM for NL analysis at IM and 6M. For MMP activity, resin-dentin slices were prepared for in situ zymography, and analyzed under confocal microscopy. For μSBS, others teeth had flattened enamel surfaces etched according the experimental groups and prepared to microshear procedure. The specimens were tested IM and after 6M by microshear bond strength. The data were submitted to two-way repeated measures ANOVA and Tukey's test (α=0.05). Acid-etching using the 2% PA/10% phosphoric acid did not lower the μTBS in IM (p>0.05) compared to the control 35% phosphoric acid group. However, after 6M, only the 2% PA/10% PhA etched dentin had remained stable the resin-dentin bond strength (p<0.05). Bonds made with 35% PhA showed significant increase in NL% after 6M (p<0.05). Dentin bonds made with 2% PA/10% phosphoric acid showed no increase in NL% after 6 months. The MMP activity within the resin-dentin interface was almost completely reduced after 2% PA/10% PhA etching, while the 35% PhA exhibited intense MMP activity. For μSBS, the type of etchant and the storage period did not affect the resin-enamel bond strengths (p>0.05). Ten percent phosphoric acid containing 2% PA can produce stable resin-dentin and enamel-resin interfaces, without requiring additional steps

  9. The alpha-naphthoxyacetic acid-elicited retching involves dopaminergic inhibition in mice.

    PubMed

    Furukawa, T; Yamada, K

    1980-05-01

    Alpha-naphthoxyacetic acid (alpha-NOAA), one of the jumping-inducers, elicited a dose-dependent retching behavior at doses ranging from 250 to 550 mg/kg in mice and vomiting at a dose of 550 mg/kg in pigeons. Protoveratrine-A (PV-A, 0.1 mg/kg), a veratrum alkaloid, also induced retching in mice and vomiting in pigeons, while apomorphine (2 mg/kg) produced neither retching in mice nor vomiting in pigeons though it induced feeding in pigeons. The retching elicited by alpha-NOAA or PV-A was not significantly affected by scopolamine, aminooxyacetic acid and gamma-butyrolactone, but was markedly inhibited by apomorphine (2 mg/kg), this inhibitory effect being antagonized without significance by haloperidol which did not itself augment the retching. These results imply that the retching elicited by alpha-NOAA or PV-A seems to involve at least in part an inhibition of dopaminergic neuron activity.

  10. Inhibition of neutral sphingomyelinase decreases arachidonic acid mediated inflammation in liver ischemia-reperfusion injury

    PubMed Central

    Aslan, Mutay; Özcan, Filiz; Tuzcu, Hazal; Kıraç, Ebru; Elpek, Gulsum O

    2014-01-01

    This study aimed to determine the role of selective neutral sphingomyelinase (N-SMase) inhibition on arachidonic acid (AA) mediated inflammation following liver ischemia-reperfusion (IR) injury. Selective N-SMase inhibitor was administered via intraperitoneal injections. Liver IR injury was created by clamping blood vessels supplying the median and left lateral hepatic lobes for 60 min, followed by 60 min reperfusion. Levels of AA in liver tissue were determined by multiple reaction monitoring (MRM) using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Phospholipase A2 (PLA2), cyclooxygenase (COX) and prostaglandin E2 (PGE2) were measured in liver tissue. Arachidonic acid levels, activity of PLA2, COX and PGE2 levels were significantly increased in postischemic liver tissue compared to nonischemic controls. N-SMase inhibition significantly decreased COX activity and PGE2 levels in postischemic liver. Future studies evaluating agents blocking N-SMase activity can facilitate the development of treatment strategies to alleviate inflammation in liver I/R injury. PMID:25550821

  11. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32

    PubMed Central

    Stanley, Sarah A.; Kawate, Tomohiko; Iwase, Noriaki; Shimizu, Motohisa; Clatworthy, Anne E.; Kazyanskaya, Edward; Sacchettini, James C.; Ioerger, Thomas R.; Siddiqi, Noman A.; Minami, Shoko; Aquadro, John A.; Schmidt Grant, Sarah; Rubin, Eric J.; Hung, Deborah T.

    2013-01-01

    Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets. PMID:23798446

  12. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis

    PubMed Central

    ZHAO, PENG; MAO, JUN-MIN; ZHANG, SHU-YUN; ZHOU, ZE-QUAN; TAN, YANG; ZHANG, YU

    2014-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a ‘chemopreventer’. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer. PMID:25009654

  13. Ethacrynic and alpha-lipoic acids inhibit vaccinia virus late gene expression.

    PubMed

    Spisakova, Martina; Cizek, Zdenek; Melkova, Zora

    2009-02-01

    Smallpox was declared eradicated in 1980. However recently, the need of agents effective against poxvirus infection has emerged again. In this paper, we report an original finding that two redox-modulating agents, the ethacrynic and alpha-lipoic acids (EA, LA), inhibit growth of vaccinia virus (VACV) in vitro. The effect of EA and LA was compared with those of beta-mercaptoethanol, DTT and ascorbic acid, but these agents increased VACV growth in HeLa G cells. The inhibitory effects of EA and LA on the growth of VACV were further confirmed in several cell lines of different embryonic origin, in epithelial cells, fibroblasts, macrophages and T-lymphocytes. Finally, we have analyzed the mechanism of action of the two agents. They both decreased expression of VACV late genes, as demonstrated by western blot analysis and activity of luciferase expressed under control of different VACV promoters. In contrast, they did not inhibit virus entry into the cell, expression of VACV early genes or VACV DNA synthesis. The results suggest new directions in development of drugs effective against poxvirus infection.

  14. Computational insights into function and inhibition of fatty acid amide hydrolase.

    PubMed

    Palermo, Giulia; Rothlisberger, Ursula; Cavalli, Andrea; De Vivo, Marco

    2015-02-16

    The Fatty Acid Amide Hydrolase (FAAH) enzyme is a membrane-bound serine hydrolase responsible for the deactivating hydrolysis of a family of naturally occurring fatty acid amides. FAAH is a critical enzyme of the endocannabinoid system, being mainly responsible for regulating the level of its main cannabinoid substrate anandamide. For this reason, pharmacological inhibition of FAAH, which increases the level of endogenous anandamide, is a promising strategy to cure a variety of diseases including pain, inflammation, and cancer. Much structural, mutagenesis, and kinetic data on FAAH has been generated over the last couple of decades. This has prompted several informative computational investigations to elucidate, at the atomic-level, mechanistic details on catalysis and inhibition of this pharmaceutically relevant enzyme. Here, we review how these computational studies - based on classical molecular dynamics, full quantum mechanics, and hybrid QM/MM methods - have clarified the binding and reactivity of some relevant substrates and inhibitors of FAAH. We also discuss the experimental implications of these computational insights, which have provided a thoughtful elucidation of the complex physical and chemical steps of the enzymatic mechanism of FAAH. Finally, we discuss how computations have been helpful for building structure-activity relationships of potent FAAH inhibitors. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Nordihydroguaiaretic acid (NDGA) inhibits replication and viral morphogenesis of dengue virus.

    PubMed

    Soto-Acosta, Rubén; Bautista-Carbajal, Patricia; Syed, Gulam H; Siddiqui, Aleem; Del Angel, Rosa M

    2014-09-01

    Dengue is the most common mosquito borne viral disease in humans. The infection with any of the 4 dengue virus serotypes (DENV) can either be asymptomatic or manifest in two clinical forms, the mild dengue fever or the more severe dengue hemorrhagic fever that may progress into dengue shock syndrome. A DENV replicative cycle relies on host lipid metabolism; specifically, DENV infection modulates cholesterol and fatty acid synthesis, generating a lipid-enriched cellular environment necessary for viral replication. Thus, the aim of this work was to evaluate the anti-DENV effect of the Nordihydroguaiaretic acid (NDGA), a hypolipidemic agent with antioxidant and anti-inflammatory properties. A dose-dependent inhibition in viral yield and NS1 secretion was observed in supernatants of infected cells treated for 24 and 48 h with different concentrations of NDGA. To evaluate the effect of NDGA in DENV replication, a DENV4 replicon transfected Vero cells were treated with different concentrations of NDGA. NDGA treatment significantly reduced DENV replication, reiterating the importance of lipids in viral replication. NDGA treatment also led to reduction in number of lipid droplets (LDs), the neutral lipid storage organelles involved in DENV morphogenesis that are known to increase in number during DENV infection. Furthermore, NDGA treatment resulted in dissociation of the C protein from LDs. Overall our results suggest that NDGA inhibits DENV infection by targeting genome replication and viral assembly. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fermentation and alternative oxidase contribute to the action of amino acid biosynthesis-inhibiting herbicides.

    PubMed

    Zulet, Amaia; Gil-Monreal, Miriam; Zabalza, Ana; van Dongen, Joost T; Royuela, Mercedes

    2015-03-01

    Acetolactate synthase inhibitors (ALS-inhibitors) and glyphosate (GLP) are two classes of herbicide that act by the specific inhibition of an enzyme in the biosynthetic pathway of branched-chain or aromatic amino acids, respectively. The physiological effects that are detected after application of these two classes of herbicides are not fully understood in relation to the primary biochemical target inhibition, although they have been well documented. Interestingly, the two herbicides' toxicity includes some common physiological effects suggesting that they kill the treated plants by a similar pattern despite targeting different enzymes. The induction of aerobic ethanol fermentation and alternative oxidase (AOX) are two examples of these common effects. The objective of this work was to gain further insight into the role of fermentation and AOX induction in the toxic consequences of ALS-inhibitors and GLP. For this, Arabidopsis T-DNA knockout mutants of alcohol dehydrogenase (ADH) 1 and AOX1a were used. The results found in wild-type indicate that both GLP and ALS-inhibitors reduce ATP production by inducing fermentation and alternative respiration. The main physiological effects in the process of herbicide activity upon treated plants were accumulation of carbohydrates and total free amino acids. The effects of the herbicides on these parameters were less pronounced in mutants compared to wild-type plants. The role of fermentation and AOX regarding pyruvate availability is also discussed.

  17. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    PubMed

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo.

  18. Inhibition of glucose oxidation by alpha-cyano-4-hydroxycinnamic acid stimulates feeding in rats.

    PubMed

    Del Prete, E; Lutz, T A; Scharrer, E

    2004-01-01

    Alpha-cyano-4-hydroxycinnamic acid (4-CIN, 100-200 mg/kg b.wt.), which impairs glucose oxidation by inhibiting pyruvate transport across the mitochondrial membrane, stimulated feeding in rats following intraperitoneal injection without affecting blood glucose level. Like 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, 4-CIN probably acts mainly on the CNS through activation of alpha(2)-adrenergic receptors, because the feeding response to 4-CIN was eliminated by phentolamine or yohimbine. Unlike feeding elicited by 2-DG, 4-CIN-induced feeding was eliminated by total abdominal (but not hepatic branch) vagotomy. Since peripheral atropinization also blocked 4-CIN-induced feeding, activation of central parasympathetic neurons seems to be involved in 4-CIN-induced feeding. The feeding response to 4-CIN was diminished in rats fed a high-fat diet, probably because metabolic sensors sensing fatty acid oxidation counteract the feeding response to 4-CIN. The results suggest that inhibition of glucose oxidation by blocking pyruvate entry into mitochondria stimulates feeding in rats in particular when fed a high-carbohydrate diet.

  19. Inhibitions of acid secretion by E3810 and omeprazole, and their reversal by glutathione.

    PubMed

    Fujisaki, H; Shibata, H; Oketani, K; Murakami, M; Fujimoto, M; Wakabayashi, T; Yamatsu, I; Yamaguchi, M; Sakai, H; Takeguchi, N

    1991-07-05

    A substituted benzimidazole ([4-(3-methoxypropoxy)-3-methylpyridine-2-yl]methylsulfinyl)- 1H-benzimidazole sodium salt (E3810), is a gastric proton pump (H+, K(+)-ATPase) inhibitor. E3810 and omeprazole inhibited acid accumulation dose dependently as measured with aminopyrine uptake in isolated rabbit gastric glands, their IC50 values being 0.16 and 0.36 microM, respectively. The addition of exogenous reduced glutathione (GSH) to the gland suspension reactivated dose dependently the acid secretion which had been inhibited by 2 microM E3810 or omeprazole as a function of the incubation time. Furthermore, GSH at 1 and 3 mM reversed the antisecretory effect of E3810 more quickly than it did that of omeprazole. The antisecretory effect of E3810 was slightly greater than that of omeprazole in histamine-stimulated fistula dogs in vivo. The duration of the antisecretory activity of E3810 at concentrations of 2 and 4 mg/kg was shorter than that of omeprazole at the same concentrations in pentagastrin-stimulated fistula dogs. The reversal of the antisecretory activity of the inhibitors in dogs is suggested to be due to the action of endogenous extracellular GSH, in addition to de novo synthesis of the proton pump, because bullfrog gastric mucosae were found in the present study to secrete GSH into the mucosal solution at the rate of about 0.25 nmol/min/g tissue.

  20. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition.

    PubMed

    Mok, Hyejung; Park, Ji Won; Park, Tae Gwan

    2007-01-01

    Green fluorescent protein (GFP) antisense oligodeoxynucleotide (ODN) was covalently conjugated to hyaluronic acid (HA) via a reducible disulfide linkage, and the HA-ODN conjugate was complexed with protamine to increase the extent of cellular uptake and enhance the gene inhibition efficiency of GFP expression. The HA-ODN conjugate formed more stable polyelectrolyte complexes with protamine as compared to naked ODN, probably because of its increased charge density. The higher cellular uptake of protamine/HA-ODN complexes than that of protamine/naked ODN complexes was attributed to the formation of more compact nanosized complexes (approximately 200 nm in diameter) in aqueous solution. Protamine/HA-ODN complexes also showed a comparable level of GFP gene inhibition to that of cytotoxic polyethylenimine (PEI)/ODN complexes. Since both HA and protamine are naturally occurring biocompatible materials, the current formulation based on a cleavable conjugation strategy of ODN to HA could be potentially applied as safe and effective nonviral carriers for ODN and siRNA nucleic acid therapeutics.

  1. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype

    PubMed Central

    Xue, Nina; Zhou, Qin; Ji, Ming; Jin, Jing; Lai, Fangfang; Chen, Ju; Zhang, Mengtian; Jia, Jing; Yang, Huarong; Zhang, Jie; Li, Wenbin; Jiang, Jiandong; Chen, Xiaoguang

    2017-01-01

    Glioblastoma is an aggressive tumor that is associated with distinctive infiltrating microglia/macrophages populations. Previous studies demonstrated that chlorogenic acid (5-caffeoylquinic acid, CHA), a phenolic compound with low molecular weight, has an anti-tumor effect in multiple malignant tumors. In the present study, we focused on the macrophage polarization to investigate the molecular mechanisms behind the anti-glioma response of CHA in vitro and in vivo. We found that CHA treatment increased the expression of M1 markers induced by LPS/IFNγ, including iNOS, MHC II (I-A/I-E subregions) and CD11c, and reduced the expression of M2 markers Arg and CD206 induced by IL-4, resulting in promoting the production of apoptotic-like cancer cells and inhibiting the growth of tumor cells by co-culture experiments. The activations of STAT1 and STAT6, which are two crucial signaling events in M1 and M2-polarization, were significantly promoted and suppressed by CHA in macrophages, respectively. Furthermore, In G422 xenograft mice, CHA increased the proportion of CD11c-positive M1 macrophages and decreased the distribution of CD206-positive M2 macrophages in tumor tissue, consistent with the reduction of tumor weight observed in CHA-treated mice. Overall these findings indicated CHA as a potential therapeutic approach to reduce glioma growth through promoting M1-polarized macrophage and inhibiting M2 phenotypic macrophage. PMID:28045028

  2. Quercetin induces HepG2 cell apoptosis by inhibiting fatty acid biosynthesis.

    PubMed

    Zhao, Peng; Mao, Jun-Min; Zhang, Shu-Yun; Zhou, Ze-Quan; Tan, Yang; Zhang, Yu

    2014-08-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as a 'chemopreventer'. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis, as well as its antioxidant functions. Quercetin can also reduce adipogenesis. Previous studies have shown that quercetin has potent inhibitory effects on animal fatty acid synthase (FASN). In the present study, activity of quercetin was evaluated in human liver cancer HepG2 cells. Intracellular FASN activity was calculated by measuring the absorption of NADPH via a spectrophotometer. MTT assay was used to test the cell viability, immunoblot analysis was performed to detect FASN expression levels and the apoptotic effect was detected by Hoechst 33258 staining. In the present study, it was found that quercetin could induce apoptosis in human liver cancer HepG2 cells with overexpression of FASN. This apoptosis was accompanied by the reduction of intracellular FASN activity and could be rescued by 25 or 50 μM exogenous palmitic acids, the final product of FASN-catalyzed synthesis. These results suggested that the apoptosis induced by quercetin was via the inhibition of FASN. These findings suggested that quercetin may be useful for preventing human liver cancer.

  3. Inhibition of herpes virus infection in oligodendrocyte cultured cells by valproic acid.

    PubMed

    Crespillo, A J; Praena, B; Bello-Morales, R; Lerma, L; Vázquez-Calvo, A; Martín-Acebes, M A; Tabarés, E; Sobrino, F; López-Guerrero, J A

    2016-03-02

    Valproic acid (VPA) is a small fatty acid used for treatment of different neurologic diseases such as epilepsy, migraines or bipolar disorders. VPA modulates different processes of cell metabolism that can lead to alterations in susceptibility of several cell types to the infection of Human Immunodeficiency Virus (HIV), Epstein-Barr virus (EBV), as well as to exert an inhibitory effect on the replication of different enveloped viruses in cultured cells. Taken these data into account and the fact that HSV-1 has been involved in some neuropathies, we have characterized the effect of VPA on this herpesvirus infection of the differentiation/maturation-inducible human oligodendrocyte cell line HOG, which resulted more susceptible to VPA inhibition of virus growth after cell differentiation. In these cells, the role of VPA in virus entry was tackled. Incubation with VPA induced a slight but reproducible inhibition in the virus particles uptake mainly observed when the drug was added in the adsorption or early upon infection. In addition, transcription and expression of viral proteins were significantly downregulated in the presence of VPA. Remarkably, when the infective viral production was assessed, VPA dramatically blocked the detection of infectious HSV-1 particles. Herein, our results indicate that VPA treatment of HOG cells significantly reduces the effect of HSV-1 infection, virus entry and productivity without affecting cellular viability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chicoric acid suppresses BAFF expression in B lymphocytes by inhibiting NF-κB activity.

    PubMed

    Chen, Lingxi; Huang, Gang; Gao, Min; Shen, Xiaodong; Gong, Wei; Xu, Zhizhen; Zeng, Yijun; He, Fengtian

    2017-03-01

    B cell activating factor belonging to the TNF family (BAFF) plays a critical role in the pathogenesis of autoimmune diseases. The inhibition of BAFF expression is an emerging therapeutic approach for these disorders. Chicoric acid (CA), a bioactive phytochemical found in several widely used traditional medicinal plants, has significant anti-inflammatory activity and anti-arthritic effects. However, the role of CA in modulation of BAFF expression remains unknown. In this study, we demonstrated that CA reduced BAFF expression in human B lymphocyte cell lines and decreased the DNA-binding activity of nuclear factor-κB (NF-κB) in the BAFF promoter region. Furthermore, CA inhibited both the nuclear translocation of p65 (the subunit of NF-κB) and the phosphorylation of IκBα (inhibitor of NF-κB). These results suggest that CA suppresses BAFF expression by inhibiting NF-κB activity, and CA may serve as a novel therapeutic agent to down-regulate excessive BAFF expression in autoimmune diseases.

  5. Phenylbutyric acid inhibits epithelial-mesenchymal transition during bleomycin-induced lung fibrosis.

    PubMed

    Zhao, Hui; Qin, Hou-Ying; Cao, Lin-Feng; Chen, Yuan-Hua; Tan, Zhu-Xia; Zhang, Cheng; Xu, De-Xiang

    2015-01-05

    A recent report showed that unfolded protein response (UPR) signaling was activated during bleomycin (BLM)-induced pulmonary fibrosis. Phenylbutyric acid (PBA) is an endoplasmic reticulum (ER) chemical chaperone that inhibits the UPR signaling. The present study investigated the effects of PBA on BLM-induced epithelial-mesenchymal transition (EMT) and pulmonary fibrosis. For induction of pulmonary fibrosis, all mice except controls were intratracheally injected with a single dose of BLM (3.0mg/kg). In PBA+BLM group, mice were intraperitoneally injected with PBA (150mg/kg) daily. Three weeks after BLM injection, EMT was measured and pulmonary fibrosis was evaluated. BLM-induced pulmonary UPR activation was inhibited by PBA. Moreover, BLM-induced pulmonary nuclear factor kappa B (NF-κB) p65 activation was blocked by PBA. In addition, BLM-induced up-regulation of pulmonary inflammatory cytokines was repressed by PBA. Further analysis showed that BLM-induced α-smooth muscle actin (α-SMA), a marker for EMT, was significantly attenuated by PBA. Moreover, BLM-induced pulmonary collagen (Col1α1 and Col1α2) was obviously inhibited by PBA. Importantly, BLM-induced pulmonary fibrosis, as determined using Sirius red staining, was obviously alleviated by PBA. Taken together, these results suggest that PBA alleviates ER stress-mediated EMT in the pathogenesis of BLM-induced pulmonary fibrosis.

  6. Biodegradable Kojic Acid-Based Polymers: Controlled Delivery of Bioactives for Melanogenesis Inhibition.

    PubMed

    Faig, Jonathan J; Moretti, Alysha; Joseph, Laurie B; Zhang, Yingyue; Nova, Mary Joy; Smith, Kervin; Uhrich, Kathryn E

    2017-02-13

    Kojic acid (KA) is a naturally occurring fungal metabolite that is utilized as a skin-lightener and antibrowning agent owing to its potent tyrosinase inhibition activity. While efficacious, KA's inclination to undergo pH-mediated, thermal-, and photodegradation reduces its efficacy, necessitating stabilizing vehicles. To minimize degradation, poly(carbonate-esters) and polyesters comprised of KA and natural diacids were prepared via solution polymerization methods. In vitro hydrolytic degradation analyses revealed KA release was drastically influenced by polymer backbone composition (e.g., poly(carbonate-ester) vs polyester), linker molecule (aliphatic vs heteroatom-containing), and release conditions (physiological vs skin). Tyrosinase inhibition assays demonstrated that aliphatic KA dienols, the major degradation product under skin conditions, were more potent then KA itself. All dienols were found to be less toxic than KA at all tested concentrations. Additionally, the most lipophilic dienols were statistically more effective than KA at inhibiting melanin biosynthesis in cells. These KA-based polymer systems deliver KA analogues with improved efficacy and cytocompatible profiles, making them ideal candidates for sustained topical treatments in both medical and personal care products.

  7. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage.

    PubMed

    Utgikar, Vivek P; Harmon, Stephen M; Chaudhary, Navendu; Tabak, Henry H; Govind, Rakesh; Haines, John R

    2002-02-01

    Acid mine drainage (AMD) containing high concentrations of sulfate and heavy metal ions can be treated by biological sulfate reduction. It has been reported that the effect of heavy metals on sulfate-reducing bacteria (SRB) can be stimulatory at lower concentrations and toxic/inhibitory at higher concentrations. The quantification of the toxic/inhibitory effect of dissolved heavy metals is critical for the design and operation of an effective AMD bioremediation process. Serum bottle and batch reactor studies on metal toxicity to SRB indicate that insoluble metal sulfides can inhibit the SRB activity as well. The mechanism of inhibition is postulated to be external to the bacterial cell. The experimental data indicate that the metal sulfides formed due to the reaction between the dissolved metal and biogenic sulfide act as barriers preventing the access of the reactants (sulfate, organic matter) to the necessary enzymes. Scanning electron micrographs of the SRB cultures exposed to copper and zinc provide supporting evidence for this hypothesis. The SRB cultures retained their ability to effect sulfate reduction indicating that the metal sulfides were not lethally toxic to the SRB. This phenomenon of metal sulfide inhibition of the SRB has to be taken into account while designing a sulfate-reducing bioreator, and subsequently an efficient biotreatment strategy for AMD. Any metal sulfide formed in the bioreactor needs to be removed immediately from the system to maintain the efficiency of the process of sulfate reduction.

  8. Inhibition of Gallic Acid on the Growth and Biofilm Formation of Escherichia coli and Streptococcus mutans.

    PubMed

    Shao, Dongyan; Li, Jing; Li, Ji; Tang, Ruihua; Liu, Liu; Shi, Junling; Huang, Qingsheng; Yang, Hui

    2015-06-01

    New strategies for biofilm inhibition are becoming highly necessary because of the concerns to synthetic additives. As gallic acid (GA) is a hydrolysated natural product of tannin in Chinese gall, this research studied the effects of GA on the growth and biofilm formation of bacteria (Escherichia coli [Gram-negative] and Streptococcus mutans [Gram-positive]) under different conditions, such as nutrient levels, temperatures (25 and 37 °C) and incubation times (24 and 48 h). The minimum antimicrobial concentration of GA against the two pathogenic organisms was determined as 8 mg/mL. GA significantly affected the growth curves of both test strains at 25 and 37 °C. The nutrient level, temperature, and treatment time influenced the inhibition activity of GA on both growth and biofim formation of tested pathogens. The inhibition effect of GA on biofilm could be due to other factors in addition to the antibacterial effect. Overall, GA was most effective against cultures incubated at 37 °C for 24 h and at 25 °C for 48 h in various concentrations of nutrients and in vegetable wash waters, which indicated the potential of GA as emergent sources of biofilm control products. © 2015 Institute of Food Technologists®

  9. Syringic Acid Extracted from Herba dendrobii Prevents Diabetic Cataract Pathogenesis by Inhibiting Aldose Reductase Activity

    PubMed Central

    Wei, Xiaoyong; Chen, Dan; Yi, Yanchun; Qi, Hui; Gao, Xinxin; Fang, Hua; Gu, Qiong; Wang, Ling; Gu, Lianquan

    2012-01-01

    Objective. Effects of Syringic acid (SA) extracted from dendrobii on diabetic cataract (DC) pathogenesis were explored. Methods. Both in vitro and in vivo DC lens models were established using D-gal, and proliferation of HLEC exposed to SA was determined by MMT assay. After 60-day treatment with SA, rat lens transparency was observed by anatomical microscopy using a slit lamp. SA protein targets were extracted and isolated using 2-DE and MALDI TOF/TOF. AR gene expression was investigated using qRT-PCR. Interaction sites and binding characteristics were determined by molecule-docking techniques and dynamic models. Results. Targeting AR, SA provided protection from D-gal-induced damage by consistently maintaining lens transparency and delaying lens turbidity development. Inhibition of AR gene expression by SA was confirmed by qRT-PCR. IC50 of SA for inhibition of AR activity was 213.17 μg/mL. AR-SA binding sites were Trp111, His110, Tyr48, Trp20, Trp79, Leu300, and Phe122. The main binding modes involved hydrophobic interactions and hydrogen bonding. The stoichiometric ratio of non-covalent bonding between SA and AR was 1.0 to 13.3. Conclusion. SA acts to prevent DC in rat lenses by inhibiting AR activity and gene expression, which has potential to be developed into a novel drug for therapeutic management of DC. PMID:23365598

  10. Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid.

    PubMed

    Bains, Yasmin; Gugliucci, Alejandro; Caccavello, Russell

    2017-07-01

    One mechanism by which fructose could exert deleterious effects is through intestinal formation and absorption of pro-inflammatory advanced glycation endproducts via the Maillard reaction. We employed simulated stomach and duodenum digestion of ovalbumin (OVA) to test the hypothesis that advanced glycation endproducts (AGEs) are formed by fructose during simulated digestion of a ubiquitous food protein under model physiological conditions. OVA was subjected to simulated gastric and intestinal digestion using standard models, in presence of fructose or glucose (0-100mM). Peptide fractions were analyzed by fluorescence spectroscopy and intensity at Excitation: λ370nm, Emission: λ 440nm. AGE adducts formed between fructose and OVA, evidenced by the peptide fractions (<5kDa) at times (30min) and concentration ranges (10mM) plausibly found in the intestines, whereas no reaction occurs with glucose. The reaction was inhibited by chlorogenic acid at concentrations compatible with those found in the gut. The reaction was also inhibited by aminoguanidine, a specific antiglycation agent. Our study showed fructose-AGE formation on a ubiquitous dietary protein under model physiological conditions. Our study also suggests ways to decrease the damage: enteral fructose-AGE formation may be partially inhibited by co-intake of beverages, fruits and vegetables with concentrations of phenolics high enough to serve as anti-glycation agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Okadaic acid-induced inhibition of B-50 dephosphorylation by presynaptic membrane-associated protein phosphatases.

    PubMed

    Han, Y F; Dokas, L A

    1991-10-01

    The neuronal tissue-specific protein kinase C (PKC) substrate B-50 can be dephosphorylated by endogenous protein phosphatases (PPs) in synaptic plasma membranes (SPMs). The present study characterizes membrane-associated B-50 phosphatase activity by using okadaic acid (OA) and purified 32P-labeled substrates. At a low concentration of [gamma-32P]ATP, PKC-mediated [32P]phosphate incorporation into B-50 in SPMs reached a maximal value at 30 s, followed by dephosphorylation. OA, added 30 s after the initiation of phosphorylation, partially prevented the dephosphorylation of B-50 at 2 nM, a dose that inhibits PP-2A. At the higher concentration of 1 microM, a dose of OA that inhibits PP-1 as well as PP-2A, a nearly complete blockade of B-50 dephosphorylation was seen. Heat-stable PP inhibitor-2 (I-2) also inhibited dephosphorylation of B-50. The effects of OA and I-2 on B-50 phosphatase activity were additive. Endogenous PP-1- and PP-2A-like activities in SPMs were also demonstrated by their capabilities of dephosphorylating [32P]phosphorylase a and [32P]casein. With these exogenous substrates, sensitivities of the membrane-bound phosphatases to OA and I-2 were found to be similar to those of purified forms of these enzymes. These results indicate that PP-1- and PP-2A-like enzymes are the major B-50 phosphatases in SPMs.

  12. Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro.

    PubMed

    Gao, Li; Han, Jiayuan; Si, Jianyong; Wang, Junchi; Wang, Hexiang; Sun, Yipeng; Bi, Yuhai; Liu, Jinhua; Cao, Li

    2017-07-01

    Influenza virus infection is a global public health issue. The efficacy of antiviral agents for influenza virus has been limited by the emergence of drug-resistant virus strains. Thus, there is an urgent need to identify novel antiviral therapies. Our previous studies have found that Cryptoporus volvatus extract can potently inhibit influenza virus replication in vitro and in vivo. However, the effective component of Cryptoporus volvatus, which mediates the antiviral activity, hasn't been identified. Here, we identified a novel anti-influenza virus molecule, Cryptoporic acid E (CAE), from Cryptoporus volvatus. Our results showed that CAE had broad-spectrum anti-influenza activity against 2009 pandemic strain A/Beijing/07/2009 (H1N1/09pdm), seasonal strain A/Beijing/CAS0001/2007(H3N2), mouse adapted strains A/WSN/33 (H1N1), and A/PR8/34 (H1N1). We further investigated the mode of CAE action. Time-course-analysis indicated that CAE exerted its inhibition mainly at the middle stages of the replication cycle of influenza virus. Subsequently, we confirmed that CAE inhibited influenza virus RNA polymerase activity and blocked virus RNA replication and transcription in MDCK cells. In addition, we found that CAE also impaired influenza virus infectivity by directly targeting virus particles. Our data suggest that CAE is a major effective component of Cryptoporus volvatus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Is Protein Phosphatase Inhibition Responsible for the Toxic Effects of Okadaic Acid in Animals?

    PubMed Central

    Munday, Rex

    2013-01-01

    Okadaic acid (OA) and its derivatives, which are produced by dinoflagellates of the genera Prorocentrum and Dinophysis, are responsible for diarrhetic shellfish poisoning in humans. In laboratory animals, these toxins cause epithelial damage and fluid accumulation in the gastrointestinal tract, and at high doses, they cause death. These substances have also been shown to be tumour promoters, and when injected into the brains of rodents, OA induces neuronal damage reminiscent of that seen in Alzheimer’s disease. OA and certain of its derivatives are potent inhibitors of protein phosphatases, which play many roles in cellular metabolism. In 1990, it was suggested that inhibition of these enzymes was responsible for the diarrhetic effect of these toxins. It is now repeatedly stated in the literature that protein phosphatase inhibition is not only responsible for the intestinal effects of OA and derivatives, but also for their acute toxic effects, their tumour promoting activity and their neuronal toxicity. In the present review, the evidence for the involvement of protein phosphatase inhibition in the induction of the toxic effects of OA and its derivatives is examined, with the conclusion that the mechanism of toxicity of these substances requires re-evaluation. PMID:23381142

  14. Lonicera hypoglauca inhibits xanthine oxidase and reduces serum uric acid in mice.

    PubMed

    Chien, Shih-Chang; Yang, Chen-Wei; Tseng, Yen-Hsueh; Tsay, Hsin-Sheng; Kuo, Yueh-Hsiung; Wang, Sheng-Yang

    2009-03-01

    Xanthine oxidase (XOD) catalyzes the oxidation of hypoxanthine to xanthine and then to uric acid, and is a key enzyme in the pathogenesis of hyperuricemia. The ability of extracts of Lonicera hypoglauca (Caprifoliaceae) to inhibit XOD was investigated in this study. An ethanol extract (LH-crude) of the leaves of L. hypoglauca and its derived EtOAc soluble sub-fractions (LH-EA) significantly inhibited XOD activity, with IC50 values for LH-crude and LH-EA of 48.8 and 35.2 microg/mL. Moreover, LH-EA reduced serum urate levels IN VIVO in a potassium oxonate-induced hyperuricemic mouse model, by 70.1% and 93.7% of the hyperuricemic untreated group at doses of 300 and 500 mg/kg of LH-EA, respectively. Finally, we used bioactivity-guided fractionation to isolate a new bisflavonoid, loniceraflavone, which showed significant inhibition of XOD (IC50=0.85 microg/mL). These results suggest that L. hypoglauca and its extracts may have a considerable potential for development as an anti-hyperuricemia agent for clinical application.

  15. Inhibition of fatty acid amide hydrolase by kaempferol and related naturally occurring flavonoids

    PubMed Central

    Thors, L; Belghiti, M; Fowler, C J

    2008-01-01

    Background and purpose: Recent studies have demonstrated that the naturally occurring isoflavone compounds genistein and daidzein inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the low micromolar concentration range. The purpose of the present study was to determine whether this property is shared by flavonoids. Experimental approach: The hydrolysis of anandamide in homogenates and intact cells was measured using the substrate labelled in the ethanolamine part of the molecule. Key results: Twenty compounds were tested. Among the commonly occurring flavonoids, kaempferol was the most potent, inhibiting FAAH in a competitive manner with a Ki value of 5 μM. Among flavonoids with a more restricted distribution in nature, the two most active toward FAAH were 7-hydroxyflavone (IC50 value of 0.5–1 μM depending on the solvent used) and 3,7-dihydroxyflavone (IC50 value 2.2 μM). All three compounds reduced the FAAH-dependent uptake of anandamide and its metabolism by intact RBL2H3 basophilic leukaemia cells. Conclusions and implications: Inhibition of FAAH is an additional in vitro biochemical property of flavonoids. Kaempferol, 7-hydroxyflavone and 3,7-dihydroxyflavone may be useful as templates for the synthesis of novel compounds, which target several systems that are involved in the control of inflammation and cancer. PMID:18552875

  16. Tributyltin and triphenyltin inhibit osteoclast differentiation through a retinoic acid receptor-dependent signaling pathway

    SciTech Connect

    Yonezawa, Takayuki; Hasegawa, Shin-ichi; Ahn, Jae-Yong; Cha, Byung-Yoon; Teruya, Toshiaki; Hagiwara, Hiromi; Nagai, Kazuo; Woo, Je-Tae; E-mail: jwoo@isc.chubu.ac.jp

    2007-03-30

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used in agriculture and industry. Although these compounds are known to have many toxic effects, including endocrine-disrupting effects, their effects on bone resorption are unknown. In this study, we investigated the effects of organotin compounds, such as monobutyltin (MBT), dibutyltin (DBT), TBT, and TPT, on osteoclast differentiation using mouse monocytic RAW264.7 cells. MBT and DBT had no effects, whereas TBT and TPT dose-dependently inhibited osteoclast differentiation at concentrations of 3-30 nM. Treatment with a retinoic acid receptor (RAR)-specific antagonist, Ro41-5253, restored the inhibition of osteoclastogenesis by TBT and TPT. TBT and TPT reduced receptor activator of nuclear factor-{kappa}B ligand (RANKL) induced nuclear factor of activated T cells (NFAT) c1 expression, and the reduction in NFATc1 expression was recovered by Ro41-5253. Our results suggest that TBT and TPT suppress osteoclastogenesis by inhibiting RANKL-induced NFATc1 expression via an RAR-dependent signaling pathway.

  17. The role of fatty acid amide hydrolase inhibition in nicotine reward and dependence

    PubMed Central

    Muldoon, Pretal P.; Lichtman, Aron H.; Parsons, Loren H.; Damaj, M. Imad

    2012-01-01

    The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non- cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences. PMID:22705310

  18. Stimulation of h efflux and inhibition of photosynthesis by esters of carboxylic acids.

    PubMed

    Duhaime, D E; Bown, A W

    1983-11-01

    Suspensions of mechanically isolated Asparagus sprengeri Regel mesophyll cells were used to investigate the influence of various carboxyester compounds on rates of net H(+) efflux in the dark or light and photosynthetic O(2) production. Addition of 0.15 to 1.5 millimolar malathion, alpha-naphthyl acetate, phenyl acetate, or p-nitrophenyl acetate stimulated H(+) efflux and inhibited photosynthesis within 1 minute. In contrast, the more polar esters methyl acetoacetate or ethyl p-aminobenzoate had little or no effect on either of these two processes. A 0.15 millimolar concentration of alpha-naphthylacetate stimulated the normal rate of H(+) efflux, 0.77 nanomoles H(+) per 10(6) cells per minute by 750% and inhibited photosynthesis by 100%. The four active carboxyester compounds also stimulated H(+) efflux after the normal rate of H(+) efflux was eliminated with 0.01 milligrams per milliliter oligomycin or 100% N(2). Oligomycin reduced the ATP level by 70%. Incubation of cells with malathion, alpha-naphthyl acetate, or p-nitrophenyl acetate resulted in the generation of the respective hydrolysis products ethanol, alpha-naphthol, and p-nitrophenol. It is proposed that inhibition of photosynthesis and stimulation of H(+) efflux result when nonpolar carboxyester compounds enter the cell and generate acidic carboxyl groups when hydrolyzed by esterase enzymes.

  19. Allosteric Inhibition of Phosphoenolpyruvate Carboxylases is Determined by a Single Amino Acid Residue in Cyanobacteria

    PubMed Central

    Takeya, Masahiro; Hirai, Masami Yokota; Osanai, Takashi

    2017-01-01

    Phosphoenolpyruvate carboxylase (PEPC) is an important enzyme for CO2 fixation and primary metabolism in photosynthetic organisms including cyanobacteria. The kinetics and allosteric regulation of PEPCs have been studied in many organisms, but the biochemical properties of PEPC in the unicellular, non-nitrogen-fixing cyanobacterium Synechocystis sp. PCC 6803 have not been clarified. In this study, biochemical analysis revealed that the optimum pH and temperature of Synechocystis 6803 PEPC proteins were 7.3 and 30 °C, respectively. Synechocystis 6803 PEPC was found to be tolerant to allosteric inhibition by several metabolic effectors such as malate, aspartate, and fumarate compared with other cyanobacterial PEPCs. Comparative sequence and biochemical analysis showed that substitution of the glutamate residue at position 954 with lysine altered the enzyme so that it was inhibited by malate, aspartate, and fumarate. PEPC of the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 was purified, and its activity was inhibited in the presence of malate. Substitution of the lysine at position 946 (equivalent to position 954 in Synechocystis 6803) with glutamate made Anabaena 7120 PEPC tolerant to malate. These results demonstrate that the allosteric regulation of PEPC in cyanobacteria is determined by a single amino acid residue, a characteristic that is conserved in different orders. PMID:28117365

  20. Potent inhibition of human immunodeficiency virus by MDL 101028, a novel sulphonic acid polymer.

    PubMed

    Taylor, D L; Brennan, T M; Bridges, C G; Mullins, M J; Tyms, A S; Jackson, R; Cardin, A D

    1995-10-01

    MDL 101028, a novel biphenyl disulphonic acid urea co-polymer was designed and synthesised as a heparin mimetic. This low molecular weight polymer showed potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication in a number of host-cell/virus systems, including primary clinical isolates of the virus cultured in human peripheral blood mononuclear cells (PBMCs). When compared with the heterogeneous polysulphated molecules, heparin and dextran sulphate, this chemically defined compound showed equivalent antiviral activity with 50% inhibitory concentrations (IC50s) in the range 0.27-3.0 micrograms/ml in the host-cell/virus systems tested. MDL 101028 also inhibited the replication of HIV type 2 and the simian immunodeficiency virus (SIV), as well as HIV-1 variants resistant to reverse transcriptase inhibitors. Virus growth was blocked when exposure of T-lymphocytes to MDL 101028 was restricted to the virus absorption stage, or even in whole blood conditions. MDL 101028 did not irreversibly inactivate virions, and in contrast to heparin, did not inhibit the attachment of radiolabelled HIV-1 to CD4+ T-cells. MDL 101028 blocked HIV-induced cell-to-cell fusion and this activity appears to explain the mechanism of its antiviral action. The antiviral evaluation of discrete oligomer molecules of MDL 101028 showed that a polymer chain length of six repeating units had optimal potency. The lack of anticoagulant properties and significant antiviral activity in whole blood may allow the development of MDL 101028 as a treatment of HIV infections.

  1. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    SciTech Connect

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun Chung, Won-Yoon

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  2. Optimizing the matching between the acid and the base of cooperative catalysis to inhibit dehydration in the aldol condensation.

    PubMed

    Liu, Bo; Wu, Shujie; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2011-10-15

    A series of acid-base bifunctional catalysts were prepared, and high yields and excellent selectivity in the aldol condensation were achieved through adjustment of the matching between the acid and the base. The results indicated that proper matching between the acid and the base can both efficiently activate the substrate through cooperative activation and inhibit dehydration without diminishing the yield. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Competitive inhibition of amino acid transport in human preovulatory ovarian follicles.

    PubMed

    Jóźwik, Maciej; Jóźwik, Marcin; Milewska, Anna Justyna; Battaglia, Frederick C; Jóźwik, Michał

    2017-10-01

    To date we have yet to examine whether amino acid (AA) transport in human ovarian follicles is affected by competitive inhibition. In contrast, transplacental transfer of AAs in late-gestation sheep is characterized by reciprocal competition. This phenomenon has been described by algebraic equations of umbilical uptake of AAs based on maternal arterial concentrations. In the present translational study at a university teaching hospital, we verified whether these equations apply to the transport of AAs from blood to follicular fluid (FF) in human preovulatory follicles. For this purpose we used our data on AA concentrations in blood and FF measured earlier by high-performance liquid chromatography in specimens from 14 patients undergoing oocyte retrieval for in vitro fertilization after controlled ovarian stimulation. The main outcome measure was statistical significance of Spearman correlation coefficients for measured versus calculated concentrations of 8 AAs: isoleucine, leucine, valine, phenylalanine, methionine, threonine, lysine, and arginine. Equations for umbilical uptake provided a highly accurate description of blood-to-FF transport for 7 AAs with the exception of lysine: R ≥ 0.899 (p < 0.0001) for the branched-chain AAs, R = 0.829 (p = 0.0003) for threonine, R = 0.754 (p = 0.0019) for arginine, and R = 0.631 (p = 0.0156) for phenylalanine and methionine. We conclude that these equations indicate competitive inhibition between the AAs studied. Our study strongly suggests that many AA transport systems operating in the placenta should also be active in the cells of the preovulatory follicle. Future studies on AA fluxes in human ovarian follicles must consider possible competitive inhibition. AA: amino acid; FF: follicular fluid; HPLC: high-performance liquid chromatography.

  4. Combination of intermittent calorie restriction and eicosapentaenoic acid for inhibition of mammary tumors.

    PubMed

    Mizuno, Nancy K; Rogozina, Olga P; Seppanen, Christine M; Liao, D Joshua; Cleary, Margot P; Grossmann, Michael E

    2013-06-01

    There are a number of dietary interventions capable of inhibiting mammary tumorigenesis; however, the effectiveness of dietary combinations is largely unexplored. Here, we combined 2 interventions previously shown individually to inhibit mammary tumor development. The first was the use of the omega-3 fatty acid, eicosapentaenoic acid (EPA), and the second was the implementation of calorie restriction. MMTV-Her2/neu mice were used as a model for human breast cancers, which overexpress Her2/neu. Six groups of mice were enrolled. Half were fed a control (Con) diet with 10.1% fat calories from soy oil, whereas the other half consumed a diet with 72% fat calories from EPA. Within each diet, mice were further divided into ad libitum (AL), chronic calorie-restricted (CCR), or intermittent calorie-restricted (ICR) groups. Mammary tumor incidence was lowest in ICR-EPA (15%) and highest in AL-Con mice (87%), whereas AL-EPA, CCR-Con, CCR-EPA, and ICR-Con groups had mammary tumor incidence rates of 63%, 47%, 40%, and 59%, respectively. Survival was effected similarly by the interventions. Consumption of EPA dramatically reduced serum leptin (P < 0.02) and increased serum adiponectin in the AL-EPA mice compared with AL-Con mice (P < 0.001). Both CCR and ICR decreased serum leptin and insulin-like growth factor I (IGF-I) compared with AL mice but not compared with each other. These results illustrate that mammary tumor inhibition is significantly increased when ICR and EPA are combined as compared with either intervention alone. This response may be related to alterations in the balance of serum growth factors and adipokines.

  5. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3β pathway

    PubMed Central

    Chen, Lin; Zhang, Yi; Sun, Xiuli; Li, Hui; LeSage, Gene; Javer, Avani; Zhang, Xiumei; Wei, Xinbing; Jiang, Yulin; Yin, Deling

    2009-01-01

    As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3β (GSK3β). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3β pathway. PMID:19477653

  6. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol

    PubMed Central

    Qin, Nan; Tan, Xiaojuan; Jiao, Yinming; Liu, Lin; Zhao, Wangsheng; Yang, Shuang; Jia, Aiqun

    2014-01-01

    Bacterial biofilms are particularly problematic since they become resistant to most available antibiotics. Hence, novel potential antagonists to inhibit biofilm formation are urgent. Here the influences of two natural products, ursolic acid and resveratrol, on biofilm of the clinical methicillin-resistant Staphylococcus aureus (MRSA) isolate were investigated using RNA-seq, and the differentially expressed genes were analyzed using Cuffdiff. The results showed that ursolic acid inhibition of biofilm formation may reduce amino acids metabolism and adhesins expression and resveratrol may disturb quorum sensing (QS) and the synthesis of surface proteins and capsular polysaccharides. In addition, the transcriptome analysis of resveratrol and the combination of resveratrol with vancomycin inhibition of established biofilm revealed that resveratrol would disturb the expression of genes related to QS, surface and secreted proteins, and capsular polysaccharides. These findings suggest that ursolic acid and resveratrol could be useful to be adjunct therapies for the treatment of MRSA biofilm-involved infections. PMID:24970710

  7. Uric Acid Inhibition of Dipeptidyl Peptidase IV In Vitro is Dependent on the Intracellular Formation of Triuret

    PubMed Central

    Mohandas, Rajesh; Sautina, Laura; Beem, Elaine; Schuler, Anna; Chan, Wai-Yan; Domsic, John; McKenna, Robert; Johnson, Richard J.; Segal, Mark S.

    2014-01-01

    Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid has on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr)CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV respectively. Last, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases. PMID:24925478

  8. Uric acid inhibition of dipeptidyl peptidase IV in vitro is dependent on the intracellular formation of triuret.

    PubMed

    Mohandas, Rajesh; Sautina,